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1. Introduction

Let feS(R?) be a Schwartz function in the plane. A well-known inequality in elliptic
partial differential equations says that
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for 1<p<oo, where
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is the Laplace operator.

To prove (1) one just has to observe that

O*f

amlax2 = CR1R2 Afa

where

Rife)= [ LiOemta =12,

are the Riesz transforms, and they are bounded linear operators on LP(R?) [18].

An estimate of a similar flavour in non-linear partial differential equations is the
following inequality of Kato and Ponce [9]. If f, g€ S(R?2) and 13"’7({)::|§ | £(£), a>0,
is the homogeneous derivative, then
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for 1<p, <00, 1/r=1/p+1/q and 0<r<oo.

Heuristically, if f oscillates more rapidly than g, then g is essentially constant with
respect to f, and so D*(fg) behaves like (D°f)g. Similarly, if g oscillates more rapidly
than f, then one expects D(fg) to be like f(D%g), and this is why there are two terms
on the right-hand side of (2). In order to make this argument rigorous, one needs to
recall the classical Coifman—Meyer theorem [7], [11], [13]. Let m be a bounded function
on R*, smooth away from the origin and satisfying

1
B <
P"m(I S (3)
for sufficiently many 3. Denote by T,,(f,g) the bilinear operator defined by

Tn(f.9)(a) = [ mlem)f(€)an)e?™EP de @

Then, T,, maps LPx L9 L" as long as 1<p,q<oo, 1/r=1/p+1/q and 0<r<oo.

This operator takes care of the inequality (2) in essentially the same way in which the
Riesz transforms take care of (1). The details will be presented later on in the appendix
(see also [9]).

But sometimes (see [10]) in non-linear partial differential equations one faces the
situation when a partial differential operator such as

(DEDSF) (61, 62) = 61118 f (&1, &), @, B>0,

acts on a nonlinear expression such as the product of two functions. It is therefore
natural to ask if there is an inequality analogous to (2) for these operators. The obvious
candidate, according to the same heuristics, is the inequality

IDEDE(f9)ll- S IDEDS Fllp lglla+1£ 1o IDFDEgllg + 1D o D5 llg+ DSl 1D5 £ -
(5)
If one tries to prove it, one realizes that one needs to understand bilinear operators whose
symbols satisfy estimates of the form

1 1
< .
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Clearly, the class of symbols verifying (6) is strictly wider than the class of symbols

o 81 56
Iaf 11 8?22 a7]11 87722 m(

(6)

satisfying (3). These new m’s behave as if they were products of two homogeneous
symbols of type (3), one of the variables (£1,71) and the other of the variables (£2,72).

The main task of the present paper is to prove LP-estimates for such operators in
this more delicate product setting. Our main theorem is the following result:
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THEOREM 1.1. If m is a symbol in R* satisfying (6), then the bilinear operator Ty,
defined by (4) maps LPx LY—L" as long as 1<p,q<oo, 1/r=1/p+1/q and 0<r<co.

It will be clear from the proof of the theorem that the n-linear analogue of this result
is also true (see §8 for a precise statement). Particular cases of this theorem have been
considered by Journé (see [8] and also [3]), who proved that in the situation of tensor
products of two generic paraproducts, one has L?x L — L? estimates. Our approach
is different from his and is based on arguments with a strong geometric structure. The
reader will notice that part of the difficulties of the general case comes from the fact
that there is no analogue of the classical Calderén-Zygmund decomposition in this bi-
parameter framework, and so the standard argument [7], [11], [13] used to prove such
estimates has to be changed.

The paper is organized as follows. In the next section, we discretize our operator
and reduce it to a bi-parameter general paraproduct. In the third section we present
a new proof of the classical one-parameter case. This technique will be very helpful to
handle an error term later on in §6. §§4, 5 and 6 are devoted to the proof of our main
theorem (Theorem 1.1). §7 contains a counterexample to the boundedness of the double
bilinear Hilbert transform, and then, the paper ends with some further comments and
open questions. In the appendix we explain how Theorem 1.1 implies inequality (5).

Acknowledgement. We would like to express our thanks to Carlos Kenig for valuable
conversations and to the referees for their suggestions, which improved the presentation
of the paper.

The first two authors were partially supported by NSF grants. The third author is a
Clay Prize Fellow and is partially supported by a Packard Foundation grant. The fourth
author was partially supported by the NSF grants DMS 9985572 and DMS 9970469.

2. Reduction to bi-parameter paraproducts

In order to understand the operator T,,, the plan is to carve it into smaller pieces well
adapted to its bi-parameter structure. First, by writing the characteristic functions of the
planes (&1, 7m1) and (£2,72) as finite sums of smoothed versions of characteristic functions
of cones of the form {(£,7):|£|<Cn|} or {(&,71):1€]=Cnl|}, we decompose our operator
into a finite sum of several parts. Since all the operators obtained in this decomposition
can be treated in the same way, we will discuss in detail only one of them, which will
be carefully defined below (in fact, as the reader will notice, the only difference between
any arbitrary case and the one we will explain here is that the functions MM, SS, MS
and SM defined in §2 have to be moved around).
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Let ¢ and ¥ be two Schwartz bumps on {0,

1], symmetric with respect to the origin
and such that supp $C[—1 , %] and supp¥ C[3,2]. Recall the translation and dilation

operators 75 and D} given by

mwf(z) = f(z—h),
D2 f(a)=A"YP (A" z),

and then define
o (61,m)= / 2::' fl)ng"‘;}(nl)dkl

and

C" (E2vmn) = /R DE2, (E2) D d(n2) "

As we said, we will now study the operator whose symbol is mC'C". It can be written
as

