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1. I n t r o d u c t i o n  

This  pape r  develops  the  founda t ions  of the  t heo ry  of quas iconformal  maps  in met r i c  

spaces  t h a t  sa t i s fy  ce r ta in  bounds  on the i r  mass  and  geometry .  T h e  pr inc ipa l  message  is 

t h a t  such a t heo ry  is b o t h  re levant  and  viable.  

The  first ma in  issue is the  p rob l e m of defini t ion,  which we next  descr ibe.  Quasi-  

conformal  m a p s  are  commonly  u n d e r s t o o d  as h o m e o m o r p h i s m s  t h a t  d i s to r t  the  shape  

of inf in i tes imal  bal ls  by  a un i fo rmly  b o u n d e d  amount .  Th is  r equ i rement  makes  sense 

in every met r ic  space.  Given  a h o m e o m o r p h i s m  f f rom a met r i c  space  X to  a met r i c  

space Y,  then  for x c X  and  r > 0  set 

Hi (x ,  r ) =  s u p { J f ( x ) -  f(Y)l  : Ix -y[  ~ r} (I . I)  

Here and  hereaf te r  we use the  d i s t ance  n o t a t i o n  I x - y l  in any  met r i c  space.  

Both authors were supported in part by the NSF and the Academy of Finland. The first author 
is a Sloan Fellow. 
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Definition 1.2. A homeomorphism f :  X-~ Y  is called quasiconformal if there is a 

constant H < c~ so that  

lim sup Hi(x, r) <~ H (1.3) 
r--*0 

for all x ~ X. 

This definition is easy to state, but not easy to use. It does follow easily from the 

definition and classical theorems in real analysis that  quasiconformal homeomorphisms 

in Euclidean spaces are almost everywhere differentiable. But it is not clear whether, 

for instance, the inverse of a given quasiconformal map is quasiconformal; nor is it easy 

to ascertain desired stronger properties such as H61der continuity or the compactness of 

a suitably normalized family of quasiconformal homeomorphisms. The difficulties stem 

from the fact that  (1.3) is a local, infinitesimal condition. 

Let us look at a stronger, global requirement. 

Definition 1.4. A homeomorphism f :  X-~ Y  is called quasisymmetric if there is a 

constant H < c ~  so that  

Hi(x, r) ~< H (1.5) 

for all x E X and all r >0. 

It is not difficult to demonstrate starting from the definition that  quasisymmet- 

tic homeomorphisms between reasonable spaces enjoy many strong properties: they are 

HSlder continuous, inverse maps are quasisymmetric as well, normal families are common 

and quasisymmetry carries over to limit homeomorphisms. In fact, much of the classical 

quasiconformal theory can be done by directly exploiting condition (1.5), or its local ver- 

sions. Quasisymmetric maps made their first official appearance in the 1956 paper [BA] 

by Beurling and Ahlfors, who were concerned about maps of the real line, and quasi- 

conformal extensions thereof. The concept was later promoted by Tukia and V~is~l/i, who 

introduced and studied quasisymmetric maps between arbitrary metric spaces in [TV]. 

Recently V~iis/il/i IV5], IV6] has developed a "dimension-free" theory of quasiconformal 

maps in infinite-dimensional Banach spaces based on the idea of quasisymmetry. See 

also IV2]. 

It is a fundamental fact that  quasiconformal homeomorphisms between Euclidean 

spaces of dimension at least two are quasisymmetric; that  is, (1.3) implies (1.5) for a 

homeomorphism f :  Rn--*R n if n ~2 .  (The value of the constant H in (1.5) may differ, 

but it only depends on the constant appearing in (1.3) and possibly--this  is an open 

problem--on  the dimension n.) If we assume that  f is a diffeomorphism, then this fact 

is not overly difficult to establish, albeit still nontrivial. That  global bounds can be 

obtained without any a priori regularity assumptions is a deep result that  reflects certain 



QUASICONFORMAL MAPS IN METRIC SPACES WITH CONTROLLED GEOMETRY 3 

special properties of Euclidean space, worth seeking elsewhere. This result was first 

proved by Gehring in [G1] for R 2, with a method that  extends to higher dimensions; 

see iV1] for a full account. For n - - l ,  the statement is false; consider, for example, 

f ( x )  =x+e  x. 

The problem whether (1.3) and (1.5) are equivalent for a given self-homeomorphism 

of a space can be phrased in more intrinsic terms as follows. Let X be a space with 

metric d, which we regard as the fixed "conformal" structure on X. Suppose then that  

we are given an infinitesimal quasiconformal structure on X. By this we mean a new 

metric on X whose balls, at the limit when the radius goes to zero, are not too differ- 

ent in shape from the bails in the metric d. Is it then true that  these two structures 

are globally quasisymmetrically equivalent? In other words, can we recapture the global 

quasisymmetric structure of a space from a local or infinitesimal quasiconformal struc- 

ture? This question comes up naturally in the quasiisometry classification of negatively 

curved spaces. It is known that  the quasiisometry type of a negatively curved space 

(in the sense of Gromov [GH]) is in many cases determined by the quasisymmetric type 

of its boundary; thus we would like to know whether it is already determined by the 

infinitesimal quasiconformal type. See the survey article by Gromov and Pansu [GP] for 

an excellent discussion. (See also [P3] and [Paul.) 

For a long time it was not clear whether this infinitesimal-to-global principle was 

valid in spaces that  are sufficiently distinct from R n. In fact, examples of relatively nice 

spaces were found where it fails; for instance, one can take X to be R 2 and Y to be a 

certain smooth hypersurface in R 3, cf. [HK1, Example 4.71 or iV2, w As a consequence 

of the recent work of IViostow [Mo2], Pansu [PI], [P2], and others, it followed that (1.3) 

implies (1.5) for homeomorphisms between the spaces that occur as conformal boundaries 

of rank-one symmetric spaces. In particular, Kor~nyi and Reimann [KR1], [KR2] have 

conducted a thorough study of the quasiconformal maps on the Heisenberg group, and 

a careful treatment of various definitions for quasiconformal maps on the Heisenberg 

group is given in [KR2]. The authors showed in [HK1] that  (1.3) implies (1.5) in an 

arbitrary Carnot group (see w below), or more generally in the case where X is a 

Carnot group and Y is a metric space with similar homogeneity and local connectivity 

properties to X. Recently, Margulis and Mostow [MM] established important absolute 

continuity properties of quasiconformal maps on general Carnot Carath6odory spaces. 

Their results can be used to derive (semi-)global distortion properties of quasiconformal 

maps on those spaces. See also [VG]. 

One of the main goals of the present paper is to show that  the two concepts, quasi- 

conformality and quasisymmetry, are quantitatively equivalent in a large class of metric 

spaces, which includes all the previously known examples and more. Such spaces are 
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discussed next. 

The most important tool in the quasiconformal theory is the conformal modulus, or 

capacity. This is a global conformal invariant that  attaches a real number to each pair 

of disjoint continua in a given space. (By a continuum we mean a compact, connected 

set.) The crucial property of this invariant in R ~ is that  it has a uniform lower bound, 

which depends only on the dimension n and on the relative position of the two continua. 

In the case n=2, this fact was known already to GrStzsch and Teichmiiller. For n~>3 

it was first observed by Loewner ILl in 1959; he used this property of modulus to show 

that one cannot map R n quasiconformally onto a proper subset. In w we shall define 

a Loewner space to be a space where a similar lower bound for the modulus holds. 

Then, in w we shall show that a quasiconformal map from a Loewner space X into a 

space Y is quasisymmetric, if the Hausdorff measures of X and Y are both Ahlfors-David 

regular of the same dimension larger than one, and if Y satisfies a (necessary) linear local 

connectivity condition. 

Let us recall the definition of an Ahlfors-David regular space. 

Definition 1.6. A metric space X is said to be AhlforsDavid regular of dimension 

Q > 0  if there is a constant C~>I so that 

C - J R  Q ~ ~LQ(BR) ~ CR Q (1.7) 

for all balls BR in X of radius R < d i a m X .  Here, and hereafter, ?-/Q denotes the Q- 

Hausdorff measure in the metric space X. We often call X simply Q-regular, or just 

regular, if the dimension is not important to the discussion. 

It is easy to see that X satisfies (1.7) if it satisfies a similar condition for some Borel- 

regular measure #; only the constant C may change slightly. David and Semmes [DS2], 

[DS3] have conducted an extensive study of regular spaces, usually furnished with some 

additional properties. Regular spaces are particular examples of spaces of homogeneous 

type in the sense of Coifman and Weiss [CW]. Although a lot of harmonic analysis can 

be done in homogeneous spaces, they are usually too general for the kind of questions 

we want to address in this paper; for us, it is important that  the spaces have good 

connectivity properties. (This is not to say that many of our results, especially in w 

would not hold in more generality, or when differently interpreted; there are interesting 

questions left open in this respect. Our techniques fail if the spaces admit few or no 

rectifiable curves.) 

The main new point introduced in [HK1] was that one can use modulus estimates 

to study maps even without a differentiable structure of any kind in the underlying 

space. The usual analytic change of variables procedure was replaced there by a discrete, 
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combinatorial argument. In the end, all one needs is a lower bound for the modulus. 

This idea is pursued further here, and the main question is: what spaces admit such a 

lower bound for the modulus? Equivalently, in our present terminology, what spaces are 

Loewner spaces? The answer will be given in terms of a Poincard inequality. 

Recall that  the usual Poincard inequality in R n implies, by way of Hhlder's inequality, 

that  

inf [ lu-a]dx<~C(n)(diamB)n(; IVupdx) 1In (1.8) 
a e R  J B 

for any bounded smooth or Lipschitz function u in a ball B (see [GT, p. 164]). We shall 

formulate a version of (1.8) in a general, rectifiably connected metric space. We then 

show (see w that  if X is a proper and regular space that  in addition satisfies a local 

quasiconvexity condition, then X is a Loewner space if and only if X admits a Poincard 

inequality. (A proper space is one whose closed balls are compact; for the quasiconvexity 

condition, see w 

The search for Poincard-type inequalities in various situations has been intensive 

in recent years. Spaces that  admit the kind of Poincard inequality we are looking for 

include Riemannian manifolds of nonnegative Ricci curvature and Euclidean volume 

growth, as well as various Carnot-type geometries. See [Bu], [DS1], [Gr], [J], [MSC], 

[SC], [VSC]. Semmes [$4] has shown recently that  any n-regular, complete metric space, 

that  is also an oriented (homology) n-manifold satisfying a linear local contractibility 

condition, admits a Poincard inequality. (Added in December 1997: For an interesting 

new geometry which admits a Poincard inequality, see the recent paper by Bourdon and 

Pajot  [BP].) We shall show in this paper that  any connected, finite simplicial complex 

admits a Poincard inequality if it is of pure dimension n >  1 and if it has the (obviously 

necessary) property that  the link of every vertex is connected (i.e. a removal of a point 

does not locally disconnect the space). 

Consequently, in all these spaces we can go from an infinitesimal quasiconformal 

structure to a global one. Note that  in the case of a Riemannian manifold, quasiconformal 

maps are always quasisymmetric in small coordinate charts by Gehring's theorem (if the 

dimension is larger than one), but in general there need not be any control over the global 

distortion. Our result says that  we can control the global distortion in the presence of 

appropriate volume bounds and a Poincard inequality. Recall that  certain Sobolev 

Poincard inequalities carry information about the isoperimetric profile of a space, which 

is closely connected with the quasiconformal theory [GLP]. The inequalities we need in 

this paper are weaker than those related to isoperimetric inequalities. 

There are many important  cases where the existence of a Poincard inequality is 

not known. If /~  is the universal cover of a negatively curved compact Riemannian 
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n-manifold M, then the ideal boundary 0 ~  r of M is topologically a sphere of dimen- 

sion n -  1. One would like to understand the metrics on 0-~ where the fundamental group 

7c1(M) acts uniformly quasiconformally. (Note that  such metrics always exist [GH].) 

A particularly interesting case is related to the problem of recognizing the fundamental 

groups of compact hyperbolic three-manifolds. A long standing conjecture is that  every 

negatively curved or Gromov hyperbolic group whose boundary is a two-sphere is such 

a group. Cannon, Floyd, Parry, and Swenson [C], [CFP], [CS] have showed that  this 

conjecture can be solved affirmatively if a certain combinatorial modulus on the bound- 

ary two-sphere has roughly Euclidean behavior. This is a Loewner-type requirement. 

In [HK1], the authors employed a discrete modulus similar to that  of Cannon et al., 

but in the present paper the concepts are defined in continuous terms. Many arguments 

below, however, can be seen as combinatorial. 

It remains an open problem precisely under what circumstances the Loewner con- 

dition is a quasisymmetric invariant. We conjecture that  the Loewner property is a 

quasisymmetric invariant of a locally compact Q-regular space for Q >  1. In w we prove 

this under an additional hypothesis. (After this paper was submitted, Tyson [Ty] verified 

the conjecture; see Remark 8.7 (a).) 

After this study of definitions, we come to the second main issue of the paper, which 

is the actual theory of quasiconformal maps between spaces with appropriate control on 

mass and geometry. A regular metric space X that admits a Poincar6-type inequality 

appears to be an amenable environment where the quasiconformal theory works much 

in the same way it does in Euclidean space. We shall show that  a quasiconformal map 

between two such spaces is not only absolutely continuous in that  it preserves sets of 

measure zero, but it induces an A~-weight in the sense of Muckenhoupt. Moreover, 

under similar assumptions, quasiconformal maps are absolutely continuous on Q-modulus 

almost every curve. The assumptions are general enough to encompass the results of 

Pansu [P2], and Margulis and Mostow [MM] on absolute continuity on lines. We also 

show that  a quasiconformal map between such spaces belongs to a Sobolev space of 

higher degree than a priori is expected. These results extend the celebrated theorems of 

Bojarski [Bo] in R 2 and Gehring [G3] in R n. By a Sobolev space, we mean a space as 

defined either by Hajtasz [Ha], or by Korevaar and Schoen [KS]. 

Finally, we should warn the reader that  what we call quasisymmetry in Definition 1.4 

is called weak quasisymmetry by Tukia and V~iis/il~i in [TV]; they demand that  quasisym- 

metric maps satisfy a stronger distortion condition, valid for points in all locations. See 

(4.5) for the precise definition. We chose to ignore this difference in this introduction, 

for we shall deal only with metric spaces where these two definitions of quasisymmetry 

are quantitatively equivalent. This point is clarified later in w Also, in the case of 
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compact or bounded spaces, the concept of a quasi-MSbius map as defined by V~is~l~ 

in IV3] would appear  more natural  than that  of a quasisymmetric map. (Recall that  

the conformal automorphism group of the unit disk is not uniformly quasisymmetric in 

the Euclidean metric.) However, for simplicity of exposition we have decided not to deal 

with quasi-M5bius maps in this paper. 

Some of the results of this paper  were announced in [HK2]. 

Acknowledgement. We wish to express our grati tude to Fred Gehring for his con- 

tinuous advice, encouragement and interest in our work, past and present. We dedicate 

this paper  to him with admirat ion and appreciation. 

We would also like to thank Stephen Semmes for numerous useful discussions related 

to the topics of this paper, Jussi Vs163 for helpful information about  continua in metric 

spaces, and Toni Hukkanen, Juha  Kinnunen, Paul MacManus and Hervd Pajot  for their 

comments  on the manuscript.  

Special thanks go to the referee, whose extremely careful reading of the manuscript  

led to many clarifications and improvements in the text. 

2. M o d u l u s  and  c a p a c i t y  in a m e t r i c  s p a c e  

In this section, we first recall the definition for the modulus of a curve family in a metric 

measure space (X, p). Then we introduce the concept of capacity between two continua 

in X.  The latter requires an appropriate  substi tute for the gradient of a smooth or 

Lipschitz function. This done, we proceed to show that  the two notions are equal in 

certain important  situations. Just  as in R n, the modulus is more general and flexible in 

use, while it is easier to give estimates for the more concrete capacity. 

