THE RELATIVELY EXPONENTIAL, LOGARITHMIC AND CIR-
CULAR FUNCTIONS IN RECURSIVE FUNCTION THEORY

BY
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of Leicester

In this paper we develop a theory of relative integration in recursive function
theory and apply it to establish the fundamental properties of the relatively ex-
ponential, logarithmic and circular functions which are the ‘analogues’ in the rational
space of recursive function theory of the classical functions of the same names.
The present account is self contained and may be read without reference to the
literature on recursive function theory.!

Recursive function theory is a development of a free variable formalisation of
arithmetic introduced by Th. Skolem.? The elementary formulae of this system are
equations between ‘terms’, and the class of formulae is constructed from the ele-
mentary formulae by the operations of the propositional calculus. The terms are the
free numeral variables, the sign 0, and the signs for functions. As function signs
we have §(x) for the successor function, and signs for functions introduced by re-
cursion. The derivation rules comprise the propositional calculus, the substitution of

terms for numeral variables, the schema
a=b->(a(a)—>a (b)),
the induction schema

a(0), a(n)—~a(S(n))
a(n)

>

1 A list of publications on recursive function theory is given in the Bibliography of the
author’s “Constructive Formalism” (Leicester, 1951).

2 In his paper “Begriindung der elementaren Arithmetik durch die rekurrierende Denkweise ...”,
Videnskapsselskapets Skrifter (Kristiania 1923), 2, Vol. I § 7 pp. 3-38.
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explicit definition, and the recursive schema

1(0, a)=a (a)
f(S (n)’ a’):ﬂ (n, a, f(}’ (n)’ a))

in which f(n, a) is the function introduced by the schema and «(a), §(n, a, b) and
¥ (n) are functions previously introduced. If y (n)=mn, the schema is called primitive
recursion; if however y(n) is a predecessor of n in a series of natural numbers of

transfinite ordinal 2 then the recursion is said to be transfinite of ordinal £.!

Provided that the ordinal does not exceed w"‘m, it has been shown that the value,
for any assigned argument, of a recursive function of ordinal £2, may be determined
by repeated substitution, the number of such substitutions being given by a func-
tion of ordinal less than £.

A codification of recursive arithmetic has been given in which all the foregoing
axioms and axiom schema are demonstrable.?

To complete these introductory remarks it remains only to indicate the passage
from the recursive arithmetic of natural numbers to the recursive arithmetic of ra-
tional numbers. Following Bernays, we define a rational number to be an ordered
triplet (p, q)/r, with r >0, such that (p, ¢)/7Z(p’, ¢')/r’ according as pr' 4+ ¢ rZp'r+qr’;
likewise a recursive function of one or more variables (p, q)/r is a triplet of re-

cursive functions of natural numbers

(P(p. ¢, 1), @(p:q, 7)/R(p, q, 7). with R(p, ¢, 7}>0, and

(writing P for P (p, q, r), P’ for P (9', ¢', '), etc.)
(P, @)/R'=(P, @/R when (p', ¢')/r'=(p, 9)/r.

We shall generally denote natural numbers by the letters k, m, =, p, ¢, r, with or
without suffixes, rationals by z and y, and rational functions of a numeral variable
n and a rational variable z by f(n, x), ¢{(n, z).

The numbers (p, 0)/1, (0, g)/1 are the positive and negative integers respectively
and will be denoted as usual by +p, —g, and we take for granted the further
details which justify writing (p, q)/r as +(p—q)/r if p>q, —(¢—p)/r if p<q and
0 if p=gq.

! Transfinite recursion was introduced by Ackermann in “Zur Widerspruchsfreiheit der Zahlen-
theorie’’, Mathematische Annalen, Vol. 177 (1940).

2 R. L. GoopstElN, “Function theory in an axiom free equation calculus”, Proc. London Math.
Soc. Vol. 48 (1945).



RECURSIVE FUNCTION THEORY 173

The class of rational recursive functions is not increased by applying the original
recursion schema to rational functions of a natural number argument. For instance,

if we define the rational function f(n, ) by the recursion

10, x)=0, f(Sn, )=¢ (n, 2, {(n, 2)) (i)
where
¢ (n, (p, @)/7, (u, v)/w)
={an, p, ¢ 1, % v, w), b, p, ..., u, .0} em, p, ..o, u, ...),

then we can find recursive functions u, (p, q, ), v, (P, ¢, ), wa (P, ¢, 7) so that

f(na (p Q)/r) = (Un, vn)/wnS (i1)

for if u,, v,, w, are defined by the simultaneous recursions u,=v,=0, wy=1

Uni1{D, @, Y)=0a (N, Un, U, Wy)
/Un-é-l (p: q: T)Zb ('I’L, un, Un, wn)

War1{p, @ ) =C (M, Un, Vn, Wn)

then wun, v,, w, are recursive and therefore f(n, x) defined by (ii) is recursive and
satisfies the recursion (i).
We are now ready to describe the fundamental concepts of recursive function

theory.

1. Notation

1.01. If [z] denotes the whole part of x and if for some integer k, [10*z]=0,
we write x=0(k), or x—0(k)=0 (so that x=0(k) is equivalent to the recursive
relation |x|<107").

If there is a recursive function N (my, m,, ..., mp) such that a relation
R (n, my, my, ..., my) holds for all m;, m,, ..., m, and all n=N (m;, m,, ..., my) then
we say that R holds for majorant n.

