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1. Introduction

Let X=Gr(d, C™) be the Grassmann variety of d-dimensional subspaces of C™. The goal
of this paper is to give an explicit combinatorial description of the Grothendieck ring
K°X of algebraic vector bundles on X.

K-theory of Grassmannians is a special case of K-theory of flag varieties, which was
studied by Kostant and Kumar [13] and by Demazure [5]. Lascoux and Schiitzenberger
defined Grothendieck polynomials which give formulas for the structure sheaves of the
Schubert varieties in a flag variety [16], [14]. The combinatorial understanding of these
polynomials was further developed by Fomin and Kirillov [9], [8].

Recall that if A=(A1>A22...22)4) is a partition with d parts and A;<n—d, then
the Schubert variety in X associated to A is the subset

Qx ={VeGr(d,C") [dim(VNC"~4+=2) > for all 1<i<d}. (1.1)

Here C*CC™ denotes the subset of vectors whose last n—k components are zero. The
codimension of €2, is equal to the weight |A\|=3_A; of A. If we identify partitions with
their Young diagrams, then a Schubert variety Q, is contained in € if and only if p
contains A. From the fact that the open Schubert cells Q3=Q\\{J,5, 2y form a cell
decomposition of X, one can deduce that the classes of the structure sheaves Oq, form
a basis for the Grothendieck ring of X.

We will study the structure constants for K°X with respect to this basis. These are
the unique integers ¥, such that

[00,]-[00,]=>_ &,.[0a,]. (1.2)
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These constants depend only on the partitions A, ¢ and v, not on the Grassmannian
where the Schubert varieties for these partitions are realized. Furthermore cf , is non-zero
only if |v|>|A|+|u|. The constants c§,, for which [v|=|A|+|u| are the usual Littlewood—
Richardson coefficients, i.e. the structure constants for the cohomology ring H*{X) with
respect to the basis of cohomology classes of Schubert varieties. Another known case is
a Pieri formula of Lenart which expresses the coefficients CK’( X) for multiplying with the
structure sheaf of a special Schubert variety ;) as binomial coefficients [18]. Notice
that since the duality isomorphism Gr(d, C*)—Gr(n—d,C") takes 2, to the Schubert
variety Q2 for the conjugate partition [10, Example 9.20], the structure constants must
satisfy § ”:CK;M,.

Our main result is an explicit combinatorial formula stating that the coefficient ¢ u 18
{ ~1)|"|_|’\|_|“| times the number of objects called set-valued tableauz which satisfy certain
properties. Set-valued tableaux are similar to semistandard Young tableaux, but allow a
non-empty set of integers in each box of a Young diagram rather than a single integer.
When |v|=|A|+]|u| our formula specializes to the classical Littlewood-Richardson rule.

Our formula implies that if ¢ .. Is not zero, then v is contained in the union of all
partitions ¢ of weight |o|=|A|+|u| such that the Littlewood-Richardson coefficient cf ,
is non-zero. Geometrically this says that if a structure sheaf [Og, | occurs in the product
[0q,]-[Oq,], then ©, must contain the intersection of all Schubert varieties £, which
appear in the product of the cohomology classes of Q5 and €2,. Our formula furthermore
implies that there exists a flag of Schubert varieties Q,=,)CQ,1)C...C Q)=
such that the dimension jumps by one at each step, each structure sheaf [Oq,, ] occurs
in the K-theory product [Oq,]-[Ogq,], and €, occurs in the cohomology product of €2,
and ,. We do not know any geometric reasons for these facts or for the alternating
signs of the structure constants.(1)

As a particular consequence of the above, note that for fixed A and p there are
finitely many partitions ¥ which give a non-zero coefficient ¢§ .- This is already surprising
since one might conceivably get arbitrarily many such constants by realizing the product
[0q,]:[Oq,] in larger and larger Grassmannians. This observation allows us to define a
commutative ring =D Z-G with a formal basis {G,} indexed by partitions and mul-
tiplication defined by Gx-G,=3_, c%,G.. The Grothendieck ring K°Gr(d,C") is then
the quotient of this ring by the ideal spanned by the basis elements G for partitions that
do not fit in a rectangle with d rows and n—d columns. The pullbacks of Grothendieck
rings defined by the natural embeddings Gr(d;, C™)x Gr(dz, C"?)C Gr(d; +dz, C"11"2)
furthermore define a coproduct on I' which makes it a bialgebra.

(*) After this paper was submitted, M. Brion gave a geometric proof that the K-theoretic structure
constants of any flag variety G/P have alternating signs [27].
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This bialgebra I" can be seen as a K-theory parallel of the ring of symmetric functions
[20], [10], which in a similar way describes the cohomology of Grassmannians, in addition
to representation theory of symmetric and general linear groups and numerous other
areas. Furthermore, if we define a filtration of I' by ideals sz@l Al>p Z-G, then the
associated graded bialgebra is naturally the ring of symmetric functions. This filtration
corresponds to Grothendieck’s ~-filtration of the K-ring of any non-singular algebraic
variety. In general the associated graded ring is isomorphic to the Chow ring of the
variety after tensoring with Q.

We will realize the algebra I' as the linear span of all stable Grothendieck poly-
nomials, which we show has a basis indexed by Grassmannian permutations. The
Littlewood-Richardson rule is proved by defining stable Grothendieck polynomials in
non-commutative variables, and showing that these polynomials multiply exactly like
those in commutative variables. In order to carry out this construction we will define a
jeu de taquin algorithm for set-valued tableaux.

In §2 we fix the notation concerning Grothendieck polynomials. In §3 we then
prove a formula for stable Grothendieck polynomials of 321-avoiding permutations in
terms of set-valued tableaux. This formula uses the skew diagram associated to a 321-
avoiding permutation [1] and is derived from a more general formula for Grothendieck
polynomials of Fomin and Kirillov {9]. §4 develops a column-bumping algorithm for set-
valued tableaux, which in §5 is used to prove the Littlewood—Richardson rule for the
structure constants c§, in I'. In §6 we derive similar Littlewood-Richardson rules for the
coproduct in I' and for writing the stable Grothendieck polynomial of any 321-avoiding
permutation as a linear combination of the basis elements of I'. In §7 we deduce a number
of consequences of these rules, including a Pieri formula for the coproduct in T, a result
about multiplicity-free products, and the above described bound on partitions v for
which ¥ , 18 not zero. In §8 the relationship between I' and K-theory of Grassmannians
is established. In addition we use the methods developed in this paper to give simple
proofs of some unpublished results of A. Knutson regarding triple intersections in K-
theory. §9 finally contains a discussion of the overall structure of the bialgebra I'. We
show that if the inverse of the element t=1—G; is joined to T then the result T'; is a
Hopf algebra. We furthermore pose a conjecture which implies that the Abelian group
scheme SpecI'; looks like an infinite affine space minus a hyperplane. We conclude by
raising some additional questions. We hope that the statements in the last two sections
will be comprehensible after reading §2 and the first seven lines of §6.

This paper came out of a project aimed at finding a formula for the structure sheaf
of a quiver variety. We will present such a formula in [2], thus generalizing our earlier

results with W. Fulton regarding the cohomology class of a quiver variety [3]. The proof
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of the cohomology formula was relatively simple, because some powerful cohomological
tools related to the ring of symmetric functions were already available. In order to
obtain the K-theory formula, we have found replacements for these tools which work in
K-theory. The first part of this is the construction of the bialgebra I' which is carried out
in the present paper. Especially the coproduct on I' is important for the applications to
quiver varieties. The remaining tools consist of a K-theory paralle] of a Gysin formula of
Pragacz [21], in addition to some extra combinatorics used to put everything together.
This will be described in [2].

We thank Fulton for numerous helpful discussions and suggestions during the project.
For carrying out the work in this paper, it has been invaluable to speak to S. Fomin, from
whom we have learned very much about Grothendieck polynomials during several fruitful
discussions. In particular we thank Fomin for supplying the proof of Lemma 3.4 and for
suggestions that led to simplifications of many proofs. We also thank F. Sottile for useful
discussions about stable Grothendieck polynomials. We are grateful to A. Knutson for
sharing his ideas about K-theoretic triple intersections and for allowing us to report about
them here. Finally, we thank A. Lascoux for informing us about a remarkable recursive
formula for stable Grothendieck polynomials [15], which has turned a conjecture from
the first preprint of this paper into Theorem 6.14.

2. Grothendieck polynomials

In this section we fix the notation regarding Grothendieck polynomials and stable Groth-
endieck polynomials. Grothendieck polynomials were introduced by Lascoux and
Schiitzenberger as representatives for the structure sheaves of the Schubert varieties in
a flag variety [16], [14]. For any permutation wé€S, we define the double Grothendieck
polynomial &,=86,,(z;y) as follows. If w is the longest permutation wo=n (n—1)...21
we set
By = H (Tity;—=:Y;)-
i+j<n

Otherwise we can find a simple reflection s;=(%,i+1)€S, such that l(ws;)=l(w)+1.
Here I(w) denotes the length of w, which is the smallest number [ for which w can be
written as a product of [ simple reflections. We then define

By = ﬂ'i(@wsi )7

where 7; is the isobaric divided difference operator given by

(1—.1,'1'+1)f(271, Ira, )*— (1—$1)f(, Tit+1,T4, )
Ti—Ti41 ’

Fi(f)z
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This definition is independent of our choice of the simple reflection s; since the operators
m; satisfy the Coxeter relations.

Notice that the longest element in S,;; is w(()"H):wo-sn-sn_l-...-sl. Since

T Tn—1--.--T1 applied to the Grothendieck polynomial for w(()"+1)

is equal to ®,,, it
follows that &, does not depend on which symmetric group w is considered an ele-
ment of.

Let 1™ xw€ S, +n denote the permutation which is the identity on {1,2,...,m} and
which maps j to w(j—m)+m for j>m. Fomin and Kirillov have shown that when m
grows to infinity, the coefficient of each fixed monomial in Gmy,, eventually becomes
stable [9]. The stable Grothendieck polynomial G, € Z[x;,y;]i>1 is defined as the resulting
power series:

Guw=Gy(z;y) = lm S1myy.
m— o0

Fomin and Kirillov also proved that this power series is symmetric in the variables {z;}
and {y;} separately, and that

Gp(l—e " 1-e¥)=Gyp(1—e ™, 1—e™ ™2 . 1—e¥ 1 —-e¥2, )

is supersymmetric, i.e. if one sets z;=y; in this expression then the result is independent
of z; and y;.

If we put all the variables y; equal to zero in &,,(x;y), we obtain the single Groth-
endieck polynomial &,,(z)=6,(x;0). Similarly the single stable Grothendieck poly-
nomial for w is defined as G, (x)=G,(z;0). Notice that the supersymmetry of
Gy(l—e ®;1—¢Y) implies that the double stable Grothendieck polynomial G, (z;y) is
uniquely determined by the single polynomial G,,(z) [24], [20]. We will use the notation
Gu(T1,22, ..., Tp; Y1, Y2, -, Yg) for the polynomial obtained by setting z;=0 for i>p and
y; =0 for j>¢q in the stable polynomial G, (z;y).

