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1. I n t r o d u c t i o n  

The study of non-commutative topological dynamical systems, in other words, automor- 

phisms of C*-algebras, goes back a long way. Among the most important invariants 

of such systems is entropy, first introduced in the operator algebra context by Connes 

and Stormer in [13]. (See [40] for an extensive survey of this subject.) In this paper, 

we deal with the non-commutative generalization of topological entropy, discovered by 

Voiculescu [44] for nuclear C*-algebras and extended by Brown [7] to the exact case. 

Although this entropy has been computed in many examples, we are very far from a 

good understanding of its behavior. For example, to this day we do not know in full 

generality the exact value of the topological entropy ht(c~| of a tensor product of two 

automorphisms. In general the inequality ht(c~| is known. Equality is 

only known to hold when both a and/3 satisfy a CNT variational principle. 

In this paper, we address four general types of questions regarding topological en- 

tropy. 

The first question concerns the behavior of topological entropy under free products. 

The precise question is the value of ht(c~,~) of the topological entropy of the (possibly 

amalgamated) reduced free product automorphism a,/3. The main theorem of this paper 

states that ht(c~,~)=max(ht(a), ht(~)), if the free product is with amalgamation over a 

finite-dimensional C*-algebra. One surprising feature of this result is that the answer is 

precise--this is to be contrasted with the situation for tensor products. Although the 

free product of C*-algebras is more complex than the tensor product, it seems to behave 

more like the direct sum for the purposes of entropy, which is, curiously, close to its 
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behavior for the purposes of K-theory. One direct consequence of our result is that  the 

free shift on an arbitrary reduced free product *iez(A, ~) has zero entropy. 

Giving a bound on the topological entropy of a free product of two automorphisms 

can be considered a refinement of the result [19] that the reduced amalgamated free 

product of two exact C*-algebras is exact. Indeed, exactness of a C*-algebra B is the 

statement that  ht(id: B-+B)<+oo. The reader will find that  our proof is related to the 

argument given in [20] for the exactness of reduced amalgamated free products. 

The second general question concerns the Connes-Narnhofer-Thirr ing (CNT) varia- 

tional principle. The Connes Narnhofer-Thirr ing (CNT) entropy [12] is a generalization 

to non-commutative measure spaces of the classical Kolmogorov-Sinai entropy. An auto- 

morphism c~ is said to satisfy the CNT variational principle if its topological entropy is 

equal to the supremum of the CNT entropy computed with respect to all invariant states. 

Although this principle fails for general non-commutative dynamical systems, we show 

that if two automorphisms c~EAut(A) and ~EAut (B)  satisfy the CNT variational prin- 

ciple, then so does c~*~. 

The third general question concerns embeddings of dynamical systems. Kirchberg 

has shown that  any separable exact C*-algebra can be embedded into the Cuntz algebra 

on two generators. We show that  any nuclear C*-dynamical system can be covariantly 

embedded into the Cuntz algebra 0 2  in an entropy-preserving way. 

The last question concerns the possible values of entropy that  can be attained by 

automorphisms of a given C*-algebra A, i.e., the set TE(A)=ht(Aut(A)). This is clearly 

an invariant of A. For instance, TE(A)={+cx~} if A is not exact; TE(A)={O} if A is 

finite-dimensional. We show that  TE(O~)=[O, +oo]. Thanks to Kirchberg's absorption 

results, this implies that  any separable purely infinite nuclear simple C*-algebra A admits 

an automorphism with any given value of entropy; i.e., TE(A) = [0, +oo]. 

The main result of this paper, computing entropy of amalgamated free products 

of automorphisms, applies only to the case that  amalgamation takes place over a finite- 

dimensional subalgebra. Our results are likely to extend to the case of amalgamation over 

an arbitrary C*-subalgebra, if the following question can be answered in the affirmative: 

Question 1.1. Let O~-~I-+ET+B--+O be an exact sequence of C*-algebras, which 

is split (i.e., there exists a *-homomorphism ~: B-+E so that  ~o~=idu) .  Let c~ be an 

automorphism of E so that  c~(I)=I;  denote the resulting automorphism of B by ~. 

Assume that  ~ o ~ = a o  U. Is it true that  h t (~ )~max(h t (~) ,  ht(c~ls))? 
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2. P r e l i m i n a r i e s  

2.1. A review of topological entropy. Let A be an exact C*-algebra and let w c A  be a 

finite subset. Fix a faithful representation 7r: A-+B(H).  Define the set CPA(A) to be 

the set of triples (q), ~, X), where X is a finite-dimensional C*-algebra, and (I): A-+X, 

qJ: X-+ B (H) are contractive completely-positive maps. For e > 0, define 

rep(w, e) = inf{rank(X): (q5, tp, X) E CPA(A) and IIr162 < e for all a E w}. 

(This quantity is independent of the choice of 7r, cf. [7].) If aEAut(A)  is an automor- 

phism, then its topological entropy ht(a) is defined as 

sup sup lira sup _1 log rcp(w tO... U a n-  1 (w), e). 
w c A  e n - - ~  n 

This definition, obtained in [7], gives the same quantity as Voiculescu's original definition 

of dynamical topological entropy [44] for nuclear C*-algebras A. We summarize below 

some properties of ht(a),  which we will need in this paper. The proofs can be found 

in [7]. 

THEOREM. Let c~EAut(A) be as above. Then: 

(1) ht is monotone: if B c A  and a ( B ) c B ,  then ht(alB)~<ht(a ). 

(2) If  A = U A n  , with An subalgebras, AnCAn+l and a(An)CAn,  then h t ( a ) =  

limn ht( l o). 
(3) If ~EAut(B) ,  let a |174 be the tensor product automorphism. 

Then ht(a|  If  A contains an a-invariant projection, then ht(a| 

ht(/3). 

(4) If  ~EAut(B) ,  let aO/3EAut(A|  be the direct sum automorphism. Then 

ht (a G/~)= max(ht (a), ht (~)). 

(5) I f /3EAut(A)  commutes with a, i.e., / % a = a o ~ ,  then a extends to the obvious 

automorphism ~EAut(A>~zZ). Then h t ( a ) = h t ( a ) .  

2.2. Amalgamated free products. Let D be a unital C*-algebra. Recall that  a D- 

valued non-commutative probability space is a C*-algebra A, containing D as a unital 

subalgebra, and endowed with a conditional expectation E: A-+D. 
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Let now A1 and A2 be two unital C*-algebras with a common unital subalgebra D 

and with conditional expectations Ej:Aj--~D, so that  the GNS representation associated 

to each Ej is faithful. Then there exists a C*-algebra A, generated by A1 and A2 (in 

such a way that  the copies of D inside Aj c A  are identified), a conditional expectation 

E: A-+D, and such that A j c A  are free with respect to E (see [45]), and E gives rise to 

a faithful GNS representation of A. The C*-algebra A is the reduced amalgamated free 

product over D of (A1, El)  and (A2, E2), and is denoted 

( A, E) = ( A1, E1)*D( A2, E~). (2.1) 

When the conditional expectations Ej are clear from context we may write A:AI*DA2.  

In the case that  D = C 1 c A I ,  A2, then El,  E2 and E are states and A is the reduced free 

product of A1 and A2, denoted simply 

(A, E)  = (A1, El)* (A2, E2). (2.2) 

Moreover, in the situation of a free product (2.1) or (2.2), one has conditional expectations 

4h: A--+A1 and (I)2:A--+A2 such that  Ejo~pj=E. 

Definition 2.2.1. Let (A, E:A-+D) be a D-valued non-commutative probability 

space. We say that  aEAut(A)  is an automorphism of this space, if (i) a(D)=D and 

(ii) (~oE=Eoa. 

Notice that  in the case that  D = C ,  an automorphism of a D-probability space A is 

simply an automorphism of A, fixing the state E: A-~D=C.  

Assume now that  (A1, E: A1--+D) and (A2, E2:A2-~D) are D-probability spaces. 

Assume further that  (~jEAut(Aj) are D-space automorphisms, and O~l]D=Ot2]D . Then 

there is a unique automorphism al*a2:AI*DA2-+AI*DA2 satisfying 

(OII*OL2)]AjcA1.DA2ZOlj, j =  l,2. 

We will need the following theorem of Blanchard and Dykema. 

THEOREM [4]. Let D and D be unital C*-algebras, let (A1, El) and (A2, E2) be D- 

probability spaces, and let (-41,E1) and (42,E2) be D-probability spaces. Assume that 

the GNS representations associated to Ej and F,j are faithful ( j - - l ,  2). Let 

(A, E)  = (A1, E1)*D (d2, E2), 

= (si2, E2).  

Suppose that ~rD: D---~ ~) is a (not necessarily unital) injective *-homomorphism and that 

there are injective ,-homomorphisms ~l: A1--~A1 and 7r2:A2-+.42 such that 7lDoEj= 

EjoTrj. Then there is an injective *-homomorphism ~: A-+ A such that T;[Aj=7r j ( j = l ,  2) 

and EoTr = E. 



TOPOLOGICAL ENTROPY OF FREE PRODUCT AUTOMORPHISMS 

2.3. K-theory for reduced free products. Thanks to fundamental work of E. Germain 

on K-theory of free products, one has the following six-term exact sequence for free 

products of nuclear C*-algebras. 

THEOREM [22], [21], [23]. Let A and B be unital nuclear C*-algebras and CES(A), 

CES(B)  be states with faithful GNS representations. Let C=(A,r  and let 

~ A : Ar C and ~ B : Br C denote the canonical inclusions. Then there is an exact sequence 

Z I~-~[1A]~--[1B]) K o ( A ) |  Ko(C)  

t 1 
K I ( C )  < K I ( A ) |  . O. 

