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Summary.

The systematic investigation of contour integrals satisfying the system of
partial differential equations associated with Appell’s hypergeometric function F)
leads to new solutions of that system. Fundamental sets of solutions are given
for the vicinity of all singular points of the system of partial differential equa-
tions. The transformation theory of the solutions reveals connections between
the system under consideration and other hypergeometric systems of partial
differential equations. Presently it is discovered that any hypergeometric system
of partial differential equations of the second order (with two independent vari-
ables) which has only three linearly independent solutions can be transformed
into the system of F, or into a particular or limiting case of this system.
There are also other hypergeometric systems (with four linearly independent
solutions) the integration of which can be reduced to the integration of the

system of F,.

Introduction.
1. The system of partial differential equations
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in which x and y are the independent variables, £ the unknown function of z and ¢,
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for partial derivatives, has been investigated by many writers.
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Appell (1880) introduced this system of partial differential equations in

connection with the hypergeometric series in two variables*
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which is a solution of (1).

Actually, definite integrals and series representing solutions of (1) were
considered before Appell by Pochhammer (1870, 1871). Pochhammer regarded
his integrals and series as functions of one complex variable only; what is now
considered as the other variable appeared as a parameter in Pochhammer’s work.
Accordingly his integrals and series appeared as solutions of an ordinary homo-
geneous linear differential equation of the third order.

Soon after the publication of Appell’s first note on the subject Picard (1880)
discovered the connection between Pochhammer’s integrals and Appell’s function
F,, and since then several authors investigated the integration of (1) by means
of definite integrals of the Pochhammer type. References to relevant literature
will be found in the monograph by Appell and Kampé de Fériet (1926, p. 53
et seq.) where there is also a summary of the results obtained. From the Poch-
hammer-Picard integral ten different solutions of (1) have been derived and
these solutions are represented by mnot less than sixty convergent series of the

form
2 (1 — 2y (1 — y) (e — 9 Fy (A, p, 0, v £, F) (3)

where A, u,u',v,%,%",0,0,0 depend on «,8,5,y and f, t are rational functions of
x and y (Le Vavasseur 1893, Appell and Kampé de Fériet 1926 pp. 61—64).
Each integral is represented by six series of the form (3) thus exhibiting certain

transformations of Appell's series F).

2. The tableau of the sixty solutions (3) is impressive, but not exhaustive.
It is of course possible to express any solution of (1) as a linear combination of
three linearly independent solutions, and in so far as the tableau does contain
three linearly independent solutions, it may be said to contain the general solu-
tion. Yet, if we look for three linearly independent solutions represented by

series convergent in the same domain, we discover the gaps. For instance, among

! In this and in all similar sums the summation with respect to m and % runs from o to

I'a+n)
oo and (@)n = Ta) throughout.
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the sixty series z,,... ..., 2, there are only two distinet solutions convergent
in the neighbourhood of z =0, y = 1, viz. the solutions 2, = zi0n+4 and z; = 210n+7,
n=1,2, ... 5 so that the general solution in this neighbourhood cannot be
fepresented in terms of the sixty series of the tableau. The reason for this
omission will appear later; for the present it is sufficient to remark that there
must be certain solutions of fundamental importance which should be added to
the list of the sixty solutions (3).

Among the series missing from the tableau there are sixty convergent
series of the form

a (1 — 20y (1 — ) (x — y)” Go(h, 1,95 1, 1) (4)
which satisfy (1). Here i,u,u’,7,%,%",0,0,0,¢,t' have similar meanings as in (3)
and G, is the series introduced by Horn (1931 p. 383)

x” oyt
m! n!
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We shall see later that the sixty series (4) represent fifteen distinet new solutions.
There are many more series, among them series involving particular cases of
Appell's series F,, F, and of Horn's series H,. All the latter series do not
define new solutions but are merely transformations of solutions of the form
3) or (4).

Borngiisser (1932 p. 31) obtained a solution of the form (4), viz.

G (8.8 g e~ 5
by assuming power-series expansions of the solution of (1) in the vieinity of the
singular point x =0, y=o0c. As far as I can see no attempt has been made
to derive (6) or the other solutions of the form (4) from the integral representa-
tions, though it would seem natural to expect contour integrals to yield readily
all significant solutions. Also the integral representations would be expected to
enable one to construct the fundamental systems of solutions and their trans-
formation theory.

The present work was undertaken with the purpose of filling this gap and
obtaining all significant solutions of (1) from the integration of this system of
partial differential equations by means of contour integrals. Not only were the
expectations with regard to fundamental systems of solutions of (1) and with
regard to the transformation theory of (1) fully justified, but the work lead to
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conclusions of more general importance. The results regarding fundamental
systems are important for the general theory of systems of partial differential
equations in the complex domain in that they indicate the procedure to be
followed in case of a (hitherto untractable) singular point which is the inter-
section of more than two singular manifolds, or in case of a singular point at
which two singular manifolds touch each other, or, lastly, at a singular point
of a singular manifold. Again, the transformation theory reveals connections
between (1) and other hypergeometric systems of partial differential equations
and leads to an important general theorem in the theory of hypergeometric
functions of two variables: any hypergeometric system of partial differential equa-
teons of the second order which has only three linearly independent solutions can be
transformed into (1) or inlo a particular or limiting case of the system (1). Besides,
there are also other hypergeometric systems (with four linearly independent solu-
tions) of the second order the integration of which can be reduced to the inte-

gration of (1).

Eulerian Integrals.

3. All the results mentioned in the last paragraph follow readily from some
simple, to the point of triviality simple, observations on integrals of the Eulerian
type. It seems worth while to set forth these observations in considerable detail,
because they have often been overlooked in the past, and because they are
significant whenever the integration of linear differential equations by means of
contour integrals leads to integrands with five or more singularities.

Picard (1881) has proved that the integral

z=c fuf”ﬁ'*y (w— 1) u — z)~F(u— y)~F du ()

satisfies the system (1) provided that the path of integration is either a closed contour
(closed that is to say on the Riemann surface of the integrand) or an open path
which ends in zeros of wfF—7(u — 1)1="' (4 — 2) P (uw — y)~F ~* (Cf also Appell
and Kampé de Fériet 1926 p. 55 et seq.).

The simplest types of paths are (i) open paths joining two of the five
singularities o, 1, x, ¥, oo of the integrand without eucircling any other singu-
larity, (ii) loops beginning and ending at one and the same singularity and en-
circling one and only one of the other singularities, and (iii) double loops (closed
on the Riemann surface of the integrand) slung round two of the singularities,
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it being understood that the other three are outside the double-loop. Owing to
the multiplicative character of the branchpoints of the integrand of (7), contours
of the type (ii) and (iii) are equivalent to paths of the type (i) if the values
of the parameters «, 8, 8, y are such that the integrals along the latter paths
are convergent; and therefore the same solutions are derived from all the three

types of paths. Clearly there are (; ) = 10 different simple paths joining two of

the five singularities, and the integrals along these give precisely the ten solu-
tions which can be represented by sixty series of the type (3). As far as I can
see these are the only contours used by previous writers. 1 have not been able
to examine Le Vavasseur's Thése, but the account given of it by Appell and
Kampé de Fériet would seem to indicate that Le Vavasseur, like the other
authors, used only the contours described above.