If ACv are two partitions, let v/X denote the skew diagram of boxes in v which are
not in A, and let |v/)\| be the number of boxes in this diagram. Now choose a numbering
of the north-west to south-east diagonals in the diagram with positive integers, which
increase consecutively from south-west to north-east. For example, if v=(4,3,2) and
A=(1), and if the bottom-left box in /A is in diagonal number 3, then the numbering
is given by the picture

6]7]8]
456
34

Let (41,42, ..., im) be the sequence of diagonal numbers of the boxes in v/ when these
boxes are read from right to left and then from bottom to top. We then let w, /=



42 A.S. BUCH

8i, iy ... 8;,, be the product of the corresponding simple reflections. For the skew shape
above this gives w, /)= 54536 5554585756=125739468. Notice that w,,, depends on
the numbering of the diagonals as well as the diagram v/X. A theorem of Billey, Jockusch
and Stanley [1] says that a permutation w can be obtained from a skew diagram in
this way, if and only if it is 321-avoiding, i.e. there are no integers i< j<k for which
w(t)>w(j)>w(k).

Permutations obtained from different numberings of the diagonals in the same dia-
gram v/ X differ only by a shift. In other words, if w,/» is the permutation corresponding
to the numbering which puts the bottom-left box in diagonal number one, then any other
numbering will give a permutation of the form 1™ xw,,». We can therefore define the
stable Grothendieck polynomial for any skew diagram by G,/ (z;y)=Gu, ,(7; y)-

If the skew diagram is a partition A, and if p is the number of the diagonal containing
the box in its upper-left corner, then w) is called the Grassmannian permutation for A
with descent in position p. This permutation is given by wy(i)=1+Apt1-; for 1<i<p
and wy () <wy(i+1) for i#p. Notice that p must be greater than or equal to the length
of A, which is the largest number [=I(A) for which A; is non-zero.

It follows from the definitions that the term of lowest total degree in a Grothendieck
polynomial &,,(x;y) is the Schubert polynomial &,,(z; —y) for the same permutation [16].
This implies that the lowest term of G (z) is the Schur function sy (z) [20], [19]. In partic-
ular, the polynomials G for all partitions A are linearly independent. We define I to be
the linear span of all stable Grothendieck polynomials for Grassmannian permutations:

I=@QZ-G\CZzx1,z2, -, Y1, Y2, ---]-
by

This group is the main object of study in this paper. For example, Corollary 5.5 and
Theorem 6.13 below will show that I" is closed under multiplication and that it contains
all stable Grothendieck polynormials.

3. Set-valued tableaux

In this section we will introduce set-valued tableaux and use them to give a formula for
stable Grothendieck polynomials indexed by 321-avoiding permutations.

If a and b are two non-empty subsets of the positive integers N, we will write a<b
if max(a)<min(b), and a<b if max(a)<min(b). We define a set-valued tableau to be a
labeling of the boxes in a Young diagram or skew diagram with finite non-empty subsets
of N, such that the rows are weakly increasing from left to right and the columns strictly
increasing from top to bottom. When we speak about a tableau we shall always mean a
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set-valued tableau unless explicitly stated otherwise. The shape sh(T") of a tableau T is
the partition or skew diagram it is a labeling of. For example,

1123
12234
2135{7

is a tableau of shape (4,3,3)/(2,1) containing the sets {2}, {3,5}, {1,2}, {7}, {2,3,4},

{1} and {2,3} when the boxes are read bottom to top and then left to right. A semi-
standard tableau is a set-valued tableau in which each box contains a single integer.

Given a tableau T, let 27 be the monomial in which the exponent of z; is the number

of boxes in T which contain the integer 7. If T' is the tableau displayed above we get

T_ .2

zT=z2 2423 x42527. We let |T| denote the total degree of this monomial, i.e. the sum

of the cardinalities of the sets in the boxes of T'.

THEOREM 3.1. The single stable Grothendieck polynomial G, x(x) is given by the
formula

Gua(z)=> " (~1)I=IAI T,

T

where the sum is over all set-valued tableaux T of shape v/\.

To prove this proposition we need a result of Fomin and Kirillov. Let H,(0) be
the degenerate Hecke algebra over the polynomial ring R=Z[z1, ..., Z,,]. This is the free
associative R-algebra generated by symbols w1, ..., u,, modulo relations

uiuy =u;u; if [i—j| =2,
Ui Us 41U = Ug41 Ui Ui 41,5

2 _
'U/i —“Ui.

If we S, 11 is a permutation with reduced expression w=s;,-...-s;, we set Uy, =Uj; ... U3, €
H,(0). This is independent of the choice of a reduced expression. Furthermore these
elements u,, for weS, 11 form a basis for H,(0). Now set

A(z) = (1+zuy)-...-(1+zug)-(1+zu1) and B(z)=(14zu1) - (1+zuz)-...-(1+zun).

Then a special case of the theory developed by Fomin and Kirillov [9], [8] is the following.

THEOREM 3.2. The coefficient of u., in A(Zm)-...-A(z2) A1) is the stable Groth-
endieck polynomial Gy (21,...,om). The coefficient of uy, in B(xpy)-...-B(z2)-B(z1) is
Gu(0521, .y T
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Define an inner corner of a partition A to be any box of A such that the two boxes
under and to the right of it are not in A. By an outer corner we will mean a box outside
A such that the two boxes above and to the left of it are in A.

Proof of Theorem 3.1. It is enough to show that G,/5(x1,...,zm) is the sum of the

ITI=1v/M 2T for tableaux T with no integers larger than m.

signed monomials (—1)
Now number the diagonals of v/A from south-west to north-east as described in

the previous section, and let V=@p -, Z-[u] be the free Abelian group with one basis

DA
element for each partition containing” A. Imitating the methods of Fomin and Greene [7],
we define a linear action of H,(0) on V as follows. If a partition x4 has an outer corner
in the ith diagonal, then we set u,-[u]=[f] where f is obtained by adding a box to p in
this corner. If 4 has an inner corner in the ith diagonal, and if the box in this corner is
not contained in A, then we set u;-[u]=—[u]. In all other cases we set u;-[p]=0.

We claim that if w€S, 41 is any permutation such that u,,-[A]#0 then u,,-[A]|=|[y]
for some partition DA, and w=w,,. This claim is clear if l(w)<1. If {(w)>2,
write w=s;w’ where [(w')=Il(w)—1. Since u,-[A\]#0 we can assume by induction that
U+ [A]=[po] for some partition po, and w’'=w,, /5. It is enough to show that s has no
inner corner in the ith diagonal. If it had, then the box in this corner would be outside A
since u;-[po]#0. But then we could write w’=w]s;w} such that [(w")=l{w])+I(wj)+1
and no reduced expression for w) contains s;_1, s; or $;+1. This would mean that
w=s,; w' =wjw}, contradicting that {(w)>I(w').

Using Theorem 3.2 it follows from the claim that the coefficient of the basis element
[v] in A(zp)-...-A(z1)-[A] is Guya(21,...,zm). Finally, it is easy to identify the terms
of A(zp)-...-A(z1) which take [A] to [v] with set-valued tableaux on v/A. In fact, this
product expands as a sum of terms of the form

(xilujl)‘(xizujz)"" ’ (wikujk)'

From any such term which contributes to the coefficient of [v] we obtain a tableau on
v/A by joining the integer i, to the set in the inner corner in diagonal number j, of the
partition w;, -...-u;, -[A] for each 1<r<k. a

Remark 3.3. 1t is easy to extend the notion of set-valued tableau to obtain formulas
for double stable Grothendieck polynomials G, /x(z;y). The main point is that integers
corresponding to the z-variables should occupy horizontal strips in a set-valued tableau
while integers corresponding to y-variables should appear in vertical strips.

While we have the notation of Theorem 3.2 fresh in mind, we shall also establish the
following lemma for use later. At an early point in this project we asked Sergey Fomin if
the statement of this lemma could possibly be true, after which he proved it immediately.
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LEMMA 3.4 (Fomin). Let weS, 1 be a permutation and let wo€ Sn11 be the longest
permutation. Then Gugwwe(%;¥)=Gw(y; x).

Proof. Since G,(1—e™*;1—eY) is supersymmetric, it is enough to prove that
Guowwo (T1, s Tm ) =Gu(0; 21, ..., Ty, ) for any number of variables m.

Now H,(0) has an R-linear automorphism which sends u; to u,41—; for each 1<i<n.
Since this automorphism takes A(z;) to B(z;) and ty t0 Uwgww,, the lemma follows from
Theorem 3.2. O

As a special case we obtain G/ (; y)=GwowA/qu(x; Y)=Gx/u(y; ).

4. A column-bumping algorithm

In this section we will present a column-bumping algorithm for set-valued tableaux and
derive an important bijective correspondence from it. This correspondence will be the
main ingredient in the proof of the Littlewood-Richardson rule for stable Grothendieck
polynomials.

We will use the following notation. If a and b are disjoint sets of integers we will let
denote a single box containing the union of a and b. If T is a tableau with ! columns,
and C; denotes its ith column for each 1<i</, then we will write

oAt e
T= = (C1,Ca, ..., C).

We start with the following definition.

Definition 4.1. Let z€N, zo€ NU{c0}, and let C be a tableau with only one column.
We then define a new tableau x-E)C by the following rules:

T — = ifa<z, (B1)

Zo a
a —
xr

0]

T —— = if a<z b, (B2)

To

a
ab —
T
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I bJ
x1—>33=—a— if a<z<b, (B3)
°le TC
1 [ ]e
a a .
T— = — if a<z <b and zo¢b, (B4)
o b T
olian
T = if <b and zo¢b, (B5)
a| |a :
z— — = if a<z<b and zo€d, (B6)
Tolb zbh
oz
T = if < b and zo€b. (B7T)

The white areas in these tableaux indicate boxes which are left unchanged by the
operation. It is easy to see that exactly one of the cases (B1)-(B7) will apply to define
z—-C. In the rules (B2) to (B5) we say that the set b is “bumped out”.

If xCN is any non-empty set, we extend this definition as follows. Let z1<...<zy
be the elements of z in increasing order, and let (Ck, yx) be the tableau zx —C:

T T_O_) C=|C k
Here yy, is the set in the single box in the second column. If == C has only one column,
we let yx be the empty set. Continue by setting

(Ci,yi) = (#i — Cit1)

Ti41
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for each i=k—1,...,1. We finally define xz—())C to be the tableau (Ci,y) where y=

YU Uyg:
X ——>C= Cl
zo

If 24C N is a set, we will write

r I—O) C=z min(zo)

We furthermore set z-C =z—C. This defines the product of a one-box tableau with a
one-column tableau. Notice that if C has ! boxes, then the shape of z-C is one of (1!*1),
(2,171) or (2,1'), where 1' means a sequence of [ ones. Notice also that zC=zC
unless one of the rules (B6) or (B7) are used to define max(z) C. For example,

1 |25

235| - =123
B

We will continue by defining the product of a non-empty set z with any tableau
T=(Cy,Cs,...,C;). Namely, set (C],y1)=z-C; and (C!,y;)=vyi-1-C; for 2<i<l. If a

k2

product y;_1-C; has only one column for some i, we let C] be this product and set
C‘;:Cj for 7>1 and y;=@. We then define z-T to be the tableau whose jth column is
C7 for 1<j<I. If y#@ we furthermore add an (I+1)st column with one box containing
this set:

Y
clc| .. |Gl loilcy .. o

-

L

To see that this is in fact a tableau, we need the following lemma.

