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The question of equivalence of matrices under the group G of unitary trans- 

formations has received attention from several writers [I, 2, 3, 4]- Fundamental  

in most investigations is the theorem of Schur [5] that  any matrix A of complex 

numbers can be transformed by some unitary matrix into triangle form: (aij), aq=o 

whenever i > j .  A short proof of Schur's theorem appears in Murnaghan's book [6]. 

This theorem alone is not enough to settle the equivalence question; t w o  

matrices may be in triangle form, equivalent under G, and yet not equal. An 

/oO:/ [ol  example is given by the matrices and o " 

I f  a matrix is in triangle form, the diagonal elements are the characteristic 

roots. Schur proves further that  it is possible to find a unitary matrix U such 

that  UA U* is in triangle form and has its characteristic roots arranged in any 

order along the main diagonal. In order that  two matrices be equivalent under 

G it is clearly necessary that  they have the same characteristic roots; this 

condition is by no means sufficient. 

This article investigates the question of equivalence under G: 

A1, B I given; X to be found so that  

(I) X A 1 X * = B 1 ,  X X * = I .  

To solve problem (I), we follow a standard procedure: A1 is transformed 

into a unique canonical form C1. This canonical form will have the properties 

ordinarily ascribed to canonical forms. The definition of canonical form will be 

determinative; the canonical form will be unique; and the definition will be so 

arranged thar two matrices equivalent under G have the same canonical form. 

1 The w herewith  presented was completed in 1048,-but  not  publ ished un t i l  now. 
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I t  seems unwise to us to apply Schur's theorem to .41 directly. For  we do 

not  know how to find easily what  uni tary  matrices will t ransform a t r iangle  

matriK into another  t r iangle matr ix  with the same main diagonal. For  this  

reason we prefer to consider A1A~, a positive semi-definite hermit ian  matrix.  By 

Schur's theorem, there is a uni tary  matr ix V such tha t  D1 = V(At A~)V* is 

t r iangular .  Hence D1 is diagonal, and the diagonal  elements are all real and 

non-negative. Le t  i t  be assumed moreover tha t  equal elements are grouped along 

the main diagonal, with groups arranged in decreasing order of value. Set 

F I =  VA1V*; clearly /Vl~T= D1, and from now on we deal with F1 instead of 

with A1; the  two are equivalent under  G and will have the same canonical form. 

There are three cases to consider. First ,  if /;~ is scalar, define C1 = ~F' 1 =A1. 

The centralizer of F1 is G. Second, if F1F~  is scalar but F1 is not  scalar, set 

F1F{= diag (r, r , . . . , r ) ,  r ) o .  By a corollary of Schur 's theorem 1, F1 can be 

t ransformed into diagonal form ; W F1 W* = C1 = diag (e ~ ~/1) l / r ,  d" ~ <2) I/r, . . . ,  d'~ (~) I/r), 

o < 8(i)  < ... < O(n) < 2z ,  W W* = I. In  C1, the equal diagonal  elements are 

grouped. 

Hence the centralizer of C1 is the subgroup of G which consists of matrices 

which are of the form 

(2) 

D P 

{ 
1 

/ 

Here the first box has dimension t lX t l ,  where t 1 is the number  of d iagonal  

elements of C~ which are equal to e ~e(1) I/r;  the second box has dimension t2 X t2, 

where t2 is the number  of elements in the second group of equal elements on 

the diagonal  of C~, etc. 

In  the th i rd  case F1 F~ is diagonal  but  not  scalar. Here,  the definition of 

canonical form for F 1 presents some difficulty. The subgroup G' of G which 

centralizes F1/~* consists of matrices like the picture (2), where the dimensions 

of the boxes are arranged to conform with the s tructure of F1F~.  (We have 

assumed tha t  equal elements are grouped along the main diagonal  of F1/7~.) 

The logical th ing  to do is to define a canonical form C1 as a certain t ransform 

of F1 not  under  G, but under  the subgroup of G which centralizes F1F~.  The 

1 See  l e m m a  3 of t h i s  art ic le .  
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definition is actually carried out by induction. In substance, ~ is first trans- 

formed so that  a certain submatrix takes on specified form; at  this stage it is 

necessary to know the subgroup of O' which leaves unaltered the specified sub- 

matrix of F1. The definition is so arranged that  this last subgroup consists of 

matrices of the form (2), with some modifications. The subgroups of G' which 

are involved are called generalized diagonal unitary groups, and are defined below. 