There are more involved types of contours, for instance double circuits inside
each loop of which there are two singularities of the integrand, but such
contours have never been used for the integration of (1). Of course it is obvious
that the more involved contours (being closed contours or equivalent with closed
contours) are permissible contours for (7); but it appears that apart from Poch-
hammer nobody realised that solutions determined by such contours are as
fundamental as solutions determined by the simple contours. Jordan who in the
first edition of his Cours d’Analyse introduced double-loop integrals independently
from Pochhammer does not even mention the more involved types; nor are they
known to Nekrasoff (1891) who at the same time as and independently from
Goursat, Jordan, and Pochhammer developed a theory of integrating linear
differential equations by definite integrals. Pochhammer (189o) seems to be the
only one who recognised the importance of some of these contours — and even
he failed to apply them to what at that time he called “hypergeometric func-
tions of the third order” and what are in effect the solutions of (1) considered

as functions of one variable only, for instance as functions of .
4. In order to classify double-circuit integrals, let us consider instead of
(7) the more general integral
f(u —a)fi(u—a) ... ... (u— a)fr Hu)du (8)

in which H(u) is a one-valued analytic function whose only singularities lie in

some or all of the points @, ,.., an. There is no loss of generality in assuming



136 A. Erdélyi.

that the integrand of (8) is regular at infinity, for this can always be achieved
by a bilinear transformation of the variable of integration.
The integrand has n finite singularities a,, ..., a,. Correspondingly, there

are (Z) double circuits of the Pochhammer-Jordan type each slung round two

of the n singularities. In the usual manner (cf for instance Whittaker and Wat-
son 1927, § 12.43) we use (a, +;a, +; a, ~—; a, —) as the symbol of a double
circuit which starting, say, at a point P between g, and a, encircles first a,
then a, in the positive (counterclockwise) direction and then @, and again a, in
the negative direction, returning to P: the double circuit is assumed to be such
that no other singularity of the integrand is encircled. Thus arg (¥ — a;) and
arg (4 — a,), having first each increased by 27, and then again decreased by the
same amount, return to their initial values; so do the phases of v —ay, .. .,
# — a,, and the double circuit (also called double loop) is closed on the Riemann
surface of the integrand.

The fundamental importance of the (Z) simple double circuits for the inte-

gration of linear differential equations or systems of partial differential equations
is generally recognised: this importance is due to the comparatively simple
behaviour of the integrals taken along these double loops when the singularities
of the integrand are variable. If any of the singularities outside of the double
loop encircles any other singularity outside the double loop, the integral remains
unchanged; if one of the singularities inside of the double circuit encircles the
other one inside the (other loop of the) double circuit, the integral returns to
its initial value multiplied by a constant factor: it is only when one of the

singularities inside the double circuit encircles one of the singularities outside
the double circuit, or conversely, that the system of (Z) integrals (8) (which are

essentially functions of the cross ratios of the «,, ..., a,) undergoes a more in-
volved linear substitution. Accordingly, if the integral taken along (a, +; a; +;
a, —; a, —), say, is regarded as a function of a,, then a, will be a multiplicative
branch point of this function so that the integral will represent a fundamental
solution for the neighbourhood of a,: in this case a;, . .., an will be singularities
of a more complex type. The same integral regarded as a function of ax, say,

will be regular at a,, ..., an—1, and its only singularities will be a, and a,.
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w

9. Let us now divide the » singularities into three groups of respectively
p, ¢ —p, n —q elements (0 < p < q < n), and number the singularities of the

integrand so that a,, ..., a, shall compose the first group, ap+1, ..., a@; the
second group, and dagt1, ..., @y, the third. Let P, ¢, N be closed curves such
that ay, ..., a, lie inside P but outside @ and N, that ap;1, ..., a; lie inside
@ but outside P and N, and ag+1, . .., an inside N but outside P and ¢. The
double loop (P+; @ +; P—; §—) which is supposed to lie entirely outside N
will be denoted by (@, ..., 0p +; Gpi1, .. ., Qg +; Gy, o .., Gp = i1,y . - .y Gg—)

where the semicolons separate different groups, the commas different elements
of the same group. All singularities not mentioned in the symbol of the double
circuit are supposed to lie outside the contour. The particular case p =1 cor-
responds to the more general double circuits studied (but not applied to the
present problem) by Pochhammer (18go).

The foregoing representation of our contour is not yet symmetrical and
does not adequately reflect the intrinsic properties of this type of double circuit.
By a deformation of the contour by ‘“pulling it over infinity” (which it will be
remembered is a regular point of the integrand) it can be seen that the double
loop slung round P and @ is essentially equivalent to the double loop slung
round P and R, or to the double loop slung round @ and R. Following Felix
Klein (1933 p. 66 et seq.) we obtain a more symmetrical intrinsie representation
of our contour if we “pull across infinitv” only one of the loops. The result is
a trefoil loop which encircles P in the positive direction, intersects itself, en-
circles ¢ in the positive direction, intersects itself again, encircles R in the
positive direction, intersects itself a last time and then returns to its beginning.
It is easy to see that this contour which we shall call a trefoil or triple loop is
closed on the Riemann surface of the integrand, is invariant against deforma-
tion of the contour and against bilinear transformations of the variable of in-
tegration, and that it is equivalent to the former double circuit. The trefoil
loop will be denoted by (P+; Q +; R+) or (a,,...,ap+; aps1,...,aq+;
Agt+1y ..., an+). This trefoil loop should carefully be distinguished from the
simple circuit enclosing P, ¢, and £ in the positive direction: the symbol of the
simple circuit in our notation is (P, @, B +) or (a, . . ., ax +), and the integral
taken along this simple circuit vanishes by virtue of Cauchy's theorem, since the
integrand is regular everywhere outside the contour (including infinity).

The properties of the integral (8) taken along such a trefoil loop are easily
understood. When one of the singularities encircles another singularity con-
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tained in the same loop of the trefoil as the first one, the value of the integral
does not change at all: the integral regarded as function of g, is regular at
@y, ..., 8. When a whole group of singularities encircles another whole group,
the integral will return to its original value multiplied by a constant factor.
This is of importance when p {or ¢ — p, or » — ¢) is equal to unity, for then,
regarding the integral as function of a, (or a,, or a, respectively), we see that
it acquires only a constant factor when a, (or a,, or a,) encircles one of the
two groups contained in the two other loops of the trefoil loop. Lastly, when
one group encircles both the other groups, the integral does not change its value.

Beside the triple loops there are also quadruple, quintuple, etc. loops with
corresponding properties of the functions represented by integrals along such
loops. There are reasons for believing that the more complicated types of mul-
tiple loops are of very little importance for the integration of linear differential
equations. Such a conclusion is strongly suggested by the observation that with
suitable restrictions on the mutual position of the singularities, and using con-
vergent power series expansions of the integrand, the evaluation of (8) along a
trefoil loop can always be reduced to the evaluation of Euler integrals of the
first kind, but such reduction is not possible in case of quadruple and more

complicated loops.

6. At first it may seem strange that the only trefoil loops applied in the
past to the integration of differential equations are those for which two of the
three numbers p, ¢ —p, n — ¢ are equal to unity — and this in spite of the
fact that the foregoing considerations are not essentially new. The situation
may be clarified to a certain extent by specific consideration of the cases of
low n. It then transpires that n = 5 (the case of the system of I7) is the first
case in which the more general trefoil loop gives any results not obtainable by
simple Jordan-Pochhammer double circuits, and we at once understand that
taking as a model the well known case » = 4 (the case of the classical hyper-
geometric function) significant solutions of the more complicated equations could
be overlooked.

In the hierarchy of Eulerian integrals in the general sense of Klein (1933
p. 87) the lowest case is n =2, for there must be at last two branch points.
A bilinear transformation throws these branch points to o and oo, and the inte-

gral becomes
f w7 du.
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No trefoil loop is possible, and hence a Pochhammer double circuit slung around
the two singularities gives always a vanishing integral (as is well known).
In the case n =3, a bilinear transformation carries the singularities to

0, 1, oo, and we have the canonical form
fu'V(u — 1)y,

There is essentially only one trefoil loop, for the canonical form it is (o +
1 +; 00 +), it is equivalent to a double cireuit (o0 +; 1 +; 0 —; 1 —), and leads
to the Euler integral of the first kind.

