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O. I n t r o d u c t i o n  

In recent years, Ricci solitons have been studied extensively (cf. [Ha], [C2], [T2], etc.). 

One motivation is that  they are very closely related to limiting behavior of solutions of 

PDE which arise in geometric analysis, such as R. Hamilton's Ricci flow equation and the 

complex Monge-Amp~re equations associated to K~ihler-Einstein metrics. Ricci solitons 

extend naturally Einstein metrics. 

Let M be a compact Ks manifold. A Ks metric h with its K~hler form Wh is 

called a K~hler-Ricci soliton with respect to a holomorphic vector field X if the equation 

RiC(Wh) --Wh = L x  Wh (0.1) 

is satisfied, where RiC(Wh) denotes the Ricci form of Wh, and L x  is the Lie derivative 

operator along X (the definition here is slightly stronger than the ordinary one studied, 

for instance, in [C2]). Since Wh is d-closed, we may write L x W h  = 0cqr for some function r 

It follows that  the first Chern class c l ( M )  of M is positive and represented by Wh. 

If Wh is a K~.hler-Ricci soliton form with respect to a nontrivial X, then Futaki's 

invariant with respect to X is 

F(x) =/M Ix12   # o. 

By using a result in IF1], we see that  there are no Ks metrics on M if M 

admits a K~ihler-Ricci soliton with respect to a nontrivial X. Hence, the existence of 

K~hler-Ricci solitons is an obstruction to the existence of K~hler-Einstein metrics on 

compact Ks manifolds with positive first Chern class. Examples of Ks soli- 

tons were found on certain compact K~hler manifolds by E. Calabi [Cal], N. Koiso [Koi] 

and H.D. Cao [C1], respectively. 
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The purpose of this paper is to prove the uniqueness of K~ihter-Ricci solitons on 

a given compact K/ihler manifold. This extends Bando and Mabuchi's theorem on 

uniqueness of K~hler-Einstein metrics on K/ihler manifolds with positive first Chern class 

([BM]). Note that  the uniqueness of Ks metrics was proved by E. Calabi in 

the 1950's for K~ihler manifolds with nonpositive first Chern class. 

Let Aut~ be a connected component containing the identity of the holomorphic 

transformation group of M. Then there is a semidirect decomposition of Aut ~ (M) ([FM]), 

Aut~ -- Auto(M) c( P~, 

where A u t ~ ( M ) C A u t ~  is a reductive algebraic subgroup, which is the complexifi- 

cation of a maximal compact subgroup K on M, and R~ is the unipotent radical of 

Aut~ 

Our main theorem can be stated as follows. 

THEOREM 0.1. The K5hler-Ricci soliton of M is unique modulo the automorphism 

subgroup Autr(M);  more precisely, if  wl, w2 are two K?ihler-Ricci solitons with respect to 

a holomorphic field X ,  then there are automorphisms a in Aut~ and T in Autr(M) 

such that a ,  I X C y r ( M )  and O'*(M2=T*O'*(~)I, where ~?r(M) denotes the Lie algebra of 

Auto(M). In fact, a ,  I X  lies in the center of ~?~(M). 

We will first reduce the proof of this theorem to solving the complex Monge-Amp~re 

equations 
det (g~j + r = get (g~j) exp { f - t C -  Ox - X (r }, (0.2) 

g~+r > 0, 

where tE [0, 1], f and Ox are smooth functions determined by a suitably chosen metric g 

(cf. w The equation (0.2) at t = l  is equivalent to (0.1). 

We will use the continuity method to solve (0.2). More precisely, if ~o is a solution 

of (0.2) at t = l ,  we need to prove that,  modulo automorphisms in Auto(M), there is 

a smooth family {~o~} such that  ~Ol=~O and ~ solves (0.2) at t=s.  Then the theorem 

follows from the uniqueness of solutions of (0.2) at t=O proved in [Zh]. There are three 

main steps in constructing {qos}. 

Step 1 (cf. w We introduce the following functional, which modifies the one used 

before in [Au], [BM] and IT1]: 

I(r162 /MCeOx+X(O)   + Ads, 

where {r is any path from 0 to r This functional is monotone along any path given 

by solutions of (0.2). Then by iteration, we can obtain an upper bound of the integrals 

fM e-p t~w~,  for some p>  1, where qDt are solutions of (0.2) at t. 
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Step 2 (cf. w We introduce the relative extremal function and capacity to derive 

an a priori C~ for solutions of the complex Monge-Amp@re equations in (0.2). 

The relative extremal function and capacity were widely used in [BT1], [BT2], [Kol] for 

the existence and regularity of weak plurisubharmonic solutions of the complex Monge- 

Amp@re equations. Using the LP-estimate of e -re '  obtained in Step 1, we can prove that  

r are uniformly bounded. 

Step 3 (cf. w We prove by using the Implicit Function Theorem that  (0.2) is 

solvable for t sufficiently close to 1. Since the corresponding linear operator does have 

nontrivial kernel in this case, we have difficulties. We will imitate the arguments in IBM]. 

Using the transformation group Auto(M), we can find a global minimal point of the 

functional I - J  restricted to Auto(M). Then we apply the Implicit Function Theorem 

to (0.2) at this minimal point. 

Part of this work was done when the first author was visiting Beijing in the Sum- 

mer of 1997 and 1998. He thanks both Peking University and Academia Sinica for the 

hospitality. Both authors would like to thank the referee for many useful comments on 

the first version of the paper. 

1. Reduct ion to  certain complex Monge-Amp6re  equations 

Let (M, g) be an n-dimensional compact Ks manifold with positive first Chern class 

cl(M)>O. Denote by Aut(M) ~ a connected component containing the identity of the 

holomorphic transformation group of M. Let K be a maximal compact subgroup of 

Aut~ Then there is a semidirect decomposition of Aut~ ([FM]), 

Aut~ = Auto(M) c< R~, 

where A u t r ( M ) c A u t ~  is a reductive algebraic subgroup and the complexification 

of K,  and R~ is the unipotent radical of Aut~ Let ~r(M) be the Lie algebra of 

Auto(M). 

Choose a K-invariant Ks metric g on M with K~hler form wgE21rcl(M). If g is 

given by {gij} in local coordinates, then 

wg = ~ ~ gij dziAd2 j. 

Since Ric(wg) also represents 27rcl(M), there is a unique smooth real-valued function f 

on M such that  
aic(wg)-wg = ~ OOf, (1.1) 

f 7 ~ _ _  n _ _  LfMe %-f~%-W, 
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where co~ = wg A... Aug. Recall that  in local coordinates the Ricci curvature is of the form 

{ R~j = -OiOj log det (gk/), 

Ric (wg) ---- v/-L--1 Ri~ dziA d5 j �9 

Let w be a K~ihler-Ricci soliton with respect to a holomorphic vector field X on M. 