Before proceeding to the general inductive definition, which is necessarily 

abstract, we prefer to study special cases. For the first case, consider the 

possibility that  the characteristic roots of trlT'~ are distinct. I t  is not excluded 

that  /~  be singular, so that  one of the characteristic roots of F1~'1" is zero. 

The case of distinct characteristic roots is the one which will occur "in general". 

Here, T'l F t  = diag (rl, r , ,  . . . ,  r~), rl > r2 > " '  > r,~. The subgroup of G which 

centralizes F1 F~ is the set of diagonal unitary matrices diag (e ie(1), e i~ . . . .  , d~ 

Let us see how F 1 is transformed by such a matrix; for simplicity, let 

A1, f12, fla 

/~1 = A1, A2, f ,a 

Then diag (e ~~ e i'p, e i Y ' )  . F 1 . diag (e -i~ e-4'P, e-*'/') 

[ f l l  f ie  ei'f-' o fla ei~'-i~ 
! 

= I f"' e"~ 
I 

If  each of the numbers f12, flz, f~a, Jal is zero, then /71 is transformed essenti- 

ally by the ( n - - 1 ) •  matrix diag (d'e, e~W), and the definition of canonical 

form may be expected to proceed by induction. I f  one of the elements in the 

first row or column is not zero, then we choose the transforming matrix so that  

the first of fx2 ei'f-*~ fla eiW-i~ f ~  d ~  .fs~ ei~ which is not zero shall be real 

and positive. To fix the ideas, let flz = o, fla # o. The transformed matrix K1 

is not exactly the canonical form eventually to be defined; however the (I, 3)th 

element of K1 is positive, and the same fact is true concerning all transforms 

of K1 by the group diag (e i~ d'P, d~ This last group involves fewer parameters 

than do any groups mentioned before, so that  the problem of defining a canonical 

form has been pushed one step ahead and it may be expected again that  induc- 

tion would succeed. Indeed the canonical form is completely determined by the 

additional specification tha t  the first of the numbers f~l e~~ f2e d~ .fa~ eiq'-i~ 
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which is not zero shall be real and positive. I f  all three of f21, f~3, f3~, are 

zero, then t he  last group leaves unaltered not  only the (I, 3)th element of K1, 

but also every element of K1, so that  K1 has been reduced to canonical form 

in any case. Next  we reduce 

V l  = 

I - - i  ~ I  + i  - - 3 - - 5 /  
o o 

2 V3  2 g 3 

3 + i  2 - - i + i  
- 0 0 

V3 3 3 

i - - i  - - I + 5 i  5 + 3  i 
0 0 

2 V3 3 6 

0 0 0 I 0 

0 0 0 0 - - I  

to canonical form. Note that  /71F{= diag (4, 4, 4, I, I). If  a hermitian matrix 

is known to have characteristic roots 4 , 4 , 4 , 1 ,  I, it is of course possible to 

transform the matrix into F I F ~  by a unitary matrix, and it is not hard to show 

that  a suitable transforming matrix can be found rationally in a finite number 

of steps. The unitary matrices which centralize F I F {  can be written in the form 

X l l  X12 

X21 X22 

X = x31 x32 

0 0 

0 0 

X13 O O 

X23 O O 

X33 O O 

O X i i  X45 

0 X54 X55 

= [ x l l  X12] 

X21 X22 ' 

w h e r e  X 11 is the principal 3 • 3 minor, and X e2 is the lower right 2 •  minor, 

etc. Let F1 be divided into sub-matrices in a conformal manner: 

[ /711 FI2 } 

F1 = F~ 1 F~ ~ �9 

The transform X FIX* is equal to 

{ Xll  /~ql X 11. F 12 ] 

F~l X22 F ~  X22. 

where F 21= o, F 12= o. I f  we wish to reduce F1 to canonical form by trans- 

forming by a matrix from the centralizer of F1 F~I, it is necessary to use induc- 
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tion, that  is, to assume that  the equivalence problem has been solved in the 

2 X 2 and also in the 3 • 3 case. Let  us recall briefly what the solution was, as 

regards X 11 F 11};'11.. Since F n F 11. is scalar, but F n is not scalar, we have to 

deal with case 2; F 11 can be transformed into diagonal form. In order actually 

to carry out this transformation, it  is only necessary to know the characteristic 

roots of iv n. They are 2, 2i,  - -2 i ,  s o  that  the canonical form for F 11 is 

diag (2, 2 i, --2 i) and the canonical form for F1 is diag (2, 2 i, --2 i, I ,  - - I ) .  