Next, in the case of four singularities, # = 4, three of the singularities may

be assumed to be at o, 1, o0 and we have the canonical form
fw”‘f' (w— 1) {u — x2)~F du,

that is integrals of the hypergeometric type. In this case too there is only one
kind of trefoil loop, containing respectively 1, I, and 2 singularities within its

three loops. It is equivalent to a Pochhammer double cirenit encireling only two
of the four singularities. Clearly there are (;) = 6 different trefoil loops in this

case, giving the six well-known branches of Riemann's P-function.

The fact that in the two best known cases » =3 and » =4 we have to
consider only double circuits slung round two éingularities, or contours equivalent
to such double circuits, seems to have lead to the view (never expressed but
tacitly underlying all previous work on the system of F)) that in every case
such simple double circuits would give all solutions of fundamental importance.
Yet, alreadv the next case, n == 5, shows that this view is untenable.

7. In the case » =15 we obtain a canonical form by throwing three of the
singularities to o, 1 and oo by a bilinear transformation of «. The canounical

form is

J s — e — ) — ) du )

There are now two essentially different types of trefoil loops: one has i, 1, and
3 the other 1, 2, and 2 singularities respectively within its three loops.

There are (2 ) = 10 different trefoil loops of the type 1, 1, 3. Each of these

ten trefoil loops is equivalent to a double circuit encircling two singularities
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only. For suitable values of the parameters «, 8, 8 y each double loop in its
turn is equivalent to an open path joining two singularities. Thus the ten
I, I, 3 type trefoils give the ten solutions whose sixty expansions constitute the
table of Le Vavasseur and Appell and Kampé de Fériet.

There are also trefoil loops of the type 1, 2, 2, that is trefoil loops whose
three loops encircle respectively 1, 2 and 2 singularities. Each trefoil loop of
this type is equivalent to a double circuit whose one loop encircles one sin-
gularity only, while the other loop encircles two singularities. With suitable
values of the parameters each of these double circuits is in its turn equivalent

to a simple loop which begins and ends at one and the same singularity and
encircles two other singularities. Among the 5(3) simple loops obtainable in

this way there are always equivalent pairs, for instance the loop beginning and end-

ing at o and encircling 1 and oo is equivalent to the loop beginning and ending at
o and encircling « and g/.‘ So we obtain -5 (g) = 15 distinct new solutions.

From the character at the branch points of these solutions it is easy to see that
they are not identical with any of the old solutions (though either set can be
expressed as linear combinations of solutions of the other set) and it remains to
discover the nature of these solutions. The discussion of the properties of these
solutions will- show that they are as significant as the well-known solutions
(3), and it will transpire that they are precisely the 15 solutions whose 60 con-

vergent expansions are of the form (4).

The System of F, and Equivalent Systems.

8. The results of the above considerations will now be applied to the inte-
gration of the system of partial differential equations associated with Fj, that
is to the system (1). In doing so exceptional values of the parameters giving
rise to logarithmic solutions will tacitly be excluded. Results for these excep-
tional cases and for the logarithmic solutions which they involve can be obtained
by simple limiting processes carried out in the formulae to be derived for the
general case.

Except in section 14, we shall write throughout a, b, ¢ for any permutation
of 0, 1, co so that for instance (a, b) stands for any of the six points (o, 1),
(0, @0), (1, 0), (1, 00), (00, 0) or (oo, 1). In using this generic notation, by which
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we shall gain much in brevity, we make the convention that general statements
must receive appropriate (and in every case easily obtainable) interpretation when
the symbol involved represents oo. We shall say, for instance, that a certain
solution 2z remains unchanged when x encircles ¢ and mean that this is true of
z itself if a=o0 or a =1, but true of 2z if @ = oco, The additional factor z#

arises from (7) when this integral is re-written in such a fashion as to make
:I; appear as variable instead of » A similar convention holds for b, the appro-

priate factor in this case being y#. The convention is very similar to the one
by which statements such as “‘is analytic at infinity” are interpreted in complex

function theory, and has a similar purpose.

9. First we have to discuss the singularities of our system (1). This system
of partial differential equations has seven singular manifolds or singular curves,
viz. =0, x =1, x =00, y=0, y=1, y = 00, and x=y. The singular curves
can either be derived from the partial differential equations themselves in the
well-known manner, or obtained from the integral (7). In the latter case they
emerge as the conditions for the coincidence of two singularities of the integrand.
The seven singular curves produce by their various intersections two types of
singular points.

There are six singular points represented by z = a, y = b where (a, b) stands
for (o, 1), (0, o0}, (1, 0}, (1, o0}, (00, 0) or (oo, 1). Each of these six singular
points is the intersection of two singular curves, x = a and y = b, and belongs
to the simplest type of singular points of systems of partial differential
equations.

There are also three singular points z=a, ¥y = a that is to say (o, o}, (1, 1)
or (00, oo}, and these are of a more complex type. At each of the singular
points (a, a) three singular curves intersect, viz. x =a, y =a and x =y. For
this reason it is impossible to expand the general solution of (1)in power series
convergent in the entire four-dimensional neighbourhood of (¢, a). Instead, we
shall construet fundamental systems of solutions valied in hypercones whose
vertex is at (@, a), whose ‘“‘axis’’ is one of the singular curves through (a, a)
(these singular curves are, of course, two-dimensional manifolds in the four-
dimensional space of the two complex variables), and which extends unto another
singular curve. For every singular point (a, a) there will be three such hyper-
cones and hence three different fundamental systems. Between them the three
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systems describe the behaviour of the general solution in the neighbourhood of
(a, a) completely.

In order to have a short notation for the solutions of (1), we shall denote
by [P; @; N] the integral (7) taken along the contour (P +; @ +; N +) and
multiplied by a suitable constant. Now, the triple loop can be replaced by a
double circuit encirling any two of the three groups P, @, N and accordingly
we shall denote the solution [P; ¢; N| more briefly, if less symmetrically, by
[@; N, [N; P] or [P; ], disregarding any constant factors. Instead of [P; @]

for instance we shall also write [a,, ..., ap; ap+1, ..., ag.

10. In the neighbourhood of an intersection (a, b) of two singular manifolds
there is firstly one solution, [¢; a, x] =[¢; b, y] which is manifestly regular at
x=a, y= 0. Like all the following statements about the behaviour of solutions,
this follows immediately from the general properties of Eulerian integrals as
developed in the earlier sections of this paper, and is to be interpreted appro-
priately (cf section 8) if 4 or b is co. A second solution for the neighbourhood
of (a, b) is [a; «] which is regular at y =% and has a multiplicative branch-
manifold at x = a; and a third solution is [; y] which is regular at x =a and
has a multiplicative branch-manifold at y =25. The behaviour of these three
solutions at the singular curves shows that the solutions are linearly independent
and thus they form a fundamental system for the neighbourhood of (a, &).
Clearly each of the three solutions can be expanded in powers of x —a and

y—b (in powers of :lc if @ = oo and in powers of; if b= oo).

The situation is different with regard to a neighbourhood of an intersection
of three singular manifolds z =y = a. There is one solution, [b; ¢], which is
regular at (@, @) and in the entire neighbourhood of this singular point, but
there is no other solution valid in the entire neighbourhood of (a, a).

In order to obtain two more solutions in this case let us fix our attention
to the neighbourhood of (¢, a) “near” x = a, i.e. let us assume that both |z — |
and |y —a| are small, and |r—a|<]y—a|. Then we have the solution
[@; x| which has a multiplicative branch-manifold at x = a, and remains unaltered
when y encircles both ¢ and x. Of course, [a; x| andergoes a more involved
transformation when y encircles a only or x only, but this cannot happen as
long as (x, y) remains in the hypercone | — a| < |y — a| of the four-dimensional
neighbourhood of (a, a). We have also the solution [y; @, ] which is regular at
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z=a and is merely multiplied by a constant factor when y encireles both a
and x. By a similar argument as before, [b; ¢|, [¢; x] and [y; a, x| constitute a
fundamental system of solutions for the neiéhbourhood of (a4, a) in the hyper-
cone |z —al| <|y—al.

