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1. I n t r o d u c t i o n  

The existence of an infinite-dimensional module for the Monster group (the largest fi- 

nite simple sporadic group), satisfying a number of remarkable properties known collec- 

tively as "moonshine", was conjectured by McKay, Thompson, Conway and Norton (e.g., 

see [6]). Frenkel, Lepowsky and Meurman [13], [14] constructed an example of such a 

representation--the so-called "moonshine module"--as a certain special type of vertex 

operator algebra on which the Monster acts, and proved that the Monster is in fact the 

full automorphism group for this algebra. 

One of key steps in the construction of the moonshine module is the construction of 

what Frenkel, Lepowsky and Meurman called "triality", which essentially consists of cer- 

tain modules for a vertex operator algebra associated with an integral lattice constructed 

by gluing finite copies of the root lattice of type A1. The main technique in the triality 

work involves using four kinds of vertex operator realizations of type .~1). 

We ask whether there exist other vertex operator algebras whose automorphism 

groups are finite. From the finite group point of view, we try to find more finite groups 

which have a moonshine representation analogous to that of the Monster. One of the 

initial steps in this direction is that we need to study self-dual lattices related to a finite 

number of any root lattices of type A. 

In terms of the classification of simple vertex operator algebras (or related confor- 

real field theories), one has to know more simple vertex operator algebras. One of the 

important ways to construct vertex operator algebras is the technique used by Frenkel, 

Lepowsky and Meurman [13], [14] in constructing the moonshine module, which could 

be called the "Z2-orbit fold technique" (also cf. [10]). A natural generalization of this 

technique is the "Zn-orbit fold technique" for any natural number n>~2. One of the best 

(i) The results in this paper are extracted from the author's Ph.D. dissertation at Rutgers Univer- 
sity, 1992. 
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ways of realizing this generalization is to invoke vertex operator algebras constructed 

from lattices related to finite copies of a root lattice of type An-1. 

In this paper, we obtain two gluing techniques for constructing self-dual lattices by 

analyzing the constructions of self-dual lattices in [7], [8], [22] and refining the well-known 

gluing theory of Conway and Sloane (cf. w Chapter 4 of [9]). Using these techniques, we 

construct two families of self-dual lattices related to a finite number of any root lattices 

of type A, based on the ring structure of a root lattice of type A induced by the Coxeter 

element. 

Let us recall some basic definitions. We denote the field of rational numbers by Q 

and the ring of integers by Z. A (rational) lattice L is a free Abelian group (or free 

Z-module) of finite rank with a Q-valued symmetric Z-bilinear form ( . , .  ). The rank is 

sometimes called the dimension of the lattice. Let LQ = Q |  and extend ( . , . )  to LQ 

canonically. The integral dual L ~ of L is defined by 

L ~ = { y E L q l ( y , x ) E Z  for all x E L } .  (1.1) 

The dual L ~ is also a lattice if (. ,. ) is nondegenerate. If L is a root lattice of type A, 

D or E, then L ~ is the weight lattice. A lattice L is called integral (self-dual) if L C L  ~ 

(L=L~ 

Many of the known constructions of self-dual lattices involve "linear codes". In 

this paper, we need the following concepts of codes. Let n be a positive integer and let 

Zn=Z/(n) .  A linear code of length k over Zn is a Zn-submodule of Zk~. Let f be a 

symmetric Zn-bilinear form on Z k. The dual code of C is defined by 

C~- = (o~ E Zkn I f((~,/3) = 0 for all/3 E C}. (1.2) 

A code C is called self-orthogonal (self-dual) relative to f if CEC~ (C=C~-). If f is a 

symmetric bilinear form associated with a matrix of the form (dl ) 
d2 

dn 

(1.3) 

then we also say that  C is self-orthogonal (self-dual) relative to d=(dl, . . . ,dn).  When 

d=(1, . . . ,  1), we simply say that  C is self-orthogonal (self-dual). A code over Z2 (Z3) 

is called a binary (ternary) code. An element of a code is called a codeword. The 

(Hamming) weight of a codeword is the number of its nonzero coordinates. A binary 

code is a doubly even code if the weights of its codewords are divisible by 4. 
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Next, let us use the following known examples to explain the development of our 

idea in this paper. 