More generally, if there are recursive functions

No(my, my, ..., my), Ni{ng, my, my, ..., mp)
such that R (n;, n,, my, m,, ..., m,) holds for all m;, m,, ..., m, and
ny = Ny (my, my, ..., myp), ny = Ny (ng, my, My, ..., Mp)
then R, (ny, ny, my, ..., mp) is said to hold for majorant =»,, n, (the order of n,, n,

being material).
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1.1. Equivalence: The recursive functions f(n, z), ¢ (n, ) are said to be equi-
valent functions of z, or equal relative to =, if f(n, x) —g (n, ) =0 (k) for majorant =.
Similarly f(n,, n,, ), g (n,, n,, ) are said to be equal relative to n,, », if f (n,, n,, )~

— g (ny, ny, ) =0 (k) for majorant n,;, n,.

1.2. BRecursive convergence. A recursive function f(n, z) of a positive integral
variable n and a rational variable z is said to be (recursive) convergent in n, for
a<x<bh, if there is a recursive N (k, x)! such that N (k-+1, )= N (k, )= % and for

n Zn, 2N (k, x), and a<x=b,
f(ny ) — [ (g, ) =0 (k).

If N(k,z) may be replaced by a recursive N (k) independent of x then f(n, x) is

said to be uniformly recursive convergent; and if N (k)=k, f(n, x) is in standard form.?

1.3. Relative convergence. [(m, n) is said to be convergent in m, relative to

n, if there is a recursive M (k) such that, for m,, my,=M (k),
f (my, ») —f(my, ») =0 (k), for majorant n.

1.4. Relative continuity. f(n, z) is said to be continuous for a <z <b, relative
to n», if f(n, x) is recursive convergent for a<z=<b and if there is a strictly in-
creasing recursive function ¢ (k) such that, for all z,, z, satisfying a<z, <x,<b and
&y — 2y =0 (c (k)),

f(n, ) —f(n, x,) =0 (k), for majorant n.

1.5. Relative differentiability. f(n, x) is said to be differentiable for a <2 <5,
relative to n, with a relative derivative f!'(n, z), if f(n, ) and f'(n, x) are recursive
convergent for a<x<b and if there is a strictly increasing recursive d (k) such that

for all x, 2* satisfying a<z<2*<b and z*~z=0(d (k)) we have
{f(n, 2*) - f(n, 2)}/(x* —2) — f* (n, ) =0 (k),

for majorant n.2 We observe that, if f(r, x) is relatively differentiable, then both

f(n, x) and f*(n, x) are relatively continuous in («, b).

1 When it is rendered necessary by the context we denote the connection of this function N
with the fanction f by attaching f to N as a suffix. In the same way the several functions A (k),
c (k) and d (k) of § 1.3, 1.4, 1.5 carry suffixes when needed to avoid ambiguity.

? Every uniformly convergent function has an equivalent in standard form, for if f (n, z) is
uniformly convergent then f (N (k), ) is an equivalent in standard form.

3 Relative differentiability is therefore uniform in .
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1.51. Relative continuity and relative differentiability are invariants of the equi-
valence relation and any recursive equivalent of a relative derivative of a function

f(m, z) is itself a relative derivative of f(n, x).

1.6. Recursive differentiability. A recursive f(n, ) is said to be recursively
differentiable (for each value of ») with derivative g (n, x), for a <2z <b, if there is
a recursive d (n, k) such that for all x, z* satisfying e <z <2*<b and 2* —2=0(d (n, k))
we have

{f(n, &)~ f (n, 2)}/ (2" ~ @) — g (n, 2) =0 (k)

for each value of n.

1.7. Ruled functions. A recursive f(n, ) is said to be ruled for a<z<b if
f(n, x) is uniformly? recursive convergent for a <z <b and if there are recursive func-

tions ar, o7, b (n) and £ (m, n, r) such that

n n n n n m
a5 =a, aymy=>, a/,1>ar, a7 =aim, n r for m>n,
and

f(n, x)=107, for af <x <0/, and 0=r<b(n)=-1.

A ruled function is absolutely bounded, for if M, is the greatest of |f(0, a)|, 0<r=<5(0),
and |of], 0<r<b(0), then |f(0, 2)| < M, for a=z<b. But (taking f (n, x) in standard
form) |f(n, z)—f(0, )| <1 and so |f(n, )| < My+1 for all », and z in (a, b).

2.

Theorem 1. A relatively continuous function has a uniformly convergent equivalent.
For if f(n,x) is relatively continuous then there are recursive functions N (k, x) and
¢ (k) such that

L If f(n, x) is relatively differentiable with relative derivative fl (n, x) for a<szx<b and if
L (n, £)=0 relative to n, then f(n, x)=f (n, a) relative to n, a cx <b. Let the points af, 0<r<i (k)
divide (@, b) into equal parts of length Ay =0 (d (k)), so that {f(n, )~ f (n, @)}/(x—aF)=2-0 (k)
for aic <z gaf.f 1), 0= r<i(k)=1, and majorant n, whence, by addition, f(n, x) —f(n, a)=2(b—a) - 0(k),
for any « in (a, b) and majorant n.