In the hypercone |z —a|>|y —al|, or “near” y=a, the corresponding
fundamental system is [b; ¢|, [a; 9] and [z; a, y]. Finally, “near” x —y =o, i.e.
when |z —y| <|z—a| and |z —y| < |y — a! we have the fundamental system
[b; ¢], [x; 4] and [a; x, y] which undergoes simple transformations when x and
y encircle each other or when both of them encircle a.

11. It is now possible to see the fundamental importance of the new type
of double ecircuits. Take for instance the vicinity of (@, b). Using only simple
double circuits (or the equivalent open paths joining two of the singularities)
the solutions [e; #] and [b; y] are readily obtained, two of the solutions regis-
tered by previous writers. However, the simplest solution of all, which is one-
valued in the neighbourhood of the singular point (a, b) and regular at that
point, i.e. [¢; a, ] =[¢; b, y] = [a, x; b, y], cannot be obtained at all from simple
double circuits, and consequently does not appear in the Le Vavasseur table of
solutions. If we take for instance the point {0, o), we find in the table (Appell
and Kampé de Fériet, 1926, p. 62 et seq.) only two distinct solutions, 2, = Zion+4
and 2, = Zion+e (=1, 2, ..., 5) convergent for small x and large y. The third
solution, (6), was discovered by Borngisser (1932) who used different methods
(integration of the differential equation by power series).

In any of the hypercones in the neighbourhood of (a, a) there are again
two solutions which can be represented by simple double circuits or equivalent
open paths; these solutions are accordingly known. But as far as I know nobody
succeeded as yet in finding the third solution for this case explicitly, for the
integration of systems of partial differential equations by power series becomes
difficult in the neighbourhood of an intersection of three singular curves. Take

1

for instance the neighbourhood of (0, o) “near” x =0, or more precisely the
domain |z| <]y|< 1. We find in the table two solutions, z; and #z,,, but the
third solution does not appear in the literature known to me.

From these considerations it is seen that the employment of triple loops of
all possible types (or of equivalent double circuits of all possible types) is

essential for the success of integrating a system of partial differential equations
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by contour integrals: at the same time it seems that quadruple and yet higher

loops can safely by left aside.

12. A point of great interest in the analytic theory of systems of partial
differential equations is the transformation theory of the solutions, and contour
integral representations of the solutions are notoriously the best tool for develop-
ing such a transformation theory. The transformations of the solutions of the
form (3) have been discussed in detail by Le Vavasseur (see also Appell and
Kampé de Fériet, 1926, pp. 65—68). A complete transformation theory will
embrace all 25 solutions which oceur in our 15 fundamental systems. The best
plan is to express all 25 solutions in terms of 3 arbitrarily chosen linearly in-
dependent solutions, and to collect the results in a matrix equation which
represents the 25 X 1 column matrix of the 25 solutions as the product of a
25 X 3 transformation matrix with the 3 X 1 column matrix of the selected set
of three linearly independent solutions. From this the expression of any of the
15 fundamental systems in terms of any of the remaining 14 systems can be
derived by the elementary rules of matrix algebra.

I do not propose to give here a detailed theory of the 25 solutions; only a
few of the more important properties of the two types of solutions will be

enumerated in the following paragraphs.

13. We consider those solutions of (1) which are expressed by integrals
along a simple double circuit or, in case of suitable values of the parameters,
along corresponding open paths. These are the ten solutions of Picard (1881)

and Goursat (1882). A typical one is

3 , r , ‘
Fila, B 8,7 x y) = I_‘—(m‘(_(yy)ja—) [w“f* “Vw— 1) u—z) P lu—y)"F du
1
valid if N(e) >0, Ry —«) > o, |arg(1 — z)| < n, |arg (1 —y)| < n. The obser-

v

vation that the substitutions u = S u=at (1—x)v, u=y+{1—y)v,
v— v—y . .
w= U= result in integrals of the same type leads to the expression

of each of the solutions in six different ways in terms of F,. The transforma-

tion theory of these solutions was given by Le Vavasseur.
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Beside the six expansions in terms of F,, there are other expansions in
terms of hypergeometric series other than F,. The following four will be
needed later.

The expansion of (. — x) ¢ in powers of z, and of

(w—y) 0 = (1 —y)~F uf {1 AL

in powers of ;z—;, and the expansions in which the role of # and y are in-

terchanged lead to (Appell and Kampé de Fériet, 1926, p. 24 equations (29
and (29)

2l J — A ’ 1
Il(aaﬁng’y;x)y):(l "?/) ? Fs(ayy‘—a@ﬂ’ﬂ’?’;xaui )

— =P By~ ey s L)

x—1

where F, is Appell's series

st(a,ahﬁa 'Y X, ’l ZZ——~—_——(@§xmyn_ (IO)

m+n mln!

Again, the expansion of (# — 2)~f in powers of x, and of

() (5

in powers of  and 1—5— lead to the first of the two transformations {Appell

and Kampé de Fériet, 1926, p. 35 ©)

I(e,8,8,7;2,9) = (g)ﬂ F2(6+ g,a,8,7,.8+ 8z, 1—15)
(11)
=("§)8 By (5+ﬁ',a,ﬂ,7,ﬂ+ﬂ’;y,l—%) |

in which I, is Appell's series

Pyl 87500 = S 3 et Bl (12)

Next we expand
11 — 642136 Acta mathematica. 83
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a o
(I——_-_.q_;)1 (N‘“—"?/)_—ﬂ':u‘ﬂl{l 4 w] {

(x —y)uf

in powers of and then (u— x)~?*" in powers of « to obtain the first of

the two transformations

A b e Y
(aﬂﬁur ) *(I Jj) Hg(ﬂ,(l,ﬂ,l 517,96,90__9)

L, (13)
:(_E)'H(/”'“ﬂl—e’v’/ x)
I y 2 M ) 3 i 7/7 . 7:’/ __x
in which H, is Horn’s series (Horn, 1931, p. 383)
’III. ’n n 671/
H, (¢,8,7,0, ¢ 2,y) = ZZ (e (14)

,m'n'

Lastly, put w= o + (1 — x)?, expand

(“_-“-’ [ P v\
11— C x—1 1—2x

xr
£ —1

f~y—n
in powers of - :_l/_x and then (7;— ) in powers of xi . to obtain the

transformation

Fy{e 8,875 2,9) =1 —a)” ZZ mMy e (5)( - )"( = )" rs)

(yhmgnm! n! x—1 I—x

There is a correspending transformation obtained by interchanging x and y, and
at the same time 8 and §.

14. Turning now to integrals taken along a doubleloop involving three
singularities of the integrand, we shall depart from the notation of section 8
and shall denote by a, b, ¢, d, ¢, any permutation of the five singularities of the
integrand of (7), that is any permutation of o, 1, x, y, . The typical solution
is {a; b, ¢] = [a; d, ¢}, and there are obviously 15 solutions of this type.

