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I n  th is  paper  we develop a theo ry  of re la t ive  in teg ra t ion  in recurs ive  funct ion  

t h e o r y  and  a p p l y  i t  to  es tabl ish  the  f u n d a m e n t a l  p roper t ies  of the  r e l a t ive ly  ex- 

ponent ia l ,  logar i thmic  and  circular  funct ions  which are the  ' ana logues '  in the  r a t iona l  

space of recurs ive  funct ion  t h e o r y  of the  classical funct ions  of the  same names.  

The present  account  is self conta ined  and  m a y  be r ead  wi thou t  reference to  the  

l i t e ra tu re  on recursive funct ion theory .  1 

Recurs ive  funct ion  theory  is a deve lopmen t  of a free va r i ab le  fo rmal i sa t ion  of 

a r i t hme t i c  in t roduced  b y  Th. Skolem. ~ The  e l e me n ta ry  formulae  of th is  sys tem are  

equat ions  be tween  ' t e rms ' ,  and  the  class of formulae  is cons t ruc ted  from the  ele- 

m e n t a r y  formulae  b y  the  opera t ions  of the  p ropos i t iona l  calculus. The te rms  are the  

free numera l  var iables ,  the  sign 0, and  the  signs for funct ions.  As funct ion  signs 

we have  S (x) for the  successor funct ion,  and  signs for funct ions  in t roduced  b y  re- 

cursion. The de r iva t ion  rules comprise  the  propos i t iona l  calculus, the  subs t i t u t ion  of 

t e rms  for numera l  var iables ,  the  schema 

the  induc t ion  schema 

a=b-->(a (a)-->a (b)), 

r (o), a (n)-+~ (S (n)) 
Q (n) 

1 A list of publications on recursive function theory is given in the Bibliography of the 
author's "Constructive Formalism" (Leicester, 1951). 

2 In his paper "Begriindung der elementaren Arithmetik durch die rekurrierende Denkweise . . . " ,  
Videnskapsselskapets Skri/ter (Kristiania 1923), 2, Vol. I w 7 pp. 3-38. 
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explicit definition, and the recursive schema 

I (0, a)  = ~ (a) 

/ (S (n), a) = f l  (n, a, / (y (n), a)) 

in which / (n ,  a) is the funct ion in t roduced by the schema and a (a), ~ (n, a, b) and 

(n) are functions previously introduced.  I f  y ( n ) = n ,  the schema is called primit ive 

recursion; if however  ~ (n) is a predecessor of n in a series of natural  numbers  of 

transfinite ordinal Q then the recursion is said to be transfinite of ordinal Q.1 

Provided tha t  the ordinal does not  exceed co ~'~, it has been shown tha t  the value, 

for any  assigned argument ,  of a recursive funct ion of ordinal Q, m a y  be determined 

by  repeated substi tution, the number  of such substi tut ions being given by  a func- 

t ion of ordinal less than  ~ .  

A codification of recursive ar i thmetic  has been given in which all the  foregoing 

axioms and axiom schema are demonstrable3 

To complete these in t roductory  remarks it remains only to indicate the passage 

from the recursive ari thmetic of natura l  numbers  to the recursive ari thmetic of ia- 

tional numbers.  Following Bernays,  we define a rational number  to be an ordered 

triplet (p, q)/r,  with r > 0, such tha t  (p, q) /r  ~ (p', q ' ) /r '  according as pr '  4 q' r ~ p' r + q r'; 

likewise a recursive funct ion of one or more variables (p, q) /r  is a triplet of re- 

cursive functions of natura l  numbers  

(P (p, q, r), Q (p, q, r ) ) /R  (p, q, r), with R (p, q, r ) >  0, and 

(writing P for P (p, q, r), P '  for P (p', q', r'), etc.) 

(P', Q ' ) / R ' =  (P, Q ) / R  when (p', q ' ) / r ' =  (p, q)/r .  

We shall generally denote natural  numbers  by  the letters k, m, n, p, q, r, with or 

wi thout  suffixes, rationals by  x and y, and rational functions of a numeral  variable 

n and a rat ional  variable x by  / (n ,  x), g (n, x). 

The numbers  (p, 0)/1,  (0, q)/1 are the positive and negative integers respectively 

and will be denoted as usual by  + p ,  - q ,  and we take for granted the fur ther  

details which just ify writing (p, q) /r  as + (p - q) /r  if p > q, - (q - p ) / r  if p < q and 

0 if p = q .  

i Transfinite recm~ion was introduced by Ackermann in "Zur Widerspruchsfreiheit der Zahlen- 
theoric", Mathematiache Annalen, Vol. 177 (1940). 

2 R. L. GOODSTEIN, "Function theory in an axiom free equation calculus", Proc. London Math. 
Soc. VoL 48 (1945). 
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The  class of r a t iona l  recurs ive  funct ions  is no t  increased b y  app ly ing  the  or iginal  

recursion schema to r a t iona l  funct ions  of a n a t u r a l  n u m b e r  a rgumen t .  F o r  instance,  

if we define the  r a t iona l  funct ion  / ( n ,  x) b y  the  recursion 

/ (0 ,  x ) = 0 ,  I ( S n ,  x)=qa (n, x , / ( n ,  x)) (i) 

where 

q~ (n, (p, q ) / r ,  (u, v ) / w )  

= { a ( n ,  p, q, r, u, v, w), b (n ,  p, . . . ,  u,  . . . ) } / c ( n ,  p, . . . ,  u . . . .  ), 

t hen  we can f ind recurs ive  funct ions  un (p, q, r), vn (p, q, r), wn (p, q, r) so t h a t  

] (n, (p, q ) / r ) =  (un, v~) /wn;  (ii) 

for if u~, v, ,  w,~ are  def ined b y  the  s imul taneous  recursions u o =  v0=0 ,  w o =  1 

u~+l (p, q, r ) =  a (n, u~, v~, w~) 

Vn+l (p, q, r ) = b  (n, un, v~, wn) 

Wn+l(p,  q, r ) = c ( n ,  Un, Vn, W,)  

then  u~, v~, Wn are recurs ive  and  therefore  f (n ,  x) def ined b y  (ii) is recurs ive  and  

satisfies the  rccursion (i). 

W e  are now r e a d y  to descr ibe the  f u n d a m e n t a l  concepts  of recurs ive  func t ion  

theory .  

1. N o t a t i o n  

1.01. I f  [x] denotes  the  whole pa r t  of x and  if for some in teger  k, [10 k x ] = O ,  

we wr i te  x = O ( k ) ,  or x - O ( k ) = O  (so t h a t  x = O ( k )  is equ iva len t  to  the  recurs ive  

relation Ixl < 10-% 
I f  there  is a recursive funct ion N ( m l ,  m S . . . .  , mp) such t h a t  a re la t ion  

R (n, m> m S . . . .  , rap) holds for all ml,  m S . . . .  , mp and  all n > N (m D m 2 . . . . .  mp) t hen  

we say  t h a t  R holds /or majorant  n.  