Moreover, if both A and B satisfy the Universal Coefficient Theorem of Rosenberg and 

Schochet (see e.g. [3]) then so does C. 

2.4. Cuntz Pimsner algebras. Let A be a C*-algebra, and H be a Hilbert bimodule 

over A. Assume that  H is full, i.e., (H, H}A is dense in A. Let 

and for ~EH, let 

F(H) = A• (~ H | 
n ~ l  

l(~): F(H)  -+ F(H),  

= 

The Cuntz-Pimsner C*-algebra E(H)  (cf. [33]) is then defined as C*(l(~):~EH). It is 

not hard to see that  

l(~)* l (0  = (~, r 

and hence A = ( H , H } C E ( H ) ,  acting on the left of F(H).  The projection from F(H)  

onto A C F (H) gives rise to a conditional expect ation E: E (H) --+ A. We summarize some 

of the properties of E(H) below; the proofs can be found in [33], [37] and [20]. 

THEOREM. Let H and A be as above. Then: 

(1) / f  K C H  is a Hilbert A-subbimodule which is full, then E(K)  is canonically 

isomorphic to C*(l(~): F(H)-+F(H)  such that ~ E K ) c  E(H).  

(2) Let g '  be another full Hilbert A-bimodule, then E(H|  

where the reduced free product is taken with respect to the canonical conditional expecta- 

tions from E(H) (rasp., E(H'))  onto A. 
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(3) Assume that (~: H--~H is a linear map so that for some c~cAut(A), 

(~(ax'~'a2) =c~(al).c~(~).c~(a2), ax,a2CA, ~EH, (2.3) 

(G'(~I),  (:~(~2))A : OL((%Cl, ~2)A),  ~1, ~2 E H. (2.4) 

Then there is a unique automorphism E((~) of the A-probability space (E(H) ,E:  

E(H)-+A)  so that E(C~)]AcE(H)=C~ and E((~)(l(~))=l(6~(~)). The automorphism E(~) 

is called the Bogolyubov automorphism associated to ~. 

2.5. Some examples of Bogolyubov automorphisms. In the course of proving the main 

theorem of the paper, we will encounter a particular class of Bogolyubov automorphisms 

of E ( H ) ,  which we will presently describe. Let D be a C*-algebra and (A, E: A-+D) be 

a D-probability space. Let 

K ~  A| 

(algebraic tensor product), and endow K ~ with the A-valued inner product given by 

(a|174 a')b', a,a',b,b'EA. 

Denote by KD the Hilbert A-bimodule obtained from K ~ after separation and comple- 

tion. Another description of KD is as the internal tensor product KD=L2(A, E)|  

Notice that any automorphism c~ of the D-probability space A extends to a linear map 

ct: KD-+KD satisfying equations (2.3) and (2.4). 

THEOREM [35]. E(KD)-~ (A, E)*D (D| T, id |162 where T denotes the Toeplitz al- 

gebra (the algebra generated by the unilateral shift on 12(N)), and ~: T--+C is the vacuum 

state (corresponding to the vector (~xEI2(N)). Moreover, E((~) corresponds in this iso- 

morphism to c~*((C~lD)| ). 

Let (A, E: A-+D) be a D-probability space, and let c~ be an automorphism of this 

D-probability space. Assume that  D is finite-dimensional. Let r be an ctlD-invariant 

faithful trace on D. Consider the Hilbert (A, A)-bimodule 

H = L2(A, r  |  A, 

together with the vector [ = 1  | 1 E H and the inner product 

(al| bl| = (aa, bl)L~(A,r 

We will henceforth also write r to mean r Let U: H-+H be given by 

U(x| = V ( z ) e a ( a ) ,  

where V: L2(A,~)-+L2(A, 6) is the unitary induced by a: A--+A. Then VaV*=c~(a) 

where a and a(a)  act on the left of H. 
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LEMMA 2.5.1. There exists a vector ~EH, with the following properties: 
(1) d~=~d for all dED, 
(2) ur162 
(3) (~,a~}=E(a)  for all acA. 

Proof. Let U(D) denote the unitary group of D, endowed with Haar measure #. Let 

r = f ~u* d~(~). 
J u e U ( D )  

For each wEU(D), we get 

w~'=w f u~u*dp(u)=( f wu~uw*d#(u))w=~'w, 
J u E U ( D )  \ J u w E U ( D )  

so d~'=~'d for all dED. Furthermore, 

U ~  ' = j~uCU(D)U(u@u*) d#(u) = ~ucU(D)OL(U)" i | ) d#(u) 

= ~cU(D)(~(U)~(~(U*) dp(u) = ~'. 

Lastly, for aEA, set 

O(a) = (~', a~') = f (u| av| dp(u) dp(v) 
J u , v C U ( D )  

= f ur dp(v) 
J u ~ v  

= /  r d#(v) 
,2 U ~V 

= fw=uv.ff(wa) d,(v) 

= f~  r w* d#(w). 

Assume now that E(a)=O, i.e., r  for all deD. Then 

~P (a) = ~ ,  r d#(w) = O. 

Since whenever vC U(D), 

�9 (v)= / 
�9 I w J u ~ w v  
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and any dED is a linear combination of unitaries from U(D), we get that  

O ( d ) = d O ( 1 )  for all dED. 

Since for any aEA, a=(a-E(a) )+E(a)  and E(a)Ed, we get that  

O(a) = O(a-  E(a) ) + O( E(a) ) = E(a)O(1).  

We also have dO(1)=O(d)=(~',d(')=(i' ,~'d}=O(1)d. Hence 0(1) is in the center 

of D; moreover, 0(1)=(~' ,~'}~>0 and a(O(1))=a((~',~'})=(U~',U~')=(~',r 

We claim that  0(1) is invertible. Writing D=t~Mnk  as a direct sum of matrix algebras, 

we find that  

0(1) = /  r * d#(u) = E]~Ok, 
au ev(D) 

where 

Ok = O~k'lM,~k" / Tr(u)u*d#(u), 
r 

JuEU(nk) 

and ak>~0 is related to the value of r on the minimal projection of D corresponding 

to the kth matrix summand in the direct sum decomposition of D. To show that  0(1) 

is invertible, it is sufficient to show that  ek=fucg(k)Tr(u)u*d#(u) is a strictly positive 

scalar for all k>~l. Repeating the argument above with D replaced by Mk, we find that  

Ck is in the center of Mk and is non-negative. Furthermore, 

f~ Tr(~) Tr(u*) d.(~) = f~ ITr(u)12d.(u) > 0, Tr(ck) = ev(k) eu(k) 

since the subset of ueMk with T r ( u ) r  has non-zero measure. 

Now let ~=0(1) -1 /2~  '. Then U~=UO(1)-I/2U*U~'=O(1)-I/2~'=~; for all dED, 

d~=d0(1)-I/u~'=0(1)-1/2di'=0(1)-i/2~'d=~d; and for all aEA, 

(~, a~} = ((I)(1)-1/2~ ', a0(1)-1/2~ '} = (i ' ,  0(1)-1/2a0(1)-1/2~ ' ) 

= 0 (0 (1 ) -W 2 a0 (1 ) -U 2 )  

= 0 ( 1 ) - l / 2 E ( a ) 0 ( 1 ) - 1 / 2  0(1) 

= E(a) ,  

as desired. [] 

COROLLARY 2.5.2. Let a be an automorphism of a D-probability space (A, E: A-+D) 

with dim(D)<  c~. Assume that E: A--~ D gives rise to a faithful GNS representation. Let 

r be an a-invariant trace on D. Consider the automorphism ~ = a * i d  on B=(A,  r  

where 7- is the Toeplitz algebra with its vacuum state. Consider the automorphism 

~ = a * ( a i D |  ) on C=(A ,E)*D(D|  Then there exists a covariant embedding of 

(C, ~/) into (B,/3). 
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Proof. Let H be as above. Consider the Cuntz-Pimsner  C*-algebra E ( H ) ,  generated 

by A and the operators l(h) for hcH.  Then 

B = E(H)  = C* (A,/(h): h e H)  = C* (A, l(~)). 

The automorphism ~ is identified with the Bogolyubov automorphism E(U):  indeed we 

have ~ ( a ) = a ( a ) ,  aeA,  and E(U)(l(a|174174 

/~(al(~)b). Choose ~ as in Lemma 2.5.1. Let L=l(~). Then L*aL=(~,a~)=E(a). Let 

K = A ~ A c H .  It follows that  C*(A, L)=C*(aLb: a, bEA)=C*(l(h): h c K ) = E ( K ) .  It is 

easily seen that  the map a@,-+a| defines an isomorphism of K with the A-bimodule 

KD defined in w Hence by the results of that  section, C*(A, L)~C.  Moreover, since 

E(U)(a)=a(a),  ae  A, 

E(U)( L ) = l(U ( ~) ) = l( ~ ) = L, 

we get that  E(U)Ic,(A,L)=~/. [] 

3. Topological  entropy in certain extensions  

The main result of this section gives an estimate of topological entropy in certain exten- 

sions. We begin with a lemma which gives a way of estimating the 5-rank of finite sets 

in an extension. 

Consider a short exact sequence O-+I-+EZ+B-+O where E is a unital exact C*- 

algebra, and assume that  there exists a unital completely positive splitting Q: B--+E (i.e., 

7ro0=idB ). 