Tucion (s £)(2) = | m{€n) DEE d(61) DI dm) D3 (62) Do dl)
x fL(€1,€2) fa(my, 1) €275+ de d dk' dk”
=/Rem(€,n)51,kck~ (€1, &) Do ki (11, 72)
x fi(€1,€2) fo(m, ma) ™4™ dé dny di' dk”
= / i, ) (f1x@r i) (€) (Fax®ap i) ()€ dg dn dk’ dk”,

where @y it -D2 k,¢®D2 % and Qg,kgku:=Dé_k,7,b®D;_kn¢.
In particular, the trilinear form

Avcion (f1, fa, f3) = /Rszc'C”(fnfz)(ib)fs(fE)dx
associated to it can be written as
/ Mk (€17 (Frx @1 ki) (€)
§4n+y=0

} (f2x o k) (M) (fs*®a ki) (7) dE dndry di di”,
where ®3 g4 =DL /@D ¢ and ¢’ is again a Schwartz function such that

supp’C [—1,~1] and ¢'=1 on [~2, 1], while mp, (&, n,7)=m(&, 1) Xe, i (€, 1,7)s
where Mg (€, 1,7) is a smooth function supported on

(7)

25upp(®1 g i (€) Bg, ks (1) B3 7 57 (7))
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which equals 1 on supp(@Lk/,ku (é) ag,kl7k// (n) 63’k/7k// (’y))
Then, we write (7) as

[ (), (), ()
3

X H (fj *@j,kl,kw)((l‘l, l‘”) - (Tl; y nf,,')) d’l’L; dn;' d.’l,‘l d.’L‘” dk, dk”

=1

= [ (2 2 ), (2, 2 ), (2, 2V )

3
X H (f;#®, ke ) (27 %2, 27% ") — (Q‘kln;, 2"“”71}')) dn'; dn da’ dz" dk' dk”
j=1

_ —3k'—3k" —K 1 o—k" 1 —k 1 o—k" 1 —K 1 o—k" 1
—/102 27 M e ((27°01,277 nY), (27%n5,27% ny), (27%n5,27° ng))
R

3
x 2202 11859, 5 5.5,) 47, dZ dE,
Jj=1

where
. ._o—k/29-k"/2 A
IRET Rt 2 T(o=kip, 2~k — (2- ¥ 2~y B k-

Notice that our functions @, ¢ are now L?(R?)-normalized. The above expression

)fiﬁj
can be discretized as

Z Aﬁl,ﬁ2,ﬁ3,k‘,['(fl7f27f3)7 (8)
(ﬁlyﬁz,ﬁ3,g,f)ezlo
where
Aﬁl,ﬁQ,ﬁs,E,r(fl’ f27 f3) = \/[0 1]102—3(k/+x/)2—3(k“+x”)mk/+;{”kzﬂ+xn(...)

3
x2(’cl+xl)/22(k”+x”)/2 H<f37 [0)) dl_/} dJ?dX

j=1

J, k452, 4+ X, 7+ )

Consequently, the operator Tr,cron (f1, f2) splits as

TmC'C”(flaf2): Z Tﬁlyﬁz,ﬁa,k’,f(fl’fz)’

(1,72, 7s, kT )EZ1O

. - . ,
where Tﬁ1,ﬁ2,ﬁ3,E, i is the operator whose trilinear form is Aﬁl,ﬁa,ﬁs, R Clearly, by Fatou’s

lemma it is enough to prove estimates for the operator

Z Tﬁl,ﬁg,ﬁ3,ﬁ,f(f1,f2), (9)

(ﬁ1,’fi2,ﬁ3)EZ6
k]| <N
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as long as they are independent of the constant N. Now fix a large constant NV and write

(9) as
Z ( Tﬁl fiz,7 k,f(fl’f2)>' (10)

(71,72, fi3)EZ® k| |T|<N

We also observe that by using (6) and integrating by parts several times, we have

1273593 e o ((27% 0, 275 ), (z—k’n;,rk”ng),(2~k’ng,2—k”ng’))|
I":I (11)
=1 1+|n1|)M

for M arbitrarily large.
We are going to prove explicitly that the operator

3 Tysarrfnfo)= > Tpr(fi.fo) (12)

|kl IT<N [BLIT) <N

satisfies the required estimates. It will be clear from the proof and (11) that the same
arguments give

:E: T, i KT

ELIN<N

3

H 1+|n [y100 z

J=1 [k, < N

(13)

LPxLa—L™ LPxLa—L™

for any (71,72, 73)€Z°. Together with (10) this would prove our desired estimates. It
is therefore enough to deal with

> Tepfu fo)
kLT <N

Fix now p and ¢, two numbers bigger than 1 and very close to 1. Let also f; and f; be
such that || f1[,=||f2]lq=1. We will show that

Z T_' _'(flyfz Sla (14)

kLTI <N

o0

where 1/r=1/p+1/q.
Using Lemma 5.4 in [1] and scaling invariance, it is enough to show that for every
set E3CR?, |E3|=1, one can find a subset E}C F3 with [Ej|~1 and such that

> Apr(fifo )| ST (15)

15|, <N
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where f3:=Yx E}- If this is true, then by using the symmetry of our form, the symmetry
of our arguments plus multilinear interpolation as in [14], we would complete the proof.
In order to construct the set Ej we need to define the mazimal-square function and
the square-mazimal function as follows.
For (#/,z")eR? let

MS fl’ q)1,1;+5t',l_‘+5:,171 >|2 1 " 1/21 ’
(f)(, ") =SS ,2 > sup S Lo (@)) 11,,,(@)
k” 1 x )\ 1/1
and
oo @y iz s ol 2
( Sup sup ——— IRy, (o >) 112
SM(p)( )= (3o 022 2 11,0 (@)
P

Then, we also define the double square function,

2 1/2

|<f3,<I> - "f;>)
ss<f3><x',:c">:=( > sup Ry () (m">) ,

kU KLY ;'275:,173

where in general, I, ; is the dyadic interval 27*{l,[+1]. Finally, we recall the bi-parameter
Hardy-Littlewood maximal function
M(g)(e,"):= sup / lo(y/, ") dy' dy”,
@zyer Rl Jr
where R ranges over all rectangles in the plane whose sides are parallel to the coordinate
axes.