In oder to reduce solutions of this type to convergent infinite series, we
remark that there is no loss of generality in assuming that the real part of the
exponent of 4 —a in (7) exceeds —1 {or that the real part of the exponent of

}l exceeds 1 if @ happens to be o0); and under this assumption the double cir-
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cuit may be replaced by a single loop, so that apart from a constant factor the
solution is
(0, e+
f wHE =Y (g — 1y — ) B (u — )7 F du (16)
where the contour of integration is a loop starting at «, encircling b and ¢ in
positive direction and returning to @ so that d and e are outside the loop. Al
ternatively, the solution may be represented by an integral extended over the
loop @a... (d, e+)... a with a slightly different constant factor.
By a linear transformation of # we throw a to -—1, one of the singularities
inside the loop, say b, to o and one of the singularities outside the loop, say d,

to oo. The linear transformation effecting this is

_u-—ba——d.
u—da— U

7=
With the notation

_ec—ba—d . e—da—»b

t= c—da—10 t_—e—ba—d

(16) reduces to a constant multiple of

(0, 1)
(1 — Py (1 — 9) (€ — y)° f VR e+ 1) (p— ) — o) du
—1
where A, u, ', v, %, 0, %, ¢ depend on a, 3, §,y, and ¢ and ¢ are rational func-
tions of  and y. It remains to show that this is of the form (4).
If {#|< 1 and [#]| <1 we may take the unit circle [v|= 1 as the contour
of integration. The expansions

(v—t)=% = v~ D (D (f)m and (1 — ¢ v)=¢ = D) (t)n (¢ v)

Ld ! \w n!

are uniformly convergent along the contour so that term-by-term integration is
permissible and gives for the integral

o+)

M (1) : ,
S‘ (__ﬂ'_ﬁ m 4n ' —mn—1 (4 —p ~
> it 1 (v + 1) dv.
-1
Now,
(0+) ,
__I__. fvu'—m+n~l(v + I)—‘“,_vdl}:f . F(I "—P“—"")
27y ri—ug +m—n)r(t—v—m+n)
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and this is
it —u —»v)
ra—u\r{a—vy

) (xu")""m (W)m—-n s

so that finally

(0,1+)
f VL 1) (p— f)F (1 — ¢ v) e d
21

C2mil (1 — g — )
T(I ~—‘LL/) F(I —11)

G:’ (}“ U, [«L,, v, t) f’)

and the solutions under consideration are of the form (4).

15. The last integral is equivalent with the integral representation
Gyla,a', 8,87 0, y) =

, (0, #+) —a ‘
i e (=) T

—1

(17)

RE+8)<1

from which certain transformations of G, follow readily.
First put w=a + (z + 1)v in (17) to obtain an integral of the same type

and from it the transformation

’ gy = o) F -y Gl 1—a— ’ T X Eﬁ)
Gelere!, . 30,9) = 1+ 01 1) G (1t .5 5w D) )
v

——————— leads to the transformation
vy +y + I

Similarly, the substitution « =

' ’ - - ' ’ ity —y
. — By — A — — [ S A
GE(“:“:ﬂ:ﬂyxay) (I+?/) (I x!/) (72(“71 a ﬁ’ﬂ75’xl—xy,y+l) (19)
which could also be obtained by interchanging «, 8, x and o', §, y in (18); and
(x+1)v+xly +1)
y+1+ylx+ v

the substitution u = leads to

G‘2 (C{, alv 53 ‘3’79&?/) = (I + ;1;)_(3' (I +y)_[j (way)l—a—a, X
1+y 1tz

1+’ y1+y

X Gg(l—a—ﬂ, 1~ 8,88 — ) (20)

which can also be obtained by combining (18) and (19).
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Thus we see that every integral (16) can be expressed in four different ways
in the form (4). There are fifteen distinct integrals of the type (16) and hence
sixty different series (4). It is quite clear that the number of series of the form
(4) which are solutions of (1) must be equal to the number of series of the
form (3) satisfying (1), for (2) and (6) satisfy the same system of partial differ-
ential equations and thus to every series of the form (3) we must have one

w1 —afy (1 —yf (x—y) "t G, (u,u', L+ =l —p';—t — })
satisfying the same system of partial differential equations; and the last series
is of the form (4).

Like in the case of F, there are numerous expansions of (17) in terms of
convergent hypergeometric series other than G,. The following two will be
needed later.

In (17) we use the expansions

and obtain

Gy=(1 + @)™ (1 + ) 22(“)’” e (xf 1)( ; )X

m! n! Yy + 1

(0+)

ra—gri—4g) f .
wub—ml (g + )BT MR gy
ﬂ ﬂ r

277 F (r —
and hence
G2 (C(, C(’, 5v 13’7 xv ?j) =

—a _a’ 2] ——-——_' ’ . _—I' x s ?/ .
(1 +2)7¢(1 +y) 192(1 B—B e, 1—81 B y+I)

Combining the same expansion of (1 —uy)—* with

(=5 "= 3 ()

we find in a similar manner
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o' B3 00) = (140 (F 11— — =L e

with a corresponding transformation when the role of # and y are interchanged.

16. Summing up our results regarding solutions of (1), we see that there
are exactly 25 distinct integrals of the type (7) extended over a triple loop or
an equivalent contour. Each of these 25 integrals represents a solution, the 23
solutions suffice to construct all fundamental systems of solutions, and, con-
versely, all the 25 are needed for this purpose. 10 of the 22 solutions can be
represented, each in 6 different ways, in the form (3); and the other 15, each
in 4 different ways, in the form (4): besides, there are numerous other expansions
for each of the 235 solutions. It remains to compare this result with that arrived
at by previous writers.

There is no need to discuss in detail the results arrived at by earlier
authors: they found only the 10 solutions represented by 60 series (3) and we
know already how these solutions fit in with our present theory, and wherein
the older results are incomplete. It is necessary, however, to consider in some-
what greater detail the investigations of Professor Horn and of his pupil Dr
Borngiisser. We start with the latter, the comparison of whose results with
ours is facilitated by the transformations of sections 8 to 12. We revert to the
notations of those sections in that we use a, b, ¢ for a permutation of o, 1, co.

Borngiisser (1932) attempts to find power series solutions of the system of
partial differential equations associated with F,. For the neighbourhood of (a, a),
an intersection of three singular manifolds, he finds only one solution. This is
in every case of the form (3) and corresponds to our fundamental solution [b; ¢]:
in fact it is the only solution in power series which is convergent in an entire
neighbourhood of the singular point (a, a). Borngiisser's method gives no further
solution for such a neighbourhood. For the neighbourhood of (a, b), which is an
intersection of two singular manifolds, Borngiisser finds the complete fundamental
systems. Though his solutions appear in various forms, they ecan always be
transformed into the form (3) or (4).

Dealing with (0, oo), Borngisser (1932, p. 31) first finds the expansion (6),
which is our solution {1; 0, z], then

xﬂll y -n
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which is obviously

X1
y““Fl(a,,@,a%« In—y,a+1~{>’;%,?;)

or z, of Le Vavasseur's table, and finally

B 1=y =3 091 w‘ (lg + ﬂ' il S 7)'" (l[))')” ((Z + 11— y)m—n
X Y Z (B + 2 — p)mn!(m— n)!

y amy=n
n=0 m=n

which is
ﬁ“ﬂy4146+ﬂ+I—%a+1~%ﬂﬂ“+%—%%%)
or z;, of the table: the two last solutions are both of the form (3) and are ex-

pansions of our [y; oo] and [o0; x] respectively.
For the neighbourhood of (1, 0) Borngiisser (p. 41) finds the series

Fole,8,8,¢ + 8+ 1—p,7y =81 —a,y)

which can be transformed by means of (21) into

. . , 1—x Y
x%l—mﬁGxﬁmywa-&ﬂ+l~w : )

x 11—
or [c0; 0, y]; and the two series
YR e B 1=y BB I — et Bt 12—y 1 —a,)
and

(t—ayp~dFy—By—eaf,7+1—a—8y—B;1—x,u)

which in their turn can be transformed by means of (11) into

, , 7
x—[b’!/[)’+1—714'1(6+‘3 + 1 _7a:87a+ I—72 +18—~7)‘L,i) ?/)
and

’ Al ’ ’ I_aj
0"wwﬂh—mﬂﬁ%rﬂmwﬂ—ﬁﬁm—a—ﬂ+u1~%;jﬁ

and are thus seen to be identical with z,; and 2z, of the table, and to be ex-
pansions of our [o; %] and [1; x|, showing that in this case too Borngisser’s
fundamental system is identical with ours.