More general ly,  if there  are recurs ive  funct ions  

N o(mJ, m 2 . . . .  , rap), N 1 (nl ,  mp m S . . . .  , rap) 

such t h a t  R (n v n2, ml, m S . . . . .  rap) holds for all  ml,  m., . . . . .  mp and  

n 1 > N O (m 1, m e . . . . .  rap), n 2 --~ ~V 1 (n l ,  ~'1, ms, - " ,  rap) 

then  R 1 (re1_ , n2, ml ,  . . . ,  m y )  is sa id  to hold  for m a j o r a n t  n 1, n 2 (the order  of nl ,  n 2 

being mater ia l ) .  
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1.1. E q u i v a l e n c e :  The recursive functions / (n ,  x), g(n,  x) are said to be equi- 

valent functions of x, or equal relative to n, if / (n, x) - g (n, x) = 0 (k) for majoran t  n. 

Similarly ] (n 1, n2, x), g (n 1, n2, x) are said to be equal relative to nl, n~ if / (n , ,  n 2, x ) -  

- g (n D nz, x) = 0 (k) for ma jo ran t  n 1, n 2. 

1.2. R e c u r s i v e  c o n v e r g e n c e .  A recursive function / (n ,  x) of a positive integral 

variable n and a rational variable x is said to be (recursive) convergent  in n, for 

a ~ x G b ,  if there is a recursive N ( k , x )  l such tha t  N ( k + l ,  x ) > N ( k , x ) > k  and for 

n l > n ~ > N ( k  , x), and a<=x~b ,  

/ (nl x) / (n~, x) = 0 (k). 

I f  N(k ,  x) m a y  be replaced by  a recursive N ( k )  independent  of x then / (n ,  x) is 

said to be uniformly rccursive convergent;  and if N (k) = k, / (n, x) is in s tandard/orm.  2 

t .3 .  Re l a t i ve  c o n v e r g e n c e .  / (m,  n) is said to be convergent  in m, relative to 

n, if there is a recursive M ( k )  such that ,  for ml, m 2_>M(k), 

] (ml, n) - ] (m2, n) = 0 (k), for majoran t  n. 

1.4. Re l a t i ve  c o n t i n u i t y .  / (n ,  x) is said to be continuous for a < x < b ,  relative 

to n, if ](n,  x) is recursive convergent  for a<x<=b and if there is a str ict ly in- 

creasing recursive function c (k) such that ,  for all xl, x 2 satisfying a<=x 1 < x  2 <= b and 

x ,  - x 2 = 0 (c  ( k ) ) ,  

/ (n, xl) - / (n, x2) = 0 (k), for majoran t  n. 

1.5. R e l a t i v e  d i f f e r en t i ab i l i t y .  / (n, x) is said to be differentiable for a =< x g b, 

relative to n, with a relative derivative /1 (n, x), if / (n ,  x) and /1 (n, x) are recursive 

convergent  for a ~ x <  b and if there is a str ict ly increasing recursive d (k) such tha t  

for all x, x* satisfying a < x < x* <= b and x* - x = 0 (d (k)) we have 

{ / (n ,  x*) -- ] (n, x)} / (x* - x) - / 1  (n, x) = 0 (k), 

for majoran t  n. a We observe that ,  if / (n ,  x) is relatively differentiable, then both 

/ (n ,  x) and /1 (n, x) are relat ively continuous in (a, b). 

i W h e n  it  is rendered  necessa ry  by  the  con t ex t  we deno te  the  connec t ion  of th i s  f unc t i on  N 

wi th  t he  func t ion  / by a t t a c h i n g  / to ~V as a suff ix.  I n  the  s ame  w a y  the  severa l  f unc t ions  i l l  (k), 

c (k)  a n d  d (k) of w 1.3, 1.4, 1.5 ca r ry  suf f ixes  when  needed  to avo id  ambigu i ty .  
2 E v e r y  un i fo rml y  conve rgen t  func t ion  ha s  an  equ iva l en t  in s t a n d a r d  form,  for if ] (n, x) is 

un i fo rml y  conve rgen t  t h e n  ] (N (k), x) is a n  equ iva l en t  in s t a n d a r d  form. 

a Re la t ive  d i f fe rent iab i l i ty  is therefore  un i fo rm in x. 
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1 .51 .  R e l a t i v e  c o n t i n u i t y  a n d  r e l a t i v e  d i f f e r e n t i a b i l i t y  are  i n v a r i a n t s  of t h e  equi -  

v a l e n c e  r e l a t i o n  a n d  a n y  r ecu r s ive  e q u i v a l e n t  of a r e l a t i v e  d e r i v a t i v e  of  a f u n c t i o n  

/ ( n ,  x) is i t se l f  a r e l a t i v e  d e r i v a t i v e  of / ( n ,  x). 1 

1.6.  R e c u r s i v e  d i f f e r e n t i a b i l i t y .  A r e c u r s i v e  / ( n ,  x) is sa id  to  be  r e c u r s i v e l y  

d i f f e r e n t i a b l e  (for each  v a l u e  of n) w i t h  d e r i v a t i v e  g (n, x), fo r  a g x g b, if  t h e r e  is 

a r ecu r s ive  d (n, k) such  t h a t  for  al l  x, x* s a t i s f y i n g  a ~< x < x* <~ b a n d  x* - x = 0 (d (n, k)) 

we h a v e  

{f  (n, x *) - / (n, x ) } / ( x*  - x) - g (n, x) = 0 (k) 

for each  v a l u e  of n. 

:1.7. R u l e d  f u n c t i o n s .  A r ecu r s ive  / ( n ,  x) is sa id  to  be  ruled for  a =< x ~ b if 

/ ( n ,  x) is u n i f o r m l y  ~ r ecu r s ive  c o n v e r g e n t  for  a ~ x g b a n d  if t he re  a re  r ecu r s ive  func-  

t i o n s  n n a~, Vr, b (n) a n d  t (m, n,  r) such  t h a t  

n ~ n n m 
a ~ = a ,  a~(n)=b, ar+x at ,  ar :at(m;n,r)  for  m > n ,  

a n d  

n f o r  n ~ X ~ n / ( n ,  x ) = v ~ ,  a~ ~a~+l ,  a n d  0 -<=r=<b(n ) - - l .  

A ru l ed  f u n c t i o n  is a b s o l u t e l y  b o u n d e d ,  for  if M 0 is t h e  g r e a t e s t  of ]] (0, a ~ [, 0 ~< r-_< b (0), 

a n d  Iv~ 0_-< r < b (0), t h e n  ] / ( 0 ,  x)[ g M 0 for  a g x g b. B u t  ( t ak ing  / (n, x) in s t a n d a r d  

fo rm)  ] / ( n , x ) - / ( O , x ) ] < l  a n d  so ] [ ( n , x ) l < M o + l  for  a l l  n,  and  x in ( a ,b ) .  