2.1. Definitions and conventions. All metric spaces in this paper  are assumed to be 

rectifiably connected and all measures are assumed to be locally finite and Borel regular 

with dense support.  A metric space is called rectifiably connected if every pair of two 

points in it can be joined by a rectifiable curve (see w below). We shall denote by 

(X, p) such a metric measure space. We do not assume in general that  X be locally 

compact  or complete. 

Open balls are writ ten as B(x, r),  and if B = B ( x ,  r), then C B = B ( x ,  Cr) for C > 0 .  

The closure of a set A is denoted A. 

2.2. Curves and line integrals in a metric space. We recall the basic concepts of 

rectifiability and line integration in a metric space. Let X be a metric space as in w 

By a curve we mean either a continuous map ~/of an interval I c R  into X,  or the 

image ~/(I) of such a map. We usually abuse notation by writing ~/=~/(I). If  I =  [a, b] is 



J.  H E I N O N E N  A N D  P. K O S K E L A  

a closed interval,  then  the  length of a curve 7: I ~ X  is 

l ( 7 )  = l e n g t h ( v )  = s u p  
i = 1  

where the  s u p r e m u m  is over all finite sequences a=tl<.t2<....~tn<~tn+l=b. I f  I is not  

closed, then  we set 

I(7) = s u p l ( T l J ) ,  

where the  s u p r e m u m  is t aken  over all closed subintervals  J of I .  We call a curve 7 

rectifiable if its length is a finite number .  Similarly, a curve 7: I--*X is locally rectifiable 
if its restr ic t ion to each closed subinterval  of I is rectifiable. 

Any rectifiable curve 7: I - ~ X  has a unique extension ~ to the  closure [ of I ;  we 

ignore the  fact t h a t  the  values of ~ at  the  endpoin ts  of I m a y  not  lie in X but  ra ther  

in the  comple t ion  of X .  If I is unbounded ,  the  extension is unders tood  in a general ized 

sense. From now on, if 7 is rectifiable, we au tomat i ca l ly  consider its extension ~' and do 

not dist inguish these two curves in notat ion.  For any rectifiable 7 there  are its associa ted  

length function s-y: I---*[0, l('),)] and  a unique 1-Lipschitz cont inuous m a p  %: [0, I (7)]--~X 

such tha t  7 = % o s ~ .  T h e  curve % is the  arc length parametrization of 7. 

If  7 is a rectifiable curve in X ,  the  line integral  over 7 of each nonnegat ive  Borel  

funct ion 0: X--*[0, c~] is 

pds= / P~ dt. 
J0 

If  -y is only locally rectifiable, we set  

~ pds = sup j r ,  0 ds, 

where the  s u p r e m u m  is t aken  over all rectifiable subcurves  7 '  of 7- If  7 is not locally 

rectifiable, no line integrals are defined. 

A detai led t r e a t m e n t  of line integrals in the  case X = R  n can be found in [V1, 

Chap te r  1]. The  general  case is only ostensibly different, cf. [Fe, 2.5.16]. The  length of 

a curve 7 as defined above agrees wi th  its 1-Hausdorff  measure  in X provided the  m a p  

7: I--*X is injective [Fe, 2.10.13]. 

2.3. Modulus of a curve family. Suppose t ha t  (X, #) is a metr ic  measure  space as 

in w Let  F be a family of curves in X and let p~>l be a real number .  T h e  p-modulus 
of F is defined as 

F = inf  / F ~ d/z, modp 
Jx  
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where the infimum is taken over all nonnegative Borel functions 6: X--*[0, cx~] satisfying 

~ Qds ~> 1 (2.4) 

for all locally rectifiable curves ~CF. Functions Q satisfying (2.4) are called admissible 
(metrics) for F. Note that by definition the modulus of all curves in X that  are not 

locally rectifiable is zero. We observe that  

modp(o)  = 0, (2.5) 

modp F1 ~< modp F2, (2.6) 

if FICF2, and 

modp Fi ~ ~ i=1  modpr i .  (2.7) 
i -  

Moreover, if Fo and F are two curve families such that  each curve ~ c F  has a subcurve 

~oCF0, then 

modp F ~< modp F0. (2.8) 

These properties of modulus are easily proven, cf. [Fu], IV1, pp. 16-17]. They will be 

used repeatedly, and usually without extra fanfare, throughout this paper. 

Often one would like to restrict the pool of admissible metrics to, say, continuous 

or bounded functions 6. Such a reduction generally leads to a different concept. For 

instance, the n-modulus of the family of all (nonconstant) curves in R '* that  pass through 

a given point is zero, but there are no admissible bounded metrics for this family. The 

only concession that  can be made is to consider lower semicontinuous functions, for it 

follows from the Vitali-Carath6odory theorem in real analysis that  every function f in 

LP(X) can be approximated in LP(X) by a lower semicontinuous function g with g>~f. 
This requires X to be locally compact; see [Ru, p. 57]. 

The triple (E, F;  U) will denote the family of all curves in an open subset U of X 

joining two disjoint closed subsets E and F of U, cf. w For brevity, (E, F; X)= 
( E , F ) .  

2.9. Very weak gradients. Let U be an open set in X and let u be an arbitrary real- 

valued function in U. We say that  a Borel function Q: U--*[0, ce] is a very weak gradient 
of u in U if 

lu(x)-u(y)l <~ ]~ Qds (2.10) 

whenever ~'xy is a rectifiable curve joining two points x and y in U. Clearly, a very weak 

gradient is not unique, and O--(x~ is always a very weak gradient. As an example, if X is 
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a Riemannian manifold, for instance R n with its standard metric, and if u is a smooth 

function on X, then Q=IVul is a very weak gradient of u. It is also not difficult to see 

that  if Q is any very weak gradient of a smooth function u in R n, then IVuI~Q almost 

everywhere. 

Recall that  a mapping u between metric spaces is Lipschitz if there is a constant 

C>~1 so that 

lu (x ) -u (y ) l  ~< C I x - y  I 

for all points x and y in the domain of u; moreover, u is locally Lipschitz if every point 

in the domain has a neighborhood where u is Lipschitz. If u is a Lipschitz function on 

a Riemannian manifold X, it is differentiable almost everywhere, and the function IVul 

can be redefined everywhere on X so that  it becomes a very weak gradient of u. And, 

as in the case of a smooth function, IVul is almost everywhere less than or equal to any 

given very weak gradient of u. 

If X is a Carnot group, then IV0ul, the length of the horizontal differential of a 

smooth function u, serves as a very weak gradient of u (see w and the references there 

for the terminology). Conversely, if ~ is any very weak gradient of such a function u, 

then IV0ul ~<Q almost everywhere, cf. [HK1, proof of Proposition 2.4]. 

2.11. Capacity. Suppose that  E and F are closed subsets of an open set U in X. 

The triple (E, F; U) is called a condenser and its p-capacity for l~<p<:cx~ is defined as 

F; U) = i n f / u  Qp d#, (2.12) capp(E, 

where the infimum is taken over all very weak gradients of all functions u in U such that  

ulE>~l and ulF~O. Such a function u is called admissible for the condenser (E, F;  U). 

If U=X, we write (E, F; X)=(E, F) as in the case of modulus. 

Remark 2.13. Observe that  no a priori regularity of admissible functions is assumed 

above. In practice, of course, the existence of a very weak gradient in L p imposes restric- 

tions. We use the notation capp(E, F; U) and capL(E, F;  U) for the quantity in (2.12) 

if the infimum is taken over all continuous or locally Lipschitz admissible functions, 

respectively. We trivially have 

capp(E, F; U) ~< cap~ (E, F;  U) ~< capL(E, F;  U). (2.14) 

In R n, if E and F are compact subsets of an open set U, then equality holds in (2.14); 

see [He]. We do not know in what generality there is equality in (2.14). 

We shall next prove the equality between modulus and capacity, plus an important  

inequality (2.19) for condensers of certain type. This result is well known in the Euclidean 
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case, and the proof below is distilled from various works, most notably from [Z]. The 

generality of the situation forces us to present a detailed argument. First we require 

some definitions. 

2.15. Quasiconvex and proper spaces. We say that  X is quasiconvex if there is a 

constant C > 0  so that  every pair of two points x and y in X can be joined by a curve 

V whose length satisfies l(v)<~CIx-y I. Moreover, X is locally quasiconvex if every point 

in X has a neighborhood that  is quasiconvex. 

More generally, X is said to be V-convex if there is a cover of X by open sets {Us} 

together with homeomorphisms { ~ :  [0, co)--~[0, c~)} such that  any pair of two points x 

and y in Us can be joined by a curve in X whose length does not exceed ~a(Ix-yl ) .  

We shall not be using the concept of V-convexity in any serious way in this paper: 

the functions { ~ }  will have no quantitative bearing on our discussion. Most of the 

spaces considered below will be (globally) quasiconvex, but to prove this, something like 

~-convexity needs to be assumed first. 

We call X proper if its closed balls are compact. 

Remark 2.16. There is a neat connection between quasiconvexity and very weak 

gradients of Lipschitz functions. Namely, it is easy to see that  a space X is quasiconvex 

if and only if every function with bounded very weak gradient on X is Lipschitz. 

PROPOSITION 2.17. We always have 

Capp(E, F;  U) = modp(E, F;  U). (2.18) 

Next suppose that X is V-convex, that E and F are two disjoint closed sets in X with 

compact boundaries, and that X is proper. Then 

Capp(ENB, F n B ;  B) <~ modp(E, F )  (2.19) 

for each ball B in X .  If, moreover, X is locally quasiconvex, (2.19) holds with cap L on 

the left-hand side. 

Proof. To prove the inequality modp(E, F;  U)~capp(E, F; U), take a function u in 

U such that  ulE>~l and u I F ~ 0  , and take any very weak gradient ~ of u. Then 

~ Q ds ~> 1 (2.20) 

for all rectifiable curves V joining E and F in U, so that  

modp(E, F;  U) ~</u oVd#" 
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Because u and Q were arbitrary, the inequality follows. 

To prove the reverse inequality capp(E,F;U)<~modp(E,F;U), fix a function Q: 

U---*[O, oc] satisfying (2.20). Define 

u(x)=inf f~ ods (2.21) 

for xEU, where the infimum is taken over all rectifiable paths 7~ in U joining x to F;  if 

no such 7~ exists, set u(x)=l. Then u[F=O and ulE>~l. Moreover, we have that  

]u (x ) -u (y ) l  <~ ~ ods 

for any rectifiable curve 7~y joining x and y in U. Thus u is admissible and Q is a very 

weak gradient of u, whence 

F; U) <<. Iv oV d~" capp(E, 

Because Q was arbitrary, we conclude the proof of equality (2.18). 

Now we turn to the second assertion of the proposition. Fix a ball B in X and fix an 

admissible metric p for (E, F) .  We may clearly assume tha t  B is large enough so tha t  the 

boundaries OE and OF are both contained in B. We would like to build an appropriate  

admissible continuous function u in B using Q, under the proviso that  X is Q-convex. 

The definition in (2.21) may not work as t~ need not be bounded, and to circumvent this 

possibility an approximation argument  is needed. 

By the remark made in w we may assume that  0 is lower semicontinuous, and 

clearly we may assume that  t~lF=0. By considering the functions x~-~max{t~(x), 1/m} 
if xC2B, and x~o(x) if xq~2B, r e = l , 2 ,  ..., we may further assume that  t~[2B is lower 

semicontinuous and that  oI2B\F is bounded away from zero: t~>~ in 2B\F, where ~>0  

is a positive constant (use Lebesgue's monotone convergence theorem). Fix a positive 

integer k and consider the function 0k=min{0,  k}. Then 0k is bounded and lower semi- 

continuous in 2B, 0k~>~ in 2B\F (for we may clearly assume that  ~<1) ,  and vanishes 

in F.  Define 

uk(x) = inf / Ok ds (2.22) 
J " f z  

for xcB, where the infimum is taken over all rectifiable paths 7~ joining x to F in B; if 

no such pa th  exists, we set u k ( x ) = l .  As above, we find tha t  uklFNB=O and that  0k is a 

very weak gradient of uk. Next, it is not difficult to see tha t  u is continuous in B. Indeed, 

pick a point in B and let x and y be points in some small open ~ - c o n v e x  neighborhood 
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Us of that  point. Tha t  is, we can choose a curve 7xy such that  l(%y)<.~(lx-y[). By 

the definition of Uk, we have 

luk(x)-uk(Y)[ <~ f Ok ds <~ kl(~/~y) <<. kqp~(lx-y[), (2.23) 
J~ w y  

and we conclude that  uk is continuous in Us. Note here that  if X is locally quasiconvex, 

then Uk is locally Lipschitz. 

We would be finished if only Pk were an admissible metric for (E, F) ,  but there is 

no guarantee for that  assumption. Therefore some extra technicalities are due. Denote 

mk = inf Uk IENB. 

Then the function Vk=Uk/mk satisfies VklE>/1 and vklF=O. (Recall that  p is assumed 

to be bounded away from zero in 2B\F, which fact together with the compactness and 

disjointness of OF and OE guarantees that  ink>0.)  Because Ok~ink is a very weak 

gradient of the continuous function Vk in B, and because 

we infer that  it suffices to show 

Note also that  Vk is Lipschitz if uk is. 

sup mk >/1. 
k 

Suppose on the contrary that  for each k there are points xkEENB and ykEFNB, 
and curves 0'k joining xk to Yk in B such tha t  

f~k Pk ds <<. 1-  

for some positive number 5 independent of k. We may assume that  each Yk belongs to the 

compact  set OF, and that  each xk belongs to the compact set OE, and thus by passing to 

a subsequence we may assume that  yk--*ycOF and Xk--+xcaE as k---+oo. Recall that  OE 
and OF lie in B. We may also assume tha t  ~/k C B \ F  except one end point. Because Pk is 

bounded away from zero in 2B\F by ~, the lengths of the curves 7k remain bounded from 

above by M = ( 1 - 5 ) / ~ .  We assume that  each curve ~/k: [0, l(~/k)]-~BcX is parametrized 

by its arc length, and then extend ")'k(t)=~/k(l(~/k)) for l(~/k)<.t<.M. We obtain a family 

of 1-Lipschitz maps 0'k: [0, M]--*X with images lying in a fixed compact  set B, because X 

is proper. The Arzela Ascoli theorem implies, by passing to a subsequence if necessary, 

that  ")'k converges uniformly on [0, M] to a 1-Lipschitz map "),: [0, M]-*X. In particular, 
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"y is a rectifiable curve in X joining the points xEOE and yEOF. We may also assume 

at this point that  l(~k)---+M. Hence, for a fixed positive integer k0, we have that  

f fz(~k) lim inf Pko ds -- lim inf pko OTk ( t ) dt 
k c~ J'Tk k---+oo J0  

7> lim inf fM-~okoO~/k(t) dt >1 jofM--~likm~f Ok~176 dt 
k--,oo Jo 

~oM-eokoO"y( t ) dt, 

where e>0  is arbitrary. Note that  the lower semicontinuity of Qk0]2B was needed here. 

Thus 

/ /? i lim inf Qko ds ~ QkoOT( t ) dt >~ Qko ds. 
k ---+ oo k 

To justify the last inequality, we use the definition of line integrals together with the fact 

that  s'(t)~< 1 for almost every t, where s=s~: [0, M]--+ [0,/(~,)] is the length function of % 

this follows easily from the 1-Lipschitz continuity of ~,. More precisely, we have that  

f l ( ' 7 )  o M M 

/OkodS:Jo  Oko %(t)dt=fo OkoO%~ L Oko~ dt. 

In conclusion, 
P 

1 -  6/> lim inf I Qk ds >~ I Pko ds 
k- .*oo J T k  A 

for all ko--1, 2, .... But this is a contradiction as 

[ es = [ o es 1. koli~mccx~ J~/ Jr 

This completes the proof of Proposition 2.17. 

3.  L o e w n e r  s p a c e s  

Much of the theory of quasiconformal maps in R '~ rests on the fact, observed by Loewner 

in 1959 ILl, that  the n-capacity between two nondegenerate continua in R '~ is positive. 

This motivates the following definition. 