Construction 1 (cf. [14], [16], [22]). Let k be a positive even integer and let V=Q k, 
L= Z k. Define the symmetric Z-bilinear form {.,. ) on V by 

k 
1 

j----1 

a=(~j),Z=(Z~)�9 (1.4) 

Set 
i 

xi=(O,.. . ,O,l,O .... ,0) for i=l,...,k. (1.5) 

Then each Z2xi is a copy of the root lattice of type A1 with respect to ( .,. }. Define a 

section map r]: Z2--*Z by r](0)=0, ~?(1)=1. For c=(cj)EZ2 k, let 

oo=(~(cl),...,~(ck)). (1.6) 

Let C be a doubly even self-dual binary code of length k (k must be divisible by 8 (e.g., 

cf. [91, [221)). Set 

L~,~[c] = ~ ZOc+2L. (1.7) 
cEr 

Then the lattice L2,A[C] is a self-dual lattice, where 2 means the dual Coxeter number 

of A1. Let 
L2,AIC ] = Z(�89 (1-4~, 1, ..., 1))+ Z ZO~ 

cEC 

k (1.s) 
+ { 2 a  a=(aj)CL, Eaj=_O (mod2)} , 

j = l  

where ~=0, 1. Then L2,A[C] is also a self-dual lattice. We can see that the lattice L2,A[C] 

is obtained by gluing k copies of the root lattice of type A1 with C as a "glue code". 

Moreover, the lattice L2,A[C ] can be interpreted to be obtained by twisting the lattice 

L~,~[C]. 

Construction 2 (cf. [22]). Let k be a positive even integer again. Let QA=Q(w3) 

and RA=Z[w3] with w3=e ~i/3. The ring R3 A is called the ring of Eisenstein integers. 
Set V=(QA) k, L=(R3A) k and define the positive definite Hermitian form (.,.)3,A and 

symmetric form ( .,. )a,A by 

k 

(-,  Z)3,A = Z ~jZ~, 
j = l  

= ( ~ ) ,  Z = (Z~) �9 v; <-,.>3,~ = ] Re(.,.)3,A. (1.9) 
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Then each RA(1 -w3)xi is a copy of the root lattice of type As for i=1, ..., k. In the above 

notations, the subindex "3" means the dual Coxeter number of A2. Again we define a 

section map ~: Z3--+Z by ~(0)--0, 7(1)=1, ~?(2)=2. For c--(cj)EZ3 k, set 

(1.10) 

Let C be a self-dual ternary code of length k. Set 

L3,A[C] = ~ ZOe+(1-w3)L.  (1.11) 
r 

Then L3,A[C] is a self-dual lattice with respect to (.,.)3,A. The lattice L3,A[C] can be 

viewed as being obtained by gluing k copies of the root lattice of type A2 with C as a 

glue code. 

The following construction seems only known for the ternary Golay code ~12 (of 

length 12) (e.g., cf. [9], [22]). Let k=12. Any c~EL can be written uniquely as a =  

(Al,O-{-Al,lU;3, ..., A12,0-{-A12,1033), where Aj,iEZ. We define 

12 

Then 

T(~) -- Z ( ~ j , 0  + )'j,1). 
j= l  

(1.12) 

L3A 012J=Z(   3-3 Z ZOc 
eeg12 (1.13) 

+{(1-w3)a[aeL ,  T (a ) -O  (mod 3)} 

is a copy of the Leech lattice with respect to ( ' , .)3,A. The lattice L3,A[G12] can be 

interpreted as being obtained by twisting L3,A[~12]. 

We first analyze these constructions and the constructions of self-dual lattices in 

[7], [8], and find certain common characteristics. Then we generalize the above construc- 

tions of L2,A[C] and L3,A[C] to a construction technique which we call an "untwisted 

gluing technique". By this technique, we construct a large family of self-dual lattices by 

gluing a finite number of root lattices (not necessarily the same) of type A with certain 

relatively self-dual codes over Zn (n not necessarily prime) as glue codes. We call these 

lattices untwisted self-dual lattices of type A. Similarly, we generalize the constructions 

of L2,A [C] and L3,A [g12] to a construction technique which we call a "twisted gluing tech- 

nique". This technique results from modifying the untwisted technique in the same way 

that one twists L2,A[C] and L3,A[gl2] into L2,A[C] and L3,A[~12]. By this technique, we 

get another large family of self-dual lattices, which we call "twisted self-dual lattices of 

type A',  by twisting the untwisted ones. Our techniques can be viewed as refinements 



S E L F - D U A L  L A T T I C E S  O F  T Y P E  A 127 

of the gluing theory of Conwuy and Sloane (cf. w Chapter 4 of [9]). Certain lattices in 

our two families of type-A lattices are known (e.g., see [2], [7], [8]). 

