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1. Introduction 

According to Dickson, Euler believed every algebraic equation was solvable by radi- 

cals [2]. The quadratic formula was known to the Babylonians; solutions of cubic and 

quartic polynomials by radicals were given by Scipione del Ferro, Tartaglia, Cardano 

and Ferrari in the mid-1500s. Abel's proof of the insolvability of the general quintic 

polynomial appeared in 1826 [1]; later Galois gave the exact criterion for an equation to 

be solvable by radicals: its Galois group must be solvable. (For a more complete 

historical account of the theory of equations, see van der Waerden [20], [21].) 

In this paper, we consider solving equations using generally convergent purely 
iterative algorithms, defined by Smale [17]. Such an algorithm assigns to its input data 

v a rational map To(z), such that Tvn(z) converges for almost all v and z; the limit point is 

the output of the algorithm. 

This context includes the classical theory of solution by radicals, since nth roots 

can be reliably extracted by Newton's method. 

In [12] a rigidity theorem is established that implies the maps To(z) for varying v are 

all conformally conjugate to a fixed modelf(z). Thus the Galois theory of the output of 

T must be implemented by the conformal automorphism group Aut(f) ,  a finite group of 

M6bius transformations. 

The classification of such groups is well-known: Aut( f )  is either a cyclic group, 

dihedral group, or the group of symmetries of a regular tetrahedron, octahedron or 
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icosahedron. Of these, all but the icosahedral group are solvable, leading to the 

necessary condition: 

An equation is solvable by a tower of algorithms only if its Galois group G is nearly 

solvable, i.e. admits a subnormal series 

G = Gn t> Gn-1 t>... t> G~ = id 

such that each Gi+l/Gi is either cyclic or As. Incomputability of the sextic and higher 

polynomials follows as in ordinary Galois theory. 

This necessary condition proves also sufficient; in particular, the quintic equation 

can be solved by a tower o f  algorithms. 

The quintic equation and the icosahedron are of course discussed at length in 

Klein's treatise [10] (see also Klein [8], Dickson [2], Green [5], and especially Serre's 

letter to J.D. Gray [14]). Our solution relies on the classical reduction of the quintic 

equation to the icosahedral equation, but replaces the transcendental inversion of the 

latter (due to Hermite and Kronecker) with a purely iterative algorithm. 

To exhibit this method, we must construct rational maps with the symmetries of 

the icosahedron. It proves useful to think of a rational map f(z) on (~, symmetric with 

respect to a finite group FcPSLzC, as a projective class of homogeneous 1-forms on 

C 2, invariant with respect to the linear group FcSL2C. Then exterior algebra can be 

used to describe the space of all such maps in terms of the classical theory of invariant 

polynomials. 

From this point of view, a rational map of degree n is canonically associated to any 

(n+l)-tuple of points on the sphere, and inherits the symmetries of the latter. The 

iterative scheme we use to solve the quintic relies on the map of degree 11 associated to 

the 12 vertices of the icosahedron. Its Julia set is rendered in Figure 1; every initial 

guess in the white region (which has full measure) converges to one of the 20 vertices of 

the dual dodecahedron. 

Outline of  the paper. w develops background in algebra and geometry. w intro- 

duces purely iterative algorithms, and w characterizes computable fields, given the 

existence of a certain symmetric rational map. w contains a description of all rational 

maps with given symmetries, which completes the proof and leads to an explicit 

algorithm for solving quintic equations, computed in the Appendix. 

Remarks. (1) Comparison should be made with the work of Shub and Smale [16] in 

which successful real algebraic algorithms are constructed for a wide class of problems 

(in particular, finding the common zeros of n polynomials in n variables with no 
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Fig. 1. An icosahedral iterative scheme for solving the quintic. 
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restrictions on degree). These algorithms exhibit much of the flexibility of smooth 

dynamical systems (in fact they are discrete approximations to the Newton vector 

field). 

(2) One can also consider more powerful algorithms which are still complex 

algebraic, e.g. by allowing more than one number to be updated during iterations. Tools 

for pursuing this direction (such as the theory of iterated rational functions on P", n> 1) 

have yet to be fully developed. 

2. Galois theory of rigid correspondences 

In this section we set up the Galois theory and birational geometry that will be used to 

describe those field extensions that can be reached by a tower of generally convergent 

algorithms. 

All varieties will be irreducible and complex projective. Let V be a variety, 

k=K(V) its function field. 

An irreducible polynomial p in k[z] determines a finite field extension k(a), where a 

is a root of p; the extension is unique up to isomorphism over k. 

To obtain a geometric picture for the field extension, consider p(z) as a family of 
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polynomials po(z) whose coefficients are rational functions of v. The polynomial p 

determines a subvariety WcVx(?. which is the closure of the set of (v,z) such that 

pv(z)=0. The function field K(W)=k(a) where a denotes the rational function obtained 

by projecting W to C. 

W may be thought of as the graph of a multi-valued function W(v) which sends v to 

the roots of Po. We call such a multi-valued map a rational correspondence. 

We say W is a rigid correspondence if its set of values assumes only one conformal 

configuration on the Riemann sphere: i.e. there exists a finite set A c C  such that the set 

W(v) is equal to 7(A) for some M6bius transformation y depending on v. In this case we 

say the field extension k(a) is a rigid extension. 

Now let k' denote a finite Galois extension of k with Galois group G. 

THEOREM 2.1. The field extension k'/k is the splitting field of  a rigid extension if  

and only if  there exists: 

(a) a faithful homomorphism 69:G---)PSL2C and 

(b) an element ~ in PSL2(k') such that 

(c) 49g=69(g)o~ for all g in G. 

Proof. Let k' be the splitting field of a rigid correspondence k(a). For simplicity, 

assume [k(ct):k] is at least 3. Let ai, i= 1,2, 3 denote three distinct conjugates of a under 

G. PSLz(k') acts triply transitively on the projective line P(k'Z)~p(C2)=C; take ~ to be 

the unique group element which moves (al, a2, a3) to (0,1,~). 

We claim that ~(a g) is in t~ for all g in G. Indeed, dp(a g) is just the cross-ratio of a g 

and (a~, a2, a3), which is constant by rigidity. Let A =~(a G) be the image under ~ of the 

conjugates of a. 

Define 69(g)= ~go ~-~. Then Q(g) permutes A, so it is an element of PSL2C. Because 

G acts trivially on PSL2C, 69 is a homomorphism; e.g. 

r 1 6 2  - l  o ~ h o 4 )  - l  = (r o r  Ch o r - l  = 4)gh o 4)-' 

and since o(g) fixes A pointwise only if g fixes the conjugates of a, it is faithful; thus we 

have verified (a)-(c). 