Then w satisfies the equation 

Ric(w)-w = Lxco. (1.2) 

It follows from (1.2) that  the (1, 1)-form Lxco is real-valued, i.e. Lim(x)w=O, where 

Im(X) denotes the imaginary part of X. Therefore, Im(X) generates a one-parameter 

family of isometries of (M, w). Let K '  be the maximal compact subgroup of Aut~ 

containing such a one-parameter family of isometries. Since K p is conjugate to K,  there 

is an automorphism aEAut~  such that  a ,  IXE~,., where ~r is the Lie algebra of 

Auto(M). Furthermore, a*w is a Kiihler-Ricci soliton with respect to a ,  lX. Thus, it 

suffices to prove the uniqueness of K~hler-Ricci solitons with respect to any holomorphic 

vector field XE~k. For simplicity, we may assume that  a = I d  and K=K' .  
Now Im(X) generates a one-parameter subgroup of isometries of wg, or equivalently, 

Lxwg is a real-valued (1, 1)-form. So Oixwg=O. Since c l (M)>0,  there are no nontrivial 

harmonic ( 0, 1)-forms. By the Hodge Decomposition Theorem, there is a smooth real- 

valued function Ox of M such that  ix wg = ~ C~x, and consequently, 

Lx wg = dix (wg) = vrL~ 000x. 

Moreover, X( f )  is real-valued. 

Since w also represents 2zrcl(M), there is a real-valued function r satisfying 

= we = ~g + ~ 0~r  

By adding an appropriate constant to r we see that  (1.2) can be reduced to the 

complex Monge-Amp~re equations 

det (g~j +r  -- det (gij) exp { f - r  - X (r }, (1.3) 

gij+r > 0. 

We will normalize 0x by 

(r = cog. 

In order to prove Theorem 0.1, it suffices to show that  solutions of (1.3) are unique 

modulo automorphisms in AutT(M). 
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Now we consider the following complex Monge-Amp~re equations with parameter 

tE[O, 1]: 
det (gij +r  = det (gij) exp { f - t r - 6x - X (r }, (1. 

4) 
g~J+r > 0. 

We observe that  the equations in (1.4) are equivalent to the following equations on the 

Ricci curvature: 

Ric(wr162 = x/~Z1 O0(Ox + X ( r  = Lxwr (1.5) 

It follows from (1.5) that X(r  is real-valued whenever Ct solves (1.4) at t. 

Set 

Adz = {r e C ~ (M, R) [ we = wg + ~ 00r  > 0, Im(X)(r  = 0}. 

The following lemma is very important for our further analysis. 

LEMMA 1.1 ([Zh]). There is a uniform constant C(g,X)  depending only on the 

metric g and the field X,  such that 

sup IX(r c. 
A/Ix 

We also have 

PROPOSITION 1.1 ([Zh]). There is a unique solution r of (1.4) at t = 0  modulo 

constants. 

In the remaining sections, we shall prove that there is a unique solution of (1.4) at 

each te (0 ,  1). 

2. Openness  at t < l  

We adopt the notations in w Set 

VVx k'~ = {r e C k'~ (M) [Im X(r  -- 0}, 

where k is a nonnegative integer and aE(0,  1). 

We define an operator F on A4x • [0, 1] by 

F( r  t) -- log det (gij+ r - l o g  get (gi3) - f + t r  + Z ( r  

Denote by L(r its Fr6chet derivative on r Then we have 

L(r162 = A'r  

where A r denotes the Lapalacian operator associated to the Ks form we. 

The following is a simple observation (cf. [Zh]). 

(2.1) 

(2.2) 
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LEMMA 2.1. Let r a. Then L( r162  ~ and F(r a. 

For any e E M x ,  we define an inner product ( . , .  ) by 

(f '  g) = / M  
fgeOx+X(r 

where f, gEW~ ~. Clearly, one can extend it to an inner product of a Hilbert space 

containing M x  as a subspace. 

LEMMA 2.2. (i) Let eE.l~4x and L ( r  ). Then for any two smooth, 
complex-valued functions f, g, 

fMgL(r162 fMII,(r (2.3) 

In particular, for any f, gE)4]~ ~, 

/M gL(r176 =/M fL(r176162 
(2.4) / "  

=-/((of, Og)~- t  f g)e~ + x(r 

This implies that L(r is self-adjoint with respect to the inner product ( . , . ) .  
(ii) Suppose that r 1 6 2  with tE(O, 1) is a smooth solution of (1.4) at te(O, 1). Then 

the first eigenvalue of L(r is positive. 
(iii) If t=l, the first eigenvalue of Lr162 is zero, and there is a one-to-one cor- 

respondence between Ker(n , )  and ~?r(M), where ~?~(M) is the Lie algebra of Auto(M).  

Moreover, we have IX, Y]=0  for all YE~?~(M). 

Proof. (i) Without loss of generality, we may assume that either g or f has compact 

support in an open subset where there is a local orthonormal coframe {wi } such that we = 

x/-Z1 wiA~0 i. Then we denote by X~ the i th covariant derivative (Ox +X(r Integrating 

by parts, we deduce 

fMgL(r162 fMg(f~+X~fi)eOx+X(r 

= e Od~ 

= -- f (Of, Og)o~,e~ 
JM 
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Similarly, we have 

/M f Z(c,t)geOx+X(r = -- iM(Of , Og)~ eOx+X(C)w~. (2.6) 

Then (2.3) follows from (2.5) and (2.6), and so does (2.4). 

(ii) Let A be the first eigenvalue of L(r ) and ~p be one of its eigenfunctions, i.e. 

A'r162162  = - I r  

Then integrating by parts and using (1.5), we compute 

t SM r162 ~ 

= -- IM(A'r162176162 

=-i  ,+,+,).o.+.<+).,-i ., 

Thus we prove A ) 0  for any t~<l, and A>0 if tE(0, 1). 

(iii) If t = l ,  it follows from (2.7) that Ei,~1r for any CeKer(L~) ,  i.e. 

~-'~i ~ O/Ozierl(M), where •(M) is the Lie algebra of Aut~ Moreover, by Lemma 

2.3.8 in [F2], the imaginary part of ~ g?~ O/Oz ~ is a Killing vector field of we. This shows 

that ~ i  r �9 
Conversely, given any YE rlr (M), by Theorem A in the Appendix, the imaginary part 

of Y is a Killing vector field associated with We. By the Hodge theory and using Lemma 

2.3.8 in [F2], we can have a smooth, real-valued function "0 such that i (Y)wr Thus 

by (2.4) and (2.7), we have 

M( A ' r  X(~b) )( A' r  X(r  )e~ +X(r 

= _ f M ( A ' r 1 6 2 1 6 2  r e~ 

SMIr 12e~162 = i t  

Since 1~>0, we must have A'%D+@+X(r i.e. we have proved ~OEKer(L,). 

It follows from Im(X)(~)=O,  where ~ is given as above for Y, that  [X, Y]=O, since 

xjYji- y j  x~ i  = ( x j ~ ) ~ -  ( ~ x D ~  = ( x ( r  - ( x ( r  = o. [] 

As a direct corollary, we have 
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COROLLARY 2.1. Let r 1 6 2  be a smooth solution of (1.4) at t. Then for any 
lc~ r C lW~ , we have 

vtJ  ) )  

PROPOSITION 2.1. Let Cto be a smooth solution of (1.4) at t=toC(0,  1). Then there 

is a small number 5>0 such that there are smooth solutions of equations (1.4) for any 

sc(t0-5,t0]. 