By [19], the lattices L3,A[C] and L3,A[~12] are "complex self-dual lattices". We prove 

that  the untwisted self-dual lattices of type A obtained by gluing finite copies of the 

same root lattice and the corresponding twisted lattices with (1, ..., 1) in the glue codes 

possess certain properties of complex self-dual lattices (see Theorems 5.12 and 5.14). 

The Coxeter element of the root lattice acts on these lattices as a fixed-point-free lattice 

automorphism. In fact, if the root lattice is of type Ap-1 with p prime, then these lattices 

are complex self-dual lattices (cf. [12], [22]). In general cases of the root lattice, we call 

these lattices sell-dual complex lattices o] type A. 
The self-dual type-A complex lattices that  we construct in this paper are proved, in 

another work [26], to have very nice properties with respect to their central extensions. 

In [27], we find more twisted vertex operator realizations of the basic representations 

of A (1) by means of the ring structure of a root lattice of type A used in this paper. 

We construct in [28] an analogue of "vertex operator triality" for each self-orthogonal 

ternary code containing (1, ..., 1). This would be a key step in constructing what we 

will call "ternary moonshine vertex operator algebras", which will be analogues of the 

moonshine module (cf. [13], [14]) in terms of the vertex operator structures. 

The structure of this paper is as follows: 

In w we present the untwisted technique for self-dual lattices and a decomposability 

theorem. In w the twisted gluing technique is given. We present the construction of 

untwisted type-A lattices in w In w the twisted construction of type-A lattices is 

given. Finally, in w we find out all the "basic homogeneous twist parameters of type A" 

appearing in the twisted construction. 

2. The untwisted gluing technique 

The definition of a (rational) lattice and some related definitions are the same as in the 

introduction. Now we give the other definitions that  we will use. 

Definition 2.1. The lattice L is said to be decomposable if L=L1 ~L2 as a Z-module 

and ( . , . )  = ( . , . )  1 �9 ( ' , " )2 ,  where ( . , . )~ is a symmetric Z-bilinear form of L~. 

Let L1 and L2 be lattices with associated Z-bilinear forms ( . , . )1  and ( . , . )2 ,  re- 

spectively. The lattices L1 and L2 are said to be isomorphic if there exists a Z-module 

isomorphism ~: L1 -'-*L2 such that  

( r (~) , r (~ ' ) )2=(~,~ ' ) l  for all ~,~ 'EL1.  (2.1) 
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Such a r is called a lattice isomorphism, and it is called a lattice automorphism if L1 =L2. 

We use the notation Aut(L) to denote the group of all (lattice) automorphisms of a 

lattice L. 

Remark 2.2. In the rest of our paper, the extension of (. ,. } to LQ for a lattice L is 

always taken for granted. 

Let m, n be integers. We use g.c.d.{m, n} to denote the "greatest common divisor 

of m and n" and 1.c.m.{m, n} to denote the "least common multiple of m and n". The 

same notations are also used for more integers. Throughout this paper, we use the index 

notation f~(k)--{1, ..., k} for any positive integer k. We also take f~(0)--o. 

Our untwisted gluing technique is based on the following concept. 

Definition 2.3. Let L be an integral lattice with associated Z-bilinear form ( - , . / .  

Suppose that  there exist a Set {xi, ~j, ~j l iEf~(s), jEg/(t)} of vectors of L ~ such that:  

(1) 
s t 

L~ = ( ~  (xi +L} @ ( ~  [(~j +L} @ (~j +L)] (2.2) 
i=1 j = l  

as Abelian groups, where each (xi +L} is a cyclic group of order ni, and (~j +L}, (~j +L} 

are cyclic groups of order mj for each j; 

(2) 
_ _  1 " "lxi,xi)=--/3i, ( ~ j , { j ) = - -  (modZ) ,  ief~(s), j e f f ( t ) ,  (2.3) 
ni m j  

where 15iEZ, g.c.d.{/3i,ni}=l, and 

(~,~'}EZ for any other pa i r~ ,~ 'E{xi ,~ j ,~ j} .  (2.4) 

Then we call S=(L; (. , .); xi; ~j; ~j; iEf~(s), j Eft(t)) a U-shell of self-dual lattices. 