Conversely, given the data (a)-(c), set a=q)-~(x) for any x in (~ with trivial 

stabilizer in 69(G); then a is rigid over k and k'=k(a). [] 

Cohornological interpretation. The map O determines an element [69] of the Galois 

cohomology group H~(G, PSL2k'), which is naturally a subgroup of the Brauer group of 

k; condition (c) simply says 69 is the coboundary of ~, so [69]=0. 
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A geometric formulation of the vanishing of this class is the following. Let W--.V 

denote the rational map of varieties corresponding to the field extension kck' .  Form 

the Severi-Brauer variety Po=(WxC)/G, where G acts on W by birational transforma- 

tions and on C via the representation 69. Then Po---~V is a flat C bundle outside the 

branch locus of the map W--*V. We can factor W--.V through the inclusion 

W-x-Wx{x}cPQ for any x in C with trivial stabilizer. 

The cohomology class of Q vanishes if and only if P0 is birational to Vx~;  in which 

case WcPo_~Vx(7, presents W as a rigid correspondence. 

More on Galois cohomology and interpretations of the Brauer group can be found 

in papers of Grothendieck [6], [7] and Serre's book [15]. 

3. Purely iterative algorithms 

In this section, generally convergent purely iterative algorithms are introduced and we 

prove that the correspondences they compute are rigid. 

Definitions. A purely iterative algorithm To(z) is a rational map 

T: V---~ Rata 

carrying the input variety V into the space Rata of rational endomorphisms of the 

Riemann sphere of degree d. To avoid special considerations of 'elementary rational 

maps', we will always assume that d is >1. 

Let k denote the function field K(V); then T is simply an element of k(z). 

The algorithm is generally convergent if To"(z) converges for all (v, z) in an open 

dense subset of Vxl~. (Here T" denotes the nth iterate of the map T.) 

The map To(z) can be thought of as a fixed procedure for improving the initial 

guess z. The output of the algorithm is described by the set 

W= ((v, z)E V• z is the limit of To"(w)for some open set of w}. 

Since different w may converge to different limits, the output can be multivalued. 

A family of rational maps is rigid if there is a fixed rational mapf(z) such that To is 

conjugate to flz) for all v in a Zariski open subset of V. 

THEOREM 3. I. A generally convergent algorithm is a rigid family of rational maps. 

This is a consequence of the general rigidity theorem for stable algebraic families, 

exactly as in [12], Theorem 1.1. 
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COROLLARY 3.2. The output o f  a purely iterative algorithm is a finite union o f  rigid 

correspondences. 

Proof. The output W is a finite union of components of the algebraic set {(v, z)l 

Tv(z)=z}; each co~mponent is a variety. The Mrbius transformation conjugating Tv to 

the fixed modelf(z) carries the output of Tv to the attractor A o f f ,  so each component 

is a rigid correspondence. [] 

To make examples of generally convergent algorithms, one must check that a 

given iteration will converge for most initial guesses. Here is one special but useful 

criterion. A rational map f(z) is critically finite if every critical point c is eventually 

periodic (there exist n > m > 0  such thatfn(c)=fm(c)). A periodic cycle which includes a 

critical point is said to be superattracting. 

T~EOREM 3.3. Let f(z) be a critically finite rational map, A the union o f  its 

superattracting cycles. Then either 

(a) A is empty and the action o f f  on C is ergodic, or 

(b) A is nonempty, and fn(z) tends to a cycle o f  A for all z in an open, full measure 

subset of  C. 

In case every critical point eventually lands in A, flz) belongs to the general class 

of 'expanding' rational maps, for which the result is proven by Sullivan [18]. The 

general case can be handled similarly, using orbifolds. This is sketched for polynomials 

by Douady and Hubbard [3]; the orbifold approach for general critically finite maps is 

discussed by Thurston [19]. 

All examples of generally convergent algorithms we will consider employ critically 

finite maps. In practical terms, these maps have two benefits: convergence is assured 

almost everywhere, not just on an open dense set; and convergence is asymptotically 

quadratic (for a fixed convergent initial guess, 2 N digits of accuracy are obtained in 

O(N) iterations). 

Examples o f  purely iterative algorithms. (1) Newton's method. Let V=POlyd and 

let Tp(z)=z-p(z)/p'(z). Then T is a purely iterative algorithm, and it is generally 

convergent for d=2 but not for d=3 or more (Figure 2; see also Smale [17]). 

(2) Extracting radicals. Let VcPolyd denote the set of polynomials {p(S)=Xd--al 

a E C}. The restriction of Newton's method to V is generally convergent; thus one can 

reliably extract radicals. The critical points of Tp occur at the roots of p (which are 

fixed) and at z=0 (which maps to ~ under one iteration, and then remains fixed); thus 
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f 
Fig. 2. Newton ' s  me thod  can  fail for cubics.  
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Tp is critically finite, and by Theorem 3.3, almost every initial guess converges to a 

root. 

Rigidity of the algorithm Tp is easily verified, using the affine invariance of 

Newton's method. 

(3) Solving the cubic. The roots ofp(X)=X3+aX+b can be reliably determined by 

applying Newton's method to the rational function 

r(X) - (X3 +aX+b) 
(3aX 2 + 9b X -  aZ) " 

The critical points of Tp coincide with the roots of p, and are fixed, so again Theorem 

3.3 may be applied to verify convergence. 

(4) Insolvability o f  the quartic. Since the roots of two quartics are generally not 

related by a M6bius transformation (the cross-ratio of the roots must agree), the roots 

of polynomials of degree 4 (or more) cannot be computed by a generally convergent 

algorithm. 

A more topological discussion of the insolvability of the quartic, using braids, 

appears in [11]. 

4. Towers of algorithms 

Let V be a variety, k its function field. From a computational point of view, k is the set 

of all possible outputs of decision-free algorithms which perform a finite number of 

arithmetic operations on their input data. The graph of an element of k in VxC 

describes the output of such an algorithm. 

Let T be a generally convergent algorithm with output WcV• Assume for 
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simplicity that W is irreducible, and let kck(a)  be the corresponding field extension. 

Then elements of k(a) describe all possible outputs which are computed rationally from 

the output of T and the original input data. We refer to k(a) as the output field of T. 

If W is reducible then T has an output field for each component of W. All 

algorithms which we consider explicitly will have irreducible output. 

Iff(z) is a rational map, let Aut(f)  denote the group of MObius transformations 

commuting with f. If F is a group acting on a set, Stab(a,F) will denote the subgroup 

stabilizing the point a. 

THEOREM 4.1. Every generally convergent algorithm T in k(z) can be described by 

the following data: 

(a) A rational map f (z)  and a finite set Ac(2  such that fn(z) converges to a point o f  

A for all z in an open dense set; and 

(b) A finite Galois extension k'/k with Galois group G, an isomorphism 

0:G-->FcAut(f) and an element q~ in PSLE(k'); such that 

(c) qbg=o(g)oq~ for all g in G; and 

(d) T= $- '  ofo  q~. 

The output fields o f  T are the f ixed fields o f  Q-l Stab(a, F), as a ranges over the points 

o f  A. I f  F acts transitively on A then the output o f  T is irreducible and the output field is 

unique up to isomorphism over k. 