Proof. Consider the map F(r  t): kV~ ~ • [0, 1]-+kV~ ~ defined by (2.1). Let L(r 

kV~-+I/V~ ~ be the linearization of F(r on the first variable at (r By 

Lemma 2.2 and the standard regularity theory for elliptic equations, this linear operator 

is invertible. Then the Implicit Function Theorem implies that  there are C2,~-solutions 

r of (1.4) for any sE( t0-5 ,  to], where 5>0 is sufficiently small. Finally, it follows from 

the standard regularity theory of elliptic equations that  r are in fact C~-smooth.  [] 

3. LP-es t imates  for func t ions  e - t4~  

First we introduce two functionals on A/Ix which are modifications of the corresponding 

ones in [Au] and IT1]: 

I((~) = f r215 e~162 (3.1) 
a M  

and 

J(r = LliMCs(eOXw~-eOx+X(r 

where r is a path from 0 to r in M x .  

As a special case of Lemma 1.2 in [Zh], we have 

LEMMA 3.1 ([Zh]). The functional J(r is well defined, i.e. 
path {r 

Let 

(3.2) 

independent of the 

By simple computations, one can show that,  for any two we and w e in M x ,  the cocycle 

condition 

F(~b) = F(r  +-PC (r (3.3) 

is satisfied, where Fr162162176162 , and Cs is a path from r to r 

in M x .  
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LEMMA 3.2. Let Ct be a solution of (1.4) at t. 

family. Then 
d 
d~ (I(r - J ( r  ~> O. 

In particular, there is a uniform constant C such that 

Assume that {r is a smooth 

I ( r162  ~ I ( r  J(r ~ C. 

It follows that 

Proof. An easy computation shows 

- (I(r - J(r - fM Ct e ~ +x (r w~ 

= J ( r  4 ~ e o x ~  

= J ( O l ) - f ~  r162162 

+ ~'dS /M6~(eO~+x(*~)~ -e~ ). 

d /MCtd~(ee,:+x(r d~ ( I ( r  J ( r  = - & 

=_ f r176 

On the other hand, by differentiating (1.4) with respect to t, we obtain 

A'r162 = - r  

Plugging (3.6) into (3.5) and using part (ii) of Lemma 2.2, we get 

L d t ( I ( r 1 6 2  (A'r162 X(r176162 >~0. 

In particular, there is a uniform constant C such that 

(3.4) 

(3.5) 

(3.6) 

I ( r  J ( r  < I ( r  J(r ~< C. 
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that 
LEMMA 3.3. Let r be in Adx.  Then there are uniform constants 61 and C2 such 

C1(I(0)-S(r  ~< f O ( W g - W ~ )  <~ C2(I (0) -  g(r 
JM 

Proof. Since the proofs of the two inequalities are similar, we prove only the second 
inequality. Let r162 Then by using (2.3) in Lemma 2.2 and Lemma 1.1, we have 

d (I(r - J(r = ' / M  r (A'r + X  (d~)) e ~ +x(r 

--- s n v / ~ / M  eex +~x(C)OCA (9r (sue + (1 - s)w 9 )n--1 

n-1 

>~ nC; V:~ / .  O~A~OA F, ~'+'(1- ~)n-l-~M~;-'-'. 
i=0 

(3.7) 

It follows that 

~o 1 d I ( r 1 6 2  ~ss(I(r162 

n--1 
C~h/f~  f 0(~A~r E ~r176 -1-i" 

J M i=O 

On the other hand, we have 

n--1 
r - ~ : , )  = - CaeCA ~o/\%~-n-l-~ 

i=0 
n--1 

wr 9 . 
i=0 

( 3 . 8 )  

It follows from (3.7) and (3.8) that 

/Mr ~-w~) ~< C~(I( r  J(r 

where C2 is a uniform constant. 

COROLLARY 3.1. Let {Or} be a smooth family of solutions of (1.4) (tE[t0, 1]). Then 
there are two uniform constants C and C ,  which are independent of to, such that for 

any tC [to, 1], 

O ~ t s u p O t ~ C  and infOt ~0,  (3.9) 
M M 
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and 

M w n C ' /M - -  Ct r <~ and - tCtw~t ~ C', (3.10) 

where M_ ={xEMICt<~O }. 

Proof. First we shall prove that  suPM r Notice that  by (2.3) in Lemma 2.2, 

and hence, 

d f eOx+X(r n = f -  . JM r JM L(r162176162 O, 

Integrating (1.4) multiplied by e ex+x(r we get 

/Mef-tr f eOx+X(r n g JM r efw~" 

This shows that  

s u p e r )  0 and infer  E0. (3.11) 
M M 

Next by Lemmas 3.2 and 3.3, we see that  there is a uniform constant C1 such that  

fM tCt(W g--W~t ) < tel .  (3.12) 

On the other hand, by (1.4), it is easy to see that  

-- /MtCtw~t =-- ~ tCtef-tCt-~162 ~--C2 /M+tCte-tCtw~ ~--C3, 

where M+ ={xEMIr t ~0}. Hence we get 

t <<. C4. (3.13) 

Let G(x, y) be the Green function associated to w 9 satisfying G(x,. )+C5 ~>0. Since 

Ar  ( r162 by the Green formula, we have 

supO~M VI/MtOw~--max(1/M(G(X'xeM " )-~ C5) A (~Wg)n 
(3.14) 

1 /M Cw2 + nCs. 

Combining (3.13) and (3.14), we see that  there is a uniform constant C such that  

t supr  

/M eOx-}-x(r = / eOX-}-X(~l)~l"}~l = /M efw; 
JM 
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By Lemma 3.2 and (3.9), we also have 

1 L V - ~ Cw~ <~ C1 + nC5 - sup r <~ C1 + nC5 = C6. 
M 

- ~ tr lMtr + f tr M_ J M+ 

<~ tvc6 + f+  ~ c'. 

Let {r be a smooth family of solutions of (1.4) (tE[to,1]). PROPOSITION 3.1. 

Then there is a uniform r  such that for any tC[to, 1], 

M exp{--(l +r162 <~ C. 

Proof. First we choose a uniform constant c such that  

C ~=~=r <-1. 

This is possible since t suPM Ct is uniformly bounded by Corollary 3.1. 

(3.10), we have 

- IM tCeeX+x(r <~ C1. (3.15) 

It follows that  

- ]M tCeOx+X(r <~ C2. (3.16) 

On the other hand, we have 

: p k / ' ~  IM(--~)P-I(--O~)A(--~)A03~-I 

n ( p + l )  2 

It follows that  
n(p+l )  2 

IM 10(--r <~ 4p IM (--r (3.17) 

Moreover, by 
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Since both Ox and X(r  are uniformly bounded, we can apply the weighted Poincare 

inequality in Corollary 2.1 and derive from (3.17) 

M (_a ),,+l eox 

- 1 2 ~ /M(--~))PeOx+X(r -]---( f (--~)(P+l)/2eOx+X(~b)~2n~ 
V ~kJM CJ 

< 
(3.18) 

where c is a uniform constant. Then by (3.16), we have 

cp (3.19) 

where c is a uniform constant which may be different from the one in (3.18). 