The example 

I - - i  
2 

3 + i  

FI= 
I - -$  

2 

O 

- - i  + i  - - 3 - - 5 i  
O 

2 - - I + ~  
- O 

3 3 

O 

O 

- - I + 5 i  5 + 3 i  
O ..... 

3 6 
0 

0 0 I 0 

0 0 0 0 - - I  

presents a more general problem than the preceding examples. 

We have FLIT--diag(4, 4, 4, I, I), so tha t  the centralizer of F1F~ is the 

same as in the preceding example. The matrices F 11, F 1~, ~21, ~'22 which have 

to be considered are different in this case, so that  it  is no longer true tha t  

F n F n* is scalar. I t  is necessary to find a matrix X n so that  X 11 F 11 F n* X n* 

is diagonal, and then to transform X l l F  11 X n* by a group with fewer para- 

meters, namely the centralizer of X11F11F11. X n*, etc. I f  the characteristic 

roots of F n F 11. are determined, all these steps can be performed in a finite 

number of steps and rationally. 

The canonical form of an arbitrary matrix is defined inductively according 

to a plan suggested by the preceding example. In  order to have a successful 

inductive definition, it is necessary to consider not only matrix equations such 

as X 11 F n X 11. = L 11, which occur in the main stream of the induction, but also 

equations such a s  X l l F 1 2 X  2 2 . =  L 12. The occurrence of this last equation is 

illustrated in the first example, where however all the matrices have dimension I: 

e~efls e - ~  =/19. As each partial reduction is carried out, it  is necessary to give 

a simple rule for determining what is the group which leaves the transformed 

matrix unaltered in the spots which have been picked out for improvement. 
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The definition as given below is finite, rational,  and constructive at  all steps, 

except tha t  it  is necessary to find the characteristic roots of a matr ix F1, or of 

a submatrix F 1I, or of an auxiliary matrix F I2 F 12. of lower dimension t han  the  

matr ix  1"~. In  many accepted solutions of equivalence problems, i t  is necessary 

to find the characteristic roots of a matrix. I do not  know whether  the present 

problem could be solved wi thout  the resolution of algebraic equations of degree ~, 

where n = dim F1. On the other hand,  a direct a t tack on the equation U]F1 U=L1 
leads to equations of degree much greater  than  n. 

[ X11 O ] 
(3) Let  X = o X 22 be a uni tary matrix, and let ['1 be such tha t  ['1 F~ is 

the direct product  [ :  : ]  of two scalar matrices, the dimensions of which are 

dim X 11 and dim X ~ respectively. The uni tary matrices which fix F1 F~ are those 
[ F  11 F 12 ] 

which have the form of X. Let  T~ = ( F  2~ F ~  be the division of F~ into sub- 

matrices eonformal with the above division of X into submatrices. Then 

(4) X FI X* = [ X l '  ! ' l l  Xll* Xl l  ['12 X~* } 
X2~ F21 X22~ X22 F22 X~2* 

This last equation makes it clear tha t  in order to make a definition of 

canonical form by induction, i t  will be necessary to consider the matr ix  equation 

P A Q  ~ B, where A, B are rectangular,  and P, Q are unitary.  The necessary 

facts are stated in the following lemma. 

Lemma 1. Le t  AI~ be a k(I)Xk(fl) matrix.  There are two uni tary  matrices 

U k(1) and U k(~) of dimensions k(~)Xk(1) and k(fl) X k(fl) respectively such tha t  

U k(1) AI~ U kl~) has the form 

(5) diag (rl, r ~ , . . . ,  r,n-1), bordered by zeros, where r l ,  r~ . . . .  , rm-1 are real 

and positive: r l ~  r~ ~ .~.. ~ rm-1 ~ o. [The border of zeros may consist of any 

number  of rows, any number  of columns, and in part icular  the border may be 

absent.] 

Let  us re turn  now to equation (4). I f  by chance F 11 and F 22 were them- 

selves both scalar, equation (4) would read 

{ ~'11, Xl1~'12 X22" ] 
(6) X ~ \  X* = X ~  [,21 X~, ,  F22 
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so that  we should seek a canonical form f o r  X 11_F 1~ X ~2. (lemma I). Next it is 

necessary to know which matrices of the form (5) leave the matrix (6)unaltered 

in the upper right-hand box. Lemma 2 describes these matrices. 