Proof. Given the rigidity of generally convergent algorithms, the proof follows the 

same lines as Theorem 2. I. [] 

A tower o f  algorithms is a finite sequence of generally convergent algorithms, 

linked together serially, so the output of one or more can be used to compute the input 

to the next. The final output of the tower is a single number, computed rationally from 

the original input and the outputs of the intermediate generally convergent algorithms. 

A tower is described by rational maps Tl(z) .....  Tn(z) and fields k=k~ck2c ... ckn 

such that Ti is an element of ki(z), and ki+l(z) is one of the output fields of Ti. The field kn 

is the final output field of the tower. The field extension k'/k is computable if it is 

isomorphic over k to a subfield of k~ for some tower of algorithms. 

If we require that every algorithm employed has irreducible output, then there is a 

one-to-one correspondence between the elements of all computable fields over k, and 

the 'graphs' W ~ V x ( 2  of the final output of all towers of algorithms. In general, if W is 

reducible, then each component of W corresponds to an element of a computable field. 

Our main goal is to characterize computable field extensions. 
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MObius groups. Sd and Aa will denote  the symmetric and alternating groups on d 

symbols. Let  FcPSL2C be a finite group of  MObius transformations. As an abstract  

group, F is either a cyclic group, a dihedral group, the tetrahedral group A4, the 

octahedral group $4, or the icosahedral group As. We refer to such groups as MObius 

groups. Note that 

(I) any subgroup or quotient of  a MObius group is again a MObius group; and 

(2) every MObius group other  than As is solvable. 

Near solvability. Suppose a group G admits a subnormal series 

G = G~ t> G~_~ t>... t> G~ = id 

such that each Gi+l/Gi is a MObius group. By (2) the series may be refined so that 

successive quotients are either abelian or As. We will say such a group is nearly 

solvable. By (I) any quotient or subgroup of  a nearly solvable group is also nearly 

solvable. 

THEOREM 4.2. Af ie ld  extension k'/k is computable if  and only i f  the Galois group 

of  its splitting field is nearly solvable. 

Since Sn is nearly solvable if and only if n~<5, we have the immediate: 

COROLLARY 4.3. Roots o f  polynomials o f  degree d can be computed by a tower o f  

algorithms i f  and only i f  d<.5. 

Proof o f  Theorem 4.2: one direction. Suppose k' is computable.  Le t  klckEC ... ckn 

be a tower of  output fields such that k' is isomorphic over k to a subfield of  k~. Define 

inductively k~+~ to be the splitting field of  ki+l over k~, and let 

G = G n [ > G n - i  [> . . .  D G I  = i d  

be the corresponding subnormal series for G=Gal(k~k). Gi/Gi+I is the same as the 

Galois group of  k~+ l/k~, which faithfully restricts to a subgroup of the Galois group of  the 

splitting field of  ki+~ over ki. By Theorem 4.1, the latter group is isomorphic to a finite 

group of  MObius transformations,  so G is nearly solvable. [] 

To complete the proof  we must exhibit algorithms for producing field extensions.  

It turns out that, in addition to the basic tool of Newton 's  method for radicals, only one 

other generally convergent  algorithm is required. 

LEMMA 4.4. I f  k'/k is a cyclic Galois extension, then k' is computable. 
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Proof. Since k contains all roots of unity, k' =k(a) for some element a such that a n 

is in k. As we have seen, Newton's method is generally convergent when applied to 

extract nth roots. Thus k' is the output field to T in k(z) where T is Newton's method 

applied to the polynomial X " - a  n. 

LEMMA 4.5 (Existence o f  an icosahedral algorithm). There is a critically finite 

rational map f(z) with Aut(f)  isomorphic to As, whose superattracting fixed points A 

comprise a single orbit under A5 with stabilizer A3. 

This will be established in the following section. 

LEMMA 4.6. I f  k'/k is a Galois extension with Galois group G=As, then k' is 

computable. 

Proof. To construct an algorithm to compute k', we need only provide data as in 

(a) and (b) of Theorem 4.1. For flz), we take the rational map given by the preceding 

lemma, and A its superattracting fixed points. Since f is critically finite, Theorem 3.3 

guarantees an open, full measure set of z converge to A. 

Let 0 be any isomorphism between G and Aut(f).  As shown in Serre's letter [14], 

there is a degree 2 cyclic extension of k in which the cohomology class [0] becomes 

trivial. Since cyclic extensions are computable, we may assume this is true in our 

original field k. Thus there is an element ~ such that ~g=69(g) o q~, and T=~ -1 o f o ~  is a 

generally convergent algorithm over k. 

Since the stabilizer of a point in A is an A3 subgroup of As, the output field to T is 

the fixed field of A 3. As k' is a cyclic extension of this fixed field, it is computable. [] 

The result of Serre's quoted above has been generalized by Merkurev and Suslin to 

show that any Severi-Brauer variety has a solvable splitting field [13]. (This reference 

was supplied by P. Deligne.) 

The lemma can also be established somewhat less conceptually without appeal to 

[14]. Any element a generating the fixed field of A4cA5 satisfies a quintic polynomial 

p(z) in k(z). Since A4 is solvable, to compute the extension k' it suffices to compute a 

root of p. 

In the Appendix we will give an explicit algorithm for solving quintic polynomials. 

To carry out the solution, the quintic must be normalized so that E r i and Z ~ are both 

equal to zero, where ri denote the roots ofp.  This normalization is easily carried out by 

a Tschirnhaus transformation, but it requires the computation of a square root. The 
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square root, which Klein calls the 'accessory irrationality', furnishes the predicted 

degree 2 extension. 

Completion o f  the proof o f  Theorem 4.2. Replacing k' by its splitting field, we may 

assume k'/k is Galois with nearly solvable Galois group. Then k' is obtained from k by a 

sequence of Galois extensions, each of which is cyclic or As. By the preceding lemmas, 

each such extension is computable, so k' is computable as well. [] 

Remark on the quartic. Let k'=C(rl, r2, r3, r4), and let k be the subfield of symmet- 

ric functions. Then the problem of computing k'/k is the same as that of finding the 

roots of a general fourth degree polynomial. Since the Galois group G here is $4, 

Theorem 4.2 guarantees this is possible by a tower of algorithms. 

$4 is actually isomorphic to a MObius group, namely the symmetries of an octahe- 

dron, or its dual, a cube. Is k' the output field of a generally convergent algorithm? If 

so, the roots of quartic polynomials would be computable as rational functions of the 

output of a single purely iterative algorithm (we have already seen the roots cannot 

actually be the output of such an algorithm). 

Unfortunately, this is impossible; although the Galois group is isomorphic to a 

MObius group, the potential obstruction in Galois cohomology is nonzero, and k'/k is 

not a rigid extension. 

The analogous case of polynomials of degree 5 is discussed by Serre [14]. Here we 

will sketch a picture of the obstruction from a topological point of view. 