By iterating (3.19) and using (3.16), we have 

M /M cP+ I (P+ I )! cV(p+I) ! _~eOx+X(r <~ (--r162 ~ tP tp+l (3.20) 

Now we choose e<l/e. Then 

/Mexp{--atr162 (gt)P/M 
p=o 7 - . '  

+~o 1 

<<" E (~c)P <" 1-e~" 
p=0 

(3.21) 

It follows that  

/M exp{ (I +e)(--tr }W~ =/M exp{ (l +a)(--tr }e-f+tCeOx+X(r 

Ca/M exp{--r162176 +x(r ~< C. 

The proposition is proved. [] 
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4. Re l a t i v e  c a p a c i t y  a n d  C ~  

In this section, we establish the a priori C~ for solutions of (1.4). Such an 

estimate is a corollary of the results in the last section and the estimates in [Kol] for 

complex Monde-Ampere equations. For the reader's convenience, we reproduce the C O_ 

estimate in [Kol]. It uses the relative capacity for plurisubharmonic functions studied in 

[BT1], [BT2]. All results in this section can be found in either [BT1], [BT2] or [Kol]. 

For any compact subset K of a strictly pseudoconvex domain ~ in C n, its relative 

capacity in ~ is given by 

cap(K,~)=sup{]'K(v/~O~u)" uEPSH(~ t ) , - 1  ~ u < 0 } ,  

where PSH(f~) denotes the space of plurisubharmonic functions (abbreviated as psh) in 

the weak sense. For any open set UC f~, we have 

cap(U, fl) = sup{cap(K, ~) I KC U, K compact}. 

Recall that  the relative extremal function of K with respect to ft is defined by 

UK(Z) =sup{u(z) i uEPSH(fl)NL~(gt),  u < 0 and utK < -1}.  

It is easy to see that  u~c(z)=limz,-.z uK(Z') is a psh function, and it is called the upper 

semicontinuous regularization. A compact set K is said to be regular if U*K=U K. Here 

are the main properties of u~c (cf. [BT2], [AT]): 

u~:CPSH(f~), - l ~ u ~ : ~ 0 ,  lim u~-=0,  
z--+O~ 

(x/-L--i OOu*) n = 0 on a \ K ,  

u~: = - 1  on K,  except on a set of relative capacity zero. 

Moreover, we have 

LEMMA 4.1. Let ~ be a strictly pseudoconvex domain in C n and u be a smooth 

solution of the complex Monge-Ampgre equation on ~, 

Suppose that u and f satisfy 

u < o, u(o)  > c (o c 

det (uij) -- f .  

/ g  f dv A cap(K, ~"~)l/n <~ cap(K, ~) 
1 +cap(K,  ~ ) l / n '  

(4.2) 
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for any compact subset K of f~. If the sets 

v(s)  = {z I (z) < s} n a "  

are nonempty and relatively compact in f~"c f~CCf~  for any sc[S,S+D],  where S is 
some number, then there is a constant So, depending only on c, A, D, f~, f~, such that 

inf u ) So. 

Pro@ This proof is from [Kol]. Set 

a(s) = eap(U(s), a )  and b(s) = fu(s)(x/ZlOOu) n. 

First we claim that  

tna(s) <. b(s+t), for all 0 < t < S + D - s .  (4.3) 

Indeed, it suffices to prove that  for any compact regular set KC U(s), 

tncap(K,  a )  ~< b(s+t), for all 0 < t < S + D - s .  

Let uK be the relative extremal function of K with respect to f~, and w = ( u - s - t ) / t .  

Set g={zlw(z)<uK}C~a".  Then one can easily cheek that  K c V c g ( s + t ) .  Moreover, 

since U(s+t) is relatively compact in f~", W=UK on OV. Thus, by the Comparison 

Principle ([BT2]) and (4.1), we have 

cap(K,f )= s (X/--l OOUK) < OOu )n 

< fv('/ OOW)n=t--n fv( --lOOu)n 
r ~  - -  n <<. t -  f (x /~f  OOu) =t-nb(s+t).  

J U ( s + t )  

The claim is proved. 

Next we define an increasing sequence so, Sl, ..., SN by setting so=S and 

s j = s u p { s l a ( s ) < ,  lim ca(t)} 
t-+s+- 1 

for j = l ,  ..., N, where N is chosen to be the greatest number satisfying SN <.S+D. Then 

we have 

lim a(t) <. lim ca(t), (4.4) 
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and 

a(sj) > ea(sj_2) (4.5) 

a(S+D) <~ lira ea(t). (4.6) 
t--+8+N 

By using (4.3), (4.6) and (4.2), for any tE(sN, S+D], we obtain 

a(S+D) 1/n < Aea(t)a(S+D) 1/n. (S+D-t)na(t) <~ b(S+D) <~ Aa(S+D) I+a(S+D)I/~ 

Letting t--+S+N, it follows that 

S+ D-SN <. (Ae)l/'~ a(S+ D)l/n2. (4.7) 

Now we shall estimate Sg--S. Consider two numbers S<sI<s<S+D such that 

a(s)<.ea(s'), and set t=s-s ' .  Then by (4.3), (4.2) and (4.4), we have 

a(s)l/~ 
tna(s ') <. b(s) <. Aa(s) l +a(s)l/~ <. Aea(s')a(s) 1/n. 

Letting s-+s~+ 1 and g-+s~, it follows that 

sj+l - s j  = tj ~ (Ae)l/na(sj+l) 1/n2. (4.8) 

Summing up (4.8) and using (4.5), we get 

N--1  N--1  

E tj ~ (Ae) 1/n E a(sj+l)l/n2 
j=o j=o 

/N--2 r l n a ( s j + 2 )  �9 2 . -  2 ~  
~ ( A e ) l / n ( E  ~, e~/n dT+2a(S+D)l/n ~ (4.9) 

\ j = l  In a ( s j )  / '  

f r l n a ( S + D )  2 2 \ 
< 2 ( A e ) l / n ( /  e "r/n dT+a(S+D)I/n ) .  

\ J In a(S) ] 

Making the change of variable y=e -~, (4.9) becomes 

N--1 a(S) -1 ) 
SN-S= E t j~2(Ae) l /n(  f Y-(I+I/n2)dyWa(S~-D)I/n~ 

j=0 \Ja(S+D) -1 (4.10) 

2(Ae)l/n(a(S+D)l/n2-~-n2a(Sq-D)l/n2). 

It was, however, proved in [AT] (also see [Be], or Theorem 1.2.11 in [Kol]) that 

C t 
cap({u < s}n~',  ~) <~ ~ ,  
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where c t depends only on c and ill. It  follows tha t  cap({u < s} N fl~, ~)  converges uniformly 

to zero as s tends to - o c ,  so long as u satisfies u < 0  and u(o)>c. Hence, by (4.7) and 

(4.10), there is a uniform constant So(c, A, D, ~ ' ,  gt) such tha t  as S<So the following two 

inequalities hold: 
1 1 S + D - S N < ~ D ,  S N - S < ~ D .  