LEMMA 3.1. Let I, E, B, 7: and 0 be as above. Given r there exists a ~>0 with 

the following property: if w={~(bl)+Xl, ..., Q(bs)+xs}cE is a finite set containing the 

unit of E and such that biEB, x iEI  and [Ibm[[, IJx~l[~<l, l<<.i<<.s, and if O<~e<~lE is an 

element of I such that [[[e, Q(bi)][[, [[xi-exil[, I[xi-xieH <5 for l <. i<~s, then 

rcpE (w , 30r ~ rcpi(el /nwe l/n, r r 

for any n>1/r 

Proof. Fix r  By the lemma in [1, p. 332] we can find a 5>0  such that  for every 

pair of elements f ,  g in the unit ball of E such that  f ~> 0 we have the implication 

U[f,g]ll<6 =~ il[fl/2,g]ll<e. 
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Let 5=min(5,  �88 

So assume that  a;={O(bl)+Xl .... ,Q(b~)+xs}CE is a finite set such that  b~EB, 
x~EI and Ilbill, Ilxill<<.l, l<.i<.s, and O<.e<~lE is an element of I such that  I{[e, 0(bi)]ll, 

I]xi-exill, Ilxi-xielI<5 for l<<.i<<.s. By our choice of 6 we then have II[el/2,0(bi)]ll, 
II [(1E --e) 1/2, ~(bdll{ <~ for all l~<i~<s. 

We also claim that  II[d/2,xdll<e for all l<~i<~s. To see this we first note that  since 

e~<e 1/2 we have that  1E--e>~lE--e 1/2. Thus 

Ilel/2x--xl] 2 = IIX*(1E--el/2)2Xll <~ IIx*(1E--el/2)xll <~ IIx*(1E-e)xN <~ IIx--exll 

for all xEI  with Ilxll ~<1. Similarly, Ilxd/2-x{I ~< IIx-xell and hence 

II[d/2, xdll ~< {{ell2xi-x~ll+llxiellX-xil{ <<. Ilexi-xillll2 +llx~e-xil{ll2 < e. 

Since 0~<e~< 1E some routine functional calculus shows that Ild/2+l/~-d/2 l{ <<.2/n 
and Ild§ Combining these inequalities, the inequalities in the previous 

paragraphs and a standard interpolation argument we get 

II[ el/2§ o(bi)]ll < 4/n+e, 

II[d/2+l/5 xi]ll < 4/n+c, 
II 0(bi) e 1+2/n - t)(bi) ell ~< 2/n, 

Ilxiel+2/n-xiell <~ 2/n. 

These four inequalities will be needed at the end of the proof. 

Assume that  E c B ( H )  and B c B ( K ) .  By Arveson's extension theorem we may 

assume that  Q : B - - + E c B ( H )  is defined on all of B(K)  (and takes values in B(H)). 
Now choose  ((~1, (~2, O1 ) e eRA (B) such that  II r ~ ~1 (bi) - bi II < e, 1 ~< i ~< s, and rank(D1 ) = 

rcps(Tr(aJ),e). Using the techniques in the proof of Proposition 1.4 in [7] we may re- 

place the (not necessarily unital) maps r and r with unital maps 0~: B ~ D 1  and 

r D I ~ B ( K )  such that 11r176162 (Here we use the facts that  1BETr(w) 

and Ilbill<~l, l<~i<~s.) 
Similarly, choose (r ~2, D2) 6 CPA(I) such that  

llr (el/n(bi+ xi)el/n)-el/'~(bi+ xi)el/nll < e, 

l<~i<~s, and rank(D2)=rcpi(el/na~el/n, e). By Arveson's extension theorem we may as- 

sume that  r is defined on all of B(H).  
Define ;gl: E--§174 by 

~l(y) = r �9 r 
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for all yEE, and X~: DI| by 

X2( S|  = (1E--e)I/2 o( C2( S) )(1E-e)t/2 + el/; r 

for all SED1, TED2. Since we have arranged tha t  r is unital  (and 0 is unital  by assump- 

tion) we see tha t  X ~ ( 1 D I | 1 6 2  E -  (e l /2(1E-- r  

Since r is a contract ive completely positive map,  this shows tha t  X2(1D101D~) is a pos- 

itive opera tor  of norm less than  or equal to one. Since it is clear t ha t  X2 is a completely 

positive map this, in turn,  implies tha t  )/2 is also a contract ive map (see [31, Proposi-  

t ion 3.5]). 

Hence ()~1, X2, DieD2)E CPA(E) and 

rank(D1|  O2) = rcp I (el/nwel/n, c) + rcp B ({Tr (cz) }, e). 

Thus  we only have to  check tha t  [[X2oX1(O(bi)+x/)-o(bi)-xi[[<31r for l<<.i<.s. But,  

let t ing y=Q(bi)+x/we have 

I[x2oxl(y)-yll = [[(1E--e)l/2Q(r162 

-J- c l / 2  r  ~ r  ( e l /n  (o(bi) +xi) C 1In) e 1/2 --  0(bi) - x/ I I  

<. II(1E-e)l/2~(r162 
+ lle~/2 r162 (eZ/n(~(b/) + xg)el/n)el/2 

- e 1/2 (e l/n (o(b/)  + x / )  e l /n)  e 1/2 II 

+[[(1E--e)l/20(bi)(1E--e)l/2 +e(n+2)/2~fo(bi)+x/)e(n+2)/2~ 

-e(bi)-x/ll 
15c+ II [(1E - c )  1/2 , L)(bi)] II + II [ e(n§ , 0(bi)] II + I] [ e(n+2)/2n, xi] II 

+ II ~)(b/)(1E - e) + (o(bi) +x/) e 1+2/~ - o(bi) - xi II 

~< 18c+8/n+ Ilo(bde 1§ - p(bi)ell + [[xie 1+2/n - x / e l i  

~< 1 8 e + 1 2 / n .  

Hence for any n>l / e  we have the desired inequality. [] 

Remark 3.2. The  previous lemma is easily generalized to  a rb i t ra ry  extensions, 

though  a precise formulat ion is somewhat  awkward (and does not  appear  to  be use- 

ful for ent ropy calculations).  The  idea is t ha t  if E is a unital  exact  C*-algebra then  the 

quotient  map  Tr: E--+B is always locally liftable (el. [25, Proposi t ion 7.2]). Hence the 

&rank  of any finite subset of E can be es t imated in terms of finite subsets of I and B. 

Though  it will not  be needed in what  follows, it seems appropr ia te  to point  out  the 

following application. 
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PROPOSITION 3.3. With I, E, B, 7c and Q as above, let a E A u t ( E )  be an automor- 

phism such that a( I )=I,  and let ~EAut (B)  be the induced automorphism. Assume that 

QoG=ao0 and there exists an approximate unit {e~}CI such that c~(e~)=e~ for all ;~ 

(which happens, for example, if there exists a strictly positive element hEI  such that 

~(h)=h) .  Then 

at (s )  = ma (ht( b), 

Proof. By [7, Proposition 2.10] it suffices to show the inequality 

ht(a)  ~< max(ht(aiz),  ht(~)). 

Let E>0 be given and w={p(bl)+xl,  ..., p(bs)+x~}CE be any finite set containing 

the unit of E and such that IjbiH, IIxill~l, l<~i~s. Let { e x } c I  be an approximate unit 

such that a(e~)=e~ for all A. Since we can manufacture a quasicentral approximate unit 

out of the convex hull of {e~} [1], we may further assume that {e~} is quasicentral in E 

(and still fixed by a). 

Choose 5>0  according to the previous lemma and take A large enough so that 

II[e~,Q(bi)]II, Iixi-e;~xiiI, Iixi-xie:~II<5 for l<.i<.s. Since aJ(ex)=e;~ for all j E N  it is 

clear that II[e~, c~Y(~(bi))] II, II~Y(xi)-ex(~J(xi)II, II(~J(xi) --oJ(xi)e~lI < (~ for 1 ~<i< s and all 
~, l /k  , , 1 / k  r_ T j EN. Hence letting ~dI:,~)~ w~A ~_~ for some k > l / E ,  the previous lemma implies that 

rcp(wU...Ua~(w), 30~) is bounded above by 

rcpl(wiU...Ue~ n-l  (Wl ), e) + rcP B(~r(w)U...U~-l (T:(W) ), s), 

which is bounded above by 

2 max(rap/(wi U... U otn-- 1 (~di), g), rcPB (~(W) U... U ~ n - - 1  (Tl'((M)), C)). 

This inequality implies the result. [] 

The next lemma is inspired by w in [43]. 

LEMMA 3.4. Let F C B ( H )  be a finite set of self-adjoint contractive operators on 

a Hilbert space H. Let P be a projection in B(H),  of rank l<oc. Then for any (~>0, 

there exists a positive finite-rank contraction X E B ( H )  so that 

(1) X P = P X = P ,  

(2) II[X,T]II<5 for all TEF,  
(3) the rank of X is no bigger than l.(IF[+ l) 2/~+1. 

Proof. Denote by K 1 c H  the range of P. Define recursively 

Kn=span{Kn-1U U TKn-1}.  
T E F  
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Let q = [ F  I be the cardinality of F.  Then Kn has dimension at most q + l  times the 

dimension of Kn-1, so that dim K,~ ~< I. (q+ 1) n. 

Let P~ be the orthogonal projection onto Kn; then Pn are clearly an increasing 

sequence, and Pi P =  PPi = P =  P1 for all i. Let 

X n  -_ _1 (P l  ~'-..."}-Pn). 
n 

Then XnP=PX~=(PPI+...+PPn)/n=P for all n. Note that  the rank of Xn is the 

same as that  of Pn, which is bounded b y / . ( q + l )  ". 

Set Qn=P~-Pn_I, QI=P1.  Since TK,~cKn+I and thus TPn=Pn+ITPn, if m-n>2 
then we have QmTQ~=QmTPnQn=QmPn+ITPnQn=O for all TEF. Since T is self- 

adjoint, also QnTQm=O if m-n>2. Hence QnTQm=O if [n--m[>2.  Let Z be the 

orthocomplement of U Kn in H.  Then in the decomposition H =  (~ QnHOZ, each TEF 
has the form 

/Q1TQ1 Q1TQ2 0 

Q2TQ1 Q2TQ2 Q2TQ3 0 

o Q3TQ2 Q3TQ3 QaTQ4 
. ".. 