LEMMA 4.2. Let zeN, yoeNU{oo}, and let C; and Cy be one-column tableauz
which fit together to form a tableau (C1,Cs). Let (C1,y)=z-Cy and (C3,2)=y>Ca.
Then (C1,C%) is a tableau.

Proof. Suppose that y was bumped out of box number ¢ in C), counted from the
top. Then since (C1, Cs) is a tableau, y is less than or equal to the set in box number ¢
in Cy. This implies that the jth box of C} is equal to the jth box of Cs for all j>i.
For j<i, the jth box of C} can contain elements from the jth box of Cy and from y.
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Since both of these sets are larger than or equal to the jth box in Cj, this shows that
(C1,C%) is a tableau. O

To check that the product z-T defined above is a tableau, it is enough to assume that
T=(C4,Cs3) has only two columns. Let z’=min(z) and z”"=z\{z'}, and set (C{,y")=
z'-Cy and (CY, 2" )=y"-C>. Then set

(Cry)=2'—-»C and (C3,2)=y —»Cy.

Then z-C,=(C1, y) where y=y"” Uy, and y-C2=(C}, 2""Uz2"). We must show that (C{, C3)
is a tableau.

By induction we can assume that (Cy,C%) is a tableau. If z’ ?C{’ is defined by
(B6) or (B7) then the maximal elements in the boxes of C} and C7 are equal, and since
y' is empty we have C,=C%. This makes it clear that (C{,C%) is a tableau. Otherwise
we have 2’ = CY'=z'-CY, in which case (C1, C3) is a tableau by Lemma 4.2.

Define a rook strip to be a skew shape (between two partitions) which has at most
one box in any row or column. It then follows from our earlier observations regarding
the shape of a product of a set with a one-column tableau, that the shape of z-T differs
from that of T by a rook strip.

Now let C be a tableau with one column and let T be any tableau. Suppose that
the boxes of C contain the sets z,, s, ..., z;, read from top to bottom. We then define
the product of C and T to be the tableau C-T=x;-(;~1-(...-z2-(x1-T)-...}).

Ezample 4.3. 1t is not possible to extend this product to an associative product on
all set-valued tableau. In fact, if this was possible we would have

112(2 12| 2 1123
L | |:.3 Jz..: 2 l.

1) 53131 < .22 - [

which is of course wrong.

5™

In the following lemmas we shall study the shape of a product C-T'.

LEMMA 4.4. Let x1<x3 be non-empty sets of integers, and let C be a one-column
tableau. Let z1-C=(Cy,y1) and x2-C1=(C2,y2). Then y1<ys.

Proof. Notice at first that min(z2)<y=, which follows directly from Definition 4.1.
Since all of the integers in y2 come from C}, it suffices to show that all integers from C;
which are greater than or equal to min(zz) are also strictly greater than y;.
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Let k be the number of the box in C; (counted from the top) which contains max(z).
There are then two possibilities. Either max(z,) is the largest element in this box of Cj,
in which case all integers in y; must come from the boxes 1 through k of C. Furthermore,
the boxes in C; strictly below the kth box contain the same sets as the corresponding
boxes of C, so they are strictly greater than y;. Since these are also the only boxes that
can be greater than or equal to min(zs), the statement follows in this case.

Otherwise max(z1) is not the largest element in the kth box of C;, which implies
that all integers in y; come from the boxes 1 through k—1 in C. Since the integers in C}
which are strictly greater than max(z;) all come from the kth box in C or from boxes
below this box, the statement is also true in this case. dJ

LEMMA 4.5. Let T be a tableau and let x1<xo be non-empty sets of integers. Set
Th=z1-T and To=x2-T1, and let 6;=sh(T1)/sh(T) and O=sh(T3)/sh(T1) be the rook
strips giving the differences between the shapes of these tableauxz. Then all bozes of 0
are strictly south of the boxes in 6.

Proof. Suppose that the southernmost box of 8; occurs in column j. Then let U be
the tableau consisting of the leftmost j—1 columns of T, and let V be the rest of 7. We
will write T=(U, V') to indicate this. Similarly we let (U, y1)=21-U and (Ua, y2)=22- U1,
i.e. Uy and U, are the leftmost j—1 columns of these products. Finally set Vi=y;-V and
Va=ya- V1. We then have T1'=(U;, V1) and Ty =(Us, V3).

Since V; has one more box in the first column than V, this box of V] must contain a
subset of y;. Since y2 >, by Lemma 4.4, this means that Vo=y,-V; consists of V7 with
yo attached below the first column (or Vo=V if y5 is empty). The lemma follows from
this. OJ

It follows immediately from this lemma that the shape of a product C-T adds a
vertical strip to the shape of T, but more detailed information can be obtained. As
above, let x1, x5, ...,x; be the sets contained in the boxes of C from top to bottom. Set
To=T and T;==;-T;_; for 1<i<!. Let 6;=sh(T;)/sh(T;—1) be the rook strip between
the shapes of T; and T;_;, and let #=sh(C-T')/sh(T") be the union of these rook strips.
Then Lemma 4.5 says that the 6; split § up into disjoint segments running from north
]

62

to south:

03

04

I
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Define the eztra bozes of § to be the boxes that are not the upper-right box of any
rook strip #;. These boxes are marked with a cross in the above picture. There are
exactly |6]|—1 extra boxes in 4, and at most one in each column of 6. Furthermore, if
a column of ¢ has an extra box then it is the northernmost one. Define col(C,T) to
be the set of columns of # which contain an extra box. The rook strips 6; are then
uniquely determined by # and this set. In what follows we shall see that if x is a set and .
T is a tableau, then z and T can be recovered from their product z-7 if one knows the
shape of T. As a consequence we see that C and T are uniquely determined by their
product C-T, the shape of T, and the set col(C,T).

We will state this a bit sharper. Given a vertical strip # and a non-negative integer
d>0, let C4(6) be the set of all sets of the non-empty columns of # which have cardinality
d and avoids the last column of 8. If ¢(6) is the number of non-empty columns of 8 then

C4(0) has cardinality
c(0)-1
4 )

Let 7 be the set of all set-valued tableaux of shape A\. We then have a map

7211)><T\—>H77/><C|u/>‘|—1(1//)\) (4.1)

which takes (C,T') to the pair (C-T,col(C,T)) in the set T, xCj,/z-1(v/A) where v=
sh(C-T). The disjoint union is over all partitions v containing A such that v/X is a
vertical strip. In the remaining part of this section we will construct an inverse to this
map, thus proving the following.

THEOREM 4.6. The map of (4.1) is bijective.
As a first consequence, we obtain a bijective proof of Lenart’s Pieri formula [18].
COROLLARY 4.7 (Lenart). For any partition A and {21 we have
O IR c(v/A)-1
Gay GA—XV:( 1) <|V/A|—z G,,

where the sum is over all partitions v\ such that v/ is a vertical strip, and c(v/X) is

the number of non-empty columns in this diagram.

In order to construct the inverse map of (4.1) we will define a reverse column-
bumping algorithm for set-valued tableaux. We start with the following definition.

Definition 4.8. Let T=(C,y) be a tableau whose second column has one box con-
taining a single integer y€N. For any yo€NU{0} we define the pair R, (C,y) by the
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following rules:

v]
Ry, | @ = ifbLy<e, (R1)
a
y|
Ry % = ifa<y<band yoéa, (R2)
v ]
Ryo =|a, if a<y and yoéa, (R3)
|2 Y]
v] N
Ryo % =| @, ab_y if a<y<band yy€a, (R4)
v ]
Ry =|o, if a<y and ys€a. (R5)
<] o4

We extend this definition to tableaux (C,y) where yCN is any non-empty set of
integers as follows: Let y;<... <y be the elements of y in increasing order. Let (z1,C1)=
Ryo(Cyyn) and (z;,Ci)=R,, ,(Ci—1,y:) for 2<i<k. Then we set R, (C,y)=(z,Cx)
where z=71U...Uzg. If yoCN is a set, we will write Ry, (C, ) =Rmax(yo)(C,y). Finally
we set R(C,y)=Ro(C,y).

LEMMA 4.9. Let C be a one-column tableau with | boxes, and let xCN be a set
such that z-C has shape (2,1'"1). Then R(z-C)=(z,C). Similarly, if T is a tableau of
shape (2,1'71) and R(T)=(z,C), then C has | bozes and z-C=T.

Proof. Suppose at first that €N is a single integer, and let z-C'=(C",y). Then by
the definition of R(C’,y), the minimal element of y will bump out z from C’, after which
the remaining elements of y will be added to the same box as the minimal element went
into. This recovers the tableau C.
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If = has more than one element, let z;=min(z) and z2=z\{z,}, and write zo-C=
(Ca,y2) and 3:1?02:(01,311). Then z-C=(Ci,y) where y=y;Uy2. By induction we
can assume R(C2,y2)=(z3,C). There are two cases to consider.

Either y;=. In this case C} is obtained from C; by joining x; to the box containing
min(zz). This means that if R(C,, min(ys))=(z',C’) then we have R(Cj, min(ys))=
({z1}U2’,C”). This proves that R(C1,y)=(z,C) in this case.

Otherwise we have y1#@, in which case (C1,y;)=71-C2. We then know that
R(Cy,91)=(z1,C2). Since R(Ca,y2)=(z2,C), it is enough to show that R(Ca,y2)=
Ry.(Ca,y2). Here it is enough to check that none of the rules (R4) or (R5) are used to
define Rmax(y,)(C2, min(yz)). But since min(zs) is bumped out when R(Cs, min(ys;)) is
formed, this would imply that min(zz) and max(y;) are in the same box of C2. This
contradicts the fact that z; is bumping y; but not min(zz) out when multiplied to C,.

The proof of the second statement is similar and left to the reader. O

To recover the factors of a product z-C which adds two boxes to the shape of C, we
continue with the following definition.

Definition 4.10. Let T=(C,y) be a tableau with at least two boxes in the first
column and one box in second column. Suppose that R{C,y) has the form

Then we define R*(C, y) as follows:
R*(C,y) = | zUb, if by, (D1)
R*(C,y)=| =, l if bCy. (D2)

LEMMA 4.11. Let C be a one-column tableau with | boxes, and let tCIN be a set
such that z-C has shape (2,1'). Then R*(z-C)=(z,C). Similarly, if T is o tableau of
shape (2,1%) and R*(T)=(x,C), then C has | bozes and z-C=T.

