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0. Introduction

In recent years, Ricci solitons have been studied extensively (cf. [Ha], [C2], [T2], etc.).
One motivation is that they are very closely related to limiting behavior of solutions of
PDE which arise in geometric analysis, such as R. Hamilton’s Ricci flow equation and the
complex Monge-Ampére equations associated to Kihler-Einstein metrics. Ricci solitons
extend naturally Einstein metrics.

Let M be a compact K&hler manifold. A Kihler metric & with its Kihler form wy, is
called a Kahler-Ricci soliton with respect to a holomorphic vector field X if the equation

Ric(wh)—wh :Lth (01)

is satisfied, where Ric(wp) denotes the Ricci form of wy, and Lx is the Lie derivative
operator along X (the definition here is slightly stronger than the ordinary one studied,
for instance, in [C2]). Since wy, is d-closed, we may write L x wy, =301 for some function .
It follows that the first Chern class ¢1(M) of M is positive and represented by wy,.

If wy is a Kahler—Ricci soliton form with respect to a nontrivial X, then Futaki’s
invariant with respect to X is

F(X)= /M|X|2w::¢o.

By using a result in [F1], we see that there are no Kéhler-Einstein metrics on M if M
admits a Kéhler-Ricci soliton with respect to a nontrivial X. Hence, the existence of
Kahler-Ricci solitons is an obstruction to the existence of Kahler-Einstein metrics on
compact Kédhler manifolds with positive first Chern class. Examples of Kahler-Ricci soli-
tons were found on certain compact Kéhler manifolds by E. Calabi [Cal], N. Koiso [Koi]
and H.D. Cao [C1], respectively.
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The purpose of this paper is to prove the uniqueness of Kéihler—Ricci solitons on
a given compact Kéhler manifold. This extends Bando and Mabuchi’s theorem on
uniqueness of Kdhler-Einstein metrics on Kéhler manifolds with positive first Chern class
([BM]). Note that the uniqueness of Kihler—Einstein metrics was proved by E. Calabi in
the 1950’s for Kahler manifolds with nonpositive first Chern class.

Let Aut®°(M) be a connected component containing the identity of the holomorphic
transformation group of M. Then there is a semidirect decomposition of Aut®(M) ([FM]),

Aut’(M) = Aut, (M) x R,,,

where Aut,.(M)CAut®(M) is a reductive algebraic subgroup, which is the complexifi-
cation of a maximal compact subgroup K on M, and R, is the unipotent radical of
Aut®(M).

Our main theorem can be stated as follows.

THEOREM 0.1. The Kdhler-Ricci soliton of M is unique modulo the automorphism
subgroup Aut,.(M); more precisely, if wi,ws are two Kdhler—Ricci solitons with respect to
a holomorphic field X, then there are automorphisms o in Aut’(M) and 7 in Aut,.(M)
such that o;'Xen (M) and o*wy=T1*0*w1, where n.(M) denotes the Lie algebra of
Aut (M). In fact, 07'X lies in the center of n.(M).

We will first reduce the proof of this theorem to solving the complex Monge-Ampére

equations

{ det(gi;-+@i7) = det(giz) exp{f —top—b6x — X ()}, ©2)

giz+¢i3 >0,
where t€[0,1], f and 8x are smooth functions determined by a suitably chosen metric g
(cf. §1). The equation (0.2) at t=1 is equivalent to (0.1).

We will use the continuity method to solve (0.2). More precisely, if ¢ is a solution
of (0.2) at t=1, we need to prove that, modulo automorphisms in Aut,(M), there is
a smooth family {¢,} such that ¢1;=¢ and ¢, solves (0.2) at t=s. Then the theorem
follows from the uniqueness of solutions of (0.2) at t=0 proved in [Zh]. There are three
main steps in constructing {y;}.

Step 1 (cf. §3). We introduce the following functional, which modifies the one used
before in [Au], [BM] and [T1]:

1
I($)-J(¢)=— / pePxTX @)y 4 / / ¢, ex X272 Ads,
M 0JM

where {¢,} is any path from 0 to ¢. This functional is monotone along any path given
by solutions of (0.2). Then by iteration, we can obtain an upper bound of the integrals
S e~P¥7, for some p>1, where @, are solutions of (0.2) at ¢.
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Step 2 (cf. §4). We introduce the relative extremal function and capacity to derive
an a priori C%estimate for solutions of the complex Monge-Ampére equations in (0.2).
The relative extremal function and capacity were widely used in [BT1], [BT2], [Kol] for
the existence and regularity of weak plurisubharmonic solutions of the complex Monge-
Ampére equations. Using the LP-estimate of e~*%¢ obtained in Step 1, we can prove that
¢; are uniformly bounded.

Step 3 (cf. §6). We prove by using the Implicit Function Theorem that (0.2) is
solvable for ¢ sufficiently close to 1. Since the corresponding linear operator does have
nontrivial kernel in this case, we have difficulties. We will imitate the arguments in [BM].
Using the transformation group Aut,.(M), we can find a global minimal point of the
functional I —J restricted to Aut,.(M). Then we apply the Implicit Function Theorem
to (0.2) at this minimal point.

Part of this work was done when the first author was visiting Beijing in the Sum-
mer of 1997 and 1998. He thanks both Peking University and Academia Sinica for the
hospitality. Both authors would like to thank the referee for many useful comments on
the first version of the paper.

1. Reduction to certain complex Monge—Ampére equations

Let (M, g) be an n-dimensional compact Kéhler manifold with positive first Chern class
€1(M)>0. Denote by Aut(M)° a connected component containing the identity of the
holomorphic transformation group of M. Let K be a maximal compact subgroup of
Aut®(M). Then there is a semidirect decomposition of Aut®(M) ([FM]),

Aut’(M) = Aut,. (M) x R,,,

where Aut,.(M)CAut®(M) is a reductive algebraic subgroup and the complexification
of K, and R, is the unipotent radical of Aut®(M). Let 7,.(M) be the Lie algebra of
Aut,.(M).

Choose a K-invariant Kahler metric g on M with Kéhler form wy€2mc(M). If g is
given by {g;;} in local coordinates, then

wg=v-1 Z giy dz'AdZ .
Since Ric(wy) also represents 2wci (M), there is a unique smooth real-valued function f

on M such that _
{ Ric(wg)—w, =+/—100f,

Jue efw.?:fM e =V,

(1.1)
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where wi=wgA...Awg. Recall that in local coordinates the Ricci curvature is of the form

R;;=—0;0;log det(gxp),
Ric(wy) = V=1 Ry dz*AdZ’.

Let w be a Kdhler-Ricci soliton with respect to a holomorphic vector field X on M.
Then w satisfies the equation
Ric(w)—w=Lxw. (1.2)

It follows from (1.2) that the (1,1)-form Lxw is real-valued, i.e. Lim(x)w=0, where
Im(X) denotes the imaginary part of X. Therefore, Im(X) generates a one-parameter
family of isometries of (M,w). Let K’ be the maximal compact subgroup of Aut’(M)
containing such a one-parameter family of isometries. Since K’ is conjugate to K, there
is an automorphism g€Aut’(M) such that o, 'X€n,, where 7, is the Lie algebra of
Aut,(M). Furthermore, o*w is a Kahler-Ricci soliton with respect to o, 1X. Thus, it
suffices to prove the uniqueness of Kahler—Ricci solitons with respect to any holomorphic
vector field Xen,. For simplicity, we may assume that c=Id and K=K".