The field extension k'/k corresponds to the rational map Roots4--->Poly4 from the 

space of roots to the space of polynomials. Let p:G---~F be an isomorphism between the 

Galois group G of k'/k and the octahedral group FcPSL2C. 

If k'/k is rigid, then the Severi-Brauer variety P0--,Poly4 associated to Q is bira- 

tional to the product Poly4xC. 

Now P0 is a flat C bundle outside of the branch locus of the map Roots4~Poly4, 

which is the subvariety A of polynomials with vanishing discriminant. The fundamental 

group Jrl(Poly4- A,p) is naturally identified with B4, the braid group of four points in the 

plane: Over a loop based at p, the roots of p(z) move without collision and return to 

their original positions, describing a braid. 

There is a natural map B4---->G~S4 which records how the roots o fp  are permuted 

by the braid. Under the identification Q:G---~F, this map records how the fiber of P0 is 

twisted by monodromy along a loop. 

If P0 is birational to the trivial bundle, then its restriction to some Zariski open 

subset U is topologically trivial. If that subset were as large as possible---i.e., if U were 
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Fig. 3. Commuting braids. 

equal to the complement of the discriminant locusmthen it would be possible to lift the 

map B4--*F to f 'cSL2C, a two-fold cover of F. 

But this is impossible: There are two commuting elements a and fl in the braid 

group (see Figure 3), whose images in F (thought of as Euclidean symmetries of a cube) 

are 180 ~ rotations about perpendicular axes. Such rotations cannot be lifted to commut- 

ing elements of f'. 

There is a torus in the complement of A whose fundamental group is generated by 

a and ft. One can show that this torus can be moved slightly to avoid any finite set of 

other hypersurfaces in Poly4. Thus the obstruction persists on any Zariski open set, and 

PQ is not birationally trivial. 

5. Rational maps with symmetry 

To compute A5 extensions, one must use rational maps with icosahedral symmetry. In 

this section we will construct all rational maps with given symmetries, using invariant 

polynomials. We then give a conceptual proof of the existence of the map claimed in 

Lemma 4.5, and also obtain concrete formulas for use in the solution of the quintic. 

Let F be a finite group of MObius transformations. How can we construct rational 

maps such that Au t ( f )~F?  

Here are three ways to construct such f. 

I. Projectively natural Newton's method. Ordinary Newton's method applied to a 

rational function p(z) can be thought of as the map which sends z to A(z)-I(O), where 

A(z) is the unique automorphism of C whose 1-jet matches that ofp  at z. If one replaces 

A(z) by the unique MObius transformation of 1~ whose 2-jet agrees with that of p, then 
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Fig. 4. Geometr ic  cons t ruc t ion  o f  a rational map.  
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the resulting iteration, 

p(z)p ' (z)  
Np(z) = z -  

p'(z)2-�89 

is 'projectively natural', in the sense that Npoy(yz)=~oNp(z) for any M6bius transfor- 

mation 7. Thus Aut(Np) contains F whenever p(z) is F-invariant (and such p are easily 
constructed). 

II. Geometric constructions. Consider, for example, the case of the icosahedral 

group. Tile the Riemann sphere by congruent spherical pentagons, in the configuration 

of a regular dodecahedron (the dual to the icosahedron). Construct a conformal map 

from each face of the dodecahedron to the complement of its opposite face, taking 

vertices to opposite vertices. (See Figure 4.) The maps piece together across the 

boundaries of the faces, yielding a degree 11 rational map flz) with fixed points at the 

face centers and critical points at each vertex. Since the notions of 'opposite face' and 

'opposite vertex' are intrinsic, the map commutes with the icosahedral group. 

This construction has many variants. For example, it can be applied to the 20 faces 

of the icosahedral triangulation, giving a rational map of degree 19, or to the tiling by 30 

rhombuses, giving a map of degree 29. (This last tiling, which may be unfamiliar, is by 

Dirichlet fundamental domains for the 30 edge-midpoints of the dodecahedron. Each  

rhombus marks the territory which is closer (in the spherical metric) to one of the 30 

points than to any other.) 
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III. Algebraic constructions. Our final method suffices to produce all rational 

maps with given symmetries. It will make clear, for example, that the three maps just 

constructed, together with the identity, are the only maps of degree <31 with icosahe- 

dral symmetry. 

Let E be a 2-dimensional complex vector space. 

A point p on PE corresponds to a line in E hence to a linear functional with this line 

as its kernel. A collection of n points corresponds to a homogeneous polynomial of 

degree n, vanishing along the lines corresponding to the n points. Like the linear map 

corresponding to a single point, this polynomial is only well-defined up to multiplica- 

tion by an element of C*. 

A rational map f'.PE---~PE corresponds to a homogeneous polynomial map 

X:E~E.  X can be obtained by homogenizing the numerator and denominator of f .  

Since the tangent space to any point of E is canonically isomorphic to E, X can also 

be considered as a homogeneous vector field on E. 

Now let FcAut (PE)  be a finite group, I ' cSL(E)  its pre-image in the group of linear 

maps of determinant 1. A vector field X on E is invariant if there exists a character 

z : r ' ~ c *  such that 7 ,X=x(y)X for all 7 in F. X is absolutely invariant if the character is 

trivial. 

The action of f" on vector fields goes over to the action of F by conjugation on 

rational maps, establishing: 

PROPOSITION 5.1. Aut(f(z)) contains F if  and only if  the corresponding vector 

fieM X(v) is F-invariant. 

Remarks. (1) The possibility of a character arises because f(z) determines X(v) 

only up to scale. 

(2) For a 2-dimensional vector space, PE and PE* are canonically isomorphic; thus 

a rational map f'.PE---~PE-=PE * also determines a homogeneous 1-form O(v):E---~E*, 

unique up to scale. 

(3) A rational map of degree n determines a 1-form 0 which is homogeneous of 

degree n+ 1; the converse is true unless O=ga for some homogeneous polynomial g and 

l-form a with deg(a)<deg(0). In this case the numerator and denominator of the 

corresponding rational function are not relatively prime. 

(4) A homogeneous polynomial h(v) determines an exact 1-form dh(v); thus a 

configuration o f  n+ 1 points on C naturally determines a rational map of  degree n. 

Let x and y be a basis for E*. The 1-form 
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2(x, y) = (xdy-ydx)/2 

is an absolute SL(E) invariant, as well as a primitive for the invariant volume from 

w=dxAdy. The rational map corresponding to 2 is the identity (2(v) annihilates the line 

through v). 

T~EOREM 5.2. A homogeneous 1-form 0 is invariant i f  and only i f  

0 =f(v)~.+dg(v) 

where f and g are invariant homogeneous polynomials with the same character and 

deg(f)=deg(g)+2. 