".. ". 0 

i.e., it is a "block tri-diagonal" matrix. Hence using the convention Q0=0  we have the 

identities 

QnT= ~ Q,TQn+j, TQn= ~ Qn+jTQn. 
j = - - l , 0 , 1  j = - - l , 0 , 1  

Xn=QI+ 1- Q2+...+-Qn = - - Q i ,  
r t  i = 1  n 

Now 

so that  for any TcF, 

XnT=~-~ n-i+lQiT= E ~ n-i+--~l'QiTQi+j" 
n ?'t 

i = 1  j = - - l , O , 1  i = 1  

Similarly, 

TXn=~-~n-iT1TQi-- = E ~ -~n-i+lQi+jTQi 
n n 

i = 1  j = -  1,0,1 i = 1  

= E ~ n-i+l-jQiTQi+j" 
?2 

j = - - l , O , 1  i = 1  
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Hence 

IIX'~T-TnXII= E nE ( n - i + l ) - ( n - i + l - j )  Q~TQi+j n 
j = - i  0,1 i=1 

-~ j=~l~O,l~=lJQ'iZQi+j 

~ j=~1,0,11jA ~QiTQi+j 

151 2 
n n j = - 1 , 1  

The last inequality is due to the fact that  for a fixed 5, the operator ~ Q~TQi+j is a block- 

diagonal operator, with the blocks having orthogonal ranges, so that  ]] ~ QiTQi+911 <~ 

max{ II Qi TQi+j II } <~ 1. 
Choose the smallest integer n with n>2/& and set X=X,~. Then ]] IX, T] II <~2/n< 5; 

by construction, X P  = P X  = P and the rank of X is bounded by l ( q + 1) '~ ~< l ( q + 1) 2/a + 1. [] 

We finally come to the main result of this section. 

THEOREM 3.5. Let A, B c B ( H )  be unital exact C*-algebras such that 

BN]C(H) = {0} and C = B Q I + I C ( H ) Q A C B ( H |  

For any two unitaries V, W E B ( H )  such that Ad V ( B)= B and Ad W( A )= A, the unitary 

U = V |  has the property that AdU(C)=C and 

ht(Ad UIc ) <. max(ht(Ad VIB), ht(Ad WIA) ). 

Proof. We have a short exact sequence 

O --+ ]C ( H ) | A --+ C --% B --+ O (3.1) 

with splitting C: B---+C given by o(b)=b| 

Let kl, ..., kNEIC(H), al, ..., aNCA and bl, ...,bNEB be self-adjoint elements, each 

of norm at most 1, so that  each ki has finite rank. Let L be the sum of the ranks of 

kl,.. . ,kN. Let 

w= {ki|174 : 1 <~ i ~ N}. 

Fixing e>0  and a positive integer n, let 

w (n) = co U (Ad U)(w) U... U (Ad U) n-  1 (co) 

= {1}U{Vrk~V-~|174 : 1 <~ i <~ N, 0 <~ r <~ n - l } .  
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Then the sum of the ranks of 

kl, ..., kN, ..., v n - l k l  V - ( n - l ) ,  ..., v n - l k N V  - (n - l )  

15 

we have 

Hence setting 

g = { b ] ,  . . . ,  bN}U . . . u { v n - l b l  V - ( n - l )  , ..., vn- lbNV -(n-l) } 

of at most n N  self-adjoint operators on B(H).  Let 5 be as in Lemma 3.1 for the given 

value of c and the short exact sequence (3.1). By applying Lemma 3.4 with these choices 

of 5, P,  F,  and l=nL, we find a positive, finite-rank XE1C(H) so that  

(1) X P = P X = P ,  and hence X V ~ k j V - ~ = X P V ~ k j V - ~ = P V " k j V - ~ = V ~ k j V - ~ =  

V r k j V - r X  for all I<~j<.N and 0~<r~<n-1, 

(2) II[X,V"bjV-r]ll<~5 for all I<~j<~N and 0~<r~<n-1, 

(3) the rank of X is at most n L . ( n N + l )  2/~+1. 

Let e=X|  Then e satisfies the hypotheses of Lemma 3.1. Indeed, 

II[e,V~biV-r| VrbiV-r]ll <~5, l <~ i<. N, O<. r<~ n - 1 ,  

and 

r T r T r T r T T r T T r r eV k iV-  |  a iW-  - V  k iV -  |  a i W -  = ( X V  k iV -  - V  k iV-  ) |  a i W -  --0 

if l ~ i ~ N  and O~r<~n-1, etc. Hence by Lemma 3.1, as long as m > r  -1 we have 

rcPc (w (n), 30~) ~< rcp~c(H)| (el/mw(n) e 1/m, r +rcPB (~(W (n)), c). 

Note that  

e l /m~(n)e l /m  = { x 2 / m Q 1 } u { x l / m g r k i v - r x l / m Q W r  a i w - r  

+ X1/mV~bi V - r X U m |  : 1 <. i <. N, 0 <. r <. n -  1}. 

WA(n) = {1}U{W~aiW-~ : 1 <. i <. N, 0 <<. r <<.n-l}, 

wB(n) ={1}U{Vrb iV-~ :  1 <<. i <~ N, O<~ r <<.n-l} 

rcptc(H)| (el/nw(n)e 1In , C) ~ rCPn (WA (n), 1r rank(X).  

is at most nL, so there exists a projection P of rank nL so that  PVrk j  V -~ =Vrkj  V - r p  = 

V~kjV -r for all j = l ,  . . . ,N and r=0 ,  . . . , n - 1 .  

Consider the collection 
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On the other hand, 

rcPB (Tr(w(n)), e) = rcPB (WB (n), s). 

Since the rank of X is at most n L ( n N + l )  6/2+1 it follows that 

rcp(w(n), 30r rcPA(WA(n), lc )  n L ( n g  + l)2/6+l +rcPB(WB(n),r 

<<. 2(nL + I ) ( n N  + I ) 2/6+1 max(rcp A (WA (n), ~), rcpB(wB(n),  E) ), 

so that 

lim sup I log rcp(w(n), 30s) 
n--+ oc n 

max(l im su 
1 

~< k n__+c~ p -n log Fcp(wA_ (n), �89 , l imsup n log rcp(wB (n), c)) 
z 

<~ max(ht(Ad WIA), ht(Ad Yls)) .  

Since C can be written as the closure of the linear span of elements of the form appearing 

in w, the statement of the theorem follows. [] 

We shall record the following corollary, which will be the basis for entropy compu- 

tations in this paper. 

COROLLARY 3.6. Let A be a C*-algebra, c~EAut(A), 7r:A-+B(H) be a faithful 

representation of A, and let U e U ( H )  be such that 7r(a(a))=UTr(a)U*. Assume that 

7c( A ) n K ( H ) = { O } . Let Ao = A, a0=c~, 7r0=Tr, Ho = H and Uo = U. Recursively construct 

C*-algebras An, anEAut(An) ,  7rn: A,<-+B(Hn) and UnEU(Hn)  by setting 

Hn = H , ~ _ t |  

A,~ = K ( H n _ j |  ( A ~ _ l ) |  

7rn = obvious representation on Hn,  

u~ = un_l |  

(xn = Ad U~. 

View A n _ l e A n  as An_l~-Trn_l(An_l) |  Let 

A =UA , 
n 

Then: 

(i) 
(ii) 

h t ( a ~ ) = h t ( a ) .  

I f  -/ is an injective endomorphism of Aoo so that "yoao~=c~ocoT, denote by (~ 

the obvious extension of ~oo to Ao~>%N. Then ht(~)=ht(c~). 
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Proof. Statement (ii) follows from statement (i) and the results of [20]. Hence 

it is sufficient to prove (i); for that  one only needs to prove that  ht(c~n)~ht(c~), in 

view of the behavior of entropy with respect to inductive limits. We now proceed by 

induction on n. Since c~0=c~, the statement is true for n=O. Applying Theorem 3.5 to 

An=K(Hn-1) |247174 gives ht((~n)<max(ht(c~_l) ,ht(~)) ,  which is 

equal to ht(c~) by the induction hypothesis. [] 

4. Free  p r o d u c t s  with  the  Toepl i t z  a lgeb ra  

The main technical result of this section (which will be used to prove the more general 

result about entropy of amalgamated free products of automorphisms) is the following 

theorem. 

THEOREM 4.1. Let a be an automorphism of a D-probability space (A, E: D-+A). 

Assume that D is finite-dimensional. Assume that the GNS representation associated 

to E is faithful. Let TcB(12) be the Toeplitz algebra generated by the unilateral shift 

l(hn)=hn+Z (n~>l), and r be the vector state on 7-associated to 61El 2. Consider on the 

algebra (A, E)*D (D| idD@r the automorphism c~.(C~lDQid ). Then 

ht(c~* (C~lD @id)) -- ht (c~). 

Because of Corollary 2.5.2 and monotonicity of ht, it is sufficient to prove Theo- 

rem 4.1 in the particular case that  D=C. For convenience, we shall restate this particular 

c a s e  a s  

PROPOSITION 4.2. Let A be a unital C*-algebra and r A-+C a state with a faithful 

GNS representation. Let c~EAut(A) be an automorphism so that r162 Consider the 

algebra (A, r  r Then ht(a*id)=ht(c~). 

Proof. Let H=L2(A,r  be the GNS Hilbert space associated to A, and let 1EH 

be the cyclic vector associated to 0. Let 502 be the Cuntz algebra on two genera- 

tors [14]. Without loss of generality, by replacing A with A| and c~ with (~| 

we may assume that  the GNS representation ~r: A--+B(H) satisfies ~r(A)NK(H)={O}. 