Now Im(X) generates a one-parameter subgroup of isometries of wgy, or equivalently,
Lxwy is a real-valued (1,1)-form. So dixw,=0. Since c;(M)>0, there are no nontrivial
harmonic (0, 1)-forms. By the Hodge Decomposition Theorem, there is a smooth real-
valued function #x of M such that ix ng\/TI d0x, and consequently,

Lxwy=dix(wg) =v—1806x.

Moreover, X(f) is real-valued.
Since w also represents 2wc; (M), there is a real-valued function ¢ satisfying

w=wy =wy+v—188¢.

By adding an appropriate constant to ¢, we see that (1.2) can be reduced to the
complex Monge-Ampére equations

{ det(gi;+i;) = det(gi;) exp{f—o—0x — X (9)}, (13)

gis+¢iz > 0.

We will normalize 6x by

/e9X+X(¢)wZ=/ wg-
M M

In order to prove Theorem 0.1, it suffices to show that solutions of (1.3) are unique
modulo automorphisms in Aut,(M).
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Now we consider the following complex Monge-Ampére equations with parameter
tefo,1):

{ det(gi;+ i) = det(giz) exp{ f —t¢—0x — X ()}, (1.4)

Giz+¢i; > 0.
We observe that the equations in (1.4) are equivalent to the following equations on the
Ricci curvature:

R,iC(U.)¢t) —twg,~ (1 —t)wg = \/jl— ag(ax +X(¢t)) = wa¢t . (15)

It follows from (1.5) that X (¢;) is real-valued whenever ¢; solves (1.4) at t.
Set

Mx ={peC®(M,R) | wg=wy+v—100¢ >0, Im(X)(¢) =0}
The following lemma is very important for our further analysis.

LEMMA 1.1 ([Zh]). There is a uniform constant C(g,X) depending only on the
metric g and the field X, such that

sup | X(4)| < C.
Mx

We also have

PROPOSITION 1.1 ([Zh]). There is a unique solution ¢g of (1.4) at t=0 modulo
constants.

In the remaining sections, we shall prove that there is a unique solution of (1.4) at
each t€(0,1).

2. Openness at t<1
We adopt the notations in §1. Set
W ={¢€C**(M)|Im X (¢) =0},

where k is a nonnegative integer and a€(0,1).
We define an operator F on My x[0,1] by

F(¢,t) =log det(gi;+ps5) —log det(gi;) — f +top+0x + X (¢). (2.1)
Denote by L4, its Fréchet derivative on ¢. Then we have

Ligpy¥=A"Y+tp+X(4), (2.2)

where A’ denotes the Lapalacian operator associated to the Kéahler form wy.
The following is a simple observation (cf. {Zh]).
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LEMMA 2.1. Let ¢, p€W%*. Then Ly npE€WR™ and F(¢,t)eWR®.

For any ¢€ M x, we define an inner product (-,-) by
()= [ foetx X,

where f,gEW)l(‘o‘. Clearly, one can extend it to an inner product of a Hilbert space
containing M x as a subspace.

LEMMA 2.2, (i) Let peMx and I:(¢,t)=A’+X(-). Then for any two smooth,
complez-valued functions f,g,

[ sEeofe X Oug= [ Fhigpoe X g, (23)

In particular, for any f,geW%®,

/M 9L(g,1 fe* X Pp = /M fLgpge™* X @
(2.4)

=~ [ (01,000, t19) e X O,
M

Thas implies that Ly 4 is self-adjoint with respect to the inner product {-,-}.

(i) Suppose that ¢=¢; with t€(0,1) is a smooth solution of (1.4} at t€(0,1). Then
the first eigenvalue of L4 ) is positive.

(iii) If t=1, the first eigenvalue of Ly=L4 1) is zero, and there is a one-to-one cor-
respondence between Ker(Ly) and n,(M), where 1,(M) is the Lie algebra of Aut.(M).
Moreover, we have [X,Y]=0 for all Yen,(M).

Proof. (i) Without loss of generality, we may assume that either g or f has compact
support in an open subset where there is a local orthonormal coframe {w;} such that wg=
v—1w'A@*. Then we denote by X; the ith covariant derivative (6x + X (¢));. Integrating
by parts, we deduce

/M gmeex+x(¢)wg :/M g(m)eox+)c(¢)w$
Z/M(gﬂ-z+gXifi)e"X+X(¢)wg
== /M(giﬁ+gxiﬁ) efx tX@)yn +/M 9X, fie®FX@yn (2.5)
=— /M gifieex +X(¢)w$ - /M(ag’ 85 )y fx +X(¢)w$

= fM (Bf,09)w, P XDz
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Similarly, we have

/M fm€9x+X(¢)wg - /M(af’ 3g)w¢ e +X(¢)w$. (2'6)
Then (2.3) follows from (2.5) and (2.6), and so does (2.4).
(ii) Let A be the first eigenvalue of L4 ;) and v be one of its eigenfunctions, i.e.
AY+tp+ X () = — .
Then integrating by parts and using (1.5), we compute

)\/ ,(/JiwieGX'FXW)wZ
M
=— / (A'p+tp+ X (9))irh X FX(@n
M
:—/M(T/Jjjﬂﬁrl't@bi%)€9X+X(¢)wz—/M(Xﬂﬂzwij+in¢z¢j)€9X+X(¢)wZ (2.7)
:/M(Rij—t5ij—in)¢z¢jeex+X(¢)w$+/M¢ij 5569X+X(¢)w$

o R

Thus we prove A>0 for any ¢t<1, and A>0 if t€(0, 1).

(i) If t=1, it follows from (2.7) that 3, ; 1h;5|*=0 for any €Ker(Ly), ie.
> ¥;8/8z €n(M), where (M) is the Lie algebra of Aut®(M). Moreover, by Lemma
2.3.8 in [F'2], the imaginary part of 3, 1); 3/0z* is a Killing vector field of wy. This shows
that Y, v, 8/0z'€n,(M).

Conversely, given any Yen, (M), by Theorem A in the Appendix, the imaginary part
of Y is a Killing vector field associated with w,. By the Hodge theory and using Lemma
2.3.8 in {F2], we can have a smooth, real-valued function 9 such that i(Y)ws=0v. Thus
by (2.4) and (2.7), we have

/M(A’¢+t¢+X(¢))(A’¢+X(¢))69x+X<¢)w;
- /M(Alw+tw+X(¢))i Yy €9X+X(¢)wg

= / [pi; 2> X @ =0,
M

Since A>0, we must have A4+ X (1)=0, i.e. we have proved eKer(Ly).
It follows from Im(X)(1)=0, where 1 is given as above for Y, that [X,Y]=0, since

X;Y5:—Y; X5 = (X;Y7):— (V5 X5): = (X (¥) ) — (X (¥)): = 0. O

As a direct corollary, we have
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COROLLARY 2.1. Let ¢=¢; be a smooth solution of (1.4) at t. Then for any
PEWR®, we have

2
= 1
/ |a¢|268x+X(¢}wg>t(/ ’(;")2GSX+X(¢)UJ2———(/ w69x+X(¢)wg>).
M M V\im

PROPOSITION 2.1. Let ¢y, be a stooth solution of (1.4) at t=to€(0,1). Then there
s a small number §>0 such that there are smooth solutions of equations (1.4) for any
Se(to—(s,to].