Proof. Suppose 0 is invariant. The exterior derivative dO=h(v)co, where h(v) is a 

homogeneous polynomial. Since co is an absolute invariant of SL(E), h(v) is invariant 

with the same character as 0. Setting f(v)=h(v)/(deg(h)+l), it is easy to check that 

dflv)2=h(v)co and hence O-f(v)2 is closed. Integrating this closed form along lines from 

the origin yields its unique homogeneous primitive g(v); by uniqueness, g(v) is invariant 

with the same character as 0. 

The converse is clear; the condition on degrees assures that the sum is homogene- 

ous. [] 

The construction of invariant rational maps is thus reduced to the problem of 

invariant homogeneous polynomials. The latter correspond simply to finite sets o f  

points on C., invariant under F, and are easily described. 

Example: The icosahedral group. Identify the Riemann sphere with a round sphere 

in R 3 so that 0 and ~ are poles and Izl= 1 is the equator. Inscribe a regular icosahedron 

in the sphere normalized so one vertex is at 0 and an adjacent vertex lies on the positive 

real axis (in (~). Then the isometries of the icosahedron act on (~ by a group FcPSL2C 

isomorphic to As. This particular normalization agrees with the conventions of Klein 

and Dickson [10], [2]. 

Since the abelianization of the binary icosahedral group r" is zero, every invariant 

is an absolute invariant. 

We identify C with PE, and choose a basis {x, y} for E* such that the coordinate z 

on C is equal to x/y. 

There are three special orbits for the action of F: the 12 vertices, 20 face-centers 

and 30 edge-midpoints of the icosahedron. The corresponding invariant polynomials, 
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derived in [10], are: 

f =  x 11 y+ 1 lx6 y6-xy I1 

H = -x2~176176176 

T = x 3~ +y3O + 522(x25 yS_x 5 y25)_ 10005(x 2~ y IO +y 1o y2O). 

Every other orbit has cardinality 60, and corresponds to a linear combination of the 

degree 60 invariants fs ,  H 3 and T 2 (which satisfy the relation T 2= 1728 f S -H3) .  Thus 

every homogeneous polynomial inoariant under the binary icosahedral group is a 

polynomial in f,  H and T. 

PROeOSITION 5.3. There are exactly four rational maps o f  degree <31 which 

commute with the icosahedral group. These four maps, o f  degree 1, 11, 19 and 29 

respectioely, are: 

f , ( z )  = z 

z H +66z 6-1 lz 
fH(z) = _ 1 lzl~ 1 

-57zlS+247zl~ 171z5+ 1 
f l9(Z)  = _ZI9  + 171z14-247z9-57z 4 

87z 25-3335z 2~176 5+ 1 
f29(z) = _ z29_ 435z 24 + 6670z 19 + 3335z 9 + 87z 4" 

Proof. An invariant rational map of degree <31 corresponds to an invariant 1-form 

of degree <32. The only invariant homogeneous polynomials of degree <32 are f, H 

and T. Since no two of their degrees differ by 2, we conclude from Theorem 5.2 that the 

invariant 1-forms of degree <32 are proportional to either g(v)2 or dg(v), where g is 

equal to f, H or T. The rational maps corresponding g(v)2 are the identity, while those 

corresponding to df, dH and dT are the other three maps computed above. [] 

Remark. One may glean from the footnote on page 345 of [9] that these maps were 

known as well to Klein. 

Proof o f  Lemma 4.5 (Existence o f  an icosahedral algorithm). Consider the map 

f11(z). We claim the critical points offl~ reside at the 20 vertices of a spherical regular 

dodecahedron, and are each mapped to their antipodal vertices under one iteration. 

This is clear from the geometric construction of 3~ (method II above). 

It can also be verified by counting. 3~ has 20 critical points, which must be a union 
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of orbits of F; the only such orbit corresponds to the vertices of a dodecahedron. Each 

vertex has an A3 stabilizer in F; since fll commutes with the group action, the image 

vertex is fixed by the same subgroup. A simple critical point which is fixed cannot 

commute with the A3 action; hence the corresponding critical value must be the 

antipodal vertex. 

Thus f~l is critically finite, and almost every point is attracted to periodic cycles of 

order two lying at pairs of antipodal vertices. The map 3ql o3qt satisfies the hypotheses 

of the iemma. [] 

Remarks.  (1) There is a one-parameter family of invariant rational maps of degree 

31, which will be used to construct $ in PSLzk' in our explicit solution of the quintic. 

(2) Let p(z) be a polynomial of degree d. Consider radically modified Newton ' s  

method: 

- z d p_~(,z) Rp(z) - - - p ~ )  . 

Rp is the unique rational map of degree d - 1  with fixed points at the roots of p and 

derivative 1 - d  at each fixed point. When d=2, Rp is a M6bius transformation of order 

two fixing the roots of p; for d>2 the roots are repelling. (Thus Rp is not suggested as a 

method to find roots of p.) 

Rp coincides with the rational map naturally associated to the roots o fp  by exterior 

derivative of the corresponding homogeneous polynomial, as discussed above. This 

observation will simplify the description of our explicit iterative scheme for the quinlic: 

we need only specify p. 

Appendix 

In this appendix we will describe a concrete algorithm for solving the general quintic 

equation. This algorithm is based on Klein's theory of the connection between the 

general quintic and the icosahedral equation, described in his famous lectures on the 

icosahedron [I0]. See also Fricke [4] (from which we take the illustration below), and 

Dickson [2]. We begin by reviewing this theory. 

The ieosahedral equation 

Associated with the icosahedron (normalized as in w is a tiling of the Riemann sphere 

by 120 spherical triangles, 60 black and 60 white (Figure 5). This configuration is 

11-898286 Acta Mathematica 163. lmprim~ le 20 decembre 1989 



168 P. DOYLE AND C. MCMULLEN 

Fig. 5. The  icosahedra l  tiling. 

invariant under the icosahedral group, represented as a group F60 of M6bius transfor- 

mations. Each triangle has angles ~r/2, ~r/3, ~r/5 corresponding to the 30 edge midpoints, 

20 face centers, and 12 vertices of the icosahedron. We will refer to these special points 

as 2-, 3-, and 5-vertices. 

Map each white triangle conformally to the upper half-plane, and map each black 

triangle conformally to the lower half-plane, so that the 3-, 5-, and 2-vertices map to 0, 

1, oo. These 120 separate mappings piece together to give a rational function of degree 

60, the icosahedralfunction.  This function, denoted by Z6o, is right-invariant under the 

icosahedral group F60: 

Z6ooy=Z6o for all yEF60; 

it gives the quotient map C---~C/F60. 

To write down the icosahedral function explicitly, recall that every homogeneous 

polynomial invariant under the binary icosahedral group F26o is a polynomial in Fm 

H20, and T30, where 

F12(z l  ' Z2 ) = Zll I 6 6 II z2+ 1 lz~ z2-z~ z2, 

20 15 5 10 10 5 15 20 H2o(Z~, z2) = -z~ +228zl z2-494z~ z 2 -228z~ z2 - z 2 ,  

30 15 5 20 10 10 20 5 25+ 30 T3o(Zl, z2) - Zl +522zl z2-10005zl Z2 - 10005z~ z2 -522z~ z2 z2 �9 

The polynomials F~2,//20, and T~o vanish at the 5-, 3-, and 2-vertices respectively. They 

satisfy the identity 
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T3o2+H2o 3-1728F~25 = 0. 