Definition 3.1. Suppose that  (X, #) is a metric measure space as in w of Hausdorff 

dimension Q. We call X a Loewner space if there is a function r (0, cx~)--+(0, c~) so that  

modQ(E, F)  ~> r (3.2) 
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whenever E and F are two disjoint, nondegenerate continua in X and 

dist(E, F )  (3.3) 
t/> A(E,  F)  = min{diam E, diam F}" 

Note that  the Loewner condition (3.2) depends both on the underlying metric and 

on the measure p, which a priori need not be related to each other. 

Euclidean space R n with its usual metric is a Loewner space, and further examples 

will be presented in w In the present section, we analyze the Loewner condition in some 

detail. 

Remark and convention 3.4. Recall from the introduction that  a space (X, #) is 

Q-regular if there is a constant C>~1 so that  

C-1R Q <~ #(BR) <~ C R  Q (3.5) 

for all balls BR in X of radius R < d i a m X .  In Definition 1.6, we defined the regularity 

of a space in terms of its Hausdorff measure ~Q.  If (3.5) holds, then X has Hausdorff 

dimension Q and (3.5) holds for T/Q as well, possibly with different constant C. Moreover, 

if X is locally compact and if # is a Borel measure on X satisfying (3.5), then # and T/Q 

are comparable measures on X. See [$4, Appendix C] for a careful discussion on these 

matters. 

From now on, if a space (X, #) is called Q-regular, we understand that  (3.5) holds; 

if no measure is being specified, we understand that  (1.7) holds. 

THEOREM 3.6. Let (X, #) be a Loewner space of Hausdorff dimension Q > I .  Then 

there is a constant C1>~1 such that 

C~IR Q < p(BR) (3.7) 

for all balls BR in X of radius R < d i a m X .  If  there is a constant C2>~1 so that 

 (BR) Q 

for all balls BR in X of radius R < d i a m X ,  then (X,#)  

decreasing homeomorphism r (0, oo)--* (0, co) such that 

modQ (E, F )  ~> ~b(A(E, F)) .  

Moreover, we can select r so as to satisfy 

1 r log y 

(3.8) 

is Q-regular and there is a 

(3.9) 

(3.10) 
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for all sufficiently small t, and 

~(t)  ~ (log t) 1-Q (3.11) 

for all sufficiently large t. The statement is quantitative in the sense that the constant C1 

and the homeomorphism ~ depend only on the data associated with (X, #). 

The above theorem contains the important  fact that  if two nondegenerate continua 

of fixed size in a regular Loewner space are moved towards each other, then the modulus 

between them tends to infinity. This is of course a much stronger condition than  (3.2), 

and not true, in general, if the space is not regular; see Remark 3.28. The asymptot ic  

behavior we obtain for ~ is the correct one in R n. Est imates of this kind were first 

proved in R n by Gehring [G2] by a symmetr izat ion argument.  For a detailed s tudy of 

the function r in R n, see [Vu]. 

Also as a part  of Theorem 3.6, we see that  the lower bound (3.7) on the mass is a 

consequence of the Loewner condition. The upper  bound (3.8) need not be: R n equipped 

with its Euclidean metric and with the measure d#(x)--(1 + Ixl) dx is a Loewner space of 

Hausdorff dimension n, but it is not n-regular. 

We show tha t  regular Loewner spaces enjoy a number of useful geometric properties. 

3.12. Linear local connectivity. A metric space X is said to be linearly locally con- 

nected if there is a constant C~>I so that  for each x E X  and r > 0  the following two 

conditions hold: 

(1) any pair of points in B(x, r) can be joined in B(x, Cr); 

(2) any pair of points in X \ B ( x ,  r) can be joined in X \ B ( x ,  r /C).  

By joining, we mean joining by a continuum. For the next proposition, recall the 

concept of quasiconvexity from w 

THEOREM 3.13. Let (X,#)  be a Loewner space of Hausdorff dimension Q> I sat- 

isfying (3.8). Then X is linearly locally connected and quasiconvex. The statement is 

quantitative in the sense that the constants associated with the conclusion depend only 

on the data associated with X .  

In fact, more is true than indicated in Theorem 3.13. There is a large family of 

curves in B(x, Cr) joining points in different components of B(x,r) ,  and similarly for 

X \ B ( x , r ) .  See Lemma 3.17 below. 

We begin the proofs of Theorems 3.6 and 3.13 by giving three modulus estimates. 

Many of the ideas used below are rather s tandard in the quasiconformal theory in R n, 

el. [N], [GM]. In Lemmata  3.14-3.17, we shall assume that  (X ,# )  is a Loewner space of 

Hausdorff dimension Q >  1 satisfying the upper mass bound (3.8). As usual, C, C' .... will 

denote positive constants that  depend only on the da ta  associated with X.  
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LEMMA 3.14. Let 0 < 2 r < R  and let yEX. Then 

mOdQ( B(y, r), X \  B(y, R) ) ~ C (log R ) 1-Q. 

Proof. Define ~(x)=(Ix-yl log(R/r)) -1 when xcB(y,  R)\B(y,r) and extend t) as 

zero to the rest of X. Then t) is an admissible metric, and hence we have that 

(B(y, r), X \ B(y, R)) ~< f x  oq d#. modQ 

Let k be the least integer with 2kr~R. Then, using the assumption (3.8), we compute 

and the lemma follows. 

E(2Jr)-Q(2J+lr) Q <~ C (log 
j=0 

LEMMA 3.15. Let F be a family of curves in a ball BR such that I(7)~>L>0 for 
each "yEF. Then 

modQ F ~< #(BR)L -Q <. CRQL -Q. (3.16) 

Proof. Use the density Q(x)=L -~ if xCBR and g(x)=O if X~BR, and remember 

that X is assumed to satisfy (3.8). Note that the first inequality in (3.16) holds without 

assumption (3.8). 

LEMMA 3.17. There exist positive constants C>/2 and 6, depending only on the 
data associated with X, such that 

modQ(E, F; B(x, Cr)\B(x, r /C))  ~> 6 (3.18) 

whenever E and F are disjoint continua in B(x,r) \B(x,  1 ~r), both of diameter no less 
1 than ~r. 

Proof. Let x e X  and 0<r.  Then fix two continua E and F in B(x,r) \B(x,  �89 
as above. For the three path families rl=(EUF, ~(x,r/C)), r2=(EuF, X \B(x ,  Cr)) 
and r3=(E, F; B(x, Cr)\~(x, r/C)), w e  have by the basic properties (2.6) (2.8) of the 

modulus that 
3 

modQ(E, F) ~< E mOdQ Fj. 
j = l  

Moreover, by the Loewner condition (3.2) we have that 

modQ (E, F) ~> 25 ~ r > 0. 
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Finally, by Lemma 3.14 we can choose a constant C such that  

modQ F1 + modQ F2 ~/5, 

and the claim follows by combining the last three inequalities. 

Proof of Theorem 3.13. Fix a pair xl,x2 of points in X\B(x,r) and pick a recti- 

fiable curve V joining xl,x2 in X.  If 3' lies in X\B(x,r/C), where C is the constant 

in Lemma 3.17, then condition (2) in w holds. If "I, meets B(x,r/C), then by (3.18) 

we can find two disjoint subcontinua E and F of 3' in B(x,r)\B(x, �89 both  of di- 

ameter  at least 1 ~r, such that  the modulus of the curve family joining E and F in 

B(x, Cr)\B(x, r/C) is positive. In particular, we can join xl  and x2 in the complement 

of B(x, r/C), and (2) of w again holds. 

The  proof for the first condition (1) of w is similar. Of course, (1) is implied by 

the quasiconvexity, which we shall prove next. 

Fix two distinct points xl,yl in X. Write r=[xl-yll and pick a continuum E1 
1 . joining xl  to X\B(Xl, �88 in B(x l ,  ~r),  then select F1 corresponding to Yl analo- 

gously. Using the Loewner condition, estimate (3.16), and an argument similar to that  in 

Lemma 3.17, we easily infer that  E1 and F1 can be joined by a curve 3' whose length does 

not exceed Cr. Next, let x2C')'CIE1, write r l : lX l - -X2 1 ~  1 ~r, and pick a continuum E2 

~r l )  1 ~ ( X l ,  1 joining xl  to X\B(Xl, ~rl) in g r l ) .  Select similarly a subcurve E ~ c B ( x 2 ,  1 
1 of 'y  tha t  joins x2 to X\B(x2, ~rl). As above, we infer tha t  E2 and E~ can be joined by 

a curve ~1 whose length does not exceed Crl 1 <. ~ Cr. Continuing inductively we obtain a 

connected set "rU~'IU... joining Xl to x2 whose length does not exceed Cr. We see from 

the construction that  this set contains a curve that  joins xl  and x2. The claim follows 

by symmetry,  and we conclude the proof for Theorem 3.13. 

Remark 3.19. The proof of Theorem 3.13 shows that  the following stronger version 

of linear local connectivity is true as well: any pair x l ,  x2 of points in B(x, r)\B(x, �89 
can be joined by a curve "y in B(x, Cr)\B(x, r/C) such tha t  the length of 3' does not 

exceed C[xl-x2[, where the constant C depends only on the da ta  associated with X. 

We are assuming here tha t  X is a Loewner space satisfying (3.8) as in Theorem 3.13. 

Proof of Theorem 3.6. We prove first that  X satisfies the lower mass bound (3.7). 

Take a ball BR=B(x, R) with R < d i a m X .  Then there is a point yEX\B(x, �89 Join y 

to x by a curve, and then choose two subcurves 3'1 and ")'2 that  lie in B(x, �89 B(x, 1R) 
and B(x,-~R), respectively, with 

dist (~,1,72) ~< 16. 
min{diam-rl ,  diam ~2} 
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By the Loewner property and the basic properties of modulus (see (2.8)), we have that 

1 . r ~< mOdQ (~/1, ~'2; X) ~< modp (~2, OB(x, -~ R), B(x, �89 R)) 

But because every curve joining 72 to OB (x, �88 R) has length at least 1 gR, the function 

Q(x)=8/R for xeB(x, 1R ), and 6=0 elsewhere, is admissible, and whence 

C-1R Q <~ #(B(x, �89 <<. #(BR) 

as desired. 

We conclude that X is Q-regular provided the upper mass bound (3.8) holds. 

To prove the existence of a homeomorphism r together with the asymptotic esti- 

mates (3.10) and (3.11), fix two disjoint, nondegenerate continua E and F in X. We first 

show that 

modQ (E, F)  >/C' log(1/A(E, F)), (3.20) 

provided that A(E, F) is sufficiently small. Let C be the constant in Lemma 3.17; recall 

that C~>2. We are free to assume that diamE~<diamF. Now pick a point xEE with 

dist(x, F ) = d i s t ( E , F ) = d .  Choose k to be the largest integer that is both positive and 

satisfies 

Ck+2A(E, F) ~< 1; 

such an integer k can be found if A(E, F)  is sufficiently small. For each positive integer 

j ~< k pick a continuum 

Ej c EnB(x, CJ+ld)\~(x, C~-ld) 

of diameter at least CJd, and select Fj analogously; such continua exist by our assump- 

tions on A(E, F) and k (see Theorem 2.16 in [HY]). Because no point in X belongs to 

more than three of the annular sets B(x, CJ+ld)\B(x, CJ-ld), we find that 

k 

3 mOdQ(E, F) i> ~ modQ (Ej, Fj; B(x, CJ+ld)\B(x, cJ - ld ) ) .  
5=1 

Thus Lemma 3.17 shows that 

3 modp (E, F)  ) k6, 

from which (3.20) follows if A(E, F) is sufficiently small. 

It remains to establish (3.11). For this, we can assume that A(E, F)>>.M for some 

large constant M. We can also make the assumption 

diam E ~< diam F ~< 2 diam E 
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by replacing F by an appropriate subcontinuum [HY, 2.16]. We claim that  

mOdQ(E, F)  ~> C( log  A(E, F)) l-Q, (3.21) 

provided M is sufficiently large. 

To this end, pick points xlEE and x2CF such that  ]xl-x21=dist(E,F). Let C 

be the constant in Lemma 3.17; we assume that  C~>3. Consider the balls Bj(i)= 
B(xi, C j diam E) and the annuli 

Aj (i) = Bj+I ( i ) \Bj -1  (i) 

for i=1,  2 and j = l ,  ..., k - 2 ,  where k is the least integer so that  Bk(1)NBk(2)~O. We 

use the notation Bo(1)=E and B0(2)=F.  Note that  

3 ~< k <~ C' log A(E,  F),  (3.22) 

provided M is sufficiently large. Next observe that 

modQ rj(i)/> 5 > 0, (3.23) 

where Fj (i) is the family of all rectifiable curves joining Bj-1 (i) to X \ B  i (i) inside Aj (i), 

and where 5 depends only on C and on the data for the Loewner space X. (Notice that  

the modulus of all nonrectifiable curves joining Bj-l(i) and X\Bj(i) in Aj(i) is zero, 

because Aj(i) has finite measure.) Similarly, 

modQ(Bk_2(1), Bk-2(2))/> 5 > 0 (3.24) 

for some 5 as above. 

Let then F denote the family of all locally rectifiable curves joining E and F in X, 

and let Q be an admissible density for F. Set 

f 
aj (i) ---- inf J ~ ds, 

where the infimum is taken over all curves q, CFj(i). We may clearly assume that  each 

aj (i) is finite. We shall consider two cases depending on whether the sum 

2 k--2 

Z a (i) 
i ~ 1  j ~ l  

(3.25) 
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1 is less than i or not. Assume first that  it is no less than ~.1 If aj(i)>0, then the function 

o/aj(i) restricted to Aj(i) is an admissible density for Fj(i) ,  and so by (3.23), 

2 k--2 . 2 k--2 

3ix.Qd#~ E E]i .Qd#>ISEE aj(i)Q" 
i=l jzl Aj(i) i =1 j=l 

Since 
2 k--2 

a.(i)Q C'k'-Q 
i = 1  j = l  

by H61der's inequality, (3.21) follows from (3.22) in the case when the sum (3.25) is at 
1 least ~. 

1 We can find rectifiable curves Suppose then that  the sum (3.25) is less than ~. 

~/j (i) C Fj (i) so that  

. pds<. g. 
i=1  j = l  J"/j(i) 

Furthermore, we can assume that  there is a rectifiable curve "~k-1 joining Bk-2(1) and 

Bk_2(2) such that  

ds <. 1 (3.27) Q g, 
k - - 1  

for otherwise we easily conclude from (3.24) that  (3.21) holds for M sufficiently large. 

Set 

bj (i) = inf ] 0 ds, "yj.y 

where the infimum here is over all rectifiable curves ~, joining "yj(i) and 7j+~(i) in 

Aj(i)UAj+I(i), and where we define "/k_l(i)=~/k_ , and Ak-l( i)=Ak-2(i) .  Because O 

is an admissible metric for the curve family joining E and F,  we infer from (3.26) and 

from (3.27) that  
2 k--1 

1 

i=1  j = l  

Now the argument of the preceding paragraph applies with obvious modifications; simply 

replace estimate (3.23) with Lemma 3.17. Hence (3.21) follows in this case as well. 

Finally, we choose an appropriate homeomorphism r of the positive real axis such 

that  r162 for t>0 ,  and such that  (3.10) and (3.11) hold. This completes the proof 

of Theorem 3.6. 

Remark 3.28. We already pointed out after the statement of Theorem 3.6 that  Q- 

regularity is not a consequence of the Loewner condition although the lower mass bound 



22 J. H E I N O N E N  A N D  P K O S K E L A  

(3.7) is. On the other hand, the upper mass bound (3.8) is necessary if we are to obtain 

the conclusions of Theorems 3.6 and 3.13. This is seen by the following example. 

Let X be the plane domain {x=(xl,x2):lxl[<lx21+l}. Let # be the measure 

dtt(x)=P(Ixl) dx given by some positive increasing weight function P.  If P(t) grows 

sufficiently fast as t-~c~, then (X, #) satisfies the Loewner condition (3.2); note that  the 

metric in X is the Euclidean metric. On the other hand, it is not difficult to check that  one 

cannot choose r so as to satisfy the estimates in Theorem 3.6. In fact, modQ(E, F )  will 

not necessarily tend to infinity as A(E,  F)  tends to zero. (Consider JEt = { x l = 0 ,  1~x2 ~<t} 

and Ft={xl=O,-t~x2~<-l}, and let t--~cx~.) Moreover, X fails to be linearly locally 

connected. 