Proof. Consider the map F(,t): W™ x [0, 1] > W* defined by (2.1). Let Ly t0)"
Wf(’a —WY* be the linearization of F(dy,,%o) on the first variable at (¢y,,t0). By
Lemma 2.2 and the standard regularity theory for elliptic equations, this linear operator
is invertible. Then the Implicit Function Theorem implies that there are C?“-solutions
@5 of (1.4) for any s€(to—46,tp), where §>0 is sufficiently small. Finally, it follows from
the standard regularity theory of elliptic equations that ¢, are in fact C°°-smooth. [

3. LP-estimates for functions e ¢

First we introduce two functionals on M x which are modifications of the corresponding
oues in [Au] and [T1]:

I9)= [ atetuy—ei X @) (3.1)
and .
J(¢) = /0 /Md;s(eexwg—eox+x(¢3)wgs)/\ds, (3.2)

where ¢, is a path from 0 to ¢ in Mx.
As a special case of Lemma 1.2 in [Zh], we have

LEMMA 3.1 ([Zh)). The functional J($) is well defined, i.e. independent of the
path {ps}.
Let .
F@)=10)- [ geag=— [ [ gemxsX @ nas.
M Y

By simple computations, one can show that, for any two wg and wy, in Mx, the cocycle
condition

F(¢) = F($)+Fy(¥) (3.3)

is satisfied, where F¢(1/;):—f01fM qﬁsegx+x(¢ﬂ)w;}sAds, and ¢, is a path from ¢ to ¥
in Mx.
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LEMMA 3.2. Let ¢, be a solution of (1.4) at t. Assume that {¢.} is a smooth
family. Then

d
SU6)=7(9))>0.

In particular, there is a uniform constant C such that

I(ge)—J(pe) <I(¢1)—JI(¢1) < C.

Proof. An easy computation shows
(1) =T6)= [ deeP XSy

=J{(¢y)— / pre®*wy
M

(3.4)
00~ [ oretup— [ (@r-gnet Xy,
M M
t
+/ ds/ ¢s(eax+x(¢1)w$1—69X+X(¢s)w$s).
1 M
It follows that
d d
E(I(%)—J((ﬁt)):*/ ¢ta(60x+X(¢t)wgt)
M
(3.5)
T /M ¢t(A,¢'t +X(‘l§t))eGX+X(¢t)wgt'
On the other hand, by differentiating (1.4) with respect to ¢, we obtain
NG+ X () +td, = . (3.6)

Plugging (3.6) into (3.5) and using part (ii) of Lemma 2.2, we get

d . . . . . .
(@)= J(9:)) = /M(A'cbt+X(¢t>+t¢t)(A’¢t+X(¢t)>eex+"<¢t)w¢t >0.
In particular, there is a uniform constant C such that

I(¢s)—J(¢¢) <I(p1)—J (1) <C.
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LEMMA 3.3. Let ¢ be in Mx. Then there are uniform constants Cy and C3 such
that

Cr(I($)-J(8)) < /qu(w;—w:;) <Co(I(9)~J(9)).

Proof. Since the proofs of the two inequalities are similar, we prove only the second
inequality. Let ¢s=s¢. Then by using (2.3) in Lemma 2.2 and Lemma 1.1, we have

SUG)=I@D) = [ (g4 X @)Xy,

=nv—1 / X+ X(2) 99, NOp AW} !
M

(3.7)
= sn\/—_l/ Ix XD AIGA (5w +(1—8)wg )"
M

n-1
>nCjv-1 / 8(])/\5(;5/\2 ST 1—s)" Wi Awp T
M

g
1=0

It follows that
ld
10)-3@)= [ 5 U@)-T()ds
o ds
n—1 )
>C§\/—1/ 8¢/\5¢/\Z whAwp I
M i=0
On the other hand, we have

n—1
/Mqﬁ(w;‘—w;f):—\/:f/M(ﬁaBd)/\Z w;/\w;_l_’

=0
:\/~1/ OPNIPN D whAwp™1 7,
M i=0
It follows from (3.7) and (3.8) that

| #p-wp < aatr@-a9)),
where Cs is a uniform constant.

COROLLARY 3.1. Let {¢:} be a smooth family of solutions of (1.4) (t€[to,1]). Then
there are two uniform constants C and C’, which are independent of tg, such that for
any t€(to, 1],

O0<tsupgp; <C and inf¢, <0, (3.9
M M
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and
—/ prwy, <C' and —/ torwy, <C', (3.10)
M M.
where M_={zeM|$:<0}.
Proof. First we shall prove that sup,,; ¢$>>0. Notice that by (2.3) in Lemma 2.2,

d S
&/ XX, = / Lg,n ™+ Xu =0,
M M

/60X+X(¢t)wzt:/ e9x+X(¢1)w21=/ efw;.
M M M

Integrating (1.4) multiplied by ef*x+tX(¢) we get
/ el ~tiyn :/ X +X (@ =/ efw?.
M M M

sup¢: 20 and inf¢, <O0. (3.11)
M M

and hence,

This shows that

Next by Lemmas 3.2 and 3.3, we see that there is a uniform constant C; such that

M

On the other hand, by (1.4), it is easy to see that

_/ t‘ptht:_/ t¢tef—t¢t—9x—X(¢e)w;l>__02/ t¢te‘t¢‘w;‘>—C’3,
M M My

where M, ={z€M|¢$;>0}. Hence we get
t/ $rw? < Ca. (3.13)
M

Let G(z,y) be the Green function associated to w, satisfying G(z,-)+Cs>0. Since
A¢p>—n (¢=d¢;), by the Green formula, we have

1 " 1 .
S}\llpcbs v /Mt¢wg —rwnax(V/M(G(z, . )+C5)A¢>wg)

eM
(3.14)

1 n
< v /M¢wg +nCs.
Combining (3.13) and (3.14), we see that there is a uniform constant C such that

tsupp < C.
M
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By Lemma 3.2 and (3.9), we also have

1 " 1 " B
_V/M¢w¢<01—v/M¢wg <Cl+nC5—sil\1/Ip¢<Cl+n05_Cﬁ_

Moreover,

—/ t¢w$=—/M t¢wg+/M towy

<tVCe +/ tpef "I X@)n <
My

PROPOSITION 3.1. Let {¢:} be a smooth family of solutions of (1.4) (t€lto,1]).

Then there is a uniform €>0 such that for any t€(to, 1],

/ exp{—(1+¢)totwy <C.
M

Proof. First we choose a uniform constant ¢ such that

This is possible since tsup,, ¢; is uniformly bounded by Corollary 3.1. Moreover, by

(3.10), we have
- /M tpefx TX (@2 L C).