2 The uniformity is needed to ensure that if z, converges then f (n, z») converges. -If f (n, x)
is a non-uniformly convergent sequence of step functions there may be sequences x, for which
f{n, xn) diverges. For instance, if ¢, is a nest of intervals in [0, 1) enclosing the point 1/V2 (so that
for every rational « in (0, 1), x lies outside ¢, from some n onwards) and if f (n, )=n in the closed
interval iy, and takes the value 0 outside, then for each n, f (n, x) is a step function, and for rational
@, f(n,x)=0 from some n onwards, so that f(n,z) converges; but if =, is an end point of i,
f(n, za)=n so that f(n,xs) >0, Of course f(n, x) is not uniformly convergent, since for any two
», ¢ with ¢>p '

/g, x)~f(p, x)=g—pzl for any = in iq.
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fOI‘ ny 2,”‘ZZIV (k’ x)’ f(nl’ .’1)) —f(nZ, x)zo (k)’ a‘nd
for z* ~2=0(c(k)), f(n, 2*)—f(n, x)=0(k), for majorant n,

and therefore, if ¢ (k, z)={ (N (k, z), ¥) we have, for ¢>p, ¢ (p, ) — ¢ (¢, *) =0 (p) and

¢ (k3 x*) '_¢’ (k’ I):f(N (k’ IL‘*), x*)—f(mr (L‘*)
+f(m, z*)~f(m, x)+f(m’ (II)—f(N(’C, x)’ 2')

=3-0(k), m majorant,
50 that ¢ (k, x). is uniformly convergent and relatively continuous, and since

¢(n’ x)-f(n, x)=¢(n) x)'—f(m’ z)+/(m, x)'f(n: x)

=2.0 (k), » majorant,

therefore ¢ (n, z) is equivalent to f(n, z).
It follows that we may without loss of generality suppose any relatively con-

tinuous f (n, x) to satisfy f(p, ) — (g, x) =0 (p), for ¢=p.! i.e. to be in standard form.

Theorem 2. A relatively continuous function has a ruled equivalent.
It f(n, ) is relatively continuous for a<x<b, and if y is the least integer such
that b—a=<10”, it suffices to take a/=a+7r-(b—a)/10"°°™, b(n)=10""°"™ then

g (n, x), defined by the recursive conditions
g(n, a)=f(n, a), g(n, x)=f(n, as,;) for a; <z =<al,,,
is a ruled equivalent of f(n, x).

Theorem 3 (a). If, for each value of m, f(n,x) is recursively differentiable for

asx=b, with a derivative f*(n, x) then there is a recursive ci, such that a <cl<b and

{f(n, b)~f(n, a)}/(b—a) < f' (m, k) +0 (k)

for each value of n.

For if p,(v,y) denotes {(f(n,z)—f(n, 9}/ (x—y), x<y, and if z is the mid-
point of (x,y) then u,(x,y) lies between u, (x,z) and u, (z; y) and so u,(x, y) is
exceeded by one of u,(x, 2), ua(z, y); thus we may bisect (a, b) repeatedly choosing
a succession of intervals (a, b), (af, br), (az, b), ..., (&, b'), say, each of which is

a half of its predecessor, and such that [ta (@, b7) is non-decreasing in r. But for a

1 Consequently, a relatively continuous function is absolutely bounded, for we may divide
(a, b) into a finite number p of parts, each of length 0 (c (1)), such that for any two x,, @, in the
same part f(n, 2,) = f (n, 2,) =0 (1), n majorant, and therefore f (n, #,)—f (n, ,}=3-0 (1) for nz 1, so
that for any « in (a, b), I/ (n, x)—f (n, a)|=p' 0(1) for n=1.
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suitable value of 7, w.(ar, bY)=f*(n, ck)+0(k), where we take ci to be either a7,
or b7, whichever is in the interior of (a, b).

Theorem 3 suffices for the purposes of the present paper though of course we
could replace it by the more familiar mean value theorem.!

The same argument suffices to prove also Theorems 3 (b), 3 (¢) and 3 (d) below.

Theorem 3 (b). Under the conditions of Theorem 3 we can' find a recursive cg in
(a, b) such that
{f (. D) —f(n, @)} /(b—a) Zf* (n, ¢k} + O (k)

tor each value of n.

Theorem 3 (¢). If f(n, x) is relatively differentiable for a<x<b, with relative

derivative f*(n, x), then there is a recursive cy in (a, b) such that
{f(n, b)—f(n, a)}/(b—a) < (n, ck)+ 0 (k),
n majomnt.

Theorem 3 (d). Theorem 3 (¢) holds also with the inequality reversed.

Theorem 4. If s(n, x) is recursively differentiable for each n with derivative o (n, x),
and if o (n, x) is uniformly recursive convergent, for a <x <b, then s(n, x) is differenti-
able relative to n, with relative derivative o (n, x), for a<x=bh.

It follows from definition 1.6 that there is a recursive d(n, k) and, from de-
finition 1.2, a recursive N (k) such that o (n, £*) -0 (n, ) =0 (k) for z* —~x=0(d (n, k))
and ¢ (n, ) — o (N (k), x) =0 (k) for =N (k). By Theorem 3 (a) there is a ci such that,
fora<x<a®<b, x<ci<z* and

{s(n, 2*)—s(n, 2)}/(x* —2) <0 (n, ck)+ 0 (k),
and therefore, for n= N (k) and 2* —x=0(d (N (k), k)),
{s(n, *)—s(n, )} /(x* —x) — 0 (n, )
<{tn, k)~ o (N (k), ci)} + {0 (N (k), ck) — o (N (k), 2)}
+{o (N (k), ) — 0 (n, 2)} + 0 (k)=4-0 (k)

and similarly by Theorem 3 (b), for the same =, x and z",
{s(n, ") —s (n, 2)}/(z* —x)~ 0 (n, 1) =4-0 (k)

which completes the proof.