The reader should not worry too much about the presence of the suprema over s, A,
vy, V2 and vz in the above definitions. They need to be there for some technical reasons,
but their appearance is completely harmless from the point of view of the boundedness
of the corresponding operators.

It is well known that both the bi-parameter maximal function MM and the double
square function SS map LP(R?) into LP(R?) whenever 1<p< oo, see [2].

Similarly, it is not difficult to observe, by using Fubini’s theorem and the Fefferman—
Stein inequality [5], that the operators MS and SM are also bounded on LP(R?) if
l<p<oo (first, one treats the SM-function iteratively, as we said, and then one simply
observes that the MS-function is pointwise smaller than SM).

We then set

Qo ={z€R*:MS(f1)(z) >C}U{xcR2:SM(f2)(x)>C}
U{z€R?: MM(f,)(z) > C}
u{zeR*: MM(£)(x) >C}.
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Also, define
Q= {zeR?: MM(1g,)(z) > 5} (16)

and finally
Q {.’L‘ S R?: MM 19 >3 }

Clearly, we have l§l< %, if C is a big enough constant, which we fix from now on. Then,
we define Ej:=FE3\Q=F5NQ° and observe that |E}|~1.

Since the form Z, ELIT<N AE, 7(f1, f2, f3) is an average of some other forms depending
on the parameters (i, X, U, U, U3} €[0, 1], it is enough to prove our inequality (15) for
each of them, uniformly with respect to (3, X, i1, a, 73). We will do this in the particular
case when all these parameters are zero, but the same argument works in general. In
this case, we prefer to change our notation and write the corresponding form as

Aﬁ(fl,f:),fs):/ Og(f1, f2)(2) f3(z) dz
(17)
Z |I |1/2 {(f1,25){f2, ®5,)(f3, ®5,),

where the P’s are bi-parameter tiles corresponding to the indices &', !, k”,I"”. More pre-
cisely, we have

Bi=(P,P)y=(27F[l,I'+1]x2F -1, 1] 27" 1" 1" 4 1] x 2¥" 3
Bo=(P),PY)=(27F [, +1]x2¥ [3,5],27* [z" 1" +1)x2¢" (-1,
B= (P}, Py)= (27K [l +1]x2¥ [T, 1], 27¥ (1", 1" + 1] x 2¥ [ -

and |I5|:=|I5 |=|Ip |=[I5 |=2"%27F"

P will be a finite set of such bi-parameter tiles. Note that ]31, ]32 and 133 are
the bi-parameter Heisenberg boxes of the L2-normalized wave packets ® By 5, and & By
respectively. These new functions <I>13]_ are just the old functions q’j,E,f previously defined,
for j=1,2,3. We therefore need to show the inequality

Z < 115 |1/2 [(f1, @5 ) 1(f2: @) 1{f3: ®5,)| S 1 (18)

in order to finish the proof. This will be our main goal in the next sections.
At the end of this section we would like to observe that it is very easy to obtain
the desired estimates when all the indices are strictly between 1 and co. To see this, let
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fieL?, foe L9 and fs€L", where 1<p, q,r<oco with 1/p+1/g+1/r=1. Then,

]L2Hﬁ(f1’f2)($)f3(x) da

< Z; ﬁl/_zufl’@ﬁ‘)‘ [(f2: @5, 1{f3, @ 5,)|

[(F1: 50| (2 @5,)] [(f3, D)
Lz _.Z_. IIl |11/32 |I Il}/DZ lelll/Dz Xlﬁ(x)dl’

< / MS(f1)(e) SM(f2)(2) SS(fs) («) de
R2

SIMS(f1)lp ISM(f2)llq SS(f3)l|-
SIAallpll f2llg 1 f5lle-

3. Proof of the one-parameter case

In the particular case when P=P’'xP” and all the functions f; are functions of tensor
product type (i.e. f;=f;®f}, j=1,2,3), our bi-parameter paraproduct splits as

Af)(fl)fZafi%) AP’(flaf%fS)AP”( ” ” él)

In this section, we describe an argument which proves LP-estimates for these one-
parameter paraproducts Ap- and Ap~. On one hand, this method will be very useful for
us in §6, and on the other hand, it provides a new proof of the classical Coifman-Meyer
theorem. A sketch of it in a simplified “Walsh framework” has been presented in the
expository paper [1].

If I is an interval on the real line, we denote by X;(z) the function

where M >0 is a big and fixed constant. For simplicity of notation we will suppress the
“primes” and write (for instance) Ap/(fi, f3, f5) simply as

Ap(f1, fa, f3) =Y ‘—I%g<f1,¢P1>(f2,‘1>P2>(f3,‘1’P3>‘ (19)
pep 'P

Notice that in this case, as P runs inside the finite set P, the frequency supports supp 3 P
j=2,3, lie inside some intervals which are essentially lacunarily disjoint, while the fre-
quency intervals supp ®p, are all intersecting each other.

In order to deal with the expression (19) we need to introduce some definitions.
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Definition 3.1. Let P be a finite set of tiles as before. For j=1 we define

. L ’<fjanPj>l
sizep (f;) = Sup S

and for j=2,3 we set

1
sizep(f;) :=sup —
pep |Ip|

K@) \/2
( Z |1p] 11”')

Ip/Clp

1,00

Also, for j=1,2,3 we define

s~ Wl i)

1
I

b
1,00

energyp(f;) := sup
DCP

PeD
where D ranges over all subsets of P such that the intervals {Ip: P€D} are disjoint.
The following John-Nirenberg-type inequality holds in this context (see [14]).
LEMMA 3.2. Let P be a finite collection of tiles as before and j=2,3.» Then
' 1 . 1/2
siser (1)~ sup (WI;I )
»<Ip
We will also need the following lemma (see also [14]).

