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S u m  m ary.  

The systematic investigation of contour integrals satisfying the system of 

partial differential equations associated with Appell's hypergeometric function F 1 

leads to new solutions of that  system. Fundamental  sets of solutions are given 

for the vicinity of all singular points of the system of partial differential equa- 

tions. The transformation theory of the solutions reveals connections between 

the system under consideration and o~her hypergeometric systems of partial 

differential equations. Presently it is discovered that  any hypergeometric system 

of partial differential equations of the second order (with two independent vari- 

ables) which has only three linearly independent solutions can be transformed 

into the system of F~ or into a particular or limiting case of this system. 

There are also other hypergeometric systems (with four linearly independent 

solutions) the integration of which can be reduced to the integration of the 

system of F~. 

I n t r o d u c t i o n .  

1. The system of partial differential equations 

x(~ - x)~ + y(~ - x)s + ( r -  (~ + ~ + ~ ) x } p -  ~ y q -  ~,~z = o 
(,) 

y ( ~ - y ) t  + x ( ~ - y ) s  + / 7 - ( ~  + ~' + ~ ) y } q - f x q - ~ ' ~ = o  

in which x and y are the independent variables, z the unknown function of x and y, 

0 z 0 z 0 2 z 0 2 z 0 8 z 
and p - ~  O x '  q : O_y'  r = ff~x~ , s - -  O x O ? ] '  t ~ -  O y  ~- Monge's well-known notation 

for partial derivatives, has been investigated by many writers. 
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Appell (~88o) introduced this system of partial differential equations in 

connection with the hypergeometric series in two variables 1 

which is a solution of (1). 

Actually, definite integrals and series representing solutions of (I) were 

considered before Appell by Pochhammer (I87 o, I87I ). Pochhammer regarded 

his integrals and series as functions of one complex variable only; what is now 

considered as the other variable appeared as a parameter in Pochhammer's work. 

Accordingly his integrals and series appeared as solutions of an ordinary homo- 

geneous linear differential equation of the third order. 

Soon after the publication of Appell's first note on the subject Picard (188o) 

discovered the connection between Pochhammer's integrals and Appell's function 

FI,  and since then several authors investigated the integration of (I) by means 

of definite integrals of the Pochhammer type. References to relevant literature 

will be found in the monograph by Appell and Kamp4 de F4riet (I926 , p. 53 

et seq.) where there is also a summary of the results obtained. From the Poch- 

hammer-Picard integral ten different solutions of (I) have been derived and 

these solutions are represented by not less than sixty convergent series of the 

form 

X u ( I  - -  X) ~  - -  y)("(X-- y)')~'l ( ~ , # , ~ t ' , ' t ' ;  t ,  t ' )  (3) 

where )~, tz, re', v, • z', Q, Q', a depend on a, fl, fl', 7 and t, t' are rational functions of 

x and y (Le Vavas'seur I893 , Appell and Kamp4 de F4riet I926 pp. 51--64). 

E~ch integral is represented by six series of the form (3) thus exhibiting certain 

transformations of Appell's series /71. 

2. The tableau of the sixty solutions (3) is impressive, but not exhaustive. 

I t  is of course possible to express any solution of (I) as a linear combination of 

three linearly independent solutions, and in so far as the tableau does contain 

three linearly independent solutions, it may be said to contain the general solu- 

tion. Yet, if we look for three linearly independent solutions represented by 

series convergent in the same domain, we discover the gaps. For instance, among 

i I n  t h i s  a n d  in  a l l  s i 'm i l a r  s u m s  t h e  s u m m a t i o n  w i t h  r e s p e c t  to  m a n d  n r u n s  f r o m  o to  

oo a n d  (a)n F , a + n )  l'~a) t h r o u g h o u t .  
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the sixty series z l , .  . . . . .  ,z60 there are only two dist inct  solutions convergent 

in the neio'hbourhood of x = o, y = I, viz. the solutions z~----zl0n+~ and zl-~ z10~+7, 

n = I, 2, . . . ,  5, so tha t  the general  solution in this neighbourhood cannot be 

represented in terms of the sixty series of the tableau. The reason for this 

omission will appear later; for the present it  is sufficient to remark tha t  there 

must  be certain solutions of fundamenta l  importance which should be added to 

the list of the sixty solutions (3). 

Among the series missing f rom the tableau there are sixty convergent  

series of the form 

x ~ (I - -  x)e y*' I - -  y),~' (x  - -  y),S Ge  (Z, •, t*', v ; t, t') (4)  

which satisfy (I). Here g, tt , ,u',v,z,z' , ,o,q',a,t,t '  have similar meanings as in (3) 

and G.a is the series introduced by Horn (I93I p. 383) 

(5) 

We shall see later  tha t  the sixty series (4) represent fifteen dist inct  new solutions. 

There are many more series, among them series involving part icular  eases of 

Appell 's series ~ ,  F~ and of Horn ' s  series H,2. All the lat ter  series do not  

define new solutions but  are merely t ransformat ions  of solutions of the form 

3) or (4). 
Borng~sser (I932 p. 31) obtained a solution of the form (4), viz. 

y-,~' (~2(fl, fl', l + y fl' ~j) - 7 ,  e - -  ; - x , - -  (6) 

by assuming power-series expansions of the solution of (I) in the vicinity of the 

singular point x = o, y - - o o .  As far  as I can see no a t tempt  has been made 

to derive (6) or the other solutions of the form (4) from the integral  representa- 

tions, though  it would seem natura l  to expect contour integrals to yield readily 

all significant solutions. Also the integral  representat ions would be expected to 

enable one to construct  the fundamenta l  systems of solutions and their  trans- 

format ion  theory.  

The present work was under taken with the purpose of filling this gap and 

obtaining all significant solutions of (I) from the integrat ion of this system of 

part ial  differential equations by means of contour  integrals. :Not only were the 

expectations with regard  to fundamenta l  systems of solutions of (I) and with 

regard  to the t ransformat ion  theory of (I) fully justified, but  the work lead to 
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conclusions of more general importance. The results regarding fundamental 

systems are important for the general theory of systems of partial differential 

equations in the complex domain in that  they indicate the procedure to be 

followed in case of a (hitherto untractable) singular point which is the inter- 

section of more than two singular manifolds, or in case of a singular point at 

which two singular manifolds touch each other, or, lastly, at a singular point 

of a singular manifold. Again, the transformation theory reveals connections 

between (I) and other hypergeometric systems of partial differential equations 

and leads to an important general theorem in the theory of hypergeometric 

functions of two variables: any hypergeometric system of l~artial differential equa- 

tions of the second order which has only three linearly indepe~ldent solutions can be 

transformed into (I) or into a particular or limiting ca~'e of the system (I). Besides, 

there are also other hypergeometric systems (with four linearly independent solu- 

tions) of the second order the integration of which can be reduced to the inte- 

gration of (I). 

Eulerian Integrals. 

3. All the results mentioned in the last paragraph follow readily from some 

simple, to the point of triviality simple, observations on integrals of the Eulerian 

type: I t  seems worth while to set forth these observations in considerable detail, 

because they have often been overlooked in the past, and because they are 

significant whenever the integration of linear differential equations by means of 

contour integrals leads to integrands with five or more singularities. 

Picard (I88I) has proved that  the integral 

= c ( .  - , ) , - o - 1  ( .  _ ( u  - d .  (7) 

satisfies the system (I)provided that the path of integration is either a closed contour 

(closed that is to say oll the Riemann surface of the integrand) or an open path 

which ends in zeros of u~+~'-V(u- i)'~ -~-~ (u ~ x)-~ -1 ( u -  y)-Y-1 (Cf also Appell 

and Kamp6 de F6riet 1926 p. 55 et seq.). 

The simplest types of paths are (i) open paths joining two of the five 

singularities o, I, x, y, c~ of the integrand without eIJeircling any other singu- 

larity, (ii) loops beginning and ending at one and the same singularity and en- 

circling one and only one of the other singularities, and (iii)double loops (closed 

on the Riemann surface of the integrand) slung round two of the singularities, 
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it being understood that  the other three are outside the double-loop. Owing to 

the multiplicative character of the branchpoints of the integrand of (7), contours 

of the type (it) and (iii) are equivalent to paths of the type (i) if the values 

of the parameters a, ~, fl', 7 are such that  the integrals along the latter paths 

are convergent; and therefore the same solutions are derived from all the three 

types of paths. Clearly there are ( : ) = I O  different simple paths joining two of 

the five singularities, and the integrals along these give precisely the ten solu- 

tions which can be represented by sixty series of the type (3). As far as I can 

see these are the only contours used by previous writers. I have not been able 

to examine Le Yavasseur's Th~se, but the account given of it by Appell and 

Kamp6 de F6riet would seem to indicate that  Le Vavasseur, like the other 

authors, used only the contours described above. 