Proof. Notice at first that if z-C has shape (2, 1') then max(z)-C must be defined by
one of the rules (B1) or (B2). Let zoCx be the largest subset of the form zN[k, oo[ such
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that none of the rules (B3)—(B5) are used in the definition of z2-C, and let z1=2\z>. The
lemma is easy to prove if z; is empty, so we will assume z1#9. Let z3-C=(C2,y2) and
z1-Co=(C1,y1). Then z-C=(C,y) where y=y1Uys. Furthermore we have R(C1,y1)=
(x1,C2) by Lemma 4.9. There are two cases to consider.

First suppose that max(z3)-C is defined by (B1). Then C; is equal to C with z,
attached in a new box at the bottom, and ¥, is empty. This means that z-C=(C1, 1),
so R(z-C)=(zy,C2). By rule (D1) we therefore have R*(z-C)=(z;Uz2,C) as claimed.

Otherwise max(z3)-C is defined by (B2). If the bottom box of C contains aUb with
a<max(z2)<b, then yo=b and C; is obtained by removing b from the bottom box of C
and attaching x2 in a new box below it. It follows that Ry, (C2, y2)=(z2,C’) where C’ is
obtained from C by moving the elements of b from the bottom box to a new box below it.
We conclude that R(z-C)=(z,C"), so R*(z-C)=(z,C) by (D2).

The proof of the second statement is similar and left to the reader. ]

Now let T be a tableau of shape v and let AG v be a proper subpartition such that
v/ is a rook strip. We will then produce a tableau T” of shape X and a set zCN such
that - T'=T.

Write T=(C4,Cy3, ...,Cy) where C; is the ith column, and suppose that the upper-
right box of v/ is in column j. Let CJ'- be the result of removing the bottom box from Cj,
and let x; be the set from this removed box. Now for each i=j—1,...,1, we define

. R(Ciyzir1) if v/ does not have a box in column 3,
(xia Cz) =

R*(C;,xiv1) if v/ has a box in column 4.

We then set z=2; and T'=(C1, ..., C}, Cj41, ..., Ck). An argument similar to the proof of
Lemma 4.2 shows that T" is a tableau, and by definition the shape of T’ is A. Furthermore,
it follows from Lemma 4.9 and Lemma 4.11 that z-T'=T. We let R, /»: T, =71 x Ty be
the map defined by R, ), (T)=(z,T").

Proof of Theorem 4.6. It follows from Lemma 4.9 and Lemma 4.11 that the maps
R,/ define an inverse to the map of {4.1) when i=1. If {>2 and (T, S)€T, xC, a1 (v/ )
is any element, there are unique rook strips 8y, ..., §; which split the vertical strip #=v/A
up into disjoint intervals from north to south, such that S contains the columns of the
extra boxes in 8. Then set (z;,T])=R,{T) and (x;,T;)=Re,(Tiy1) for i=Il-1,...,1, and
let C' €711y be the column whose ith box contains z;. An argument similar to the proof of
Lemma 4.4 shows that x; <...<x;, which implies that C is a tableau. Finally Lemma 4.9
and Lemma 4.11 show that the map (T, S)—(C,T1) gives an inverse to (4.1). g

Remark 4.12. Although we have skipped some details of the proof of Theorem 4.6,
the arguments given here do suffice to establish that the map of (4.1) is injective. Instead
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of writing down proofs of the remaining statements, one can also use Lenart’s proof of
Corollary 4.7 [18] to deduce that the two sets in (4.1) have the same number of elements
(which is finite if we only consider tableaux containing integers between 1 and m for any
m2>1).

5. Stable Grothendieck polynomials in non-commutative variables

In this section we define stable Grothendieck polynomials in non-commutative variables
and show that they span a commutative ring. As a consequence we obtain an explicit
Littlewood—Richardson rule for multiplying Grothendieck polynomials of Grassmannian
permutations.

Following [6], (7] we define the local plactic algebra to be the free associative Z-
algebra £ in variables uy, us, ..., modulo the relations

wiu; =u;u;  if [i—j|>2,
Us Ui 1 Ui = Ui Uq Uy,

Ui 1 Us Us 1 = U1 Ug 41 Us-

We shall work in the completion £ of £ which consists of formal power series in these
variables.

Let T be a set-valued tableau. We define the (column) word of T to be the sequence
w(T) of the integers contained in its boxes when these are read from bottom to top and
then from left to right. The integers within a single box are arranged in increasing order.
The word of the tableau displayed in the start of §3 is (2,3,5,1,2,7,2,3,4,1,2,3).

If T has word w(T')=(i1, 2, ..., %), then we let u7 be the non-commutative monomial
uT:uilui2 .. u;; €L. It is not hard to see that one gets the same monomial if the boxes
of T are read from left to right first and then from bottom to top, but we shall not need
this fact. If v/ is any skew diagram we then define a stable Grothendieck polynomial
in the variables u; by

Guppli) =X (-1 T e £,
T
where this sum is over all tableaux T of shape v/).

If C is a one-column tableau and T is any tableau, one may easily verify from

Definition 4.1 that u®-u"=u®7T in £. From Theorem 4.6 we therefore obtain a non-

commutative version of Lenart’s Pieri rule.
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LEMMA 5.1. If A is any partition and 121 an integer, then

Guanfw)-Ga(w) = 3 (-0 (1) 6w

holds in L, the sum being over all partitions vD X such that v/ is a vertical strip.

A first consequence of this is that the elements G(y1)(u) for I>1 commute in L. Now
let G=@P,Z-Gx(u) be the span of the polynomials G(u) for all partitions A, and let
GC L be its completion, consisting of all infinite linear combinations of the G (u).

LEMMA 5.2. The group G consists of all formal power series in the polynomials
Gayy(u) for 121, In particular, G is a commutative subring of L.

Proof. Let n€N be any positive integer. It is enough to show that for any parti-
tion A there exists a polynomial Px(u)€ Z[G (11y(u)]i»1 such that Gx(u)—Px(u) is a linear
combination of Grothendieck polynomials G, (u) for partitions p of length I(u) >n.

Define a partial order on partitions by writing p<X if u1<A;, or py=>A; and
I{()>1(X). Notice that given a partition X there are only finitely many partitions p
such that p<X and I(p)<n.

We shall prove that the polynomials Py (u) exist by induction on this order. Since
the smallest partitions A have only one column, the existence of Py(u) is clear for these
partitions. Let A=(\y, ..., \;) be a partition of length I <n, and assume that P, (u) exists
for all p<A. Let o=(A1—1,...,\;—1) be the partition obtained by removing the first
column of A. Then o< \. By Lemma 5.1 we furthermore have

_fev/A)-1
GA(W) = Gy ()G ) = 3 (~1) P21~ Go(w),
2 ( v/AI-1 )

where the sum is over all partitions v properly containing A such that v/) is a vertical
strip. Notice that any such partition v for which |v/A|>1 must satisfy v<A. We can
therefore define

_ v/A|—1 C(l//)\)—l
W) =Gt 0)-Po) =3 (<) (TS .

This finishes the proof. O

The lemma shows that any product Gx(u)-G,(u) is an element of G, so we may
write

Ga(w)-Gu(u) =) &5, Go(w), (5.1)
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where the coefficients c§, are integers. Notice that this linear combination could be
infinite.

We say that a sequence of positive integers w=(i1, iz, ..., 4;) has content (¢, ca, ..., ¢;)
if w consists of ¢; 1’s, ¢z 2’s, and so on up to ¢, r’s. If the content of each subsequence
(ik, ..., 1) of w is a partition, then w is called a reverse lattice word. Now if v=_(uy,...,vp)

. o v
is a partition, we define u”=wup’... us? uy*€ L.

LEMMA 5.3. A sequence w=/(iy,1a,...,4;) 18 a reverse lattice word with content v if
and only if u; Ui, ... u;;=u" in L.

Proof. If w is a reverse lattice word, then the rectification of w in the plactic monoid
is the semistandard Young tableau U(v) of shape v in which all boxes in row ¢ contain
the integer i [10, Lemma 5.1]. This implies that the identity u;, u, ... u;,;=u” holds even
with the weaker relations of the plactic algebra.

On the other hand, if u;, u;, ... u;;=u" then one can obtain the sequence

(pyp7 "'?2V27 1’/1)
from w by replacing subsequences in the following ways:
(4,5) (4,1 if[i-j]|>2,
(i,141,4) ¢ (i+1,4,17),
(i4+1,4,i+1) ¢ (i+1,i+1,4).

Since all of these moves preserve reverse lattice words, w must be a reverse lattice word

with content v. O

If X and p are partitions, we let Axu be the skew diagram obtained by putting A
and p corner to corner as shown.

e |F
=

THEOREM 5.4. The coefficient cX,, is equal to (=1)P=IN=8l times the number of
set-valued tableauz T of shape Axu such that w(T) is a reverse lattice word with con-
tent v. a

Proof. Start by noticing that the only tableau of shape v whose word is a reverse
lattice word is the tableau U(v). It follows from this that the coefficient of w” on the
right-hand side of (5.1) is c¥,,.
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On the other hand, the left-hand side is equal to G, (u). If T is a tableau on Axp,
then u” is equal to u” exactly when w(T) is a reverse lattice word with content v by the
lemma. The theorem follows from this. O

Since there are only finitely many tableaux T of a given shape such that the word
of T is a reverse lattice word, Theorem 5.4 implies that the linear combination in (5.1)
is finite. In other words, G is a commutative subring of L.

COROLLARY 5.5. I'=@Z-G, is closed under multiplication. The structure con-
stants ¢, such that GrG,=>", 5, G are given by Theorem 5.4.

Proof. By replacing each non-commutative variable u; with z; in (5.1), we obtain the
identity Ga(z)-Gu(z)=)_, c§,Gv(z) for single stable Grothendieck polynomials. Since
Gu(l—e™%;1—¢€Y) is supersymmetric, the same equation must hold for the double poly-
nomials as well. O

Ezxample 5.6. For the shape (1)*(1) we can find the following three set-valued
tableaux whose contents are reverse lattice words:

o R G

It follows that G1-G1=G2+G 1,1y~ G(2,1)-

Our methods seem insufficient to prove that a stable Grothendieck polynomial
G,/a(u) in non-commutative variables is in G, except when the skew shape v/ is a
product of partitions like in Theorem 5.4. If this could be established, then the proof
of Theorem 5.4 would also prove a rule for writing G,/ as a linear combination of the
stable polynomials G,, for Grassmannian permutations. We shall instead derive such a

formula from the statement of Theorem 5.4 in the next section.

