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1. Introduction

Following work by Yau [5] on the Calabi conjecture, Cheng and Yau [1] have
shown that each smoothly bounded strictly pseudoconvex open set QcC", n=2,
admits a unique Kéhler-Einstein metric equivalent to the Bergman metric. The condi-
tion that the metric be Einstein can be expressed as

R;;=—3,3;(logdet (G,)) = —(n+1) G (1.1)

where R, G; are the components of the Ricci tensor and metric tensor respectively.
The constant on the right-hand side could be any negative number; —(n+1) is chosen
for convenience.

One can search for such a metric by requiring that the potential G € C”(Q) satisfy
the following complex Monge-Ampére equation:

det(3;0;G) = e"*VC. (1.2)

(") Research supported in part by the National Science Foundation under grant number MCS 8006521.
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Indeed, if G satisfies (1.2), then Gi;=9,0,G satisfies (1.1). This condition can be

reexpressed in the form given by Fefferman [2]:

v oUg

Jw)=(-1) det< ") =1 (1.3)
Uj Ujl{

where v=¢"9, or else in the form given by Cheng and Yau [1]:

M(u) = det (g, +u;0) - (det (g;)) ™" "V = €F, (1.4)

Here g=—log(—¢) is obtained from a smooth defining function ¢ for Q, G=g+u
satisfies (1.2), and F € C*(Q), defined by

'=J(—g " ="V (det(g,)) ", (1.5)

measures the failure of g to be a solution of (1.2). The condition that G;;be equivalent

to the Bergman metric is expressed as
C"gj,;$(gj,;+uj,(-)$ng,;. (1.6)

In this paper it is shown that the solution G=g+u to (1.4), (1.6) is a graded
Lagrangian distribution associated to the conormal bundle N*(2Q). More particularly,
there are functions y;€ C*(R) and a defining function @o for Q, with

Y=gy Va, j=1, ,€C(Q)

such that, for all NEN,

N
u— p,(log(—@g) € C"INI(Q) (1.7

J=0

vanishes to order (n+1) N—1 at the boundary. This asymptotic expansion completely
determines the form of the singularity of G at the boundary, in the C” sence.
Conversely, the Taylor series of the coefficient functions y; are completely determined
by (1.7). The optimal Hoélder regularity of the potential is easily seen to be

G—(—log(—@o) EC™°(Q) forall0<d<l, (1.8)

or equivalently v€C"'"%Q) for the solution to equation (1.3), unless the leading
logarithmic term 1, vanishes at the boundary. The regularity result (1.8) improves that
obtained by Cheng and Yau; the expansion (1.7), up to the first logarithmic term, was
obtained formally by Fefferman in [2].
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The proof of (1.7) consists of a careful study of the nonlinear elliptic system (1.4),
(1.6), and in particular the form of its degeneracy at the boundary. The linearization of
the complex Monge-Ampere operator M, in (1.4), is —(A,+n+1), where A, is the
Laplace-Beltrami operator of the metric g;-associated to a smooth defining function ¢
for Q. First it is shown that the linearized operator is an isomorphism between certain
Holder spaces, defined by estimates degenerating at 9Q in a way that reflects the
strictly pseudoconvex geometry of the boundary. These results are strengthened by
showing how to commute vector fields through A,. Next, similar results are obtained
for the nonlinear operator M, by regarding it as a perturbation of 1-(A,+n+1). These
results show that the solution u to (1.4), (1.6) is a Lagrangian distribution. Finally, the
asymptotic expansion (1.7) is derived by symbolic methods familiar from the theory of
linear differential operators.

Certain of the results and methods of [4] are used, most especially the character-
ization of the space of Lagrangian, or conormal, distributions associated to the bound-
ary in terms of the action of vector fields tangent to 3Q. The space L(Q) of totally
characteristic pseudodifferential operators, discussed in [4], is used in a less essential
way in the proof of degenerate Schauder estimates.

The first step is the analysis of the Laplace-Beltrami operator A,. In Section 2 a
detailed study of the form of A, near the boundary is made, showing its relation to the
boundary Laplacian O, of Kohn (see (2.30)). The Holder spaces A“%(Q)are defined in
Section 3 in terms of singular coordinate charts near the boundary, and are shown to be
the same as the spaces used by Cheng and Yau in [1].

In Section 4, it is shown that for x>0,

Mgt A AQ) - g A NQ), (0<r <(n+ Vil téx)) (1.9)

is an isomorphism. This can be shown by applying standard Schauder theory to suitable
coordinate charts which send the boundary to infinity; we prefer, however, to apply the
theory of totally characteristic pseudodifferential operators. While not shorter, the
proof given here is more in the totally characteristic spirit which is fundamental to this
paper.

In Section §, the commutation properties of vector fields are used to improve the
estimates (1.9) significantly. This is closely related to the invariant Cauchy-Riemann
(CR) structure on the boundary. The maximal complex subbundle HoCT(3Q) is
defined as the annihilator of the contact line bundle in T%(0Q2), given by R(id¢).
Suppose that VEC™(TQ) is a vector field on € which is tangent to 8Q. V is assigned

weight (at most) 1 if it restricts to H over 3Q; otherwise it is assigned weight 2. Any
11—812904 Acta mathematica 148. Imprimé le 31 aolt 1982
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vector field vanishing on 9Q is given weight 0, and more generally, if V has weight s
then ¢"V is given weight s—2r. This weighting can be extended to a filtration of the
space of totally characteristic linear differential operators on Q, i.e. differential opera-
tors generated by vector fields tangent to 9Q. In particular, formula (2.30) shows that
A, is totally characteristic and of weight 0. The spaces A%S(Q) for 0<a<l, s<2k€EN
are defined as consisting of those functions in A*“%(Q)which are mapped into A¥?*(Q)
by any differential operator of order p and weight at most 5. Then it is shown that

At @A E(Q)— g AR(Q), (0<r<i(n+Vn'+dxn), s<2k) (1.10)

is an isomorphism.

The complex Monge-Ampére operator M is considered in Section 6 and shown to
be a totally characteristic, nonlinear, differential operator of order 2 and weight 0 with
linearization —(A,+n+1). This sets the value of x in (1.9), and these estimates can be
applied to strengthen the results of Cheng and Yau on the regularity of the solution to
(1.4), (1.6) by using the inverse function theorem in the spaces ga’A""’(Q). More
importantly, the same method can be applied using the mapping properties (1.10) giving
the much more refined regularity

UEN @AR(Q), O0<a<l1,0<r<n+l (1.11)
ks

for the solution to (1.4), (1.6).
Section 7 is devoted to a discussion of the properties of distributions satisfying
(1.11). Indeed, it follows from an argument in [4]} that

N g’ AR %5(Q) = Q) (1.12)
k,s
is a subspace of the space of Lagrangian, or conormal, distributions associated to 3Q.
A filtration of“(Q)cs/(RQ) is introduced with the multiplicative properties
@ ANQ) = AHNQ), ANRQ)- ANQ) = L°(Q). (1.13)

Finally, in Section 8, this filtration is used to derive the asymptotic expansion
(1.7). Provided s>0,

M: A9(Q)— ANQ). (1.14)

If N, 2Q is the inward pointing half of the normal bundle to 9Q, local coordinates in Q
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induce a map: N, 39Q—Q near the boundary, which in turn induces a well-defined
symbol isomorphism for conormal distributions:

AN AT N(Q)— AN, 3Q) AN, 3Q). (1.15)
This reduces M to an ordinary differential operator:
(M(u)—1], = Elul;,
where the indical operator is
E=(xD,)*+inxD,+n+1,

well-defined on NOS2. This, and related higher order identities, allow (1.7) to be
obtained by induction. Similar results are also given for solutions to the linear problem

(A +)wEQP'C*(Q), wEA(Q) for some r>0.