1 

T h e o r e m  1. A relatively continuous /unct ion has a un i /ormly  convergent equivalent. 

F o r  i f / ( n ,  x) is r e l a t i v e l y  c o n t i n u o u s  t h e n  t he r e  a re  r ecu r s ive  f u n c t i o n s  N (k, x) a n d  

c(k)  such  t h a t  

1 If ](n, x) is relatively differentiable with relative derivative ]1 (n, x) for a_<x<b and if 
]1 (n, x ) = 0  relative to n, then ] (n, x) = ] (n, a) relative to n, a ~ x g b. Let the points akr , O <= r <= i (k) 
divide (a, b) into equal parts of length Ak = 0 (d (k)), so that (,t (n, x) -- ] (n, akr)}/(x- akr) = 2" 0 (k) 
for a~ < x _<. ark+ 1), 0 g r ~ i (/c) --" 1, and majorant n, whence, by addition, ] (n, x) - ] (n, a) = 2 (b - a)" 0 (k), 
for any x in (a, b) and majorant n. 

2 The uniformity is needed to ensure that if Xn converges then / (n,  Xn) converges.-If / (n ,  x) 
is a non-uniformly convergent  sequence of step functions there may be sequences Xn for which 

] (n, xn) diverges. For instance, if in is a nest of intervals in [0, 1) enclosing the point l / V 2  (so that  
for every' rational x in (0, 1), x lies outside in from some n onwards) and if ] (n, x) = re in the closed 
interval in, and takes the value 0 outside, then for each n, / (n, x) is a step function, and fore'rational 
x, ] (n, x )=0  from some n onwards, so that ] (n, x) converges; but if Xn is an end point of in, 
] (re, xn) - n so that  ] (n, xn)--> oo. Of course ] (n, x) is not uniformly convergent, since for any two 
p ,q  with q > p  

](q, x ) - ] ( p ,  x)=q-p>__l  for any x i n iq .  
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for nj > n 2 > N (k, x), / (nl, x) - / (nm, x) = 0 (k), and 

for x* - x = 0 (c (k)), / (n, x*) - [ (n, x) = 0 (k), for majoran t  n, 

and therefore, if r (k, x) = / (N (k, x), x) we have, for q > p, 4) (P, x) - ~b (q, x) = 0 (p) and 

6(k ,  x * ) - 6  (k, x) = / (N (k, x*), x*) - / (m, x*) 

+ / (m, x * ) -  / (m, x) + / ( m ,  x ) - / ( N ( k ,  x), x) 

= 3- 0 (k), m majorant ,  

so tha t  6 (k, x). is uniformly convergent  and relat ively continuous, and since 

~b (n, x) - / (n, x) = ~b (n, x) -- / (m, x) + [ (m, x) -- / (n, x) 

= 2 . 0  (k), n majorant ,  

therefore 6 (n, x) is equivalent  to / (n ,  x). 

I t  follows tha t  we m a y  wi thout  loss of generali ty suppose any  relat ively con- 

t inuous / (n, x) to satisfy / (p, x) - / (q, x) = 0 (p), for q => p l i.e. to  be in s tandard  form. 

Theorem 2. A relatively continuous [unction has a ruled equivalent. 

I f  / (n ,  x) is relatively continuous for a-< x-< b, and if y is the least integer such 

tha t  b - a < l O  r, it suffices to take a m = a + r ' ( b - a ) / l O  r-~-c(~), b ( n ) = 1 0  "+c(n) then 

g(n,  x), defined by  the recursive conditions 

g(n,  a ) = / ( n ,  a), g(n, x ) = / ( n ,  am+l) for am <x<am§ 

is a ruled equivalent  of )t (n, x). 

Theorem 3 (a). I/ ,  /or each value o/ n, / (n ,  x) is recursively di]/erentiable /or 

a < x < b, u,ith a derivative /1 (n, x) then there is a recursive c~, such that a <c~ < b and 

{/(n, b) - / (n, a)}/(b - a) </~ (n, c~) + 0 (k), 

/or each value o/ n. 

For  if t t n ( x , y )  denotes {(/ (n, x) - / (n, y)}/(x - y), x < y ,  and if z is the mid- 

point  of (x, y) then /t~ (x, y) lies between /~  (x, z) and /~n (Z, y) and so ~tn (x, y) is 

exceeded by one of /t= (x, z), ~t~ (z, y); thus we m a y  bisect (a, b) repeatedly choosing 

a succession of intervals (a, b), (a~, b~), (a~, b.~) . . . . .  (am, bin), say, each of which is 

a half of its predecessor, and such tha t  ,a= (am, bin) is non-decreasing in r. But  for a 

1 Consequently, a relatively continuous function is absolutely bounded, for we may divide 
(a, b) into a finite number p of parts, each of length 0 (c (1)), such that for any two xl, x~ in the 
same part /(n, Xl)-]  (n, xz)= 0 (1), n majorant, and therefore ] (n, x l ) - ]  (n, xm)= 3" 0 (1) for n_~ 1, so 
that for any x in (a, b), [.f (n, x ) -  / (n, a ) [ = p . 0 ( l )  for n=>l. 
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suitable value of r, I t-  (a~, bT) =/1  (n, c~) + 0 (k), where we take c " k to  be either a~, 

or bT, whichever is in the interior of (a, b). 

Theorem 3 suffices for the purposes of the present paper  though  of course we 

could replace it by  the more familiar mean value theorem. 1 

The same a rgument  suffices to prove also Theorems 3 (b), 3 (c) and 3 (d)below.  

Theorem 3 (b). Under the conditions o] Theorem 3 we can ]ind a recursive c~ in 

(a, b) such that 

{ / (n ,  b) - / (n, a)}/(b - a) ~ /1  (n, c~) § 0 (/c) 

]or each value o] n. 

Theorem 3 (c). I f  f (n, x) is relatively di/]erentiable /or a<=x<=b, with relative 

derivative /1 (n, x), then there is a recursive c~ in (a, b) such that 

{ / (n ,  b) - / (n, a)} / (b  - a) <=/t (n, c~) + 0 (k), 

n ma~orant. 

Theorem 3 (d). Theorem 3 (c) holds also with the inequali ty reversed. 

Theorem 4. I /  s (n, x) is recursively di/ferentiable /or each n with derivative a (n, x), 

and if  (r (n, x) is uni /ormly recursive convergent, /or a ~ x ~ b, then s (n, x) is di//erenti. 

able relative to n, with relative derivative a (n, x), /or a g x <= b. 