A shell S is called type I (type II) if t=O (s=O). Moreover, xi are called untwisted glue 
vectors of type I, and cj, ~j are called untwisted glue vectors of type II. Two shells are 

called equivalent if the underlying lattices are isomorphic. 

Remark 2.4. (a) If mj is odd for some jEff(t), the pair ~j, ~j can be changed into 

glue vectors of type I as follows: Choose ~ E Z  such that  2 c r l  (mod mj).  Set 

x; (2.5) 

Then we have 

<xj,xj) =0,  { x j , x j ) = -  - - - -  (mod Z). (2.6) 
my 
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- -  �9 t Changing ~j--* x~, ~j--* x~ in S, we get an equivalent shell because (j =x j  + x j ,  ~j = x ; -  x~ 
(mod L). 

(b) If S only satisfies (2.2) and (2) in Definition 2.3, then we can make S to be a 

U-shell through the replacement of L by L+~'~= 1 t + [Zmj + 
Our untwisted gluing technique has two steps. 

Step 1. Combining a finite number of U-shells into a larger U-shell. 

Let {(L2; ( . , . ) t ;  x2i; ~tj; ~tj; i �9  je~2( t2) ) l le~(k)}  be a family of k U-shells of 
self-dual lattices. We define 

k k 

L = ~ L z  as Z-modules, ( ' , ' ) = ~ ( ' , ' ) t  
/=1  2=1 

Then we have 
k k 

on L x L. (2.7) 

LQ=GL,Q, L'=Grr.  (2s) 
l = l  2=1 

We identify Ll with L t ~ v # t  0 (V), where 0 (2') is the zero vector of Lv. Thus, we have 

the following new larger U-shell of self-dual lattices: 

(L; {.,. ); xti; ~tj; {,j; l �9 D(k ), i �9 ~ ( s t ) , j  �9 Q(t,) ). (2.9) 

Step 2. Gluing a given U-shell into a self-dual lattice. 

Let S be a U-shell of self-dual lattices, and let other notations be the same as in 

Definition 2.3. Set 

M =l . c .m . (n i ,m j  l i �9 ~(s),  j e ~(t)} (2.10) 

and 
M M 

~i = ~ ,  d i=~ie i ,  7j = ~ ,  for i E f l ( s ) , j E f l ( t ) .  (2.11) 
ni m j  

Furthermore, we set 

d = ( d l , . . . , d , ) ,  7=(71 ..... 7t), (2.12) 

and define f ( .  ,. ) to be the symmetric ZM-bilinear form on Z~v~ 2t associated with the 

symmetric matrix 
\ 

B7 B7 ) , 
(2.13) 

/ Bd 

where for any c~--(c~l, ...,~/)EZ~/, 

Otl 

B a = 
Or2 

"" Oq I " 

(2.14) 

9-950414 Acta Mathematica 175. lrnpdm~ le ] septembre 1995 
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Here we use empty positions to denote the entries 0. 
7.s+2t For any c E -  M , we write e= (c I , cH ,em) ,  where 

CI I I __~ = ( c , , . . . , c ~ ) E Z ~ ;  c p ( ~ , . . . , ~ ) � 9  p = I I ,  III. (2.15) 

We define the ~M: ZM--*Z by yM(N)=I with O<~l<M if N - l  (rood M) for any NEZM.  
We now define 

s t t 
: ~ M ( C j ) r  ~r = E l l I  ~M(C~ )~ (2.16) 

i=1 j = l  j = l  

and 

0r = xr + ~ ,  + ~ m .  

Let C be a code of length s+2t over ZM. We define 

L(c) = ~ zoo + L 
e6C 

In addition, we set 

and 

(2.17) 

(2.18) 

n = ( n l , . . . ,  n~), rn = ( m l , . . . ,  mr )  (2.19) 

7e[,,m] =((n,c], . . . ,  ~ H H ,~lC]H, ~n, r ises , ta lC 1 ~ . . . ,mtc  t ~ . . . , rote  t )[ 

C = (d, CII,r �9 z~2t}.  (2.20) 

One can easily verify that  •[n, m] is the radical of f in Z~v~ :t. Therefore, 7~[n, m] CC' 

for any self-dual code C' over ZM relative to f .  

The following is one of the main theorems in this paper. 