2. Laplace-Beltrami operator

Let Qc=C” be a bounded C™ strictly pseudoconvex domain, and suppose
@ €C™(Q) is any smooth defining function for Q, with <0 exactly in the interior of Q
and dp=+0 on M=9RQ. It is well-known (see Cheng and Yau [1]) that, provided ¢ is
strictly plurisubharmonic, the real function g=—log(—¢) defines a complete Kihler
metric on Q:
. 2 )
ds*= gjgdz’dzk = ajfng dz/dz*. 2.n

In fact, given any defining function ¢, it is possible to modify ¢ away from a neighbor-
hood of 8Q so that (2.1) defines a complete Kahler metric. To see this, observe first
that

_ % 9%
The condition that Q is strictly pseudoconvex means that ¢y is positive definite when

restricted to the annihilator of d¢ on the boundary. Because of this, there is associated
to @ a distinguished (1, 0) vector field £ on Q near 9Q, defined by

E_Jop=1, &_]j33¢p =0 mod3p. 2.3)
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We define a function r € C*() near 9Q by

r= g8 2.4)

Then we have, from (2.3),
@& = rer. 2.5)

The matrix y;; defined by
Yu=gt(-nNey (2.6)

is nondegenerate near 8, since y; agrees with ¢, when restricted to the annihilator of
3¢, and wj/{-fi‘fk= 1. Ifg/* is the matrix of the dual metric on T*Q, so that gj’{gm,; =4/ ,one

verifies directly that
© i l+o— ok
g”‘=(—<p)<w”‘+———(p rq]&’&*), 2.7)
ro~1

which shows that g is indeed nondegenerate near 9. It is then possible to modify g

away from a neighborhood of 3Q so that it is strictly plurisubharmonic everywhere on
Q.
The non-negative Hermitian matrix

Jk

hjk- & (2.8)
@
has corank one on 3Q. To see this just note that
i o
ghg=—F_¢ (2.9)
ro—1

50, since ¥’ is nondegenerate and the matrix (§/£) has rank one,
ker (&%) = span (g d2)) (2.10)

as a bilinear form on T}, Q.

Observe that this differential form dp=g;dz’ restricted to the boundary is a pure
imaginary form, and

0= 1*idg), 1LLM=3QoQ

spans the contact line bundle of the CR-structure induced on M. The Levi form of 6 is
the Hermitian form L defined on the complex vector bundle H=0*cCTM by d6:



BOUNDARY BEHAVIOUR OF THE COMPLEX MONGE-AMPERE EQUATION 165

L(v,w)=d60(Jv,w) (2.11)

where J is the complex structure on TQ>TM.
In view of (2.10) the bilinear form defined by #* on T% Q descends to a degenerate

bilinear form, 4, on T*M given by
h(a, B) = h*a,B; (2.12)
if a=a;dz'+agdz"sq, B=P;d7+B;d7 0
LEMMA 2.13. The bilinear form h is equal to the dual of L on T*M.
Proof. Using the injection TMcTQ the Levi form becomes
L(v, w) = —idd¢(Juv, w). (2.14)

On H, 93¢ agrees with y=y ,.dz’ Adz*. The dual of the tensor W=—iy(J-, -) on TQ is
just 1/)’"" on T*Q. Over the boundary it follows from (2.7) and (2.8) that hi* agrees with

¥’* on the annihilator of £, and 4/ annihilates id¢; this proves the lemma.
We define

T=—iE-§), W=E+E. (2.15)
Then it is easy to check that

T_ ldp=0, T_lidp=1, T_|—iddp=—rdg,

i ) (2.16)
W_ldp=2, W_lidp=i, W_|—idd¢p=indep—3g).

In particular, W is proportional to the gradient of ¢ with respect to gi>» while T is

tangent to 92 and everywhere transversal to the maximal complex subspace H.

Given any boundary coordinates y € R” ! for M=3Q, this provides a preferred set
of coordinates (x, y) in Q near 3Q, where x=—¢ and the y* are extended to be constant
along the integral curves of W. We shall call such coordinates normal coordinates. In
normal coordinates,

B8, = —1W. 2.17)

Recall that on any manifold with boundary (see [4]) the ring of totally characteristic
differential operators Diff,, (Q) consists of those operators which can be written as
polynomials in C* vector fields tangent to the boundary. In local coordinates (x,y)
with x=0, this condition requires that P € Diff}’ () be of the form
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P= > p,xy)DixD). (2.18)

Jjtlalsm

PROPOSITION 2.19. The Laplace-Beltrami operator A, is totally characteristic on
Q and in any local coordinates x=—¢, yER? ™! near the boundary is of the form

A, =1(xD,)+xR; (2.20)
where Ry is also totally characteristic and the indicial polynomial is
IA) = A*+inA. (2.21)

Proof. With x=—¢, ;=9y'l9 ;, r=1,...,2n—1, and =, we have

az}: —qg.ax-f—;;;ay,, azk-= —(p,(-@x-%-y;-ay,‘ (2.22)
Substituting into A = gj";aDjDk- gives
Ag= gj"(—%.Dx+y;Dy,) (—~@D +u;D)
=" g uDi+g" 9D, ¢) D,—g"w; (D ,¢) D,~g"w; ;D ,D,—g" guiD. D,
~g" gD, 1) D +8" D ) ;D). (2.23)
From (2.9),
.k’ x2
g G %= 1+rx (2.24)
and from (2.22),
%= 0, %=~ %tuwd, %
= —ig D, g+iw; D , . (2.25)
Substituting these relations into the first three terms in (2.23) gives
i—DZH KD, = ! (xD,)*+inxD (2.26)
Thrx 8B = 0 s ¥ )
Now the fourth and fifth terms in (2.23) are
_ 2
— (oK oKy T =% T4 K
(&"quj+e"qu) DD, T Ew+Eu D D, (2.27)
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Thus A, is certainly totally characteristic. Evaluating (2.26) at x=0 gives the totally
characteristic ordinary differential operator

I(xD,) = (xD,)*+inxD,. (2.28)

This corresponds to (2.21), so it is only necessary to observe that the last three terms in
(2.23) vanish at x=0 since the g* do so.

It is important to identify the first order terms in the Taylor series of A, at x=0, as
a totally characteristic operator.

THEOREM 2.29. If (x,y) are normal coordinates near the boundary of Q then

A, =I(xD)+x(~r(xD ) +0,+V)+x’R,(x,y, xD,, D)) (2.30)

where Oy, is the boundary Laplacian given by the Levi form on 3Q and the volume form
ONdO"", V is a vector field tangent to 3, and

I(xD,) = (xD,)*+inxD,.
R; is elliptic where Oy, is characteristic.

Proof. Recall that Oy, is defined as 979,+9, 3, which reduces to 3¥3, on func-

tions. Here, 3, f is the coset of 3f in T*3Q/6 if f is extended to a neighborhood of 3%,
and 3¢ is the formal adjoint. Thus, for any « € C7(M),

(O, fou) = (8y.f, Sy u) =f h*feu 2.31)
M

when f and u are extended to a neighborhood of 9Q, and y=60Ad6""". Using (2.22) and
the fact that hj,g annihilates 3¢, this becomes

(Opfru) = f ROV ERI
M
After the usual integration by parts, this shows that

Oy f= =048 ) -3 ) f+ V) (2.32)

where V is some vector field tangent to Q. Therefore, the last term in (2.23) can be
replaced by x(Cl,+ V).
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Next observe that in normal (x, y) coordinates
0= W)= &u+Eu;

so the fourth and fifth terms in (2.23) vanish, from (2.27). The first-order term of (2.26)
at x=0 is clearly

—xr(0, ) (xD)’.