6. A coproduct on stable Grothendieck polynomials

Our main task in this section is to show that the ring I" has a natural coproduct A:T'—
I'®I" which makes it a bialgebra. We will show that for certain integers dK” given by an
explicit Littlewood—Richardson rule similar to that of Theorem 5.4, we have

Gu(z,zw,y) =Y df,Galw; w)-Gu(2;), (6.1)
A p

whenever z, y, z and w are different sets of variables. The coproduct can then be defined
by AG,=>" d3,Gr®G .
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LEMMA 6.1. Let ACv be partitions and let p,q>=1 be integers. Then

Gun(@1, o Tprg) = Y. (DG 5 (@1, 2p) - Cujo(Tpt1s o Tptg)s

/0 rook strip

where the sum is over all partitions o and T such that A\CoCrCv and T/0 is a rook

strip.

Proof. By Theorem 3.1 the left-hand side is the signed sum of monomials z7 for all
tableaux T of shape v/ such that all contained integers are between 1 and p+gq. If T is
such a tableaux, let T} be the subtableau obtained by removing all integers strictly larger
than p (as well as all boxes that become empty), and let 75 be obtained by removing
integers less than or equal to p. Then the shape of T; is 7/A for some partition 7, while
the shape of T is of the form v/o, and we have A\Co C7Cwv. Since 7/0 is the shape where
Ty and Ty overlap, this skew shape must be a rook strip. Finally, since z7'=z71-2T2 this
gives a bijection between the terms of the two sides of the claimed identity. O

Notice that since the polynomials G,/5(1—e”";1—e¥) are supersymmetric, this
lemma implies that if z, y, 2 and w are different set of variables, then we have

G,,/,\(:v,z;w, y): Z (_l)lT/alG-r//\(x;w)‘Gu/a(z;y)' (62)

7/o rook strip

This can be deduced by writing each polynomial G,,{(1—e~*;1—eY) as a linear combina-
tion of double Schur functions [20].

LEMMA 6.2. Let 6 be a skew shape which is broken up into two smaller skew shapes

6, and 02 by a vertical line as shown.

Let p be the number of boxes between the top edge of the leftmost column of 62 and the
bottom edge of the rightmost column of 6,. Then we have

Go(z1, ..., Tp) = Go,(T1, ..., 2p) - Go, (X1, .., Tp).

Proof. Number the rows of 4 such that the top box in the leftmost column of 8, is
in row number one, and so that the numbers increase from top to bottom. Then suppose
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that 77 and 75 are tableaux of shapes 8; and 6, for which all contained integers are less
than or equal to p. Then all integers in row ¢ of T3 will be greater than or equal to 7
because they have at least ¢—1 boxes above them. Similarly the integers in row ¢ of T}
will be smaller than or equal to ¢ because they have p—i boxes below them. Therefore
T, and Ty fit together to form a tableau T' of shape 6. This shows that the terms of Gy
and Gg,-Gg, are in bijective correspondence. O

PrROPOSITION 6.3. Let v be a Young diagram which is broken up into two smaller
Young diagrams A and p by a vertical line after column q.

Then if p is the length of the last column of A we have

Go(Z1, oy Tpi Y15y Yg) = GA(Z1, o Tp3 Y14 -y Yg) - G, ooy Zp) -

Proof. In this proof we will write z for the variables z1,...,z, and y for yi,...,yq.
Then by Lemma 6.1 we have

Go(239) =3 G2(0;9)- oy (),

where the sum is over all partitions ¢ C7Cwr such that 7/o is a rook strip. Notice
that when 7 has more than ¢ columns, then G,(0;y)=G~(y)=0 by Lemma 3.4 and
Theorem 3.1. Therefore we only need to include terms for which 7C A in the sum. For
such terms Lemma 6.2 implies that G, /;(2)=Gx/,(z)-G.(x). The lemma follows from
this by applying Lemma 6.1 to Gx(z;y). ]

COROLLARY 6.4. If vpy12q+1 then G, (z1,...,Tp; Y1, ..., Yq) =0.

Proof. Let A be the first ¢ columns of v, and let u be the rest like in Proposition 6.3.
Then since I(u)>p we get G (x1,...,2,)=0. The statement therefore follows from the
proposition. (|

COROLLARY 6.5 (factorization formula). Let R=(q)? be a rectangle with p rows
and q columns, and let o and T be partitions such that [(c)<p and 11<q. Let (R+0,T)
denote the partition (g+01,...,q+0p, 71, T2, ...) obtained by attaching o and T to the right
and bottom sides of R. Then

GRiox (%1, Tp3 Y1y oy ¥g) = G (05 Y1, oy Yg)  GR(T1, ooy Tp3 Y1, oy Yg)- Go (T, ooy Tp).-
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Proof. Let z denote z;, ..., , and let y denote y, ..., 4. Then Proposition 6.3 implies
that Grio,r(2;y)=Gr+(z;y)-Gy(z). Now using Lemma 3.4 we obtain Gg .(z;y)=
Grr(y;2)=CGr(y; 2) G (y)=G-(0;y)- Gr(z; y). 0

We are now ready to define the structure constants for the coproduct in I". We will
say that a sequence of integers w=(i, ..., %;) is a partial reverse lattice word with respect
to an integer interval [a, b}, if for all 1<k<! and p€la,b—1], the subsequence (i, ..., %)
has more occurrences of p than of p+1.

Given three partitions A=(Ay, ..., Ap), p=(u1, ..., ftg) and v, we then define d¥,, to be
(—=1)M+el=1¥1 times the number of set-valued tableaux T of shape v such that w(T) is
a partial reverse lattice word with respect to both of the intervals [1,p] and [p+1,p+4],
and with content (A, p)=(A1, ..., Ap, f1, ..., iq)- Notice that if R is a rectangle which is

taller than A and wider than g then d¥ p=cf;’\’“ by Theorem 5.4.

THEOREM 6.6. For any partition v we have

Gu(ziy) = d5,Ga(z)-Gu(0;p).
Au

Proof. 1t is enough to show this for finitely many variables z,,...,z, and y1,...,yg,
as long as p and ¢ can be arbitrarily large. Let R=(q)? be a rectangle with p rows and
q columns. If g is a partition such that G, occurs with non-zero coefficient in Ggr-G,
then first of all RCg. Furthermore, Corollary 6.4 shows that G,(x;y) is non-zero only if
o has the form p=(R+A, i) for partitions A and y. By these observations we get

Gr(z;y)-Gu(m:y) =Y d5,CGriru(@iy) = Y d5,Gr(z;9) Ga(z)-Gu(0;y).
A1 A
Since Theorem 3.1 shows that Ggr(z;y)#0, this proves the theorem. O

Again using the fact that G5(1—e~*; 1—e¥) is supersymmetric, this theorem implies
that G, (z, z;w,y)=>_d5,Gx(z; w)-G(2;y) whenever z, y, 2z and w are different sets of
variables.

COROLLARY 6.7. The ring T=E Z-G is a commutative and cocommutative bi-
algebra with product TQT —T given by

GxGu=) &G
v
and coproduct A:I'—-I'®QT given by

AG, =) df,Gr&G,.

A
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The linear map I'—Z sending Gy=1 to one and Gy to zero for \£D is a counit.
Furthermore, conjugation of partitions defines an involution of this bialgebra:

Ga(z;y) = Gu(z;y) = Ga(y; 2)-

Proof. These statements are clear from Theorems 5.4 and 6.6, and Lemma 3.4. [

Ezample 6.8. Using the definition of the coeflicients d¥ , We may compute

AG =G1®1+1®G, ~G1®G;.

We will finish this section by showing that I" indeed contains all stable Grothendieck
polynomials. We start by generalizing the Littlewood—Richardson rule of Theorem 5.4
to a rule for the stable Grothendieck polynomial of any 321-avoiding permutation.

Given partitions ACv we define G, jx=3 u dX,, G- It then follows from Corollary 6.7
that

AG, =) Gr&Gy, (6.3)
ACv
and G,y is furthermore uniquely defined by this identity. Therefore we deduce from
Lemma 6.1 that
Gopp= Y. ()G, (6.4)

X/o rook strip

where the sum is over all partitions o CA such that A/o is a rook strip.
Now given a skew shape §=v/\ and a partition p, let ag =0,/ be (—1)lui-tel
times the number of set-valued tableaux T of shape 6 such that w(T") is a reverse lattice

word with content f.

THEOREM 6.9. For any skew shape §=v/\ we have

G,,/,\ Zzaaquu.
I

Proof. We will start by comparing the coefficients df,, and ag,,. Suppose that T'is
a tableau of shape v such that w(T') is a partial reverse lattice word with respect to the
intervals [1,1(A)] and [[(A)+1,1(A)+1(u)], and with content (), ). Then all integers in
T which come from the interval [1,{()\)] must be located in the upper-left corner in T’
of shape A. Furthermore, any such integer 7 can occur only in row i. Now let the skew
shape v/o be the region in which the integers larger than I()\) are located in T. Since

this region can only overlap A in a rook strip, A/o must be a rook strip. If you remove
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all integers smaller than or equal to [(A) from T and subtract {(A) from the rest, then
the result is a tableau of shape v/ whose word is a reverse lattice word with content p.
Since T is uniquely determined by A and this skew tableau, we obtain

d‘/(ﬂ = Z (_1)1)‘/0'(11//0,;“

A/o rook strip

where this sum is over all partitions o CA such that A/o is a rook strip.

To finish the proof we set C:',, /o= uQ/o, G- Then we obtain

Gopn=>. > ()lay,,G= Y ()G,

#  X/o rook strip A/o rook strip

By comparing with (6.4) and noting that the transition matrix between the G,,\ and

the G,y for fixed v is invertible, we conclude that Gu/,\zé,,/)\. O
Let us remark that all of the theorems 3.1, 5.4, 6.6 and 6.9 can be summarized in
the following statement. We leave the details to the reader.

COROLLARY 6.10. The (n—1)-fold coproduct applied to G,y is given by

_ v/
AP Gy = Y A Gu) B QG ),
B(1), - pa(n)

where d:(/l)‘) u(m) 18 (=) AFZ G times the number of set-valued tableauz T of shape

v/X such that w(T) is a partial reverse lattice word with respect to each of the intervals
[1+Ef:_11l(u(i)), Zle W(u(2)] for 1<k<n, and has content (u(1), ..., u(n)).

Finally, we will give an independent argument showing that the stable Grothendieck
polynomial G,,=G,,(z;y) for any permutation w is contained in I'. Recall that the single
Schur function sx(z) for a partition A is defined by

salz)= Z z7,
T

where the sum is over all semistandard tableaux T of shape A [20], [10]. This is the term
of lowest degree in the single stable polynomial G({x).

If p is a partition containing A, let g, be the number of row and column strict
tableaux of shape g/ such that all entries in the ith row are between 1 and i—1. The
boxes of these tableaux should contain single integers. Then Lenart has proved the
following result [18].
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THEOREM 6.11 (Lenart). Let wy be the Grassmannian permutation for A with de-
scent in position p=l(X). Then the single Grothendieck polynomial &,,,(x) is given by

®wx($) = Z (_1)|H/>‘|g)‘u3“(x1’ cey xp)’
uIOXA

where the sum is over all partitions p containing A.