I t  follows from definition 1.6 tha t  there is a recursive d (n, k) and, f rom de- 

finition 1.2, a recursive N (k) such tha t  a (n, x*) - a (n, x) = 0 (k) for x* - x = 0 (d (n, k)) 

and a (n, x) - a (N (/c), x) = 0 (k) for n ~ N (k). B y  Theorem 3 (a) there is a c~ such that ,  

for a<=x<x* <b, x < c ~ < x *  and 

{s  (n, x*) - s (n, x ) } / ( x *  - x) <= a (n, c~) + 0 (k), 

and therefore, for n ~ N (k) and x* - x = 0  (d (N (k), k)), 

{s (n, x *) - s (n, x ) } / ( x  * - x) - (~ (n, x) 

_<_ {~ (n, c~) - ~ (N (k), c~)} + {~ (N (k), c~) - ~ (N (k), x)} 

+ {~ (N (k), ~) - ~ (n, x)} + o (k) = 4-  o (k) 

and similarly by  Theorem 3 (b), for the same n, x and x*, 

{s (n, x*) - s (n, x)}/(x* - x) - a (n, x) >= 4 . 0  (k) 

which completes the proof. 

1 Vide R. L. GOODSTEII~ "Mean value theorems in recursive function theory", Proc. London 
Math. Soc. Vol. 52 (1950), pp. 81-106. 

12-  543808 Acts Mathematica. 92. Imprim6 le 30 d6cembre 1954. 
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3. 

In  p repara t ion  for some results on inverse functions we prove  nex t  

Theorem 5. I f  

(i) for a < x ~ b, ff (m, x) is cont inuous relat ive to m, and g = g (m, a) < g (m, x) </~, 

for ma jo ran t  m, 

(ii) for a-<t-<_=fl, / ( n , t )  is differentiable relat ive to n and /l (n, t) > lO-", for 

ma jo r an t  n 1, and / (n, a) = a, 

(iii) for a < x < b ,  / (n ,  g(m, x ) ) = x ,  relat ive to (m, n), then  

9(q, /(P, t ) ) = t ,  relat ive to (p, q), 

for any  t such tha t ,  for an x < b .  a < t < g ( m ,  x) for ma jo r an t  m. 

We s ta r t  by  proving t h a t  if ~ < t < g ( m , x )  for ma jo r an t  m and an x < b ,  then  

a < / (n, t) < b for ma jo r an t  n. 

For,  b y  (ii), (and Theorem 3 (d)), / (n,  t) is s t r ict ly increasing (for ma jo ran t  n), 

and so by  (iii) if a = < t < g ( m ,  x), for ma jo r an t  m, and x < b  then  

a = / ( n ,  ~ )< / (n ,  t ) < / ( n ,  g(m, x ) ) = x  +O(k )<b  

for a large enough k and for ma jo ran t  m, n. 

Using the uniform convergence of ] (n, x), g (n, x) and the  relat ive cont inui ty  of 

/(n, x) it follows from (iii) t ha t  

/ (n ,  g(m,  x ) ) = x + 3 . 0  (k) 

for m > c i ( k ) ,  n >  k and a <=x<b, and therefore,  for the same rn, n and for p >  k, 

/ (n,  g(m, /(p,  t ) ) )=/ (n ,  t ) + 4 . 0 ( k )  

for ~ < t < g ( m , x )  and x<b.  

But  by  Theorem 3 (d) there is a recursive c~ such tha t  

I/(n, g)-/(~,  t)] ~lg-tl" {/'(~, ~) +0(k)} 

for ma jo ran t  n, and therefore, for m ~ cl (k), p > k, 

1 I n  f ac t  i t  is s u f f i c i e n t  if []1 (n, t ) [ ~  10 -/e, re," m a j o r a n t  ~, for  / l (n,  t) is r e l a t i v e l y  con-  

t i n u o u s  a n d  so for  a n y  t w o  l )o in ts  t l, t 2 in  (~,/~) we  c a n  d iv ide  t he  i n t e r v a l  (t~, t 2) i n t o  a f in i te  
n u m b e r  of p a r t s  s u c h  t h a t  t h e  v a l u e s  of  / l ( a ,  t) a t  a n y  t w o  p o i n t s  in  t h e  s a m e  p a r t  d i f f e r  b y  
less  t h a n  1/10 I~1,  r e l a t i ve  to  n,  a n d  t h e r e f o r e  ]1 (n, t) h a s  t h e  s a m e  s i g u  a t  t~, a n d  t2, for  m a -  
j o r a n t  n .  
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g(m,/(p, t ) ) - t = 0  ( k - ~ -  1); 

hence g(q,/(p, t))=t, relative to p, q. 

Of course the result is unchanged if /(n,  t), g (m, x) are not in standard form. 

4. The reduced functiot~ 

Given a relatively continuous function /(n,  x) and a uniformly convergent g (n, x), 

both in standard form, then the function 

/ ( k + l ,  g (c r (k+l ) ,  x)) 

is called the reduce of / on g and is denoted by R~ (k, x). 

The following two theorems are immediate consequences of this definition. 

Theorem 6. For n > ~ k + l ,  m>=cf(k+l), 

R f (k, x ) - / ( n ,  g (m, x))= 2.0 (k + 1) 

and for q > p ,  

R~ (q, x) - R~ (p, x) = 2.0 (p + 1) = 0 (p), 

so that  R~ (n, x) is uniformly convergent in standard form. 

Theorem 7. If ~ (n, x), V (n, x) are equivalents of a relatively continuous / (n, x) 

and a uniformly convergent g (n, x), all in standard form, then Rr (k, x) is equivalent 

to R~ (L x). 

4.01. If / (n, x) is relatively continuous and g (n, x) uniformly recursively convergent, 

neither necessarily in standard form, and if ~ (n, x), V (n, x) are standard form equi- 

valents, we define R~ (k, x) to be R~ (k, x). 

4.1. We remark that  if g(m, x) is a ruled function then so is R~ (n~ x), and if 

g (m, x) is relatively continuous (as is /(n,  x)) then R~ (n, x) is relatively continuous. 

Theorem 8. If /(n, y), g (m, x) are relatively differentiable with relative deriva- 

tives / l (n ,y) ,  gl(m,x)  for a-<-x~b and h<_y<=H, and i f h g g { m , x ) ~ H f o r a _ - < x g b ,  

and majorant m, then R~ (n, x) is relatively differentiable, with relative derivative 

R~'(n, x) .gl(n,  x), for a ~ x g b .  

Consider any two x, X such that  a<=x <X <=b and let ~ (x, X) be the exponent 

of the least power of 10 which exceeds ] / ( X - x ) ;  Et the exponent of the least power 

of 10 which exceeds I g 1 (m, x)l + 1 throughout (~, b), and 

d (k) = max (d~ (k), dr (/c) +/~). 
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Then,  for X - x = 0 (d (k)), 

t(n, g(m, X ) ) - l ( n ,  9(m, x)) /1 (n, g(m, x)) .g  1 (m, x) 
X - x  

= ( f  (n, g (m, x)) + gl (m, x) + 0 (k)). 0 (k) 

and, for p~_k+~(x ,  X), 

and 

Rrg (p, X) - R~ (p, x ) _  ] (n, g (m, X)) - ] (n, g (m, x)) + 2.0 (k) 
X - x  X - x  

f l  __ / l  R~ (p, x)-  g~ (p, z) (n, g (m, x))- ~1 (rn, x) 

= (fl (n, g (m, x)) + gl (m, x) + 0 (k)). 0 (k), 

all for sufficiently large m and n, whence Theorem 8 follows. 