Finally, the sixth term in (2.23) vanishes to order x2, by virtue of (2.9). This shows that
A, is given by (2.30); to complete the proof we need only observe that the ellipticity of
R, on RO, where Oy is characteristic, is a trivial consequence of (2.9).

Remark. By means of a rather laborious integration by parts, the vector field V in
(2.30) can be shown to be equal to li(n—1) T. Since we have no need for this result, we

omit the proof.

3. Holder spaces

In carrying out the analysis of A, near 9Q we shall use spaces of functions
satisfying certain degenerate Holder estimates. On the half-space Z=R*xR !, with
natural coordinates (x,y) consider, for each 0<a<l, the subspace BYZ)c=L*(Z) of
functions satisfying:

(x+x" )2 fe, »)=f &, y)| < Cx—x'|*+(x+x")* |y —y'|*) 3.1

for some constant C. If C is the smallest such constant set
1flle =l All+C. (3.2)
More generally if K €N we write B*%(Z) for the space of functions f€ L*(Z) with

(D,yD f€ B(Z), Vp+|f| <k, (3.3)

where the derivatives are to be taken in the sense of distributions in Z. With the
obvious norm ||-||; ,, B¥“(Z) is a Banach space. In fact, under the diffeomrophism

Z3(x,y)— (log (x),y) ERV

these correspond to the usual Holder spaces CX*(RY), of functions satisfying
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ID (s, y)=Df, , g,y < Cl(s,y)—(s",y"), VIBI<k, (G.4)

where s=log (x).

The estimates (3.1), (3.3) are local in nature, in the sense that if ¢ € C;(Z) and
fE€ B**(Z) then of € B**(Z). In fact B*%(Z) is a ring under pointwise multiplication. We
write B*%(Z), B *(Z), B**(U) for the rings of compactly supported functions in Z, of
functions locally in B¥*(Z) and of functions defined analogously for any open subset
UcZ, respectively.

Consider the space of almost regular distributions H(Z)c%'(Z), defined in terms of
the usual Sobolev spaces by

f€ sZ) < IsER such that (xD,Y’D’ f€ H},(2), Vp, p. 3.5

It is readily shown (see [4]) that #(Z) is just the space of extendible Lagrangian, or
conormal, distributions on Z associated to the boundary, i.e. to the conormal bundle
N*3Z. Since L*(Z)cH,, (2) it follows that

rgBk'“(Z) = AL*(Z) c H(Z), (3.6)

with the intersection independent of a. This fact is very basic to the method used in this
paper.
As in the standard case of Holder (or Lipschitz) spaces there is a useful approxi-

mation criterion for a function fto be in B**(Z). Indeed, suppose there is a decomposi-
tion of the form:

=21 (.7
k=0
where for some constant A,
Mfill, - < A27% (3.8)
KD fill = 1D, fill - < A2, s=1,..., N=1. (3.9)

LEMMA 3.10. If f is given by (3.7), where (3.8) and (3.9) hold, then f€ BX(Z).

Proof. Using the diffeomorphism s=log(x) this reduces to the usual result for
Holder spaces (see for example [3]).

Next we introduce some even more degenerate Holder spaces on the strictly
pseudoconvex domain Q. First choose a finite set of normal coordinate charts (U(x, y))
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covering Q, with range {0<x<r}xRN"! for each chart. Given p €3Q choose a chart
containing p. An affine linear transformation in the y variables, to y'=A(p)y+B(p),
depending smoothly on p € U can then be chosen so that at p=(0,0)

6=do™"y, (3.1
do'Y,...,d(* ") are orthogonal with respect to i/, (3.12)
Dropping the prime, we next define singular coordinates based at p,
v=x, w=xly, r=xy" r=1,..,2n-2=N-2. (3.13)
These are defined in the preimage in Q of the region
V,= {|y|st%, |y2"_'|SRx, x=r} (3.14)

under the normal coordinates (x,y') where R is independent of p. As p traverses the
boundary it is clear that the V, cover a neighborhood of 9.

Definition 3.15. The space A*%(Q) consists of those functions f€ L*(Q) for which
there exists a constant C such that ||f]|, ,<C in each singular coordinate system (3.13),
on the set V,, corresponding to p and a finite covering of Q by normal coordinate
systems.

Clearly A*“(Q) is a Banach space with respect to the norm [|f]} . given by the
smallest constant C. It is necessary to show that the definition is independent of all
choices made. In fact this follows immediately from the fact that a change of normal
coordinates, or affine reduction to (3.11), (3.12) at p, induces a C~ diffeomorphism on
each of the spaces V,, depending smoothly on p. Since B*“(V)is coordinate invariant,
A*%(Q) is well-defined. The main reason for introducing these spaces, and the singular
coordinates (3.13), is that the geometry is bounded with respect to them, in the sense of
Cheng and Yau [1].

LEMMA 3.16. Let g, g" be the entries of the metric tensor, derived from a strictly

plurisubharmonic defining function for Q, expressed in singular coordinates log (v}, w, t
as in (3.13). Then g%, g; are C” in V, with bounds on all derivatives independent of p,

with respect to a suitable covering.

Proof. We can use the calculations of Section 2. The metric g/ occurs as the
principal part of A, in (2.30), (2.32). In terms of the singular coordinates,
s=log(v), w, t,
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2xD,=D,~w'D_,~21D, x%Dy,=Dw,, D, =D, r=1,..,2n=2. (.17

Since the second order part of [y, in (2.32) is composed of vector fields tangent to the
maximal complex bundle H, and therefore of the form:

2n—2 2n—1 2n—1
_ r kagqr r
2= 0p,4 5 vunn,+ S,
r= r=0 r=0

it is clear that xOJ, is a C* differential operator in (s, w, t) in each V,. Similarly, using
(3.17) all the other terms in (2.30) are C* in the singular coordinates. This shows that
the g/ are C*, clearly uniformly as p varies. Moreover, A, is uniformly elliptic in V,,
so the inverse g; is also C”.

In [1], Cheng and Yau defined holomorphic coordinate charts covering Q, such
that each z€Q is contained in a chart in which the entries of the Hermitian matrices
L gj"_ with their derivatives of any finite order are uniformly bounded, independently
of z. They were then able to introduce spaces, C**%(Q), consisting of the functions with
uniform Holder estimates with respect to those coordinate charts respecting the
bounded geometry. The fact that the coordinate charts are holomorphic is of no

significance for such estimates, so as a corollary of Lemma 3.16 and Definition 3.15 we
have

AYQ) = CHYQ), Vi, a. (3.18)

4. Schauder estimates

In this section we show that if ¢ is any defining function such that g=—log(—g) is
strictly plurisubharmonic, the Laplacian A, gives, for each »>0, isomorphisms:

Agtn: @A H(Q) - g’ ARHQ), 0<r<i(n+Vn'+4x) @.1)

of the degenerate Holder spaces defined in Section 3 above. Here, we write ¢'AF*(Q)
for the space of functions of the form ¢'f, f€ A*%(Q). Equipped with the obvious norm
itis a Banach space whose topology is independent of the defining function ¢. To prove
that (4.1) is an isomorphism we use some facts concerning totally characteristic
pseudodifferential operators. For the general theory of these operators the reader is

referred to [4). For convenience the definition and some elementary properties are
recalled here.
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A totally characteristic pseudodifferential operator on the half-space Z=R, xRV™!
is a continuous linear map C' (ZO)-—> 9'(Z), where 9'(Z) is the space of distributions on Z

which can be extended to a neighborhood of Z, of the form

Au(x,y)=Q2m)~N f f eV  q(x, y, A, p)ulxt,y' ) dAdndtdy’. (4.2)
ZJRN

The amplitude a € ST ((ZX RY) is required to satisfy the lacunary condition with respect

to the A-variable:

fei“_’”'a(x,y,l,ﬁ)d/1=0 for 1 <0. .3
R

The space of such symbols of order m is denoted S'(ZxR") and the corresponding
space of operators with kernels locally of the form (4.2) by Ly'(Z). The residual space
L;*(Z)=N,, L(Z) consists of operators mapping &'(Z) into (Z).