There are more involved types of contours, for instance double circuits inside 

each loop of which there are two singularities of the integrand, but such 

contours have never been used for the integration of (I). Of course it is obvious 

that  the more involved contours (being closed contours or equivalent with closed 

contours) are permissible contours for (7); but it appears that  apart from Poch- 

hammer nobody realised that  solutions determined by such contours are as 

fundamental as solutions determined by the simple contours. Jordan who in the 

first edition of his Cours d'A~alyse introduced double-loop integrals independently 

from Pochhammer does not even mention the more involved types; nor are they 

known to Nekrasoff (189I) who at the same time as and independently from 

Goursat, Jordan, and Pochhammer developed a theory of integrating linear 

differential equations by definite integrals. Poehhammer (I89o) seems to be the 

only one who recognised the importance of some of these contours - -  and even 

he failed to apply them to what at that  time he called "hypergeometric func- 

tions of the third order" and what are in effect the solutions of (I) considered 

as functions of one variable only, for instance as functions of x. 

4. In order to classify double-circuit integrals, let us consider instead of 

(7) the more general integral 

f (U - -  al)/3' (U - -  ,2 )  (3~ . . . . . .  (U - -  5/n) ~Jn H ('~.f,) d,~ (8) 

in which H(u) is a one-valued analytic function whose only singularities lie in 

some or all of the points a~ , . . ,  a,. There is no loss of generality in assuming 
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t ha t  tile in tegrand  of (8) is regular  at  infinity, for  this can always be achieved 

by a bi l inear t r ans fo rmat ion  of the variable of integrat ion.  

The in t eg rand  has n finite s ingulari t ies  al . . . .  , a~. Correspondingly,  there  

of the P o c h h a m m e r J o r d a n  type each slung round  two 
~ g 

of the n singularit ies.  In  the usual manner  (cf for  instance Whi t t ake r  and Wat-  

son I927 , w I2.43) we use ( a 1 + ; a s + ; a ~ - - ; a  2 - )  as the symbol of  a double 

circui t  which start ing,  say, at a point  P between al and as encircles first al 

then  a2 in the positive (counterclockwise) di rect ion and then  al and ~gain a 2 in 

the negat ive direction,  r e tu rn ing  to P: the double circuit  is assumed to be such 

tha t  no o ther  s ingular i ty  of the in tegrand is encircled. Thus arg ( u -  al) and 

arg  ( u -  a~), having first each increased by 2 ~, and then  again decreased by the 

same amount ,  r e tu rn  to thei r  ini t ial  values; so do the phases of u - - a  3 . . . .  , 

u -  a,~, and the double circui t  (also called double loop) is  closed on the Riemann  

surface of the integrand.  
/ \ 

The fundamen ta l  impor tance  of the ( ~ ) s i m p l e  double Circuits for  the inte- 

gra t ion of l inear  differential  equations or systems of par t ia l  differential  equat ions 

is general ly  recognised: this impor tance  is due to the comparat ively  simple 

behaviour  of the in tegra ls  t aken  along these double loops when the singulari t ies 

of the in tegrand  are variable. I f  any of the  s ingulari t ies  outside of the  double 

loop encircles any other  s ingular i ty  outside the double loop, the in tegral  remains 

unchanged;  if one of the singulari t ies inside of the double circuit  encircles the  

o ther  one inside the (other  loop of the) double circuit ,  the  in tegral  re turns  to 

its init ial  value multiplied! by a cons tan t  factor:  i~ is only when one of the 

s ingulari t ies  inside the double circuit  encircles one o f  the singularit ies outside 

the  double circuit ,  or conversely, t h a t  the system of (~)  integrals  (8) (which are 

essentially funct ions  of the  cross rat ios of the a ~ , . . . ,  a,~) undergoes a more  in- 

volved l inear  subst i tut ion.  Accordingly,  if the in tegra l  taken  along (a~ +;a,~ + ;  

a~-- ;  a2--) ,  say, is regarded  as a func t ion  of al,  then a2 will be a mult ipl icat ive 

brunch point  of this func t ion  so tha t  the integral  will represent  a fundamenta l  

solut ion for  the ne ighbourhood  of a~: in this case a3, . . . ,  a~ will be singulari t ies 

of a more complex type. The same in tegra l  regarded  as a func t ion  of a,~, say, 

will be regular  a t  a 8 . . . .  , a~- l ,  and its only singulari t ies will be a~ and a2. 
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5. Let us now divide the n singularities into three groups of respectively 

p, q - - p ,  n - - q  elements ( o < / 9 < q  <n) ,  and number the singularities of the 

integrand so that  a t , . . . , a p  shall compose the first group, a i d + l , . . . ,  a~ the 

second group, and a q ~ l , . . . ,  a,, the third. Let P, (2, N be closed curves such 

that  a l , . . . ,  ap lie inside P but outside (2 and N, that  al~.i . . . .  , aq lie inside 

(2 but outside P and N, and a q + l , . . . ,  a,~ inside N but outside P and (d. The 

double loop ( P §  (2 + ; P - - ;  (2--) which is supposed to lie entirely outside N 

will be denoted by (a~ . . . . .  al, +;  at~+~, . . . ,  a~ +; a~, . . . ,  up--; ap§ . . . .  , aq--) 

where the semicolons separate different groups, the commas different elements 

of the same group. All singularities not mentioned in the symbol of the double 

circuit are supposed to lie outside the contour. The particular case p-= I cor- 

responds to the more general double circuits studied (but not applied to the 

present problem) by Poehhammer (I89o). 

The foregoing representation of our contour is not yet symmetrical and 

does not ~dequately reflect the intrinsic properties of tiffs type of double circuit. 

By a deformation of the contour by "pulling it over infinity" (which it will be 

remembered is a regular point of the integrand) it can be seen that the double 

loop slung round P and (2 is essentially equivalent to the double loop slung 

round P ~nd fl, or to the double loop slung round Q and ft. Following Felix 

Klein (I933 p. 66 et seq.) we obtain a more symmetrical intrinsic representation 

of our contour if we "pull across infinity" only one of the loops. The result is 

a trefoil loop which encircles P in the positive direction, intersects itself, en- 

circles Q in the positive direction, intersects itself again, encircles / /  in the 

positive direction, intersects itself a last time and then returns to its beginning. 

I t  is easy to see that  this contour which we shall call a trefoil or triple loop is 

closed on the Riemann surface of the integrand, is invariant against deforma- 

tion of the contour and against bilinear transformations of the variable of in- 

tegration, and that  it is equivalent to the former double circuit. The trefoil 

loop will be denoted by ( P + ;  (2 + ; R  +) or ( a ~ , . . . , a p + ;  ap+~ . . . . .  a q + ;  

a q + l , . . . ,  a,~ +). This trefoil loop should carefully 

simple circuit enclosing P, (2, and R in the positive 

simple circuit in our notation is (P, (2, ]~ +) or (al, 

taken along this simple circuit vanishes by virtue of 

be distinguished from the 

direction: the symbol of the 

�9 . . ,  a,~ +), and the integral 

Cauchy's theorem, since the 

integrand is regular everywhere outside the contour (including infinity). 

The properties of the integral (8) taken along such a trefoil loop are easily 

understood. When one of the singularities encircles another singularity con- 
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rained in the same loop of the trefoil as the first one, the value of the integral 

does not change at all: the integral regarded as function of a~ is regular at 

a2, . . . ,  Ctp. When a whole group of singularities encircles another whole group, 

the integral will return to its original value multiplied by a constant factor. 

This is of importance when p (or q--29, or n - - q )  is equal to unity, for then, 

regarding the integral as function of a~ (or az, or a,~ respectively), we see that  

it acquires only a constant factor when a~ (or aq, or a~) encircles one of the 

two groups contained in the two other loops of the trefoil loop. Lastly, when 

one group encircles both the other groups, the integral does not change its value. 

Beside the triple loops there are also quadruple, quintuple, etc. loops with 

corresponding properties of the functions represented by integrals along such 

loops. There are reasons for believing that  the more complicated types of mul- 

tiple loops are of very little importance for the integration of linear differential 

equations. Such a conclusion is strongly suggested by the observation that  with 

suitable restrictions on the mutual position of the singularities, and using con- 

vergent power series expansions of the integrand, the evaluation of (8) along a 

trefoil loop can always be reduced to the evaluation of Euler integrals of the 

first kind, but such reduction is not possible in case of quadruple and more 

complicated loops. 

6. At first it may seem strange that  the only trefoil loops applied in the 

past to the integration of differential equations are those for which two of the 

three numbers j~, q - - p ,  n - - q  are equal to unity - -  and this in spite of the 

fact that  the foregoing considerations are not essentially new. The situation 

may be clarified to a certain extent by specific consideration of the cases of 

low n. I t  then transpires that  n-----5 (the case of the system of F~) is the first 

case in which the more general trefoil loop gives any results not obtainable by 

simple Jordan-Pochhammer double circuits, and we at once understand that  

taking as a model the well known case ~ = 4 (the case of the classical hyper- 

geometric function) significant solutions of the more c o m p l i c a t e d  equations could 

be overlooked. 

In the hierarchy of Eulerian integrals in the general sense of Klein (I933 

p. 87) the lowest case is n ~ 2, for there must be at  last two branch points. 