Combining them, we wilt obtain a contradiction. This shows tha t  S>~ So and consequently 

infa,, u/> So. [] 

LEMMA 4.2. Let gt be a strictly pseudoconvex domain in C n, and u be a smooth 
solution of the complex Monge Ampgre equation on ~, 

det (uij) = f ,  

with Hfllnp(a)~a for some p> 1. Suppose that u satisfies 

u<O and u(o)>c (o�9 

Define U(s) as in the last temma. If U(s) is nonempty and relatively compact in f~'~ for 
any s �9  [S, S§ for some S, then there is a constant So=So(c,p, a, D, 12', ~), such that 

inf u/> So (c, p, a, D, ~ ' ,  12), 

Proof. Let u u  be the relative extremal function of a regular set K with respect to f~, 

and v=cap-1/n(K, f l)uK. Then v is a psh function and satisfies 

-Z1 0cgv) n = 1 and lim = 0. V 
z -+ O ~t 

By Lemma  2.5.1 in [Kol], we have 

< cexp{-2 JsJ} 

for some uniform constant c independent of v, where )~(U'(s)) is the Lebesgne measure 

of the set U'(s)={v<s}. I t  follows tha t  for any q~>l, there is a uniform constant c'(q) 
such that  IlVllLq(a) <. c'(q). Hence, 

f Ivln(l+ Ivl)f d ,  <<. A(p, ~, a). (4.11) 

On the other hand, we have 

cap(K,  ~ ) -1 (1  +cap-1/n(K,~)) f .  f d# ~ l Mn(1 +lvl)f d# 
J 1 4  J 1 4  

(4.12) 

<~ fa Ivln(l+lvl)f dl~" 
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Combining (4.11) and (4.12), we deduce 

K f dv <. A cap(K, ~) 
cap(K, f~)l/,~ 

1+cap(K, Q) l/n" 

Then Lemma 4.2 follows from Lemma 4.1. [] 

The following proposition was proved in [Kol]. 

PROPOSITION 4.1. Let (M,g) be a compact Kiihler manifold and r be a smooth 

solution of the complex Monge-Ampdre equations on M, 

det (gij + Cij) = det (gij) f, 

SUPM r = O. 

Then we have 

infr C( M, g,p, llfllz,'(M) ), 
M 

where p > l  and C=C(M,g,p ,  IIflILP(M))" 
Proof. Let x E M  be such that r r and U be one of its neighborhoods. 

Without loss of generality, we may assume that there is a smooth, bounded function 

v such that wg=vrLlOOv on U, v~<0 and v(x)<.infovv-co for some positive c0>0. 

Hence, 

v(x) < io (v +r 
Clearly, if we take D=co-2E,  S=v(x)+r u = v + r  with ~<<1, then U(s) as de- 

fined in Lemma 4.1 is nonempty and relatively compact in U. On the other hand, since 

Ar by the Green formula, we have 

O=supr <~ fMCWn 

Note that in this proof, c, c r, etc., always denote uniform constants depending only on M 

and g. This implies that supu(v+r Then by the last lemma, v(x)+C(x)>~-So 

for some uniform constant So, and so the proposition follows. [] 

PROPOSITION 4.2. Let r162  be any smooth solution of (1.4) at t. Then there is a 

uniform constant C such that 

sup ICtl ~< C. 
M 

Proof. Let r 1 6 2  r Then by (1.4), r satisfies the complex Monge-Amp~re 

equations 

{ det(gij+r = d e t ( g i 3 ) e x p { f - t r 1 6 2  = det (gij) h, (4.13) 

SUPM r = 0. 



UNIQUENESS OF K.~HLER-RICCI SOLITONS 289 

By Proposition 3.1, we see that  there are a small positive number e independent of t, 

and a uniform constant C1, such that 

Mhl+e~g ~ C1. 

Applying Proposition 4.1 to equation (4.13), we get 

inf r  -C2  (4.14) 
M 

for some uniform constant C2. Hence by (3.11), we have proved 

sup 1r ~< C2. [] 
M 

5. Higher-order est imates  

In this section, we establish a priori C 2- and C3-estimates for solutions of (1.4). Our 

proof uses Yau's arguments in [Ya]. 

PROPOSITION 5.1. Let r162  be any solution of (1.4) at t. Then there are two 

uniform constants C and c such that 

n+ACt  <~ C e x p { c ( r  Ct)}{ l + e x p ( - t  i~/f Ct)}. 

Proof. Given a p E M ,  choose a local coordinate system (xi, ..., x,~) so that  gij(p) =6ij  

and r162 Then, following Yau's computations in [Ya], we have 

A ' ( (n+Ar  exp{--cr 

~> exp{--cr ( A ( f  -- tr  Ox -- X (r - n 2 inf Ri~t{ ) - c exp{-c r  n(n  + Ar i#l 

+ ( c + ~ R i ~ t D e x p { - c r 1 6 2  1 1 r  

(5.1) 

where N denotes the Lapalacian operator associated with the K~ihler form we. 

Now assume that  p is the maximal point of ( n + A r 1 6 2  Then at this point, 

we have Cti~=c(n+Ar162 It follows that 

r 1 6 2 1 6 3 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2  (5.2) 
M 
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Thus by Lemma 1.1, we have 

A ( - f + t r  + X ( r  = - A f + t A r  (Ox +X(r 

= --Af+tAr162 

= --Af+tAO+X~gk~i+r162 (5.3) 

~< C~+(n+Ar IXk~l +t) +c(n+Ar sup IZ(r 
k M 

<~ CI§162 

for some uniform constants C1, C2. Inserting (5.3) into (5.1), we have 

A ' ( (n+ Ar exp{--cr 

>~ exp{--cr ( - e l  --n 2 inf Rill[ ) - exp{-cr162  
i r  

+ ( c + ~ { R i ~ d ) e x p { - c r 1 6 2  i 11-r ) (5.4) 

/> -C3  e x p { - c r  exp{-cr  (n+  Ar 

+(c+~n#f Ri~,i) exp{-cr162 1+-r " 

Choose c such that c+infi#z Rim~>l. Then by (1.4), one can obtain 

A ' ( ( n + A r  exp{-cr  7> - e x p { - c r 2 4 7 1 6 2  

+C5exp{_cr162 (5.5) 

Now applying the Maximal Principle to the function exp{--cr162 at p exactly as 

Yau did in [Ya], we can show that there is a C such that  

n + ACt ~< C exp{ c( C t -  inf Ct)}{1 + e x p ( - t  inf r 

The proposition is proved. [] 

Combining Proposition 5.1 with Proposition 4.2, we obtain 

COROLLARY 5.1. Let (t  be any solution of (1.4) at t. 
constant C such that n + A ( t  <.C. 

PROPOSITION 5.2. Let (t  be any solution of (1.4) at t. 
constant C such that [[r 3 ~<C. 

Proof. Let g~=gij+r and 

S = E g'irg'jsg'ktr162 

where (g,ij) is the inverse of the matrix (g~j). 