Observe that a totally characteristic differential operator

P(x,y,xD,D)= D p,.(x,y)¥D.D"

JtHialsm

as in Section 2 is an element of L{(Z) with symbol, in the sense of (4.2),

Py, hm= >, p;(xy) "
Jjtlalsm
An operator A € L(Z) is said to be elliptic if its symbol is elliptic in the usual sense.
The invariance and symbolic properties of these operators are extensively discussed in

143.

We will show that any element of L{'(Z) is locally bounded on the appropriate

singular Holder spaces B“%(Z). The first step is to show that the error terms in the

calculus are well-behaved.

LEMMA 4.4, If REL;"(Z), then R: XL (Z)—>x'BLXZ) for all r, k=0, all 0<a<l.

Proof. By localizing it can be assumed that r€ S (Z xR™) has support with
compact projection onto the base Z. Then the corresponding element R € L, “(Z)can be

written:
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Ru(x,y)=ff ke(x,y, ¥, ) ulxt,y')ydt dy’ 4.5)
0o JRV!

where the kernel, in this sense, kg, is C” in all variables and, because of (4.3), rapidly
decreasing with all derivatives as r—o and t\0. The integral above converges
absolutely, and Ru is clearly bounded when u is bounded. In fact, for any integer j and

multiindex a, (xD,YD{Ru is of the same form (4.5), and so R maps L7 into BjZ.

Finally, since R(x'u)=x"R’u, where R’ is again an element of L, ”(Z), the lemma is
proved.

THEOREM 4.6. If A ELg(Z) then A:B’;"’(Z)—>B"'“(Z) for each 0<a<1, kEN,.

toc

Proof. Consider a useful partition of unity. Choose 9 € CZ"(RN) with (4, 7)=1 in
|4, pl<i, (A, p)=0 if |(4, n)|=1. Then set

@, ) = pQ 7 G, ) —ypQ@ A, ), k=1 @.7)

These functions ¢, € Cf(RN) are uniformly bounded in S?YO(RN) and give a partition of

unity as

1/)+2(pk= 1.

k=1

They do not however satisfy the lacunary condition (4.3), so we modify them slightly to
correct this. Set g,=¢@,— T, where

Te(h, n) = Q)" J e 1A Vo(s) (A, p) dA’ ds 4.8)

and ¢ € C™(R) satisfies o(t)=1 in 1<}, 0(1)=0 in +>3. Since T(1)=0, the o, also give a

partition of unity. Morecover (see [4]), T is bounded from S™ into S™7, so the g, are
bounded in S. (RY).
0

lac
Now, suppose that a € S}, (ZXR") is such that the Fourier transform

Bx,y,8,1)= Jei‘l“)’la(x, v, Andi=0 if s<l 4.9

strengthening (4.3) which demands that it be zero in s<<0. The Fourier transform of the
product
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alx,y, A, m) =94, nalx,y,A,n) (4.10)

is the convolution of the two Fourier transforms, so has support in s>0, since the
Fourier transform of g, in the sense of (4.9), also has support in s>1. Thus, a, € Sh.isa

bounded sequence. The corresponding kernels
Bix,y, s, W)=fei‘l“s"+iw‘”ak(x, ¥, A, ) didy
satisfy, for each k=1 and for each p>0 and compactum K€EZ:

1T} = Jﬁk(x,y,s,w)dsdw sCPZ‘”" 4.11)

for some constant C,,. To see this note that from the definition of 5,
I =—Q2m"ayx,y, 0,0 = 2m)"a(x, y, 0,0)(Tg,) (0,0)

since @4(0,0)=0. If the action of T is written as convolution then
Tg0,0)= jﬂ—l, 0) ¢4, 0) dA

where f, coming from the Fourier transform of g, is singular only at 0 and is rapidly
decreasing as |A|— . Recall the definition of the ¢,, which shown them to be supported
in 272<|(4, n)|<2*. Now, changing variable to 27%4 immediately gives (4.11).

Let us consider the partition of unity ¢, constructed above, more carefully.

LEMMA 4.12. For each p €R, there exists a constant C, such that
D] DS Tg (2" A, M) < C, 271+, )™, |B|<p.

Proof. Inserting the change of variables (4, 7)—2%(4, 5), A'—2%A’, s—>(1-2"%) in
formula (4.8) for Ty, gives

T2, n) = Qn)™" J’e_"’“_“()(l =27 (', m) dA’ dr

where we have used the fact that

@2 A m) = @A, ) = w@&, P—yp(Q&, ).

If we denote by ¢@(r, ) the Fourier transform of ¢(4, ) with respect to A then ¢ is rapidly
decreasing and
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|D| D5 T (244, m)| = )™ j rle™™o(1=27*r) D(—r, n) dr

and since the integral is supported in r?%Z" the estimates (4.13) follow by integration by

parts, proving the lemma.

The estimates in (4.13) are clearly invariant under Fourier transformation, in
particular they show that the correction terms T¢, make only a trivial change to the
standard proof (see for example [3]) of the boundedness of pseudodifferential operators
on Holder spaces. Thus, to prove Theorem 4.4, suppose first that « € BX(Z). Modifying

A€ Lg(Z) by an element of L;*(Z) we can assume (4.9) holds. The error committed in

doing this is negligible because of (4.4). Now,

Au= Y, Agu(mod SAL*(Z))

k=1

where each A, € L, *(Z) has symbol a,, as in (4.10). Using (4.13) we see that
|A, u(x, y)| < |u(0,0) fﬂk(x, v, s, w)ds dw|+CJ' 1B.(x, y, s, w) (|s|+|w])%| ds dw

<C, 27*42 M f 1Bix, v, 2X(s, w)|(|s|+|w])*ds dw

<27
where we have also used the fact that
Bux,y, 5, w)=2"NB/(x, y, 2%(s, w))

with 3, a bounded sequence in the Schwartz space &, from (4.13) and (4.7). Similarly
(3.9) also holds for A, u so by applying Lemma 3.10, Au€ B® (Z), and

loc

A: BYZ)— B (Z). (4.14)

loc

Similarly if u € B.*(Z) then for A € L)(Z) the commutators [xD,, A], [Dyj, A] are in
LYZ) (see [4]) so

xD u=AxD, u)+[xD,, AJu€By, (Z)

loc

and similarly for Dy,u. A simple inductive argument completes the proof of Theorem

4.6.
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COROLLARY 4.15. If AEL;"™Z), mEN, then A: B**(Z)—B!*™(Z).