Lemma 2. Let AI~ have the form (5). Then the equation Al~ = Ux'~I>AI~ U kI~) 

holds if and only if U ~'(1) has the form diag (X K(1), XK(2),..., X K(~-I), XK(~)), 

and at the same time U s'(~) is equal to 

diag (X K(1), X~'I2),..., X ~'(m-ll, XIC(m+l)). 

This means that  U k(l~ and U ~(p) are equal element for element in the first 

K(I)  + K ( 2 ) + . . .  + K ( m - - I )  rows and columns; the superscript K ( j )  denotes a 

matrix of dimension dim rj. The symbol X K(~) is to be expunged above if no 

row of (5) is zeros, and the symbol X ~'(m+l) is to be expunged if no column of 

(5) is zeros. We prove now 

Lemma 3. Let A1 be an n •  matrix such that  A1 A~ is scalar. Then A1 can 

be transformed into diagonal form by some unitary matrix. In particular,  then, 

any unitary matrix can be transformed into diagonal form by some unitary 

matrix. 

Proof: By Schur's theorem, A1 can be transformed into tr iangular form B1 

by a unitary matrix, and thus B 1 is a triangular matrix such that  B I B ~  is 

scalar. I f  /~1 B~ : O, it is clear that  B 1 = o. I f  on the other hand B1 B~= r, 

I 
where r ~ o ,  then r is real and positive, and v~B1 is both unitary and trian- 

gular, hence diagonal. 

We give now a general definition of the groups which appear at successive 

stages in the inductive definition of the canonical form of A1. For each value 

of k, v satisfying the inequalities below, let X ~',~'= (x~) ~) be a k •  matrix of 

indeterminates, 

I < I t < n ,  I < v < _  [n/k]; let I < ] c ( t ) < ~ ,  

I < v(t) < [n/k( t )] ( t  = I , . . . ,  s); let I~=17c(t) = ~. 
The symbol 

X = diag ( X  k(1), vii), X k(2},v(2), . . . ,  X X:(s), ,(s)) 

is called an n x n  matrix formula. In the symbol X~'; t),''(t), the first superscript 

k(t) is equal to the dimension of the matrix X k(t),~'(t), and the second superscript 

v(t) is a counting superscript; if I t ( t )= It(u), v(t)  = v(u), then X k(t),v(t) and X k(~),v(') 

are necessarily equal. 
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Examples are the following: 

diag (X a, 1, X a, 9., X a, a) 

x l ,  1 0 0 

0 X 1' $ 0 

0 0 X 1, 8 

diag (X 1'1, X 1'*, X 1'1) -- 

X 1, 1 

O 

O ~ 1 7 6  I 
x 1,2 0 ; 

0 X 1, 1 ' 

diag (X% 1, X2, 2) 

x~ z~ o o 

o o 

o o 

o o 

which differs only in notation from 

Xll  X12 O 

X21 X22 O 

O O X33 

O O X4a 

O 

O 

xa4 

X44 

and diag (X 2,1, X 2, a), which differs only in notation from the formula 

Xll  x12 O O / 

x$1 ~22 O v 

4 O O Xl l  X12 

0 0 x.,~l x 2 2  ' ; 

I f  the indeterminates in the symbol X be replaced by complex numbers so 

chosen that X becomes a unitary matrix after the substitution, each submatrix 

XkU),~U) becomes a unitary matrix also, and conversely if each submatrix X k0),~U) 

is unitary, then so is X. The notation k(j) is more easily-printed than is kj; 

otherwise we would use the lat ter  in place of the former. 

The class of nXn unitary matr ices  which can be obtained by substitution 

in a single matrix formula fill out a group G; G is called a generalized diagonal 
unitary group and is generated by the formula. 
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example, a formula for the group of unitary matrices in 

O O 

would be diag (X 11, X 21, X TM, Xll). 

x 1 O O 0 O 

O x 2 x 3 O O 

O x 4 x s O 0 

O O O x 6 O 

0 O x 1 

I t  is true that  for every g.d. group, there is a matrix which is commutative 

whith the matrices of this group and with no others. Moreover if the centralizer 

of a matrix is a gen. diag. unitary group, it is easy to tell (by inspection)what 

this group is, and to write down its generating formula. 