Using Calabi's computations and Corollary 5.1 as in [Ya], one can show that  S<.C 
for some uniform constant C. Consequently, Proposition 5.2 follows. [] 

Then there is a uniform 

Then there is a uniform 
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6. S o l v a b i l i t y  o f  (1 .4)  n e a r  t = l  

In this section, we shall prove that there are smooth  solutions of (1.4) when t is sufficiently 

close to 1. This will be done by choosing a special Kghler-Ricci  soliton of M with the help 

of Autr(M).  Note that  Aut r (M)C Aut(M) is a reductive subgroup with Lie subalgebra 

u~(M) (eft w 
First we consider a functional F on Auto(M) by 

F(Lo) = I(t~*wr - J(0*wr = I(wr162 - J(wr 

S. L1 S. (6.1) =-  (r162 ds ,,o/,,.,oOx+X(<),,n 

where {r is a path in A/ix from 0 to r 1 6 2  and r 1 6 2  is a smooth function defined 

by 
e*w+ = ~+ + ~ aar  = ~ + C : 5  aa(r + r 

Since ( ~ - I ) , x = x  by part (iii) of Lemma 2.2, 0*we are all Kghler Ricci solitons with 

respect to X. This implies that  F is a functional defined on a set of Kghler-Ricci solitons 

with respect to X. By (1.4), r also satisfies the equation 

(we + x/L-1 aor n = w~ e -X(+)-+. (6.2) 

LEMMA 6.1. The minimal value of F can be attained. In fact, F is proper. 

Proof. By Lemma 3.3, we observe that  

F(g) = I(w+++ ) - J(wr ) > cl i u (  O+ O )(w'~-w~++ ) > O. (6.3) 

Put  G~={oeAut~(M) IF(Q)<~r } and E~={r162162 ~cGr}. Then by (6.3), we 

have 
M n n r (r162 ~< - - ,  for all ~bcE~. 

Cl 

Hence, there are two uniform constants, c2 and c3, such that  (by the same arguments as 

in the proof of Corollary 3.1) 

SM~/)02 9 ~ (6.4) e2 

and 

where M_ ={x~MI r 
(6.4) that  

/M --~bw~+r ~< (6.5) C3~ 

By the Green formula associated with Wg, we deduce from 

SUPM ~ ~< fM ewe' + c4 ~< e2 +e4. (6.6) 
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On the other hand, since r satisfies (6.1), using (6.4), (6.5) and the arguments in 
the proof of Proposition 3.1, we can prove that 

/M e-P'Pw~ ~ C5 

for some p>  1. Then Proposition 4.2 implies that 

infr for all CEE~. (6.7) 
M 

Hence, by Corollary 5.1 and Proposition 5.2, we have 

I1r ~c~(r), for all CEE~. 

It implies that E~ is compact in the C2-topology, and so is G~. In particular, the minimal 
value of F can be attained. 

LEMMA 6.2. Let L r 1 6 2  and Lr162  
r r Ker(Lr we have 

(i) 
Re (Lr (0r 0 r  ) = ( 00~, 08r + Re(0(].r r 0r  (6.8) 

and, in particular, if ~b=r162 

(ii) 

Proof. 

and 

Hence, 

Lr162 0r = (0v5r 0v5r 

[] 

Then for any CEV?~ ~ and 

-/M r162 o8r e ~ +x( , )~ 

= / M  (r162 Re(0r 0r162 )Lr162176162 

(i) Direct computations show that 

X(Or ar " " = x~(r162 r = x~r Cj~ 

(o(x(r or = (z ,  r r = x ,  Cyr 

Re(X(0r 0r = Re(O(X(r 0r 
On the other hand, we have 

A m (0r 0r = (r r )Z = (00r 00r + (0(A m r 0r 

(6.9) 

(6.10) 

(6.11) 



UNIQUENESS OF K~-HLER RICCI SOLITONS 293 

and it follows that 

Re(Ar162 0r = (00~, 00r162162 0r 

Combining (6.11) and (6.12), we obtain 

Re(Lr (0r 0r = (00~, 00r162162 0r 

Now assume that r162162 i.e. Lr162 Then 

x ( a r 1 6 2  ' "  x " ' " ' x~(r162 ( ( r162  " ' = = x ~ r  r = = ( x j c j ) ~ r  

and similarly, we also have 
x(or o r  = x j ~  r  r 

We can deduce from these equations that 

X(Re(0r 0r = �89162 0r247  (0r 0r 

= � 8 9 1 6 2  or162 0 r  

= Re(X(Or ar 

Since Lr162 for r162 (6.8) becomes 

Re(n~(0r 0r = (00r 00r = Re(Lr (0r 0r 

Putting (6.13) and (6.14) together, we have 

Lr (Re(0r 0r = Re(Ar162 0r  (0r Or162 0r 

= Re(Lr162 0r = (0c9r 00r 

(ii) Let Lr162 Note that ~EW~ ~. Since L r 1 6 2 1 6 2  we can derive 

M(r Ctt--ae(O(9 t, O(gtt) )~e~162 

= _/M(r162162162 Or176162 

=-/(r162162 Or176 

+fr ae((0~, Or176162 

=/M r ae((0~, 0r e~162 (by (2.4)) 

= fM r Re((0r Or176162 

-}- fM r Re((0(Lr162 0r e~162 

(6 .12)  

(6.13) 

(6.14) 
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Applying (6.8) in part (i), we have 

M (r162 -- Re(0r 0r Lr162 e ~ +x (r 

: / M  q)'Re((O~b'Or176215 +/M r162176162 

= fM ~' Re((0r 0r176 + /M ~r Re( (0r 0r176162 

--/Mr162162176162 (by (2.3) in Lemma 2.2) 

= (by Lr 

LEMMA 6.3. Let we be a minimal point of F. Then 
(i) for any r162 

M r 1 6 2  = O; 

(ii) the second variation formula is 

[] 

D2F'~ (r r  : fM (1+ 1Lr162 ~br176162 (6.15) 

o = d F ( o ~ )  ~=o 

d /M(r162 L ~=o • f ~' e~ - ds ~JM wsls=~ r 
(6.a6) 

= - fM CL+r176  

Then one can easily see that Cs I s=o = (des/ds) [s=o = ~b modulo constants. Hence, by (6.1), 
we have 

~ .  = 6" ~+ = wo + x / ~  00r  = w 9 + v / ~  0 3  ( r + r 

Proof. Let ~s be the one-parameter subgroup generated by the real part of (the 
holomorphic vector field associated to) 3~, and write 
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Notice that we, satisfies (6.2). Differentiating (6.2) with respect to s at s=0, we 
obtain 

Lr162 = A r 1 6 2 1 6 2  = 0. (6.17) 

Inserting (6.17) into (6.16), we get 

dF(os) s=o = fM r162176  = 0. 

(ii) Let r r Ker(Lr and let 0s and 0t be two one-parameter subgroups generated 
by the real parts of (holomorphic vector fields associated to) c~r and c5r respectively. 

Set 

~,~ = (ese,)*~+ = ~ r  o~r = ~ + ~/-: i  o o ( r 1 6 2  

Clearly, 

and 

d 
dsr t ~,t=o = ~  

d-t Cs'' ~,t=o 

Since ws,t satisfies (6.2), by differentiating (6.2) with respect to s, we obtain 

0 
n~o~., ~sO~,t =0. 