5. Integration 

I f  / (n ,  x) is a ruled funct ion in (a, b) so t h a t  there  are recursive funct ions a~, 

v7 and b(n) such tha t  

/ (n ,x )~-  ,~ ~ " O ~ r ~ b ( n ) = l ,  Vr, for a~ <x  ~ar~l, 

then the sum 
b (n) 1 

r = 0  

is called a relat ive definite integral  of / (n ,  x) f rom a to b, (a<b), and denoted by  

If (n, a, b). 

I f  a = b  we define 

and if a > b, 

I t (n ,  a, b ) = O  

If (n, a, b)-= - I  r (n, b, a). 

Taking  / (n ,  x) in s t andard  form (and using the  nota t ion  of definit ion 1.7) we 

see that ,  for N > n  and 

t ( N , n , r ) ~ s < t ( N , n , r + l ) ,  v~-vr  ~=0(n)  

and therefore 

I t (N, a, b ) -  I j  (n, a, b ) =  
b ( n ) ~ l  t ( N , n , r + l ) = l  

(v~ - ~r ) ( ~ 1  - a ) ' )  
r=O s = t ( N . n , r )  

= (b - a) .  0 (n) 

which proves  t ha t  I t (n ,  a, b) converges. 
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5.1. Theorem 9. If  / (n ,  x) and g(n,  x) are equivalent  ruled functions then 

I r (n, a, b) and Ig (n, a, b) are equivalent.  

:By combining the subdivisions on which / and g are constant  for a given n, we 

determine a subdivision e~, say, such tha t  both / (n ,  x) and g (n, x) are constant  in 

each subinterval  (c~, c~+1); if / ~  denotes the mid-point  of this subinterval ,  then  

I f (n ,  a, b) - I g  (n, a, b ) = Z  ( f ( n , / ~ )  - g ( n ,  t~~)) (c~+1 - cr'~)," 

but,  for N > n, / (n, /~)  - ] (N, /~ )=O (n), 

g (n, #~) - g (N,/ tT)  = 0 (n) 
and 

/ (N,/ tT) - g  ( N , / ~ )  = 0  (n), for majoran t  N, 

so  tha t  I i (n  , a, b ) - I g ( n ,  a, b ) = a ( b - a ) . O ( n ) .  

5.2. If  a recursive function / (n, x) has a ruled equivalent  [* (n, x) in (a, b) then 

/ (n, x) is said to be relat ively integrable in (a, b) with a relat ive integral 1I. (n, a, b); 

the integral of / (n ,  x) is also denoted bv Ir  (n, a, b). 

In  part icular  a relat ively continuous function is relat ively integrable. 

In  vir tue of Theorem 9 any two integrals of / (n ,  x) over (a, b) are equivalent.  

A relat ively integrable funct ion is bounded,  for if / (n ,  x) is relat ively integrable 

then it has a ruled equ iva len t /*  (n, x) which is absolutely bounded,  and if I/* (n, x) ] < M 

for all x and n, then I / (n ,  x ) l < i  + 1 for majoran t  n. 

Theorem 10. Darboux's Theorem. If  / (n, x) is relat ively integrable in (a, b), with 

a bound M, and /* (n, x) is a ruled equivalent  of / (n ,  x), in s t anda rd  form and con- 

s tant  (for each value of n) in the open intervals (aT, a~l) ,  O<=r<=b(n), and if (x~), 

O~r<-v, is any subdivision of (a, b) into subintervals of smaller length than  any of 

the intervals of the subdivision aT, 0 =< r <- b (k), and also smaller than  

(b - a) /{2 (M + 1) 10 k. b (k)}, 

and if ~r is any point  in 

then 
(xr, xr+l), O~<r__<v-1, 

V-I 

I f  (k, a, b) - ~ f (n, ~T) (xr+l - xr) = 6 (b - a) .  0 (k), for majoran t  n. 
r=O 

Since /* (n, x) is a ruled equivalent  of / (n ,  x), in s tandard form, therefore M § 1 

is an absolute bound of ]/* (n, x)l in (a, b), and 

I / .  (k, a, b) - 11 (k, a, b) = 3 (b - a).  0 (k), 
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~-I  v - 1  

/* (k, St) (Xr t l  -- Xr) -- ~ ] (n, $~) (xr+l -- xr) = 2 (b - a) .  0 (k), n majorant ,  
r = O  r = O  

and so it remains to prove tha t  

I1.(lr a, b ) -  ~ /* (k, $ ~ ) ( x r + , - z ~ ) = ( b - a ) ' O ( k ) .  
r = 0  

The proof is completed along familiar lines by  combining the subdivisions (a~) 

and (x~), and we omit  the details. 

Theorem l l .  If  / (n ,  x) is relat ively integrable in (a, b) then ] / (n ,  x)] is relat ively 

integrable in (a, b), and  l i t (n ,  a, b)[<=Iir f (n, a, b), relative to n. 

Theorem 12. If  [ (n, x) is relat ively integrable in (a, b) and if c lies between a 

and b then / (n ,  x) is relat ively integrable in (a, c) and (c, b) and 

If  (n, a, c )+  If  (n, c, b )=  I i  (n, a, b), relative to n. 

(In fact  I f  (n, a, c) + I I (n, c, b) - I / (n ,  a, b) = 9 (b - a).  0 (n).) 

Theorem 13. If  / (n, x) and g (n, x) are relat ively integrable in (a, b) then / (n, x) + 

+ (q, x) is relat ively integrable and 

I1(n , a, b)+ Ig(n,  a b)=I/+o(n,  a, b), relative to n. 

(The difference between the integrals is also 9 ( b - a ) . O  (n).) 

Theorem 14. If  / ( n , x ) = 0  for a_-<x=<b and n=>N, independent  of x, then 

I r  (n, a, b) = 0, for n _>- N. 

Theorem 15. If  / (n ,  x) is relat ively integrable in (a, b) and / (n ,  x)=>0 in (a, b) 

then If  (n, a, b) > - 10 -k for n satisfying 10 n _>- 3 ( b -  a) 10 k, i.e I I (n, a, b) ~ 0, relative 

to n. 

If  / ( n , x ) > 0  in (a, b) then I f ( n , a ,  b )>0 ,  relat ive to n. 

Similarly if / (n ,  x) is relat ively integrable and / (n ,  x ) = 0  (It) in (a, b), for ma- 

jorant  n, then I I (n, a, b )=  ( b - a ) - 0  (k), for majorant  n. 