Rather than find a canonical form for matrices under transformation only 

by the full unitary group, we prefer to find a canonical form under transforma- 

tion by any gen. diag. unitary group. The canonical form will have the pro- 

perty that  its centralizer is some gen. diag. unitary group. In view of the large 

number of such groups, it is to be expected tha t  there will be a large number 

of canonical forms; too many to be described in any such pictorial language, 

as Jordan's canonical form, for example. On the other hand the description of 

canonical form, while not pictorial, is straightforward and exact, and the method 

for obtaining it is perfectly workable in any practical case. 

The advantage of describing a canonical form for a matrix under a~y gen. 

diag. group is this, that  an ordered pair of matrices A1, As can be reduced 

simultaneously to a canonical pair C1, Cz. This is done by first transforming 

At, A2 to the pair (C1, D2), and then transforming D2 to canonical form by 

matrices of the gen. diag. group which centralizes C1. 

In order to make a definition of canonical form for A1 under group G, 

we shall assume, as a hypothesis for the inductive definition, that  a canonical 

form has been defined for all matrices A under all gen. diag. groups Go when- 

ever either 
(($) dim Ao = dim Go < n, or 

(s) dim A o = d i m  Go=~2, Go= G; and 

that  moreover, the centralizer of the canonical form for A o is a gen. diag. group 

(of dimension dim Ao). We shall give a definition of a canonical form for A1 

under G by carrying out a simple construction and then calling on the indue- 
2 8 -  642128 Acta math~matiea. 86 
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t ion hypothesis .  We  shall prove at the same time tha t  the centra l izer  of this 

canonical  fo rm is a gen. diag. un i ta ry  group. As we have a l ready remarked,  it  

is then  easy to describe this cent ra l izer  and find the formula  which genera tes  it. 

Many definitions not  ordinar i ly  so described in the l i tera ture  are in fac t  

induct ive definitions in the sense of the  preceding paragraph.  The Peano  de- 

finition of number,  the J o r d a n  canonical  form for  a matr ix ,  and almost  all 

finite and transfini te  construct ions  are really of the above type. The  definit ion 

is like a recursion formula,  in tha t  both allow actual  computa t ions  to be carried 

through,  in a finite, possibly very large number  of steps. Definit ions which are 

not  of this type are those based on existence theorems of one sort  or another .  

The  fo rm of the definit ion to be given is different,  d ep en d in g  on the form 

of the gen. diag. group G; there  are three  cases. Under  each case are subcases, 

depending on the charac ter  of the mat r ix  A1. I t  should be observed tha t  the 

induct ive method  of definit ion is effective not  only for  the reasons given above, 

but  also because when dim G = I, the  canonical  form of A1 is A1, and the 

centra l izer  of this canonical  form is G, so tha t  the induct ive definit ion may begin. 

Case I. The case when the  t r ans fo rming  group is the ent i re  uni tary  group 

has already been discussed. There  are three  subcases: I a ,  A1 is scalar; I b ,  AIA~ 

is scalar but  A1 is not  scalar; I c, A A~ is not  scalar. In case I a, A 1 is com- 

muta t ive  with every e lement  of G, and so is its own canonical  form. The 

central izer  of A1 is a gen. diag. un i ta ry  group, namely G. In  case I b, the 

canonical  form for  A1 is diagonal:  

C~ = d i a g  (ei~ ", e i~  ei~ Vr), 0 <= 0(I) ~ .. .  ~ 0(92)< 27t. 

The diagonal  of C1 has k(I)  equal elements,  fol lowed by k(2) elements equal to 

each o ther  but  different  f rom any of the preceding ones, etc. The central izer  

of C1 is the group consis t ing of un i ta ry  matrices of the form 

-I 
where the first box is k(I)  X k(I),  the  second box is k(2) X k(2), etc. This group 

is genera ted  by the mat r ix  fo rmula  d i a g ( X  1'(1),1, X ~(2),2 . . . .  ) and is a g em  diag. 

un i ta ry  group. 

I t  is in ease l c  t h a t  the induct ion hypotheses  (6), (e) are used. There  is a 
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matrix W such that W ( A 1 A ~ ) W *  is diagonal, indeed with diagonal elements real 

and positive and written in decreasing order of magni tude;  say k(I) equal ele- 

ments, followed by k(2) equal elements, each less than the preceding, etc. Set 

l~'x = W A ~  W*. Then F1 F{ = W A 1  A~ W*. The matrices which transform F1 2Y{ 

into itself are precisely the matrices of the gen. diag. group diag (X ~(1), 1, Xk(2),2,...). 