4. Q u a s i e o n f o r m a l i t y  vs. quasisymmetry 

In this section, we study the fundamental question when quasiconformal maps are quasi- 

symmetric. The main theorems are Theorem 4,7 and Theorem 4.9. They imply, for 

instance, that  quasiconformal maps between Q-regular Loewner spaces are quasisym- 

metric if Q is bigger than one. This extends the main result of [HK1], where one of the 

spaces was assumed to be a Carnot group. The crucial idea needed for the proofs of 

Theorems 4.7 and 4.9 can already be found in [HK1] (see Main Lemma 4.12 below). 

To set up some notation, we recall that  a homeomorphism f :  X--*Y between metric 

spaces X and Y is said to be quasiconformal if there is a constant H < c ~  so that  

Li(z, r) 
l imsup - -  <~ H (4.1) 

r - 0  t s ( z , r )  

for all xEX, where 

Lf(x,r)= sup If(x)-f(Y)l (4.2) 
Ix-yl~<r 

and 

ls(x, r)= l inf>~r If(x)- f(y)l. (4.3) 

Recall also that  a homeomorphism f :  X---,Y as above is said to be quasisymmetric 

if there is a constant H < c ~  so that  

Ix-al • Ix-hi implies I f ( x ) - f ( a ) l  ~< H[f(x)- f(b)l (4.4) 

for each triple x, a, b of points in X. This requirement is the same as (1.5) in the in- 

troduction. The slightly different formulation used here can easily be turned into the 
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following stronger quasisymmetry condition. A homeomorphism f:  X - - * Y  is called 7/- 

quasisymmetric if there is a homeomorphism r/: [0, oo) --* [0, oc) so that 

Ix-al<~ t l x - b l  implies I f ( x ) - f ( a ) [ ~ u ( t ) l f ( x ) - f ( b ) l  (4.5) 

for each t > 0  and for each triple x, a, b of points in X. Obviously, (4.5) implies quasisym- 

metry as defined in (4.4), and in general these two notions are not equivalent. However, 

we have the following lemma due to V~is~l~ IV4, 2.9]: 

LEMMA 4.6. Suppose that X and Y are pathwise connected doubling metric spaces 

(defined in w Then each homeomorphism f from X onto Y that satisfies (4.4) also 

satisfies (4.5). The statement is quantitative in that the function ~ will only depend on 

H in (4.4) and on the data associated with X and Y .  

Our standing assumption in w entails that all metric spaces be pathwise connected. 

Moreover, in connection with quasisymmetric maps, we only consider doubling spaces in 

this paper. Thus the two notions of quasisymmetry can and will be used interchangeably 

in what follows. 

For the following discussion, recall the standing assumptions from w and also the 

definitions in Definition 3.1, (3.5) and w 

THEOREM 4.7. Suppose that X and Y are Q-regular metric spaces with Q > I ,  

that X is a Loewner space, and that Y is linearly locally connected. I f  f is a quasi- 

eonformal map from X onto Y as defined in (4.1), then each point x in X has a neigh- 

borhood U where f is ~l-quasisymmetric as defined in (4.5). We can take U = B ( x ,  r) if  

Y \  B ( f ( x ) ,  2Ll (x ,  2r ) ) r  This statement is quantitative in that the function ~ depends 

only on H in (4.1) and on the data associated with X and Y .  

The proof of Theorem 4.7 will show that the linear local connectivity of Y could be 

replaced by a weaker condition that  only requires "local linear local connectivity". We 

leave such generalizations to the reader. Remember also that X as a Loewner space is 

linearly locally connected (Theorem 3.13). 

COROLLARY 4.8. Suppose that X and Y are unbounded Q-regular metric spaces 

with Q > I ,  that X is a Loewner space, and that Y is linearly locally connected. I f  f is 

a quasiconformal map from X onto Y that maps bounded sets to bounded sets, then f is 

quasisymmetric. This statement is quantitative in the same sense as in Theorem 4.7. 

Theorem 4.7 does not directly apply for bounded spaces, which need to be handled 

with a separate argument. 
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THEOREM 4.9. Suppose that X and Y are bounded Q-regular metric spaces with 

Q > I ,  that X is a Loewner space, and that Y is linearly locally connected. If f is a 

quasiconformal map from X onto Y,  then f is quasisymmetric. 

Theorem 4.9 cannot be made quantitative, for there need not be a bound for the 

quasisymmetry constant in terms of the data of X and Y even if f is conformal. (Think 

of the group of conformal transformations on the n-sphere.) Similarly, conformal or 

quasiconformal maps need not map bounded spaces onto bounded spaces, and so there 

is no counterpart to Theorem 4.9 in the case when only one of the spaces is bounded 

(the quasisymmetric image of a bounded space is always bounded). 

Combining Corollary 4.8, Theorem 4.9 and the simple observation that  linear local 

connectivity is preserved under quasisymmetric maps, we arrive at the following corollary. 

COROLLARY 4.10. Suppose that X and Y are Q-regular metric spaces with Q > I  

and that X is a Loewner space. Assume that X and Y are simultaneously bounded 

or unbounded. Then a quasiconformal map f from X onto Y that maps bounded sets 

to bounded sets is quasisymmetric if and only if Y is linearly locally connected. This 

statement is quantitative if X and Y are both unbounded, but not so if they are both 

bounded. 

There is one immediate important  application of the above results. Even in R '~, n/> 2, 

it is difficult to verify directly from the definition (4.1) that  the inverse of a quasiconformal 

map is quasiconformal; standard proofs of this fact use rather deep analytic properties 

of quasiconformal maps. In contrast, the inverse of an ~-quasisymmetric map is easily 

seen to be quasisymmetric, hence quasiconformal, and therefore we obtain the following 

corollary to Theorem 4.7. 

COROLLARY 4.11. Suppose that X and Y are Q-regular metric spaces with Q > I ,  

that X is a Loewner space, and that Y is linearly locally connected. Then the inverse of a 

quasiconformal map f from X onto Y is quasiconformal. The statement is quantitative 

in the sense that the constant for f -1  depends only on the constant of f and on the data 

associated with X and Y. 

The proofs rely on the following crucial lemma. 

MAIN LEMMA 4.12. Suppose that X and Y are Q-regular metric spaces with Q > I  

and that f is a quasiconformal map from X onto Y as defined in (4.1). If E and F 

are two continua in Z such that yC f ( E ) c B ( y ,  r) and such that f ( F ) c Y \ B ( y ,  R) for 

some y c Y  and for some R>2r, then 

IodQ( E, F; X)  <~. C (log R ) 1-Q. (4.13) 



QUASICONFORMAL MAPS IN METRIC SPACES WITH CONTROLLED GEOMETRY 25 

The constant C>~1 only depends on H from (4.1) and on the data associated with X 
and Y. 

Proof. The proof of the lemma is essentially contained in the proof of Theorem 1.7 

in [HK1]. In that  paper, we assumed that  X is a Carnot group, but the only property 

of a Carnot group that  was used in the argument there was Q-regularity. We shall not 

repeat the somewhat lengthy details here. However, because the assertion (4.13) is not 

directly stated in [HK1], to ease the reader's task, we outline the main steps in the proof. 

First, the quasiconformality condition (4.1) guarantees that the images of all suffi- 

ciently small balls about each point in X have a uniformly roundish shape. We cover the 

complement of the sets E and F in X by countably many such small balls Bj,  j - - l ,  2, ..., 

and~obtain in this way a cover for the image of X\(EUF)  in Y by fairly round ob- 

jects f(Bj). The selection of the balls Bj is relatively simple if X is R n, because we can 

use the Besicovitch covering theorem. In the general case, we have to resort to weaker 

covering theorems and the selection becomes more delicate. The process is explained in 

detail in [HK1, pp. 70-71]. 

Next, one shows that  with the given choice of the balls By, the function 

O(x) =C log _ d iamBj  "dis t(f(B~),y)  

is an admissible metric for the condenser (E, F;  X); the constant C ) I  depends only on 

the data. See [HK1, p. 67 and p. 72, in particular formula (2.10) and w thereJ. 

Finally, the indicated bound (4.13) for the modulus follows by estimating the inte- 

gral of 0 Q from above by using the Q-regularity of X and Y, and a maximal function 

argument. See [HK1, p. 73 and p. 67, and especially formula (2.11)] for this. We thus 

conclude our discussion of the Main Lemma. 

Proof of Theorem 4.7. Fix xEX and let r > 0  be such that  Y\B( f (x ) ,  2Lf(x, 2r)) 

is not empty. Notice that  such an r can be found since f is a homeornorphism. Suppose 

then that  w, a, b are points in B(x, r) such that  

and such that  

[w-a I <~ Iw-bl (4.14) 

s = I f ( w ) -  f (a) l  > Mlf(w ) - f ( b ) l .  (4.15) 

We shall show that  M cannot be too large in (4.15). This suffices in light of Lemma 4.6. 

To this end, notice that  f(b)EB(f(w), s/M), that  f(a)~B(f(w), s) and that  there 

is a point z in X\B(x ,  2r) with 

f(z) ~ B ( f ( w ) ,  �89 (4.16) 
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To prove the last statement (4.16), note first that  

s= [f(w)- f(a)[ <~ If(w)- f(x)l+lf(x)- f(a)l ~ 2LI  (x, 2r) 

and that  there is z'=f(z) with If(z)-f(x)l>2Lf(x,2r), so that  zCX\B(x, 2r). We 

obtain 

2Lf(x, 2r) < If(z)- f(w)[+lf(w)- f(x)[ <~ If(z)- f(w)l§ Ly(x, 2r), 

and so [f(z)-f(w)l>Ly(x,2r)~�89 This proves (4.16). 

Since Y is linearly locally connected, we can join f(w) to f(b) in B(f(w), Cs/M) by 

a continuum E' ,  and we can join f(a) to f(z) in Y\B(f(w), s/C) by a continuum F ' .  

Write E=f-I(E ') and F=f-I(F'). Then E joins w to b and F joins a to z. We find 

from (4.14) that  

A(E,  F)  = dist(E, F)  
min{diam E, diam F} 

Because X is a Loewner space, we conclude that  

w - a  I 
42. min{Iw-bl,r} 

mOdQ(E, F;  X) ~> r > 0. 

On the other hand, for M > 2 C  2, we have 

IodQ( E, F; X) ~ C (log ~-~ ) 1-Q 

by Main Lemma 4.12. A bound for M follows from these last two estimates as desired, 

and the theorem is proved. 

Proof of Theorem 4.9. The proof in this case is basically the same as above, only 

slightly more awkward because we have to observe the behavior of f near a fixed "base 

point". This extra complication reflects the fact that  there is no quantitative version of 

the theorem. Thus, fix a point xoCX. By Theorem 4.7 we can pick a ball Bo=B(xo,ro) 
such that  f is quasisymmetric in 4/3o. Then let x, a, b be a triple of points in X such 

that  

Ix-al <~ Ix-bl . (4.17) 

We need to show that  

If(x)- f (a) l  ~ nl f (x ) -  f(b)l 

for some constant H independent of the points x, a and b. 
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We shall consider two cases depending on whether x is in/30 or not. Assume first 

that  xEBo. If b is in 2B0, then a is in 4B0, and the desired quasisymmetry estimate 

follows. If b is not contained in 2/30, then the quasisymmetry of f in 4B0 shows that  

diam f(Bo) <<. e l f ( x ) -  f(b)l. (4.18) 

To see this, assume that  

MIf(x)-f(b)l <~ I f ( x ) -  f(w)l  (4.19) 

for some wCBo and for some large M. Because Y is linearly locally connected, we can 

join f(x) to f(b) in B(f(x), C[f(x)-f(b)l); in particular, there is a point zEO2Bo such 

that  l/(x)-f(z)[<<.Clf(x)-/(b)l. Because f is quasisymmetric in 4Bo, we infer from 

(4.19) that  

MIf(x)-  f(b)l <<. If(x)- f(w)l <~ CIf(x)-  f(z)l <~ CIf(x)-  f(b)l. 

Thus M in (4.19) cannot be too large, and (4.18) follows. It follows from (4.18) that  

If(x)-  f(a) l ~< diam Y ~< C diam Y(diam f(B0))-i pf(x)-f(b)r <. C If(x)-f(b)l. 

We have thus verified the quasisymmetry in the case when x lies in/30. 

Suppose now that  x is not contained in B0. Notice that  if 

I f ( x ) -  f(x0)l  ~< MIf(x)-  f(b) h (4.2o) 

then by reasoning as in the above paragraph we conclude that  (4.18) holds, and hence 

that the desired quasisymmetry estimate holds; in this case the constant will depend on 

M from (4.20). Thus we assume that  

If(x)-f(xo)l/> MIf(z)-f(b)l (4.21) 

for some large M whose value will be determined momentarily. Suppose that  

If(x)- f(a)l >1 MI/(x)-/(b)l (4.22) 

for the same value of M as in (4.21). By the linear local connectivity of Y we may 

join f(x) to f(b) by a continuum E in B(f(x), CIf(x)-f(b)l ) and f(a) to f(xo) by a 

continuum F in Y\B(f(x) ,  MIf(x)-f(b)l/C ). 
We again separate two cases, this time depending on the location of a. Suppose first 

that  a~SBo, where 0 < 5 <  1 is a constant such that  X is 1/25-linearly locally connected. 

Notice that  such a constant exists because X is Loewner (Theorem 3.13). Then by (4.17), 

min{diam f - l ( F ) ,  diam f - l ( E ) }  ~> min{Sr0, Ix-bl}/> min{Sro, Ix -a l}  

/> min{Sro, dist (/-1 (F), f-1 (E))} (4.23) 
~> 5r0 dist ( f -  1 (F),  f - 1  (E)) 

diam X 
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Because X is a Loewner space, we obtain from (4.23) and from Main Lemma 4.12 that  

M)I-  Q 
O<C<.modQ(f-l(E),f-l(F);X)<.C log~-- 5 , 

provided M > 2C 2. Consequently, a bound for M follows and the proof is complete in 

the case aq~6Bo. 
Assume finally that  a lies in 6B0, while (4.21) holds. Let F '  be a continuum in 1 ~B0 

which joins a and Xo and has diameter at least 6ro; such a continuum exists by the choice 

of 6. Let F=f(F'). We claim that  

d--  dist ( f (x) ,  F)  >~ C -1 diam f(Bo), (4.24) 

where C~> 1 depends only on the linear local connectivity constant of Y and on the quasi- 

symmetry constant of f in 4B0. To prove (4.24), let weF be such that  [ f ( x ) - f ( w ) [ = d .  

Then we can join f(x) and f(w) in B(f(x), Cd) by a continuum; in particular, because 

x ~ B0, we can find points Zl and z2 in X such that  

X 0  - -  Z l  I z 1 ~ro, [Xo-Z2[:r 0 and f(zi)eB(f(x),Cd) 

for i--1, 2. Because f is 7]-quasisymmetric in 4B0, we have, for any yCBo, that  

I f (Y) -  f(xo)l  ~ Clf(z2)-f(xo)[ ~ Clf(zx)- f(xo)l  < C[f(zl)- f(z2)l ~ Cd. 

This gives (4.24). Next, (4.22) implies that  

If(x)-f(b)l <~ M -1 I f ( z ) -  f(a)[  ~< M -1 diam X, 

and hence we can find a continuum E joining f(x) to f(b) in B(f(x), C diam X/M). Thus 

an upper bound for M follows as in the above paragraph upon observing that  (4.23) holds 

for the present continua E and F as well. This completes the proof of Theorem 4.9. 

Remark 4.25. (a) An inspection of the proof of Theorem 4.9 gives that  the quasi- 

symmetry constant of f will depend, in addition to the usual data, on the quantities 

r0 diam f(Bo) 
diam X '  diam Y ' 

and nothing else. These are natural parameteres that  necessarily show up (and would 

disappear if quasi-Mhbius maps [V3] were used instead of quasisymmetric maps). 