It follows that
_/ 13X X @O < O
M

On the other hand, we have

/M(—é)’”(wz—w;”/\wg =v-1 / $)P88($) Awy "

—p\/—/ (—0¢)A(—0¢) Auwf™

_ 4p 3¢ \(p+1)/212, n
= O(—@ \P .
n(p+1)>2 /M| (=¢) Fwg

/|a ¢)(P+1)/2|2 n< (}’3;1)2 /M(_qg)pwg_

It follows that

(3.15)

(3.16)

(3.17)
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Since both 8x and X(¢) are uniformly bounded, we can apply the weighted Poincare
inequality in Corollary 2.1 and derive from (3.17)

/M(_qg)p+169x+X(¢)w$

2
n 1 _
< cp (_¢)p60x+X(¢)wg + v (/M(_(b)(P+1)/Zeax+Xw)wg)

b (3.18)
cp - n
<7 M(_¢)p60x+x(¢)w¢
1 — _
+V/M(_(b)peowxww;./M(_¢)eox+X(¢)wg,
where c is a uniform constant. Then by (3.16), we have
/ (—ypietxtX@)n < P / (—G)Petx X @y (3.19)
M tJm
where ¢ is a uniform constant which may be different from the one in (3.18).
By iterating (3.19) and using (3.16), we have
+1 )
(_&)p+1eax+x(¢)wn < cP(p+1)! _q;eox+X(¢)wn < P (p+1)! ) (3.20)
o @ ir M ¢ tp+1
Now we choose e<1/c. Then
N = (et)? VP o0
/ exp{—etd et +X0p -y~ (€L / (— )Pt X@p
M pmo P Jm
(3.21)
+oo 1
< P .
pg() (ec) 1—ce

It follows that
/ exp{(1+¢€)(—t¢)}wy :/ exp{(l+6)(—t¢)}e‘f+t¢eox+x(¢)wg
M M
<Cs /M exp{—et } e +X(d’)wg <C.

The proposition is proved. O
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4. Relative capacity and C?-estimate

In this section, we establish the a priori C%-estimate for solutions of (1.4). Such an
estimate is a corollary of the results in the last section and the estimates in [Kol] for
complex Monge-Ampére equations. For the reader’s convenience, we reproduce the C°-
estimate in [Kol]. It uses the relative capacity for plurisubharmonic functions studied in
[BT1], [BT2|. All results in this section can be found in either [BT1], [BT2] or [Kol].

For any compact subset K of a strictly pseudoconvex domain € in C", its relative
capacity in Q is given by

cap(K, Q)=sup{/K(\/:TBc'§u)n l u€PSH(R), -1 <u<0},

where PSH(?) denotes the space of plurisubharmonic functions (abbreviated as psh) in
the weak sense. For any open set UC (), we have

cap(U, Q) =sup{cap(K,Q) | KCU, K compact}.
Recall that the relative extremal function of K with respect to Q is defined by
uk(z) =sup{u(z) | ue PSHQ)NL>®(Q), u<0 and ui{x < —1}.

It is easy to see that u} (2)=lim,/,, ux(2') is a psh function, and it is called the upper
semicontinuous regularization. A compact set K is said to be regular if v} =ug. Here
are the main properties of uj (cf. [BT2], [AT]):

ux €PSH(Q), —-1<uk <0, lm uj =0,

z->0Q
(V=180u*)"=0 on Q\K,
ux =—1 on K, except on a set of relative capacity zero.
Moreover, we have
cap(K, Q1) = / (V106w = / (V=T 05w, )" (4.1)
Q K

LEMMA 4.1. Let Q be a strictly pseudoconvexr domain in C™ and u be a smooth
solution of the complex Monge-Ampére equation on 2,

det(uqz) = f.
Suppose that u and [ satisfy

cap(K,Q)1/"

_— 4.2
1+cap(K, )1/’ (42)

u<0, uflo)>c (0€Q), /fdngcap(K,Q)
K
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for any compact subset K of Q. If the sets
U(s)={z|u(z) <s}nQ”

are nonempty and relatively compact in Q'CQYCCQ for any s€[S,S+D)|, where S is
some number, then there is a constant Sg, depending only on ¢, A, D,Y,Q), such that

1Qn,f u > Sp.
Proof. This proof is from [Kol]. Set
a(s)=cap(U(s),Q) and b(s)= (V-1806u)".
First we claim that
t"a(s) <b(s+t), forall 0<t<S+D—s. (4.3)
Indeed, it suffices to prove that for any compact regular set KCU(s),
t"cap(K,Q) <b(s+t), forall0<t<S+D-s.

Let ux be the relative extremal function of K with respect to 2, and w=(u—s—t)/t.
Set V={z|w{z)<ux}NQ”. Then one can easily check that KCVCU(s+t). Moreover,
since U(s+t) is relatively compact in Q”, w=ug on dV. Thus, by the Comparison
Principle ([BT2]) and (4.1), we have

cap(K, Q) = /K (v—1 06ux )" < /V (V=T 00ux "
<[ (vTabuy ~en [ (v=Tozuy

<t (V-100u)" =t "b(s+1).
U(s+t)

The claim is proved.

Next we define an increasing sequence sy, s1, ..., Sy by setting sg=S and

s;=sup{s|a(s)< lim ea(t)}

+
t——)sjA1

for j=1,..., N, where N is chosen to be the greatest number satisfying sy <S+D. Then
we have

lim a(t) < lim ea(t), (4.4)
t—rs; tost
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a(s;) > ea(s;-2) (4.5)
and
a(S+D) < lirrgr ea(t). (4.6)

By using (4.3), (4.6) and (4.2), for any te(sy,S+D], we obtain

a(S+ D)™

—t)a(t) < D)< A DY—"T2) < Aea(t)a(S+ D)™
(S+D—t)"alt) b(S+D) a(S+ )1+a(S+D)1/" ea(t)a(S+D)
Letting t— sy, it follows that
S+D—sy < (Ae)™a(S+D)/™. (4.7)

Now we shall estimate sy —s. Consider two numbers S<s'<s<S+D such that
a(s)<ea(s'), and set t=s—s’. Then by (4.3), (4.2) and (4.4), we have

a(s)/"

t"a(s') <b(s) < Aa(s) Tha(s)i/"

< Aea(s')a(s)V/™.
Letting s—s:,; and s'—s7, it follows that
2
s;+1—85=1; < (Ae)/Ma(sj)M". (4.8)

Summing up (4.8) and using (4.5), we get

N-1 N—1 ,
t; <(4e)'/" 3 a(sjen)t/"
i=0 =0
N-2 rlna(sj+2) ) 2
< (Ae)”"(Z/ e™/™ dr 4+ 2a(S+ D)™ ) (4.9)
j=1 Ina(s;)

Ina(S+D) 2 2
< 2(Ae)'/ (/1 © e’/ dr +a(S+ D)V )
na

Making the change of variable y=e~7, (4.9) becomes

P a(s)™}
Sv=S=7  t;<2(Ae)"/" (/ y~(+/" ) gy +a(S+D)1/"2>
3=0 o(S+D)~! (4.10)

< 2(A6)1/n(a(S+D)l/n2+n2a(S+D)1/n2)‘

It was, however, proved in [AT] (also see [Be], or Theorem 1.2.11 in [Kol]) that

7

o

cap({u< s}NQY, Q) <

||’

w0
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where ¢/ depends only on c and €. It follows that cap({u< s} N, ) converges uniformly
to zero as s tends to —oo, so long as u satisfies <0 and u(o)>c. Hence, by (4.7) and
(4.10), there is a uniform constant Sp(c, A, D, ¥, Q) such that as S< S the following two
inequalities hold:

S+D-sy<3D, sy—S<3D.

Combining them, we will obtain a contradiction. This shows that 2> Sj and consequently
infor u> Sp. |

LEMMA 4.2. Let Q be a strictly pseudoconver domain in C", and u be a smooth
solution of the complex Monge—Ampére equation on Q,

det(u;) = f,
with || fllLe(q) <a for some p>1. Suppose that u satisfies
u<0 and u(o)>c (0€N).

