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The question of equivalence of matrices under the group G of unitary trans-
formations has received attention from several writers [1, 2, 3, 4]. Fundamental
in most investigations is the theorem of Schur [5] that any matrix 4 of complex
numbers can be transformed by some unitary matrix into triangle form: (a:;), a;;=0
whenever ¢ >j. A short proof of Schur’s theorem appears in Murnaghan's book [6].

This theorem alone is not enough to settle the equivalence question; two
matrices may be in triangle form, equivalent under G, and yet not equal. An

example is given by the matrices [Z ;] and [Z (I)]

If a matrix is in triangle form, the diagonal elements are the characteristic
roots. Schur proves further that it is possible to find a unitary matrix U such
that UAU* is in triangle form and has its characteristic roots arranged in any
order along the main diagonal. In order that two matrices be equivalent under
G it is clearly necessary that they have the same characteristic roots; this
condition is by no means sufficient.

This article investigates the question of equivalence under G:

A, By given; X to be found so that
(1) X4, X*=B;, XX*=1.

To solve problem (1), we follow a standard procedure: 4y is transformed
into a unique canonical form ;. This canonical form will have the properties
ordinarily ascribed to canonical forms. The definition of canonical form will be
determinative; the canonical form will be unique; and the definition will be so

arranged that two matrices equivalent under G have the same canonical form.

! The solution herewith presented was completed in 1948,-but not published until now.
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It seems unwise to us to apply Schur’'s theorem to 4, directly. For we do
not know how to find easily what unitary matrices will transform a triangle
matrix into another triangle matrix with the same main diagonal. For this
reason we prefer to consider 4; A1, a positive semi-definite hermitian matrix. By
Schur's theorem, there is a unitary matrix V such that D, =V (41 47)V* is
triangular. Hence D; is diagonal, and the diagonal elements are all real and
non-negative. Let it be assumed moreover that equal elements are grouped along
the main diagonal, with groups arranged in decreasing order of value. Set
F,=VA,V*; clearly F1 Ff= D;, and from now on we deal with F) instead of
with A,; the two are equivalent under G and will have the same canonical form.
There are three cases to consider. First, if Fl is scalar, define Cy= F; = A,.
The centralizer of F; is G. Second, if Fi F{ is scalar but F; is not scalar, set
I Ft=diag (r, r, ...,7), r>o0. By a corollary of Schur’s theorem', F; can be
transformed into diagonal form; W Fy; W* = C, = diag (¢! Vy, e*@ Vi, .. eo®™ Vy),
O2O0(1)E - Z0(n)<2m WW*=1. In (;, the equal diagonal elements are
grouped.

Hence the centralizer of ) is the subgroup of & which consists of matrices
which are of the form

) ‘ 1 |

Here the first box has dimension #; X#;, where ?; is the number of diagonal
elements of C; which are equal to €¢W Vr; the second box has dimension #, X f,,
where f, is the number of elements in the second group of equal elements on
the diagonal of (), ete.

In the third case Fj FY is diagonal but not scalar. Here, the definition of
canonical form for F, presents some difficulty. The subgroup G’ of G which
centralizes Fy I'f consists of matrices like the picture (2), where the dimensions
of the boxes are arranged to conform with the structure of F1FY. (We have
assumed that equal elements are grouped along the main diagonal of F,F1)
The logical thing to do is to define a canonmical form C; as a certain transform
of F, not under &, but under the subgroup of G which centralizes Fj Ff. The

! See lemma 3 of this article.
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definition is actually carried out by induction. In substance, F) is first trans-
formed so that a certain submatrix takes on specified form; at this stage it is
necessary to know the subgroup of G’ which leaves unaltered the specified sub-
matrix of F;. The definition is so arranged that this last subgroup consists of
matrices of the form (2), with some modifications. The subgroups of G’ which
are involved are called generalized diagonal unitary groups, and are defined below.

Before proceeding to the gemeral inductive deﬁnition; which is necessarily
abstract, we prefer to study special cases. For the first case, consider the
possibility that the characteristic roots of Fy FT are distinct. It is notexcluded
that F; be singular, so that one of the characteristic roots of FiF{' is zero.
The case of distinet characteristic roots is the one which will oecur *‘in general”.