Theorem 16. If  / (n ,  x) is relat ively integrable in (a, b) then If  (n, a, x) is rela- 

t ively continuous in (a, b). 

The proofs of Theorems 11 to 16 are omitted.  

Theorem 17. If  / (n ,  x) is relat ively continuous in (a, b) then  I i (n ,  a, x) is rela- 

t ively differentiable in (a, b) with a relat ive derivat ive / (n ,  x). 

Let  a_-<t<T-<b and ~ (n, x) = / (n, x) - / (n, t) so tha t  ~b (n, x) = 0 (k) for  t_-<x_-<T, 

T - t = O  (c (Ic)) and majorant  n. 
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Then, for T -  t = 0 (c (k)), 
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( I t ( n ,  a, T)  - I f  (n, a, t) } / ( T - t) - / (n, t) 

= (14 (n, t, T) § 18 (b - a) .  0 ( n ) } / / ( T -  t), by  Theorems 12, 13, 

= 2 . 0  (k), for majoran t  n, which completes the proof. 

Theorem 18. If / (n ,  x) has a relat ive derivat ive /1 (n, x) in (a, b) then 

I I, (n, a, b) = / (n, b) - / (n, a), relative to n. 

For  I), (u, a, x) - / 1  (n, x) = 0, relative to n. 

Theorem 19. In  the interval  (to, tj) the  funct ion g (n, t) is relat ively differentiable 

with a relative derivat ive gl (n, t), and ~__<g (n, t)=<fl for majoran t  n. 

If / (n ,  x) is relat ively continuous in (~, fl) and 

g (n, to) ~ a, g (n, tl) = b, relative to n, 
then 

I i ( u ,  a, b )=In~ .g , (n ,  to, tl), relative to n. 

We observe first tha t  from the two conditions g (n, to )=a ,  relat ive to n, and 

if(n, t 0 ) ~ g  for majoran t  n, it follows tha t  a>_-:r and similarly we can show tha t  

b-<_fl, so tha t  / (n ,  x) is continuous in (a, b), relat ive to n, and I f  (n, a, x) exists for 

a<=x <= b. Since R~ (n, t) and gl (n, ~) are both relat ively continuous in (to, tl) , there- 

fore the integral In~.g, (n, to, t) exists. 

If  we denote I r ( n , a , x )  by  F ( n , x ) ,  R [ ( n , t )  by  G ( n , t ) ,  and In~.g~(n,t o , t )  by  

H (n, t) it readily follows tha t  

G 1 (n, t ) -  H 1 (n, t) = 0, relative to n, 

and so G (n, t l ) -  G (n, t o ) = H  (n, tl), relat ive to n, whence, since G (n, to)= F (n, a) and 

G (n, t l ) -=F (n, b), relative to n, Theorem 19 follows. 

Theorem 20. If 

(i) for 0 _-<x g b, g (m, x) is differentiable relative to m with a relat ive derivat ive 

1 / R ~  (m, x), and 

g (m, 0) = :r =< g (m, x) _-< fl, for majoran t  m, 

(ii) for ~_-<tgfl, 6 (n, t) is continuous relat ive to n and ~b (n, t)_-> 10 ~, for ma- 

jorant  n, 

then g (n, x) and I6  (n~ cr t) are inverse functions, relat ive to n. 
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Let ] (n, t) denote I~b (n, ~, t) for ~ ~ t =< fl; then, for 0 ~ x-< b, the relative deriv- 

ative of Rg f (k, x) is 

R~ (k, x). gz (k, x) = 1, relative to /c, 

and therefore 

5.3. 

whence 

R~ (k, x)=x, relative to k, for O<=x<=b, 

[ (n, g (m, x)) = x, relative to m, n; 

and hence, by Theorem 5, for a_-<t <g(m,  x), m majorant and x < b .  

g(q,/(p, t ) )=x,  relative to p, q 

and so 

5./~. R~ (k, t )= t ,  relative to k. 

Formulae 5.3 and 5.4 prove that  [ (n, x) and g (n, x) are relatively inverse functions. 

6. The elementary functions 

6.t.  The  relatively exponent ia l  fumction. 

We define the relatively exponential function E (n, x) by the recursive equations 

E (0, x)= 1, E (n+ 1, x )=E (n, x) ~- x n + l / ( n  ~ - 1)! 

E (n, x) is uniformly convergent in any interval, for if N is any positive integer 

then, for J x [ g N  and n_->2N, 

I E ( n + r +  1, x ) - S ( n + r ,  x)[<-_{xn/n!}2 -(~+1) 

< {x ~- N/(2 N)!}2 -("-~N) �9 2-,,+a) 

<= { (2  N ) ~ / ( 2  X ) ! }  2 -~  �9 2 -(~+1) 

and so for m = > n ~ 2 N  

6.101. J E (m, x) - E (n, x)] < {(2 N) 2 N/(2 N)!}. 2-n, 

which proves that  E (n, x) is uniformly convergent for ]x I_-< N. 

We observe next that  

if 0_-<x<X then ( n + l ) x ' < ( X  ~ §  n 6.102. 

and so 

o < { ( x  ~§ - . n §  -- ~) -- (n + 1) x ~ } / ( X  -- ~) 

< ( n +  1) (X n - x n ) / ( X - x )  < n  ( n +  1 ) X  ~-1. 
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Whence if 0 _-< x < X =< N then  

( n + l ) !  - - x  ( n + l ) x  ~ / ( X - x ) <  N~ 

The inequal i ty  is symmet r ica l  in X, x and so holds also for O<=X<x<=N. Hence ,  

provided X,  x have  the  same sign, posit ive or negative,  and Ixl =< N,  IX]  g N we have  

1 I X n ~ x n + i  //I 
- ( n +  1 ) x  n X-x] 

( n +  1)! - x  

1 I I x p §  N N 
--(n+l)! [ Ixl Ixl -(n+l)lxln/llxl-I~ll< 

I t  follows t h a t  if v is the exponent  of the least  power  of 10 which is not  exceeded 

b y  NN/NI then  

for IxI<=N, IXI<=N, X/x>O and X - x = 0 ( k + v )  we have  

1 / x~+~-x~+~ t 
( n + l ) I  [ X - x  ( n + l ) x  ~ ]=O(k ) .  

On the other  hand,  whether  x, X have  the  same sign or not,  if l x l G ~ <  1, [ X I G  

we have  
1 X n+l - x n+l 2 n 

( n + l ) !  ~ ( n + l ) x n  =< n! _-<2a, for any  n. 