1 Vide R. L. GoopsTEIN ‘Mean value theorems in recursive function theory”, Proc. London
Math. Soc. Vol. 52 (1950), pp. 81-106.

12 — 543808 Acta Mathematica. 92. Imprimé le 30 décembre 1954.
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3.

In preparation for some results on inverse functions we prove next

Theorem 5. If

(i) for a<x<b, g(m, z) is continuous relative to m, and « =g (m, a) < g (m, ) <p,
for majorant m,

(i) for a<t<pB, f(n,t) is differentiable relative to = and f'(n, t)=107%, for
majorant -»!, and f(n, a)=a,

(iti) for a<x<h, f(n, g (m, x))=2z, relative to (m, n), then

g(g, f(p, t))=t, relative to (p, g),
for any ¢ such that, for an z<b. a =t <g(m, x) for majorant m.

We start by proving that if a<t<g(m, ) for majorant m and an x <, then
a=f(n, t)<b for majorant n.
For, by (ii), (and Theorem 3 (d)), f(», t) is strictly increasing (for majorant =),

and so by (iii) if a<t<g(m, ), for majorant m, and x <b then
a=fm, a)<f(n, ) <f(n, g(m, 2))=x+0(k)<b

for a large enough %k and for majorant m, n.
Using the uniform convergence of f(n, z), g(n, ) and the relative continuity of
f(n, x) it follows from (iii) that

fn, g(m, x)y=2+3-0(k)
for m=¢ (k), nzk and e« <2 <b, and therefore, for the same m, n and for p=>k,
fr, g(m, f(p,1))=f(n, )+ 4-0(k)

for a <t<g(m, ) and x<b.

But by Theorem 3(d) there is a recursive c; such that
|/ (ne )~ (m, )] =] g —t] - {7 (n, &) +0 ()}

for majorant n, and therefore, for m=¢, (k), p= k.

1 In faet it is sufficient if |f1 (n, 1),;10““, ier majorant n, for fl (n, t) is relatively con-
tinuous and so for any two points ¢, ¢, in (%, f) we can divide the interval (¢, 1,) mnto a finite
number of parts such that the values of /1 (n, t) at any two points in the same part differ by
less than 1/10”:1, relative to n, and thercfore /1 (n, t) has the same sign at f;, and ¢, for ma-
jorant n.
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g (m, f(p, t)})ftZO(k'M“l);

hence ¢ (g, f (p, t))=t, relative to p, q.

Of course the result is unchanged if f(n, t), g (m, ) are not in standard form.

4. The reduced function

Given a relatively continuous function f (n, z) and a uniformly convergent g (n, ),

both in standard form, then the function
fe+1, g(e(k+1), 2))
is called the reduce of f on g and is denoted by R} (k, x).
The following two theorems are immediate consequences of this definition.
Theorem 6. For n=k+1, m=c (k+1),
Ry (k, ) —f(n, g (m, x))=2.0 (k+1)
and for ¢>p,
R} (g, ) — R (p, ©)=2.0(p-+1)=0(p),
so that R} (n, ) is uniformly convergent in standard form.

Theorem 7. If ¢ (n, ), v (n, x) are equivalents of a relatively continuous f (n, x)
and a uniformly convergent ¢ (n, x), all in standard form, then Rq,f, (k, x) is equivalent
to R} (k, x).

4.01. If f(n, z) is relatively continuous and g (n, x) uniformly recursively convergent,
neither necessarily in standard form, and if ¢ (n, x), w(n, x) are standard form equi-

valents, we define R (k, z) to be R:f (k, x).

4.1. We remark that if ¢ (m, x) is a ruled function then so is R} (m ), and if

g (m, ) is relatively continuous (as is f(n, x)) then R} (n, x) is relatively continuous.

Theorem 8. If f(n, y), g (m, x) are relatively differentiable with relative deriva-
tives f(n, y), ¢" (m, x) for a<x<b and h<y<H, and if h<g(m, x)<H fora<z<bh,
and majorant m, then R} (n, x) is relatively differentiable, with relative derivative

R (n, 2)- ' (n, x), for a<x<b.

Consider any two x, X such that a<ax <X <b and let £(x, X) be the exponent
of the least power of 10 which exceeds 1/(X —x); u the exponent of the least power
of 10 which exceeds |g' (m, x)|+ 1 throughout (a, b), and

d (k)= max (dg (k), dy (k) + ).
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Then, for X —z=0{(d (k)),

/(n: g(m7 X)) “l(n! g(my x))
X—xz

—fn, g (m, z)})-g' (m, )

=(f* (n, g (m, x))+g" (m, )+ 0 (k))- O (k)
and, for p=k+¢(z, X),

‘Rz (ps X)~R£ (p! x)zf(n! g("l’ X))_f(n’ g(m’ x))

X_2 X2 +2.0 (k)

and
Ry (p, 2)- 9" (p, ) — [* (n, g (m, 7)) - ¢* (m, 2)
=(f* (n, ¢ (m, 2)) +g" (m, )+ 0 (k)) - 0 (k),

all for sufficiently large m and n, whence Theorem 8 follows.