LeEMMA 3.3. Let P be a finite collection of tiles and j=2,3. Then, we have

(5 )

pClp
The following proposition will be very helpful.

S el

1,00

PRrROPOSITION 3.4. Let 7=1,2,3, P’ be a subset of P, n€Z, and suppose that

sizeps (f;) <27 "energyp(f;)-

Then, we may decompose P'=P”"UP"" so that

sizepr (f;) <277 ' energyp(f;) (20)

and so that P"' can be written as a disjoint union of subsets T€T such that for every

TeT, there exists an interval It (corresponding to a certain tile) having the property

that every PET has IpClr, and also such that

3 g2 (21)

TeT
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Proof. The idea is to remove large subsets of P’ one by one, placing them in P’/
until (20) is satisfied.

Case 1: j=1. Pick a tile PEP’ such that |Ip| is as big as possible and such that

oS s 2ot enengy 1)
Then, collect all the tiles P'éP’ such that IpsCIp in a set called T, and place T in P,
Define IT:=Ip. Then look at the remaining tiles in P’\T and repeat the procedure. Since
there are finitely many tiles, the procedure ends after finitely many steps producing the
subsets T€T. Clearly, (20) is now satisfied, and it remains to show (21). To see this,

one can write
Z IIT|: Z ]‘IT Z IIT

TeT TeT TeT
since by construction, our intervals Ir are disjoint. Then, the right-hand side of the

1

)
1,00

above equality is smaller than

<2m

~
1,00

) (I3 Xr)

7] b

2" energyp(f;)~"
TeT

Case 2: j=2,3. The algorithm is very similar. Pick again a tile P€P’ such that
|Ip| is as big as possible and such that

1 (i, @) /2
<Z T 1)

— > 27" lenergyp(f;).
\p| IpCI
pClp

1,00

Then, as before, collect all the tiles P'€P’ such that Ip»C Ip in a set named T, and place
this 7' in P"’. Define, as in Case 1, Ir:=Ip. Then look at the remaining tiles P’\7T and
repeat the procedure, which of course ends after finitely many steps. Inequality (20) is
now clear, and it only remains to understand (21).

Since the intervals It are disjoint by construction, we can write

Z IIT| = Z 1rp Z 1IT

TeT TET 1 TeT 1,00
1 @)\
<2"energyp(f;)* Z —_— Z Ki—~Pll11 . iy
rey [p| i 1

TeT IP;QIT el 1,00
S 2 energyp(f;) 71 D UshXigd y

7T ‘ | 1,00
S2n

by using Lemma 3.3, and this ends the proof. O

By iterating the above lemma, we immediately obtain the following consequence:
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COROLLARY 3.5. Let j=1,2,3. There exists a partition

P— P,
nez

such that for every neZ we have

sizep,,(f;) < min{27 " energyp(f;), sizep (f;)}-

Also, we may write each P, as a disjoint union of subsets T€T,, as before, such that
STl
We now prove the following proposition.

PROPOSITION 3.6. Let P be a set as before. Then,

Z 12(fl,‘PPl)lI<f2,<1>p2)ll(f3,<1>p3I<Hs1zep fi) " Penergyp(f;)%  (22)
< [Tp/

7j=1
for any 0<0;,02,03<1 such that 6,+602+03=1, with the implicit constant depending
on 93‘, j=1,2,3.

Proof. During this proof, we will write for simplicity
S;:=sizep(f;) and E;:=energyp(f;)

for j=1,2,3. If we apply Corollary 3.5 to the functions f;/E;, j=1,2,3, we obtain a
decomposition
P= (P

nez

such that each PJ, can be written as a union of subsets in T, with the properties described
in Corollary 3.5. In particular, one can write the left-hand side of our described inequality

(&0l B o) (o9

E\EyEy Z Z Z |IP|1/2
n1,nz,n3 TET™1:"2:"3 PcT

where T"l‘"2’”3:=T}llﬂTizﬁT23. By using Holder’s inequality on every T € T"1:72:73

together with Lemma 3.2, one can estimate the sum in (23) by

(23)

E\E;B3 Y 27m27m27™ N~ |Ip, (24)

ni,ng,ns TeTn1:m2:m3



BI-PARAMETER PARAPRODUCTS 281

where (according to the same Corollary 3.5) the summation goes over those ny,n2,n3€Z
satisfying
S,
27 < =L 25
SE (25)
On the other hand, Corollary 3.5 allows us to estimate the inner sum in (24) in three
different ways, namely
Sl =123,
TeTm1n2:73

and so, in particular, we can also write

S0 Ip Samognatagnebs (26)
TeT" 17273
whenever 0<61,0;,03<1 with 6; +65+603=1. Using (26) and (25), one can estimate (24)
further by

Sl 1-6, 52 1-65 52 1-63
E\EyE; Z 9—n1(1—-61) 9g=—na(1-62) 9g—na(l- 03)<E1E2E3< ) (E_2> (E)

ni,n2,n3

which ends the proof. O

Using this Proposition 3.6, one can prove the LP-boundedness of one-parameter
paraproducts, as follows. We just need to show that they map L' x L!— L}/%% because
then, by interpolation and symmetry one can deduce that they map LPx L?— L" as long
as 1<p,g<oo, O0<r<oo and 1/p+1/g=1/r.