As a consequence we obtain the formula

Ga(@) =Y ()M gy, s.(x). (6.5)

pnOA

This formula can also be derived from Theorem 3.1. We will briefly sketch the argument.
It is sufficient to construct a bijection between set-valued tableaux T of shape A and pairs
(U, S) where U is a semistandard tableau of some shape p containing A and S is one of
the row and column strict tableaux contributing to gx,. We shall do this by induction
on I=1(}).

Given a set-valued tableau T of shape X, let R be the top row of T and let 77 be the
rest. By induction we can assume that T’ corresponds to a pair (U, 5’). Now let R be
the unique semistandard tableau of shape (A1,1™) where m=|R|— A1, such that af=gF
and each box in the top row of R contains the smallest integer in the corresponding box
of R. For example:

R: gives R= ; 2|2|4|.
3

Now let U=U"-R be the product of U’ and R in the sense of (10, §1]. Then U has shape
p=(A1, o) where the partition ¢ is obtained by adding a vertical strip to the shape of U’.
Finally, let S be the skew tableau of shape u/A obtained by copying the ith row of S’ to
the (i+1)st row of S; if S needs an additional box in this row, we put ¢ in this box. One
may then check that the map T'— (U, S) gives the desired bijection. For example:

1(3
4 1
12
2

1[12[34]
2345

gives (U,S)=

|O10~3[\'J»—l

Equation (6.5) shows that a stable polynomial G (z) is an infinite linear combination
of Schur functions s,(x) for partitions DA such that p and A have the same number of
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columns. Since the coefficient of s (z) is gaa=1, we can also go in the opposite direction
and write each Schur function s,(z) as an infinite linear combination of single stable
Grothendieck polynomials for partitions with the same number of columns as y. In fact,
Lenart also gives an explicit formula for doing this [18].

We also need the following result of Fomin and Greene [7]. If we S, is a permutation
and A is a partition, let g, be the number of semistandard tableaux T of shape X’ such
that if the column word of T is w(T)=(i1, ..., i) then u;, ...u; . =+u,, in the degenerate
Hecke algebra H,(0). Notice that this implies that g, is zero if A has n or more columns.

THEOREM 6.12 (Fomin and Greene). The single stable Grothendieck polynomial
Gu(z) s given by

Gu(r)= Z (_l)lklnl(w)ng\sk(x)
A

We can finally prove

THEOREM 6.13. Let we S, be a permutation. Then the double stable Grothendieck
polynomial G, (x;y) can be written as a finite linear combination

Gu(z;y) = cwnGa(z;y) (6.6)
X

of the polynomials Gx(z;y) for |A|2l(w). In particular, G, is an element of T.

Proof. Tt follows from (6.5) and Theorem 6.12 that the single polynomial G,,(z) is
a possibly infinite linear combination of polynomials G(z) for partitions A with at most
n—1 columns:

Gw($) =Zaka>\(x)‘
A

Using that G, (1—e~%;1—¢Y) is supersymmetric, this implies that (6.6) is true with the
same coefficients.

Let wo=mn ... 21 be the longest permutation of S,,. Using Lemma 3.4 we then deduce
that awa=weww,,» 18 zero unless [(A)=A] <n. We conclude that G, (z;y) is a finite
linear combination of the polynomials G (z;y). O

Since the term of lowest degree in G, () is the stable Schubert polynomial or Stanley
symmetric function F,,(x), it follows that when |\|=I(w) the coefficient ) is the one
defined by Stanley [23]. The coefficients a,,, also generalize the structure constants
5, and d, of I'. On the other hand, the coefficients o, are special cases of quiver
coefficients ¢, (1) which will be introduced in [2]. We believe that these quiver coefficients

have alternating signs. A particular case of this has been confirmed by A. Lascoux [15].
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THEOREM 6.14 (Lascoux). The coefficients a.,, have alternating signs. In other
words, (—1)M=H®) q,y is non-negative.

Lascoux’s proof is based on a beautiful recursive formula for writing a stable Groth-
endieck polynomial G, as a linear combination of the basis elements G.

It would be interesting to define a non-commutative polynomial G,,(u) in the local
plactic algebra for any permutation w. Such a definition might lead to a Littlewood-—
Richardson rule for the coeflicients cy,.

7. Consequences of the Littlewood—Richardson rule

In this section we will derive some consequences of the formulas proved in the past two
sections. We will start with a Pieri rule for the coproduct in I" which is analogous to
Lenart’s Pieri rule of Corollary 4.7. If A=(Ay, ..., A,) is a partition, we let A=(Ag, ..., Ap)
be the partition obtained by removing the top row of A.

COROLLARY T7.1. If A/u is a horizontal strip and k=0 an integer, then
)
d> = (1 k= 1Mk r(u/
w0 =T )
where r(p/X) is the number of rows in u/X. If M\/u is not a horizontal strip then dﬁ‘,(k)zo.

This is an immediate consequence of Theorem 6.6. Notice that this implies that

- E—]X {1/ X) k
G)\(.'IT]_, vy xp) = ; (—1) 1A/l (kj— l)\/ﬂ| Gp,(a:h ey xp—l)xpu
where the sum is over all integers k>0 and all partitions ;1 C A such that A/y is a horizontal
strip. This gives a practical way to calculate stable Grothendieck polynomials G (z),
which can easily be extended to double stable Grothendieck polynomials and 321-avoiding
permutations. For example, if R={q)? is a rectangle with p rows and ¢ columns, then

GR(T1, s Tpi Y15y Yg) = H (Tit+y; —ziy;)- (7.1)
I<isp
1<s<y

To see this, use the Pieri rule and Corollary 6.5 to write

GR(-'Lll,-.-,xp;y): Z (_1)j+k_qG(t}”_1,j)(x1’"',xp—l;y)'xg
g j+k<g+l
= Z (179G (yo-1(21, ooy Tp—13 ) - G5 (03 ) -2h
g<j+k<g+l

:G(q)p_l(xla "')xp—l;y)'G‘I(xP;y)v
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where y denotes the variables y;, ..., y,. Since Gr(z;y)=Gr:(y; ), equation (7.1) follows
from this by induction on p and q. Notice that G1(x;; y;)=z:+y; —z;y; by Example 6.8,
Theorem 3.1 and Lemma 3.4.

As another application of Corollary 7.1, notice that if A/u is a horizontal strip then

N et (TN Y _ 1=
D diw=> () |(k—|A/u|) _{

k>0 k>0 0 otherwise.
= =

This implies that

Ga(1,71,72,..) =Y _ d)) 4, Gpu(@)-1* = G5 ().
ok

In particular, if we let ¢,:T'—T be the linear map which maps G, to G,,, where u=
(Ap+1, Apt2,...) is obtained by removing the top p rows of A, then ¢, is a ring homo-
morphism. Being used to calculating in the ring of symmetric functions, we find this
somewhat surprising. Similarly we have A¢,=(¢;®¢;)A whenever i+j=p. This im-
plies lots of identities among the structure constants cKM and d‘,(” of T'. For example,
if @#pCA are partitions and p>{()\), then by comparing the coefficients of G,®1 in
A¢pGr=(1Q¢,) AG we obtain the identity Y, d =0. The map ¢, is related to the
proper pushforward map on Grothendieck groups from a Grassmann bundle to its base
variety. See [2] for details about this.

We will next describe some identities involving rectangles. Given a rectangle R=(gq)?
with p rows and g columns, and a Young diagram p contained in R, we let i denote u
rotated 180 degrees and put in the lower-right corner of R. Then Theorem 6.6 implies
the following multiplicity-free formula for the coefficients of AGg:

(7.2)

R (—1)AH+IE=IRE i A up =R and ANj is a rook strip,
dy, = .
0 otherwise.

There is a similar formula for multiplying the stable Grothendieck polynomials of
two rectangles B; and Ry;. Let R=R;N Ry be their intersection and g=R;UR; their

union. Then we have

GryGr, =Y d¥,Goir (7.3)
A p

0 iHJ

(0+ X p) =
n

where (p+ A, i) is the partition
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Assuming that R, is the tallest of the two rectangles, this formula is easy to prove from
Theorem 5.4 by counting set-valued tableaux of shape Ri*Rs.

J.R. Stembridge has recently classified all multiplicity-free products of Schur func-
tions [25]. We will say that a product G-G, is multiplicity-free if all constants c5,
are +1 or zero. Stembridge’s result then has the following analogue for Grothendieck
polynomials.

PROPOSITION 7.2. The product Gx-G,, is multiplicity-free if and only if both parti-
tions A and u are rectangles, or one of them is a single boxr or empty.

Proof. It is enough to show that if A is not a rectangle and {=[(u)>2 then the
absolute value of some coefficient ¢ ., 18 at least two. The assumptions on A and [ imply
that we can find a partition g containing A such that g/A is a vertical strip with [+1
boxes and at least three columns. Then it follows from Lenart’s Pieri formula that
c§7(ll)<—2, which means that there exist two different tableaux Ty and T3 of shape A
such that the concatenations w(Ty)e(l,1—1,...,1) and w(T2)(l,l—1,...,1) are reverse
lattice words with the same content g. But then w(7T})ow(U(x)) and w(T2)ow(U(u))
must also be reverse lattice words with the same content, so ch u<_2 if v is the content
of w(T3)ow(U (1)). O

Similarly, a coproduct AG, is multiplicity-free if and only if A is a rectangle.

A related consequence of Theorem 5.4, which we will need in §8, is that if a basis
element G for a rectangular partition R occurs with non-zero coefficient in a product
G-G), then R is the disjoint union of A and f (which in particular means that ch£ 1).
This can be proved as follows. Start with R and the partition u, and look for a set-valued
tableau of shape A#u for some partition A, such that this tableau has content R. The
filling of p then has to be U(u). Now construct A and the tableau on A by first filling
1 in some boxes, then 2, etc. It is then easy to see that at each step there is only one
choice, i.e. both A and the tableau on A are uniquely determined by the requirement that
the word of the tableau on Axp is a reverse lattice word with content E.

As noted earlier, the polynomials G,/ are uniquely determined by (6.4). It is not
hard to see that the formula in the opposite direction is

Gu/)\ = Z Gu//07 (74)
oCA

where this sum is over all partitions o contained in A. From this we obtain the following
inverse of the relation diu:cﬁ%}"“ between the structure constants of I". Namely, if R
is a rectangle which contains A and y then

v _ _ R+,
C)\M—Olp*)\,u—a(R-f—)\,y)/R,u_E dys .

oCR
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We will finish this section by proving some results concerning the shapes of partitions
which give non-zero constants ¢ o @xp 01 gy - We will need a few lemmas which allow
us to make small changes to set-valued tableaux. Let the shared bozes of a tableau be
the boxes that contain two or more integers.