The icosahedral function Z6o(Z) is 

2 6 0 - - - -  
-H2o 3 

2 

To check this, note that the top and bottom are homogeneous of degree 60 (so the ratio 

is a rational function of z=z~/z2), the zeros and poles occur at the 3- and 2- vertices, and 

by the identity 

- H 2 o  3 -  T3o 2 - 1728Ft25 
2 6 o - 1 =  2 - -  2 

T3o T3o 

the 5-vertices of the icosahedron are mapped to I. 

The equation 

Z6o(z) = Z 

is called the icosahedral equation. Solving the icosahedral equation amounts to finding 

one of the 60 points that map to Z under the icosahedral function. Given one such 

point, the 59 others can be found by determining the images of the first under the group 

F60. 

Please note that our normalization of the icosahedral function differs from the 

normalizations of Klein [10] and Dickson [2]: 

/-/2o 3 Z~ 
ZKlein m m , 

1728F125 Z60- I 

F125 1 -Z6o 
ZDickson - -  

T302 1728 

From the general quintic to the icosahedral equation 

In this section we give a brief account of the classical reduction of the general quintic 

equation 

p(x) = xS +alx4 +aEx3 +a3x2 +a4x +a 5 = 0 

to the icosahedral equation, following Klein [10]. As Klein emphasized, this reduction 

is best understood geometrically. 
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The first step in the reduction dates back to 1683, when Tschirnhaus showed that 

by making a substitution of the form 

x~---x2+ax+b, 

the general quintic can be reduced to a quintic for which a~=a2=O. Here a and b are 

determined by solving an auxiliary quadratic equation. Such a quintic is called a 

principal quintic. 

Equivalently, a principal quintic is one normalized so its roots satisfy E x i=E~=0.  

These homogeneous equations determine a quadric surface in the projective space of 

roots. Viewed geometrically, the Tschirnhaus transformation moves an ordered set of 

roots to one of the two points of intersection of this quadric with the line determined by 

allowing a and b to vary. Which point depends on the choice of auxiliary root. 

The symmetric group $5 acts on the quadric by permuting the roots. An odd 

permutation interchanges the two rulings of the quadric by lines; adjoining the square- 

root of the discriminant reduces the action to the alternating group As, which preserves 

the rulings. 

The space of lines in a given ruling is isomorphic to the Riemann sphere C, and in 

appropriate coordinates the action of A5 is none other than the icosahedral action. 

From the original principal quintic and the square-root of its discriminant, we may 

determine a point Z on the quotient such that a solution to 

Z6o(Z) = z 

corresponds to a line containing the point (xl:x2:x3:x4:xs) for some ordering of the roots. 

Then the roots themselves can be found by elimination. 

Perhaps the most intriguing part of this whole story is the square root used in the 

Tschirnhaus transformation to obtain a principal quintic. This square root is an acces- 

sory irrationality, as it does not diminish the Galois group of the equation, and as such 

is not expressible in terms of the roots of the equation. Rather, its function (as pointed 

out by Serre [14]) is to eliminate the cohomological obstruction described in w The 

culmination of Klein's lectures on the icosahedron is the result, which Klein calls 

Kronecker's theorem, that without the introduction of such an accessory irrationality 

the general quintic equation cannot be reduced to a resolvent equation that depends 

---like the icosahedral equation---on a single parameter. While this result was stated by 

Kronecker, the first correct proof was given by Klein. Apparently, Kronecker felt that 

accessory irrationalities were 'algebraically worthless', and proposed what he called 
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the 'Abelian Postulate', requiring that such accessory irrationalities be avoided at all 

costs. According to this view, the reduction of the quintic to the icosahedral equation is 

inadmissible. Arguing against this point of view, Klein [9, p. 504] writes: 

Soil man, wo sich neue Erscheinungen (oder hier die Leistungsf'ahigkeit der 

akzessorischen Irrationalit~iten) darbieten, zugunsten einer einmal gefassten 

systematischen Ideenbildung die Weiterentwicklung abschneiden, oder viel- 

mehr das systematische Denken als zu eng zurOckschieben und den neuen 

Problemen unbefangen nachgehen? Soil man Dogmatiker sein oder wie ein 

Naturforscher bem0ht sein, aus den Dingen selbst immer neu zu lernen? 

(When new phenomena appear, like the efficacy of the accessory irrational- 

ity, should we halt our investigations because the facts fail to agree with our 

preconceived notions, or should we cast aside those preconceived notions as 

being too narrow, and pursue the new problems wherever they lead? Should 

we be dogmatists, or should we---like natural scientistsmtry always to learn 

from the facts themselves?) 

Quintic resolvents of the icosahedral equation 

The algorithm we are going to develop to solve the general quintic proceeds by 

computing a root, not of the icosahedral equation itself, but of a certain quintic 
resoloent. 

Algebraically, the icosahedral equation determines an As extension of function 

fields k'/k, where k=C(Z) and k' =C(Z, z)/(Z6o(z)-Z). A quintic resolvent is the irreduc- 

ible polynomial satisfied by an element of k' of degree 5 over k. 

In this section, we will derive formulas for the tetrahedrai and Brioschi resolvents, 

again following Klein [10]. The Brioschi resolvent is a one parameter family of quintics, 

to which the general quintic may be reduced; it is this equation we will actually solve. 

The tetrahedral resolvent is used to determine a root from the limit point of an iteration. 

The root of a quintic resolvent is stabilized by a n  A 4 subgroup of As. There are five 

such tetrahedral subgroups in F60, all conjugate. One tetrahedral subgroup, which we 

d e n o t e  FIE , is distinguished because it leads to a resolvent defined over R. 

Fl2 can be described geometrically as follows. There are five cubes whose vertices 

lie on the vertices of a regular dodecahedron. Of these, exactly one is symmetric with 

respect to reflection through the real axis; the intersection of its symmetry group with 

F60 is FIE. The vertices of this cube, and the one-skeleton of its dual octahedron (which 

includes the real axis), appear in Figure 6. 
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Fig. 6. A cube inscribed in the dodecahedron. 

F12 permutes the 12 pentagons that correspond to faces of the dodecahedron, and 

any one of them is a fundamental domain for FiE. 

F12 preserves the 6 vertices of the dual octahedron, and the 4 vertices of each 

tetrahedron inscribed in the cube; the stabilizers of all other points are trivial. Note that 

only half of the symmetries of the cube (and octahedron) are symmetries of the 

icosahedron; otherwise F60 would have a subgroup of order 24. 