THEOREM 2.5. The lattice L(C) is integral if and only if C is self-orthogonal relative 

to f .  Moreover, if  C is self-dual relative to f ,  then L(C) is self-dual. Conversely if 

CDT~[n, rn] and L(r is self-dual, then C is self-dual. 

r - !  " -  rn s + 2t Proof. The key point is the following formula: for any ~, ~ = " M  , by (2.5)-(2.6), 

riM( ~ )~M(C j )+nM(e~ ) . . ( c  ~ ) ioo, ci ,  , i , ,  m , , ,  

i=1 ni j = l  mj 

=- M OM(Ci)~M( C i )~iEi 

, ] (2.21) 
II CIII tII _ ]_E(T]M(C ~ )TIM, t l l I -  tc~ )+OM( ~ )OM(co))ZO 

j = l  

1 = MrlM [clBd Ctlt q- EIIBTc tlllt + e t l I B T c l I l t  ] 

-- M--r]M(f(c,c')) (rood Z), 
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where the upper right "t" means "transpose". Therefore, 

(Oe, Oc,)---0 ( m o d Z )  ~ f ( c , c ' ) = 0  i nZM.  (2.22) 

Hence the first statement follows from (2.21). For the second, we already know that 

L(C) is integral by (2.22). Now let uE(L(C)) ~ According to (2.2), we can write u = O c + v  

for some c E Z ~  2t, vEL. However for any ctEC, 

O -  (Oe,, u) -- (Oe,, Oe) (mod Z). (2.23) 

This implies cEr by (2.22); so ueL(C). 
Finally we assume that CDTs m] and L(C) is self-dual. For any cEC~-, we have 

Oee(L(C))~ by (2.17) and (2.21). Then ceC,  because 

C / n[n, rn] ~ L( C) / L. (2.24) 

[] 

These two steps constitute the gluing procedure of our untwisted gluing technique. 

Next we give a decomposability theorem of construction in an important, special case. 

First we need the following concept. 

Definition 2.6. A set S =  {nl ] i E 12(k)} of integers is said to be g.c.d.-connected if for 

any pair n j,  nt E S, there exist nio, ..., ni~ E S such that io--j, i~ =l; g.c.d.{ni,, hi,+ 1 } ~ 1, 

r  1,. . . ,)~- 1. 

Now let {(Lt; ( . , . ) t ;  xt) l lef l (s)}  be a family of s U-shells of type I and (xl, xt)t =- 
~t/nt (mod Z). As in step 1, we get a new shell (L;( . , . ) ;x i ; iEf l (s) ) .  Now all the 

settings are the same as in step 2 when t=0 .  

THEOREM 2.7. Let C be a self-dual code of length s o v e r  Z M relative to ( .,. )d. If  

{nil ie~(s)} is not g.c.d.-connected, then L(C) defined in (2.17) is decomposable. 

Proof. It is enough to prove that C is self-dually decomposable. By changing indices 

if necessary, we assume that 

g . c . d . {n i , n j }= l ,  f o r i , j E f ~ ( s ) , i < . k < j ,  (2.25) 

where k is a fixed integer and 1 ~< k < s. Thus 

niiEj, njl~i, f o r i , j E ~ ( s ) , i < , k < j .  (2.26) 
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For any c = ( c l ,  ...,Cs), c '=(c~,  ... ,ds)EC , we have 

i = l  j = k + l  

(2.27) 

By the first expression in (2.26), 

k 

nt ~M(ZCiC~i~il, f o r / 6 1 2 ( k ) ,  l<~l<.k. 
' ~ i = I  

(2.2s) 

According to the second expression in (2.26), we get 

k ) k 

=:=V Z c'c:di =0.  (2.29) 
i--1 

By Proposition 2.1.7 in [24], C is a decomposable code. Therefore L(C) is decom- 

posable. [] 

COROLLARY 2.8. If  k= l in (2.25) and l < n t  is not square, then there is no self-dual 

code relative to f over ZM. 

Proof. This follows from Proposition 2.3.6 in [24]. [] 

3. T h e  t w i s t e d  g lu ing  t e c h n i q u e  

This technique is much subtler than the untwisted one. The technique is based on the 

object that we define as follows. 

Definition 3.1. Let L be an integral lattice with associated Z-bilinear form ( - , . ) .  