Hence  for all X,  x satisfying IX  I <-- N,  I x ] --< N,  X - x = 0 (k + v), 

1 /X n§ - x  n+l } 
( ~ + 1 ) i [  ~ - z  ( n + l ) x  n --0(k). 

and therefore  

Since 

E (n + l ,  X) - E (n + l ,  x) E (n, X) - E (n, x) 
X - - x  - E ( n ,  x ) -  X - x  

E ( 1 ,  X ) - E  (1, x) 

X - x  
E (0, x) =0,  

- E ( n - 1 ,  x) + 0 (k). 

it follows by  induction that. for any  x, X in ( . - N ,  +N) and X - x = O  (k-t-v) 

E (n, X) - E (n, x) 
X - x  

E ( n -  1, x ) = ( n -  1 ) . 0  (k) 

and thus,  for X - x = O ( k + n + v ) ,  
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E (n, X)  - E (n, x) 
X - x  

E (n - 1, x ) =  0 (k) 

i.e. for each value of n, E (n, x) is recursively differentiable with der iva t ive  E (n - 1, x). 

Hence,  by  Theorem 4, since E (n, x ) = E  ( n -  1, x), relat ive to  n, E (n, x) is differenti- 

able relative to n with der iva t ive  E (n, x) in the  in terval  ( - N ,  § N) for any  N.  

I t  follows tha t  the  relat ive der iva t ive  of 

E (n, - x).  E(n ,  x +a) 

is zero, relat ive to n, and so, 

E(n ,  - x ) . E ( n ,  x §  O) .E(n ,  a ) = E ( n ,  a), 

relat ive to n; in par t icular  

E (n, - x) .  E (n, x) = 1, relat ive to n, 
and so 

E (n, x) .  E (n, a) = E (n, x + a), relat ive to n, 

which is the fundamen ta l  relat ion for the relat ive exponent ia l  function. 

6.11. We note  tha t ,  for any  N and for I x l < N ,  E(n ,  x) is continuous in x, 

uni formly in x and n. 

For  if O < x < X < N ,  then  by  6.I02 

0 < E ( n , X ) - E ( n , x ) < ( X - x ) E ( n ,  X) g ( X - x ) E ( n ,  N). 

By  6.101, if n > 2 N ,  

E (n, N) - E (2 N, N) < N2'V/(2 N)! ;  

moreover ,  since NN/N! is the grea tes t  of N~/r!  for o-< r-< 2 N, therefore 

E (2 N, N) < (2 N + 1) NN/N~, 

and so 
0 < E (n, X)  -- E (n, x) < (X - x) {N 2 N/(2 A')! + (2 N + 1) NN//N!} 

whence 6.11 readi ly  follows. 

We have  incidental ly shown t h a t  

6.12. for [x[<N,  and any  m, O < E ( m , x ) < N ~ ' ~ / / ( 2 N ) ! + ( 2 N + I ) N N / N !  andw~ 

denote this upper  bound by  EN. 

6.2. T h e  r e l a t i v e l y  l o g a r i t h m i c  I tuact ion.  

6.21. The relat ively logari thmic funct ion log (n, x) is defined by  the equat ion 

log (n, x ) = / r , ~  (n, 1, x), x > 0, 

where rec (n, x) = I /x ,  x # O. 
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Accordingly log (n, 1 ) = 0 ,  log 1 (n, x)= 1Ix. 

B y  means  of the subst i tu t ion x = b t we readily prove  t ha t  

log (n, ab) = log (n, a) + log (n, b), relat ive to n. 

6.22. We observe nex t  tha t ,  since E 1 (n, x )=E(n ,  x), therefore 

E 1 (n, x) = 1/R~ ~ (n, x), relat ive to n; 

thus  given any  N > 0 ,  for 0 g x ~ N ,  E ( m ,  x) is differentiable relat ive to m, with a 

relat ive der iva t ive  1/R~ ~ (m, x) and (in the no ta t ion  of w 6.12) 

E(m, 0 ) = 1  ~ E ( m ,  x)<EN. 

Fur the rmore ,  for I<=t<=EN, l i t  is uni formly  cont inuous and  1/t>~l/Eg. 

Hence,  b y  Theorem 20, E(m, x) and log (n, x) are inverse functions,  and  for 

O~X~N~ 

(i) log (n, E (m, x))=x, re la t ive  to m, n; and  for  l < t < E ( m , x ) ,  m majo ran t  

and x < N,  

(ii) E (m, log (n, t ) ) =  t, re lat ive to  n, m. 

Since N is a rb i t ra ry ,  and  E (m, x) is a rb i t rar i ly  grea t  wi th  arbi t rar i ly  great  x, (m > 0), 

therefore (i) holds for all x ~  0 and (ii) for all t ~ 1. Bu t  

E (m, - x) = 1 / E  (m, x), relat ive to  m, 
and  

log (n, l / t )=  - log (n, t), relat ive to n, 

so t h a t  log (n, E (m, - x ) ) = - x ,  relat ive to m, n and  all x ~ 0 ,  and  (i) holds for all 

(rational) values of x. 

Similarly we can show tha t  (ii) holds for all t > 0. 

6.3.  T h e  r e l a t i v e l y  c i r c u l a r  f u n c t i o n s .  

We define the  re la t ively circular functions sin (n, x) and  cos (n, x ) b y  the  re- 

cursive equat ions 

sin (0, x ) = 0 ,  sin (n + 1, x ) =  sin (n, x ) + ( - 1 )  ~ x~n+l//(2n + 1)! 

c o s  (0, x ) =  0, cos (n + 1, x ) =  cos (n, x ) + ( - 1 )  ~ x2~/(2 n)! 

A tr ivial  induction shows tha t ,  for all n, sin (n, 0 ) = 0 ,  cos (n, 0 ) =  1. E x a c t l y  as for 

E (n, x) we can prove  tha t ,  for any  x, sin (n, x), cos (n, x) are differentiable relat ive 

to n, with relat ive der ivat ives  cos (n, x), - s i n  (n, x) respectively.  I t  follows t h a t  a 

relat ive der ivat ive  of sin S (n, x ) +  cos 2 (n, x) is zero, and so 
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sin 2 (n, x ) §  cos s (n, x ) =  1, relative to n. 

for any  x. 

So, too, a relative derivative of the function 

cos (n, c -  x) cos (n, x ) -  sin (n, c -  x) sin (n, x) 

is zero, and therefore 

cos (n, c ) =  cos (n, c -  x) cos (n, x) - sin (n, c -  x) sin (n, x), relative to n, 

or, writing x + y for c, 

cos (n, x + y) = cos (n, x) cos (n, y) - sin (n, x) sin (n, y), relative to n, 

whence differentiating (as functions of x) 

sin (n, x + y) = sin (n, x) cos (n, y) + cos (n, x) sin (n, y). 

6.31. For  ] x l g 4  and p_->l 

(sin (p + 2, x) - sin (p, x))/(sin (p + 2, x) - sin (p + 1, x)) 

~--1-  ( 2 p + 2 )  ( 2 p + a ) / x S < O  

so tha t  sin ( p + 2 ,  x) lies between sin (p, x) and sin ( p + l ,  x) and therefore sin (n, x) 

lies between sin (p, x) and sin (p + l ,  x) for n _-> p + 2 ->_ 3. 