A bilinear transformation throws these branch points to o and c~, and the inte- 

gral becomes 

f u - ' l d u .  
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No t refoi l  loop is possible, and hence a Pochhammer  double circuit  slung around 

the two singularit ies gives always a vanishing in tegral  (as is well known). 

In  the case n = 3, a bil inear t rans format ion  carries the singulari t ies  to 

o, I, c ~  and we have the canonical  form 

f U--Y(U --  I) ?-a-1 tll~. 

There  is essentially only one t refoi l  loop, for  the canonical  form it  is (o + 

I + ;  c~ +),  it  is equivalent  to a double circuit  ( o + ;  ~ + ;  o - - ;  I - - ) ,  and leads 

to the Euier  in tegra l  of the first kind. 

Next ,  in the case of four  singularit ies,  n = 4, three  of the singulari t ies  may 

be assumed to be at  o, I, co and we have the canonical  form 

f u,~- ' : ( .  - , ) ,  . . . .  ~ (u - x ) -~  du, 

t ha t  is integrals  of the hypergeometr ic  type. :In this ease too there  is only one 

kind of t refoi l  loop, con ta in ing  respectively I, I, and 2 singulari t ies wi thin  its 

three loops. I t  is equivalent  to a P o e h h a m m e r  double circui t  encircl ing only two 

of the  

case, giving the six well-known branches  of Riemann ' s  P-funct ion.  

The fac t  t ha t  in the two best  known eases n ~ 3  and n = 4  we have to 

consider  only double circuits slung round  two Singularities, or contours  equivalent  

to such double circuits, seems to have lead to the  view (never expressed but  

taci t ly  under ly ing  all previous work on the system of /~'~)that in every case 

such simple double circuits would give all solutions of fundamen ta l  importance.  

Yet ,  a lready the nex t  case, n ~ 5, shows tha t  this view is untenable.  

7. In  the case n = 5 we obtain a canonical  form by throwing  three of the 

singulari t ies  to o, I and c~ by a bil inear t r ans format ion  of u. The canonical  

form is 

f u~+~'-~ (~ - ~)~-~-~ (~ - ~)-,~ t~ - y)-~ '  d~. (7) 

I, and There  are now two essentially different  types of trefoil  loops: one has t, 

3 the  o ther  I, 2, and 2 singulari t ies respectively within its three  loops. 

There  are ( 5 2 ) - - i o d i f f e r e n t t r e f o i l l o o p s  of the t y p e I ,  I , 3 .  E a c h o f t h e s e  

ten t refoi l  loops is equivalent  to a double  circui t  encircl ing two singulari t ies  
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only. For suitable values of the parameters ~, ~, f 7 each double loop in its 

turn is equivalent to an open path joining two singularities. Thus the ten 

I, I, 3 type trefoils give the ten solutions whose sixty expansions constitute tile 

table of Le Vavasseur and Appel! and Kamp5 de F6riet. 

There are also trefoil loops of the type i, 2, 2, that  is trefoil loops whose 

three loops encircle respectively I, 2 and 2 singularities. Each trefoil loop of 

this type is equivalent to a double circuit whose one loop encircles one sin- 

gularity only, while the other loop encircles two singularities. With suitable 

values of the parameters each of these double circuits is in its turn equivalent 

to a simple loop which begins and ends at one and the same singularity and 

encircles two other singularities. Among the 5 . ( 4 )  simple loops obtainable in 

this way there are always equivalent pairs, for instance the loop beginning and end- 

ing at o and encircling I and c~ is equivalent to the loop beginning and ending at 

o and encircling x and y. So we obtain � 8 9  distinct new solutions. 

From the character ut the branch points of these solutions it is easy to see that  

they are not identical with any of the old solutions (thongh either set can be 

expressed as linear combinations of solutions of the other set) and it remains to 

discover the nature of these solutions. The discussion of the properties of these 

solutions will show that  they are as significant as the well-known solutions 

(3), and it will transpire that  they are precisely the 15 solutions whose 6o con- 

vergent expansions are of the form (4). 

The System of F1 and Equivalent Systems. 

8. The results of the above considerations will now be applied to the inte- 

gration of the system of partial differential equations associated with F~, that  

is to the system (I). In doing so exceptional values of the parameters giving 

rise to logarithmic solutions will tacitly be excluded. Results for these excep- 

tional cases and for the logarithmic solutions which they involve can be obtained 

by simple limiting processes carried out in the formulae to be derived for the 

general case. 

Except in section I4, we shall write throughout a, b, c for any permutation 

of o, I, eo so that  for instance (a, b) stands for any of the six points (o, I), 

(o, c~), (I, o), (I, c~), (cx~, o) or (0% I). In using this generic notation, by which 
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we shall  gain much in brevity,  we make the convent ion t h a t  general  s ta tements  

must  receive appropr ia te  (and in every case easily obtainable) in te rpre ta t ion  when 

the symbol involved represents  co. We shall say, for  instance,  t ha t  a cer ta in  

solution z remains unchanged  when x encircles a and mean tha t  this is t rue  of 

z itself if a ~ - o  or a =  I, but  t rue of x~z if a = c o .  The addi t ional  fac tor  x~ 

arises f rom (7) w h e n ' t h i s  in tegra l  is re-wri t ten in such a fashion as to make 

I 
- appear  as variable instead of x A similar convent ion  holds for  b, the appro- 

pr ia te  fac tor  in this case being S ' .  The convent ion is very similar to the one 

by which s ta tements  such as "is analyt ic  at infini ty" are in te rpre ted  in complex 

funct ion  theory,  and has a similar purpose. 

9, F i rs t  we have to discuss the singulari t ies  of our system (I). This system 

of par t ia l  differential  equat ions has seven si~gular rna~iJolds or si~gula~" cmn'es, 
viz. x----o, x =  I, x-----co, y----o, y - ~ I ,  y----co, and x-----y. The singular  curves 

can e i ther  be derived f rom the par t ia l  differential  equat ions themselves in the 

well-known manner,  or obta ined f rom the in tegra l  (7). ]n  the la t ter  case they 

emerge as the condit ions for the coincidence of two singularit ies of the integrand.  

The seven singular curves produce by the i r  various intersect ions two types of 

si~gular points. 
There  are six singular  points represented  by x ---- a, y ---- b where (a, b) stands 

for  (o, I), (O, OO), (I, O), (I, OO), (OO, O) or (oo, I), Ea, ch of these six s ingular  

points is the intersect ion of two singular  curves, x----a and y = b, and belongs 

to the  simplest t y p e  of s ingular  points of systems of par t ia l  differential  

equations. 

There  are also t h r e e  s ingular  points x :  a, y-----a tha t  is to say (o, o), (I, I) 

or (co, co), and these are of a more complex type. At  each of the singular  

points (a, a) three s ingular  curves intersect ,  viz. x - ~  a, y = a and x ~ - y .  For  

this reason i t  is impossible to expand the general  solution of ( l ) i n  power series 

convergent  in the ent ire  four-dimensional  ne ighbourhood  of (a, a). Instead,  we 

shall cons t ruc t  fundamen ta l  systems of solutions valied in hypercones whose 

ver tex is at  (a, a), whose "ax is"  is one of the s ingular  curves th rough  (a, a) 

(these s ingular  curves are, of course, two-dimensional  manifolds in the four- 

dimensional  space of the two complex variables), and which extends unto  another  

s ingular  curve. For  every singular  point  (a, a) there  will be three  such hyper-  

cones and hence three  different  fundamenta l  systems. Between t h e m  the three  
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systems describe the behaviour of the general  solution in the neighbourhood of 

(a, a) completely. 

In  order to have a short  nota t ion  for the solutions of (i), we shall denote 

by [P; Q; N] the integral  (7) taken along the contour (P + ;  Q + ;  N + ) a n d  

multiplied by a suitable constant.  Now, the triple loop can be replaced by a 

double circuit  encirling any two of the three groups P, Q, N and accordingly 

we shall denote the solution [P; Q; N] more briefly, if  less symmetrical ly,  by 

[Q; N], IN; P] or [P; Q], disregarding any constant  factors. Ins tead of [P; Q] 

for instance we shall also write [ a l , . . . ,  av; a v + l , . . . ,  a~]. 

10. In  the neighbourhood of an intersection (a, b) of two singular manifolds 

there is firstly one solution, [c; a, x] = [c; b, y] which is manifest ly  regular at  

x : a, y : b. Like all the following s ta tements  about the behaviour of solutions, 

this  follows immediately from the general  properties of Eulerian integrals as 

developed in the earlier sections of this paper, and is to be interpreted appro- 

priately (cf section 8) if a or b is c~. A second solution for the neighbourhood 

of (a, b) is [a; x] which is regular at  y - - b  and has a multiplicative branch- 

manifold at  x - ~  a; and a th i rd  solution is [b; y] which is regular at  x = a and 

has a multiplicative branch-manifold at y = b. The behaviour of these three 

solutions at  the s ingular  curves shows tha t  the solutions are linearly independent  

and thus they form a fundamenta l  system for the neighbourhood of (a, b). 