Proof. (xD,)’D} A: B¢ “(Z)—>ByX(Z), V|a|+jsm.

loc

COROLLARY 4.16. If A€ L;"™(Z) then A: X'B**(Z)—x'B{:™“(Z) for all r>0, mEN.

loc

Proof. If u€B’c"“(Z)‘we can use (4.2) to write
A(x"u) = x'Bu, 4.17)

where B€ L, "(Z) is of the form (4.2) with amplitude b satisfying
fei(‘"”b(x,y,l, n)dA= t’fe'“"”a(x,y,/l,n)dl,

clearly in S.,.7(Z xRM). Thus Corollary 4.15 applies.

Returning now to the proof of the isomorphism (4.1), we note first that A+ is
bounded:

A4 g AP — g’ AFUQ), ¥r>0, kEN. (4.18)

Indeed, as noted in the proof of Lemma 3.16 above, in any singular coordinate chart
(v, w, t) as discussed in Section 3, we have

xD,=4vD,~wD ~iD, xD,=D, xD,. =D, (4.19)

W

Making these substitutions into (2.30) it is clear that A, is totally characteristic and
uniformly bounded in such singular coordinates, which implies (4.18) directly from the
definition of the A*“.

In view of (3.18), we have the following result proved by Cheng and Yau [1]:

PROPOSITION 4.21. A +x: A 4Q)—A**(Q) is an isomorphism for all k>0,
0<a<l.

Now, for any s€R, it follows from the decomposition (2.30) for A, that

[A,, 9°]=s5¢°Qs, (4.22)
where

0,: AF29Q) - AR Q) (4.23)

is a differential operator of order 1 wich is C” and totally characteristic in singular
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coordinates, and is bounded independently of s for s small. Thus, for s sufficiently
small,

@A 1) @ = (A, +20)+50; AU - AP 4Q) (4.24)

is also an isomorphism. In particular, if (A +x)u€ (p’A"‘“(Q) for r>0, then u—0 on
oQ.

Now the isomorphism (4.1) follows easily from this result, together with the
following proposition:

PROPOSITION 4.25. If u € C%(Q) vanishes on 3Q, and
(A, +0)u=fE@PA4Q) (4.26)
for x>0, 0<s<l(n+V n’+4x), then u€ g*A****4(Q).

Proof. First we use the standard maximum principle to show that u € ¢°L*(Q). By
direct computation, in some neighborhood N of 3Q,

A(—¢) = (—cp)~‘<—s2+sn—s2 A ) (4.27)
1-rg
where r is as in (2.4). Thus, if we choose A large enough,

s+l
(A +2) (U—A(—gF") = f+A(s*—sn—) (—@’—Asz% <0
in N, provided s?>—sn—x<0. Then u—A(—@)’<0, since otherwise the difference has a
positive maximum in the interior, which is a contradiction. Similarly i follows that u is
bounded below by a multiple of (—¢)°.
As is clear from Lemma 3.16, A, is elliptic as an element of L}in the singular

coordinates (v, w, f), uniformly in p. Thus it has a parametrix BEL, 2 with
B(A,+x)—-1d=REL,”. (4.28)
So we can write y locally as
u = Bf—Ru.

Now Corollary 4.16 shows that BfE€ (psA{‘otz'“(Q), and Lemma 4.4 gives
Rue (p‘A,"Otz’“(Q). By the uniformity of A, with respect to p, these norms are globally
bounded. This proves Proposition 4.25.

12—812904 Acta mathematica 148. Imprimé le 31 aoat 1982
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Remark 4.29. The isomorphism (4.1) can also be proved by applying the Riesz
representation theorem to the continuous linear functional

v f flx,y)0(x, y) dg (4.30)

on the Hilbert space H obtained by closing CJ(€2) with respect to the first Sobolev

norm of the metric g, i.e.

[eal = fldulﬁﬂlulzdg-

The fact that the solution so obtained is actually in ¢"A***%Q) can be proved by
methods similar to those used in this section.

5. Commutation

In this section we will improve the regularity result of Section 4 by commuting
operators in Diff, (€) through A,. The non-degenerate Cauchy-Riemann structure on
the boundary 82 induces a filtration on Diff,, (Q), the properties of which are closely
related to the nilpotency of the Heisenberg group, which is in turn related to the
decomposition (2.30) of the Laplacian.

It was noted in Section 2 above that a choice of defining function ¢ fixes a contact
form

0 = (*(id¢), 1:0Q = Q.

The maximal complex subspace H=0*cT(8Q) carries a formally integrable complex
structure J; if H''"°cH®C is the i-eigenspace of J the integrability conditon can be
written

V, WEC*(H"?) = [V, WIE C*(H"Y). G.D

The choice of defining function also fixes a vector field T€ C*(T0Q), defined in (2.15).
T can be characterized intrinsically in M=0Q by

(=1, T_1d6=0. 5.2)

If (x, y) are any normal coordinates near 3Q, we can use them to extend vector fields
unambiguously from the boundary to Q; if Z,, ..., Z,_, is a frame for H"’ this gives a
local basis xD,, T, Zy, ..., Z,_,,Z,, ..., Z,_,for vector fields on Q tangent to oQ.
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Any totally characteristic differential operator P € Diff’(Q) can be written in the

form

P= > psxGD)ZPZT (5.3)
k+j+|Bl€m
where f=(8', 8”) ranges over (2n—2)-multiindices. We now define a double filtration of
Diffy" which reflects the number of factors, T, Z;, and Z, appearing in (5.3). If (m, w, s)
is a triple of nonnegative integers we define Diff™"*(Q)cDiff!(Q) as the space of
operators P which, in a covering of 9Q2 by normal coordinate systems, have the form
(5.3) with each term satisfying

Bl+2j—2r<sw, |Bl-2r<s, (5.4

where r is the greatest integer such that x'p, ; g 1s C* up to x=0.

This definition depends on the choice of defining function ¢, but once a defining
function is given, it is independent of other choices; in particular, it is obviously
independent of the choice of normal coordinates or frame Z. As a consequence of the
following lemma, the definition is also independent of the order of factors appearing in
(5.3), since rearranging the vector fields can only introduce additional terms of lower
weight.

LEMMA 5.5. [Z, Z4), (2, Z4, [T, Z), [T, ZJ € Difil, "' (Q);[Z;, Z/) € Diff,> ().

Proof. Observe that Z; and Z, have weights (1, 1), while T has weights (2,0). In
view of the integrability condition (5.1), [Z;, Z,] has weights (1, 1), as does [Zj, Z:]. On
the other hand, [Z;, Z;] may involve a term T, with weights (2,0), and terms in Z; and
Z,, with weights (1,1). Observe from (5.2) that

0= do(T, Z) = TOZ)~Z,6(T)—6(IT. Z})) = —6(T. Z}))

so [T, Z;] has weights (1, 1), again satisfying the statement; the same applies to [T, Z;].
We also remark in passing that the definition does not really depend on the fact
that the vector fields Z;, Z,, T are extended normally from the boundary, since any
other extension differs from this one by a vector field vanishing on 8Q, which does not
affect the inequalites (5.4).
The following proposition allows us to prove our regularity result by induction on
the weights of operators in Diff,, (Q).
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PROPOSITION 5.6. If P, EDiff," """, P,EDiff,> "™, then

—2,5,+s,

i +my= 1, witwy, 514551 oo =1 W
[Py, P,l€ lef;"' ML W 51T +Diffy v

Proof. From Lemma 5.5, the result is true for the vector fields 7, Z, Zi. Now it
suffices to consider the case r=0 in (5.4), since a factor of x” effectively commutes
through the expansion (5.3) without changing the weights. For any pair of operators
P, P,, writing them in the form (5.3) reduces the computation to the case of mono-

mials
P, =7FZFT", P,=Z"Z"T.