Lastly, for the neighbourhood of (1, co) Borngiisser has the series

g/-ﬂ'HQ(a~ﬂ',ﬂ,ﬂ',,6’+ﬂ'+ I—y,a+B8+1—y; I—w,—i)
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which can be transformed by means of (22) into

(y——l)—ﬁ' Gg(ﬁ,ﬂ',}/“a—p’,rx——[)"; x— 1, ! ),

Yy — 1

an expansion of [0; 1, z], and the two series

—a e (ﬂ)m (a)n (a + B8+ 1 ”_}’)n o \mg—n
Y mZ::'o n%m(a-i-ﬂjL I — e + I—(5"),.771!(72—;92)!("lc 0y
and
(x *w)"”‘“f”y‘ﬂ'Hz(7~'ﬁ—ﬂ',*/—a,ﬁ’,ﬂJr F+i—py+i1—a—§1 ~x,v—é)
which can be transformed by means of (15) and (13) into respectively
~a I —p—4 gzt
(y_l) fl(aaﬁay 6 ‘3,0.’+I /})’y‘—l I'—_’lj)
and
A —— — A4 ’ . x—1 x—1
xa_"(l—x)y ‘3(./'/_—1) ‘3F1(ymaa1~"a>;8>7+1+a——ﬂ7 pe ’ P y—y—l))

or zy and z,, of the tableau, and are expansions of [oo; y] and [1; z].
In every case the series found by Borngiisser are expansions of the solutions

of the fundamental systems of section r1o.

17. The comparison with Horn's results is somewhat more difficult. Horn,
who deals with the more involved problem of the neighbourhood of an inter-
section (@, a) of three singular manifolds, proves the existence of the fundamen-
tal system of solutions, derives certain results regarding the form of series
representing these solutions, but does not obtain explicit formulae. He puts
x =1tcos ¢, y=tsin @, finds the ordinary differential equations satisfied by 2 as
a function of ¢ (a differential equation, incideritally, very nearly related to Poch-
hammer’s differential equation for hypergeometric functions of order three), and
discusses the behaviour of the solution of this ordinary differential equation in
the neighbourhood of the singularities ¢t =0, = oo.

In his earlier paper Horn (1935) obtained series which represent the solutions
asymptotically as #—co. In his later paper (1938) there is a more thorough
investigation of all three intersections of three singular manifolds. The series
which have been proved to represent the solutions asymptotically turn out to be
convergent series (in fact they are equivalent to our series) and to represent
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the solutions in their domain of convergence. It is clearly sufficient to discuss
the result of the later paper, and since all three singularities (a, a) are of the
same character, it will be sufficient to deal with one of them, say (o0, 0) or t=o0.
For this singular point Horn (1938, p. 450) first finds the well-known solution

{(2) which is our [1; co], and then proves the existence of two more solutions of

the form z = t“‘/Z 2y t* where the ¢, are functions of ¢.

In order to find explicit representations of Horn's solutions Z e t™Y, let
us assume for the moment that we are “near’ x=o, i.e. that {tang]| < 1.
Then we have the solutions [0; 2] and [y; 0, #| of section 10 which are, apart
from constant factors and under suitable assumptions about the parameters,

fu.f”f*'“”f (1 — )y (o — )Py — u)~" du

0
and

(0, 2+)

f uPTE (1 — w)r = u — ) F (e — y)~F du.

Y
We put =1t cos ¢, y=1%sin ¢ and w=1tv cos ¢ in the first integral, u =
— tvsin @ in the second, whereupon both are easily seen to be of the form
D zn(g)t~7. Similarly, [0;y] and [x;0,], and also [x;y] and [0; , 7] have
expansions of the form Zzn((p) {"=7, but the coefficients 2, (p) will be different

for each of the three pairs of solutions, that is in each of the three hypercones
which have their (common) vertex at the singular point, and their axis at one
of the singular manifolds passing through this singular point.

This change of the 2,(¢) from one hypercone to another is latent in Horn's
analysis. He writes

20 = PoJn + Qo In

where f, and g, are homogeneous polynomials of degree % in cos ¢ and sin ¢
and are determined by recurrence relations, while p, and ¢, satisfy a system of
two ordinary differential equations in which ¢ is the independent variable. From
our point of view the sequence of the functions z,(p) appears as a system of
contiguous hypergeometric functions of tan ¢, and the nth member of the
sequence can be expressed in terms of the first two members with coefficients
which are homogeneous polynomials in cos ¢ and sin . The system of two
ordinary differential equations satisfied by p, and ¢, is a hypergeometric system
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and has the singularities tangp=0,1,00 or og=nn, (n + })mw,(u+ }=w (u is
an integer) corresponding to y =0, 2 =y, 2 = 0, respectively. Our three sets
of solutions correspond to the fundamental systems in the neighbourhood of
respectively tang =0 (“near” y=o0), tangp =1 (“near” wr=y), and tangp = oo
(“near” 2 =o0). When passing from one hypercone to another, we pass from
the neighbourhood of one singularity in ¢ to the neighbourkood of another,
and hence from one fundamental system (p,, ¢,) to another.

The comparison thus shows that the representation by definite integrals
leads more directly to explicit formulae and indicates the structure of the solu-

tions more clearly,

18. In yet another respect the solution of differential equations by definite
integrals is of great advantage: it discovers and elucidates connections between
various systems of differential equations. Compare, for instance, (7) and (17),
and for the sake of comparison replace u by —u in the latter. (7) represents
the general solution of the system of linear partial differential equations associ-
ated with F), and (17), with an arbitrary contour of integration and an arbitrary
constant factor, the general solution of the system of linear partial differential
equations associated with G,. Now, (7) and (17) are indentical, except for the
notation, and this suggests at once the equivalence of the system of I, with
the system of G,.

Moreover, the comparison of (7) with (17) suggests a transformation which

will transform (1) into the system of G, It is

A=p4"=8 B=F—~y+1,B=c—f, X=—ua, Y=~§, Z = yf z, (23)

and it changes (1) into

X+ X)R— Y+ X)8+L1—B+{d+B +1)X}P—-AYQ+AB Z=o0
(24)

— X+ YV)S+YLa+Y)T—A'XP+ 1 —B +(A4 +B+1)Y}Q+ A BZ=o,

a7 . . .

where the symbols P == X ete. have the obvious meanings. Now, (24) is exactly

the system of Gy{(4,4’,B,B’; X,Y) as given by Horn (1931, p. 405) except that

B and B’ are interchanged, thus correcting a misprint in Horn's paper. (23) is,

of course, not the only transformation of (1) into (24). Counting also the inter-
changing of B, x with §,y, there are in point of fact 120 transformations of
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(1) into (24), corresponding to the 120 transformations of (1) into a similar system
and an equal number of transformations of (24) into a system of the same form.

Horn (1931, p. 391) attempted the integration of (24) and found two series
which are obviously of the form (3), but failed to draw any conclusions from
his result. Borngisser (1932, pp. 32, 33) found four solutions of the form (3)
and remarks that his results indicate a certain connection between F; and G,.
The conjectured connection exists, of course, and follows immediately from our
integrals, for relations like

lo; 1, 2] =¢ [0; 1] + ¢ [1; 2] + ¢4 [0; 2]

express (i, as a linear combination of three functions I|. Instead of the connec-
tion between F, and G, it is more fruitful to consider the relationship between
the systems of partial differential equations associated with these functions, and
we have seen that our integrals suggest, and the substitution (23) verifies in an
elementary manner, complete equivalence, not only a certain connection. The
theory of (1) settles finally and completely the integration of (24) too.