Clearly each of the three solutions can be expanded in powers of x - - a  and 

y - - b  (in powers of [ if a = ~  and in powers of [ if b = c ~ ) .  
x y 

The si tuat ion is different with regard to a neighbourhood of an intersection 

of three singular  manifolds x = y - =  a. There is one solution, [b; c], which is 

regular  at  (a, a) and in the entire neighbourhood of this singular point, but 

there is no other solution valid in the entire neighbourhood of (a, a). 

In  order to obtain two more solutions in this case let us fix our a t tent ion 

to the neighbourhood of (a, a) "near"  x = a, i. e. let us assume tha t  both I x - -  a] 

and ] y - - a ]  are small, and I x - - a ]  < ] y - - a  I. Then we have the solution 

In; x] which has a multiplicative branch-manifold at  x ~- a, and remains  unal tered 

when y encircles both a ann x. Of course, [a; x] andergoes a more involved 

t ransformat ion  when y encircles a only or x only, but  this cannot  happen as 

long as (x, y) remains in the hypercone Ix --  a I < lY --  a ] of the four-dimensional 

neighbourhood of (a, a). We have also the solution [y; a, x] which is regular  at  
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x-- :  a and is merely mult ipl ied by a constant  factor  when y encircles both a 

and x. By a similar a rgument  as before, [b; c], [a; x] and [y; a, x] const i tute  a 

fundamenta l  system of solutions for the ne ighbourhood of (a, a) in the  hyper- 

c o n e  l x - a l < l y - a l .  
In  the  hypercone I x - -  al  > l Y- -  a l ,  or "near"  y = a, the corresponding 

fundamenta l  system is [b; el, [a; y] and Ix; a, y]. Finally,  "near"  x - -  y : o, i. e. 

when I x - -  Y l < I x -  a[ and I x - -  Y l < l Y -- a! we have the fundamenta l  system 

[b; c], Ix; y] and [a; x, y] which undergoes simple t ransformat ions  when x and 

y encircle each other  or when both of them encircle a. 

l l .  I t  is now possible to see the fundamenta l  importance of the new type 

of double circuits. Take for instance the vicinity of (a, b). Using only simple 

double circuits (or the equivalent  open paths  joining two of the  singularities) 

the solutions [a; x] and [b; y] are readily obtained,  two of the solutions regis- 

tered by previous writers. However ,  the simplest  solution of all, which is one- 

valued in the ne ighbourhood  of the singular point  (a, b) and regular  at  tha t  

point, i .e.  [c; a, x] = [c; b, y] ---- [a, x; b, y], cannot  be obtained at  all f rom simple 

double circuits, and consequent ly  does not  appear  in the Le Yavasseur  table of 

solutions. I f  we take  for  instance the point  (o, oo), we find in the table (Appell 

and Kamp6 de F6riet,  1926, p. 62 et seq . )only  two dis t inct  solutions, z4 = z10~+4 

and z9 ~ Zion+9 (n ~ I, 2, . . . ,  5) convergent  for  small x and large y. The third 

solution, (6), was discovered by Borng~tsser (1932) who used different methods  

( integration of the differential equat ion by power series). 

In  any of the hypercones in the ne ighbourhood  of (a, a) there  are again 

two solutions which can be represented by simple double circuits or equivalent  

open paths;  these solutions are accordingly known. But  as far  as I know nobody 

succeeded as yet  in finding the third solution for this case explicitly, for the 

integrat ion of systems of part ial  

difficult in the ne ighbourhood of 

for instance the ne ighbourhood 

differential equations by power series becomes 

an intersect ion of three singular curves. Take 

of (o, o) "near"  x-----o, or more precisely the 

domain ]xl  < l  U I <  I .  W e  find in the table two solutions, z 1 and zl,, but  the 

third solution does not  appear in the l i terature  known to me. 

From these considerations it is seen tha t  the employment  of triple loops of 

all possible types (or of equivalent  double circuits of all possible t y p e s ) i s  

essential  for the success of in tegra t ing a system of partial  differential equations 
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by contour integrals: at the same time it seems that  quadruple and yet higher 

loops can safely by left aside. 

12. A point of great interest in the analytic theory of systems of partial 

differential equations is the transformation theory of the solutions, and contour 

integral representations of the solutions are notoriously the best tool for develop- 

ing such a transformation theory. The transformations of the solutions of the 

form (3) have been discussed in detail by Le Vavasseur (see also Appell and 

Kamp6 de F6riet, 192(5 , pp. 65--68). A complete transformation theory will 

embrace all 25 solutions which occur in our 15 fundamental  systems. The best 

plan is to express all 25 solutions in terms of 3 arbitrarily chosen linearly in- 

dependent solutions, and to collect the results in a matrix equation which 

represents the 25 X I column matrix of the 25 solutions as the product of a 

25 X 3 transformation matrix with the 3 X I column matrix of the selected set 

of three linearly independent solutions. From this the expression of any of the 

I5 fundamental  systems in terms of any of the remMning I4 systems can be 

derived by the elementary rules of matrix algebra. 

I do not propose to give here a detailed theory of the 25 solutions; only a 

few of the more important  properties of the two types of solutions will be 

enumerated in the following paragraphs. 

13. We consider those solutions of (~) which are expressed by integrals 

along a simple double circuit or, in case of suitable values of the parameters, 

along corresponding open paths. These are the ten solutions of Picard (188I) 

and Goursat (1882). A typical one is 

oo  

/~()t) ;?~ t~+fl ' -7(u-  I) 7-a-1 (U--  X)--~(U-- ~)--f  d .  F,(~, ~, 3', 7; z, v )=  r(~)r ( z -  ~). 
1 

valid if ~l (a) > o, 9l (7 --  a) > o, I arg (I - -  Z ) ]  < J~, I a r o '  ( I  - -  ?]) I <" g "  The obser- 

V 
vation that  the substitutions u - -  , u = x + ( I - - X )  v, u = y + ( I I y )  v, 

V - -  I 

t , - -cc  v - -  y 
u -- , u -  result in integrals of the same type leads to the expression 

V - - I  V- - - I  

of each of the solutions in six different ways in terms of F 1. The transforma- 

tion theory of these solutions was given by Le Vavasseur. 
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Beside the six expansions in terms of F~, there are other expansions in 

terms of hypergeometric series other than F1. The following four will be 

needed later. 

The expansion of (u - -x ) - :  3 in powers of x, and of 

U-- I y }--~' (U-- y)-'~' = (I -- y)--~' ?'--~' I 
u y - - x  

in powers of Y , and the expansions y - - I  

terchanged lead to (Appell and Kamp6 

and (29')) 

in which the role of x and y are in- 

de F6riet, I926 , p. 24 equations (29 

f f  l (a, fl,~',7; x ,y)  -~ (I - -  y)-~' ~,~'3 (a, 7 - -  a,t~,~',7; x, ~ d ~ )  

) 7; x _  I ,Y 

where _~'~ is Appell's series 

= (~ - x ) - : G  (~ - - , - ,  ~, F', 

, (~),~ (~'),~ (Z)~, (Z')n o, y~,. 

(9) 

(io) 

Again, the expansion of ( u - - x ) - :  in powers of x, and of 

(X u - -  ~J Yl -(3'] = U--fl' {I -- (I -- ~) 37~--fl'~ 

2C 
in powers of x and I - - -  lead to the first of the two transformations (Appell 

Y 

and Kamp6 de F6riet, I926 , p. 35 (9)) 

G (~, ~, ~', 7; ~, y) = (~ ) : '  F_. (~, + ~' ,a ,~' ,~ ,  ~ + ~';~,  ~ -  ~ )  
( i i )  

in which F~ is Appell's series 

, , (.)~+.(~)m (~')~ ,~ 

Next we expand 
11- 642136 A cta mathematica. 63 

(I2) 
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in powers o f .  y and x - - ~ J  

the two t ransformat ions  

then ( u - - x ) - ~  ~+'~ in powers of x to obtain the first of 

H,, n 
oe..l 

( , &) 
in which H 2 is Horn ' s  series (Horn, I93~, p. 383) 

..... 

Last ly,  put  u - -  x + (x - -  x ) v ,  expand 

I - - . ~ ]  X - -  I I - - . Z '  

( I3)  

(i4) 

X )~-] , -n  X 
in powers of Y and then v in powers of to obtain the 

I - - 3 g  X - - I  X - - I  

t ransformat ion  

There is ~ corresponding t ransformat ion  obtained by in terchanging x and y, and 

a t  the same t ime fl and fl'. 

14. Turning now to integrals taken along a double-loop involving three 

singularit ies of the integrand,  we shall depart  f rom the notat ion of section 8 

and  shall denote b y  a, b, c, d, e, any permutat ion of the five singularit ies of the 

in tegrand  of (7), t h a t  is any permutat ion of o, I, x, !1, c~. The typical solution 

is [a; b, c] -= [a; d, el, and there are obviously I5 solutions of this type. 