5. Integration

If f(n, ) is a ruled function in (a, b) so that there are recursive functions a7,
v; and b(n) such that

fr, x2)=1r, for a7 <z <al.;, 0Zr=b(n)=1,

then the sum
by -1

2 v (afa—ar)

r=0

is called a relative definite integral of f(n, x) from a to b, (2 <b), and denoted by
I (n, a, b).
If a=b we define
Ir{n, a, b)=0
and if a>b,
I (n, a, b)= —1I,(n, b, a).

Taking f(n, z) in standard form (and using the notation of definition 1.7) we
see that, for N >n and

tHN, n, r)<s<t(N,n,r+1), o) — v} =0(n)

and therefore
b(m)y=1 t(N,n,r+1)=-1

LiN,a,0)—1,(n,a b)= 2 > (o — o) (al.1 — al)
=0 s=t(N,n, 1)
=(b—a)-0(n)

which proves that I, (n, a, b) converges.
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51. Theorem 9. If f(n,x) and g(n, 2) are equivalent ruled functions then
I;(n,a, b) and I, (n, a, b) are equivalent.

By combining the subdivisions on which f and g are constant for a given =, we
determine a subdivision ¢/, say, such that both f(n, ) and g(n, ) are constant in

each subinterval (c7, ¢,y); if u; denotes the mid-point of this subinterval, then
I;(n, a, b) = I (n, a, b) =2 (f (n, pu7) —g (v, p)) (cr'i1—cF);
but, for N>n, f(n, u/)— (N, u')=0(n),
g, pur) =g (N, pur)=0(n)

and
(N, ur)—g (N, ur)=0(n), for majorant N,

so that I,(n, a, b)—1I,(n, a, b)=3(b—a)-0 (n).

5.2, If a recursive function f(n, z) has a ruled equivalent f*(n, z) in (a, b) then
f(n, x} is said to be relatively integrable in (a, ) with a relative integral Iy« (n, a, b);
the integral of f(n, z) is also denoted by I,(n, a, b).

In particular a relatively continuous function is relatively integrable.

In virtue of Theorem 9 any two integrals of f(n, x) over (a, b) are equivalent.

A relatively integrable function is bounded, for if f(n, x) is relatively integrable
then it has a ruled equivalent f* (n, x) which is absolutely bounded, and if |f* (n, )| < M

for all x and n, then |f(n, )| <M +1 for majorant n.

Theorem 10. Darboux’s Theorem. If f(n, x) is relatively integrable in (a, b), with
a bound M, and f*(n, ) is a ruled equivalent of f(n, x), in standard form and con-
stant (for each value of n) in the open intervals (al, af',,), 0=<r=<b(n), and if (z,),
0<r=w, is any subdivision of («, b) into subintervals of smaller length than any of

the intervals of the subdivision af, 0<r=<b(k), and also smaller than
(b—a)/{2(M +1)10*-b (k)},

and if & is any point in

(@r, #r41), 0=Sr=v—1,
then

v--1
Ii(k,a,b)— 3 f(n, &) @1 —2,)=6(b—a)-0(k), for majorant n.
=0

Since f*(n, z) is a ruled equivalent of f(n, z), in standard form, therefore M + 1
is an absolute bound of |f*(n, 2)| in (a, b), and

Ik, a, b)—I,(k, a, b)=3 (b—a)- O (k),
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»-1 v-1
ZO f* (k, &) (11— 2,) — Z f(”: EY(xri1—2,)=2 (b—a)-0(k), n majorant,
= 7=0
and so it remains to prove that
v-1
I (k, a, b) - Zof' (k, &) (11— 2r) = (b~—a)- O ().

The proof is completed along familiar lines by combining the subdivisions (aF)

and (z,), and we omit the details.

Theorem 11. If f(n, z) is relatively integrable in (a, b) then |f (n, )] is relatively

integrable in (a, ), and |I;(n, a, b)|<If| (n, a, b), relative to =.

Theorem 12. If f(n, z) is relatively integrable in (a, b) and if ¢ lies between a

and b then f(n, x) is relatively integrable in (a, ¢) and (c, b) and
I (n, a, ¢)+ I (n, ¢, b)=1I;(n, a, b), relative to =.
(In faet I;(n, a,c)+1I,(n,c,b)~1;(n,a b)=9(b—a) 0(n).)

Theorem 13. If f (n, x) and g (n, z) are relatively integrable in (a, b) then f(n, z) +
+ (g, x) is relatively integrable and

I;(n,a b)+1,(n, aby=I;,4(n, a, b), relative to =.
(The difference between the integrals is also 9(b—a)-0(n).)

Theorem 14. If f(n, #)=0 for a<x<b and n=N, independent of x, then
Ii(n, @, b)=0, for n=N.

Theorem 15. If f(n, z) is relatively integrable in (a, b) and f(n, )20 in (a, )
then I,(n, a, b)> —107% for n satisfying 10" =3 (b—a) 10%, i.e I;(n, a, b) 20, relative
to =n.

If f(n, )>0 in (a, b) then I,(n, a, b)>0, relative to n.

Similarly if f(n,x) is relatively integrable and f(n, )=0(k) in (a, b), for ma-
jorant n, then I,(n, a, b)=(b—a)-0(k), for majorant n.

Theorem 16. If f(n, x) is relatively integrable in (a, b) then I;(n, @, x) is rela-
tively continuous in (a, b).

The proofs of Theorems 11 to 16 are omitted.

Theorem 17. If f(n, z) is relatively continuous in (a, b) then I (n, a, ) is rela-
tively differentiable in (e, b) with a relative derivative f(n, ).