LeEMMA 7.3. Let T be a set-valued tableau of shape v/\ with at least one shared
box, and let y be the largest integer contained in a shared box of T. Suppose that v is
a sequence of integers such that the concatenation w(T)ov of the word of T with v is
a reverse lattice word. Then there exists a set-valued tableau T of shape v/A such that
w(T You is a reverse lattice word, and so that the iniegers contained in T are the same
as those in T, except that one integer x>y is left out. (In other words, the content of
(z)ow(T) is equal to the content of w(T).)

Proof. Start by locating the leftmost shared box A of T' which contains y. To
construct T we start by removing y from this box. Then look for the nearest box B
below or to the left of A which contains y+1, such that the box above B does not
contain y and the box to the left of B does not contain y+1. If no such box exists, then
w(T)ev stays a reverse lattice word even if y is removed from A. If we can locate a box
B satisfying these requirements, we replace y+1 with y in this box. Notice that B can’t
be a shared box by the assumptions. We then continue in the same way, with B in the
role of A and y+1 in the role of y. T is the tableau resulting when no new box B can
be obtained. O

The following picture shows an example of the transformation described in the proof.
The initial box A is the one in the upper-right corner and y=6.

35156 35| 5

7 2|66
23| 3 ~ 23| 3
4145| 8 4145 8
818 718

COROLLARY 7.4 (of proof). With the assumptions of Lemma 7.3, there exists a
partition o obtained by adding a single box to v and a tableau Tl of shape p/A such
that w(Ty)ov is a reverse lattice word and the content of w(T}) is equal to the content
of w(T).

Proof. If X is empty so the shape of T is the partition v, then we obtain T, as the
product z-T where z is the integer which T lacks compared to 7. When this product is
formed, the only boxes that can be affected are those containing integers strictly larger
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than y or those containing y which are to the left of the original box A in the construction
of T. Since this implies that no shared boxes are modified, the shape of T 1 is only one box
larger than v. When v/A is not a partition, the same trick will work if we pretend that
the boxes of A are actually filled with small integers when the product z-T is formed. O

Notice that a sequence w of integers between 1 and b is a partial reverse lattice word
with respect to two integer intervals [1,a] and [a+1,b] if and only if wo(a?,...,2N, 1V)
is a reverse lattice word for large N. Therefore Lemma 7.3 and Corollary 7.4 are still
true if one replaces “reverse lattice word” with “partial reverse lattice word” for given
integer intervals.

The following result says that the non-zero structure constants of I' come in paths
which start in the usual Littlewood—Richardson coefficients.

PROPOSITION 7.5. Let A, 1 and v be partitions.

(1) If ¢X,#0 and [v|>|A|+|u| then there exists a partition U Cv of weight |D|=|v|—1
such that c5,#0.

(i) If ¢X,#0 and |v|>|X\|+|u| then there exists a partition 1D of weight |fi|=|u|+1
such that cX;#0.

(iil) If d,#0 and |v|<|A|+|u| then there exists a partition UDv of weight |V|=
|v|+1 such that dilﬁé().

(iv) If d,#0 and |v|<|X|+|u| then there exists a partition fCp of weight |i|=
|ul—1 such that d5;#0.

(v) If ay/x,,7#0 and |u|>|v/A| then there exists a partition LCu of weight |ji|=
|l =1 such that o, 5 570.

(vi) If cayx,,#0 and |u|>|v/X| then there exists a partition VDv of weight |v|=
|v[+1 such that agyy, ,#0.

(vii) If aya,,#0 and |u|>|v/X| then there exists a partition ACX of weight |A=
|Al—1 such that a5 ,#0.

Proof. Lemma 7.3 implies (i), (iv) and (v), while Corollary 7.4 implies (ii), (iii)
and (vi). For example, to prove (ii) from the corollary, recall that if ¢§,7#0 then there
exists a tableau T" of shape p such that w(T)ow(U(A)) is a reverse lattice word with
content v. Since |v|>|A|+|p|, T must contain a shared box. We can therefore let ji be
the shape of the tableau T} of Corollary 7.4.

Finally, to prove (vii) we need to show that if T is a tableau of shape v/ with at
least one shared box such that w(T") is a reverse lattice word with content v, then there
exists a tableau T of a shape v/A such that w(T) is a reverse lattice word with the same
content v. Let y be the smallest integer contained in a shared box of T, and let A be the
northernmost shared box containing y. Then start by removing y from this box. If all
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integers in the row above A are larger than or equal to y, then we can add a new box
containing y at the left end of this row. Otherwise let B be the rightmost box in the
row above A which contains an integer strictly less than y. Now replace the integer in B
with y and continue in the same way with this integer in the role of y and B in the role
of A. Using the induction hypothesis that some box strictly north of A contains y, it is
not hard to check that this process stops before we reach the top row of T, and that the
result is a tableau 7' with the desired properties. O

LEMMA 7.6. Let T be a set-valued tableau whose shape is a partition A, such thet T
has at least one shared box. Let y be the smallest integer contained in a shared bozx of T'.
Suppose that v is a sequence of integers such that w(T )ev is a reverse lattice word. Then
there exists a tableau T of shape \ and an integer z<y such that w(f)ov s a reverse
lattice word, and the content of (z)ow(T) is equal to the content of w(T).

Proof. Let a be the set in the leftmost shared box which contains y, and let T3, C,
D and T; be as in the picture.

Qlelt

Let (T3, y) be the tableau obtained by attaching a box containing y to the right side of T3,
and let §=sh(773,y)/sh(T1) be the skew diagram of this box. Then set (z, T))=Re(T1,y),
and let T be the tableau obtained from T by replacing T} with T} and a with a=a\{y}.
Notice that z must be a single integer, since only integers less than or equal to y in T}
are affected when forming R¢(T1,y), and none of these are in shared boxes.

Since w{T)cv=w{T1)ow{C)ow(a)ow(D)ow(I)ov is a reverse lattice word, so is
w(Ty, y)ow(Cow(@)ow(D)ow(Ty)ov. But then Lemma 5.3 implies that (z)ow(T})o
w(C)ew(@)ow(D)ow(Ty)ov=(z)ow(T)ov is a reverse lattice word. The lemma follows
from this. a

PRrROPOSITION 7.7. If CKH%O then v is contained in the union of all partitions o of
weight |o|=|A|+|u] such that the Littlewood—Richardson coefficient cfu is non-zero.

Proof. 1t is enough to show that for each 1<¢<I(v) there is a partition o of weight
lo|=|A|+|p| such that Ci,ﬁéo and g;=v;. We will do this by induction on ||, the case
|v|=|A|+]|u| being trivial.

By Theorem 5.4 there exists a tableau T of shape A such that w(T)ow(U(p)) is a

reverse lattice word with content v. Since |v|>|A|+|u/, this tableau must have at least one
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shared box. If this box contains an integer which is larger than 4, then Lemma 7.3 gives
us a tableau T in which the number of i’s is the same as in T. Otherwise some shared
box contains an integer smaller than ¢, in which case we use Lemma 7.6 to produce T.

Now if © is the content of w(T)ow(U(u)), then ciﬂéo and ;=v;. Since |#|=|v]—1, the
required partition g exists by induction. [

Let us finally remark that the triples of partitions (A, p,v) for which cf,#0 do
not form a semigroup, as is the case if one only considers Littlewood-Richardson coef-
ficients [26]. For example, cgf()l)=—1 but cgf()m:(). However, I' might still have the
property that if ¢ y,, is not zero for some integer N>1 then ¢§,#0. For Littlewood-
Richardson coeflicients this has been proved by Knutson and Tao [12]. The same question

applies to the coefficients dy,, and oy, as well.

8. K-theory of Grassmannians

This section establishes the link between K-theory of Grassmann varieties and the bi-
algebra I'. This is then used to describe some results of A. Knutson regarding K-theoretic
triple intersections on Grassmannians.

If E and F are vector bundles over a variety X, and w is a permutation, we define
an element G, (F—F) in the Grothendieck group of X as follows. Suppose first that
E=L1®..0L, and F=M®...®M/ are direct sums of line bundles. Then we set

Gu(F-E)=Gy(1-M[ ", ., 1-M; " 1—Ly, ..., 1- L,).

Since the stable Grothendieck polynomial G,,(z;y) is symmetric in both the z; and the
y; separately, this expression can be written as a polynomial in the exterior powers of FY
and E. For this reason the definition makes sense even when E and F' do not have decom-
positions into line bundles. The fact that G»(1—e~*;1—e¥) is supersymmetric translates
into the formula G\(F&H —E®H)=G,(F—FE), where H is an arbitrary vector bundle.
Lemma 3.4 says that Gy\(F—FE)=Gx(EV—-FV).

Now let X =Gr(d, C™) be the Grassmann variety of d-dimensional subspaces of C",
and let SCC”x X be the tautological subbundle of rank d on X. Let A be a partition
with at most d rows and at most n—d columns. Then the class of the structure sheaf of
the Schubert variety 2,C X defined by (1.1) is given by

[Oq,]=GA(SY) = GA(S"~0). (8.1)

To see this, let Y=FI(C")={V1C...CV,=C"} be the variety of full flags in C™ with
tautological flag F1C...CF,,=C"xY. For any permutation w€S,, there is a Schubert
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variety in Y defined by
Q, ={V.€Y |dim(V,NC*) > p—r,(p,n—k) for all p, k},

where 7, (p, k) =#{i<p|w(i)<k}. It follows from [16] or [11, Theorem 3] that [Oq, |=
&y(1—Ly,..,1—L,) in K°Y, where &,,(z) is the single Grothendieck polynomial associ-
ated tow and L;=F;/F,_;. Now if p: Y — X is the map sending a flag V, to the subspace
V4 of dimension d, one can check [10, Proposition 10.9] that p~1(2,)=,,, where w €S,
is the Grassmannian permutation for A with descent in position d. Since the pullback
map ¢*: K°X —K°Y is injective, it is therefore enough to show that [Oq,, |=Guw,(F})
in K°Y. This is true because &,,,(x)=Gx(z1,...,z4) by Theorem 6.11.

Now given any partition v, let I, CT be the ideal spanned by the elements G, for
all partitions A which are not contained in v.

THEOREM 8.1. The map G —Gx(SY) induces an isomorphism of rings I'/Ig=
K°Gr(d,C"), where R=(n—d)? is a rectangle with d rows and n—d columns.

Proof. Since the map Gx—G»(SV) is surjective by (8.1) and since I'/I and K°X are
free Abelian groups of the same rank, it is enough to show that G»(SV)=0 when AZ R.
If I(A)>d this follows from Theorem 3.1 since S has rank d. Now if 0=-S—C"—Q—0
denotes the universal exact sequence on X, we get GA(SY)=G,(SYV-C")=G\(C"—-8)=
G (Q®S-S)=Gx(Q), which is zero if A\;>n—d=rank(Q). a

As mentioned in the introduction, the coproduct on I is also closely related to K-
theory of Grassmannians. Given positive integers dj<n; and da<na, set X,=Gr(d;, C™),
Xo=Gr(d2,C™) and X=Gr(d;+dz, C"'*t™2), and let S;, S» and S be the tautologi-
cal subbundles on these varieties. Let P be the product P=X;x X, with projections
mi: P— X, and let ¢: P— X be the embedding which maps a pair (V1, V3) of subspaces
V1€ C™ and VoC C™ to the subspace ViaVoC CM@C™2. Then since ¢*S=77 SB35 S2
it follows that the pullback on Grothendieck rings ¢*: K°X - K°P=K° X, QK X is given
by ¢*(G.(5))=G (7] S1®7352) =3 d5,GA(S1)® G (S2).