In  oder to reduce solutions of this type to convergent  infinite series, we 

remark  tha t  there is no loss of general i ty in assuming tha t  the real part  of the 

exponent  of u - - a  in (7) exceeds - - i  (or t ha t  the real part of the exponent of 

I 
- exceeds i if  a happens to be oo); and under this assumption the double cir- 
2t 
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euit  may be replaced by a single loop, so tha t  apar t  f rom a constant  factor  the 

solution is 
(tJ, c+ ) 

f , , : + , " - ,  ( , , . -  1 ) , - o - ,  (,,, - x ) - , '  (,, - v) -a '  d,, (16) 
a 

where the contour  of in tegra t ion  is a loop s tar t ing  at a, encircling b and c in 

positive direction and re turning to a so tha t  d and e are outside the loop. Al- 

ternatively,  the solution may be represented by an integral  extended over the 

loop a . . .  (d, e + ) . . .  a with a slightly different constant  factor. 

By a l inear t ransformat ion  of u we throw a to ~ I, one of the singularit ies 

inside the loop, say b, to o and one of the singulari t ies outside the loop, say d, 

to oo. The linear t ransformat ion effecting this is 

With  the notat ion 

u - - b a - - d  
V 7 ~ .  - -  

u - - d a - -  b 

e - - b  a - - d  e - -  d a - -  b 
t r - -  

t - -  c - - d a - - b  e - - b a - - d  

(I6) reduces to a eonstanta multiple of 

(o, t+) 
x ~ (, - x). o , f ( ~  - v). o' (x - y)o f r + , ' - '  (t, + ~) -~ ' -"  (~, - t)-~- (,  - t '  ~)-,~ d .  

--I 

where ,~, ,u, t~', r, z, e, z', e' depend on or, fl, fl', 7, and t and t' are rat ional  func- 

tions of x and y. I t  remains to show tha t  this is of the form (4). 

I f  I t [ <  I and I t ' [ <  I we may take the uni t  circle l t ' [ = I  as the contour 

of integrat ion.  The  expansions 

(v - - t )  -;' = v- ;  ~ (z)''~' and ( I -  t'v)-," = ~,  (t'v)" g/l [ 

are uniformly convergent along the contour so tha t  term-by-term integrat ion is 

permissible and gives for the integral  

(o~) 

m! n! 
--1 

NOW, 
(0+) 

I f V,~d_,n+n_l ( v + l ) _ , d _ , , d v  = 
2 z i  

--1 
r ( ~  - d + m - , ) / ' ( ~  - ~ - m  + ~) 
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and this is 

so tha t  finally 

I ' ( I  - -  ~t' - -  V) 
r (, #') r (, - ~) (~ ) ' -  ~ (~)~-''' 

(o, i+) 

f V ) '+ 'a ' - I  (~' "~- I) - # ' - v  (U - -  t) -)" (I - -  t t V) -tt d~ 

__ 2 z r i F ( l  - - # ' - - v )  
- -  r ( i  - -  # ' )  F ( I  - -  ~) GO (~'' # '  # '  y;  t, t ') 

and the solutions under  considerat ion are of the form (4). 

15. The last  integral  is equivalent  with the integral  representat ion 

a~(~, . ' ,  ~,~'; ~,.~) = 
(0, .~.+) 

/ ( : )  F ( I - - f l ) F ( I - - f l ' )  U/~-I(u + I)-:-fl '  I - -  ~ ( 1 - - y u ) - ~ ' d u  
2 z c i C  (I - -  ~ - -  ~') 

--1 

(~7) 

f rom which certain t ransformat ions  of G~ follow readily. 

Fi rs t  put  u = x +  (x + I)V in (I7) to obtain an integral  of the same type 

and f rom it the t ransformat ion  

G2(~,cr fl, ' ( , , - - x  i + x  t "X, y) ~--- (I -~- X)-fl '  (I - -  Xy) -a' G,2 I - - . - - ~ ,  {z, ~, ~ ; x ~ I I '  y I - -~y]"  ( I8 )  

Similarly, the subst i tu t ion u - -  
v y + y + i  

G~(~, ~', ~, ~'; ~, y ) =  (1 + y ) - ~ ( i - - x y ) - o  G~(~, 

leads to the t ransformat ion 

, , , l + y  - - y ~  
I - - a  - - f l  ,fl, fl ; x I - - x y ' y +  I ! (,9) 

which could also be obta ined by in terchanging a, fl, x and a', fl', y in (I8); and 

the  subst i tu t ion u = ( x  + I ) v  + x ( y  + I) leads to 
y + I + y ( X  + I )V  

a~(~, ~', ~, ~'; x, y) = (~ + x)-~' (~ +u)-~ ( ~ - x y )  1 . . . .  ' • 

G~ (1--~--f l ,  i - - d - - f l ' ,  f l , / ; - - x  X 
\ 

, + y  1 +xX 
i + x '  Y ~ y ]  

(2o) 

which can also be obta ined by combining (I8) and (19). 



Hypergeometric Functions of two Variables. 149 

Thus we see tha~ every integral  (I6) can be expressed in four  different ways 

in the form (4). There are fifteen dis t inct  integrals of the type (16) and hence 

sixty different series (4). I t  is quite clear tha t  the number  of series of the form 

(4) which are solutions of (I) must  be equal to the number  of series of the 

form (3) sat isfying 0), for (2) and (6) satisfy the same system of part ial  differ- 

ential  equations and thus  to every series of the form (3) we must  have one 

r r I )  
Xx(I - -  X)~~ --ff)~ G~ /~,~t , I + ~ ' - - v , Z  - - #  ; - -  t , -  ? 

sat isfying the same system of part ial  differential  equations; and the last series 

is of the form (4). 

Like in the case of F 1 there are numerous expansions of (I7) in terms of 

convergent hypergeometr ic  series other than  G~. The following two will be 

needed later.  

In  (I7) we use the expansions 

( x ) -o  x)-,~ (~).,,i x 
I - - ~ t  = ( I  q- Z m! \9~; q- I 

~t q- I ~m 
U 

and obtain 

( ' - " t ' ) -~  =(~ + u)-~ F ' ~ - .  [ ' y  + ,I 

~;.~ = (, ~ :,,)-~ (, + :,)-" Z Z  (~ (~ i x F l ~" I" 
m! n ! \x  ----;~-I! \y  ~ i I • 

and hence 

(o+) 

--1 

G(c~, 4 ,~ ,y ;x ,y)  = 

(~ + x)-o(~ + v)-~'G ( ~ - ~ - ~ ' , ~ , 4 ,  
\ X @ I  y q - I  

Combining the same expansion of ( I -  uy) -~' with 

( I - - X ) - a ~  Z ~ ( X )  m 

(2 x) 

we find in a similar manner  
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(; ~ (a, a', [3, ~'; x, y) = ( I § y)-~' H., (~', cz, a', i - - f l - -~ ' ,  I - -~;  - -  x, ~ + Y i  ) (22) 

with a corresponding t ransformat ion  when the role of x and y are interchanged.  

16. Summing  up our results regarding solutions of (I), we see tha t  there 

are exactly 25 dist inct  integrals of the type (7) extended over a triple loop or 

an equivalent contour.  Each of these 25 integrals represents a solution, the 25 

solutions suffice to construct  all fundamenta l  systems of solutions, and, con- 

versely, all the 25 are needed for this purpose. Io of the 25 solutions can be 

represented, each in 6 different ways, in the form (3); and the other  I5, each 

in 4 different ways, in the form (4): besides, there are numerous other expansions 

for each of the 25 solutions. I t  remains to compare this result  with tha t  arrived 

at  by previous writers. 

There is no need to discuss in detail  the results arrived at  by earlier 

authors: they found only the Io solutions represented by 60 series (3) and we 

know already how these solutions fit in with our present theory,  and wherein 

the older results are incomplete. I t  is necessary, however, to consider in some- 

what  greater  detai l  the invest igat ions of Professor Horn  and of his pupil Dr 

Borng~sser. We s tar t  with the latter,  the comparison of whose results with 

ours is faci l i tated by the t ransformat ions  of sections 8 to I2. We revert to the 

nota t ions  of those sections in tha t  we use a, b, c for  a permutat ion of o, z, co. 

Borng~isser (I932) a t tempts  to find power series solutions of the system of 

part ial  differential  equations associated with F~. For the neighbourhood of (a, st), 

an intersection of three singular manifolds,  he finds only one solution. This is 

in every case of the form (3) and corresponds to our fundamenta l  solution [b; c]: 

in fact  it  is the only solution in power series which is convergent in an entire 

neighbourhood of the singular point (a, a). Bornghsser 's  method gives no fur ther  

solution for such a neighbourhood. For  the neighbourhood of (a, b), which is an 

intersection of two singular manifolds, Borng/isser finds the complete  fundamenta l  

systems. Though his solutions appear in various forms, they can always be 

t ransformed into the form (3) or (4). 