(b) In the proof of Main Lemma 4.12 one only needs a local lower bound on the mass 

in Y; that  is, the bound (3.7) is only required to hold for R sufficiently small (depending 
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on the center of the ball). Thus in the case where X and Y are domains (i.e. open 

connected subsets) in R n, n~>2, Theorems 4.7 and 4.9 directly generalize some results 

proved by Gehring and Martio [GM], V~iss163 [V4] and the first author [H1]. For those 

who are familiar with the lingo, we recall that  it was proved in [GM] that  quasiconformal 

maps from QED-domains onto linearly locally connected domains are quasisymmetric 

(see also [V3]); similar results were proved in [V4], [H1] with respect to the internal 

metrics of the domains in question. 

(c) If the space X in Main Lemma 4.12 satisfies a stronger, Besicovitch-type cover- 

ing theorem, where every cover of a set by balls admits a countable subcover with finite 

(depending on X) amount of overlap, then one can replace "lim sup" in the definition 

of quasiconformality (4.1) by "liminf"; the conclusion remains the same. In particular, 

under the stronger covering hypothesis in each of the results of this section this weaker 

notion of quasiconformality is sufficient to imply quasisymmetry. This follows from the 

proof of Theorem 1.7 in [HK1], where comments in the case X = R  n have been made. 

Besides R n, many other "Riemannian-type" spaces have this covering property, for ex- 

ample compact polyhedra (cf. Theorem 6.13). See [Fe, 2.8] for a thorough discussion of 

covering theorems. 

5. P o i n c a r ~  inequal i t ies  and the  Loewner  condi t ion  

Suppose throughout this section that  (X,#)  is a metric measure space as in w We 

shall show that  the validity of a Poincar@-type inequality in X is tantamount  to X being 

a Loewner space as defined in Definition 3.1, provided X is proper, regular and V-convex. 

5.1. Poincard inequalities. Let p~> 1 be a real number. We say that  X admits a weak 
(1, p)-Poincar~ inequality if 

/B 'U-UB' d# ~ Cp(diam B) ( /Cos~P d#) 1/p (5.2) 

whenever u is a bounded continuous function in a ball CoB and Q is its very weak gradient 

there. The constants Cp ~> 1 and Co ~> 1 should be independent of B and u. We use the 

standard notation 

UA : /AUd# = 1 [ 
JA u d# #(A) 

for the mean value of a function u in a measurable set A of positive measure. 

Inequality (5.2) is termed "weak" because we allow a larger ball on the right-hand 

side than on the left. In many cases, because of the uniformity of (5.2) (constants are 

independent of B), this weak estimate can be used to iterate so as to yield an inequality 
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with the same ball on both sides [J], [HaK]. Moreover, if the measure it satisfies the 

doubling condition (5.4) below, then a weak (1, p)-Poincar6 inequality (5.2) (for all balls) 

implies the a priori stronger inequality where one replaces (for all balls) the averaged 

Ll-norm on the left by the averaged Lq-norm for some q>p [HaK]. This explains the 

terminology; we could speak about a (q,p)-Poincar6 inequality. The weak inequality 

(5.2) is sufficient for our purposes in this paper. 

Notice that  if X admits a weak (1,p)-Poincar6 inequality, then it admits a weak 

(1,p')-Poincar6 inequality for p '>p  by Hhlder's inequality. The converse is not true in 

general; see Remark 6.19. 

We emphasize that  inequality (5.2) should hold for all balls B in X. It may well 

happen that  something like (5.2) is true for B = X ,  but X may still not admit a weak 

Poincar6 inequality in the above sense. 

5.3. Doubling space. A metric measure space (X, it) is said to be doubling if there is 

a constant C~>I so that  

#(B2R) <. C#(B~)  (5.4) 

for all balls BR in X of radius 0 < R < d i a m X .  If there is no measure specified on X,  we 

can define X to be doubling if there is a constant C~>I so that  every ball in X can be 

covered by at most C balls with half the radius. It is easy to see (by Covering Lemma 5.5) 

that  X is doubling in this latter sense if there is a measure it on X such that  (5.4) holds. 

Clearly, if X is regular, it is also doubling, but the converse need not be true. For 

instance, the space (R n, ( l + l x l ) d x )  is a doubling space with lower mass bound (3.7) 

(with Q=n) ,  but it is not regular. Similarly, any complete Riemannian n-manifold with 

nonnegative Ricci curvature is doubling with upper mass bound (3.8) (with Q = n ) ,  but 

it need not be regular. 

Next we record a basic but most useful covering lemma (see [Ma, 2.1] or [Stl, p. 9]). 

COVERING LEMMA 5.5. Suppose that X is a metric space and suppose that A is 

a bounded subset of X .  I f  for each x C A  we are given a radius r~>0  and a ball B x =  

B(x ,  rx), then we can pick a countable, pairwise disjoint collection {Bi=B~.:  i=1 ,  2, ...} 

of balls of this given form such that either 

A c U 5B~ (5.6) 
i 

or (ri) is an infinite sequence that does not converge to zero as i--+oc. 

Typically, the spaces X in this paper are such that  the second alternative in Covering 

Lemma 5.5 is ruled out, and hence (5.6) holds. This happens for instance if X is doubling. 
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We begin with the following theorem, which gives a sufficient condition for a space 

to be Loewner. Recall that  a proper space is one where closed balls are compact; recall 

also the definition for p-convexity from w 

THEOREM 5.7. Suppose that (X, #) is a proper, doubling and ~-convex space where 

the lower mass bound (3.7) holds for some Q>~I. I f  X admits a weak (1,Q)-Poincard 

inequality, then X is a Loewner space. The statement is quantitative in that the function 

r in Definition 3.1 only depends on the data associated with X (of which the p-convexity 

is not part). 

We do not know to what extent the assumptions "proper, doubling and ~-convex" 

in Theorem 5.7 are necessary. 

Theorem 5.7 follows from the more general Theorem 5.9 below. The latter will be 

needed later in w We record the following corollary to Theorems 5.7 and 3.13. The 

statement is quantitative, and the p-convexity plays no role in the conclusion. 

COROLLARY 5.8. Suppose that X is a proper, Q-regular and ~-convex space that 

admits a weak (1,Q)-Poincarg inequality for some Q > I .  Then X is linearly locally 

connected and quasiconvex. 

A smooth submanifold of Euclidean space provides a standard example of a space 

that  is proper and locally quasiconvex. Corollary 5.8 provides a sufficient condition for 

such a submanifold to be quasiconvex. Related but different sufficient conditions for 

quasiconvexity of metric manifolds can be found in [$4]. 

Recall that  the Hausdorff s-content of a set E in a metric space is the number 

~ 7  (E) = inf ~ r~, 
i 

where the infimum is taken over all countable covers of the set E by balls Bi of radius ri. 

Thus the s-content of E is less than, or equal to, the Hausdorff s-measure of E,  and it 

is never infinite for E bounded. However, the s-content of a set is zero if and only if its 

Hausdorff s-measure is zero. 

THEOREM 5.9. Suppose that (X,  #) is a doubling space where the lower mass bound 

(3.7) holds for some Q>~I. Suppose further that X admits a weak (1,p)-Poincarg in- 

equality for some l ~ p ~ Q .  Let E and F be two compact subsets of a ball BR in X and 

assume that, for some Q>~s>Q-p  and I~>A>0, we have 

min{7-/7 (E), 7-/7 (F) } ~ ARS-Q#(BR) .  (5.10) 

Then there is a constant C>~I, depending only on s and on the data associated with X ,  

so that 

BcR gp d# >~ C-1)~#( B R ) R  -p (5.11) 
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whenever u is a continuous function in the ball BCR with ulE<~O and ulF>~l, and Q is 

a very weak gradient of u in Bcl~. 

The reason why (5.11) is not being formulated in terms of capacity, but rather for 

an individual function, is that  we have defined capacity by using arbitrary test functions, 

whereas a Poincar~ inequality is required for continuous functions only, cf. Remark 2.13. 

Let us check how Theorem 5.7 follows from Theorem 5.9. 

Proof of Theorem 5.7. Let E and F be two disjoint continua in X. Write d=  

dist(E, F)  and assume without loss of generality that  

= diam E = min{diam E, diam F}.  

Fix 
dist(E, F)  d 

t t> A(E,  F)  = min{diam E, diam F} = ~" 

Choose a point x E E  such that  the closed ball B(x,  d) meets F.  Then consider the ball 

B = B(x, d+25).  

The compact sets E and F ' = F N B ( x ,  d+5) both lie in B and have Hausdorff 1-content 

at least 
~(d-t-2~) Q-I  (d+26)l-Q#(B).  

= , ( B )  

We use this fact and Theorem 5.9 to estimate the modulus between E and F. Because X 

is assumed to be proper and Q-convex, we can use inequality (2.19) in Proposition 2.17. 

(This is the only place where the concept of Q-convexity is used in this paper. Moreover, 

we only use it so that  test functions can be taken to be continuous, whence there is no 

quantitative dependence on Q-convexity.) In conclusion, by (5.10) and (5.11) with p=Q 

and s = l ,  

modq (E, F) />  cap~(E,  F;  CB) >1 C -1 ~(d+2~i)Q-1 #(B)(d+2~i)_ Q t> C -  1 min{1, 1/t}, 

and thereby Theorem 5.7 follows. 

Proof of Theorem 5.9. Let u be a continuous function in the ball B C R  , where 

C=10C0,  and Co is the constant appearing in (5.2). Assume that ulE<.O and ulF>~l , 

and let L) be a very weak gradient of u in BCR. 

The proof splits into two cases depending on whether or not there are points x in E 

and y in F so that  neither 
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nor 

1 If  such points can be found, then exceeds ~. 

l--lU U l--i 1<~ lu(x)-u(y)l <~ ~-rl B(~,R)-- B(y,5R)l-r~, 

o r  

I ~ C /B(y,5R)IU--UB(y,5R)Id#~ CR( /BcR~P d#) 1/p, 

from which (5.11) follows. Note that  B(x, R)cB(y, 5R)CBcR by the choices. 

The second alternative, by symmetry,  is tha t  for all points x in E we have that  

1 <<. lu(x)--uB(x,R)I. 

Therefore, because u is continuous, 

oo 

1 <CEluBj(x)--uBj+I(x)I<C E /B,(z)lU--UBj(x)]d# 
j = 0  j = 0  " 

c e 
j=0 \ cos~(~) 

where Bj(x)-~2-JB(x, R). Therefore~ if 

c ~P d# <~ cRQ-'-P(2-JR/-Q#(By (x)) 
o B~ (x) 

for a fixed E>O and for each j=O,  1, 2, . . . ,  we have that  

oo 

1 ~ CE 1/p E(2-J) (p+s-Q)/p ~ Cs 1/p 
j = 0  

because s>Q-p. It  follows that  there is an index j~ such tha t  

~Pd#>~c~ 
o Bjx (x) 

for some ~0>0 depending only on the data. In particular, using Covering Lemma 5.5 

and the fact that  X is doubling, we find a pairwise disjoint collection of balls of the form 

Bk=B(xk, rkR) such that  

E c U 5 B k  
k 
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and such that  

Hence 

#(Bk)(rkR) ~-Q <~ CRS+P-Q f ~Pd#. 
J B k  

)~RS-Q#(BR) <. 7-l~(E) <~ E ( 5 r k R ) S  <. C E(rkR)~-Q(rkR)Q 
k k 

C E ( r k R ) S - Q # ( B k )  < CRS+P-Q/  ~Pd#, 
k B c R  

as desired. This completes the proof of Theorem 5.9. 

Next theorem gives a converse to Theorem 5.7. 

THEOREM 5.12. Suppose that X is a locally compact, Q-regular Loewner space. 

Then X admits a weak (1, Q)-Poincard inequality. The statement is quantitative in that 

(5.2) will hold with constants CQ >~ 1 and Co >11 that depend only on the data associated 
with X .  

Before we go into the proof of this theorem, it is worthwhile to summarize the 

equivalence of the Loewner condition and Poincar~ inequality in the following corollary. 

COROLLARY 5.13. Suppose that X is proper, Q-regular and ~-convex. Then X is 

a Loewner space if and only if X admits a weak (1, Q)-Poincard inequality. 

The statement of the above corollary is quantitative, but remember that  the ~- 

convexity assumption has no bearing on the constants. It would be interesting to find 

analogues of Corollary 5.13 for l<.p<Q. 

The proof of Theorem 5.12 consists of two lemmata. The first lemma probably 

belongs to folklore, but we have no reference to give. In it, an alternative characterization 

of a Poincar~ inequality is given in terms of the maximal function 

MRg(x) = r<Rsup J B~(~,r)g d#. (5.14) 

For a future reference, a general p-version is proved. 

LEMMA 5.15. Suppose that (X,#) is a locally compact doubling space. Then X 

admits a weak (1,p)-Poincard inequality if and only if there is a constant C>~I so that 

lu(x) - u(Y)l < C I x -  Yl (MR ~(x )  +MR QP(y) )1/p (5.16) 

whenever u is a continuous function in a ball Bn, x, yEC-1BR, and Q is a very weak 

gradient of u in BR. The statement is quantitative in the usual sense. 
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LEMMA 5.17. Suppose that X is a Q-regular Loewner space. Then the pointwise 
estimate (5.16) holds for p=Q, quantitatively. 

Proof of Lemma 5.15. First we prove the sufficiency. Let u be a continuous function 

in a ball BR and let 0 be a very weak gradient of u there. Denote by B the ball C-1BR, 
where C is as in (5.16). Pick t such that  #({xEB:u~t})>~ 1 ~#(B) and #({xcB:u>~t})>~ 
I # ( B ) .  We shall in fact prove a weak (p, p)-Poincar~ inequality with UB replaced by t; 

tha t  is, we shall prove (5.2) with the averaged LP-norm of u - t  on the left-hand side. By 

replacing u with u- t ,  we may further assume tha t  t=0 .  

We estimate the integral of lul over B; by symmet ry  it suffices to estimate the 

integral over the set where u>0 .  Thus we can assume that  u is nonnegative in B. Let 

s>0 .  We claim tha t  

#({x E B:u  ) s}) ~ Cs-PR p / QPd# (5.18) 
J B R  

for some C ) 1  independent of s. 

To this end, let x be a point in B such that  u(x))s.  Then pick yEB with u(y)~O. 
By assumption (5.16), there is a radius O<r<Clx-y I so that  

<.cIx-yl'8-'[ oPd#, (5.19) 
J B ( w , r )  

where w--x or w=y. Notice tha t  B(w,r)CBR. If (5.19) holds with w=y for each choice 

of y, we apply Covering Lemma 5.5 and conclude that  the set in B where u vanishes can 

be covered by a countable collection of balls of the form 5B(wi, ri) such tha t  the balls 

B(wi, ri) are pairwise disjoint and satisfy (5.19). Thus 

< 2#({y e B: u(y) = 0}) 2 Z r,)) 
i 

<~ CEt t (B(wi ' r i ) )  < C[x-Y[Ps-P fB QPd# 
i R 

so tha t  inequality (5.18) follows. Otherwise, given x with u(x)>~s, there is always some 

y such that  (5.19) holds for w=x. Then we use a covering argument just as above to 

obtain inequality (5.18) (in this case we really estimate the measure of the set where u>~s 
and not just #(B)) .  

Inequality (5.18) is a weak-type inequality which does not in general lead to the 

strong-type inequality we are looking for. However, the fact that  it holds for a function 

and its gradient, even if a very weak one, allows one to use a t runcation argument which 

leads to the desired estimate 

,.f lul" d, c , ,  , , [ f  (5.20) 
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This is done, for instance, in [$4, Appendix C]. For convenience, we sketch the argument.  

Suppose that  j is an integer and consider the set Lj={xEBR: 2J~u~<2J+l}. Sub- 

t ract  2J from u and truncate u to obtain a function v such that  v = 0  when u~2 j and 

v=2J  when u>~2 j+l .  If  U is any open set containing Lj then the function h defined 

as the restriction of Q in U, and zero elsewere, is a very weak gradient of v in BR (see 

Lemma C.19 in [$4]). If we now apply the argument  above and especially the weak 

estimate (5.18) to v, we conclude by letting U tend to Lj that  

~L~+lnB'U'P d# ~ CRP ~L~ Qp d#" 

(It is in this approximation by open sets that  the local compactness of X is needed.) 