Let a<t<T<b and ¢ (n, )=f(n, )~ f(n, t) so that ¢ (n, z)=0(k) for i<z <T,
T—-t=0(c(k)) and majorant n.
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Then, for 7'—1=0 (c (k)),

{Ir (0, 0, T)—I;(n, a, O} /(T —t) = f(n, V)
={I¢(n,t, T)+18 (b—a)-0 (n)}/(T —1t), by Theorems 12, 13,
=2.0-(k), for majorant n, which completes the proof.
Theorem 18. If f(n, x) has a relative derivative f'(n, z) in (a, b) then
In(n, a, by=f(n, b)— f (n, a), relative to n.
For I}(n, a, ) — f* (n, x) =0, relative to n.
Theorem 19. In the interval (f, ¢,) the function ¢ (n, t) is relatively differentiable

with a relative derivative ¢'(n, t), and a<g(n, t)<p for majorant n.

If f(n, x) is relatively continuous in (a, f) and

g (n, to)=a, g(n, t,)=>, relative to =,
then

Is(n, a, b)=1s , (n, ty, t), relative to =.
g

We observe first that from the two conditions g (n, t,) =a, relative to »n, and
q(n, ty) = o for majorant =», it follows that a=«, and similarly we can show that
b=p, so that f(n, x) is continuous in (a, b), relative to », and I;(n, a, ) exists for
a<x<b. Since R} (n,t) and ¢' (n, ) are both relatively continuous in (¢, t,), there-

fore the integral I,; . (n, ), t) exists.
g

If we denote I;(n,a, z) by F(n, x), R} (n, t) by G (n,t), and Ikg.g, (m, t5, t) by
H (n, 1) it readily follows that

G* (n, t)— H* (n, t)=0, relative to =,

and so G (n, t,) —@Q (n, t,)=H (n, t,), relative to n, whence, since G (n, t,)=F (n, a) and

G (n, t;)=F (n, b), relative to n, Theorem 19 follows.
Theorem 20. If

(i) for 0=z <b, g(m, x) is differentiable relative to m with a relative derivative
l/Rg’ (m, x), and
g(m, 0)=a=g(m, ) <f, for majorant m,

(ii) for a<t<p, ¢(n,t) is continuous relative to n and ¢ (n, t)=10"#, for ma-

jorant =,

then ¢ (», z) and I¢, (n, «, t) are inverse functions, relative to n.
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Let f(n, t) denote I¢ (r, o, t) for a=t=<pf; then, for 0<x=<b, the relative deriv-
ative of R} (k, z) is

Rg’ (k, x)-g* (k, 2)=1, relative to k,
and therefore
5.3. Rl (k, x) ==, relative to %k, for 0<x<b,

whence
f(n, g (m, x)) =2z, relative to m, n;

and hence, by Theorem 35, for a <t <g (m, ), m majorant and x<b,

g(g, f(p, 1)) ==, relative to p, ¢
and so

5.4. 7 (k, t)=1, relative to k.

Formulae 5.3 and 5.4 prove that f(n, x) and ¢ (n, #) are relatively inverse functions.

6. The elementary functions

6.1. The relatively exponential function.

We define the relatively exponential function E (n, x) by the recursive equations
EO,2)=1, E(mn+1,2)=E (n, ) +2"*"/(n+1)!

E (n, ) is uniformly convergent in any interveal, for if N is any positive integer
then, for |z|<N and n=2 N,
|E(n+r+1,2)—E (n+r, z)| < {2"/n1} 270D
< {x‘.’.N/(z N)!}2~(n~2N). 2~(r+1)
<{@2NPFY/(2N)}2°".270+D
and so for mzn=2N

6.101. |E (m, x) — E (n, )| <{2N)*Y/(2N)1}- 277,

which proves that E (n, x) is uniformly convergent for |z|< N.
We observe next that
6.102. if 0<z<X then (n+1)z"<(X""'—2"")/(X~2)<(r+1) X"
and so
0<{(X"*! &™) /(X —2)— (n+1)2"}/(X —2)
<(m+1)(X"-2")/(X—z)<nm+1) XL
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Whence if 0<a<X <N then

N

—(n+l)x"}/(X——x)< ZV]W

1 Xn+1_xn+l
(n+1)! { X—x

The inequality is symmetrical in X, z and so holds also for 0 X <2< N. Hence,
provided X, x have the same sign, positive or negative, and |z|< N, | X|< N we have

1
(n+1)!

Xt gntl

X—z

—(n+1)2"|/| X — 2|

N

1 (1X]t el
(n+1)! | X|—]=|

+1 N
)| Il < By

It follows that if » is the exponent of the least power of 10 which is not exceeded
by NV/N! then

for |z| <N, |X|<N, X/z>0 and X —x=0(k+») we have

1 Ixn+1_xn+1

m+1)| X-=

—(n+ l)x"} =0 (k).

On the other hand, whether z, X have the same sign or not, if [z|<a<1, |X|<«
we have
1 Xn+1 L xn+1
(n+1)! X—z

2a"

n!

—(n+1)z"| =

=2a, for any =.

Hence for all X, x satisfying | X |< N, |z|<N, X —2=0(k+v),

1 [Xn+1—$n+1
m+1)| X—=

— (n+ l)x"} =0 (k).
and therefore

Enrn+1, X)—EMn+1, )
X -z

En X)—E(n, z)
X—xz

—E (n, )= E(n—1, z2)+0(k).