Let U: H--+H be the unitary induced on H=L2(A, r by a. We shall covariantly identify 

((A, r (T, r a*id) as the crossed product by a certain endomorphism ~ of the algebra 

Am described in Corollary 3.6, taken with the automorphism 6. By Corollary 3.6, we 

then have ht(a)- -ht (5) ,  which, in view of our identification, is the same as ht(e~.id), 

hence proving the proposition. The remainder of the proof is essentially a special case of 

the techniques used in [20], where more general Cuntz-Pimsner algebras were shown to 

have a crossed product structure. 
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Consider now the HAlbert space 

F=L2(A , r  (~ L2(A, 0) | 
n/>2 

and the representation 0: A-+B(H) given by Q=Tr@((~,~>~2 7r| Consider the isometry 

l: F -+  F defined by 

l(~) = 1| 

where i denotes the image of the unit of A in L2(A, 0), and ~ c F .  Denote by U: L2(A, r 

L2(A, r the unitary implementing c~. Denote by V the unitary U |  | acting on 

the HAlbert space F.  One sees that  i d v  (1)= l and i d v ( Q ( a ) ) = 0 ( a ( a ) ) .  

CLAIM 4.3. (C*(o(A) , l ) , idv )~( (A ,O)*(T ,~) ,a* id ) .  

Proof. This actually follows from w since C*(Q(A), l) is isomorphic to the Cuntz-  

Pimsner algebra associated to the (A, A)-bimodule L2(A, r174 For the reader's conve- 

nience, we give a proof. 

Let 0 be the vector state on B(F)  associated to the vector 1EL2(A, qS) |  Then 

l* 1 = 0, and one can easily verify that  (i) O(ao l... lan/*an+i -.. l'an+m) = 0 for all aj C ~(A), 

n,m>>.O, n + m > 0 ;  and (ii) l*o(a)l=r for all aEA. It follows from [35] that  A and 

C*(1) are free in (B(F) ,  0). Since C*(1) is (obviously) isomorphic to T, 0[c . ( t )=r  and 

since Q is injective and OIo(A)=r the claim is proved. [] 

From now on, write C=C*(A, l). 

Denote by C~ the closed linear span 

Cn = s-p-~{ aolal ... laml*am+ l l*... a 2 m  : m ~ I t ,  ao, . . . ,  a2rn C 0(A)} 

(each monomial above has exactly m terms equal to I and the same number of terms equal 

to /*) .  Note that  because of the relation l*o(a)l=O(a), aEA, each C~ is a C*-subalgebra 

of C. The action of w=aolal ... lan l* an + l l* ... a2nECk on a vector ~=~l@... |  E H  can 

be described as 

0 ifn>>.r, 
n . w.~= (ao|174174174 nj=l(~j,a2n_j+l} otherwise 

(here we identify aj E o(A) with aj. 1 c L 2 (A, r C H) .  

Denote by Coo the C*-algebra Un>~oCn . Then 1C~l*CCn+l, and hence ~/=l.l* 
determines an endomorphism of C~.  It can be easily seen that  C is isomorphic to the 

crossed product of C~  by this endomorphism (cf. the discussion after Proposition 1.2 

in [20] for the definition). Moreover, Adv leaves C~  invariant and commutes with the 

endomorphism 1.1* ([20, Proposition 1.5]). 
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It remains to show that  (C,~, AdvIcn) -~ (An, O~n), where An and ct n are as in Corol- 

lary 3.6. 

We proceed by induction. In the case that  n=0 ,  Co=A, Advlco=C~. 

Let 
n + l  

Fn = L2(A, 0)|  ~ L2( A, r174 F. 
k = 2  

Then Fn is invariant under the action of Cn on F. Consider the isomorphism W, 

W: L2( A, 4) |  ~ L2( A, r174 
k ~ 2  

(Le(A, n+l 
k = 2  m ~  l 

For each aEC,~, W*aW: F~|174 has the form a]F,~| It follows that  the 

representation of Cn on Fn is faithful. 

Denote by Bn C Cn the ideal 

Write 

Bn = span{aolal ... lanl* a,~+ll*.., a2n: a0, ..., a2n e g(A)}. 

n + l  

F~ = L2(A, 4 ) 0  ~ L2(A, r174 = Fn_I| r174 
k = 2  

Then B,~.Fn-I=0;  hence the representation of B~ obtained by restricting its action to 

the space L2(A,r174 is faithful. The  action of aolal...lanl*an+ll*.., a2nEBn on 

~l |174 r174 can be explicitly written as 

ao lal ... fan l'an+ 1 l*... a2n" ~1 | | ~n | ~n+ 1 

: <~1, a~n)... ( ~ ,  an+l)aOQ-.| 

Denote by 0(a0, ..., an-l ,  a n + l ,  . . . ,  a2n)eB(L2(A,  r174 the compact operator given by 

O(ao, ..., a*_l, a~+l, ..., a2~)~1|174 = (~1, a ~ )  ... (~n, a*n+l}ao|174 

Then the map 

ao la l ... la~ l*an+ l l*... a2n ~-+ 0(ao, ..-, a*_ 1, an+l, ..., a2n ) | an 

e K(L2(A,  r174174 C B(L2(A, O)|174 0)) 

is a C*-algebra isomorphism of Bn with K(L2(A,  r174174 

For all m ~< n +  1, the subspaces L 2 (A, r174 Fn are invariant under the action of C~. 

Denote by On the representation of Cn obtained by restricting its action on H to the 
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space L2(A, O) | The image 0n(An-1) lies inside B(L2(A, r174174174162 

By our assumption, ~(A)MK(L2(A, r  This implies that  

on(Cn)nOn(Bn) = On(Cn)nK(L2(A, r174174 = {0}. 

We claim that  Qn is faithful. Indeed, assume that  it is not, and that  some Or 

is annihilated by 0. Write a=an_l+b, where an-lcCn-1 and bEB. Since 0n(a)= 

0n(an-1 )+0n(b )=0  and on(Bn)AOn(Cn_I)={O}, it then follows that  On(an--1)=O and 

0n (b) = 0. But for an- 1E Ca_ 1, p(an- 1 ) = On-- 1 (an-- ~ ) | IdL2 (A,*). Proceeding inductively, 

we see that  0n is faithful. 

We have therefore proved that  

Cn = On-1 (An-1)|162 + K(L2(A, r174 | 

which means that  Cn~-An. Since Ad VnIcn is given by Adu|174 it follows that  the 

dynamical system (Cn, Ad V[c~) ~- (An, an). [] 

COROLLARY 4.4. Let a be an automorphism of a non-commutative probability space 

(A, E: A-+D), and assume that D is finite-dimensional. Assume that the GNS repre- 

sentation with respect to E is faithful. Let (~ be the Bogolyubov automorphism of the 

Cuntz Pimsner C*-algebra described in w Then h t ( 5 ) = h t ( a ) .  

It would be interesting to find a formula for the entropy of more general Bogolyubov 

automorphisms of Cuntz-Pimsner  algebras. For example, we believe that  the corollary 

above should hold for more general D. 

5. E n t r o p y  for  f ree  p r o d u c t s  o f  automorphisms 

We have now almost arrived at the main result of the paper (Theorem 5.7), calculating 

entropy of the free product of two automorphisms. First, we shall prove several technical 

lemmas which reduce the general case to the case of a free product with the Toeplitz 

algebra as in Theorem 4.1. 

LEMMA 5.1. Let D C B C B  be C*-subalgebras, and let UC13 be a unitary. Let E be 

a conditional expectation from B onto D. Assume that 

(i) C*(D, U) and B are free with respect to E, 

(ii) [U,D]=O and E(U)=E(U*)=O. 

Then the algebras B and UBU* are free with respect to E. If in addition E(Uk)=O for 

all k~O, then the algebras {UkBU--k}keZ are free with respect to E. 
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Proof. Since U is free from B and commutes with D, we see that  for all b~B, 

E(UbU*) =E(U(b-  E(b)) U*) + E(UE(b) U*) = 0 + E(E(b) UU*) = E(b). Now let bj �9 B be 

such that  E(bj)=0.  Then 

E(bo Ubl U* b2 Ub3 U*... ) = 0 

because U and B are free with respect to E. But then B and UBU* are free with respect 

to E, since for all j,  Ub2j+IU*EUBU*AkerE, and any element in UBU*NkerE has the 

form UbU* for some bEBAkerE.  

The proof that  {UkBU -k}k are free with respect to E proceeds along similar lines. [] 

The following lemma is included for completeness. We will use the implications 

(i) ~ (ii) ~ (iii) in the sequel. 

LEMMA 5.2. Let D C B C A  be unital inclusions of unital C*-algebras, and suppose 

that there are conditional expectations EA: A-+ B and EB: B-+ D. Let EA-- ~B ~ "-"D --B" 

A--~ D. Consider the following statements: 

(i) The GNS representations associated to E A and ESD are faithful. 

(ii) The GNS representation associated to E A is faithful. 

(iii) The GNS representation associated to E A is faithful. 

Then we have (i) ~ (ii) ~ (iii). None of the reverse implications hold in general. 

Proof. We will denote by a--+5 the defining map from A onto a dense subspace of 

L2(A, EA), and similarly for the other L2-spaces. We will also need the isomorphism 

~: L2(A, EA)-+L2(A, EA)| E B) given by ~ (~ )=6 |  

(i) ~ (ii): Let aeA.  Choose a leA  so that  ~ l e L 2 ( A ,  EA)\{O}, i.e., 

EA(a*la*aal) ~ O. 

There exists an element bl E B such that  

(EA(a*la*aal))U2bl E L2(B, EB)\{0}, 

i.e., 
B * A * * A * * * 0 ~ ED(blEB(ala aal)bl) = ED(blala aalbl). 

A 

Thus aalbl E L 2 (A, E A)\{O}. 