Let f1, f2€L" be such that || fi|li=]f2]1=1. As before, it is enough to show that
given E3CR, |E3|=1, one can find a subset E5{C E; with |E4|~1 and

Z Ip |1/2 [{(f1,@p)| |{f2, ®p,)| |{f3, ®p,)| S 1, (27)

Pep

where f3:=y B} For we define the set U by
U:={zeR:M(f1)(z)>C}lU{zeR: M(f2)(z)>C},

where M(f) is the Hardy-Littlewood maximal operator of f. Clearly, we have [U|<1 if
C>0 is big enough. We define our set E5:=FE3NU® and remark that |Ej5|~1.
Then, we write

P= P,

d>0
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where

. e
P, .= {pep;MI_P_’__)Ngd}_
|Ip|

After that, by using Lemma 3.3, we observe that sizep,(f;)<2¢ for j=1,2, while
sizep,(f3) <27 N for an arbitrarily big number N >0. We also observe that

energyp, (f;) S 1M (fi)ll1,e0 S I fill1=1.

By applying Proposition 3.6 in the particular case 91=02=63=%, we get that the left-
hand side of (27) can be majorized by

227 ll,z 1 @) [(f2, @) |(f3, Bra)| S 3 2243224/3972N8 g

d>0 PEPy d>0

as wanted, and this finishes the proof of the one-parameter case.

The reader should compare this Proposition 3.6 with the corresponding Proposi-
tion 6.5 in [16]. Our present “lacunary setting” allows for an L!-type definition of the
“energies” (instead of L2-type as in [16]), and this is why we can obtain the full range of
estimates this time.

4. Proof of Theorem 1.1

We reduced our proof to showing (18). Clearly, this inequality is the bi-parameter ana-
logue of the inequality (27) above. Unfortunately, the technique just described in §3, so
useful when estimating (27), cannot handle our sum in (18) this time. In fact, we do
not know if there exists a satisfactory bi-parameter analogue of Proposition 3.6, and this
is where some of the main new difficulties are coming from. Hence, we have to proceed
differently.

We split the left-hand side of that inequality into two parts,

o= Y o+ Z = I+11, (28)

B IzNQe#m  IpnQe=

where () is the set defined in (16).

5. Estimates for the term I

We first estimate the term I. The argument goes as follows.
Since I5NQ°#2, it follows that [I5M8|/|15/< 155, or equivalently,

N1 > 1551151
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We are now going to describe three decomposition procedures, one for each function
f1, fo and f3. Later on, we will combine them, in order to handle our sum.
First, define

Q= {xeRZ:MS(fl)(I) > ;}

and set
T, ={13€§: ‘IﬁﬂQll > 1%6'[}3”’
then define o
Q= {.’EER2MS(f1)($) > 2—2}
and set

Ty = {ﬁ€§\T1:|Iﬁﬂﬂz| > -1(1)—0|I}5'|},

and so on. The constant C'>0 is the one in the definition of the set Ej in §2. Since there
are finitely many tiles, this algorithm ends after a while, producing the sets {,} and
{T.} such that ﬁ:UnTn.

Independently, define

Q’lz{xeRQ:SM(fz)(x)> '20—1}

and set
T, ={PeP:|I5nQ| > 15115},
then define
h= {x€R2:SM(f2)(:c) > %}
and set

b= {PeP\T}:|I5ND| > 15115},

and so on, producing the sets {$2,} and {T’} such that P={J _T/,. We would like to

have such a decomposition available for the function f3 also. To do this, we first need to

construct the analogue of the set Qg for it. Pick N>0, a big enough integer such that
99

for every P€P we have [I5NQ"% 1> 155 1], where we defined

Q" v ={xeR?:88(f3)(x) >C2N}.

Then, similarly to the previous algorithms, we define

N
A = {x€R2:SS(f2)(x) > 92—21—}
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and set
T yo1 = {PEP: | IsNY 511> 1551151),
then define
” 5 cov
—N42 = zeR SS(f3)(.T) > —22—
and set

T nya = {PEP\T” oy 150 ol > 155151}

and so on, constructing the sets {Q/} and {T,} such that ﬁ:UnTZ.
Then we write the term I as

Y X e el el 2l 5l )
n12>0 e, ..o F
n3>—N

where T, n, ny :=Tr,NT;,,NT; . Now, if P belongs to Ty, ny.ns, this means in particu-
lar that P has not been selected at the previous n1 —1, na — 1 and n3 —1 steps, respectively,
1
which means that 15N, —1]< 15515l 15 ﬂQ’2 <ol and [I5NQ 1| <1551 5],
or equivalently, |[IzNQNS, _y|> 25|15, [[pNUL > 2|15 and |IzNQ°C_|> 2915

But this implies that
HsNQ5 NS NQe. 1I>100]I [ (30)

In particular, using (30), the term in (29) is smaller than

E § 1 c c
II_‘g/Q|<f17¢ﬁ1>[|<f21¢ﬁ2>|l<f3a¢ﬁ3>lllﬁmg lmg2 109;:3—1'
P

ny,ne>0 fe
’IL3>—N

- /| S () U 0 (s, 2 (o) de

”n
n1,n2>>0 n1 1Ne 2 lmﬂng 1 Ppe €Thningm
ng>—N 2m38

z / o o e o nsMS(fl)(:v) SM(f2)(z) SS(f3)(z) do (31)

n3>—N

§ : 2—n12——n22—nleTM,n2’n3 ,

n1,n2>0
n3>—N

n1,n2,n3

where

QTnl,nzma = U ]}5
PeTny ny,n3
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On the other hand, we can write

(0T, 1y ] <127, [ < {2 €RZ: MM(xg, ) (&) > 155}
2 C n
§|9n1|: z€R MS(fl)(.’E)>—2n—l 52 P
Similarly, we have
‘QTnl,ng,n‘g' S 2"2‘17
and also
| | S 2ne

n1,m2,n3
for every a>1. Here we used the fact that all the operators SM, MS, SS and MM are
bounded on L*® as long as 1<s<oo, and also that |E5|~1. In particular, it follows that

lQT l S gmip9nagdz gnaabds (32)

n1.M2,M3

for any 0<01,92,93<1 such that 91+02+03:1.
Now we split the sum in (31) into

—Mi1o—N29—"N3 —ni19—n29—Nng
> 22T, [+ Y 27T, L, (33)
ni,n2>0 ni,Nng>0
n3>0 0>n3z>—-N

To estimate the first term in (33) we use the inequality (32) in the particular case 1=
02:% and 03=0, while to estimate the second term we use (32) for 6;, j=1,2,3, such
that 1-pf; >0, 1—-¢f2>0 and afz—1>0. With these choices, the sum in (33) is O(1).
This ends the discussion of the term I.