Here, F1 F{ = diag (ry, 72, ..., Tn), 71 > 73 > --- > 1. The subgroup of G which
centralizes F; FY is the set of diagonal unitary matrices diag (¢/¢W, 0@, . efétnl),

Let us see how Fy is transformed by such a matrix; for simplicity, let

Ju, Sz, S

Fi=1/fa, fa, Jaa

Sa1, Jezs Jaa

Then diag (¢'?, €%, %) F, - diag (¢7%¢, ei7, e71V)
Jis Si2 €970 figelvie
= | /€77 fa Jes €V

Jan €07 foa 77NV fiy

If each of the numbers fis, fis, for, fa1 i8S zero, then F; is transformed essenti-
ally by the (»— 1)X(»— 1) matrix diag (¢, ¢'¥), and the definition of canonical
form may be expected to proceed by induction. If one of the elements in the
first row or column is not zero, then we choose the transforming matrix so that
the first of fip €970 fia €V70, fo, €20710, fo, €/9~'% which is not zero shall be real
and positive. To fix the ideas, let fi; = 0, fi3 % 0. The transformed matrix K;
is not exactly the canonical form eventually to be defined; however the (1, 3)th
element of K, is positive, and the same fact is true concerning all transforms
of K; by the group diag (¢'%, ¢'?, ¢/%). This last group involves fewer parameters
than do any groups mentioned before, so that the problem of defining a canonical
form has been pushed one step ahead and it may be expected again that induc-
tion would succeed. Indeed the eanonical form is completely determined by the
additional specification that the first of the numbers fy, €977, fop €079, fopei977¢
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which is not zero shall be real and positive. If all three of fy, fes, fo2, are
zero, then the last group leaves unaltered not only the (1, 3)th element of K,
but also every element of K,, so that K; has been reduced to canonical form

in any case. Next we reduce

i—¢ —I1+2 —3—52 o °
2 V3 2V3
3‘*:7’ 2 :I+Z o o
V3 3 3
B=lii —11gi +
! Lrse 573 o
2V3 3 6
0 o o 1 o)
o) o o o —I

to canonical form. Note that Fi Fi= diag (4,4, 4, 1,1). If a hermitian matrix
is known to have characteristic roots 4,4,4,1,1, it is of course possible to
transform the matrix into Fy FT by a unitary matrix, and it is not hard to show
that a suitable transforming matrix can be found rationally in a finite number
of steps. The unitary matrices which centralize F; F7 can be written in the form

X33 T2 13 O o
Tgy g Xog O o

X =| a3 a3z a3 O o =

Xu X1z
[X21 XzzJ

(o] (o] O Xsa Xss

where X' is the principal 3X 3 minor, and X* is the lower right 2 X2 minor,
etc. Let F,; be divided into sub-matrices in a conformal manner:
1;'11 F12
e[ 2
J
The transform X F); X* is equal to
Xll F*ll Xlls F12 \
[ j X2 22 xees ]
where F?' =0, F2=o0. If we wish to reduce F, to canonical form by trans-
forming by a matrix from the centralizer of Fy F7, it is necessary to use induc-
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tion, that is, to assume that the equivalence problem has been solved in the
2X2 and also in the 3X3 case. Let us recall briefly what the solution was, as
regards X! F1 F11*  Since F™ F* is scalar, but F* is not scalar, we have to
deal with case 2; F!' can be transformed into diagonal form. In order actually
to carry out this transformation, it is only mnecessary to know the characteristic
roots of F', They are 2, 27, —27, so that the canonical form for F is
diag (2, 2¢, —21) and the canonical form for F, is diag (2, 27, —27, 1, —1).
The example

1—¢ —1+1 —3—35¢
= 0 —= o)
2 V3 2V3
3+ 2 o —1+73 o
V3 3 3
F, = . . .
I—;& —I1+572 o 5+ 32 o
2V3 3 6
o) o o) I o
o) o o o —1

presents a more general problem than the preceding examples.

We have F; Ft = diag(4, 4, 4, I, 1), so that the centralizer of Fy F7 is the
same as in the preceding example. The matrices F!, F2 F2' F? which have
to be considered are different in this case, so that it is no longer true that
F™ F11* i3 gcalar. It is necessary to find a matrix X! so that X F¥ F1i* X11*
is diagonal, and then to transform X! F!! XY* by a group with fewer para-
meters, namely the centralizer of X1 F! F11* X1* et If the characteristic
roots of F' F'* are determined, all these steps can be performed in a finite
number of steps and rationally.