Dealing with (o, oo), Borng~sser (~932, p. 31) first finds the expansion (6), 

which is our solution [I; o, x], then  

y am~__ 0 ,~m.~  - i___ ~n~l~(.~ ~ y--n 
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which is obviously 

y - ~ / ~ ;  ~ , ~ , ~  + I - - 7 , ~ +  ~ - ~ ' ; : ,  

or z, a of Le Vavasseur's table, and finally 

which is 

:,~ :~, (a + ~' + i - ~ ) , , ,  (~'),, (~ + ~ - ~ ) ,  .... ~-1- 7 xm .?l - n 

. = o  ~ .~=,~ ~ (fl' + 2 - -  7),,~ "!  (.,n - -  ~,)! ' 

151 

and 

which in their  turn  can be t ransformed by means of (I I )  into 

x-fl/lfl+l-~,,I~'l(~+$' + i - - 7 ,  t~ ,a+ i - -  y, 2 +b~--^,  ! / ) j ;x ,y  

I - - X  (1-.)~ . . . .  '~(~-:~)-"'~; ~ - ~ , ; , - ~ - 8 ' , a ' , r - ~ - ~ +  1;i-z,~--~Sj!  

and are thus  seen to be identical  with z15 and z~6 of the table, and to be ex- 

pansions of our [o; y] and [I; x], showing tha t  in this case too Bornggsser 's 

fundamenta l  system is identical  with ours. 

Lastly,  for the neighbourhood of (I, oo) Borngiisser has the series 

( ,  y- ,~ '  I t~  ~ - ~ , ~, fl , fl + ~' + ~ - ),, a + fl + ~ - ), ; i - : < -  

. .y-~" ~ +  + i 7, a +  I 7, f l ' , f l ' + 2 - - 7 ; x ,  

or z~4 of the table: the two last  solutions are both of the form (3) and are ex- 

pansions of our [y; oo I and [o; x] respectively. 

For  the neighbourhood of (I, o) Borngiisser (p. 41) finds the series 

which can be ~ransformed by means of (21) into 

( %) 
or [oo; o, y]; and the two series 

and 
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which can be transformed by means of (22) into 

y - - I  

an expansion of [o; I, x], and the two series 

, ~0  ~ (Z),~ (~),, (~ + Z + i - r)~, (x - i) r~ y - ~  

and 

( 
which can be transformed by means of (I5) and (I3) into respectively 

and 

a:~-~'( I --x)Y-a-'~(Y--I)-{~'-F~(7--a, I - -a ,  [~',7 + I-~ a - - ~  x - -  I x - -  I y ) 
X ~ 3? ~f - - I '  

or z.~9 and z~6 of the tableau, and are expansions of [c~; y] and [I; x]. 

In every case the series found by Borng~isser are expansions of the solutions 

of the fundamental  systems of section Io. 

17. The comparison with Horn's results is somewhat more difficult. Horn, 

who deals with the more involved problem of the neighbourhood of an inter- 

section (a, a) of three singular manifolds, proves the existence of the fundamen- 

tal system of solutions, derives certain results regarding the form of series 

representing these solutions, but does not obtain explicit formulae. He puts 

x ---- t cos q~, y ~- t sin q~, finds the ordinary differential equations satisfied by z as 

a function of t (a differential equation, incide~itally, very nearly related to Poch- 

hammer's differential equation for hypergeometric functions of order three), and 

discusses the behaviour of the solution of this ordinary differential equation in 

the neighbourhood of the singularities t ~ o, t ~-oo. 

In his earlier paper Horn (~935) obtained series which represent the solutions 

asymptotically as t-> co. In his later paper (I938) there is a more thorough 

investigation of all three intersections of three singular manifolds. The series 

which have been proved to represent the solutions asymptotically turn out to be 

convergent series (in fact they are equivalent to our series)and to represent 
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the solutions in their  domain of convergence. I t  is clearly sufficient to discuss 

the result of the later paper, and since all three singulari t ies (a, a) are of the 

same character,  it will be sufficient to deal with one of them, say (o, o) or t ~ o. 

For  this s ingular  point ]-Iorn (i938 , p. 45o) first finds the well-known solution 

(2) which is our [I; c~], and then  proves the existence of two more solutions of 

the form z = t - ' / ~  z~t n where the z~ are funct ions of ~v. 

In  order to find explicit representat ions of Horn 's  solutions ~ z~,t~-~, let 

us assume for the moment  tha t  we are "near"  x ~  o, i.e. t ha t  I tanq~l < I. 

Then we have the solutions [o; x I and [y; o, x] of section Io which are, apart  

from constant  factors and under  suitable assumptions about  the parameters,  

and 

9; 

( ,  - , 4 " , - = - '  (y - 
o 

(0, :~-+ ) 
f ./3q-iq'-},(i __ . ) , - - a - l ( .  __X)-77 (,t__ y)--/J' df#. 
g 

We put  x - ~ t  cos ~, y ~ t  sin q9 and u = t v  cos q~ in the first integral,  u =  

- - t v  sin ~ in the second, whereupon both are easily seen to be of the form 

~_~zn(~)t~-'l. Similarly, [o; y] and Ix; o, y], and also Ix; y] and [o; x, y] have 

expansions of the form ~ z~(~)t'~-~ ', but  the coefficients z~(q~) will be different 

for each of the three pairs of solutions, tha t  is in each of the three hypercones 

which have their  (common) vertex at  the singular  point, and their  axis at  one 

of the singular manifolds passing th rough  this singular point. 

This change of the z,~((p) from one hypercone to another  is la tent  in Horn>s 

analysis. He writes 

z,~ =- P0f,~ + q0 g~ 

where f~ and g~ are homogeneous polynomials of degree n in cos q~ and sin 

and are determined by recurrence relations, while Po and q0 satisfy a system of 

two ordinary differential equations in which q~ is the independent  variable. From 

our point of view the sequence of the funct ions z ,(~)  appears as a system of 

contiguous hypergeometr ic  funct ions of tan ~, and the n t h  member of the 

sequence can be expressed in terms of the first two members with coefficients 

which are homogeneous polynomials in cos ~ and sin ~. The system of two 

ordinary differential equations satisfied by Po and qo is a hypergeometr ic  system 
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and has the singularities tan 99~-o, I,C~ or 9 = n ~ ,  (n + �88 n,(u + �89 re (it is 

an integer) corresponding to y ~ o, .;v ~ V, x - ~  o, respectively. Our three sets 

of solutions correspond to the fundamental systems in the neighbonrheod of 

respectively ~an 99 = o ("near" y = o), tan 99 ~ I ("near" s =  y), and tan ~ = co 

("near" x = o). When passing from one hypercone to another, we pass from 

the neighbourhood of one singularity in 9 to the neighbourhood of another, 

and hence from one fundamental system (/90, qo) to another. 

The comparison thus shows that the representation by definite integrals 

leads more directly to explicit formulae and indicates the structure of the solu- 

tions more clearly, 

18. In yet another respect the solution of differential equations by definite 

integrals is of great advantage: it discovers and elucidates connections between 

various systems of differential equations. Compare, for instance, (7) and (I7) , 

and for the sake of comparison replace u by - -u  in the latter. (7) represents 

the general solution of the system of linear partial differential equations associ- 

ated with F1, and (I7), with an arbitrary contour of integration and an arbitrary 

constant factor, the general solution of the system of linear partial differential 

equations associated with G+. Now, (7) and (I7) are indentical, except for the 

notation, and this suggests at once the equivalence of the system of l~  with 

the system of G,_,. 

Moreover, the comparison of (7) with (17) suggests a transformation which 

will transform (I) into the system of G2. I t  is 

A:=,8, A ' = ~ ' , B  ~ ' - - 7 +  I , B ' =  --  I ~' ,  X x ,  Y =  " ' ( 2 3 )  . . . . .  , Z - -  y~  z ,  
Y 

and it changes (I) into 

X(I  + X ) R - -  Y(I + X ) S +  { I - - B + ( A  + B ' ~ -  I ) X } P - - A  Y Q + A B ' Z ~ - o  

(24) 
- -  X(~  + Y ) S +  Y ( I  + Y)  T - - A '  X P  + {~ - - B '  + (A' + B + i) Y} Q+ A'BZ--=o, 

O Z  
where the symbols P = 3 X etc. have the obvious meanings. Now, (24) is exactly 

the system of G z ( A , A ' , B , B ' ;  X, Y) as given by Horn (193I , p. 405) except that  

B and B'  are interchanged, thus correcting a misprint in Horn's  paper. (23) is, 

of course, not the only transformation of (I) into (24). Counting also the inter- 

changing of fl, x with fl', y, there are in point of fact 12o transformations of 
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(I) into (24), corresponding to the I2o transformations of (I) into a similar system 

and an equal number of transformations of (24) into a system of the same form. 

Horn (I93I, p. 39 I) at tempted the integration of (24) and found two series 

which are obviously of the form (3), but failed to draw any conclusions from 

his result. Borngiisser (I932, pp. 32, 33) found four solutions of the form (3) 

and remarks that his results indicate a certain connection between /~'~ and G~. 