The claim (5.20) follows by summing over j .  The sufficiency part  of the lemma is thus 

proved. 

To prove the necessity, let u be a continuous function in a ball BR in X,  and let 

Q be its very weak gradient there. Pick xEIBR.  Then denote B~=B(x, ~o R) and 

Bi=2-~Bx, and est imate 

lu(x)--uB~l <<. lUB,--UB,§ <<. C~--~ lU--UB, I 
i=0 i=O i 

<~ CR ~ ~P d#]/p <~ CR(MR gP (x)) 1 / p  

i=0 i 

1 R ) ,  w e  h a v e  Similarly, for yC I~BR and Bu=B(y , 

lu(y)--UB~ I ~ CR(MR~(Y)) 1/p. 

In conclusion, because B~ C B u and because #(By) ~ C#(B~), 

lu(x)-u(y)l <~ lu(x)-uB~ I+~ ( lu-uB~ I dtL§ pu(y)--US~ I 
J B x  

<. lU(X)--UB~ I + C f_ lu-us~ I d# + lu(y) ~ U B ~  

J IJ y 

<~ CR( Mt~ ~P(x) § QP(y) ) 1/p 

as desired. This completes the proof of Lemma 5.15. 

Proof of Lemma 5.17. Let u be a continuous function in a ball B in X and let • be 

a very weak gradient of u in B. We pick two points x and y from B~=Cr-IB for some 

large C r, depending only on the data; the value of C ~ will be determined in the course 
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of the proof. We need to show that  inequality (5.16) holds. As customary, we let below 

C, C1,6'2, ... denote various constants depending only on the data. 

Because X is assumed to be Q-regular and Loewner, it is quasiconvex by Theo- 

rem 3.13. Pick a curve 3  ̀joining x and y with length not exceeding Cllx-yl; we may 

assume that  9, lies in B by making C' sufficiently large. We may also assume that  

lu(x)-u(y)l=l, because estimate (5.16) has the correct homogeneity properties. Con- 

sider the annuli 

Aj = B(x, C23J d) \ B(x, c23j-2d) 

for j = 0 ,  1,2,..., where C2~>2 is a constant that  will be determined momentarily and 

where d is chosen so that  the boundary of the ball B(x, d) meets the midpoint of 3 .̀ 

Note that  d<~CllX-yl. We choose C' so large that  the ball B(x, C2d) is still in B; in 

particular, the annuli Aj all lie in B. Next, let 3 j̀ in ii j  be a part of 3' joining the 

boundaries of the two balls that  define Aj. Then we infer from Lemma 3.15 and from 

(the proof of) Lemma 3.17 that,  by choosing 6'2 sufficiently large, the estimate 

mOdQ Fj ) C -1 > 0 (5.21) 

holds, where Fj consists of all those curves in the family (3`j, 3`j+1; B j) whose length does 

not exceed C3C~3Jd, where Bj=B(x, C23j+1d). 

Next, write 

aj = inf f 0 ds, (5.22) ay~ 
where the infimum is taken over all curves a in Fj. By (5.21), we have that  

and hence that 

Bj OQ d# ) C- la?, 

B~ QQ d# ~ C- l a? C3JQ d -Q. 

Therefore the desired estimate 

l u ( x ) - u ( y ) l  = 1 .< d ( / , 0  Q d.)l/q .< CIx-yl(M~I~-yJOQ(x)) 1/Q 

holds provided that  there is an index j with 

aQ,.~3jQ 6-1 

for some C~>I depending only on the data; recall that  d<~CllX-y]. Thus we may assume 

that  

aj <~ ~C23j (5.23) 
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for some small r > 0 and for all j .  

Assuming (5.23), we connect each pair of curves 3g and 3'j+1 by a curve -yjIcFj 

inside the ball Bj such that  

j f eds  <~ 2 E 6 2 3 j  . (5.24) 
j r  

By the definition of Fj, the length of 3,j I does not exceed 63623Jd. These continua ~/jl 

are so located that  we can repeat the above argument by using ~j' instead of ~yj. Notice 

however that  in this case the continua 3,j ~ and 7j+1 ~ need not be disjoint. If they are 

disjoint, we obtain that  the modulus of the family of all those curves that  join 3,j ~ and 

~/j+l ~ in some appropriate ball roughly of size 623Jd, and whose length does not exceed 

64623Jd, has a positive lower bound depending only on the data. 

Now we define numbers bj analogously to (5.22); if the continua 3'j' and ~/j+l ~ meet, 

we set bj =0. It then follows as above that  the required pointwise estimate holds unless 

bj ~< eC~ -3j 

for some small e > 0  and for all j .  This means that  there are curves 3'y" joining ~// and 

3,j+1 ~ with length not exceeding C4C23Jd such that  

~j g ds <~ 2eC23j. (5.25) 
M 

Note that  ~/j" may be a constant curve. By using the curves 7 /  and 3'j", we obtain a 

curve ~x joining x to some point in 3'0. The curve 3'~ has finite length, as follows by 

summing up the lengths of 3'j' and %-"; moreover, by (5.24) and (5.25) we have that  

j /  2e 1 
yds<<. 1-C2- 3 < 3'  (5.26) 

provided E is small enough, depending only on the data. 

Next we repeat the argument for the point y. We find a curve 3'y starting from y 

such that  
[ 1 0 ds < - (5.27) 
.j ,-y.~ 3 

and 
dist {3,~, ~'~} ~< C. (5.28) 

A (7~, ~y) = min{diam 3'~, diam ~fy } 

By using (5.28) and the Loewner property as above one more time, we find that  either 

the desired estimate (5.16) holds or there is a curve ~ joining ~/~ and % in B such that  

j (  1 (5.29) eds< ~. 
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By combining (5.26)-(5.29), we arrive at the contradictory inequality 

1 = lu(x)-u(y) l  <<. f ods < 1. 
Jz ~Uq~yU~/ 

The proof of Lemma 5.17 is complete. 
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6. E x a m p l e s  o f  L o e w n e r  spaces  

In this section, we collect examples, old and new, of spaces that satisfy the Loewner 

condition as defined in Definition 3.1. In particular, we give examples of situations where 

the local-to-global phenomenon in the quasiconformal mapping theory occurs, cf. w 

6.1. Euclidean space and compact manifolds. Euclidean n-space R n is a Loewner 

space for each n~>l. This is trivial for n=l ,  easy for n=2, and due to Loewner ILl for 

n~>3. The quickest proof of this fact uses the scale invariance of the Loewner condition 

and the Sobolev embedding theorem on codimension-one spheres in R n. The argument 

using the Poincar~ inequality in w of course applies here as well, but insofar as one does 

not care about sharp estimates for the function r there are other simple proofs available, 

cf. IV1, 10.12]. 
Modelled by R n, a compact Riemannian manifold is a Loewner space because a 

weak Poincar5 inequality trivially holds. In fact, one only needs Lipschitz charts so that  

by Sullivan's theorem [Su] every compact topological manifold outside dimension four 

admits a metric that  makes it a Loewner space. See also w below. 

6.2. Carnot groups. Carnot Carathdodory spaces provide examples of regular Loew- 

net spaces whose Hausdorff dimension exceeds the topological dimension. Roughly, these 

are spaces that are locally modelled by a Carnot group. It was in the setting of Carnot 

groups where quasiconformal maps beyond Riemannian spaces first appeared. Namely, 

the boundaries of rank-one symmetric spaces can be identified as certain Carnot groups 

of step two, and Mostow [Mol] had to develop the basic quasiconformal theory in these 

groups in order to reach his celebrated rigidity results. 

A Carnot group admits a (1, p)-Poincar5 inequality for all p~> 1 by a result of Jeri- 

son [J], and hence is a Loewner space. The Loewner property of a Carnot group was 

known before; see [Re] and [H2]. More information about Carnot spaces, Poincar~ in- 

equalities and quasiconformal maps can be found in [Cr], [HK1], [KR1], [KR2], [MM], 

[P1], [P2], [VG], [VSC]. 

6.3. Riemannian manifolds of nonnegative Ricci curvature. Let M be a complete, 

noncompact Riemannian n-manifold, n~>2, whose Ricci curvature is nonnegative. Then 
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M is a Loewner space if and only if M is n-regular; the latter is equivalent to the existence 

of a constant C~>I such that  

C-1R n <~ #(BR), (6.4) 

where BR is any metric ball of radius R and # is the Riemannian volume. Recall that  

the classical comparison theorem of Bishop implies that  we always have the inequality 

, (BR) < anR n (6.5) 

for balls BR as above, where ~n is the volume of the unit ball in Rn; see e.g. [Ch, p. 123]. 

Thus M is n-regular if it has Euclidean volume growth. 

The claim follows from Theorem 5.7 and from the fact that  M admits a Poincar~ 

inequality; the necessity of (6.4) follows from Theorem 3.6. The validity of a (1, 2)- 

Poincar~ inequality under the above assumptions was proved by Buser [Bu]. There are 

several works by several people in this area; see [Ch], [MSC], [SC], and the references 

there. (See also [CSC].) 

Recently, significant advances have been made in understanding the structure of a 

tangent cone M ~  of a manifold M as above (in particular, assume that  M has Euclidean 

volume growth). See [CC]. Because quasiconformal maps are insensitive to scaling, and 

because they easily form compact families, one is led to wonder whether quasiconformal 

maps can be used to resolve some issues in the study of the tangent cones. One can show 

without much difficulty that  if M and N are two manifolds of nonnegative Ricci curvature 

and Euclidean volume growth, and if f :  M--*N is quasiconformal, then the tangent cones 

at infinity of M and N are pairwise (quasisymmetrically) homeomorphic in the following 

sense: for each tangent cone M ~ ,  there is a tangent cone N ~  and a quasisymmetric 

homeomorphism M~- -~N~.  This discussion is very general and well known, and it has 

nothing to do with Ricci curvature, or even manifolds per se, cf. [GLP]. The perhaps new 

observation made here is that  if f is a quasiconformal map (in the infinitesimal sense) 

between two manifolds M and N as above, then f is globally quasisymmetric, and hence 

can be scaled and pushed to a quasisymmetric homeomorphism between appropriate 

tangent cones. 

6.6. Strong A~-geometry. The concept of a strong A~-geometry  is due to David 

and Semmes [DS1], [S1], [$2]. Intuitively, such a geometry results when one changes 

the standard metric in R ~ by a conformal factor. The main difference is that  we do 

not assume this change to be smooth, or even continuous, but rather to hold on to the 

minimal requirements that prevent the associated distance function from degenerating. 

Assume that  # is a doubling measure in R n given by a locally integrable density w. 

That  is, dp(x)=w(x) dx, where dx is Lebesgue measure in R n. (Recall the definition for 
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doubling measure from w We assume here n~>2. To each such density, or weight, we 

associate the distance function 

dw(x,y) = tt(Bxy)l/n= (/B~yW(x) dx)l/n, (6.7) 

where B~y is the smallest closed Euclidean ball containing x and y. The function d~: 

R ~ •  R~--~R does not generally define a metric in R ~, nor is it even comparable to one. 

If there is a metric Dw in R n and a constant C>~I so that  

C-ida(x,  y) < D~(x, y) ~ Cd~(x, y) (6.8) 

for all x and y in R n, then w is Called a strong Ao~-weight. The name derives from the 

fact that  every strong Am-weight is an Am-weight in the sense of Muckenhoupt, while 

not every Am-weight is a strong one. See [DS1], IS]I, [$2] for a thorough discussion of 

strong Am-weights. 

Let w be a strong Am-weight and let Dw be a metric satisfying (6.8). Then the 

metric space (R n, Dw) with measure d#=w dx is n-regular and every two points in it 

can be joined by a rectifiable curve [$1]. 

THEOREM 6.9. The n-regular metric space X = ( R n , D ~ )  associated to a strong 

Ac~-weight w as above is a Loewner space. The statement is quantitative in that the 
function r only depends on n and on the constants associated with w. 

Because X admits the appropriate Poincar5 inequalities and is quasiconvex (see 

[DS1], [S1], [$4], [$5]), Theorem 6.9 follows from Theorem 5.7. 

The space (R n, D~) can be quite different from the standard R ~. Semmes [$2] has 

given examples of strong Am-weights w in R 3 such that  the associated space (R 3, D~) is 

not bi-Lipschitz equivalent to the standard R 3. Moreover, there is, in some R ~, a strong 

Am-weight w such that  the associated space does not admit a bi-Lipschitz embedding 

into any Euclidean space. On the other hand, the identity map from (R ~, D~) to the 

standard R n is always quasisymmetric, and this implies, among other things, quantitative 

bounds for the contractibility function of the space (cf. [$3], [$4]). 

Semmes [$2] has further shown that every doubling metric space X admits a bi- 

Lipschitz embedding into some (R ~, D~), where w is a strong Am-weight. Semmes uses 

partly a theorem of Assouad [A]. From the point of view of quasiconformal mapping 

theory, a bi-Lipschitz change of coordinates is a harmless procedure. Therefore, in light 

of the Assouad-Semmes theorem, we could think of all the metric spaces in this paper 

as subspaces of (R n, D~) for some n and for some strong Am-weight w in R'L 
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6.10. Unifo~nly contractible, regular topological manifolds. In an interesting and 

massive recent paper [$4], Semmes has verified Poincar4-type inequalities for a large 

class of metric spaces. 

Let X be a connected and complete n-regular metric space that  is also an orientable 

topological n-manifold, n~>2. Assume that  X satisfies the following local linear con- 

tractibility condition: there is C>~I so that,  for each x E X  and R < C - i d i a m X ,  the ball 

B(x, R) can be contracted to a point inside B(x, CR). 

THEOREM 6.11. Under the above assumptions, X admits a (1,p)-Poincard inequal- 

ity for all p>~l. In particular, X is a Loewner space. These statements are quantitative 

in the usual sense. 

The first part of Theorem 6.11 is contained in [$4, Theorem B.10]. The second part 

follows from Theorem 5.7. (Note that under these assumptions, X is quasiconvex by [$4, 

Theorem B.6].) 

Theorem 6.11 covers a wide variety of spaces, including the strong A~-geometries. 

Moreover, the assumption that  X be a topological manifold can be relaxed: it suffices to 

assume that  X is an orientable homology n-manifold, cf. [$4, A.35]. Every finite polyhe- 

dron (i.e. a finite simplicial complex) that  is an orientable homology n-manifold satisfies 

the above assumptions (see [$3, Proposition 1.11]) and hence is a Loewner space. These 

and other examples are discussed in the many papers by Semmes [$2], [$3], [$4], [$5]. 

We reiterate that  there are spaces, even finite polyhedra, that  satisfy the assumptions of 

Theorem 6.11 and are homeomorphic to some Euclidean space, but do not admit even 

local bi-Lipschitz or quasisymmetric coordinates. 

6.12. Simplicial complexes. It follows from Theorem 6.11 that  every finite simplicial 

complex that  is also a manifold is a Loewner space. In fact, a more general result is true. 

THEOREM 6.13. Suppose that X is a connected, finite simplicial complex of pure 

dimension Q > I  such that the link of each vertex is connected. Then X admits a (1, Q)- 

Poincard inequality. In particular, X is a Q-regular Loewner space. 

In the above theorem, we can use in X either the barycentric metric or the metric 

X inherits by sitting inside some R N. Simple examples show that  as stated this theorem 

cannot be made quantitative. Similarly, the assumption on links is necessary. 

Theorem 6.13 follows from a yet more general result which will be described in the 

next subsection. 

6.14. Glueing spaces together. The Loewner condition, or more generally a weak 

(1,p)-Poincar4 inequality, rather easily survives under unions. 
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Suppose that  X and Y are two locally compact  Q-regular metric measure spaces. 

Suppose also tha t  A is a closed subset of X that  has an isometric copy inside Y, i.e. there 

is an isometric embedding i: A--~Y. In the following, we understand this embedding as 

fixed and think of A as a closed subset of both  X and Y. Then form a space 

X U A Y  

which is the disjoint union of X and Y with points in the two copies of A identified. 