The commutator can be written as a sum of terms like Z#Z/1T%,Z*1Z“T, each
involving a commutator of two vector fields. By Lemma 5.5, each term has weight at
most (w,+w,,s,+s,—1)or (w,+w,—2,5,+s,).

Now we can use these spaces to define subspaces of the Holder spaces A*%(Q).
Set

AFE(Q) = {u € A¥(Q): Pu€ A whenever P € Difff*'}. (5.7
This is a Banach space, and we have the obvious mapping properties:
P:x' AR @S s xIAR-mas=vif pEDIff™ " with m<k, w<s. (5.8)

With these preliminaries we can now improve the regularity result, Proposition
4.25, for the Laplacian A,. Using the defining function ¢ to construct the spaces
Diff{"**(Q), we have from (2.27)

A, € Diff2*(<Q). (5.9)
PROPOSITION 5.10. Suppose u € C%(Q) vanishes on 3Q, and
(A +2x)u=f€ QA" (Q),
where x>0, 1<r<%(n+\/m) and s<2m. Then u€ @"A" > %5(Q).

Proof. For s=0, the conclusion reduces to Proposition 4.25. So we proceed by
induction over s and for given m we suppose that ¢’A™*>%*"(Q). We want to show
that Qu € ¢’ A™*(Q) for all Q € Diff"*>*7; it is sufficient to show that

QuEQA>® for all Q€ Diff"*? (5.11)
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since Q € Diff;"*>*” can be written £ P;Q; with P,€ Diff;"and Q,€ Diff;"*?, using the
fact that s<2m. We will show (5.11) by induction on p. Naturally, the method is to
commute through A, operators in Diff;"*f. We start with the case p=0, and take

s Diff,’,"'s’o. Then, by (5.9) and Proposition 5.6,
[Q. AIE Diff*+~1%Q),
so by the inductive hypothesis on s,
(Ag+2) (Qu) = Of+[A,, Q1€ @'A", (5.12)

To apply Propostion 4.25, we need only show that Qu vanishes on 9Q. Observe that Q
can be written Q=X V, Q, where V; are vector fields tangent to 9Q and Q,€ Diffy~"*~"°.

By the inductive hypothesis, Quec ¢@'A**. Now in any singular coordinates (v, w, #) it is

easy to see that V; maps ¢’A"*(Q), into ¢" 'A**(Q). So Proposition 4.23 gives (5.11)
for p=0.
Now suppose p>0, and Q € Diff;"*?(Q). Again applying Proposition 5.6,

[Q, Al € Diff+!-s~1-2(Q)+Diffy 1P~ 1(Q).

We therefore deduce (5.12), by using the inductive hypothesis on s and that on p. As
before, Qu€ ¢ 'A”*(Q), and so we have (5.11) for all p; this proves the proposition.

6. Complex Monge-Ampére operator

The results of the previous sections concerning the Laplace-Beltrami operator can
be applied to the complex Monge-Ampére operator

M) = Y(u)e "+Duy 6.1

where

Y(u) = det(g;; +u;) det (g, 6.2)

to give corresponding regularity results for the solution to (1.4). The lincarization of M
about the funciton u=0 is just

M'(0) = —(A +n+1). (6.3)

In [1] Cheng and Yau showed that there exists a unique solution « € n, AF4Q) to
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(1.4), (1.6), and that if F in (1.4) vanishes on 9Q, then so does u. In this section we
improve their result to show that if F vanishes to order r on 8Q, 0<r<n+1, then in fact

HE N @'AF Q).
ks

We shall say that a nonlinear differential operator Y on Q is totally characteristic if
it can be written in the form

Y(u)=F(x,y,u,Piu,....,P,u) (6.4)

where the P; are totally characteristic linear differential operators with C* coefficients
and F is a C* function. Given a strictly plurisubharmonic defining function ¢ for Q, the
weights of the P; are defined as in Section 5; we say Y has weights (w, s) if there is a
representation (6.4) for Y in which all the P,€ Diff{f“""‘(Q), provided the coefficients of

! .
the P; are C* when expressed in local coordinates (v, y)=(x*, y). The introduction of v
1 .
is simply to make the vector field x*Z;, which is of weight zero, have C™ coefficients.

THEOREM 6.5. If @ is any defining function for Q such that g=—log(—q) is strictly
plurisubharmonic, then the operator Y(u), given by (6.2), is totally characteristic with
order 2 and weights (0,0).

Proof. The operator Y can be written in the form:
Y(u)= I—Agu-f—Gz(x, yiup+...+G, (x, y; ujk-) (6.6)

where the G, are C* functions of x, y and homogeneous polynomials in the derivatives
U with respect to a given choice of complex coordinates in C”. The weights of the G,

depend on the number of factors Z, Z,, T, when u, is written in the form (5.3), and the

order of vanishing of the coefficients at x=0. Thus in computing the weights of Y it
suffices to freeze the coefficients G, at some boundary point y=y and consider only the
x-dependence.

If we choose complex coordinates z', ..., z" centered at (0,5) €9Q such that

dx=2Re(dz"), ¢;=0;at(0,y) (6.7)

then (2.2) shows that, as a function of x, with y=y fixed,

2i=xH+0G7, gp=0x7'+0(1) if jk# 11. (6.8)
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Now, recalling from (1.5) that
det (gj,;)‘l = efx"t! 6.9)

we proceed to consider the various terms in (6.6). Of course the first two terms are
taken care of by (5.9).

The expansion law for determinants, applied to the second factor in (6.2), shows
that the coefficient of

6.10
Ujp i Uy g, Uy e Uy (6.10)

m

in G, is a product of the form

Cle,y)x"tg, ¢ gy (6.11)

m+1 ntn

where the indices (i, ..../,), Gpips oo and (&, ..., &, ), (K, ., ..., k) are partitions of
(1,...,n). Now observe from (6.8) that the product (6.11) is of order x”*! unless
1€¢,,....J,) and 1€ (k,,...,k,), in which case it is of order x”.

On the other hand, the definition (2.15) for 7 and W shows that, at the base point,

0, = —§{(W+iT)=iD 4T, &;=—4(W—iTl)=iD +LT, (6.12)

and since 9,€H at (0,¥) for j>1, we can take Z;=9;, j=2,...,n at (0,¥). Since any
vector field which vanishes at x=0 has weights (0,0), this shows that
x*9,8;, x%8|a,\:, xga).a-, and x9;0;, where j, k#1,1, are all totally characteristic with
weights (0,0). Combining this with the observation above on the vanishing order of
(6.11), the theorem is proved.

In order to prove an analogue of Proposition 4.25 for the Monge-Ampére operator
M, we will make use of the folowing lemma.

LEMMA 6.13. Suppose u€ A" Q) vanishes on 6Q. Then every singular coordi-
nate chart V,, all totally characteristic derivatives of u of order <k vanish on 3Q,
uniformly in p.

Proof. Recall that € A*%(Q) means that »€C*® in logarithmic coordinates
(s,w,)=(logv, w, t}. Now suppose u€A"*Q) and ¥—0 on 3Q. If in logarithmic
singular coordinates some derivative Du does not approach zero as s— —, the Holder
condition for Du implies the existence of J,£>0, and a sequence of points p, with
s(p,)—— such that, say, Du>¢ in Bs(p,). Integrating, we obtain a contradiction to
the fact that ¥—0 as s—>—o. Induction on k completes the proof.
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PROPOSITION 6.14. Suppose FEC™(Q) vanishes to order r on 3Q, 0<r<n+1,
and u € A*4Q)is the unique solution to
Mu) = Yu)e "V = €. (6.15)
Then u€ N, g’ A*4(Q).