Our results indicate also connections between (1) and certain particular cases
of the systems of partial differential equations satisfied respectively by Iy, I’
and H, The connection between the systems of F; and F, is well known
(Appell and Kampé de Fériet, 1926, § XVII), and the systems of F; and H, are
known to be equivalent to that of F, (ibid. § XIII and Borngiisser, 1932,
pp. 33 and 34).

Furthermore, there are several hypergeometric systems of partial differential
equations the integration of which can be reduced to the integration of particular
cases of (1), that is to (1) with particular values of the parameters. In the rest
of this paper these systems are enumerated and reduced to (1). The results are
mostly new and the ease with which they follow is another indication of the
power of our method, and of its appositeness in this problem.

The System of G .
19. Horn's series (1931, p. 383)

‘,‘L.‘"L ,l/ n

Gila, 8,8 2,9) = ZZ (@ntn Bu—m (8 )m—n Py ;" (23)

satisfies the system of partial differential equations (Borngiisser, 1931, p. 47)
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Lilgl=x{e+ip —ys—y i+{{e+f8+1)x+1-B}p+(8 —a—1)yqg+agf z=0

(26)
Lyjzl= —2%r—axs+yly + 1)i + (f—e—1)ap +{le+f+1)y+1—F} g+ aBz=o0.
An integral respresentation of & is
: b LU= =g re+g)
Gl(a,ﬁ,ﬁ,x,ya (2”2‘)2 X
- —a 2 }
Xfuﬁ*l(l——u)ﬂ'—l(l—l—ux—Ly) du (27
“ 1—u
¢
where (' is a double loop (0; 1) slung around u = 0 and u = 1 so that l_uxI +

u
I—u

-+

y‘< 1 everywhere on C. (27) can be proved by expanding the integrand

in powers of 2 and y and integrating term by term.
The integral representation suggests the solution of the differential equations
(26) by integrals of the form

z = fu“*“ﬁ—‘ (1 —wpetf -t U-2du where U=u(1 —u)— (1—u)Pz—u’y. (28)
Substituting this integral in the first equation (26) we obtain

L, [z} :fu‘”f‘“l(u— 1081 o2 g (o + 1) {(u— 1) 2l + 1) — o’ (0 — 1)y — ut y?}
tafli—pg+e+8 +D2)u—1+ (3 —a—Dulyl U+ ef Udu

which gives after some reduction
Lz =— fu“+13‘1(u — 1 U o + D {w— 1P —uy) +
+{fu+(1—8(0—uw} Uldu

= afu”ﬁ“l(u — p)etf a2 [(a + 1) u (e — I)(%;U

e+ A —n) U —(a +§ + I)MU]M

T “f 0—01; (B (e — 1T o1} s,

Similarly,
L,[z] = — afa_a_ (et B+t (y — y)et 8 U=e=1} qq,

u
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It is thus seen that (28) is a solution of (26) whenever the integration is taken
over a closed contour (closed that is to say on the Riemann surface of the in-

tegrand) or else over a contour equivalent to such a closed contour.

20. The integral (28) is of the type (7), thereby indicating a connexion
between the systems of partial differential equations (26) and (1). To exhibit this
connection more clearly, let us denote by £ and 7 the two roots of the quadratic
equation U =0 in u. Clearly,

1 tz2z+ (1 —gay)t I+ 2x— (1 —4xy)

§= 2(1 + 2 + y) 1= 2(1+x+y)ﬁ

where the square root is defined uniquely for instance by the convention that
it reduces to unity when xy = o, and that it is a continuous function of xy.

We now have
U=—(+2z+y)(u—_§u—mn

and hence (28) changes into
{—(1 +x+y)ez= fu"‘*f"‘l(u — 1)t — &)~ (w— n) " du.

This is, except for the notation, identical with (7) and gives rise to the theorem:
If z is a solution of (26) then (1 + x + y)*z regarded as a function of & and 7
satisfies the system of partial differential equations associated with

Fi1—8—F,e,a0,0 =8+ 1;,§7)

The reduction thus effected of the integration of (26) to that of (1) is of
some importance. Hitherto the integration of (26) presented great difficulties
owing to the point of contact at x =y = — } of the two singular manifolds
x+y+1=o0 and 4xy—1=o0 of (26). This difficulty has now been removed,
for the transformation of z and y into § and 7 transforms the singular point

=gy = —1 into the point £ =17 = oo where three singular manifolds § = co,
1= oo, £ =19 intersect without having a common tangent. Thus the transforma-
tion suggested by our contour integral dissolves the point of contact (that is
exceptional intersection) of two singular manifolds into an ordinary intersection
of three singular manifolds. The integration of the system (1) has been accom-
plished in the earlier sections of this paper and in particular the fundamental

systems belonging to the singular point (o0, oo) have been discussed in section 10.
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Another interesting consequence of our theorem is the transformation

Gi(a,B,8xy)=(1 +u0+y) X

p LIt ze—{1—qxy)} 1+22/——(1~4x1/)5)
It —p38— 1—3,1—8; — : :
X 2( p—=8,ua B g 2(1+2+y) 2(1 +a+y)

(29)

which arises from the following simple consideration. There is only one solution
of (26) which is regular at x =y =o0, viz. G, itself. Now, = y = 0 corresponds
to §=1,7=0, and there is only one solution of the system of F,(1 —~5——{5‘"
a,a0,¢ — 8+ 1;§,m) regular at £=1, =0 (Borngisser, 1932, p. 41), viz. the
Fyfunction on the right hand side of (29) which corresponds to [oo; 0, 7] in the
notation of section 10 (cf. also section 16). Hence the two sides of (29) are
equal except possibly for a constant factor which turns out to be unity on

putting x =y =o.

The System of &,.

21. Horn’s series (1931, p. 383)

G% a, (Z |, ’l ZZ 2:,:"””' Zrn "(L‘my" (30)

satisfies the system of partial differential equations (Borngisser, 1932, p. 36)

xax+nr—@rt+2ys+yit+{gd +6)z+1—ulp—2dyg+e (e +1)2=0
(31)
r—zlqy+2)stylay+i)t—2exp+{ge+ 6z +1—dlgtalet+1)z=o0.

The integration of this system presented hitherto considerable difficulties owing
to the presence of a cusp, at w=y= —3%, of its singular manifold &h==
272°y* — 18wy — 42— 4y — 1 =0. There is also an apparent singular manifold
f=15xy + 4%+ 4y + 1 =0 which intersects h =0 at the cusp. We shall see
that in this case as in the previous one the contour integral method is effective
in removing the difficulties.

G is represented by an integral of the form

2 == fuﬂ a+a’~1 (I . ll>a+2 a'=1 [J~a~a' J4, (32)

where
U=u{l —u)— (1 —u)lx—udy,
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and in the same way as in former cases it can be proved that (32), multiplied
by an arbitrary constant and extended over any contour closed on the Riemann
surface of the integrand, is a solution of (31). Yet this case is different from
any of the previously discussed cases in that (32) does not represent the general
solution of (31). In fact, since u = oo is a regular point of the integrand, the
integrand of (32) has only five singularities, and consequently there are only
three linearly independent integrals (32), whereas (31) is known to possess four
linearly independent solutions.

The reason for this discrepancy is of course a particular solution of (31)
which cannot be represented by an integral of the form (32). It is not difficult
to trace this solution: it is ¢ 4 where o= — (¢ + 2¢') and 6= — (2 ¢ + ).
The general solution of (31) is a linear combination of 2¢ ” and of three linearly
independent integrals of the form (32).

The occurrence of the elementary solution x¢ 4’ of the hypergeometric sys-
tem (31) is rather curious, and I do not know of any case in which such solu-
tions have been detected previously.