(ii) ~ (iii): Given a c A  take alEA so that  EA(a~a*aal)~O. Hence EA(a~a*aal)~O. 

A counterexample to ( i i ) ~  (i) is provided by taking D=C, B = C |  A=M2(C) ,  
A EB((Cij)l<~i,j<~2)=ClI@C22 and EBD(z1Oz2)=Zl . 

A counterexample to (iii) ~ (ii) is provided by taking D, B and E~) as in the above 

example, A=M2(C)| and A EB((eij)l~i,j<~20(dij)l<i,j<~2)=CllGdll. [] 
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LEMMA 5.3. Let Ei: Ai-~D, i= 1, 2, be D-probability spaces, with automorphisms ai. 

Assume that the GNS representations associated to Ei are faithful, and that allD=Ct2tD . 
Let EI~) E2: A10As-+ D(~ D be the obvious conditional expectation. Consider the algebra 

Ms(D) of (2x2)-matrices over D, and view DODc2~I2(D) as diagonal matrices. Let 

F: M2(D)-+ D| D be the conditional expectation 

(a ;) F =a| 
C 

Then there exists an isomorphism 

r (AIGAs, E10Es)*DOD (M2(D), F) "~ ((A1, El)*D (As, E2)) | Ms (C) 

so that r intertwines the automorphisms (alC~a2)*(id| and (al*a2)| 

Proof. Consider in M2(D) C (A~GA2, EIO)E2)*DaD (M2(D), F) the unitary 

Consider the subalgebras 

A t = {a~0 :aeA1} ,  

A~ = {w(O| ae A2}. 

Since w is free from AI| with amalgamation over D| it is easily seen from the 

definition of freeness and Lemma 5.1 that the algebras A t and A~ are also free with 

amalgamation over D@0. Furthermore, the restriction of (E10Es)*F to A~ is Ei, and 

hence the GNS representation associated to each Ei is faithful. It follows from the 

embedding result (see ~2.2) that A t and A~ together generate the reduced free product 

Ax*D A2. It is easily seen that the algebra (AI|174 (M2 (D)) is generated by A~, A~ 

and C*(1D| and is isomorphic to (AI*DAs)| via the map 

r At1 ~ al |  F+ (O1 ~ )  

r A~ ~w(O@a2)w* ~ ( ; 2 00) 

E AI| alCA1, 

EA2| a2C A2, 

It is clear that q5 intertwines the automorphisms (alOa2)*id and (a~*ct2)| [] 

In the following lemma, 02 will be the Cuntz algebra [14] generated by isometrics 

S1 and $2 such that S1S~-FS2S~=I, and a will denote the state on 02 satisfying 

2 p i f p = q  and i i = j i  i p - -  " 
o" (S i l  S* S* , -.-, - 3 p ,  

�9 .. Sip jq-.. jl) = 0 otherwise. 

Note that cr is faithful. 
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LEMMA 5.4. Let ~ be the state on (92 as above. Let C be a commutative C*- 

algebra having a faithful state Q and a unitary uEC such that ~(u)=0.  Consider the 

algebra B=((C|174 ~), where O(a|189 Then B is simple and 

_ B the conditional expectation from purely infinite. Moreover, denoting by E -E(cec ) |  

B onto (C| arising from the free product construction, there exists a subalgebra 

M C B  so that 

(i) M ~ M 2 ( C )  in such a way that the element (a |174  corresponds to the diagonal 

matrix (: o) 
(ii) E ( M ) C ( C |  

Proof. Since (92 has trivial K-theory, it follows from Germain's exact sequence for 

free products (see w that  Ko(B) is zero. Once B is known to be simple and purely 

infinite, it will follow from Cuntz's fundamental results [15] that  there exists a partial 

isometry w E B  so that  w w * = ( l |  and w*w=(0@l)@l .  Set M=C*(w) .  Then 

M ~ M 2 ( C ) ,  in such a way that  w corresponds to the partial isometry 

0'0) (0 , 

and therefore (i) is satisfied. To see that  (ii) is satisfied, note that  M is the linear 

span of w, w*, ww*, w'w; hence it is sufficient to check that  E(w), E(w*w), E(ww*) and 

E(w*)=E(w)*  all lie in ( C | 1 7 4  This is clearly true of E(w*w) and E(ww*), since 

ww* and w*w lie in (C@C)@I.  Furthermore, since (ww*)E(w)=E(ww*w)=E(w)w*w) ,  

and the projections ww* and w*w are orthogonal, it follows that  ww*E(w)ww* and 

w*wE(w)w*w are both zero. Since ww* and w*w lie in the center of (C| and 

ww*+w*w=l ,  it follows that  E (w )=0 ,  and hence E(w*)=0 ,  so that  (ii) is satisfied as 

well. 

p 1 (a+o-). We shall now apply Theo- Note that  B~-((92| ~), where a = 5  

rein 3.1 of [18] to show that  B is simple and purely infinite; the following five observations 

show that  the hypotheses of this theorem are satisfied: 

(1) a t and Q are faithful states. 

(2) Let v = $2 $2 S~ @ 0 C (92 @ (92; then v is a partial isometry belonging to the spectral 

subspace of the state a '*~ corresponding to 2, i.e., F(xv)=2F(vx)  for all xEB.  

(3) Let ql=v*v and q2=vv*; then Gig_q2 a n d  w e  have F(q l )= �88  F(q2) =1 .  

(4) Consider 

B I =  C*(ql,q2,u) C_ B, 

B2 : C*(uql u* , q2) C B1. 
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By Lemma 5.1, uqlu* and q2 are free with respect to F,  so we may write B2 as the 

free product of two copies of C G C ,  

( B2 ~ C O  C * C o C  
3/4 1/4 ' ,7 /8  1/81' 

one containing minimal projection uqqu* which has trace �88 and the other containing 
1 minimal projection q2 which has trace ~. It is then well known (cf. Proposition 2.7 

of [16]) that  

B2 - C@C([0, 1], M2(C)) |  

with 

�9 

uqlu ,'., 1@(0  

q 2 ~ 0 |  ~ 1 - t  

Therefore, q2 is equivalent in B1 to a subprojection of ql, and q2Blq2 contains the diffuse 

Abelian subalgebra q2B2q2. 

(5) The centralizer of a r contains a diffuse Abelian subalgebra; hence by Proposi- 

tion 3.2 of [16], B is simple, and thus ql+q2 is full in B. 

The above facts allow us to apply Theorem 3.1 of [18], and we conclude that  B is 

simple and purely infinite. [] 

LEMMA 5.5. Let W be a unital C*-algebra and let E x  : X -+  W and E ~  : Y-+ W be 

W-probability spaces, with automorphisms a x  and a y ,  respectively, which agree on W.  

Assume that W c  Z c X  is an ax- invariant  subalgebra, and let E Z be the restriction of 

E x to Z. Assume that there exists an E~v-preserving ax- invariant  conditional expecta- 

tion E X : x - + z ,  and assume that the GNS representations associated to x z E w ,  E w ,  E X 

and E ~  are faithful. Then there exists an isomorphism of the reduced free products 

X * z ( Z * w Y ) ~  X * w Y  

which intertwines the automorphisms a x *  (ax lg*  a Y )  and a x *  a y .  

Proof. Consider the free product conditional expectation E z : X * z ( Z * w Y ) - + Z .  

The GNS representation associated to E z  is faithful, by definition. Let z E w  = E W o Ez .  

By Lemma 5.2, E w  also gives rise to a faithful GNS representation. By Lemma 2.6 

in [36], X and Y are free with respect to E w .  It follows from the assumptions and 

the embedding result (see w that  the C*-algebra generated by X and Y in the GNS 

representation of X * z  (Z*w Y) associated to E w  is isomorphic to X * w  Z. The desired 

isomorphism follows. [] 
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LEMMA 5.6. Let Ei: Ai-+ D, i=1, 2, be D-probability spaces, with automorphisms a~. 

Assume that the GNS representations associated to E.z are faithful, and that al[D=a2[D . 

Let E: AI |  d E D } c A I |  be given by 

E(alGa2) = �89174 

Let ~: 02--+C be as in Lemma 5.4. Let C be any C*-algebra with a state ~, gwing rise 

to a faithful GNS representation, and containing a unitary u, such that Q=~[c*(~) is 

faithful and ~(u)=0. 

Then there exists an embedding 

;~: (AI, E1)*n (A2, E2) -+ B = ( (Al |174 E |  (C~minD, ~| 

so that A intertwines (al*a2) and ((al|174174 

Proof. Using the embedding result (see w we can reduce to the case C=C*(u) 

and ~=p, by replacing B with the algebra generated by (A10A2) |  and C*(u)|  

C Q m i n D .  

We have the following sequence of covariant inclusions, justified below: 

AI*DA2 ~-+ M2| 

~- M2QD*DeD(AI|  (by Lemma 5.3) 

(a) ([C2 | O2)* C] | *C2|174 [(AI(~A2)| 02] 

((C2| 02| (C|174174 [(AI| @ O2] 
(b) 
~-- C| [(AI|174 

Inclusion (a) is implied by Lemma 5.4, together with the embedding result (see w 

Isomorphism (b) is implied by Lemma 5.5. [] 

THEOREM 5.7. Let D be a finite-dimensional C*-algebra, and let aj be an automor- 

phism of a D-probability space ( A j , E j : A j --+ D ) ( j E J , J a finite or eountably infinite 

set). Assume that the GNS representations associated to Ej ( j E J ) are faithful. Assume 

that O!j[D----O~i] D for all i, j C J .  Let (A, E)=*D((Aj ,  Ej) ,  j C J )  and let *jay denote the 

free product automorphism of A. Then 

ht (.j aj) = sup(ht (aj)). (5.1) 
jEJ  

Proof. Because of the embedding result (see w and the behavior of entropy with 

respect to inductive limits, it suffices to prove the statement when J={1,  2} is a set with 

two elements. 
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By monotonicity of ht, the inequality >~ in (5.1) is clear. Let T be the Toeplitz 

algebra generated by the unilateral shift l, and denote by ~ the vacuum expectation on T. 