Proof. Choose ¢ € C*(R) with p(x)=1 for x<l, g(x)=0 for x=1, and set ggr(x)=
o(x/R); then with x=—g, gg is globally defined on Q with support in { —@<R}. If we set
wR=(1—gp)u, v*=pju, and g¥=g+u® we can write (6.15) as

det (gh+vR) det (g, e~V D = oF, (6.16)
Linearizing this about v=0, we obtain:

—det(gf) det(g;)™ e ™ V(A ptnt1) = —(A tnt D) +Q" (6.17)

where Q%=0 in {—@=<R}. Therefore, we can write (6.16) as
—(A p+n+ DR+ GION +.. + GH") = " =MW - OF ") (6.18)

where the right-hand ‘side is in ¢@'A**(Q) for all k=0, and the Gf are nonlinear

differential operators which are totally characteristic with weights (0, 0) and are at least
quadratic in v®. We can factor each G{(u®) as CF(W®) PR(®), where the Pf are linear

and the Cf are (possibly) nonlinear. Freezing the coefficients Cf(vR), we see that v®

satisfies the linear differential equation

(—A = (n+ D+ GO P+ + G5 P v E@'AS Q). (6.19)

Now observe that Lemma 6.13 implies that v®=pgu approaches zero in all
A**(Q) as R—0, and that similarly u®=(1—9g)u—u; in particular #® is uniformly
bounded in all A*%(). This means first of all that the symbol of AgR and its inverse

are uniformly bounded in all A**(Q). The proofs of Theorem 4.6 and Corollaries 4.15
and 4.16 show that the norm of the parametrix B of (A,+n+1) on the spaces go’A"'a(Q)
depends only on the estimates

|(xD, D3 D%, b(x, ¥, A, m)| < C(1+|A, ) > #!

on its symbol; a similar remark applies to the residual term Ru. Combining these
observations with (4.1), we see that
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(A ptn+1): @A YQ)— g’ AP Q) (6.20)

is an isomorphism with uniformly bounded inverse as R—0. Moreover, the coefficients
of Cf and Pf in (6.19) are also uniformly bounded in R; thus since v*—0 the operator

norm of the perturbation terms in (6.19) can be made arbitrarily small by choosing R
small. For some R>0, therefore, the operator (6.19) is invertible on @"A**?%(Q). This
proves the proposition.

THEOREM 6.21." If FEC™(Q) vanishes to order r on 3Q, l<r<n+1, and
u€A**(Q) is the unique solution to (6.15), then u€ N, (p’A""“”(Q).

Proof. If we write

R(u)= M) —1+(Ag+n+ 1 u (6.22)

then from (6.6) it is clear that R is a nonlinear totally characteristic operator of weights
(0,0) with each term at least quadratic in u. Thus, for every k,r, a, s

R: ¢'AF255(Q) - ¥ AR 45(Q). (6.23)
For r=1, g' AR 5(Q)c A%t 1(Q), so from (6.23),
R: (prAk+2,a;S(Q)__) (prAk.a;H-l(Q) (624)

provided r=1.
Now for any k, Proposition 6.14 shows that uE(p’A"’“(Q). From (6.22) and the
hypothesis,

—(Atnt+Du= F—1-R(u) € ¢’ AF*1(Q). (6.25)

Since Cheng and Yau showed that « vanishes on 3Q, we can apply Proposition 5.10 to
conclude that u € ¢’ A**>%!(Q). Then (6.24) allows us to complete the proof by induc-
tion on s.

7. Conormal distributions
If Z=R, XRM"! is the standard half-space, we define the space of conormal, or

almost regular, distributions s/(Z)c%'(Z) as in Section 3 by

u € A(Z) iff s ER such that Pu€ H; (Z), all PEDiff (Z), (7.1)

loc
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‘where H*(Z) is the usual Sobolev space on Z. It is shown in [4] that #(Z) is just the
space of extendible Lagrangian distributions associated to the conormal bundle N*3Z.

In order to obtain an asymptotic expansion for the solution to (1.4) near the
boundary of Q, we shall construct a filtration of s/(Z) that behaves well under
multiplication. We define

AL” = {u€ AMZ): Pu€ L*(2Z) for all PEDIff,(Z2)}. 7.2)

Then, for any s €R, define

ANZ) = N X AL (Z). (7.3)

r<s

As usual, we set A (Z)={wu: ou € s{*/(Z) whenever ¢ € C2(Z)}.

foc

We note first that all conormal distributions fall into some /{3
LEMMA 7.4. l(Z)= U, g AZ).
Proof. If u € (Z), the definition (7.1) shows that

D{, \(x"u)€ H} (Z) for all la| <p.

loc

This implies x*u € H;”(Z). The Sobolev embedding theorem then shows that x’u is

loc
locally bounded if we choose p large enough. A similar argument shows that all totally
characteristic derivatives of x’u are likewise locally bounded.
From definition (7.4), we have the characterization

ANZ) = X A V2Z) (7.5)

and the mapping properties
P: ANZ)— 4(Z), for any P € Diff, (Z) (7.6)
X: ANZ)— A°"N(Z), for any X € C*(TZ). (7.6)

We also have the inclusions
ANZ) = C'(Z) forall 0<r<s,

which follows from (7.7) and the fact that «“(Z)=C%Z) for £>0.
Since elements of $/Z) are actually C* functions on Z, they can be multiplied.
The filtration { &£} turns s4(Z) into a filtered algebra, by virtue of the following lemma:
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LEMMA 7.8. Iqu&{“)(@, UE‘Qf“)(D, then MUE‘Sd(SH)(Z).

Proof. First assume u, v € 4L(Z). Then

(D) Diuv) = Y, C, (xD. YD’ u)((xD,)D’v).
p+q=k
BHy=a

Each term in this sum is bounded by hypothesis. Now in general, write
u=x""tn, v=x""°¢, with 5, E€ L. Then uv=x""""*y&,, which shows uv € “*(Z),

The most important examples of functions in #*/(Z) are x*a and x’a (log x)”, where
a€C*(Z). We shall say u€sZ) is graded if it admits an asymptotic expansion in
functions of this form; more particularly, « € $#(Z) is graded if there exist real numbers
5;— % as j—o, integers M;, j=1, and functions Yip € C*(Z),such that

M.
=SSy, $llogay € 4V (2). (7.9)

J=N p=1
We shall be interested primarily in certain subspaces of the space of graded distribu-
tions. We define <, ) as the space of graded conormal distributions having an

expansion (7.9) in which the s; are consecutive integers, and the M; are dominated as
follows

: s—p
M;<min(1,s,—p+1)+—-L—.
q

In other words, the first occurrence of logx is with x”, and the power of log x increases
by 1 only after g steps. We also set &fjj’q(2)=sz¢(”(2) nsd, (Z).1tis easy to see from (7.6)
and (7.8) that

P oA (Z)— A (Z), for any P € Diff,(Z) (7.10)
%;,‘?L(Z) is closed under multiplication. (7.11)

On a strictly pseudoconvex domain QcC”, we define /() as the space of
functions on @ which restrict &, . in any local coordinates, and similarly for

ANQ), o, (Q). It is obvious from the definition of the spaces A**%(Q) that
p.q

rakoass N
N grAR Q) < A7), 7.12)
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Using the expressions (6.1), (6.6) for the complex Monge-Ampére operator M, it
follows from (7.10) and (7.11) that