Define U(s) as in the last lemma. If U(s) is nonempty and relatively compact in Q" for
any s€[S,S+D] for some S, then there is a constant So=Sp(c,p,a, D,V , 1), such that

iQanu> So(c,p,a,D, Y, Q),

Proof. Let ug be the relative extremal function of a regular set K with respect to €2,
and v=cap~/?(K,Q)ug. Then v is a psh function and satisfies

/(\/—1 351})”:1 and lim v=0.
Q

200

By Lemma 2.5.1 in [Kol], we have
A(U'(s)) € cexp{—2m]s|}

for some uniform constant ¢ independent of v, where A(U’(s)) is the Lebesgue measure
of the set U'(s)={v<s}. It follows that for any ¢>1, there is a uniform constant c’(g)
such that flv]|ze(n)<c'(g). Hence,

[l o du< A 210, (4.11)
On the other hand, we have
cap(K, @) (1+cap™/"(K, Q) / fdus< [ ol (1+[o1) £ dp
K K

(4.12)
< [+ s
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Combining (4.11) and (4.12), we deduce

cap(K,Q)'/™
< K,Q)————t—r.
/dev ACap( )1+cap(K,Q)1/"

Then Lemma 4.2 follows from Lemma 4.1. O
The following proposition was proved in [Kol].

PROPOSITION 4.1. Let (M,g) be a compact Kihler manifold and ¢ be a smooth
solution of the complex Monge—Ampére equations on M,

det(gi;+¢i3) = det(giz) f,
supy ¢ =0.

Then we have
lﬁfézc(Magaps ”fHL?(M))s

where p>1 and C=C(M, g,p, || f| L (m))-

Proof. Let €M be such that ¢(z)=infys ¢ and U be one of its neighborhoods.
Without loss of generality, we may assume that there is a smooth, bounded function
v such that wy=+/-1 00v on U, v<0 and v(z)<infay v—cy for some positive ¢o>0.

Hence,

v(z)+o(z) < iang(v+¢)—co.
Clearly, if we take D=cg~2¢e, S=v(z)+¢(z)+¢, u=v+¢, with <1, then U(s) as de-
fined in Lemma 4.1 is nonempty and relatively compact in U. On the other hand, since
A¢=—n, by the Green formula, we have

0=sup¢></ ow™+c.
M M

Note that in this proof, c, ¢, etc., always denote uniform constants depending only on M
and g. This implies that sup;(v+¢)>—c’. Then by the last lemma, v(z)+@(x)>—So
for some uniform constant Sy, and so the proposition follows. a

PROPOSITION 4.2. Let ¢=a¢, be any smooth solution of (1.4) at t. Then there is a
uniform constant C such that
sup |¢¢| < C.
M

Proof. Let ¢=¢—sup,, ¢. Then by (1.4), ¢ satisfies the complex Monge-Ampére

equations

{ det(gi1—+q§ij) =det(gi;) exp{f—t9¢—0x — X (¢)} = det(gi;)h, (4.13)

sup,s ¢ =0.
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By Proposition 3.1, we see that there are a small positive number ¢ independent of t,
and a uniform constant C;, such that

/ h1+5wg" < C 1-
M
Applying Proposition 4.1 to equation (4.13), we get
i}I\}Ifq; >-—Cs (4.14)
for some uniform constant C5. Hence by (3.11), we have proved

sup |¢| < Cs. 0
M

5. Higher-order estimates

In this section, we establish a priori C2- and C3-estimates for solutions of (1.4). Our
proof uses Yau’s arguments in [Ya].

PROPOSITION 5.1. Let ¢=¢; be any solution of (1.4) at t. Then there are two

uniform constants C' and ¢ such that

n+Ad¢y < Cexp{c(q&t—i]x\llf ¢t)}{1+exp(-—t ilr\ldf ¢t)}.

Proof. Given a peM, choose a local coordinate system (1, ..., 2, ) so that g;3(p)=0;;
and ¢;;(p)=6;;¢::(p). Then, following Yau’s computations in [Ya], we have

A'((n+A¢) exp{—cg})

> exp{ e} (A ~t9—x —X(9) =1’ nf Rug) ~coxp{—colnln+de)

1
inf R;5 — A
+(C+£z Rull) exp{ c¢}(n+ ¢) (; 1+¢ﬁ)a
where A’ denotes the Lapalacian operator associated with the Kéahler form wg.
Now assume that p is the maximal point of (n+A¢) exp{—c¢}. Then at this point,

we have ¢;;; =c(n+Ag¢)¢;. It follows that

9 Xe = i Xs = c(n+A9)$: Xz = c(n+A¢) X (4) < c(n+Ag) Sup 1X(@)l. (52
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Thus by Lemma 1.1, we have
A(-f+tp+0x+X(9)) = —Af+tAd+(0x +X())u

=—Af+tA¢+(Xg(grit+dra))i
= —Af+tA¢+ Xi grwi + ki Xg+ X5, (gha+Bra) (5.3)
S O1t(n+06) (sup | Xy | +£) +c(n+ Ag) sup | X (¢)
<C1+Ca(n+A9)

for some uniform constants C;, Cs. Inserting (5.3) into (5.1), we have

A'((n+A¢) exp{—cé})
> exp{—c6}(~C1=n?inf Rout) ~exp{—c6}Hn+ 5)(n+Cs)

+(e+inf Rigg) exp{—co}(n+A9) (Z 1 )

14z (5.4)
2 —Csexp{—c¢}—Cyexp{—cod}{(n+Ap)
1
+ (c+1171£ Rip) exp{—co}(n+A¢) (Z 1+¢ﬁ).
Choose ¢ such that c+inf; 4 R;;;72>1. Then by (1.4), one can obtain
A'((n+Ag¢)exp{—c¢}) > — exp{—c¢}(C3+Cs(n+Ag))
(5.5)

t
+C5 exp{—c¢)+ m ¢}(TL+A¢)1+1/(n_1).

Now applying the Maximal Principle to the function exp{—c¢}(n+A¢) at p exactly as
Yau did in [Ya], we can show that there is a C such that

n+Ad, < Cexp{c(d: —i}r\l/{f ¢¢) }{1+exp(—t i}\lef o)}
The proposition is proved. (W
Combining Proposition 5.1 with Proposition 4.2, we obtain

COROLLARY 5.1. Let ¢; be any solution of (1.4) at t. Then there is a uniform
constant C such that n+A¢, <C.

PROPOSITION 5.2. Let ¢; be any solution of (1.4) at t. Then there is a uniform
constant C such that [|¢:]|cs <C.

Proof. Let g;,=gi;+¢:; and
S= Z 97 g 7 g bk brat,
where (g'7) is the inverse of the matrix (gj;)-

Using Calabi’s computations and Corollary 5.1 as in [Ya], one can show that S<C
for some uniform constant C. Consequently, Proposition 5.2 follows. O
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6. Solvability of (1.4) near t=1

In this section, we shall prove that there are smooth solutions of (1.4) when ¢ is sufficiently
close to 1. This will be done by choosing a special Kahler—Ricci soliton of M with the help
of Aut,(M). Note that Aut,(M)C Aut(M) is a reductive subgroup with Lie subalgebra

mr (M) (cf. §1).
First we consider a functional F on Aut,.(M) by

F(o) =1(0"wg)~J(0"wg) = I{(wg 1) — I (W)
1
-, @ T [l [ e g,
M 0 M

where {1} is a path in M x from 0 to ¢+ and ¢+1p€ Mx is a smooth function defined
by

(6.1)

0*wy =ws+V~100¢ =wy+v/—188(¢+1).