Besides the special orbits of FIE, we need to pay attention to two orbits of order 12: 

the face centers of the dodecahedron, i.e., the 5-vertices, and the 20-8=12 comple- 
mentary 3-vertices--the vertices of the dodecahedron which do not lie on the cube. 

There is a tetrahedral function r12, analogous to the icosahedral function Z60, which 

gives the quotient m a p  C---~C/FI2. By composing with a M6bius transformation, this 

function can be normalized to take specified values on any three orbits of F12. We 

choose the normalization so that the 5-vertices map to oo, the vertices of the octahe- 

dron map to 0, and the complementary 3-vertices map to 3. 

To write down a formula for r12, we call forth some of the invariant forms for the 

binary tetrahedral group r' 2.12. Fortunately, all the forms that we need to work with are 

absolute invariants (no character of F2.12 appears). Those we use, 
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6 5 4 2  2 4  5 6 
t6(Zl , Z2) = ZI + 2Z 1 Z2-- 5Z 1 Z2-- 5Z l Z2-- 2Z 1 Z 2 + Z  2, 

Ws(Zl,Z2)_.~ 8 7 6 2 5 _ Z l + Z l Z 2 _ 7 Z l Z 2 _ 7 Z l Z ~ + 7 Z  ~ 5 2 6 7 8 Z2-7Z  1 Z2-Z  1 Z2--Z 2, 

H2o(zl,z2) 
Zl2(Z1'Z2)- Ws(Zl,Z2 ) 

12 11 1 0 2  9 3  8 4  7 5  6 6  = 15zi z2-24zl z2+ 1 Izl z2 Z 1 + Z  1 Z2--6Z 1 Z2- -20Z  1 z 2 +  

5 7 4 8 3 9 , - 2  10 11-- 12 +24z~ Z2-I- 15z 1Z2+20Z 1Z2--0Z 1 Z 2 - -Z  1 Z 2 -t-Z 2 

vanish at the vertices of the octahedron, the cube, and the complementary 3-vertices 

respectively. 

Any invariant form of degree 12 is a linear combination of the forms 

~, Z12, and F12, which satisfy the identity 

t62-Z 12 - -  3F12 = 0. 

Thus 

r12 - -  
t6 2 

E l  2 ' 

since this expression has zeros and poles in the fight places, and the identity 

r 1 2 - 3  = 
/62- -3F12  _ Z12 

F l 2  F12 

shows the complementary 3-vertices are mapped to 3 as desired. 

Under r12, the 60 roots of  the icosahedral equation 

Z6o(z)=Z 

map in groups of 12 to 5 distinct points. In terms of a single root z, these 5 images are 

r(k) (Z) = r12(e k Z) --  (t~k)(Zl' z2))2 
12 F I2 (Z l  ' Z2 ) , 

k = 0  . . . . .  4, 

where 

t~)(Zl ,Z2)=t6(eakzl ,e2kz2) 

and e is a fifth root of unity. (The rotation z ~ e z  is an element of F60.) 
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The quintic resolvent for rl2(Z) turns out to be 

(r-3) 3 (r 2-1 lr+64) = - 1728Z 
Z - 1  

We will call this equation the tetrahedral resolvent. Algebraically, the functions ~)(z) 

are just the roots of the tetrahedral resolvent in the function field setting. This equation 

can be derived entirely geometrically, without recourse to the explicit formulas for r12. 

(See Klein [10, pp. 100-102].) 

The related function s24(z) given by 

t6FI2 2 -- 1 

$24~--- /'3 ~ rl22-- 10rl2+45 

satisfies the Brioschi resolvent 

s 5 -  lOCs3+45C2s-C 2 = O, 

where C--(1-Z)/1728; the roots of this equation are: 

t(6k) (ZI' X2) (El2 (ZI' Z2))2 k = 0 . . . . .  4. 
o~k) (z) = s24 ( :  z) = 
~ T ~  (z l, z2) 

Any principal quintic can be reduced to the Brioschi resolvent for some particular 

choice of C, determined rationally in terms of the original coefficients and the square- 

root of the discriminant. This reduction appears in detail in Dickson [2]. 

The icosahedrai iteration 

We are now ready to concoct a generally convergent algorithm for the icosahedral field 

extension k'/k. The ingredients for such an algorithm are given in Theorem 4.1; note 

that the Galois group, F60, is tautologically identified with a group of M6bius transfor- 

mations. 

The algorithm itself is specified by 

(a) a rational map J(w) commuting with F60, and 

(b) a M6bius transformation r depending on a root z of the icosahedral 

equation, such that 

q~y~(w) = r o ~ (w) 

for all ~ in F6o. 



SOLVING THE QUINTIC BY ITERATION 175 

The coordinate w can be thought of as residing on a separate Riemann sphere where the 

iteration is performed. The algorithm is given by 

~(W) = ~z lo fo~z ;  

by (a) and (b) T~,z= Tz and so T only depends upon Z=Zro(Z). 
To make the formulas as simple as possible, we will choose f=fu, the unique 

lowest degree rational map with icosahedral symmetry and a non-trivial attractor (see 

w (The attractor o f f u  is periodic of order 2, so we will actually iterate 3~1 ofu.) 

As for ~z, note that for each fixed w the map z~epz(W) is a rational map with 

icosahedral symmetry. As mentioned in Remark 1 of w there is a one-parameter 

family of symmetric maps of degree 31 (and none of smaller degree); this provides the 

simplest candidate for ~. There are three points at which this family degenerates to 

maps of lower degree f ! , fu ,  and fig; we arrange that these degenerations occur at w= oo, 

0 and 1. 

To derive a formula for Tz in terms of Z, we begin by expressing ~ in homogeneous 

coordinates 

then 

Cgw) = [o~,~,> (w~, wg]; 

ez2 ' az~ l l J" 

To check this formula, we just need to verify that it degenerates as described above. 

Clearly this is true for w=0 and oo. For w= 1 the rational map we get is 

which agrees with f~9 by virtue of the identity 

( 0F12 0FI2~ 3 F "(  0H2~ 0H20) 
-T3~176 0z2 ) 0z I / = T  12 0z 2 , 0El ' �9 

To get the formula for Tz, we notefu  is canonically associated to the 12 vertices of 

the icosahedron, so T is canonically associated to their images under o~-l. By Remark 2 

at the end of w all we must do to specify Tz is to give a polynomial g(Z, w) having 

these 12 points as its roots. 
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This leads us to look at the form G=FI2 o dp, where qb is the homogeneous version 

of ~b given above. The form G is homogeneous of degree 12-31--372 in zl,z2 and of 

degree 12 in Wl, WE. This polynomial is symmetric under the action of ['2.6o on zl, z2. 