Differentiating (6.18) with respect to t yields 

0 - 0  

Evaluating this at (s, t)--(0, 0), we get 

0 2 

Combining (6.19) with (6.9) in Lemma 6.2, we obtain 

0s~0t r (o,0) = Re(0r 0r modulo Kcr(Lr 

(6.18) 

(6.19) 

(6.20) 
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Now we compute 

o~-oi F(~176 (o,o) o ( o ~ ~ oox+x(,.,,)con 

0 0 .~ _Ox+X(,8.,)co,~ [ (by (6.18)) 

02 
= fM c b - ~  r (o,o)e~176 

+ fM r162162176 

= fM r162 0r + r r e ~ +x(,)co; 

+fM,/,r176 (by (6.20)) 

'L = ~ r 0r162 Or162176 

+/MCg/eOx+X(*)W; (by L,~O=O, L , r  

1/MCL (r176 ; /Mr162 2 * co + 

=fM(r162189162176 (by (2.4)in Lemma 2.2). [] 

PROPOSITION 6.1. Let w, be a minimum point of F. Then there is a 5>0 such 
that (1.4) is solvable for any tC(1-5,  1]. 

Proof. Let ~b=r162 Then (1.4) is equivalent to 

{ (co, + x/---1 0c5r n = co; exp{- t~+  (1 - t ) r 1 6 2  (6.21) 

co, + v':i- 08r > o. 

Decompose r into 0+r  with 0CKer(L,) and CeKerZ(L,).  Let Po be the projection 
from M x  to Ker(L,). Consider 

1 - -  ^ n ' r -R ' [ ' "  (co*+xf2-fOc~(0+r +X(O+r162162  (6.22) 
~,1 O) ~log cO; 

Since the linearization (I-Po)L,  along 4; at (t, 0,~)=(1,0,0) is invertible in 
Kerl(Le),  by the Implicit Fhanction Theorem, for any small 0 and t close to 1, there 
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is a unique solution ~)t,o such that 0+r solves (6.22). Then (6.21) is reduced to the 

equation F(t, 0 )=0  on 0, where 

~77 P~ (~o++v'-:-i oo(o+~,o)) n 

Moreover, we can compute 

[`(1, O) = Po( Ao~I,o+ X (r ) -- O, 

where ~I,O = (dCt,o/dt)I0,o), and Ao is the Lapalacian operators associated to the K/ihler 

forms we + ~L-100(0+~1,o ). 
On the other hand, since ~1,o �9 Ker•162 one can prove 

Lr �9 Ker • (Lr (6.24) 

It follows that 

Lr �9 Ker• (Lr (6.25) 

where Do~I,0 denotes the Fr6chet derivative of ~1,o on 0. Moreover, by differentiating 

(6.22) at (t, 0)=(1,  0), we have 

Lr = - r  �9 Ker• (we). (6.26) 

Since 

Dor =0, 

by (6.25), we get the Fr6chet derivative of F(1, 0) with respect to 0 at (1, 0) as 

D2F(1, 0)0' = 0o['(1, O)IV,o)(0') = Po((O00', 00~,o))-0'. (6.27) 

Next we shall compute the Hessian of D2F(1, 0). By (6.27), for any 0', 0"EKer(Lr 

we have 

(D2r(1,0)0 ' ,  0") 

: -- / M  0'0l/e0X +x(r176 

-/M(O'O"-Re(OO',OO"))Lr162176162 (by (6.10)) 



298 G. T I A N  A N D  X. ZHU 

= - / M  6'0"eeX +x(r 

+/M(r162162162162176 (by (6.26)) 

= -/M O'O"e~162 

1 fM r176176 O0') + (O0', O0") + O% O' + O%0") e ox +x (~)~ 2 
=-- jfMO'O" e~162 ~ /MCLr162 

(6.28) 

So if the derivative D2F(1, a) is invertible, then the equations (6.23) are solvable for any 

t close to 1. This proves that  there is a small number ~ such that  (1.4) is solvable for 

any tE (1-~, 1]. 

In general, we can use a trick in IBM]. For any small e, define w~=(1-e)w+ewr 
Then (1-E)r  is a solution of (1.4) at t=l with wg replaced by w~. Moreover, analogously 

to (6.27), we have 

D2r~(1,0) = - ( 1 - e ) L ~ - I d  = (1-r 0 ) -e  Id < 0. 

This implies that  D2F~(1,0) is invertible in Al(Wr for any ~ 0 .  Therefore, there are 

solutions r of (1.4) for t sufficiently close to 1 and with w~ in place of w. Now it suffices 

to prove that  Ct-+r as ~--40. 

Notice that  

~( ~o(r ~Ar 

It follows from this and Lemma 3.3 that  

<~ c1(I~ ( ( 1 - E ) r  J ~  ( (1-  e) r 

~< c a / , ( 1 - e ) r  ~< c~llr 

Hence, by the same arguments as in the proof of Corollary 3.1, we can prove that  

O~<tsupr and infr  (6.29) 
M M 
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and 

/M--tr < (~.30) C5, 

where M_={xEMIr }. Then arguing as in the proof of Propositions 3.1, 4.2, 5.2 

and Corollary 5.1, we can deduce that  

This shows that  there is a sequence {e i}~0  and a C2'~-function Ct (O~e(0, 1)) such that  

11r162 as ~-~o. 

By the standard elliptic regularity theory, r is in fact a smooth solution of (1.4) at t. 

The proposition is proved. [] 

LEMMA 6.4. There is a small number 5>0 such that there is a unique solution of 

(1.4) for each tC(0,5). 

Proof. Define a functional on W~ ~ by 

a(r = ~)se~162162 

where r is any path from 0 to r on )4]~ ~. We define a normalized map 

F(r  t): W ~  x [0, 11 --+ 1/Y:~ ~ 

by 

F(r  t) = log det (gij+ r  det (g~j) - f + t r  +X(r  - a(r 

Then by Proposition 1.1, we see that  there is a unique smooth function r such that  

F ( r  and a( r  

Furthermore, the linearization of F(r  t) on the first variable at (r 0) is given by 

= A'oor +X(r Ce~ +x(~~176 L(r162 

Since this linear operator is invertible, by the Implicit Function Theorem and the stan- 

dard regularity theory for elliptic equations, there is a small number 5>0 such that  there 

is a unique smooth function r satisfying F(r  t )=0  for any 0<,.t<5. Let 

~ = r ~ a(r 
t 

Then ~t is the Unique solution of (1.4) for any 0 < t < 5 .  [] 
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Proof of Theorem 0.1. Suppose that  wl,w2 are Ks solitons with respect 

to X. As showed in w we may assume that  XEr~r, and that  Aut r (M)  is the complex- 

ification of the isometry groups of Wl,W2. Choosing wg=wl, w2=Wg+V/-L1 c30r we can 

easily see that  (1.4) becomes 

det (gij +r  = e -  tr - x (r det (gij), 

g~5 + r > 0. 
(6.31) 

Define 

S(0) = {t I there is a smooth path {08}t~<8~<1 

such that  r solves (6.31) at s and r = r 

Clearly, 1ES(r  By Propositions 4.2, 5.2 and Corollary 5.1, we have that  S(r is a 

closed set in [0, 1]. 