Since (97'). X=X by part (iii) of Lemma 2.2, g*wy are all Kéhler—Ricci solitons with
respect to X. This implies that F is a functional defined on a set of Kéhler—Ricci solitons
with respect to X. By (1.4), ¢ also satisfies the equation

(wo+V-1009)" = wye XW)=v, (6.2)

LEMMA 6.1. The minimal value of F can be attained. In fact, F is proper.

Proof. By Lemma 3.3, we observe that
F(@) =Lwpr)=Twprs) > [ (G0 —31e) 20, (63)

Put G,={ocAut,(M)|F(o)<r} and E,={¢|wyt+y=0"ws, 0€G,}. Then by (6.3), we
have

/ (o+9P)(wg —wyiy) < L. forall y€E,.
M C1

Hence, there are two uniform constants, ¢ and c3, such that (by the same arguments as
in the proof of Corollary 3.1)

[ vy <e (6.4)
M

and

[ (6.5)
M.

where M_={zxeM |{<0}. By the Green formula associated with wy, we deduce from
(6.4) that

sup ¢ < / Ywytcy < eatey. (6.6)
M M
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On the other hand, since ¢ satisfies (6.1), using (6.4), (6.5) and the arguments in
the proof of Proposition 3.1, we can prove that

/ e“p'/’wg <5
M

for some p>1. Then Proposition 4.2 implies that

iII\I/Ifll) 2cg(r), forall y€E,. (6.7)
Hence, by Corollary 5.1 and Proposition 5.2, we have

[¥llcs Sez(r), for all Y€ Er.

It implies that E,. is compact in the C?-topology, and so is G,.. In particular, the minimal
value of F can be attained. U

LEMMA 6.2. Let Ly=Ay+X(-) and Ly=Ls+1. Then for any HeWS™ and
¢',¢"€Ker(Ly), we have
(i) ) o i
Re(Ly(09", ), ) = (009, 33" o, +Re(8(Lg), 89" )uy (6.8)
and, in particular, if Y=¢ €Ker(Ly),

L@(Re(a¢,,7 315’)%) - (63¢I, 85¢H )wa;; (69)

(i)
- /M B(00y, 09¢"),,,e?* +X (@) 7

(6.10)
— [ (@6 Re(06/,00").,) Loe P,
Proof. (i) Direct computations show that
X(0¢”7 8¢) = Xi(d);’,’(ﬁj)i =X; ¢;‘l¢ji
and
(O(X (%)), 0¢") = (Xiths) ;95 = Xi ;.
Hence,
Re(X(8¢",0v)) =Re(0(X (v)), 8¢"). (6.11)

On the other hand, we have

Ay(09,08") = (187 ) iy = (00, 009") +(8(Ds 1), 06"),
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and it follows that
Re(Ag(8¢", 0)) = (904, 034" ) +Re(D( D g1h), 08")). (6.12)
Combining (6.11) and (6.12), we obtain
Re(Ly(89",00)) = (00y,00¢" )+ Re(d(Lyt)), 0¢").
Now assume that y=¢’€Ker(Ly), i.e. Lo¢'=0. Then
X(0¢',09") = X;(¢147); = (X(¢"))s 6 = (X; 8} )i ¢ = X 0} &1,
and similarly, we also have
X(9¢",04') = X954}
We can deduce from these equations that
X (Re(0¢',0¢")) = 5X((0¢',0¢")+(84",0¢'))
=3(X(9¢',0¢")+X(9¢",0¢")) (6.13)
=Re(X(8¢',8¢")).
Since Lg1p=0 for =¢’, (6.8) becomes
Re(Ly(0¢',0¢")) = (00¢",00¢") =Re(Ly (04", 04')). (6.14)
Putting (6.13) and (6.14) together, we have
Ly(Re(9¢',0¢")) =Re(Ay (04", 04" ))+(0¢',0¢")+ X (Re(8¢', 0¢"))
=Re(Ly(0¢',0¢")) = (90¢', 00¢").
(ii) Let Lyyp=¢. Note that £eWy®. Since Lg¢""=—¢", we can derive

/M(¢’¢”-Re(8¢’, 8¢"))gefx HX @) yn

= — /M(¢IE¢¢”+RG(8¢,, 6¢I,))§GGX+X(¢)WZ

== /M(¢’§E¢¢”+Re(6(¢’§), 8¢"))e?x +X@)yn
+ [ o/ Rel(38,09) X O

M

:/ ¢' Re((0€,0¢"))e™ XD (by (2.4))
M

= [ o/ mel(on, 00" X0y
M

+ /M & Re((8(L ), 08")) e +X®1.
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Applying (6.8) in part (i), we have
[ (#6"—Re(08,00") Lopetr X O
M
B /M &' Re((0%,0¢")) e +*Pug + /M ¢ Re(Lg(8¢"",0)) e+ XDy
- [ #(000,008") e x0uy
M
:/ ¢ Re((,8¢")) e ¥ Wujp + / Ly Re((0y,0¢")) ™+ XDy
M M
——/ ¢'(08y',00¢" )P+ X(#)y2  (by (2.3) in Lemma 2.2)
M
- /M ¢'(80,00¢" ) e?+X (@)% (by Le¢'=0). O

LEMMA 6.3. Let wy be a minimal point of F. Then
(i) for any YeKer(Ly),

/ qswef)x-H(@S)w:bL =0;
M

(ii) the second variation formula is
D?F,, (¥, ¢') = / (141 Lyg) pyp'efPx +X(@)y7. (6.15)
M

Proof. Let ps be the one-parameter subgroup generated by the real part of (the
holomorphic vector field associated to) 6, and write

Wg, = 0t wys =we+V—100¢; =wys+v—100(¢+¢s).

Then one can easily see that ¢,|,_o=(d¢s/ds)|;_o=% modulo constants. Hence, by (6.1),

we have

d
:—F
O dS (QS)

s=0

d Ox+X s),
:_E /M(¢+¢S)e ** (¢+¢ )w¢s

it Ox+X(¢) n
s:0+/j\l¢sls:08 w¢
(6.16)

:—A¢(iw¢sés),s=oegx+X(¢)wg

= /M ¢I~/¢1peex+x(¢)w$.
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Notice that wg, satisfies (6.2). Differentiating (6.2) with respect to s at s=0, we
obtain

Loty =Dpyp+X () +9 =0. (6.17)

Inserting (6.17) into (6.16), we get

—'F(gs

Ox+X (¢ —
/qszpex @ =0.

(ii) Let 9,9’ €Ker(Ly), and let g, and g; be two one-parameter subgroups generated
by the real parts of (holomorphic vector fields associated to) 8¢ and G4’, respectively.
Set

ws,t = (0s0t) Wy = wep+v—1 6‘5¢>s,t =wg+v -1 85(¢+¢57t).