Voiculescu [42] showed that  l*+l is a semicircular element with its spectrum an interval. 

Hence by functional calculus C=C*(l*+l) contains a unitary u such that  ~(uk)=o for 

all k r  It is not difficult to see that  C contains no non-zero compact operator, and 

thus O=~lc is faithful. By Lemma 5.6 and Lemma 5.3, the amalgamated free product 

dynamical system (AI*DA2, a l*a2 )  can be covariantly embedded into (B,/3), where 

(B, F) = ( (Al@A2)| ~7@a)*D(T| ~@idD) 

and where 

= ( ( a 1 0 a 2 ) @ i d o 2 ) , ( i d T - |  

So by monotonicity again, h t (a t*  a2)~< ht(/3). Using Theorem 4.1 we have 

ht(~) = ht ((cq@ a2) | ido2) = ht(al@a2) = max(ht (al) ,  ht (a2)). [] 

Remark 5.8. (1) The only reason that  the hypotheses of Theorem 5.7 require finite 

dimensionality of D is because the proof appeals to Theorem 4.1. If one could prove a 

version of Theorem 4.1 for more general types of D, then Theorem 5.7 would be valid 

for those more general algebras D, with the same proof. 

(2) Theorem 5.7 also holds for amalgamated free products of injective endomor- 
phisms of non-commutative probability spaces. This can be seen by realizing an injective 

endomorphism as the restriction of an automorphism (see e.g. [20]), and then utilizing 

our result for automorphisms. 

(3) One can actually prove a partial version of Theorem 5.7 with amalgamation tak- 

ing place over an AF algebra. Assume that  El:  A1--+D and E2: A2--+D are D-probability 

spaces, with automorphisms a l ,  a2, which restrict to the same automorphism on D. As- 

sume that  D=Ui D(0, with D(OCD (i+1) finite-dimensional. Assume further that  

A(i) (i) (i+1) 
A j  -~ U .*j  , A j  c Aj , 

i 

(0 D(0cA~ i), j = l , 2 .  Let 0(1.0~ 2 denote the free product and that  Ej(Aj ) = D  (0 and 

automorphism on AI*DA2. Then h t (a l*(~2)=max(h t (a l ) ,h t (a2) ) .  This is due to the 

fact that  under these assumptions, AI*DA2 is the direct limit u~ ~1 ~D(~) "~2 - 
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6. Applications 

6.1. Shifts on infinite free products and twisted free permutations. Let A be a unital 

C*-algebra, D a finite-dimensional unital subalgebra, and let E: A--+D be a conditional 

expectation with a faithful GNS representation. Let I be a non-empty set, and for every 

iCI  let (Ai,Ei)  be a copy of (A,E).  Let 

(B, F) = (*D)ieI(Ai, El) 

be the reduced amalgamated free product. Let a: I--+I be a bijection. The free permuta- 
tion arising from ~r is the automorphism/3 of B that  permutes the copies of A inside B 

by sending Ai to A,(i). (The free shift is the free permutation arising from the shift on 

I = Z . )  The following theorem is a generalization of results of St0rmer [38], Brown and 

Choda [8] and Dykema [17], and a partial generalization of other results of St0rmer [39]. 

It answers affirmatively in the case of amalgamation over a finite-dimensional C*-algebra 

Question 11 of [17]: 

THEOREM 6.1.1. If A is an ezact unital C*-algebra and D is finite-dimensional 
then for every free permutation/3 of B=(*D)i~I A one has ht(/3)=0. 

Pro@ Consider the reduced group C*-algebra C*(FIII) of the non-Abelian free 

group on III generators, where III is the cardinality of I.  Let (ui)ieI be the unitary gen- 

erators of C*(FIII) corresponding to the free generators of FIh. Let a .EAut (C~(FIh) )  

be the automorphism such that  a.(ui)=u~(i). Then from [8] and [17], h t ( a . ) = 0 .  Let 

N 

(B, F )  = (C* (FIII) |  , T| (A, E) ,  

where ~- is the canonical tracial state on C*(FIII) , and let 

/~ = (a . |  *idA E Aut (/~). 

Then by Theorem 5.7, h t ( /~ )=h t (a . )=0 .  Let B ' = C * ( U / c  I * C uiAui ) _ B. Then F(uiau~) = 
E(a) for all aEA and iEI,  and, by Lemma 5.1, the family (u~Au*)i~i is free with respect 

to F.  It is not difficult to see, though somewhat tedious to write down in detail, that  the 

inclusion representation of B'  on L 2 (B, F )  is a multiple of the GNS representation, 6, of 

B'  on Le(B ', FIB'). Indeed, one chooses vectors ~iEL2(B, F) such that  ~Ji B '{ / spans  a 

dense subset of L2(B,/~) and so that  the representation of B'  on B'{i is equivalent to 

for all i. Hence there is an isomorphism 7r: B-+B' sending the copy of Ai in B to uiAu*. 

We see that  the automorphisms/3 and/~[B' are conjugate via ~r. Hence, by monotonicity 

of at we have ht(/3)~<ht(/~)=0. [] 
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Remark 6.1.2. Just as in Remark 5.8 (3), it is possible to weaken the hypothesis 

of the preceding theorem by requiring that  (A, D, E: A-+D) is an inductive limit of 

(A (i), D (i), Ei), with D (i) finite-dimensional. 

Definition 6.1.3. Let D be a unital C*-algebra, let I be a set, and for every i E I  let 

(Ai, Ei) be a D-probability space such that  the GNS representation associated to Ei is 

faithful. Let 

(A, E)  = (*D)icI(A~, E~) 

be the reduced amalgamated free product. Let a: I--+I be a bijection such that  for 

every i E I there is an isomorphism ai:  Ai --+ A~(~) such that  a~ (D) = D and E~(i) o a~ -- El. 

Assume that  a~lD is the same for all i. Then there is an automorphism a of A sending 

the copy of Ai in A onto the copy of A~(i) in A via a~. An automorphism a arising in 

this way is called a twisted free permutation of A. 

The next theorem generalizes Theorem 6.1.1 and also some results of [17]. 

THEOREM 6.1.4. Suppose that D is finite-dimensional and aEAut (A)  is a twisted 

free permutation as described above. If the permutation a of I has no cycles then 

h t ( a ) = 0 .  Otherwise, whenever c is a cycle of a let l(c) be the length of the cycle, 

let i C I  be one of the elements moved by the cycle, and let 13cEAut(Ai) be the restriction 

of a l(c) to the copy of Ai in A. (Note that t3c depends on i only up to conjugation.) Then 

ht(/3c) (6.1) 
h t (a)  =supc l(c--~' 

where the supremum is over all cycles c of a. 

Proof. If a has no cycles then a is (conjugate to) a free permutation, so h t ( a ) = 0  by 

Theorem 6.1.1. In general, by making a cycle decomposition of a and using Theorem 5.7, 

we see that  in order to prove (6.1) we may without loss of generality assume that  a itself 

is a cyclic permutation, a = c ,  of a finite set I. However, then c~Z(c)=*iczVi, where each 

7 icAut (Ai)  is conjugate to ~c. Hence again applying Theorem 5.7 we have h t ( a ) =  

ht(~J• =ht(13c)/l(e). [] 

6.2. The CNT variational principle. In classical ergodic theory an important  result 

connecting topological and measurable entropy is the variational principle. 

Definition 6.2.1. Let (A, c~) be a unital exact C*-dynamical system. We say that  

(A, a)  satisfies a CNT variational principle if 

ht((~) = sup he(a), 
r 
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where the supremum is taken over all a-invariant states on A, and he(a) denotes the 

CNT entropy of a with respect to r (cf. [121). 

By [17, Proposition 9] we always have the inequality 

ht(a) >/sup h~(~). 
r 

Not every C*-dynamical system satisfies a CNT variational principle. In [29] an ex- 

ample of a highly non-asymptotically Abelian system was given for which ht(a)/> �89 log 2 

while hr for the unique a-invariant (tracial) state. But, since ht( . )  agrees with 

classical topological entropy and he( .)  agrees with classical Kolmogorov-Sinai entropy 

when A is Abelian, the classical variational principle says that if A is unital and Abelian 

then (A, c~) always satisfies a CNT variational principle. The list of examples of non- 

commutative dynamical systems which satisfy a CNT variational principle is also rapidly 

growing (cf. [44, 4.7], [I0, 4.6, 4.7], [7, 3.6, 3.7], [5], [34], [30]). Moreover, the class of 

C*-dynamical systems which satisfy a CNT variational principle is closed under taking 

(minimal) tensor products (cf. [41, Lemma 3.4]) and crossed products by Z (cf. [7, The- 

orem 3.5]). Unfortunately it is not closed under taking quotients or subalgebras (even 

those with a conditional expectation onto them--simply take a direct sum of something 

Abelian with large entropy and the example from [29]) and it is not yet known what 

happens in extensions. However, we now show that it is also closed under taking re- 

duced free products. The next theorem also gives lots of examples of non-asymptotically 

Abelian dynamical systems for which the CNT variational principle holds. 

THEOREM 6.2.2. Let Ej:Aj--+D, j = 1 , 2 ,  be non-commutative probability spaces 

with automorphisms al and a2. Assume that D is finite-dimensional, that al]D=OZ2[D, 

and that Ej give rise to faithful GNS representations. If  both (A1, al) and (A2, a2) 

satisfy the CNT variational principle, then so does ( AI *D A2, al*a2).  