This space has a natural  metric which extends the metrics from X and Y: the distance 

between x C X U A Y  and y E X U A Y  is 

inf ] x - a i + l a - y  ]. 
aEA 

Furthermore, the measures on X and Y add to a measure # on X U A Y  that  is evidently 

Q-regular. (Note that  if X and Y were only doubling spaces, the new space X U A Y  is 

not necessarily doubling.) 

THEOREM 6.15. Let X ,  Y and A be as above. Suppose that there are numbers 

Q ~ s > Q - p  and C>~I so that 

TI~(ANBR) ~ C-1R 8 (6.16) 

for all balls BR either in X or in Y that are centered at A with radius 0 < R <  

min{diamX,  d iamY}.  If both X and Y admit a weak (1,p)-Poincard inequality, then 

XUA Y admits a weak (1,p)-Poincard inequality as well. The statement is quantitative 

in the usual sense. 

Proof. The proof is based on Theorem 5.9 and Lemma 5.15. Fix a ball B=BRo in 

XUAY,  a continuous function u in B, and a very weak gradient Q of u in B. We may 

assume that  B is centered at a point in A, as is easily seen. By Lemma 5.15 it suffices 

to show that  

]u (x ) -u (y ) l  < CIx--yI(MR o QP(x)+MRo ~(y)) l /p  (6.17) 

for all x, y c C - 1 B  for some C~>I depending only on the data. 

To this end, observe that  (6.17) has the correct homogeneity properties so that  there 

is no loss of generality in assuming that  

m a x u - - 1  and min u - - 0 .  
C 1B C-1B 

We assume here for simplicity that  the above extreme values are taken at points x and y, 

so that  u(x)- -1  and u (y)=0 .  We may clearly assume tha t  x C X  and y c Y ,  for if both  
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points belong to either space, then there is nothing to prove by assumption and by the 

necessity part  of Lemma 5.15. Next, take a ball B I in XUAY that  is centered at A, has 

radius R comparable to ]x -y ] ,  and such that  the points x and y are contained in �88 I. 

Such a ball B ~ clearly exists and can be assumed to lie in B by simply choosing the 

constant C above sufficiently large. 

Now if either ]u(x)--UBx ] or lu(y)--UBy] exceeds 1 ~, where Bx=B(x, Ix-yl) is a 

ball in X and By=B(y, ]x -y ] )  is a ball in Y, then clearly (6.17) holds by (the proof of) 

Lemma 5.15. Thus we assume that  

lUB,]<~ and ] l -uBx]<~  1 

It  then follows that  the sets 

Ax={wCBx:u(w)> 3} and Ay={wEBy:u(w)< �88 

both  have measure at least ~ of the measure of Bx and By, respectively. But the 

measures of these two balls are comparable to R O by the regularity assumption. Therefore 

we find tha t  

min{7-l~ (mxnB'), 7"L~(Ay NB')} ~ C-1R Q, 

and hence that  

min{7-lT(AxnB'), ?-I•(AyNB')} >~ C-1R ~. (6.18) 

(We leave this latter deduction to the reader to verify.) Note that  AxUAy belongs to 
1 i B t because x and y belong to ~ B .  

Next, consider the sets 

1 AI={wEANB':u(w)<~}, A2=(ANB')\A1. 

By assumption, one of these two sets has to have s-content at least C-1R s both as a 

subset of X and as a subset of Y. Say A1 does. (The opposite case is similar.) The 

function v = 4 ( u - 1 )  satisfies v~>l on Ax and v<~0 on A1, and it has 4Q as its very weak 

gradient in B. We combine this observation with (6.18) and deduce from Theorem 5.9 

that  

1 < CR p-P Is  ~p d# < CRPMRo ~(x) <~ C]x--ylPMRo QP(x), 

as desired. Note tha t  we may assume R~<R0. This completes the proof of Theorem 6.15. 

Remark 6.19. (a) Theorem 6.15 can be used to produce a variety of examples of 

spaces that  admit  a Poincar~ inequality. Some of these are quite amusing. Take, for 

instance, X to be R a with its s tandard metric and Y to be the first Heisenberg group 
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H1 with its Carnot metric. Then both spaces are 4-regular. Glue them along a geodesic, 

i.e. along an isometric copy of R. The resulting space X U R Y  admits a (1,p)-Poincar~ 

inequality for all p>3.  (It does not admit a weak (1, 3)-Poincar~ inequality, cf. (b) below.) 

It is a Loewner space, too. Notice that  locally the topological dimension of X U R Y  is 

different at different places. 

(b) One can use Theorem 6.15 to show that  the spaces that  admit a weak (1,p)- 

Poincar~ inequality are strictly ordered by p. In fact, given l<~q<p~n, there is an 

n-regular Riemannian n-manifold M that  admits a weak (1,p)-Poincard inequality but 

does not admit a weak (1, q)-Poincard inequality. 

We sketch the proof for this claim. Let l<.q<p~n. Take a suitable closed Cantor- 

type set A in R n such that A has zero Hausdorff (n -q) -measure  but the estimate 

:H~(AnBR) >1 C-1R ~ 

holds for all balls BR centered at A, for some n - q > s > n - p .  Then glue two copies of 

R n along A. The resulting space admits a (1,p)-Poincar~ inequality by Theorem 6.15. 

However, it is well known that  7-/~_q(A)=0 implies that  A has zero q-capacity in R ~ (see 

e.g. [HKM, Chapter 3]). In particular, there are continuous functions r in the Sobolev 

class w I ' q ( R  n) with arbitrarily small wl ,q-norm such that  r  By extending such 

a function r to be identically 1 in the second copy of R n, we see that  no (1, q)-Poincar~ 

inequality is possible in RnUAR  n. 

We leave it to the reader to modify this example so that  X can be taken to be a 

smooth manifold. 

One can furthermore show that  there are spaces that  satisfy, for a given p > l ,  a 

(1, p)-Poincar~ inequality, but do not satisfy a (1, q)-Poincar~ inequality for any q<p [K]. 

(c) In w we show that  under certain additional assumptions on a Q-regular space, 

the validity of a (1, Q)-Poincar~ inequality is a quasisymmetric invariant. The example 

in (b) shows that  the same statement is not true for p<n. Simply take a quasiconformal 

map of R n that  transforms one self-similar Cantor set of dimension s to another self- 

similar Cantor set of dimension q, where l<~q<s<n. 

7. A b s o l u t e  c o n t i n u i t y  o f  q u a s i s y m m e t r i c  m a p s  

In this section, we show that  a quasisymmetric map f :  X---~Y between two locally com- 

pact Q-regular metric spaces induces a measure in X that  is A~-related to the Hausdorff 

Q-measure in X, provided that  Q > I  and that  X admits a (1,p)-Poincar~ inequality for 

some p<Q. This generalizes Gehring's well-known result [G3]. For earlier extensions of 

Gehring's theorem, see [DS1], IS1] and [KR2]. 
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Notice that  by the results of the previous sections, with some (mild) additional as- 

sumptions added on X and Y, we could equivalently assume that  f is only quasiconformal 

in the sense of Definition 1.2. We prefer to assume quasisymmetry at the outset here. 

7.1. A~-weights. Let (X, #) be a metric measure space as in w and assume that  

# is a doubling measure (Definition 5.3). Assume also that  X is locally compact. Let a 

be another doubling Borel measure in X. Then a is said to be A~-related to # if for 

each e > 0  there is 5>0  such that  

tt(E) < 5 # ( B )  implies a(E) <~a(B) 

whenever E is a measurable subset of a ball B. Clearly a is absolutely continuous with 

respect to # if a is A~-rela ted to #, so that  da=w d# for some nonnegative locally 

#-integrable weight function w. It turns out that  if a is Am-related to #, then # is 

A~-rela ted to a, and that  this symmetric relationship between two doubling measures 

can be expressed in various equivalent ways [ST], [St2]. Consider the following reverse 
HSlder inequality: 

There is a locally #-integrable function w in X together with constants C~>I and 

p > l  so that da=wd# and 

( /B wP d#)I/P <~ C /B W d# (7.2) 

whenever B is a ball in X. 

It is well known that a doubling measure a is A~-rela ted to # if and only if (7.2) is 

satisfied. This is a quantitative statement. See e.g. [CF] or [ST, Chapter I]. 

Condition (7.2) has the following important  self-improving character. 

GEHRING'S LEMMA 7.3. If a weight w satisfies (7.2), then there is c>0  such that 

( /BwP+e d#)I/(P+E) ~ C /Bwd#  (7.4) 

whenever B is a ball in X. The constants ~ and C depend only on the constants appearing 
in (7.2) and on the doubling constant of it. 

The original proof due to Gehring [G3] in R n can be extended to this more general 

setting; see e.g. [ST, p. 6]. 

7.5. Volume derivative of a quasisymmetric map. Let X and Y be two Q-regular 

metric measure spaces as in w Denote the Hausdorff Q-measure in both spaces by T/Q, 

and to keep the notation simple, we write 

IA]~-7-IQ(A), dx=dT-lQ(x). 
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Suppose now that  f :  X ~ Y  is an y-quasisymmetric homeomorphism between X and Y 

as defined in (4.5). By the Lebesgue-Radon-Nikodym theorem, the volume derivative 

[f(B(x,r))[ (7.6) # i (x )  = lim 
r~o IB(x,r) l  

exists and is finite for almost every x in X; it is locally integrable and satisfies 

EPI(X dx ~ If(E)[ (7.7) 

for every measurable subset E of X,  with equality if and only if f is absolutely continuous. 

The paramount  reference to the basic measure theory is [Fe]. 

7.8. Maximum derivative of a quasisymmetric map. Next we introduce another func- 

tion, which describes the local stretching of f .  The situation is assumed to be as in w 

For x E X write 

nf(x) = lim sup nf(x, r), (7.9) 
r---*0 r 

where Li(x , r) is defined in (4.2). It  is not difficult to see that  L I is a Borel-measurable 

function in X.  Moreover, by the Q-regularity of X and Y, and by the quasisymmetry 

of f ,  we find that  

(Lf~x,r) ; ~c[f(B(x'r))'[B(x,r), 

for O < r < d i a m X .  Therefore 

Lf(x)Q~C#f(x)  (7.10) 

for almost every x in X,  where C depends only on the quasisymmetry function ~1 of f 

and on the constants associated with the Q-regularity of X and Y. With an obvious 

abuse of language, we call the function Lf the maximum derivative of a quasisymmetric 

map f .  

THEOREM 7.11. Suppose that X and Y are locally compact Q-regular spaces for 

some Q> I and that X admits a weak (1,p)-Poincard inequality for some p<Q. Let f 
be a quasisymmetric map from X onto Y. Then the pull-back measure af , 

~f(E)=]f(E)[, E C X ,  

is A~-related to the Hausdorff Q-measure 7tQ in X.  Moreover, 

dcrf= #f dx 
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with # : (x )>O for TlQ-almost every x in X,  and there is ~>0 such that 

f \1/(1+~) 

for all balls B in X.  The statement is quantitative in that all the constants involved 

in the conclusion depend only on the quasisymmetry constant of f ,  on the constants 

associated with the Q-regularity o/ X and Y,  and on the constant appearing in the 

Poincard inequality. 

COROLLARY 7.13. Under the assumptions of Theorem 7.11, 

IEI = 0  if and only i/ [ f ( E ) l = 0  

for E c X .  In other words, both f and its inverse are absolutely continuous. 

Because, in the situation of Theorem 7.11, L?  and the volume derivative are c o m -  

p a r a b l e  for quasisymmetric maps, we also have the following reverse H51der inequality 

for the maximum derivative as well. 

COROLLARY 7.14. Under the assumptions of Theorem 7.11, there is q>Q such that 

f q \ l lq  

for all balls B in X .  The statement is quantitative similarly to Theorem 7.11. 

We do not know whether Theorem 7.11 remains true if X satisfies a weak (1, Q)- 

Poincar5 inequality only, cf. Remark 8.7. 

To prove Theorem 7.11, we shall show that  the reverse HSlder inequality (7.12) holds 

for the volume derivative. This suffices in view of the discussion in w In the following, 

let f :  X---~Y be an 7/-quasisymmetric map between two Q-regular metric spaces with 

Q > 1. For e > 0 define 

L ~ ( x ) =  sup L:(x ,r)  (7.15) 
0 < r ~ s  r 

Clearly L~ (x) decreases as ~ decreases, and 

l imL~(x )=Lf (x ) ,  ~--*0, 
E---*O 

for each x C X  by the definition of Lf. Fix a ball B=B(xo,  R) in X with R < d i a m X .  
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LEMMA 7.16. There is a constant C=C0?)~>I such that, for each e>0,  the function 
CL~ is a very weak gradient of the function u (x )= l f ( x ) -  f(xo)] in B. 

Proof. Fix e>0  and let 3' be a rectifiable curve joining two points x and y in B. 

Suppose first that d=diam3',.<e. Then for each zE3' we have 

L/(z,  d) >1 C_ 1Ll(x , d) 
L~(z) >~ d d 

by quasisymmetry. Thus 

f L~ ds >1 C -1L/ (x ,  d) 1(3") >. C-1L/(x ,  d) >1 C-1 l f ( x ) - f ( y ) l  
d 

6-11 ] f (x ) -  f ( x o ) l - l f ( y ) -  f(xo)I ]= C-11u(x)-u(y)]. 

If d=d iam 3'>e, then pick successive points Xo, ..., XN from 3' such that  Xo=X, XN =y, 
and such that  the diameter of 3"i, the portion of 3' between xi-1 and xi, is less than e for 

i=1 ,  ..., N. As above, 

N N 

" z  z 1 3'~ i = 1  

C - ~ l f ( x ) -  f(y)l ~ C-1lu(x)-u(y)l  . 

The lemma follows. 

Remark 7.17. Note that  the above proof gives 

I f ( x ) -  f(y)l <~ C(~) f~ L~I ds (7.18) 

for all points x and y in X and all rectifiable curves 3' joining these points. It is important  

to notice that  (7.18) is not necessarily true when L~ is replaced with L/,  for f need not be 

absolutely continuous on rectifiable curves. In other words, it may well happen that  L~ 

is not integrable on such a curve. The next lemma tells us however that  L~ is integrable 

against the volume measure. 

LEMMA 7.19. The function L~ belongs to the space weak-LQ(B) with norm inde- 
pendent of ~, provided ~ is small enough. More precisely, for e< I R and t > 0  we have 
that 

]{x c B :  i~ (x )  > t}] ~< c t -QI f (B)  I, (7.20) 
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where C>~I depends only on ?7 and the data of X and Y. A fortiori, the function Lf 
belongs to weak-LQ(B) with norm depending only on the data. 

Proof. Denote by Et the set of points x in B where L~(x)>t. Then by Covering 

Lemma 5.5, we can find a countable collection of disjoint balls Bi=B(xi, ri) such that  

Lf(xi,ri) >t 
ri 

and 

E, C [.J 5Bi c 2B. 

Thus, by quasisymmetry and Q-regularity, 

[Et[ ~ C ~'~ r Q < Ct-Q Z LI(xi,ri)Q 

<. Ct-Q ~ II(B~)I <. Ct-QIf(2S)l <~ Ct-QIf(B)I, 

as desired. Finally, because L I ~<L~, the lemma follows. 

COROLLARY 7.21. For l~s<Q and 0 < c < ~ R ,  the function L~ is in LS(B) with 

IlL) [Is < C[B[(Q-s)/Qs [f(B)[1/Q, (7.22) 

where C>~I depends only on s, ?7 and the data of X and Y. A similar statement is true 
for L s. 

Proof of Theorem 7.11. We shall show that  L I satisfies the reverse HSlder inequality 

where p<Q is as in the assumptions. The claim follows from this and Corollary 7.21 via 

Gehring's Lemma 7.3, because the Qth power of the maximum derivative is comparable 

to the volume derivative by quasisymmetry (see (7.10)). Remember that  we have fixed 

a ball B=B(xo, R ) c X  with R < d i a m X .  The constant C~>I in (7.23) does not depend 

on B. 