M: s (Q)— &fff’p(Q) forallp=1. (7.13)

8. Asymptotic expansions

In this section we show that the solution u to the complex Monge-Ampére equation
is graded. We will construct the expansion (7.9) explicitly. The method relies on the
fact that, due to the decomposition (2.30) for the Laplace-Beltrami operator, on
A9+ the operator (A,+n+1) reduces to

[((Ag+n+Duls = Elul (8.1)
where E is the totally characteristic ordinary differential operator
E=I1(xD,)+n+1= (xD,)*+inxD,+n+1. (8.2)

As mentioned in the introduction, the symbol isomorphism (1.15) for conormal distri-
butions defines E invariantly as an operator on &*)(N, 8Q)//“*"(N, Q). Similarly,

from (6.1) and (6.4) the Monge-Ampére operator M reduces to
[M(u)—1]1, = Elu],, provided s =1. (8.3)

Observe that the kernel of E on C*(R. ) is spanned by the functions x~' and x"*7.
Since we will always be working in « for s>0, only the latter will appear. Thus if
BEC™(Q), a solution 5 € AUQ) of

[EGD]s = [x*B],
is given in normal coordinates by

- —x'p :
n—(s~n——1)(s+1)’ if s#+n+l, (8.4)

while for s=n+1 we must take

—X"+lﬂ
+2

n= log x +y(y) x"*! 8.5

where yEC”(3Q) is arbitrary. In general, if 8 is a finite sum of terms of the form
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a(y)x* (logx)’, then E()=p has a solution of the same form. Even more generally, we
have,

LEMMA 8.6. If BE A(Z), =0, then
Em=p (8.7
has a solution 5 € A“X(Z).
- Proof. We set

1
n+2

1 x_lf ﬁ(w,y)dw—x"“J w 28w, y)dw | if s>n+1
n+2 o 0

x 1
<x_lf Bw,y) dW+x"HJ w_"_zﬁ(w,y)dw> if s<n+l
0 x

n(x, y)= ®.8)

Then 7 solves (8.7), as can be verified by direct calculation. Moreover, for any r<s, we
can write B(x, y)=x'a(x, y) for some a € /L™(Z). Making this substitution in (8.8), it
follows easily that for any g with t<g<s, x™ 9y is bounded with all its totally character-
istic derivatives, and thus # € #(Z).

COROLLARY 8.9. Suppose 1,,1,€ 4(Q), s=0, and
LEMm )]s = [EM)]s- (8.10)
Then
mls=Ipls ifssnors>n+l; 8.11)
[71]s = [p2+v(—@)" ', for some function yECT(Q) if n<s<n+1. (8.12)

Proof. Since E(,—1n,) € #4“""(Q), Lemma (8.6) shows that there exists

EE ATI(Q) with E(E)=E(n,—y,). Then 5,—1,—£ is in the kernel of E, which implies
that there exists some y € C*(Q) such that

n=n,=E=y(—=¢)"".

This immediately implies (8.11), (8.12).
In [2], Fefferman showed how to obtain a smooth defining function @o for Q such

that J(—¢p)—1 vanishes to order n+1 on 9Q. For completeness, we give an alternate
construction of ¢q.
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THEOREM 8.13 (Fefferman, [21). There exists a smooth defining function g for Q
such that g=—log (—gy) is strictly plurisubharmonic, and

det(g;) p—nthg — 1+O((pg+l). (8.14)

Proof. Let ¢ be any defining function such that g=—log (—g) is strictly plurisubhar-
monic. First we find a function 7 € C*(Q) such that

det (g +1;0 e "NE _ 1 on 9Q. (8.15)

Since g;— on 3L, for any such 7,
det (g, +n;) det (g;)”'— 1 0ndQ,

and so the choice 7=—F/(n+1), where F is as in (1.5), gives (8.15). Now ¢'=—¢ ¢*7is
a smooth defining function for ©; modifying ¢’ away from a neighborhood of Q2 we
may assume that —log(—¢’) is strictly plurisubharmonic.

Now suppose that by induction we have a smooth defining funciton ¢, such that
g=—log(—q) is strictly plurisubharmonic and satisfies

det (gj,;) e~ nthe = 1+(—9'B (8.16)

with B € C*(Q) and 1<s<n. If we define # as in (8.4), then 7 is globally defined and C*
on Q, and (8.3) shows that

det (g, +77;0 ' e " VE = 1+0(g* ™). (8.17)

Again modifying ¢'=—e"%*" away from 9Q, we may assume —log(—¢’) is strictly
plurisubharmonic, thus completing the induction.

With @ as in Theorem 8.13, Theorem 6.21 guarantees that the solution « to (1.4),
(1.6) is in L"*(Q). We are now in a position to derive our principal result:

THEOREM 8.18. Let ¢, be as in Theorem 8.13. Then the solution
u€ A"NQ) to (1.4), (1.6) is in szf,"ﬁ“)nﬂ(f!). Specifically, there exist functions
u; € C*(Q) such that for all NEN,

N
u— Z u, , 93 (log (— @)Y € AN Q).

J=1 <[n+j]
4 n+l

8.19)
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Proof. We work in normal coordinates near the boundary; it is clear that the
coefficient functions in (8.19) can be extended to all of Q.
Directly from (8.3), u satisfies

[E(u)]n+l = [eF_ 1]n+l :
If we define

ef-1 (n+1)¢ )
n=— ) log x € 4" (Q),

then [E(n)],,,=[e"—1],,,, and so Corollary 8.9 shows that there exists some y € C*(Q)
such that

(#],e = [p+yx"']

n+i-

Thus the result holds for N=1. Moreover, if we set u,,=n+yx""", then (7.13) shows
that M(u,)—e" € 472 (Q2).

Now assume that by induction we have u, € #"*, j=1,..., N—1, with

u— E uy, € ANT(Q), (8.20)
jEN-1
M{ > um)—efew;'ﬁ,"zﬂu'z). 8.21)
fEN—1

Setting v=L u;, n=u—v€ AN*"(Q), (6.6) gives
e = M(u) = Mu+7) = (1= A (04 1)+ G0+ )+ ...+ G (w+7) e D (8.22)

Now observe that, since v€ #"*"(Q), each of the nonlinear terms G, satisfies
Giv+n)=Gv)+ AN N(Q). Therefore, we can write (8.22) as

et = M()—Em)+ AN Q). (8.23)

If we take u,, € AV*"(Q)to be a graded solution to

[E(u)Inen = [M() —e )y ims

then we have (8.20) with N—1 replaced by N; and again (7.13) shows that (8.21) also
holds for N. This completes the induction.
The expansion (8.19) can easily be converted to the form (1.7) given in the
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introduction by taking 1, to be a function on Q which has u; ,, j=1, as its Taylor
coefficients.

We have a similar result for solutions to the linearized problem. The proof is
similar but easier, and is omitted here.

THEOREM 8.24. Suppose x>0, and let m=3(n+V n’*+4x). For f€ ¢'C*(Q), where

r is an integer such that 0<r<m, let u€ A"(Q) be the unique solution to
(Agt)u=f.

If m is an integer, then u € &1,‘,2, (&), and there exists a function y € C*(Q) such that
u—ylog(—qp) EC*(Q).
If m is not an integer, then there exists szC“’(Q) such that
u—P(—@o)™ € C*(Q).

Graham, in [6], has obtained some related results for the special case of the
Bergman metric on the ball.
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