Proof. Assume without loss of generality that  ht(al)>~ht(/31). Given ~>0 we can 

find an aFinvariant state "TES(AI) such that  ht(al)~<h.y(al)+r 

Let E: AI*A2--+A1 be the canonical conditional expectation and define a state 7 =  

"yoEES(AI*DA2). Then one checks that  ~ o ( a l * a 2 ) = ~  and ~oE=~ .  But under these 

conditions, CNT entropy is also monotone (cf. [12, III.6]), and so ht(al*a2)=ht(al)<~ 

h.y(al)+~<~h~(al*a2)+c. Since c was arbitrary, we are done. [] 

A particularly interesting class of dynamical systems for which one would like to have 

a CNT variational principle is those arising from automorphisms of discrete groups. For 

any discrete group G let C~ (G) be the reduced group C*-algebra and ~-a the canonical 

trace on C~* (G). G is called exact if C* (G) is exact. If "y: G--+ G is a group automorphism 



30 N . P .  B R O W N ,  K. D Y K E M A  A N D  D. S H L Y A K H T E N K O  

then there is an induced automorphism ~EAut(C*(G))  such that TCo~=TC. If G is 

Abelian then a classical theorem of Berg [2] implies that ht (~)=h~c(~ ). 

THEOREM 6.2.3. Let H be a finite group and let G1 and G2 be discrete exact groups 

having H as a common subgroup. Suppose that vi6Aut (Gi )  ( i=1,  2) are automorphisms 

preserving H such that ~IlH=~21H . Let V1"72 denote the resulting automorphism of the 

free product GI*HG2 with amalgamation over H. If ht(~)--h~G,(~i ) (i--1, 2), then 

ht(71--~72) = h ~ c , . H G ~ ( ~ ) .  

COROLLARY 6.2.4. If G1,G 2 a r e  discrete exact groups with automorphisms ViE 

Aut(Gi) ( i=1,2) ,  and if h t ( ~ ) = h ~ i ( ~ i  ) ( i=1,2) ,  then ht(~I*~2)~-hTG1.G2(~I*~2). 

It would be interesting to know whether or not the above theorem or its corollary 

can be extended to the dual entropy defined in [9] as well. 

6.3. Entropy-preserving embeddings. Kirchberg first proved that every separable ex- 

act C*-algebra is isomorphic to a subalgebra of the Cuntz algebra on two generators 

(cf. [27]). In [7, Remark 2.3] it was asked whether or not one can always find a uni- 

tal embedding •: A ~ Z ~ - ~ O 2  such that hto2(AdQ(u))=ht((~), where u 6 A ~ Z  is the 

implementing unitary. We now solve this problem affirmatively in the case that A is 

nuclear and there exists an (~-invariant state eE S(A) with faithful GNS representation. 

We also show that if (A,'5) is any nuclear C*-dynamical system then there always exists 

an entropy-preserving covariant embedding into the Cuntz algebra on infinitely many 

generators. Since many C*-algebras are stable under tensor products with (9oo we thus 

get entropy-preserving embeddings into a very large class of C*-algebras. It follows that 

the topological entropy invariant of all such algebras is [0, oc]. 

We begin with a simple proposition. 

PROPOSITION 6.3.1. Assume that A is a unital exact C*-algebra, c~EAut(A) and 

there exists an (~-invariant state eES(A)  with faithful GNS representation. Let B be 

unital and exact, let r  have faithful GNS representation, let E : A ~ Z - - ~ A  be 

the canonical conditional expectation and let uEA>~Z be the implementing unitary. 

Regarding u as a unitary in (A ~ Z, r  r  we have ht(Ad u)=ht(c~). 

Proof. Since E: Ax~Z-+A is faithful, by Lemma 5.2 the GNS representation of r  

is faithful. 

Consider the C*-algebra (A, r  ~)) ~ . s Z ,  where S: *z(B,  r r  is 

the free shift, and let v c ( A , r  be the implementing unitary. It is 

fairly easy to see (cf. the proof of [11, Claims 2 and 4]) that  there exists a .-isomorphism 

p: (A ~ Z, r  (B, ~) ~ (A, r  ((*z (B, r  x~ .s  Z) 
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such that  Lo(u)=v. Hence h t ( A d u ) = h t ( A d v ) .  But [7, Theorem 3.51, Theorem 6.1.1 

above and our main result imply that h t (Adv)=ht(c~.S)=ht(c~) .  [] 

THEOREM 6.3.2. Let A be a unital, separable, nuclear C*-algebra and c~EAut(A) 

be an automorphism such that there exists an c~-invariant state eES (A )  with faithful 

GNS representation. If (92 denotes the Cuntz algebra on two generators then there exists 

a unital embedding Q:A>~Z~-~(92 such that hto~(Ad 0 (u ) )=h t ( a ) ,  where uEA>%Z is 

the implementing unitary. 

Pro@ Replacing (A,c~) with ( A | 1 7 4  if necessary, we may assume 

that  there exists a Haar unitary in the centralizer of r In this setting, [16, Propo- 

sition 3.2] ensures that  (A>~Z, CoE) . (T ,v )  is a simple C*-algebra, where T is the 

Toeplitz algebra and v is the vacuum state. Moreover, this free product is nuclear since 

it is isomorphic to a Cuntz-Pimsner algebra over A )~  Z. Thus Kirchberg's absorption 

theorem for (92 (i.e., B| ~ (92 for any simple, separable, unitM, nuclear C*-algebra B, 

cf. [27]) together with the previous proposition implies the result. [] 

We now turn to covariant entropy-preserving embeddings into (9~. 

THEOREM 6.3.3. Let A be any separable, nuclear C*-algebra and ctEAut(A) be an 

automorphism. If (9~ denotes the Cuntz algebra on infinitely many generators then there 

exists an automorphism f lEAut((9~)  and a non-unital .-monomorphism 7r: A--+(9~ such 

that floTr=~roc~ and ht(fl)=ht(c~). 

Proof. By adding a unit to A and replacing A by its crossed product by c~, we 

may assume that  A is unital and c~ is inner. We may also assume that  there exists an 

cMnvariant state r E S(A) with faithful GNS representation. Indeed, it follows from The- 

orem 3.5 that  the covariant embedding (A,(~)~-+(AOA+IC(H|174 where 

we regard A c B ( H ) ,  and uEA is a unitary which implements c~, is entropy-preserving. 

Now any vector state arising from the second copy of H will be Ad(u|  1A)-invariant and 

have faithful GNS representation since it is a cyclic vector. 

So, we assume that  A is unital, c~ is inner and r  is c~-invariant with faithful 

GNS representation. Consider the free product 

B = ((A| C[0, 1] | 1], q)) * (T, v). 

Here r] is the average of Lebesgue measure on the second copy of C[0, 1] and the 

tensor product of r Lebesgue measure and an arbitrary faithful state on (92, and 

v is the vacuum state on the Toeplitz algebra T. Since there is a Haar unitary in 

the centralizer of r/ (coming from the copies of C[0, 1]), [16, Proposition 3.2] implies 



32 N.P. BROWN, K. DYKEMA AND D. SHLYAKHTENKO 

that  B is simple. Moreover, B is nuclear being isomorphic to a Cuntz-Pimsner alge- 

bra over A| 1]| 1] (cf. [20], [24]). Since (_02 is KK-equivalent to zero, 

A| 1]| 1] satisfies the Universal Coefficient Theorem. Since T is Type I 

it also satisfies the UCT, and hence, by a result of Germain [23] so does B. More- 

over, it follows from Germain's six-term exact sequence for / ( - theory  (see w that  B 

has the K-theory of O~.  Hence B|  is a simple, unital, purely infinite, nuclear 

C*-algebra which satisfies the UCT and has the K-theory of (_0~. So, by the classifi- 

cation results of Kirchberg [26] and Phillips [32], B|  ~ 0 ~ .  By our main result we 

have that  the automorphism 7=(a| has the same 

entropy as c~. Hence defining ~=7|174 we get the desired 

entropy-preserving covariant embedding. [] 

Subquestion 6.3.4. Let uEA be a unitary and regard Adu  as an automorphism of 

(A, r162  As in Proposition 6.3.1, is it true that  htA.B(Adu)=ht(AdulA)? Clearly, 

an affirmative answer to this question would imply that  the automorphism in Theo- 

rem 6.3.3 can be taken to be inner. 

6.4. Possible values of entropy of all automorphisms o/ a C*-algebra. 

Definition 6.4.1. If A is an exact C*-algebra then put 

TE(A) = {tE [0, oc]: there exists aEAut (A)  such that  ht(cQ = t}. 

For A unital, we can also consider the set 

TEinn(A) = {tE [0, co]: there exists a unitary u C A such that h t ( A d u ) =  t}. 

The results of w imply, in particular, that  TE(O~)=[O, oc] and TEInn(02)= 
[0, cx~], since there are automorphisms of nuclear (in fact, Abelian) algebras with any 

prescribed entropy. (See [6] for some nice examples.) Clearly, if B contains a projection, 

then TE(B| If A and B are both unital, we have 

TElnn  (A| D TEInn (A) U TEInn  (B). 

If B is any nuclear simple separable purely infinite C*-algebra then Kirchberg has 

shown that  B|  Oor ~ B (see [27]). Recently Kirchberg and Rcrdam introduced a class of 

non-simple purely infinite C*-algebras (cf. [28]). Though it is not yet known whether all 

of their nuclear purely infinite C*-algebras will absorb O~,  many examples are known. 

THEOREM 6.4.2. Let B be any exact C*-algebra which contains a projection. Then 

TE(B|  = [0, co]. If B is unital then TEIn,(B| [0, oc]. 

In particular, if B is nuclear; simple, separable and purely infinite then TE(B)= 
[0, oo]. 
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