The canonical form of an arbitrary matrix is defined inductively according
to a plan suggested by the preceding example. In order to have a successful
inductive definition, it is necessary to comsider not only matrix equations such
as X' F11 X1* — [11 which occur in the main stream of the induction, but also
equations such as X F'2 X22* = J*2, The occurrence of this last equation is
illustrated in the first example, where however all the matrices have dimension 1:
€% fige™i? = l1,. As each partial reduction is carried out, it is necessary to give
a simple rule for determining what is the group which leaves the transformed
matrix unaltered in the spots which have been picked out for improvement.
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The definition as given below is finite, rational, and constructive at all steps,
except that it is necessary to find the characteristic roots of a matrix ¥y, or of
a submatrix FY, or of an auxiliary matrix F'2 F'** of lower dimension than the
matrix I. In many accepted solutions of equivalence problems, it is necessary
to find the characteristic roots of a matrix. I do not know whether the present
problem could be solved without the resolution of algebraic equations of degree #,
where # = dim I';. On the other hand, a direct attack on the equation UF,U=1,
leads to equations of degree much greater than n.

X4 o

(3) Let X = [o X2

] be a unitary matrix, and let F; be such that F; F7 is

the direct product [r °
o s

] of two scalar matrices, the dimensions of which are

dim X" and dim X®2 respectively. The unitary matrices which fix F1 F7 are those
Fu pre
. pee
matrices conformal with the above division of X into submatrices. Then

which have the form of X. Let I = [ ] be the division of F; into sub-

( ) X I X* [ Xll I('ll Xll* Xll I,‘12 X22* ]
4 1 =

X22 F21 X22a= X22 F22 Xzzv

This last equation makes it clear that in order to make a definition of
canonical form by induction, it will be necessary to consider the matrix equation
PAQ=DB, where A, B are rectangular, and P, @ are unitary. The necessary
facts are stated in the following lemma.

Lemma 1. Let dis be a k(1)X%k(8) matrix. There are two unitary matrices
UV and U*® of dimensions k(1) X%(1) and %(B8) X k(B) respectively such that
U*W 415 U*# has the form

(s) diag (ry, ry, ..., rm_1), bordered by zeros, where 7y, 7a, ..., ¥mu—1 are real
and positive: 7, >73> v > 151> 0. [The border of zeros may consist of any
number of rows, any number of columuns, and in particular the border may be
absent.]

Let us return now to equation (4). If by chance F'!' and F** were them-
selves both scalar, equation (4) would read

I‘ll Xll _l;’12 X22*
)

(6) XF X* =
. X22 I;V21 )(22&%7 F22
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so that we should seek a canonical form for X F'*? X** (lemma 1). Next it is
necessary to know which matrices of the form (5) leave the matrix (6) unaltered

in the upper right-hand box. Lemma 2 describes these matrices.

Lemma 2. Let 413 have the form (5). Then the equation A5 = UV 41, U
holds if and only if U*Y has the form diag (X¥W, XK@ XK1 XK(m)
and at the same time U*® is equal to

diag (XK(I), X]\'fm’ ce XI\'(m—l]’ XI\’(m+1))‘

This means that U*V and U*#® are equal element for element in the first
K(1)+ K(2)+ --- + K(m— 1) rows and columns; the superscript K (j) denotes a
matrix of dimension dim r;. The symbol X¥™ is to be expunged above if no
row of (5) is zeros, and the symbol X¥™+1 jg to be expunged if no column of

(5) is zeros. We prove now

Lemma 3. Let 4; be an nX#n matrix such that 41 A7 is scalar. Then 4, can
be transformed into diagonal form by some unitary matrix. In particular, then,
any unitary matrix can be transformed into diagonal form by some unitary
matrix,

Proof: By Schur’s theorem, 4; can be transformed into triangular form B
by a unitary matrix, and thus B; is a triangular matrix such that By Bf is
scalar. If B; Bf =0, it is clear that B; = 0. If on the other hand B; Bi=r,
where 7> 0, then » is real and positive, and L‘Bl is both unitary and trian-

r
gular, hence diagonal.