Suppose that there exist a set {x~;~j;~j;W;y;iEi'l(s),jEi-l(t)} of vectors in L ~ such 

that: 

(1) the family (L '=Zy+L;  ( . , .  ); xi; ~j; ~j; iEl2(s), jEff( t ))  is a U-shell; 

(2) 

(3) 

s t 

L" = z w + ~ z x , + ~ ( z c j + z ~ j ) + z y + L ;  
i=1 j = l  

(3.1) 

1 ( m o d Z ) ,  I < N E Z ;  N y E L .  (3.2) (w,  ~> - 



S E L F - D U A L  L A T T I C E S  O F  T Y P E  A 133 

Then we call g=(L;  ( . , . ) ;  xi; r ~J; W; y; i �9 a T-sheU of self-dual lattices. 
The vector W is called a twist vector, and the vector y is called a simple root. S is said 

to be of type I, II and III, respectively, if s=0,  t = 0  and s = t = 0 ,  respectively. Again, two 

T-shells are said to be equivalent if the underlying lattices are isomorphic. 

Remark 3.2. If L satisfies all the above conditions but N y ~ L  in (3), then we can 

get a T-shell through the replacement of L by ZNy + L. 

We again divide the twisted gluing technique into two steps. 

Step 1. Combining a finite number of twisted shells with a restriction into a larger 

T-shell. 
Let 

{(Lz; ( .," )z; xli; r ~tj; Wl; Yz; i �9 ft(st), j �9 ft(tt)) I l �9 f (k )}  

be a family of k twisted shells. Suppose that  

1 (rood Z), for l � 9  (3.3) 

and there exists l0 �9 ~2(k) such that  

NtIYto, foral l  l e f ( k ) .  (3.4) 

We define L and ( . , . )  as in (2.7). Furthermore, we set 
k k 

Yto L ' = L + ~ Z ( y t - ~ t y t o ) ,  W = ~ W t .  (3.5) 
t = l  t-~l 

Tn~.OREM 3.3. The family (L'; ( . , - / ;  xti; ~tj; ~t~; W; Yto; lef t (k) ,  ieft(st), j e f ( t t ) )  
is a T-shell of self-dual lattices. 

Proof. First of all, we have 

1 et __0 (mod Z), l �9 (3.6) (W'yl--~lYl~ Nl Nlo 

by (3.5). Suppose that  u = ~ = x  AIWzEL '~ with O~At<Nl. Replacing u by u-AloW, we 

can assume Ato =0. Then 

At (rood Z), ! �9 ft(k). (3.7) 0 =- (u ,  y t - o ~ y l o )  - 

This implies At =0, l � 9  ft(k). It is easy to check that  all other conditions in Definition 3.1 

are satisfied. I-3 

Step 2. Gluing a T-sheU into a self-dual lattice. 
The situation now is much more complicated than in the previous section. Let 

~=(L; ( .,- }; z~; r ~j; W; y; left(s), j �9 ft(t)) be a T-shell of self-dual lattices. The data 

n~,mj, N are as in (2.3) and (3.2). We also use the same settings as in (2.10),(2.16) and 

(2.18)-(2.19). 
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Definition 3.4. Let C be a code of length s+2t over ZM. A vector T ( C ) E Z ~  2t and 

a map r C--*Z are called the admissible vector and map of C, respectively, if 

(W+Ow(c), Oc+r  E Z, for all c E C. (3.8) 

If such T(C) and r exist, then we say that C is admissible to the T-shell 5. 

In the case that C is admissible to S, let ~ be an integral variable, and we call 

J[,~, C; t] = (W+Ov(c)+ty ,  W+Ow(c)+ty) (3.9) 

a twist factor of C with respect to 5. An integer t(,~, C) is called a twist parameter of C 

with respect to ,~ if 

Jig,  C; i(8, C)] E Z. (3.10) 

If such a t(8, C) exists, then we say that C is twistable with respect to 5. 

Next we assume that C is twistable with respect to 8 and the related notations are 

the same as in the above definition. Set 

W=W+Ov(c)+t(8,C)y; ~)c=Oc+r  fo rcEC.  (3.11) 

Now we define 

L(C) = Z W +  E Z~)r (3.12) 
eEC 

Here is another main theorem of this paper: 

THEOREM 3.5. / f  C is self-dual relative to f defined in (2.13), then L(C) is a self- 
dual lattice. 