By Lemma 6.2, there is a TCAut r (M)  such that  the functional I - J  attains its 

minimum at T. For simplicity, we may assume that r = I d .  Then by Propositions 2.1 

and 6.1, we see that  S(r is open. Hence, S(r  1], and consequently, there is a 

smooth family {r such that  Ct solves (6.31) at t and r162 By Lemma 6.4, however, 

there is a small number 5>0  such that  equation (6.31) has a unique solution 0, for any 

0 < t < 5. Then it follows from Proposition 2.1 that  Ct = 0 for all 0 < t < 1, and consequently 

r  The theorem is proved. [] 

7. Appendix 

In this Appendix, we prove a structure theorem for the automorphism group Aut~ 

of any compact Ks manifold M admitting Ks solitons. This structure 

theorem was used in the proof of Lemma 2.2 and in w 

Let we be a Ks soliton of M. We will adopt the notations in w As before, 

we have the following Hermitian inner product on the space C a (M, C) of complex-valued 

functions: 

(f,g)=/Mf~eOx+X(r for f, gEC~(M,C). 

Let L and L be two linear complex operators defined by 

Lf  = A f §  (Of, O(Ox +X(r  for f C C ~ (M, C), 

and 

Lf  = Af+f+(O(Ox+X(r O(f)),,,,, for fE C~(M, C), 
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where A is the Laplacian of we. One can check easily that 

L f  = L~, for any f E C ~ (M, C). 

Using the same arguments as in the proof of Lemma 2.2, we can show (cf. Theo- 

rem 2.4.3 in IF2]) 

LEMMA A.1. (1) Both L and L are self-adjoint elliptic operators with respect to the 

inner product ( . , .  ). 

(2) Ker(n) is isomorphic to 71(M) through the linear map ~: f-+$Of,  where ~?(M) 

denotes the Lie algebra of holomorphic vector fields, and ~Of is the vector field of type 

(1, 0) defined by w($Of, Y ) = O f ( Y )  for any vector field Y of type (1, 0). 

Let E~ be the eigenspace of L with eigenvalue A. Then we define subspaces of Ker(L) 

as follows: 

E L = { f r  Ker(L)ClKer(],) I f is a real-valued function}, 

E~ I = { f  E Ker(L)NKer(L) i f is a purely imaginary-valued function}, 

EA = { f  I f cKer(L)Ahx} .  

Put  
~I'o = {Y= $Of l f EE~}, 

,7~' = {Y= 1"af I f E E~'}, 

Then by Lemma A.1, the  above sets are all subspaces of ~/(M). Moreover, we have the 

following Cartan decomposition of ~(M). 

- -  I I I  LEMMA A.2. (1) ~?(M)-~o+~?o + E ~ > o  ~ "  

(2) For each YEqa, [X, Y I = A Y .  
I f  I I  l /  I l I I  I I I  

(3) [~/o, ~/o ] C ~o, [7/0, ~o] C ~?o and [~o, ~o ] C r/~. 
(4) [~, ~,] c ~ + , .  

Proof. Let YE 7/(M). Then by Lemma A.1, there is a unique smooth complex-valued 

function fEKer (L)  such that 

i y~ ,  = v ~  ~f. 

Moreover, 

L f  = ( L - L ) f  = (Ox +X(r  f j ( e x  +X(r162 

Using the identities 

(Ox+X(r  and f~ j=0 ,  
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we deduce 

This shows that  

(L ib  = ((Ox +x( r  - (h(Ox + x(r  

= (ex + x ( r  h(Ox +x( r  = IX, v],~. 

yo(Lf) = IX, Y] 

is a holomorphic vector field. By Lemma A.1, we obtain 

(A.1) 

.~,f E Ker(L), for all f E Ker(L), 

i.e. Ker(L) is an invariant subspace of the operator L. So again by Lemma A.1, we see 

that  the restriction of L on Ker(L) has only finite, nonnegative eigenvalues A such that  

Ker(L) = EO@ ~ Ex, 
~ > 0  

and consequently, 

r/(M) -- ~?0 +~-'~ ~ .  (A.2) 
A > 0  

Let YE r/o. Then there is a smooth complex-valued function f E  Ker(L)MKer(L), i.e. 

f satisfies 

L/= L / =  o. 

It follows that  

and consequently, 

m 

Lf =Lf=O, 

L(Re(f))  = L(Im(f))  = 0. 

Eo=E~| and so we have This shows that  Eo can be decomposed into ' " 

' " (A.3) r/o = r/o + r/o. 

Combining (A.2) and (A.3), we get 

r/(M) -- ~ q-r/~'+ ~--~ r/x. 
A > 0  

(2) Let YEr/(M). Then by part (1), there is a unique smooth complex-valued func- 

tion feE:, such that  Y='~Of. Thus by (A.1), we have 

AYe = Af~ -- (LI)~ = [X, Y],~. 
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This shows that  

[X, Y] = AY, for all YC y~. 

(3) can be proved as follows. Let YC ~ .  Then there is a smooth purely imaginary 

function f such that  Y= Scar. It follows that  

Lywr = Oiywr -= x / ~  OOf. 

This shows that  Lvwr is a purely imaginary two-form, and consequently, Re(Y) is a 

Killing vector field. Thus, for any Y1, Y2ET/~ ~, [Re(Y1),Re(Y2)] is still a Killing vector 

field. This proves that  []I1, Y2] E ~/~. Similarly, we can prove that  

[~ ,~?~]C~ and ' " ' [7/o, ~/o ] c %. 

(4) is a direct corollary of the Jacobi identity and part (2). [] 

THEOREM A. If M is a compact Kdhler manifold having a Kiihler-Ricci soliton, 

then the maximal compact, connected subgroup of Aut~ is conjugate to the identity 

component of the isometry group of M. 

Proof. We use the same arguments as in the proof of Theorem 3 in [Cal]. First 

by parts (1) and (3) of Lemma A.2, ~ '  is the Lie algebra of the holomorphic isometry 

group H(M, we) of we. Let G be a maximal compact, connected subgroup of Aut~ 

with Lie algebra ~. Suppose that  G~Ho(M, w0), where Ho(M,wr denotes the identity 

component of H(M, w,). Then there is a holomorphic vector field YE ~ such that  Y~ U~t. 

Let 

where Y ~ e ~ ,  Y~'E ~?~ I and Y~E7 h .  Since Zo=x/~-TXe~l~ I, Zo generates a one-parameter 

group of isometries of M. It follows that  

Ad(exp{tZo} )(Y) = Yo + Yo' + E eti4-~ Y~ e ~1. 

By taking appropriate linear combinations, we have 

t 11 Y~) + Yd E ~I 

and 

Y~ C ~/, for any A > O. 
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If  ~ x > 0  Y~r however, then by part  (2) of Lemma A.2, Z0 and Y~ would generate 

a solvable, nonabelian Lie subalgebra of ~, contradicting tha t  ~ generates a compact  

group. So we have 

E Y x = 0  and Y=Y~)+Y~)'. 
A>0 

On the other hand, by the assumption Yr ~?~', Yd must be a nontrivial element of ~. Let 

u be a smooth real-valued function of M such that  Yd= l"vhu. Then 

d 
d--t (u(exp{ t Y~} ) ) = [Ou[2(exp{ t Y~} ) = [y~[2. 

Therefore, the one-parameter  subgroup {exp{tYg}} cannot be contained in any compact  

group, which contradicts the fact that  G is compact.  The contradiction shows tha t  

Ho(M, wa)=G. [] 
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