Because the ring of F2.60-symmetric forms is generated by Fn,  //20, and T30, and 

because 372=6.60+12, it follows on numerological grounds that G is divisible by FI2, 

and that the quotient GIFt2 can be written as a homogeneous polynomial of degree 6 in 

-H203, T302 and of degree 12 in wl, w2. This polynomial can be found by solving a large 

system of linear equations. Dividing the resulting expression for G/FI2 through by 

T3012w212 and using the fact that Z60 = -H2o3/T3o 2, we get 

F l 2 O ~  
- g ( Z ,  w ) ,  

FIE T3012 W212 

where g is a polynomial with integer coefficients, exhibited at the end of this Appendix. 

We found the coefficients of g by solving the relevant system of equations with the aid 

of a computer. 

The map Tz is now given by 

Tz(w) -- w-12 g(Z, w) 
g ' (Z ,  w)  ' 

where g' denotes the derivative of g with respect to w. 

From the iteration to a root  

Under the iteration w~-~fll(w) almost every starting guess is attracted to a cycle of 

period 2 consisting of one of the 10 pairs of antipodal 3-vertices. If instead of iterating 

J]l we iteratefll of~l, then almost every starting guess is attracted to a single one of the 

20 3-vertices. 

The map Tz is just fll transported to new coordinates by ~O. For almost every Z, 

almost every starting guess converges under iteration of Tzo Tz to 

w 0 = ~p~-I (e), 

where e is one of the 20 3-vertices of the icosahedron in its standard location. 

Of course to be able to write 

w0 = q~-I (e) ,  

we have to select some particular root z of the icosahedral equation, for we could 
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equally well write 

w o = ~p~z 1 (ye).  

Turning this around, we see that if we choose some particular 3-vertex e0, there will be 

exactly three choices for the root z for which 

W 0 = ~bzl  (e0) .  

These three choices differ from one another by the action of the stabilizer A3 of the 3- 

vertex e0. Therefore from w0 we can determine the values of two  of the functions oCk)(Z), o24 

and hence two roots sx, sz of the Brioschi resolvent. These two values correspond to the 

two tetrahedral (A4) subgroups of F60 that contain the stabilizer of e0. 

As w0 ranges over the 20 attractors of Tz, the pair (sn,sz) ranges over the 20 

ordered pairs of roots of the resolvent. In particular, going from w0 to the 'antipodal 

point' Tz(wo), we get the same pair of roots in the opposite order. 

To determine sz and sz explicitly in terms of w0, we introduce the function 

/z(Z, w)= Z (r~)-3)~ 
k 

While expressed in terms of z, this function really only depends on Z, because the 

action of F60 permutes the two sets of factors in the same way. The idea behind/~ is that 

the first factor acts as a 'selector function' for the second: Recall that the value of 

function rl2 is 3 at the complementary 3-vertices; at the vertices of the tetrahedron and 

the dual tetrahedron its values are 

11 3V':-15 11 3V=15 
r =  + - - ,  r = - -  

2 2 2 2 

which are the other two roots of 

( r -3)  3 (r 2-1 lr+64) = Z60(3-vertex ) = 0. 

Thus the factor (r]~)-3)o cpz(w 0) vanishes for three values of k and takes on the values 

1+3V-15 1-3~/-15 
2 ' 2 

for the remaining two values of k. Consequently 
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1+3V-2-  
It(Z, w o) = 2 s I -t 2 $2 

where st, s2 are two roots of  the Brioschi resolvent.  Replacing Wo with the 'antipodal '  

fixed point Tz(wo) exchanges the roles of  Sl and s2, so we have 

1 - 3 V ' - Z ~  I + 3 ~ / - 1 5  
It(Z, Tz(wo))-  2 Side 2 $2" 

Thus we get a pair of  linear equations from which we can determine si and s2. 

All that remains is to express  It in terms of  Z and w. Le t  ~,~k)h, ,~ n ~ defined analogously 

to t~6 k). Then 

It = ~ (r~)-3)ocp " "24e(k) 
k 

= X (~k2)~162 t(6k)F122 
k \ E l 2  ~ ~ , ]  7"30 

X ~,(k) r" W212) ( X n v ~ ) . # ) . ~ "  /~T 13 "6 ~t 12"l Jr 30 
k 

(F n o r n T30 n w212) 

The denominator here is our  old friend g(Z, w). The numerator  can be expressed as a 

polynomial in Z and w, by the same technique used to determine g. We find 

lOOZ(Z- 1) h(Z, w) 
It(Z, w) = g(Z, w) ' 

where h(Z, w) is a polynomial with integer coefficients, exhibited below. 

The algorithm 

To solve the Brioschi resolvent 

s 5 -  lOCs3+45C2s-C 2 = 0 

we proceed in five steps. 

(1) Set Z = I - 1  728C. 

(2) Compute the rational function 

Tz(w) = w - 1 2  g(Z, w) 
g'(Z, w) ' 
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where g(Z, w) is the polynomial in Z and w given below, and g'  denotes the derivative of  

g with respect  to w. 

(3) Iterate Tz(Tz(w)) on a random starting guess until it converges.  Call the limit 

point w0, and set W l  = Tz(Wo). 
(4) Compute  

lOOZ(Z- l) h(Z, w,) 
, u  i - -  g(z, w,) 

for i=0, 1, where h is the polynomial in Z and w given below. 

(5) Finally compute  

(9 + V~- 15 )/~i+ ( 9 -  V'-Z--~)/~1_ i 
S i = 

90 

for i=0, 1. These are two roots of  the Brioschi resolvent.  

The key ingredients g(Z, w) and h(Z, w) are given by: 

g(Z, w) = 91125Z 6 

+ ( -  133650w2+61560w - 193536)Z 5 

+ ( -  66825w 4 + 142560w 3 + 133056w 2-  61440w + 102400)Z 4 

+ ( 5 940w6 + 4 7 5 2wS + 63 360w 4-140800w3) Z 3 

+ ( - 1485 w 8 + 3168 w 7-10560 w6)Z 2 

+ (-66wl~ + 440w9)Z 

+ W  12, 

h(Z, w) = (1215w-648)Z 4 

+ ( - 5 4 0 w 3 - 2 1 6 w  2-1152w+640) Z 3 

+ (378 w 5-  504 w 4 + 960w 3) Z 2 

+(36w 7-168w 6) Z 

- -W 9. 

Remarks. (1) A quintic with real coefficients always has at least one real root.  

Curiously, when applied to a real quintic with real initial guess for step 3, our  method 

returns a pair of  conjugate roots.  

(2) To find the remaining roots of  the quintic, we can apply del Fer ro ' s  formula or 
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Example  3 of  w 3 to solve the quotient cubic. We could also construct  a single iteration 

that would find all five roots at once,  but the formulas might be ra ther  more  complicat-  

ed. 

(3) Remarkably ,  one can also derive the formulas  for g and h by  hand, without  

even knowing the basic invariants Ft2, H20 and T30 of  the icosahedral  group. This 

alternate approach  exploits  the large number  of  coefficients that vanish, and is based on 

a study of degenerat ions of  g and h at Z = 0 ,  1 and ~ .  
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