Because X is assumed to admit a weak (1, p)-Poincar6 inequality and because CL~ I 
is a very weak gradient of the function u(x)=lf(x ) - f ( x 0 ) l  in B by Lemma 7.16, we have 

that  

/B [U(X)- UB" dx <~ C diam B ( /B L)P dx) 1/p, 

where B~=ColB, cf. (5.2). Therefore, in fact, 

f f ~l/p 
/B , [u(x) -uB,[dx~CdiamB~J BLpldx ) , (7.24) 
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by (7.22) and the Lebesgue Convergence Theorem. On the other hand, 

uB,= /B,[f(x)--f(xo)[dx>/ ~B~ /B,\�89 ]f(x)-f(x~ 

>~ c-1nf(xo, R) IB'\ �89 >1 C~lLy(xo, R) 
IBI 

because 

Lf(xo, R) ~ Clf(x )-  f(xo)l 

for xCB'\ �89 by quasisymmetry. For sufficiently small 5>0, we similarly have that 

u(x) = I f (x) - f (x0) l  ~ ~?(5)Lf(xo, R) <~ (2C1)-lLf(xo, R) 

for xCSB', where CI>O isas above, and so 

I~t(X)--UB, ]>1 (2C1)-l Lf(xo, R) 

for x in ~B'. Consequently, 

fB' lU(X) --UB, I dx >1 ~ lu(x)--UB, I dx >1 C-1Lf (Xo, R)IB], 
B ~ 

where C~>I depends only on ~ and the data associated with X. Combining this with 

(7.24) gives 

Lf(xo,R) / f ,~l/p 

Finally, we invoke the Lebesgue inequality (7.7) which together with (7.10) and (7.25) 

implies 

(7.26) 
~cLf(xo, R) ( r .,1/p 

R ~ C  ]B LPfdx) " 

This is (7.23), and the proof of Theorem 7.11 is complete as soon as we can show that 

there is an equality in (7.7); that is, we need to show that f is absolutely continuous. 

Notice that the A~-theory does guarantee that #f  is positive almost everywhere, cf. [CF]. 

The absolute continuity of f follows basically from the second line in formula (7.26); 

it implies by quasisymmetry and by H61der's inequality that 

(diam f(B)) Q <~ C L L? dx (7.27) 
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for all balls B in X. Because L f  is locally in L Q, (7.27) implies the claim by standard 

arguments.  Indeed, for bounded open sets U, a covering argument and quasisymmetry 

together with (7.27) give 

If(u)l < C /v  L Q dx, 

from which the claim follows as every set of measure zero in X is contained in an open 

set of arbitrarily small measure IF, 2.2.2]. 

This completes the proof of Theorem 7.11. 

Remark 7.28. Stephen Semmes pointed out to us that  Theorem 7.11 admits a gen- 

eralization as follows. Suppose that  (X, #) is a locally compact Q-regular space for some 

Q :> 1 and suppose that  X admits  a weak (1, p)-Poincar~ inequality for some p < Q. Sup- 

pose next that  a is a metric doubling measure in X; this means that  a is doubling and 

that  there is a metric Do in X such that  Do(x, y) is comparable to a(B(x, Ix-yl)) 1/Q 
(equivalently, to a(B(y, Iz-yl)) 1/Q) with constants independent of x and y, cf. the dis- 

cussion in w 

The conclusion then is that  there is a locally #-integrable density w in X such that  

da=w d# and that  w satisfies the reverse Hblder inequality (7.2). Moreover, the space 

(X,a,D~) is a Q-regular space admit t ing a weak (1,q)-Poincar~ inequality for some 

p<~q<Q. 
This assertion for X = R  n was proved in [DS1]; see also [S1], [$5]. Note that  it extends 

Gehring's theorem to the case where no maps are present; Theorem 7.11 follows by 

substituting r  above. The main point is to change the function u(x)=lf(x)-f(xo)l  
to Do(x, xo) in the proof of Theorem 7.11. There is also the issue of "smoothing", 

cf. (7.15); the arguments in [S1] are helpful here. 

It  is interesting to note tha t  when X = R  n, then one can have p = q = l  in the above 

conclusion, so there is no loss in the exponent after the deformation of metric [DS1]. In 

general, one has to allow for values q>p, as follows from Remark 6.19 (c). It  would be 

interesting to find general conditions under which q=p is an admissible choice. 

8. Q u a s i s y m m e t r i c  i n v a r i a n c e  o f  L o e w n e r  spaces  

We do not know whether the Loewner condition is a quasisymmetric invariant of an 

Ahlfors-David regular metric space. Basically, the lack of Fuglede's theorem prevents 

us from drawing this conclusion. Recall that  in R n, Fuglede's theorem says that  W I'p- 
Sobolev maps are absolutely continuous on p-modulus a.e. curve [Fu]. Pansu [Pl], [P2] 

proved that  quasisymmetric maps enjoy the same property in spaces that  can be foliated 

by curves in a suitable way. See also [MM]. 
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We shall show next that  Fuglede's theorem holds for quasisymmetric maps between 

Q-regular spaces where an appropriate Poincard inequality holds. The quasisymmetric 

invariance of the Loewner condition then follows under these assumptions. The situation 

here is similar to that  in the previous section. 

As in w we use the notation IEI=7-IQ(E) and dx=dT-lQ. 

THEOREM 8.1. Suppose that f is a quasisymmetric map between two Q-regular, 
locally compact metric spaces X and Y, where Q > 1. Suppose furthermore that X admits 
a (1,p)-Poincarg inequality for some p<Q. Then f is absolutely continuous on Q-almost 
every curve in X. 

The conclusion of Theorem 8.1 means that  the curve family 

F0 = {3": I --~ X : fo3': I ~ Y is not absolutely continuous} (8.2) 

has zero Q-modulus in X. Recall that  a rectifiable curve 3': I ~ X  is absolutely continuous 

if 7-/l(E)=0 implies 7-/1(3'(E))=0 for ECI; this is equivalent to saying that  s~>0 a.e. 

on I,  where s~: I---~[0, l(7)] is the reparametrization of 3' as explained in w 

Proof of Theorem 8.1. The issue is obviously local, so fix a small ball B in X. It 

follows from Theorem 7.11 that  the maximum derivative Lf  of f is in Lq(B) for some 

q>Q. We claim that  for ~ < ~  d i am B the function L)  is in LS(B) for all s<q, where 

L)  is defined in (7.15). In fact, the covering argument in Lemma 7.19 together with 

Corollary 7.14 gives that  

I{x c B : L~f(x) >t}l  < C E rQ 

~ct-qErQL(Xi'ri)qq 
r i 

<" ct-q E rQ ( If(B')I ~q/O 

= c t - q E r ? ( / B P f d x ) q / Q ~ c t - q E r ? / B L q f d x  

Ct-q /B L} dx. 

It follows that  n~ is in weak-Lq(B), and hence in ns(B) for all s<q. 
Fix E as above, and pick a curve 3' from F0, where F0 is defined in (8.2). We can 

assume that  all curves from F0 lie in B and are locally rectifiable. Then 

f n~ ds = c~, (8.3) 

for otherwise 

I f (x)- f (y) l  ~ C [  L• ds < cc (8.4) 
J ~/xy  
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for any subcurve 7*y of 7 joining two points x and y (cf. Remark 7.17). In particular, 

(8.4) implies that  f is absolutely continuous on 7, which is a contradiction. Thus (8.3) 

holds. It follows that  AL~ is an admissible function for Fo for any A>0. Because L~ is 

in LQ(B), we conclude that  modQ F0=0, and the proof of Theorem 8.1 is complete. 

THEOREM 8.5. Suppose that f is a quasisymmetric map between two Q-regular, 
locally compact metric spaces X and Y, where Q > I .  Suppose furthermore that X is 
a Loewner space that admits a (1,p)-Poincard inequality for some p<Q. Then Y is a 
Loewner space. In particular, Y satisfies a weak (1, Q)-Poincard inequality. 

Proof. By quasisymmetry, it suffices to show that  

modQ (E, F; X) ~ C modQ(f( E), f (F ) ;  Y) (8.6) 

whenever E and F are two disjoint continua in X. Indeed, it then follows from (3.2) 

that  Y is a Loewner space, and the second assertion comes from Theorem 5.12. 

To this end, let 6' be an admissible function for (f(E), f (F ) ;  Y). Let 7 be a rectifiable 

path joining E and F in X, parametrized by the arc length. We may assume that  f is 

absolutely continuous on 7 by Theorem 8.1. Write 

6(x) = 6'of(x)Lf(x). 

Standard arguments using the absolute continuity then give that  

r" /, ods = p'of(7(s))Lf(7(s)) ds ) p'ds >~ 1. 
J O o2( 

Thus 6 is admissible for (E, F; X), and hence 

mOdQ(E, F; X) <~ /x6(X)Q dx <. C / x6 '~  f(x)Q #f(x) d x = C  /y6 '  (Y)Q dY. 

Here the middle inequality follows because Lf(x) Q ~C#f  (x) almost everywhere, and the 

last, by standard arguments, because f is absolutely continuous (cf. (7.7)). Because 6' 

was arbitrary, and because C~> 1 only depends on the data, the theorem follows. 

Remark 8.7. (a) We conjecture that  the Loewner condition is preserved under quasi- 

symmetric maps between locally compact Q-regular spaces, Q > 1. It is possible that  the 

validity of a weak (1, Q)-Poincar~ inequality is similarly preserved, cf. Remark 6.19 (c). 

(Added in July 1997: Tyson [Ty] has recently verified this conjecture. It also follows 

from his work and from Theorems 5.7 and 5.12 that  a weak (1, Q)-Poincar5 inequality is 

preserved if the spaces in question are proper and ~-convex.) 
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(b) Theorem 8.5 can be strengthened. MacManus and the second author [KM] have 

recently established that,  under the assumptions of Theorem 8.5, the space Y admits 

a (1, q)-Poincard inequality for some p4q<Q. This also follows from the remark made 

by Semmes in Remark 7.28. Moreover, Koskela and MacManus have shown that  (1,p)- 

Poincard inequalities for p>Q are not quasisymmetric invariants in the following sense: 

given p > 2  there is a compact geodesic 2-regular space X that  admits a (1,p)-Poincard 

inequality and there is a quasisymmetric map f from X onto another 2-regular space 

Y that  does not admit a (1, q)-Poincard inequality for any q>2; moreover, the pullback 

measure under f is A~-related to the Hausdorff 2-measure on X. 

9. Q u a s i c o n f o r m a l  m a p s  a n d  S o b o l e v  spaces  

The Sobolev space theory occupies a central role in the quasiconformal analysis in R n, 

and it is natural to ask how the maps considered in this paper fit in to more general 

Sobolev space theories. In this last section, we consider two generalizations of classical 

Sobolev spaces. One is due to Hajtasz [Ha], and the other to Korevaar and Schoen [KS]. 

The results here are basically corollaries of the results in the previous sections. 

9.1. Sobolev spaces of Hajtasz. In [Ha] Hajtasz defined, for any metric measure space 

(X,#)  of finite diameter, the Sobolev space WI'P(X) for l < p < c ~  to be the set of all 

real-valued measurable functions u in LP(X) such that  there is an LP(X)-function g with 

the property that  

lu(x)-u(y)l <~ Ix-yl  (g(x)+g(y) ) (9.2) 

whenever x and y lie outside some set of measure zero. If X is a smoothly bounded 

domain in some Euclidean space, then WI,P(X) as defined above identifies with the 

standard Sobolev space; a natural choice for g in this case is an appropriate maximal 

function of [Vu I. See [Ha] for a more complete discussion. 

THEOREM 9.3. Suppose that X and Y are locally compact, Q-regular metric spaces 

for some Q> I, and suppose that X admits a (1,p)-Poincard inequality for some p<Q. 

If  f is a quasisymmetrie map from X onto Y,  then there is q>Q such that the func- 

tion u (x )=] f ( x ) -  f(xo)l belongs to the Sobolev space wl ,q(u)  of Hajtasz whenever B=- 

B(Xo, R) is a ball in X .  

The statement is quantitative in that q depends only on the quasisymmetry constant 

of f and the data associated with X .  

Remark 9.4. Under mild additional assumptions on X and Y, we could have stated 

Theorem 9.3 for quasiconformal maps in the sense of (1.3), cf. w 



56 J. H E I N O N E N  AND P. K O S K E L A  

Proof. By the proof of Theorem 7.11, we have the following weak Poincarfi inequality 

/ B , u ( x ) _ u B , d # < C d i a m B ( / c B L P f  \l/p d#)  , (9.5) 

where L f  is the maximum derivative of f as defined in (7.9), and where p<Q is as in the 

assumptions. Although Lf need not be a very weak gradient of u, we still obtain from 

(9.5), by using a chaining argument as in the proof of Lemma 5.15, that  the estimate 

]u(x)-u(y)] <~ C ] x - y  I (McR LPf(x)+ McR LPf(y) ) 1/p 

holds for all pair of points x, y in C - l B .  Here MCR is the restricted maximal function 

defined in (5.14). Because Men maps LS(B) to LS(B) for s > l  (see [St, Chapter 1]), and 

because Lf  belongs to Lq(B) for some q>Q by Theorem 7.11, we conclude that  u lies in 

the Sobolev space W<q(C-1B). Because B was an arbitrary ball in X,  the factor C -1 

can be ignored. Theorem 9.3 follows. 

9.6. Sobolev spaces of Korevaar and Schoen. In [KS] Korevaar and Schoen considered 

Sobolev spaces WI,P(~;X) of maps u from a Riemannian domain ~ into a complete 

metric space X. 

THEOREM 9.7. Suppose that ~ is a connected, open subset of a Riemannian n- 

manifold M such that its metric completion ~ is a compact subset of M. Suppose 
that n > l  and that f is a quasiconformal map of ~ onto a linearly locally connected 
(Definition 3.12) n-regular metric space X .  Then there is q>n such that f Ewl'q(~; X),  
where wl,q(~; X) is the Sobolev space of Korevaar and Sehoen. 

The statement is quantitative in that q depends only on H in Definition 1.2 and on 
the data associated with X.  

Let us quickly recall the definition for WI'P(~; X) as given in [KS]. For a map u 

from ~ into X, for points x and y in ~, and for e>0,  write 

e (x, y; lu(x)- (Y)l 
e 

Then for l ( p < c ~  the (nonnormalized) averaged e-approximate density function is 

eP(x; u) =/B(~,~)eP(x, y) dy, 

where dy denotes the Riemannian measure on f~. We also require that  dist(x, O~)>e.  

Next, for each compactly supported function ~ on ~t, write 

EP(~; u) : ~ ~(x) eP(x; u) dx 
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whenever e is positive and small enough. The map u is said to be in the Sobolev space 

WI'P(~t;X) if there is a constant E ( u ) < c o  so that  

lim sup EP(~; u) ~ max I~1E(u) (9.8) 
~--~0 

for all compactly supported continuous real-valued functions ~ in ~. 

Proof of Theorem 9.7. Because ~ is compact in M, we may assume that  ~ is small 

enough so that  a (1, 1)-Poincar~ inequality holds there. It then follows, because X is 

assumed to be linearly locally connected, that  f is quasisymmetric in 12 (w167 4 and 5). 

Let q>n be an exponent such that  the volume derivative #f ,  defined in (7.6), belongs to 

Lq/n(~t) (see Theorem 7.11). We shall show that  this choice of q will do here. 

To this end, we estimate the average e~(x; f)q by using the quasisymmetry of f as 

follows: 

eq(x) =/B If(x)--f(Y) Iq dy <~ ~-qLf(x, ~)q 
(x,~) ~q 

.~q/n ~q/n 
~c~-q(/;(x,E)~fdY fl ~C(/B(x,~)~fdY fl ~CM~tf( x)q/n, 

where M#f is the Hardy-Lit t lewood maximal function of the volume derivative #f .  

(Recall the definition for L I (x, ~) from (4.2).) Because the volume derivative belongs to 

iq/'~(f~), where q/n> 1, the maximal function belongs to iq/n(f~) as well (note that  ~ is 

a compact subset of a Riemannian manifold so that  the maximal function operator maps 

L p to L p for p > l ) .  In conclusion, 

fa ~(x)eq(x; f) dx <~ C ~ qo(x) Mpf(x) q/n dx 

for any compactly supported continuous function ~ in f~. Because the right-hand side is 

dominated by 

C max I~1 ~ Mls dx, 

we arrive at the desired conclusion (9.8). The theorem follows. 
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