Clearly,

d
%¢s,t

=9

s,t=0

and

_wl'

s,t=0

d
a(]bs,t

Since wy,; satisfies (6.2), by differentiating (6.2) with respect to s, we obtain

0

st,t 53‘

¢s,6=0. (6.18)

Differentiating (6.18) with respect to ¢ yields

82 =0 =0
L,,, 'a—sgt‘fﬁs,t = (88$¢s,ta 20 r ¢s,t>‘ds t
Evaluating this at (s,¢)=(0,0), we get
52
= . 6.19
Lo Jst PR (0,0) ( ?'{)’ 88 d) ) » (6.19)
Combining (6.19) with (6.9) in Lemma 6.2, we obtain
! . .20
asat ¢s ¢| =Re(dy,dv'),, modulo Ker(Ly) (6.20)
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Now we compute

2

g
wF(Qth)

g - a
/M(¢+¢g,t)st,t <§ ¢s,t> 66X+X(¢”°)w:;t

(0,0) - _5.; (0,0)

8 8 .
— g [ (0+00) grua X0 | (by (618)

52
= /M¢£at_¢s,t

+ [ oW Lapetrx O

(0,0

80x+x(¢)wg+/ 1/,¢/69x+x(¢)w;
(0,0) M

= [ olRel@yp, 00) -9 L) X O
M
+ / P 2+ X@)yn (by (6.20))
M
= % /Md’((adll,aw)—*-(a'(l),61,[1/)+¢'I:¢1/)+¢[~,¢¢/)eex+)((¢)w;
+ [ Gwen O (by Ly =0, Lew'=0)
M
:%/ ¢il¢('¢)1/1/)60x+x(¢)wg+/ w,(/]'eﬂx-}-X((}s)wg
M M
=/ (¢¢'+%¢'¢)'l~z¢¢) ea"+x(¢)w; (by (2.4) in Lemma, 2.2). a
M

PROPOSITION 6.1. Let wy be a minimum point of F. Then there is a 6>0 such
that (1.4) is solvable for any te(1-4,1].

Proof. Let p=¢;—¢. Then (1.4) is equivalent to

{ (wg+v=1 809)" = w} exp{—t+(1-t)p— X ()},

~ (6.21)
w¢+\/—_1 ooy > 0.

Decompose ¢ into 8+ with feKer(Ly) and 1/;€KerL(L¢). Let Py be the projection

from Mx to Ker(Lg). Consider

(U—Py) <1og (w¢+\/_—1w25(e+«/3))n
]

+X(0+zﬁ)) = —tp+(1—t)¢. (6.22)

Since the linearization (I—FPy)L, along é at (¢, 0,1/;):(1,0, 0) is invertible in
KerL(Lé), by the Implicit Function Theorem, for any small 4 and £ close to 1, there
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is a unique solution d;t,o such that 9‘*"/;1:,9 solves (6.22). Then (6.21) is reduced to the
equation I'(¢,6)=0 on 6, where

T(t,0) = —— Py

(g LT 80(0-+1,5))"
1-t

B (op /1000 +B, ) (e —’l’w)) ~0. (6.23)

Moreover, we can compute
I'(1,0) = Py(As&1,0+X (£1,6)) -9,

where &; 9= (d1s,0/dt)|(1,0), and Ag is the Lapalacian operators associated to the Kahler
forms wg++/—1 65(9—%&1,9).
On the other hand, since §‘179€KerL (Lg), one can prove

E¢,§170 S KeI‘J' (L¢) (624)

It follows that
Ls(Dg&16(8")) € Kert(Ly), (6.25)

where Dg&, ¢ denotes the Fréchet derivative of &1 ¢ on 8. Moreover, by differentiating
(6.22) at (t,0)=(1,0), we have

Ly&16l(1,0)=—¢ € Ker™ (wy). (6.26)

Since
DgwAl,O(Ol) = 05

by (6.25), we get the Fréchet derivative of I'(1,6) with respect to 6 at (1,0) as
D3T(1,0)0' = DoI(1,0)|(1,0)(8') = Po((806',80¢1 0)) -0 (6.27)

Next we shall compute the Hessian of D2I'(1,0). By (6.27), for any ¢’,8"cKer(Ly),

we have
(D2T'(1,0)0",6")

:_/ 0/91169x+X(¢)wg+/ 0”(359',8551,0)69X+X(¢)wg
M M
:_/ 919/769x+X(¢)wg

M

- [ @0 Re(@,00") Lot e ¥ P (by (610))
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—__ / 0[0//69)( +X(¢)w$
M
+/ (00" —Re(80',00")) pe®*+X Dz (by (6.26)) (6.28)
M
— _ / glolleex—’—x(d))wz
M
1 7 T n
~3 /M $((86",80')+(00',00") + 0 Lyt +0'Ly8") X (@7
= / 9’9" Sx+X(¢) g — % / ¢i¢(0/0//)eox+x(¢)w$
M M
=— /}‘48’0”(1+—21-E¢¢) XX yp < 0.

So if the derivative DoI'(1, o) is invertible, then the equations (6.23) are solvable for any
t close to 1. This proves that there is a small number ¢ such that (1.4) is solvable for
any t€(1-4,1].

In general, we can use a trick in [BM]. For any small ¢, define we=(1—¢)w+ewsg.
Then (1—¢€)¢ is a solution of (1.4) at t=1 with w, replaced by w,. Moreover, analogously
to (6.27), we have

Dyl (1,0) = —(1—¢)Ly—1d = (1—£) D,I'(1,0)—e1d < 0.

This implies that DyT'c(1,0) is invertible in Aj(wy) for any €#0. Therefore, there are
solutions ¢7 of (1.4) for ¢ sufficiently close to 1 and with w, in place of w. Now it suffices
to prove that ¢f —¢; as e 0.

Notice that
d £ £
(Lo (¢9) =T (6)) 2 0.

It follows from this and Lemma 3.3 that

/M 0 (w2 —we) < 1 (T (65) — Jun (65))
<allu(1-€)8)—Ju (1-€)9))

< [ (1-eor-wp) <aldlcn
M
Hence, by the same arguments as in the proof of Corollary 3.1, we can prove that

O0<tsupg;<cys and infe;<O0, , (6.29)
M M
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and
/ —tgfwg: < ¢s, (6.30)

where M_={zxeM |$;<0}. Then arguing as in the proof of Propositions 3.1, 4.2, 5.2
and Corollary 5.1, we can deduce that

9% llce < c.
This shows that there is a sequence {¢;}—0 and a C%“-function ¢, (a€(0,1)) such that
65— ps)lcaa =0 as & —0.

By the standard elliptic regularity theory, ¢; is in fact a smooth solution of (1.4) at .
The proposition is proved. O

LEMMA 6.4. There is a small number §>0 such that there is a unique solution of
(1.4) for each t&(0,6).

Proof. Define a functional on W%* by

1
a(@)= [ [ duet X @y nds,
0JM
where ¢, is any path from 0 to ¢ on W)Q(’a. We define a normalized map
F(¢,t): W2 x[0,1] = W%*

by
F(¢,t) = log det(giz+:;) —log det(gs;) — f+tp+0x + X (d) —a(4).

Then by Proposition 1.1, we see that there is a unique smooth function ¢g such that
F(¢0,0)=0 and a(¢g)=0.

Furthermore, the linearization of F'(¢,t) on the first variable at (¢, 0) is given by

L(¢0v0)w:Atlu%d)‘*_X(w)—/M¢€0X+X(¢U)wgo-

Since this linear operator is invertible, by the Implicit Function Theorem and the stan-
dard regularity theory for elliptic equations, there is a small number é >0 such that there
is a unique smooth function ¢, satisfying F'(¢;,t)=0 for any 0<t<4d. Let

<Pt=¢t+g%¢—t2-

Then ¢ is the unique solution of (1.4) for any 0<t<8. 0
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Proof of Theorem 0.1. Suppose that w;,wy are Kdhler—Ricci solitons with respect
to X. As showed in §1, we may assume that X€n,, and that Aut,.(M) is the complex-
ification of the isometry groups of wy,ws. Choosing wg=w1, wzzwg+\/—_1 80¢, we can
easily see that (1.4) becomes

{ det(gi;+iz) = e~ X det(gi3), (6.31)

giz+¢i7 > 0.