6. Estimates for the term II

It remains to estimate the term II in (28). The sum now runs over those tiles having the
property that I5CQ. For every such P there exists a maximal dyadic rectangle R such
that Iz;CRCQ. We collect all such distinct maximal rectangles into a set called Rpax-
For an integer d>1, we denote by anax the set of all R€ R, such that 29RC Q and
d is maximal with this property.
By using Journé’s lemma [8](*) in the form presented in [6], we have that for every
>0,
S RIS 2740l (34)

RcRé

max

(*) The use of Journé’s lemma in estimating this error term can be replaced by a simpler argument,
which works in the multiparameter setting as well. Therefore, the proof presented in this paper readily
extends to three or more parameters. The details will appear elsewhere.
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Our initial sum in the term II is now smaller than

S Y S sl 81 Us ) (35)

dz1 ReRd . IsCRNQ

max

We claim that for every Re R, we have

) Fltl/;m,@ﬁl)l|<f2,<1>,32>|t<f3,<1>,33>|52-”dm1 (36)
I15CRNQ

for any number N>0. If (36) is true, then by combining it with (34), we can estimate

(35) by
33 2 MR =S oM ST R Y Mg,

d>1 ReRd,, d>1 RERY,, d>1
which would complete the proof.
It remains to prove (36). Fix R:=IxJ in R¢ Since 24R:=Ix JCQ, it follows
that 2RNE}=@, and so XE,=Xg,X(ixJyc- NOW we write

max-*

X(PxJye = Xfe T Xje = Xje X je:
As a consequence, the left-hand side in (36) splits into three sums. Since all are similar,

we will treat only the first one.
Recall that every I is of the form Is=1Ip'x Ips, and let us denote by £ the set

L:={Ip:I5CR}.

Then split
L= Lq,,

d; >0
where

La, {K'ec l_‘K—ll ~2d1}

and observe that

YIS (37)

K’Gﬁdl
Then, we can majorize the left-hand side of (36) b;

Y Y sl @) e @) (s, )]
115 | 115172

d120 K'eLy, IsCR
IPIZK

’Z Z Zupl 11/2

d120 K'€Lq, I5CR
IP/_K’

{(f1,@p;) (f2,®pp)
|< e >’ |< [Tp 172 "I’Pé'>

(f3,®py) B
IIP"1/2 s * P )
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where we redefined f3:=x By X e+
Let us observe that if P is such that Ip =K', then the one-parameter tiles PJ’» ,
=1,2,3, are fixed, and we will denote for simplicity & p]{:IQ’;(,. We also write
PK/:Z {P”: 113 QR and Ip/—_—KI}.
With this notation, we rewrite our sum as

> S 3k

d120 K'€Lq, PrePy

fJ7 K’
< K/|1/2 ’q)P;I ) (38>
Next we split Px/ as

d
Py = | P%,
da 20

where

P = {P”eP uCin ~2d2}
As a consequence, (38) splits as

Hp|
IPILADY Z ,IP,,

f]v K’
< \K'|L/2 » &Py
d1220 K'Gﬁd d2220 Pre
|/ ®
_ l MDY TKS K’
=y > K > |1p~|1/ H < T p>| (39)

d1 >0 KIELdl P/IEUd2<d1P
(> D) pr
|K'|1/2 PIry

/

DDLU o=
20 K'€La, P7eUg,q4,P K’

To estimate the first term on the right-hand side of (39) we observe that

<f 1, (I)K ')

size d
Uay<a, P KI( IK”P/2

. f27®K’ < di1+d
31zeUd2<d1 K’( iK/11/2 N2 3

< 2d1+d,

~

<f37 (I)K’
|K/I1/2
where N is as big as we want. Similarly, we have
fl, Q}{’
'K/l1/2

size
Ud2 <dy K’

< 9ditd
energy,, _, p <2 |J1,

energyUd2<d1P IK’|1/2
< f3) QK'

N(di+d
e ) 52T

)
{f2, ®%) )5 gdit+d| g
)<

ener
gyUd2 <dp K/
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Using these inequalities and applying Proposition 3.6, we can majorize that first term by

Z Z ‘K/|2d1+d2d1+d2—N(d1+d)!Jl=2—(N—2)d|J| Z 2—(N——2)d1 Z IKI‘

4 >0 K'eLq, di20 K'eLa,
S 2—(N—2)le‘ Z 2—(N——2)d1 |I|
430 (40)

SR |
=2~ (V=2 R,

also by using (37). Then, to handle the second term on the right-hand side of (39), we
decompose

U P2 =UPxq,, (41)
d22d; ds

where P g g, is the collection of all tiles P"e(J d2>lefg, so that 2% (K'x Ips)C( and
d3 is maximal with this property.
It is not difficult to observe that in fact we have the constraint d; +d<ds. Taking
this into account, the second term can be written as
f 7 K ’
< |K'[1/2 »@py )|

K/
ISP o=
Now we estimate as before the sizes and energies as follows:

di>0 K'€Ly,  ds>di+d P"€Py
1
. (.fl’q)K’> < 9ds
SlzePK’,dg( [K1/2 )~2 J

. (fZaq)%{’> d.
SlzePK"d3(__—[K’|1/2 < 2%,

. <f3v®§('> — Nd.
SIZ6PK""3(_—IK’[1/2 <27,

(42)

where, as usual, N is as big as we want. Similarly, we have

(f1, %) d
energypr,d3(—__—|](/|1/2 < 2%|J],

<f 7¢2 '>
energyp,, (—————[;(,Il’fz <29,

(f3, ®%:) —Nd
energyp,, . (W <2 Nda gy,
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Using all these estimates, the term (42) is seen to be smaller than

SN UK YD adade N =g Y - (VD) § k)

di120 K'€Lq;,  di1+d<ds d1 20 K'€La, (43)
S| |2 V-2 = o(N=2)d| By,

by using (37), and this completes the proof.