We give now a general definition of the groups which appear at successive
stages in the inductive definition of the canonical form of 4;. For each value
of k, v satisfying the inequalities below, let X""=(2}") be a X% matrix of
indeterminates,

12k=n 12vE[n/k]; let 1 k() S n,

1oty S [nlk@I(t=1,...,8); let Z¢_ & (t) = n.
The symbol
X = di&g (Xk(l), 1)(])’ Xk(Z),'L'(Z)’ - Xk(s), ! (s))

is called an nxn matrix formula. In the symbol X*®.*@_ the first superscript
k(f) is equal to the dimension of the matrix X*®.*® and the second superscript

v(f) is a counting superscript; if k(f) = % (u), v (f) = v {u), then X< v() ypd Xk v
are necessarily equal.
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Examples are the following:

diag (X1, X%2 XL3)={o b2 o ;

I
8
=
»
o

diag (Xb?, X1.2 XbLY)

-

24 2% o o

21
. Am Ty O [0}
diag (X21 X2%?)= o
o AT 4T
o af a3

which differs only in notation from

Xy X O (o}
Xy T9ga O o)

s
o O X33 Ty

(o] (o] . Ta3 "1/'44
and diag (X%!, X21), which differs only in notation from the formula

X3 Xy O O
(o] o] X1 Ti9

o o Zo Tog,

If the indeterminates in the symbol X be replaced by complex numbers so
chosen that X becomes a unitary matrix after the substitution, each submatrix
Xk v} becomes a unitary matrix also, and conversely if each submatrix X*().v(
is unitary, then so is X. The notation %(j) is more easily printed than is &;
otherwise we would use the latter in place of the former.

The class of nX# unitary matrices which can be obtained by substitution
in a single matrix formula fill out a group G; G is called a generalized diagonal
unrtary group and is generated by the formula.
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To give another example, a formula for the group of unitary matrices in

the form
ry O O O

(6] Xy X3 O

0 x4 Xz O

O O O O

0O 0 O w

0 0 0 0 x

would be diag (X!, X*, X2 XU

It is true that for every g.d. group, there is a matrix which is commutative
whith the matrices of this group and with no others. Moreover if the centralizer
of a matrix is a gen. diag. unitary group, it is easy to tell (by inspection) what
this group is, and to write down its generating formula.

Rather than find a canonical form for matrices under transformation only
by the full unitary group, we prefer to find a canonical form under transforma-
tion by any gen. diag. unitary group. The canonical form will have the pro-
perty that its centralizer is some gen. diag. unitary group. In view of the large
pumber of such groups, it is to be expected that there will be a large number
of canonical forms; too many to be described in any such pictorial language,
as Jordan’s canonical form, for example. On the other hand the description of
canonical form, while not pictorial, is straightforward and exact, and the method
for obtaining it is perfectly workable in any practical case.

The advantage of describing a canonical form for a matrix under any gen.
diag. group is this, that an ordered pair of matrices 4,, 4, can be reduced
simultaneously to a canonical pair C;, (3. This is done by first transforming
4y, A3 to the pair (Cy, Dy), and then transforming D, to canonical form by
matrices of the gen. diag. group which centralizes C;.

In order to make a definition of canonical form for 4; under group G,
we shall assume, as a hypothesis for the inductive definition, that a canonical
form has been defined for all matrices A under all gen. diag. groups G4y when-
ever either

(8) dim Ay = dim Gy <#u, or
(¢) dim dg = dim Gy =n, Gyc G; and

that moreover, the centralizer of the canonical form for A4, is a gen. diag. group

(of dimension dim A,). We shall give a definition of a canonical form for 4,

under G by carrying out a simple construction and then calling on the indue-
22- 642128 Acta mathematica, 86
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tion hypothesis. We shall prove at the same time that the centralizer of this
canonical form is a gen. diag. unitary group. As we have already remarked, it
is then easy to describe this centralizer and find the formula which generates it.

Many definitions not ordinarily so described in the literature are in fact
inductive definitions in the sense of the preceding paragraph. The Peano de-
finition of number, the Jordan canonical form for a matrix, and almost all
finite and transfinite constructions are really of the above type. The definition
is like a recursion formula, in that both allow actual computations to be carried
through, in a finite, possibly very large number of steps. Definitions which are
not of this type are those based on existence theorems of one sort or another.

The form of the definition to be given is different, depending on the form
of the gen. diag. group &; there are three cases. Under each case are subeases,
depending on the character of the matrix 4;. It should be observed that the
inductive method of definition is effective not only for the reasons given above,
but also because when dim G = 1, the canonical form of 4, is A;, and the
centralizer of this canonical form is G, so that the inductive definition may begin.