Define

S(¢) = {t | there is a smooth path {¢s}:<s<1
such that ¢, solves (6.31) at s and ¢, =¢}.

Clearly, 1€ S(¢). By Propositions 4.2, 5.2 and Corollary 5.1, we have that S(¢) is a
closed set in [0, 1].

By Lemma 6.2, there is a 7€ Aut,.(M) such that the functional I—J attains its
minimum at 7. For simplicity, we may assume that 7=Id. Then by Propositions 2.1
and 6.1, we see that S(¢) is open. Hence, S{¢)=[0,1], and consequently, there is a
smooth family {¢;} such that ¢; solves (6.31) at t and ¢;=¢. By Lemma 6.4, however,
there is a small number §>0 such that equation (6.31) has a unique solution 0, for any
0<t<é. Then it follows from Proposition 2.1 that ¢;=0 for all 0<t<1, and consequently
¢=¢1=0. The theorem is proved. 0

7. Appendix

In this Appendix, we prove a structure theorem for the automorphism group Aut®(M)
of any compact Kihler manifold M admitting Kahler—Ricci solitons. This structure
theorem was used in the proof of Lemma 2.2 and in §6.

Let wy be a Kahler-Ricci soliton of M. We will adopt the notations in §2. As before,
we have the following Hermitian inner product on the space C*° (M, C) of complex-valued
functions:

(£,9)= [ 196+ XDz, for f,9€C(M,C).
M
Let L and L be two linear complex operators defined by
Lf=Af+f+(0f, 5(0x+X(¢)))%, for fe C*(M,C),

and
Lf=Af+f+(0(0x+X(4)),0(f))w,, for feC®(M,C),



UNIQUENESS OF KAHLER-RICCI SOLITONS 301

where A is the Laplacian of wg. One can check easily that
Lf=Lf, forany feC>®(M,C).

Using the same arguments as in the proof of Lemma 2.2, we can show (cf. Theo-
rem 2.4.3 in [F2])

LEMMA A.1. (1) Both L and L are self-adjoint elliptic operators with respect to the
inner product (-, ).

(2) Ker(L) is isomorphic to n(M) through the linear map ®: f—19f, where n(M)
denotes the Lie algebra of holomorphic vector fields, and 10f is the vector field of type
(1,0) defined by w(19f,Y)=0f(Y) for any vector field Y of type (1,0).

Let E) be the eigenspace of L with eigenvalue A. Then we define subspaces of Ker(L)
as follows:

Ey={fcKer(L)NKer(L)| f is a real-valued function},
Ej ={feKer(L)nKer(L)| f is a purely imaginary-valued function},
Ex={f|feKer(L)NAx}.
Put , _ ,
no={Y=10f| f€ Ep},
o ={Y=10f | fe Eg},
m={Y=19f| fEEx}.
Then by Lemma A.1, the above sets are all subspaces of n(M). Moreover, we have the
following Cartan decomposition of n(M).
LEMMA A.2. (1) n(M)=ny+n5+> 550 M-
(2) For each Yem,, [X,Y]|=AY.
(3) [n6>me]Cngs [mo,molCng and [mg, 75 ]C np-
(4) M, Mu] Cri-
Proof. Let Yen(M). Then by Lemma A.1, there is a unique smooth complex-valued
function feKer(L) such that
iywg =+v—10f.
Moreover,

Lf=(L—L)f=0x+X(#);fi— f;(0x+X());-

Using the identities
(0}( +X(¢))zj=0 and fijO,
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we deduce

(Lf)e=((0x +X(8));fi): — (f(0x + X(¢));):

(A1)
=(0x+X(9);f5:—F0x+X(9);: =X, Y]+

This shows that
10(Lf)=[X,Y]

is a holomorphic vector field. By Lemma A.1, we obtain
LfeKer(L), for all feKer(L),

i.e. Ker(L) is an invariant subspace of the operator L. So again by Lemma A.1, we see
that the restriction of L on Ker(L) has only finite, nonnegative eigenvalues A such that

Ker(L)=E;®»_ En,
A>0

and consequently,
n(M) =m0+ m- (A.2)

A>0

Let YEno. Then there is a smooth complex-valued function feKer(L)NKer(L), i.e.
[ satisfies
Lf=Lf=0.

It follows that
Lf=Lf=0,

and consequently,
L(Re(f)) = L(Im(f)) =0.
This shows that Ey can be decomposed into Eq=E{® E{/, and so we have
o = 1o+ 1o - (A.3)

Combining (A.2) and (A.3), we get

n(M)=ng+75+Y_ -
A>0

(2) Let Yen(M). Then by part (1), there is a unique smooth complex-valued func-
tion f€Ey such that Y=130f. Thus by (A.1), we have

AY;=Afr= (Ef)i = [X> Y],i~
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This shows that
[X,Y]=MAY, forall YEn,.

(3) can be proved as follows. Let Yeny. Then there is a smooth purely imaginary
function f such that Y=10f. It follows that

Ly(d¢ = 6iyw¢ =V -1 85f

This shows that Lywy is a purely imaginary two-form, and consequently, Re(Y) is a
Killing vector field. Thus, for any Y;,Y2€7y, [Re(Y1),Re(Yz)] is still a Killing vector
field. This proves that [Y3, Yz]€n{. Similarly, we can prove that

[M0:m0] Cmo and [, 75 ] C 7l

(4) is a direct corollary of the Jacobi identity and part (2). O

THEOREM A. If M is a compact Kdhler manifold having a Kdhler-Ricci soliton,
then the mazimal compact, connected subgroup of Aut’(M) is conjugate to the identity
component of the isometry group of M.

Proof. We use the same arguments as in the proof of Theorem 3 in [Cal]. First
by parts (1) and (3) of Lemma A.2, ng is the Lie algebra of the holomorphic isometry
group H(M,wy) of wy. Let G be a maximal compact, connected subgroup of Aut®(M)
with Lie algebra 7. Suppose that G 2 Ho(M, wp), where Ho(M,wy) denotes the identity
component of H(M,w,). Then there is a holomorphic vector field Y€} such that Y¢nyg.
Let

Y=Yg+Y+)_ Y5,
>0
where Yjeng, Yy'€ng and Yy€ny. Since Zy=+/—1 X €, Zy generates a one-parameter
group of isometries of M. It follows that

Ad(exp{tZo})(Y) =Y +Yy'+ ) eV Ivaed.
A>0

By taking appropriate linear combinations, we have
Yo+Yy'eq

and

Y,en, forany A>0.
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If 3750 Ya#0, however, then by part (2) of Lemma A.2, Zy and Y) would generate
a solvable, nonabelian Lie subalgebra of 7, contradicting that 7 generates a compact
group. So we have

Y ¥A=0 and Y=Yj+Yy.
A>0

On the other hand, by the assumption Y¢ng, Yy must be a nontrivial element of 7. Let
u be a smooth real-valued function of M such that Yy=18u. Then

2 (ulexpt¥3))) = Iuf*(exp(t¥g)) = Y3

Therefore, the one-parameter subgroup {exp{tYy}} cannot be contained in any compact
group, which contradicts the fact that G is compact. The contradiction shows that
H 0 (M 5 wg) =G. O
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