The conjectured connection exists, of course, and follows immediately from our 

integrals, for relai~ions like 

[o; ,, x] = [o; ,1 + [ ,  ; + [o; x] 

express G2 as a linear combination of three functions F 1. Instead of the connec- 

tion between F~ and G2 it is more fruitful to consider the relationship between 

the systems of partial differential equations assoeiated with these functions, and 

we have seen that  our integrals suggest, and the substitution (23) verifies in an 

elementary manner, complete equivalence, not only a certain eonncetion. The 

theory of (I) settles finally and completely the integration of (24) too. 

Our results indicate also connections between (I) and certain particular eases 

of the systems of partial differential equations satisfied respectively by F2, F3 

and H2. The connection between the systems of F~ and T�89 is well known 

(Appell and Kamp6 de F~riet, I926 , w XVII),  and the systems of F~ and H~ are 

known to be equivalent to that  of I~ (ibid. w X I I I  and Borngiisser, 1932 , 

PP- 33 and 34). 
Furthermore, there are several hypergeometrie systems of partial differential 

equations the integration of which can be reduced to the integration of particular 

eases of (~), that  is to (~) with particular values of the parameters. In the rest 

of this paper these systems are enumerated and reduced to (I). The results are 

mostly new and the ease with which they follow is another indication of the 

power of our method, and of its appositeness in this problem. 

The System of G1. 

19. Horn's series (I93I, p. 383) 

, ;:C m :l /~ 

satisfies the system of partial differential equations (Borng~sser, I93I, p. 47) 

(25) 
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Ll[z]=--x(x+ I)r-- ys - -y"  t + { ( a + f l ' +  I ) x +  I - - f l }p+( f l ' - -~ - - I )yq+af  z=--o 
(26) 

L.~ [z]--  --x~-~ . -  xs  + y(V + ~)t + (fl--~--~)xp + I(. + # +  ~)~J+ ~--#'} q+(~flz--o. 

An integral respresenta~ion of G l is 

( ; , ( . , # ,  #'; x , y =  r ( ~  - # ) r ( ~  - ~ ' ) r ( #  + #') 
(2 J~i) ~ • 

X 'U]3--1 ( I  - -  ~)/3 '--1 I X if  d U  
U I - -  U 

6' 

where C is u double loop (o; I ) slung around u-~-o and u-= I so that [ ~ x [ + 

+ - - y  < I everywhere on C. (27) can be proved by expanding the integrand 
I - - f 6  

in powers of x and y and integrating term by term. 

The integral representation suggests the solution of the differential equations 

(26) by integrals of the form 

z =  f u~+~-l(~--u)~+2 '-l U-~du where U ~ u ( I  --u)--(I--u)~x--u~'y. (28) 

Substituting this integral in the first equation (26) we obtain 

+ ~1(~ - ~  + (~ + #" + , ) x ) ( . -  ~)~ + ( t ~ ' -  ~ - ~)u~t} v +  ~ "  U~]du 

which gives after some reduction 

~ f  ~+'3-~ (~ - ~)~ u -~ [(~ + ~) {(~* - ~)~ ~ - . : : ~ i }  + L1 

+ {#',, + (, - ~ ) ( ~  -~,)} u ] d .  

. = ~  f .~+ , , - l ( , ,  - ,)~+,' u-~-~ [(~ + , ) .  ( .  _ ~ ) ~ + o u  

+ (~ + M (~ - -) u - (~ + #' + ~) .  u ]  ~ 

du. 

Similarly, 

f o (u - u -~-'} {.o+p+~ i ) lz+ 0" du. 
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I t  is thus seen that  (28) is a solution of (26) whenever the integration is taken 

over a closed contour (closed that  is to say on the Riemann surface of the in- 

tegrand) or else over a contour equivalent to such a closed contour. 

20. The integral (28) is of the type (7), thereby indicating a connexion 

between the systems of partial differential equations (26) and (I). To exhibit this 

connection more clearly, let us denote by ~ and ~7 the two roots of the quadratic 

equation U :  o in u. Clearly, 

I + 2 x  + ( i - - 4 x y )  ~ i + 2 x - - ( I  - - 4 x y )  �89 
~ =  2(~ + x + y) ' ~ =  2(~ + x + y) 

where the square root is defined uniquely for instance by the convention that  

it reduces to unity when x y - ~  o, and that  it is a continuous function of x y .  

We now have 
u = - (~ + x + y) (u - ~) (u - 7) 

and hence (28) changes into 

l -  (~ + x + y )}o~  = f uo+~ -1 (u - ~)~§ (u - ~)-o  (~ - ~ ) - o  d u .  

This is, except for the notation, identical with (7) and gives rise to the theorem: 

I f  z is a solution of  (26) then (I + x + y):z  regarded as a func t io ,  of  ~ a . d  ~7 

satisfies the system of partial  differe~tial equations associated with 

The reduction thus effected of the integration of (26) to that  of (~) is of 

some importance. Hitherto the integration of (26)presented great difficulties 

owing to the point of contact at x ~ - y - ~ - - 1  of the two singular manifolds 

x + y  + I - ~ o  and 4 x y - - I - - - - o  of (25). This difficulty has now been removed, 

for the transformation of x and y into ~ and ~7 transforms the singular point 

-- ~ into the point ~---- ~ ---- oo where three singular manifolds ~--  co  x - - y  2 

= ~ ,  ~ ~ V intersect without having a common tangent. Thus the transforma- 

tion suggested by our contour integral dissolves the point of contact (that is 

exceptional intersection) of two singular manifolds into an ordinary intersection 

of three singular manifolds. The integration of the system (I) has been accom- 

plished in the earlier sections of this paper and in particular the fundamental 

systems belonging to the singular point (0% c~) have been discussed in section Io. 
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Another  interest ing consequence of our theorem is the t ransfor lnat ion 

G, (~,~,y" + 

I -[- 2 ~:--( I - - 4  :1: ?]) �89 
2(~ +x+y) \ 

I §  ~) 
(29) 

which arises from the following simple consideration. There is only one solution 

of (26) which is regular  at  x = y = o, viz. G1 itself. Now, x ~ y = o corresponds 

to ~ =  I , '~ -~o ,  and there is only one solution of the system of F ~ ( I - - f l - - ~ ' ,  

a , a , c ~ - - ~ +  I;~,~) regular  at  ~ =  I, r / = o  (Borngiisser, 1932 , p. 4I), viz. the 

2~'~-function on the r ight  hand side of (29) which corresponds to [oo; o, ~1] in the 

notat ion of section Io (el. also section I6). Hence the two sides of (29) are 

equal except possibly for a constant  factor  which turns out  to be uni ty  on 

pu t t ing  x = y = o. 

21. 

The Sys tem of  G~. 

Horn 's  series (I93I,  p. 383) 

(30) 

satisfies the system of part ial  differential equations (Borngiisser, 1932, p. 36) 

x ( 4 x  + I ) r - - ( 4 x  + 2 ) y s  + y~ t + {(4a' +6)~v + I - -ce}p- -2  ct'?/ q + a' (a' + I ) z - - o  

(31 ) 

x ~ r - - x ( 4 y  + 2)s + ?l(4Y + I ) t - - 2  a x p  + {(4a + 6)x + I - -a '}  q + a(ce + I ) z - - o .  

The integrat ion of this system presented hi therto considerable difficulties owing 

to the presence  of a cusp, at  x = y  = - - ~ ,  of its s ingular  manifold h ~  

27 x~p  ~" - -  I8 x y  --  4 x  --  4Y -- I = o. There is also an apparent  singular manifold 

f ~  IS x y  + 4 x + 4 y +  I = o  which intersects h = o  at  the cusp. We shall see 

t ha t  in this case as in the previous one the contour integral  method is effective 

in removing the difficulties. 

G s is represented by an integral  of the form 

where 

_-_- ( ,  _ u o-o' 

U = u ( z  - u)  - (I  - . ) S x  - u s : , / ,  

( 3 2 )  
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and in the same way as in former cases i t  can be proved tha t  (32), multiplied 

by an arbi t rary constant  and extended over any contour  closed on the Riemann 

surface of the integrand,  is a solution of (3I). Yet  this case is different from 

any of the previously discussed cases in t ha t  (32 ) does not  represent the general  

solution of (3I). In fact,  since u--=-c~ is a regular  point  of the integrand,  the 

in tegrand of (32) has only five singularities, and consequently there are only 

three l inearly independent  integrals (32), whereas (3 I) is known to possess four  

linearly independent  solutions. 

The reason for this discrepancy is of course a part icular  solution of (3 I) 

which cannot  be represented by an integral  of the form (32). I t  is not  difficult 

to trace this solution: i t  is x e y ~  where Q--~--�89 + 2a')  and a ~ -  ~-(2a + a'). 

The general solution of (3I) is a l inear combination of xe y~ and of three l inearly 

independent  integrals  of the form (32). 

The occurrence of the elementary solution x, ~ y~ of the hypergeometric sys- 

tern (3I) is ra ther  curious, and I do not  know of any case in which such solu- 

tions have been detected previously. 