Case I. The case when the transforming group is the entire unitary group
has already been discussed. There are three subcases: Ta, A4, is scalar; I'b, 4; 41
is scalar but A, is not scalar; Ic, 4 AT is not scalar. In case Ia, 4; is com-
mutative with every element of G, and so is its own canonical form. The
centralizer of A; is a gen. diag. unitary group, namely G. In case Lb, the

canonical form for A4, is diagonal:
Oy = diag (0O Vy, 6@V . 0@ Vy) 0<0(1) S - 2 0n)<2m

The diagonal of ( has k(1) equal elements, followed by k(2) elements equal to
each other but different from any of the preceding omnes, etc. The centralizer
of () is the group consisting of unitary matrices of the form

l

. L
where the first box is k(1) X #(1), the second box is %(2) X k(2), ete. This group
is generated by the matrix formula diag (X*®1 X*®.2 ) and is a gen. diag.
unitary group.

It is in case I¢ that the induction hypotheses (8), (¢) are used. There is a
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matrix W such that W(4; A7) W* is diagonal, indeed with diagonal elements real
and positive and written in decreasing order of magnitude; say %(1) equal ele-
ments, followed by %(2) equal elements, each less than the preceding, etc. Set

w=WA,W?* Then Fy F{ = WA4; AT W*. The matrices which transform Fy F7
into itself are precisely the matrices of the gen. diag. group diag (X*® 1 Xk®.2 ),
Moreover, if K; is a transform of F; by any matrix of this group, then Ky K{ =
= F1 FY. The canonical form for A, shall be the (already defined) canonical form
for F; under this last group. Actually W is an arbitrary representative of a certain
coset of this group; any other representative of the same coset could take the
place of W in the discussion.

Case II. We must now define a canonical form for a matrix under a gen.
diag. group which is a proper subgroup of the full unitary group. We prefer
to do this in stages; first, suppose the transforming group is G,= {diag X*®1
Xkan oo XD that is, suppose each matrix of the group has the same
E(1)X k(1) watrix X*®1 repeated along the main diagonal a certain number of
times. Let A;; be a conformal subdivision of A4, into %£(1)X k(1) submatrices
(¢,j=1,2,...,n/k(1)) There are three subcases. First, if each of the submatrices
A1, Ay; is scalar, then the transforming group operates essentially on the minor
(4i)2,j>1 of A, for which a canonical form has been defined, according to
the induction hypothesis. By the same token, the centralizer of this canonical
form is a gen. diag. unitary group.

Second, let each submatrix 4;; be scalar; let not all Ay; be scalar; let 41; be
the first of the A;;(¢=12,...) which is not scalar. The transform of A4, by
the arbitrary matrix diag (X*®, X*¥® X*®) of the transforming group re-
places the submatrix Ai; of 4; by the submatrix X*® 4,; X*®* Since A;; has
dimension lower than that of 4;, a canonical matrix has been defined among
all matrices of the set X*M 4,; X*®* and we choose for X*® some matrix U*®
for which U*®W 4,; U*®* is in the (uniquely defined) canonical form.

Again all the matrices which transform 4;; as U*® does belong to some
coset of the centralizer of U*® A4, U*W*  According to the induction hypothesis,
this centralizer is- a gen. diag. unitary group. Let the general element of this
group be Y. Let &3 be the group generated by the formula which arises
when each symbol X*®»1 in the generating formula for G, is replaced by Y:
G, = {diag (Y, Y, ..., Y)}.- Clearly G5 is a gen. diag. group properly contained
in G,. The canonical form for 4, is defined as the (already defined) canonical
form for diag (U*®, UY®, . UFD) 4, diag (UFO*, pr@* | U¥®*) under Gj.



308 J. Brenner.

In the third subecase, not all the A4;; are scalar, so that some transform of
A, under G, does differ from A; in one of the first k(1) columns.

Here the reasoning proceeds as in the second subcase; we choose j so that
Aj1 is the first of the A4,; which is not scalar; ete.

Case III. In this case we admit for a transforming group a more general
type of proper subgroup of the full unitary group, namely the group G, =
= diag (X*W e Xk@v@ X*O.vE) gand in order that cases IT and III be
mutually exclusive, we insist that at least two of the X's in the above formula
be different: for at least one pair of numbers w, w, (k(w), v(w) 5 (k @), va)). The
construction is similar to that in case II. As in that case, so here we have to
notice that X A1; X* = 41; for all  only if A;;is scalar; we must further notice
that X A;; Y* = Ay; [or Y Aj; X* = 4;1] for all X, Y only if Ay; = 0[4;; = 0].
Then we depend on lemmas 1 and 2 instead of on the induction hypothesis (as
in case 1I). In the end the transforming group is a gen. diag. unitary group
because of lemma 2.

The inductive definition is now complete.
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