We will next report on some unpublished results of A. Knutson regarding triple inter-
sections of Schubert structure sheaves.(?) Let g: X =Gr(d, C")— {*} be a map to a point
and let g.: K°X —Z be the induced map on Grothendieck groups. The triple intersection
number of the structure sheaves Ogq,, Oq, and Oq, is the integer 0.([Oq,]-[On,]-[0a,])-
This is a natural K-theory parallel of the symmetric Littlewood—Richardson coefficients
studied in e.g. [12]. Let Ix=Iq,03COq, denote the ideal sheaf of the complement of
the open Schubert cell 5 in ). To analyze triple intersections, Knutson proved that

(?) While Knutson’s results hold for arbitrary partial flag varieties, we shall only be concerned with
Grassmannians here.
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these ideal sheaves form a dual basis to the basis of Schubert structure sheaves with
respect to the pairing {«, 8)=p.(c-8) on K°X. Knutson furthermore worked out the
change of basis matrices. We will apply the methods developed in the present paper to
give simple proofs of these results. In addition we will prove an explicit formula for triple
intersections and give an example showing that these numbers can be negative, although
the signs of triple intersections do not alternate in a simple way.

Let t=1—-G1€l’. We will abuse notation and write t also for its image 1—[Oq,]
in K°X, which by definition of the polynomial G; is equal to the class of the line bun-
dle A\%S. Corollary 4.7 implies that for any partition A we have t-Gy=Y (=1)l7/X G,
where the sum is over all partitions ¢ D\ such that o/) is a rook strip. Since g,([Oq,])=1
for each s CR=(n—d)?, it follows from this that g.(¢-[Og,]) is equal to one when A=R
and zero otherwise. If \ is contained in R, let A be the partition obtained by rotating
the skew diagram R/\ 180 degrees, i.e. A=(n—d—M\g,...,n—d—\;). As we noted in §7,
the coefficient of G in a product G- G, is non-zero if and only if uzj\, and in this case
we have ¢!, =1. Tt follows from this that o.(t-[Oq,]-[Og,]) is equal to one if p=X and
zero otherwise. We conclude that the elements ¢-[Oq,] form a dual basis to the basis
of Schubert structure sheaves, with [Oq,] and t-[Ogq,] dual to each other. Since 2\ Q2
is a zero section of the line bundle A\%SV restricted to 2 [22], we finally deduce that
[Z:]=[A"S80q,]=t-[0q,].

Now, calculating a triple intersection number g, ([Oq,]-[Oq,]-[Og,]) is equivalent to
expanding [Ogq,]-[Oq,] in terms of the dual basis {[Z,]} and extracting the coefficient
of [Z5]. This is the same as the coefficient of G5 when the formal power series t~1-G»-G,,
is written as an infinite linear combination of the basis elements for I'. Notice that
multiplication by ¢~! takes any basis element G to the sum of all elements G, for
partitions o containing A; this is the inverse operation to multiplication by . We therefore
obtain the formula

0:([00,]:[00,)100,)) = Y~ &, (8.2)

oCv

Alternatively we have 9, ([0q,]-[0q,][0a,])=Y_,-, ¢, It turns out that many of these
intersection numbers are non-negative. For example, when 7 contains the union of all
partitions o with non-zero coefficient Sw then the intersection number is equal to one,
which follows from the fact that the map ¢, of §7 is a ring homomorphism. Similarly
one can check that all triple intersections on Grassmannians of dimension smaller than
20 are non-negative. However, a direct calculation shows that the coefficient of G431 in
t=1(G321)? is —1. In other words, negative triple intersections can be found on Gr(4, C?).

Let us remark here that the signs showing up in the structure constants of I' are to

some extent a matter of choice. To be precise, all structure constants of I' with respect
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to the basis {(—1)*G,} are non-negative. This viewpoint is equivalent to working with
Fomin and Kirillov’s 8-polynomials, with 8=1 [8]. We have chosen to keep a notation
that leads to signs in order to comply with standard definitions and to honor the fact
that the Schubert structure sheaves on a Grassmann variety do multiply with alternating

signs.

9. The structure of T

In this last section we will give a discussion of the overall structure of ', including its
relation to the ring of symmetric functions.

Recall that the ring of symmetric functions is the span A=@P, Z-s, of all Schur
functions sy=sx(z) [20], [10]. This is in fact a Hopf algebra [4, Chapter 1]. Its structure
constants are the Littlewood—Richardson coefficients, i.e.

v —_ v
s,\~suzg ciuSy and As,,—E ApSr®S8y,

where the first sum is over partitions v and the second over partitions A and g, such that
|v|=|A|4|u| in both cases. The antipode is given by S(sx)=(=1)*sy.

As noted in the introduction, A is the associated graded bialgebra to I' with respect
to the filtration I'y=€P, |5, Z - Gx. This is an immediate consequence of the fact that cf,
and dY, are both equal to the usual Littlewood-Richardson coefficient when |v[=|X|+ |-
Furthermore, if we let I' and A be the completions of I" and A, consisting of infinite linear
combinations of stable Grothendieck polynomials and Schur functions, respectively, then
T4 as bialgebras. This is true because if we set the variables y; to zero, then T and A
both consist of all symmetric power series in Z[z1, z2, ...].

Despite these facts, I' and A are not isomorphic as bialgebras themselves. In fact,
there exists no antipode which makes I" a Hopf algebra. Recall that an antipode is
a linear map S:T'—T such that S(1)=1 and for each non-empty partition v we have
>-dX,S(Gx)-G,=0, or equivalently

D S(Gx)Guya =0, (9.1)
ACv
where G, is given by (6.3). Taking v=(1) we get S(G1)-(1—G1)+1-G1=0, which
implies that S(t)=t~! where t=1—G;. Since t~€T is equal to the sum of the elements
G, for all partitions A, this is not an element of T'.
However, I' is not far from being a Hopf algebra. In fact, if we let I'; be the
localization generated by I" and t~!, then I'; is a Hopf algebra. To see this, notice that
(6.4) implies that G, , =t™ where m is the number of inner corners of v, i.e. the number
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of indices ¢ such that v;>v;11. By (9.1) we therefore see that an antipode S:I'\—1I"
must satisfy
S(G)=—t"" " S(Gx)Guyn- (9.2)
AGw
This equation can be used to define S:I';—I';. The obtained antipode is furthermore
a ring homomorphism, since it must agree with the antipode on the ring of symmetric
functions extended to A=T"

Regarding the structure of I' as an abstract ring, we conjecture:

CONJECTURE 9.1. (a) Any stable polynomial G can be written as a polynomial in
the elements Gg for rectangular partitions R contained in A.

(b) The elements {...,G3,G2,G1,G(1,1),G,1,1), -} corresponding to partitions with
only one row or one column are algebraically independent.

Part (a) of this conjecture has been verified for all partitions A of weight at most 9.
For (b), if we define the degree of a monomial in the G and G 1y to be the total number
of boxes in the partitions of the factors, then all such monomials of degree up to 9 are
linearly independent. Furthermore, it is not hard to prove that for any integer k>2, the
elements {G,G1,G1,1),G(1,1,1),---} are algebraically independent. Namely, if one uses
the lexicographic order on partitions, then the monomials in these elements all have a
different maximal partition X for which the coefficient of G is non-zero.

The conjecture has some interesting consequences for the structure of I'. If (a) is
true, then I'; is generated by the the elements Gy, G(1:) in addition to t~—1. To see this,
notice that if R=(q)? is a rectangular partition with at least two rows and two columns,
and A=(gP~%,¢—1) is the partition obtained by removing the box in the corner of R,
then

t-Gr=G1Gx=Gr(1)— Gr(1) T Gat(1),(1)-

Using (a) this shows that ¢-Gr can be written as a polynomial in G441, G(1»+1) and the
elements G for rectangles R which are strictly contained in R. This shows that Gg is
in the ring generated by the elements G, G 11y and t~! by induction on the size of R.

However, if (b) is true then the elements G} and G(;:) do not generate I' as a ring.
In fact, the identity

t-G2.2) = G1Ga+G1G 1)~ G2G1 1y —(G1)?

implies that G227y can’t be written as a polynomial in these elements if they are alge-
braically independent.
Geometrically, the fact that I' is a commutative and cocommutative bialgebra implies

that SpecT is an Abelian semigroup scheme. The existence of an antipode on I'; means
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that the dense open subset SpecT’; is a group scheme. Furthermore, if Conjecture 9.1 is
true then this open subset looks like an infinite-dimensional affine space with a hyperplane
removed.

We will finish this paper by raising some additional questions. First of all, several
people have asked us when a symmetric power series in Z[zy,x2, ...,y1, Y2, ...] is an el-
ement in I'. Even when the variables y; are set to zero, we do not know the answer to
this.

In view of Conjecture 9.1 it would be very interesting to know the relations between
the elements G for rectangular partitions. We have also been wondering if I' might be a
polynomial ring, i.e. are there algebraically independent elements hy, hg, ... in I' such that
I'=2Z[hq, ha, ...]7 We think that this is not the case but have not been able to prove it.

It is not hard to see that the single Grothendieck polynomials &, (z) for all per-
mutations w form a basis for the polynomial ring Z[z;,zs,...]. For example, one can
check directly that the Grothendieck polynomials for permutations in S,, give a basis for
the linear span of all monomials z% 25> ... :v’;"_‘ll for which k;<n—j for each j. Alterna-
tively one can use a stronger result of Lenart [17] which expresses any single Grothendieck
polynomial &,,(x) as an explicit linear combination of Schubert polynomials &,,/(x) with
alternating signs, i.e. the sign of the coefficient of S,(z) is (—1)**"). On the other
hand, Lascoux has conjectured that each single Schubert polynomial is a non-negative
linear combination of Grothendieck polynomials.

Now define Grothendieck structure constants c;; ,€Z by

Byu(z) - By(z) = Z CwBu(T)-

These constants are generalizations of the structure constants for Schubert polynomials
as well as the coeflicients ¢} ., discussed in this paper. If wy, w,, and w, are Grassmannian
permutations for A, y and v with descents at the same position, then c§ u:cﬂ;’wu. Based

on our results for Grothendieck polynomials of Grassmannian permutations given in this

paper, as well as on some computational evidence, we pose(®)

CONJECTURE 9.2. The structure constants for single Grothendieck polynomials have
alternating signs, i.e. (—1)'v*) ¢ >0.

(®) Conjecture 9.2 has been proved by M. Brion [27].
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