7. Counterexamples

The next step in understanding this bi-parameter multilinear framework is to consider
more singular multipliers. The most natural candidate is the double bilinear Hilbert
transform, defined by

Bd(fvg)(w,y)=LQf(w—tl,y—tz)g(m+t1,y+tz)thll— %
= /R 4Sgn(€1—§2)Sgn(nl—le)f(ﬁl,m)g(fz,m) (44)

x 27 i(@,y)-((€1,m)+(£2,m2)) dé dn.

It is the bi-parameter analogue of the bilinear Hilbert transform studied in [12] and given
by

B(fu, fo)(@ / fule—t) fale ) % = / sgn(€—n) F(€)4(m) =€ de dn. (45

This time, the functions fi and f; are defined on the real line. It is known (see [12]) that
B satisfies many LP-estimates.
However, regarding By we have the following theorem:

THEOREM 7.1. The double bilinear Hilbert transform By defined by (44) does not
satisfy any LP-estimates.

Proof. 1t is based on the following simpie observation. Let f(z,y)=g(z,y)=
Since

(x—t1)(y—t2)+(z+11) (y+1t2) = 2zy+2t1 ta,

one can formally write

B(e™, ") (z,y) = *7 / 2ing; St da dt2 — 4e¥y / / sinhts) g, at,
R2 tl t1t2

_ 42y /oo(/oo Sin(tltz) dt > dt1 —4e 2izy T / dt.
0 0 o t1 2/ t

To obtain a quantitative version of this, we need the following lemma:
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LEMMA 7.2. There are two universal constants Cy,Cy>0 such that

N N _.
/ / SI0(2Y) 4 dy| > Cylog N (46)
0 J0 Ty
as long as N>Cs.
Proof. Since fooo(sin t/t) dt:%W, there is a constant C>0 such that
sint T 3r
Sme 4
/ dte [ i } (a7)

whenever £>C. Then,

N pN . Ny N
// sin(zy) da:dy:/ (/ sin(zy) dy) dz
0 Jo Ty 0 0 Y z
o \Jo 1 £
C/N, Nz N Nz
[ ()
0 t z  Je/n\Jo t
N Nz
[ ([
r C/N 0 t xI

Since the function z—(1/z) f; (sint/t) dt is continuous on [0, C], it follows that the first
term in (48) is actually O(1). To estimate the second term in (48), we observe that since
z>C/N, it follows that Nz>C, and so, by using (47) we can write

N Nz N
/ (/‘ iﬂd) dﬂ?/f/ i‘f:f(zlogNAogC),
om\Jo €)= "4 o4

and this ends the proof of the lemma, if N is big enough. (I

(48)

8| &

Now, coming back to the proof of the theorem, we define

Ty

fn(,y) =gn(z,y) =YX -~ N (Z) X[~ N N (Y)

and observe that

N/10 N/lOsin(Zt)
le(fN,gN)(x,y)|>C|/ / —— dzdt| +0(1) > Clog N+0(1)
0

as long as x,ye[—mlo—oN, 1000N ] This pointwise estimate precludes that we have
1Ba(fas gn)llr SCl fnllpllgn llg uniformly in N. 0

At the end of this section, we would like to observe that, in the same manner, one
can disprove the boundedness of the following operator considered in [15]. Let V be the
trilinear operator V defined by

V(f.g,h)(z)= /E o ee F(&1) §(&2) (&) 281 —82%85) g, de, des. (49)
1<62<83
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The following theorem holds (see [15]):

THEOREM 7.3. The trilinear operator V constructed above does not map

L?xL2x L2 — [%/3>,

Proof. First, by a simple change of variables one can reduce the study of V to the
study of V1 defined by

Vi(f,9,h)(z) = F(&1) §(&) h(€s) e2mi=Er+E2+8) gg, de, des. (50)

£1<—§2<§a

Also, we observe that the behaviour of V; is similar to the behaviour of V; defined by

Va(f,g,h)(z)= / BSgn(£1 +&) sgn(€+£3) (&) §(62) h(&s) 2™ =& H68) g de des,
R
(51)
since the difference between Vi and V; is a sum of simpler bounded operators.

But then, V can be rewritten as

dt

Va(fam@)= [ fe-t)gle-ti-t)he—t) T 52,

The counterexample is based on the following observation, similar to the one before.
Consider f (x)*——h(:t:)zei’”2 and g(z)=e~**". Because

(I—t1)2—(l’—t1 —t2)2+($——t2)2 = $2+2t1t2,
we can again formally write

Va(e®', e &77) (z) = €'’ / eints W A2 _ it ™ / T
R2 t1 1o 4 J, ¢t

To quantify this, we define fy(z)=hy (w):eiﬁX[_N,N](x) and gy (a:)=e'”2X[_N,N](x),
and observe as before that

N/10 ;N/10
IV2(fN7gN,hN)(ZL')I>C/O /o %J—)dzdyleO(l)

if x€[—1555 NV, 1o55 V], and this, as we have seen, contradicts the boundedness of the
operator. N
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8. Further remarks

First of all, we would like to remark that Theorem 1.1 has a straightforward generalization
to the case of n-linear operators, for n>1.
Let me L*(R?") be a symbol satisfying the bi-parameter Marcinkiewicz—Horman-

der—Mikhlin condition 1 1

AR

for many multiindices o and 3. Then, for Schwartz functions fi, ..., f, in R?, define the

|9 07 m (€, ) < (52)

operator T, by

Tm(fly aney fn)(x) ::A2”m(£’ 77) fl (517 7)1) fn (£n7 nn)627ri1-((§1,n1)+--.+(Emnn)) d£ dﬁ- (53)

We thus record the following result:

THEOREM 8.1. The bi-parameter n-linear operator Ty, maps LP*x ... x LP*—L* as
long as 1<py,...,pn <00, 1/p1+...41/pr=1/p and 0<p<oo.