Since

EQ, X)—-E(1, x)
X-z

—E (0, z)=0,

it follows by induction that for any =, X in (—N, +N) and X —~2=0(k+)

E{n, X)—FE(n, x)
X—xz

—E(m-1,2)=(n—1)-0(k)

and thus, for X —z=0(k+n+v),
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En, X)—-E(n, x)
X—z

—Em-1,x)=0(k)

i.e. for each value of n, E (n, x) is recursively differentiable with derivative E (n — 1, x).
Hence, by Theorem 4, since E (n, z)=F (n—1, z), relative to n, E (n, x) is differenti-
able relative to n with derivative E (n, z) in the interval (— XN, +XN) for any N.
It follows that the relative derivative of
E(n, —z)-E(n, x+a)
is zero, relative to », and so,
Emn, ~x)-E(n,z+a)=E(n, 0)-E (n, a)=E (n, a),
relative to n; in particular

E(n, —x)-E (n, x)=1, relative to =,
and so
E (n, x)-E (n, a)=E (n, x+a), relative to =,

which is the fundamental relation for the relative exponential function.
6.11. We note that, for any N and for |x|<N, E(n, ) is continuous in z,
uniformly in z and =.
For if 0=z <X <N, then by 6.102
O0<Em, X)~E(n,x)s(X—2)E(n, X)<(X—2)E (n, N).
By 6.101, if n=2 N,
En, N)—E(@2N, N)<N*¥/(2N)!;

moreover, since N¥/N! is the greatest of N'/r! for o=<r<2 N, therefore
E@N,N)s@2N+1)N"/N!,
and so
0<E(mn, X)—E(n,z)<(X-x){N*Y/QN)+@2N+1)N"/Nt}

whence 6.11 readily follows.
We have incidentally shown that
6.12. for |x|< N, and any m, 0<E (m, ) <N*V/(2N)!+ (2N +1) N¥/N! and we
denote this upper bound by Ey.
6.2. The relatively logarithmic function.
6.21. The relatively logarithmic function icg (n, #) is defined by the equation
log (n: x)ZIrec (n: 11 x)y .'L'>O,

where rec (n, x)=1/x, x+0.
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Accordingly log (n, 1)=0, log' (n, 2)=1/z.

By means of the substitution ¥ =5b¢ we readily prove that
log (n, ab)=log (n, a)+ log (n, b), relative to n.
6.22. We observe next that, since B (», 2)=F (n, z), therefore
E' (n, x) =1/R%° (n, x), relative to n;

thus given any N >0, for 0<z< N, E (m, x) is differentiable relative to m, with a
relative derivative 1/R%°(m, x) and (in the notation of § 6.12)

E (m, 0)=1<E (m, &) < Ey.

Furthermore, for 1<¢<Ey, 1/t is uniformly continuous and 1/t=1/Ey.
Hence, by Theorem 20, E(m,x) and log (», x) are inverse functions, and for
o=x=N,

(i) log (n, E (m, x))==x, relative to m, n; and for 1=<t<E (m, x), m majorant
and 2 <N,

(il) K (m, log (n, t))=¢, relative to n, m.

Since N is arbitrary, and E (m, x) is arbitrarily great with arbitrarily great x, (m > 0),
therefore (i) holds for all x>0 and (ii) for all t=1. But

E (m, —x)=1/E (m, x), relative to m,
and

log (n, 1/t)= — log (n, t), relative to =,

so that log (n, E (m, —x))= —z, relative to m, » and all £=0, and (i) holds for all
(rational) values of z.

Similarly we can show that (ii) holds for all ¢>0.

6.3. The relatively circular functions.
We define the relatively circular functions sin (n, ) and cos (n, ) by the re-
cursive equations
sin (0, #)=0, sin (n+1, x)=sin (n, 2) + (-~ )" 2*"*1 /(20 +1)!
cos (0, x)=0, cos (n+1, 2)= cos (n, 2) +(—1)*2%"/(2n)!
A trivial induction shows that, for all n, sin (n, 0)=0, cos (n, 0)=1. Exactly as for
E (n, x) we can prove that, for any =z, sin (n, x), cos (n, ) are differentiable relative

to n, with relative derivatives cos (n, x), — sin (n, 2) respectively. It follows that a

relative derivative of sin® (n, )+ cos? (n, x) is zero, and so
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sin® (n, x) + cos® (n, x)=1, relative to =.
for any z.

So, too, a relative derivative of the function
cos (n, ¢~ ) cos (n, x)— sin (r, ¢ —z) sin (n, x)
is zero, and therefore
cos (n, ¢)= cos (n, ¢c—z) cos (n, x) — sin (n, ¢ —x) sin (n, x), relative to =,
or, writing z+y for ¢,
cos (n, x + y) = cos (n, ) cos (n, y) —sin (n, x) sin (n, y), relative to =,
whence differentiating (as functions of xz)
sin (n, x + y) =sin (n, ) cos (n, y)+ cos (n, x) sin (», y).
6.31. For |z|<4 and p=1

(sin (p+ 2, x) —sin (p, x))/(sin (p+2, z) —sin (p+1, 2))
~1-(2p+2)(2p+3)/a2<0

so that sin (p+2, x) lies between sin (p, ) and sin (p+1, ) and therefore sin (n, x)
lies between sin (p, z) and sin (p+1, z) for n=p+2=3.