Similarly, for n ~ p § 2 _-> 4, and [ x I =< 4, 

cos (n, x) lies between cos (p, x) and cos (p + 1, x). 

X 3 
I t  follows tha t  (for Ix[ g 4), sin (n, x) lies between x and x -  ~ and, in particular,  

for 0 g x _ - < l - 6 ,  between �89 and x, for n ~ 3 .  

6.32. ~re consider the behaviour  of cos (n, x) in the interval (1 �9 5, 1 �9 6). A simple 

calculation shows tha t  cos (4, 1 . 5 ) > 0 ,  and so a ]ortiori cos (3, 1 . 5 ) > 0 ,  so tha t  

cos(n ,  1 - 5 ) > 0  for all n ~ 3 .  Similarly cos(n,  1 - 6 ) < 0  for all n_->2. Let  ;in be the 

least integer between 15.10 n-1 and 16.10 n-1 such tha t  cos(n,  ( 2 n + l )  10-~)=<0 and 

cos (n, 2n l0  ~)> 0. ~n is a primitive reeursive funct ion for which we m a y  take ~t0=0. 

I f  we write an for ~n 10 -~ then (using Theorem 3 b) 

0 < cos (n, an) - cos (n, an § 10 -n) < 16/10 ~+1 
whence 

0 < cos (n, an) < 16/10 n~: 
and so 

1 17 
10n+ 1 < cos  (n + 1, a~) < 1 0 . +  1 
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(for (1 .6)  ~n/(2 n)! is ve ry  much  less t han  1/10 n+l, n ~ 2) and  therefore !cos (N, an)l < 

< 1 7 / 1 0  T M  for all N ~ n > = l .  Since sin (n, x)  >=3/4 for 1 . 5 ~ x ~ < 1 . 6  and  n ~ 3  it 

follows t h a t  

l eos (N,  oN) - c o s ( N ,  an) l >-- (3 /4 )  I ~  an I 

and so [ a N - : - a ~ [ < 5 / 1 0  n which proves  t h a t  am converges. Since cos (n, a n ) = 0 ,  rela- 

t ive to n, therefore sin (n, a n ) =  1 relat ive to n, and  f rom the addi t ion formulae  we 

derive, in turn,  cos (n, 2 a n ) =  - 1, sin (n, 2 a n ) = 0 ,  re lat ive to n, and cos (n, 4 a n ) = l ,  

sin (n, 4 a n ) =  0, relat ive to n and  so (by the  addi t ion formulae)  

cos (n, x + 4 an) = cos (n, x), sin (n, x + 4 an) = sin (n, x) 

relat ive to n, which proves  t h a t  cos (n, x), sin (n, x) are periodic relat ive to n, with 

re la t ive  period 4 an. Fur thermore ,  since cos (n, an - x) = sin (n, x), relat ive to n, there- 

fore cos (n, a n - x ) >  �89 x, for ma jo ran t  n and  0 < x _ ~  1 .6 .  

6.b,. I t  follows t h a t  if we define 

t an  (n, x)~-s in  (n, x) /cos  (n, x) 

then t a n ( n , x )  is defined for I xl ~ b < a n - 6  for ma jo r an t  n, and  any  5 > 0 ,  and is 

bounded above by  3 /5  in this range, and differentiable relat ive to n with relat ive 

der ivat ive  1 §  ~ (n, x). Wri t ing ~ (n, t ) =  1/(1 + t  ~) for any  n and  t, so t ha t  ~ (n, t) 

is re la t ively  integrable  with a relat ive integral  f rom 0 to t which we denote by  

a rc tan  (n, t), then, b y  Theorem 20, tan  (n, x) and a rc tan  (n, t) are inverse functions 

and,  for Ix I ~ b ,  

(i) a rc tan  (n, t an  (m, x ) ) = x ,  relat ive to m, n, 

and 

(ii) t an  (m, a rc tan  (n, t ) ) = t ,  relat ive to n, rn, 

for 0 =< t < tan  (m, x), m ma jo ran t  and x < _ - b < a n - 5  for ma jo r an t  n. Since an con- 

verges, given any  k ~ 1 we can find nk so t h a t  

an k - 1 / k  < a,~ < an k Jr 1 / k  for n _>- nk; 
taking 

x = 3 /k ,  b = 2 /k ,  = 
then  

x < b < an - 5, for n ~ nk, 
and 

cos (n, x) < 4/Ic, sin (n, x) > 1/2,  whence 

tan  (n, x ) >  k / 8 ,  relat ive to n, which proves  

t ha t  (ii) holds for all values of t. 
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6.5. The function which is relatively inverse to sin (n, x) can of course be de- 

fined in terms of arc tan  (n, t) bu t  it is simpler to proceed as follows: 

We define are sin (0, x ) = 0  

(2n)! x ~n+i 
arc sin ( n +  l, x) = are sin (n, x) + 22 n (n!) i 2 n +  1" 

For  Ix] _~ 1 it m a y  readily be shown tha t  arc sin (n, x) is recursively convergent,  and 

fur ther  that,, for Ix I<  1, the derivative of arc sin (n, x) for any  n, is uniformly con- 

vergent;  we denote this derivative by  ~ (n, x) and observe that ,  for I x ] <  1, ~ (n, x) 

is also differentiable with a uniformly convergent  derivative ~1 (n, x). A simple in- 

duct ion shows that ,  for Ix I < 1, 

x.~(n,  x )=( l - x~ ) .~ l (n , x ) ,  relative to n. 

Now for 0 < x < am - ~, 1 > (~ > 0 and n majorant ,  [sin (m, x) [ < 1 - ~ ~2 and there- 

fore,. 

sin (m, x).  Q (n, sin (m, x)) = cos ~ (m, x).  e 1 (n, sin (m, x)), relative to m, n, 

which proves tha t  Q (n, sin (m, x)). cos (m, x ) =  1, relative to m, n, and from this in 

turn  follows 

arc sin (n, sin (m, x)) = x, relative to m, n, 

for Ix] < a n -  ~, ~ > 0  and n majorant .  

Since Q (n, x ) >  1, for x > 0 ,  it follows now from Theorem 5 that ,  for Ix I <  1. 

sin (m, arc sin (n, x ) ) = x ,  relative to n, m, 

and the proof tha t  sin (m, x) and arc sin (n, t) are relatively inverse functions is 

complete. 

By  a method which we have described elsewhere 1 for proving the recursive 

irrat ionali ty of r:, we can replace an by  an equivalent  recursive Tn for which there 

is a recursive np such tha t  

Tn4 1 ~ Tn, Tp+np >~ T1J -~ 10 -v-nv �9 

With vn in place of an the ra ther  awkward condition 'l x] < b g a~ - O, for ma jo ran t  n ' ,  

becomes simply ' Ix[ g vv for some integer p' .  

The University College o/Leicester, England. 

1 In a forthcoming paper "The recursive irrationality of zt", Journal o/Symbolic Logic. 