Here, when such an (n+1)-tuple (p1,...,pn,p) has the property that 0<p<1 and
p;j=o0 for some 1<j<n, then, for some technical reasons (see [14]), by L one actually
means LZ° the space of bounded measurable functions with compact support.

On the other hand, one can ask what is happening if one is interested in more singular
multipliers. Suppose that I'; and I'y are subspaces in R™, and consider operators T,,
defined by (53) where m satisfies

1 1

a o <
|a§ 677m(§’ 77)| ~ diSt(é,Pl)'al ldlSt("], F?)‘m ‘

(54)

Our theorem says that if dim 'y =dim I'y=0, then we have many LP-estimates available.
On the other hand, the previous counterexamples show that when dimI'y=dimI's=1,
then we do not have any LP-estimates. But it is of course natural to ask the following

question:

QUESTION 8.2. Let dimI'y=0 and dimI'y;=1 with 'y non-degenerate in the sense
of [14]. If m is a multiplier satisfying (54), does the corresponding Ty, satisfy any

LP-estimates?

9. Appendix: differentiating paraproducts

In this section we describe how the Kato—Ponce inequality (2) can be reduced to the
Coifman—-Meyer theorem, and also how the more general inequality (5) can be reduced
to our Theorem 1.1.
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The argument is standard and is based on some “calculus with paraproducts”. We
include it here for the reader’s convenience.

In what follows, we will define generic classes of paraproducts. First we consider the
sets ® and ¥ given by

®:={¢peS(R):supp$ C [~1,1]},
U:={yeS(R):supp¥ C[1,2]}.

The intervals [—1,1] and (1,2] are not important. What is important is the fact that ®
consists of Schwartz functions whose Fourier support is compact and contains the origin,
and ¥ consists of Schwartz functions whose Fourier support is compact and does not con-
tain the origin. Then, for various ¢€® and ,v’, 9" €¥, we define the paraproducts I1;,
3=0,1,2.3, as

To(f,0)(@) = [ (£+Dbet) g+ Dyt )+ Dyt (@) d, (55)
(7,9)(&) = [ (+Dh)(gx Db+ Dbt () . (56)
a(7,9)&) = [ ((+Dbt)(g+ D))+ Dbt/ () d (57)
(£,0)(@):= [ (F+Dh)(gxDht'))+Dhs(@) i (58)

All these paraproducts are bilinear operators for which the Coifman-Meyer theorem
applies. For instance, one can rewrite Ilg(f, g) as

Ho(f,g)(x)Z/mm(ﬁh52)f(§1)§(§2)62”iz(€1+52)dfl dé,

where the symbol m(&;,&z) is given by

(e, &) = /R (D2 d)(E) (DR ) (E2) (DR ") (~61 — E2)

and satisfies the Marcinkiewicz—Hérmander—Mikhlin condition.
The reduction relies on the following simple observation:

PRrROPOSITION 9.1. Let a>0. Then, for every paraproduct I1; there exists a para-
product I} so that

DTL(f,9) =TI} (f, D) (59)

for all Schwartz functions f and g on R.
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Proof. It is based on the equalities
DI (£,9) = | (£+D}) g+ D)) +D* (D} dh
= [ (1+DY) (g Dhuw)) 2+ DYy (")
= [ (7+DY)(gv2 DY)+ D} (07)

- /R ((£*Dh6)(g+D* (D (D~*4%))))* D1 (D)

[ (5+D}0)(D%s DL (D)) D (0
R
=:111(f, D%),
where D~*) is the Schwartz function whose Fourier transform is given by ﬁ/}(ﬁ):
13 I“ad}(f ), which is well defined since € ¥. O

Clearly, one has similar identities for all the other types of paraproducts II;, j#1.
To prove the Kato-Ponce inequality, one just has to realize that every product of two
functions f and g on R can be written as a sum of such paraproducts,

3
fg:ZH}(fsg)s

Jj=0

and then, after using the above Proposition 9.1, to apply the Coifman-Meyer theorem.
A similar treatment is available in the bi-parameter case too. Here, one has to handle

bi-parameter paraproducts II; ; for ¢, =0, 1,2, 3, formally defined by II; ;:=1II; ®II;.
One first observes the following extension of Proposition 9.1:

PropPoSITION 9.2. Let o, 3>0. Then, for every paraproduct I,y there ezists a
paraproduct 11} 5 so that

D¢DIML o(f, g) =11 5 (Ds f, DSg) (60)

for all Schwartz functions f and g on R2.

As before, there are similar equalities for the remaining paraproducts II; ; when
(4,7)#(1,2). Since every product of two functions f and g on R? can be written as

3
fo=>_ 1 ;(f,9),

i,j=0



BI-PARAMETER PARAPRODUCTS 295

everything follows from Theorem 1.1. In fact, the above argument proves that an even

more general inequality holds, namely

ID$D5 (f9) Il SIDEDS Fllps Ngllgs +1L.f o 1 DEDE Gl g2
DL Fllps 1 D59l ga + 1Dl p, D5 fll g

whenever 1<p;,¢;<00, 1/p;4+1/¢;=1/r for j=1,2,3,4 and 0<r<oo.
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