22. It is easily seen that (32) is of the type (7). In fact, let us denote the
roots of the cubic equation U =o0 in u by & #% and { so that

U= (x—y)lu—E&u—nl—07).

With this notation (32) may be written in the form

z=(x—y) ¢ fu“*“'“’ (1 —a)et2e = {(y — &) (w — n) (0 — &)} 72~ ¢ du,

and if we put

vl L—1 I—1
" = ‘—’ X:t,_ Pl Ir: Y
v LT =% Tt=y

the last integral transforms into

2= {(Qf . _7/) (S‘ _ g) (g _ n)}—a——a' Ca (g . I)u’ X
X fv?“'“"‘l(l — p) e — X) (o= Y)} 7 dy;

and the integral appearing here is clearly of the form (7) and gives rise to the
theorem:

If z 4s a solution of (31) then there exists a constant ¢ such that (z—c a2 y°) -
Al — ) C—HE— et L2 — 1)7% regarded as a function of X and Y satis-
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fles the system of partial differential equations assocrated with
Fitl —ea—da+d, a+d,d+1;X,Y).

Broadly speaking, this theorem reduces the integration of the system (31)
to the integration of (1) and also indicates a certain connexion between (31)
and (26). The system of G, has interesting features such as the cusp on its
singular manifold and the presence of an apparent singular manifold and these
features would justify a more detailed investigation of (31). However, the purpose
of the present paper is merely to point out the connexion between the system
of G4 and various other hypergeometric systems and a thorough study of (31)

must be left for a future occasion.

The Systems of H, and H,.

23. Horn's series (1931, p. 383)

Hyo, 8,7; 0, 9) = D) ) (hnr Bronlphe (33)

m! n!

satisfies the system of partial differential equations

zlgx + 1)r—(ax + Nys + ¥t + {4e + 6)z+1—8p—2ayq+alet 1)z2=0
(34)
—zy F2)s+tyly+ )t—yxp+B+y+ 1)y +1—ejqg+Byz=o0,

The integration of this system presented hitherto considerable difficulties owing
to a point of contact at x= —2%, y= —2 of the two singular manifolds
42+ 1=0 and 2y* —y — 1 =0. We shall see that in this case too the contour
integral method helps to surmount the difficulties.

(33) has the integral representation

Hy{e,8,7;0,9)=T(1 —a) I'(1 — ) I'(e + B) X

(35)
2 —a—f _ -y -
X(2ni)“2ft“_l(l—~f)(”—1(l~Itjt) (I—I ; ty) dt
b
where C is a double loop encircling t=0 and {=1 so that t-——;l—zi—; and
— 1 + + 1) —_1 — + 1)t
t= ol S T Vi are inside the double loop while t:~—l——g—x——l)— is out-

2x 2
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yu
w1

side of it. With ¢= ” (35) suggests the integral

7= y“fu““*l(?r— D71 +yu—xzyiud) P du (36)

which in fact can be shown to satisfy (34) whenever the path of integration is
a contour closed on the Riemann surface of the integrand or else a path derived
from such a closed contour.

As in the case of G,, the system of partial differential equations (34) has
an elementary solution which does not admit of a representation by a contour
integral (36), and the general solution of (34) is in fact a linear combination of
=8 y~28 and of three linearly independent integrals of the form (36).

24, Let & and # be the roots of the quadratic equation 1 + yu — 2y’ u?=o0
in « so that
1+yu—ayiu’=—zy*(u—§(u—7),

and (36) becomes

g =g o F y““'””fu"‘*“/“ (=17 {lu— & w—n)} - Fdu

Comparison of this integral with (7) leads to the result:

For any solution z of (34) there exists a constant ¢ such that xz*+Fy*+28z — ¢
regarded as o function of & and v satisfies the system of partial differential equa-
tions assoctated with (e + 28, e + f,a + Ba+ 26—y + 1;§ 7).

This theorem reduces the integration of (34) to that of (1) and also indicates
a connection between the systems of H, and G,.

25. The system of Horn's series (1931, p. 383)

%MMMM=ZZ@%Q& (37)

Vman minl

needs no special discussion. It is easy to see that one of the fundamental solu-
tions of (34) in the neighbourhood of x =y =o0 is

¥ Hyle + 28,y,8+ 1, —x,29)

so that the systems of H; and H, are equivalent. In fact,
12 — 642136 Acta mathematica. 83
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If z is a solution of the system associated with Hy(e,8,y;x,y) then x'~'z is a
solution of the system associated with Hy (a—z y 42, ;/—I,ﬁ;—x,—g) and vice versa.

Combining this result with that of the preceding section, we have the
following result:

For any solution z of the system of partial differential equations associated
with Hy(a,B,7;@,y) there exists a constant ¢ such that y*z — ¢ regarded as a
Sunction of the roots & and n of the quadratic equation x — yu + y*u* =0 in u
satisfies the system of partial differential equations associated with Fi(e, a —y + 1,
a—y+La—g+ 1;87).

Confluent Hypergeometric Functions.

26. All the hypergeometric series discussed so far are complete hypergeo-
metric series of the second order in two variables, in the terminology of Appell
and Kampé de Fériet (1626, Chapter IX). Beside these there are also confluent
hypergeometric series of the second order in two variables, and it is well known
that the confluent series are limiting cases of the complete series. Clearly, a
full theory of the solutions of (1) contains, in nuce, the features of the solutions
of any system of partial differential equations which is a limiting case of (1) or
of any system which has been shown to be reducible to (1). For this reason
we shall merely enumerate the confluent hypergeometric series which are so
connected with (1). The solution of the systems of partial differential equations
associated with any of these series by contour integrals should present no
difficulties, it being understood that the limiting procedure which leads to the
confluent series may change the Eulerian integrals into Laplace integrals.

Leaving apart series which reduce to elementary functions or to hypergeo-
metric series of one variable, we find that the seven confluent hypergeometric

series of the second order in two variables
D, D, Dy, I}, Ty, Hy, Hy (38)

introduced by Humbert (@) and Horn (I', H) respectively are limiting cases of
one of the series F,, Gy, H,, Hg (cf. Appell and Kampé de Fériet, 1926, pp. 124,
125 for the @ and Borngiisser, 1932, pp. 19 and 20 for the I' and the H).
Clearly, then, the system of partial differential equations associated with any of
the functions (38) will be the corresponding limiting case of the system of ome
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of the functions F|, G,, H;, H;, Now, the integration of the systems of the last
four functions all depend on the integration of (1) and so the integration of
the system of partial differential equations associated with any of the functions
(38) will depend on the integration of a limiting case of (1). There are also
several interconnecxions between the systems of the functions (38) themselves:

so for instance the systems of @,, @, and I', are equivalent to each other.

27, Summing up, we see that the theory developed in sections & to 15
settles the integration of the system of partial differential equations associated

with any of the functions

Fla G11 G?a Gsa H3> H67 qj]y Qz, ¢37 Tl, F23 Hea HS)

that is thirteen out of the thirty-four hypergeometric systems of the second
order in two variables. The reduction to (1) of these thirteen systems is valid
for arbitrary values of the parameters. Besides, the integration of all other
hypergeometric systems of the second order and in two variables (with the only
possible exception of H;) can be reduced to the integration of (1) provided that
the parameters appearing in those systems are suitably specialised (that is satisfy
one or two relations).

Most of the hypergeometric systems of the second order in two variables
have four linearly independent integrals. There are, however, eight of them
(Borngiisser, 1932, p. 9) which have only three linearly independent integrals:
they are the systems associated with the series

Flv le G27 ¢11 qu’ ¢37 Fl a‘nd F2 (39)

Now, all the eight series (39) are among those whose systems are reducible to
(1), and hence we have the general result:

Any hypergeometric system of partial differential equations of the second order
in two independent variables which has only three Linearly independent integrals can

be transformed into (1) or into a particular or a limiting case of (1).
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