Similarly, for n=p+22=4, and |z|<4,
cos (n, z) lies between cos (p, ) and cos (p+1, z).

3

It follows that (for |z|<4), sin (n, z) lies between z and x——% and, in particular,

for 0<Lx<1-6, between }z and =z, for n=3.

6.32. We consider the behaviour of cos (n, x) in the interval (1-5, 1-6). A simple
calculation shows that cos (4,1.5)>0, and so a fortiori cos (3, 1-5)>0, so that
cos (n, 1-5)>0 for all n=3. Similarly cos(n, 1-6)<0 for all n=2. Let 1, be the
least integer between 15.10"°' and 16.10""! such that cos (n, (A,+1)10"")<0 and
cos (n, 2,10°")>0. A, is a primitive recursive function for which we may take 44=0.
If we write ¢, for A,10°" then (using Theorem 3 b)

0 < cos (n, 0,)— cos (n, g, +107") <16/10"*!
whence

0<cos (n, 0,)<16/10""*
and so
17

1
-~ l—'OT+—1<COS(n+1, Gn)<W+—1
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(for (1-6)*"/(2n)! is very much less than 1/10™*!, %= 2) and therefore |cos (N, a4)| <
<17/10"*! for all N=n=1. Since sin(n, x)=3/4 for 1.552<1-6 and n23 it
follows that

[cos (N, an) — cos (N, 0,)|=(3/4) |on—aa]

and so [ony—0.|<5/10" which proves that o, converges. Since cos (n, 0.)=0, rela-
tive to n, therefore sin (n, 6,)=1 relative to », and from the addition formulae we
derive, in turn, cos (n, 20,)= — 1, sin (n, 26,)=0, relative to =, and cos (n, 40,)=1,

sin (n, 4 0,)=0, relative to » and so (by the addition formulae)
cos (n, z+4 0,)=cos (n, x), sin (n, x+40,)=sin (n, x)

relative to .nm, which proves that cos (n, z), sin (n, x) are periodic relative to n, with
relative period 4¢,. Furthermore, since cos (n, 6, — ) =sin (n, z), relative to n, there-
fore cos (n, 6, —2)> %z, for majorant n» and O<z<1-6.

6.4. It follows that if we define

tan (n, ) =sin (n, x)/cos (n, x)

then tan (n, #) is defined for |2]|<b<o,— 3 for majorant #, and any 6>0, and is
bounded above by 3/8 in this range, and differentiable relative to » with relative
derivative 1+ tan® (n, z). Writing ¢ (#, t)=1/(1 +¢*) for any n and ¢, so that ¢ (n, t)
is relatively integrable with a relative integral from 0 to ¢ which we denote by
arctan (n, ¢}, then, by Theorem 20, tan (r, ) and arctan (n, {) are inverse functions
and, for |z|<b,

(i) arctan (n, tan (m, x)) ==, relative to m, n,
and
(i1) tan (m, arctan (n, ¢))=¢, relative to n, m,

for 0<¢<tan (m, x), m majorant and x<b<o,—0d for majorant n. Since o, con-

verges, given any k=1 we can find n; so that

On, — 1/k<0on<o,, +1/k for nzn,;

taking

x=0n, —3/k, b=0n, —2/k, 6=1/k,
then

r<b<ao,—0, for nz=n,,
and

cos (n, z) <4/k, sin (n, x)>1/2, whence
tan (n, x) > k/8, relative to n, which proves

that (ii) holds for all values of ¢.



190 R. L. GOODSTEIN

6.5. The function which is relatively inverse to sin (n, x) can of course be de-
fined in terms of arctan (z, f) but it is simpler to proceed as follows:

We define aresin (0, x)=0
@2n) 2"

arc sin (n+ 1, z)=arc sin (n, x) + mm

For |z|<1 it may readily be shown that arcsin (n, z) is recursively convergent, and
further that, for |x|< 1, the derivative of arcsin (», z) for any =, is uniformly con-
vergent; we denote this derivative by o (n, ) and observe that, for |z|<1, g (n, z)
is also differentiable with a uniformly convergent derivative g!(n, ). A simple in-

duction shows that, for |z|<1,
z-p(n, x)=(1—2%)- " (n, z), relative to n.
Now for 0=z=<0,—8, 1>6>0 and n majorant, Isin (m, )| <1—}% &% and there-
fore,
sin (m, z) - o (n, sin (m, x))= cos® (m, z)- 0" (n, sin (m, z)), relative to m, n,
which proves that g (n, sin (m, 2)). cos (m, z) =1, relative to m, n, and from this in

turn follows

arc sin (n, sin (m, z)) =z, relative to m, =,

for |z|<0,—8, 6>0 and » majorant.
Since g (n, )21, for x>0, it follows now from Theorem 5 that, for |z|<1.
sin (m, arc sin (n, z)) =z, relative to », m,
and the proof that sin (m, ) and arcsin (n, t) are relatively inverse functions is
complete.
By a method which we have described elsewhere! for proving the recursive

irrationality of =, we can replace ¢, by an equivalent recursive t, for which there

is a recursive n, such that
pn
Tn+1 2 Tn, Tp.—np—z—fp"’lo P.

With 7, in place of ¢, the rather awkward condition ‘|z|<b < 0, — 8, for majorant »’,
becomes simply ‘|xz|<7, for some integer p’.

The University College of Leicester, England.

1 In a forthcoming paper “The recursive irrationality of n”, Journal of Symbolic Logic.