22. I t  is easily seen tha t  (32 ) is of the type (7). In  fact,  let  us denote the 

roots of the cubic equation U = o  in u by ~, ~ and ~ so tha t  

U = (x --  .'t)(u --  ~)(u --  ~)(,, - -  ~). 

Wi th  this  nota t ion (32 ) may be writ ten in the form 

and if we put 

u - -  X =  Y =  ~/ , - i '  

the last  in tegral  t ransforms into 

• - ( v -  

and the integral  appearing here is clearly of the form (7) and gives rise to the 

theorem : 

I f  z is a solution ( f  (31) then there exists a constant c such that (z - -ex ,~176 �9 

�9 { ( x - - y ) ( ; - - ~ ) ( ~ - - ~ 7 ) } ~ + " ' ~ - ~ ( ;  - I)-" '  regarded as a func t ion  o f  X and Y satis- 



160 A. Erd61yi. 

.ties the system of partial d{~erential equations associated with 

v ! v 5 !  , F ~ ( I - - 5 - - 5 , ~ + 5 ,  ~ + c ~ ,  -~- I ; X ,Y) .  

Broadly speaking, this theorem reduces the in tegrat ion of the system (3I) 

to the in tegra t ion  of (~) and also indicates a certain connexion between (3~) 

and (26). The system of G.~ has in teres t ing features such as the cusp on its 

singular manifold and the presence of an apparent  singular manifold and these 

features would just i fy  a more detailed investigation of (3I). However, the purpose 

of the present  paper is merely to point  out the connexion between the system 

of G3 and wr ious  other hypergeometric  systems and a thorough study of (3 I) 

must  be left  for a fu ture  occasion. 

23. 

The  Sys tems  of  H G and H~. 

Horn ' s  series (193I, p. 383) 

(5, 7; = 

m! n! ' ' (33) 

satisfies the system of part ial  differential equations 

x ( 4 x  + I ) r - - ( 4 x  + ~)ys + y"t + {(4a-"  6 ) x + I - - f l } p - - 2 a y q + a ( a q  1 ) z = o  

--x(.y + 2)s + y(y + I ) t - - y x  p + {(fl + 7 + I)y @ I - - 5 } q  q- r = 0 .  
(34) 

The in tegrat ion of this system presented h i ther to  considerable difficulties owing 

to a point of contact  at  x = -  �88 y = -  2 of the two singular manifolds 

4 x +  I = o  and x y ~ " - - y - -  I - ~ o .  We shall see tha t  in this case too the contour  

integral  method helps to surmount  the difficulties. 

(33) has the integral  representat ion 

gG(5 ,  fl, r ; x , ] ] )  = / ' ( I  - -  5) C ( I  - -  fl) I " (5  q- f l )X 

C' 

I -- y ) -*ld t 
(35) 

Y where C is a double loop encircling t :  o and t =  I so tha t  t - -  and 
y-t-x 

t~ -  --  I + (4x + I)�89 are inside the double loop while t = --  I - - ( 4 x  + I)~isout .  
2 X  2 X  
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side of it. With t - -  y u  , (35) suggests the integral y u  + I 

f / I ) - ~  ( I  y u - -  x y" o a {t , :  = + - d u  (36) 

which in fact can be shown to satisfy (34) whenever the path of integration is 

a contour closed on the Riemann surface of the integrand or else a path derived 

from such ~ closed contour. 

As in the case of Ga, the system of partiM differential equations (34) has 

an elementary solution which does not admit of a representation by a contour 

integral (35), and the general solution of (34) is in fact a linear combination of 

x-~-~ y - ~ - ~  and of three linearly independent integrals of the form (36). 

24. Let ~ and ~ be the roots of the quadratic equation I + y u -  x y 2u ~ =  o 

in u so that  

I d- y u  - - x y 2 ' $ ~ 2  = __ 32y'~(U - -  ~ ) ( U - - V ) ,  

and (36) becomes 

= X - a - f i  y - a - 2 f i f  ua+~,- l ( . i ,  __ 1 ) -  7 {(/~ - -  ~ ) (U  - -  ~ ) } - a - ~  d u .  

Comparison of this integral with (7) leads to the result: 

F o r  any  solution z o f  (34) there ex is t s  a constant  c such that  x ~ + f l y " + 2 ~ z - - c  

regarded as a f u n c t i o n  o f  ~ and V satisfies the system o f  p a r t i a l  d i f ferent ia l  equa- 

tions associated w i t h  I ~ ( 6  + 2fl ,  a + fl, a + fl, a + 2 ~ - - 7  + I ;~ ,~) .  

This theorem reduces the integration of (34) to that of ( I )and also indicates 

a connection between the systems of H 6 and G~. 

25. The system of Horn's series (ig3 I, p. 383) 

= 
( 3 7 )  

needs no special discussion. I t  is easy to see that  one of the fundamental solu- 

tions of (34) in the neighbourhood of x = y  = o is 

+ + i ; - - x ,  xy) 

so that  the systems of Ha and H~ are equivalent. In  fact, 
12 -- 642136 Acta mathematica. 83 
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I f  z is a solution of the system associated with H 3 (a, fl, 7; x, y) then x'l-~z is a 

solution of the system assoeiated with H() (a--2 7 + 2,y--x , f l ; - -x ,  - y )  and vice 
# ~ 

v e r sa .  

Combining this result with that  of the preceding section, we ba~e the 

following result: 

For any solutio~ z of the system of partial d~O:erential equatio.l~s associated 

with H~(a, fl, 7 ;x ,y  ) there exists a constant c such that y ~ z - - c  regarded as a 

function of the roots ~ and ~ of the quadratic equation x - - y u  + y2uS= o in u 

sati,~es the system of partial d(~ferential equations associated with FI (a, a -- 7 + I, 

a - -  7 + I , a - - f l  -]- I;~,~). 

Confluent Hypergeometric Functions. 

26. All the hypergeometric series discussed so far are complete hypergeo- 

metric series of the second order in two variables, in the terminology of Appell 

and Kamp~ de F6riet (I926, Chapter IX). Beside these there are also confluent 

hypergeometric series of the second order in two variables, and it is well known 

that the confluent series are limiting cases of the complete series. Clearly, a 

full theory of the solutions of (I) contains, in nuce, the features of the solutions 

of any system of partial differential equations which is a limiting case of (I)or  

of any system which has been shown to be reducible to (i). For this reason 

we shall merely enumerate the confluent hypergeometric series which are so 

connected with (I). The solution of the systems of partial differential equations 

associated with any of these series by contour integrals should present no 

difficulties, it being understood that  the limiting procedure which leads to the 

confluent series may change the Eulerian integrals into Laplace integrals. 

Leaving apart series which reduce to elementary functions or to hypergeo- 

metric series of one variable, we find that  the seven confluent hypergeometric 

series of the second order in two variables 

~1, ~,  ~,  i~, r~, H6, H8 (38) 

introduced by Humbert  (q)) and Horn (F, H) respectively are limiting cases of 

one of the series F~, G~, H~, H e (cf. Appell and Kamp~ de F~riet, 1926, pp. I24, 

125 for the ~ and Borng~sser, I932, pp. 19 and 2o for the I" and the /4). 

Clearly, then, the system of partial differential equations associated with any of 

the functions (38) will be the corresponding limiting case of the system of one 
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of the functions F~, G2, H~, 1[ 6. Now, the integration of the systems of the last 

four functions all depend on the integration of (I) and so the integration of 

the system of partial differential equations associated with any of the functions 

(38 ) will depend on the integration of a limiting case of (1). There are also 

several interconnecxions between the systems of the functions (38) themselves: 

so for instance the systems of ~b~, ~be and F~ are equivalent to each other. 

27. Summing up, we see that  the theory developed in sections 8 to 15 

settles the integration of the system of partial differential equations associated 

with any of the functions 

F1, c.1, G~, G3, H3, H6, ~,, ~ ,  r rl, r2, H6, H~, 

that  is thirteen out of the thirty-four hypergeometric systems of the second 

order ia two variables. The reduction to (I) of these thirteen systems is valid 

for arbitrary values of the parameters. Besides, the integration of all other 

hypergeometric systems of the second order and in two variables (with the only 

possible exception of Hs) can be reduced to the integration of (I) provided that  

the parameters appearing in those systems are suitably specialised (that is satisfy 

one or two relations). 

Most of the hypergeometric systems of the second order in two variables 

have four linearly independent integrals. There are, however, eight of them 

(BorngSsser, I932 , p. 9) which have only three linearly independent integrals: 

they are the systems associated with the series 

F1, G1, G.2, ~bl, ~.,, ~b~, Fx and /'2. (39) 

Now, all the eight series (39) are among those whose systems are reducible to 

(I), and hence we have the general result: 

Any hypergeomeb'ie system of 19artial differential equations of the seeo~d order 

in two independent variables which has only three li~early independent integrals can 

be transformed i~to (x) or into a partieular or a limiting ease of  (I). 
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