Moreover, if _h~ is a transform of F 1 by any matrix of this group, then K I K {  = 

= F1 FI*. The canonical form for A1 shall be the (already defined) canonical form 

for 1~'1 under this last group. Actually W is an arbitrary representative of a certain 

coset of this group; any other representative of the same coset could take the 

place of W in the discussion. 

Case I I .  We must now define a canonical form for a matrix under a gen. 

diag. g r o u p  which is a proper subgroup of the full unitary group. We prefer 

to do this in stages; first, suppose the transforming group is G2-----{diagX 1:(1)'1, 

X~(I),1, . . . ,  Xk(1),l)}, that  is, suppose each matrix of the group has the same 

k(I) X k(I) matrix X ~'(~,~ repeated along the main diagonal a certain number of 

times. Let A,.j be a conformal subdivision of A1 into k ( I ) X k ( I ) s u b m a t r i c e s  

(i, j = I, 2, . . . ,  ~,/k(I)) There are three subcases. First, if each of the submatrices 

Ail, AI~ is scalar, then the transforming group operates essentially on the minor 

(Aij) i , j >  I of A1, for which a canonical form has been defined, according to 

the induction hypothesis. By the same token, the centralizer of this canonical 

form is a gen. diag. unitary group. 

Second, let each submatrix Ail be scalar; let not all Ax~ be scalar; le~ Alj be 

the first of the Al~(i = 2 , . . . )  which is not scalar. The transform of A1 by 

the arbitrary matrix diag (X k(l~, X ~'(1), . . . ,  Xk(~) of the transforming group re- 

places the submatrix Alj of A1 by the submatrix X k ( ~ A ~ j X  ~'(~*. Since Alj  has 

dimension lower than that of A~, a canonical matrix has been defined among 

all matrices of the set Xk(1)z~. iX ~'(~)*, and we choose for X k(~) some matrix U ~(~) 

for which Uk(1)Aij U ~(1)* is in the (uniquely defined) canonical form. 

Again all the matrices which transform Aij as U k(~ does belong to some 

coset of the centralizer of U ~'(~)Ag Uk( 1)~. According to the induction hypothesis, 

this centralizer i s . a  gen. diag. unitary group. Let the general element of this 

group be Y. Let  Ga be the group generated by the formula which arises 

when each symbol X~(1).1 in the generating formula for G~ is replaced by Y: 

G~ = {diag (IT, Y, . . . ,  Y)}.- Clearly Ga is a gen. diag. group properly contained 

in G2. The canonical form for Ax is defined as the (already defined) canonical 

form for diag (U ~(1), U~(~),.. ,, U ~(1)) A~ diag (U ~(~)*, Ut(~)*,..., U ~(~)*) under Ga. 
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I n  the  th i rd  subcase,  not  all the  A~  are scalar,  so t h a t  some t r a n s f o r m  of 

A 1 unde r  G2 does differ  f r o m  A1 in one of the  first k ( I )  columns.  

H e r e  the  r eason ing  proceeds  as in the  second subcase;  we choose j so t ha t  

Ajl  is the  first of the  A;1 which is not  scalar ,  etc. 

Case I I I .  In  th is  case we admi t  fo r  a t r a n s f o r m i n g  g roup  a more  genera l  

type  of p roper  subgroup  of the  full  un i t a ry  group,  namely  the  g roup  G~. = 

= d iag  (X k~ X k(2)'~(2) . . . . .  X~(~),'(~)), and in order  t h a t  eases I I  and I I I  be 

mutua l ly  exclusive, we insist  t ha t  a t  least  two of the  X ' s  in the  above fo rmu la  

be different :  for  a t  leas t  one pa i r  of  number s  u, w, (k(u), v(u)) # (k(w), v(w)). The  

cons t ruc t ion  is s imilar  to t h a t  in case I I .  As in t h a t  case, so here  we have  to 

notice t h a t  X A l i X *  = AI~ for  all x only  if AI~ is scalar ;  we mus t  f u r t h e r  not ice  

t h a t  X A ~ j Y * = A I . i  [or Y A j ~ X * = A y ~ ]  for  all X,  Y only if A ~ j = O [ A i l = O  ]. 

Then  we depend on l emmas  I and  2 ins tead of on the  induct ion hypothes i s  (as 

in case II) .  I n  the  end the  t r a n s f o r m i n g  group  is a gen. diag. un i t a ry  g roup  

because of l e m m a  2. 

The  induct ive  definition is now complete.  
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