Proof. First we notice that for any c, CEC, 

(Oe,Oe')~-(Oe,Oc'/  (mod Z). (3.13) 

Hence L(C) is integral by the above assumptions and (2.21). Now we suppose that 

ue(L(C)) ~ We can write u=)~W+v with AeZ, veY~= t Zxi+~'~=t(Z~j+Z~j)+Zy+L. 

Replacing v by v-)~W, we can assume that A=0. Furthermore, we write u = O e + v '  with 

c E Z ~  2t and CEZy+L. However, for any crEC, 

0-=(u, Oe,)---(Oc,Oe,) (mod Z). (3.14) 

By (2.21) and the self-duality of C, ceC. Replacing u by u-@)e, we can assume c=0.  

Therefore, we can write u=#y+v" with v"EL and # e Z ,  0~<#<N. Finally by (3.2), 

- -  # (mod Z). (3.15) o -  ( w ,  u) - -~ 

This implies #=0.  That is, L(C) is self-dual. [] 

Remark 3.6. Unfortunately we have not proved the converse theorem to the above 

in a general case. Later the reader will see that Theorem 3.5 does have a nice converse 

theorem in certain cases. 
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4. U n t w i s t e d  type-A lattices 

Let n be a positive integer. Set 

RAn = Z[x]/(x n-1 + . . . + x + l ) .  (4.1) 

Denote the image of x in R A by Wn,A. 

Definition 4.1. An RAn-complex lattice L is a lattice such that  

(1) L is an RA-module which can be embedded into a free RA-module L' of finite 

rank such that  N L ' C L  for some N e Z \ ( 0 } ;  

(2) the associated symmetric form ( . , .  ) satisfies 

(03n,AOt, ~ n , A ~ )  = (~,  f~) for  all ~ , /3  �9 L.  (4.2) 

A lattice L is called a type-A lattice if L contains a sublattice L0 such that  LQ = 

(L0)q, and as a lattice, Lo=(~;=l LJo, where each L~ is an RAccomplex lattice. 

PROPOSITION 4.2. An integer l is divisible by 1--Wn,A in R A if and only if l -O 

(mod n). Moreover, 

n = (1 - Wn,A)[(n -- 1) + (n -- 2)O)n, A + (n -- 3)W2,A -~-...-~ wnT~ ] . (4.3) 

Proof. Any a E R  A can be uniquely written as 

n - 2  
a - - - - ~  i AiWn,A, Ai E Z. (4.4) 

i=O 

Moreover, 

Hence 

n - 2  
( l_Wn,A)a=,~OW,~n_2+Z(Ai_Ai_ 1 A i "{- n_  2 )Odn,A. (4.5) 

i=1 

l=(1--Wn,A)a r l=Ao+An-2 ,  Ai -Ai - I+A,~-2=O,  (4.6) 

where l<.i<.n-2. In particular, )~n-3----2)~n-2. By induction on i, we get that  Ai= 

( n - i - 1 ) A n _ ~ .  Therefore, Ao=(n-1)An_2.  This implies that l=n)%_2. When l=n, we 

let An_2 = 1 and reverse the above process so that  we get (4.3). [] 

We set 

qA = q |  R 2. (4.r) 
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Then QA is a Q-linear space of dimension n -  1. Moreover, we define the Q-linear map 

~A: Q~-*Q by 

~A(1)__n--1 1 ~ ,  ~A(WJ,A)=----, for j ~ 0  (mod n). (4.8) 
n n 

Furthermore, we let Vn,A be the automorphism of the multiplication by Wn,A on QA. 

Now we define the Vn,A-invariant symmetric Q-bilinear form ( .,. )~,A on QA by 

Ca, b)n,A = ~A(ab), for a, b �9 QA, (4.9) 

J ~j � 9  Set where b=)-]dez, AJw~, j if b-=~']dez= AjOJn,A, 

i __ i Yn,A = 1--Wn,A, Yn ,A  - - W n , A Y n , A ,  for i �9 Zn. (4.10) 

and 

LEMMA 4.3.  The lattice Qn,A 
A n - 1 .  

Proof. For any i, jEZn,  

R A Qn,A = ,~Y,~,A. (4.11) 

is the root lattice of the simple Lie algebra of type 

(y i~,A, Y3n,A ) n, A ---- (W~,A(1 --Wn,A ), UgJ,A(1 --Wn,A ) )n,A 

= ~A[W~,A(I_W.,A).W~,~(I _W=,A) 
. ~ i - j  i - j - 1  i - j + l ~  

WA(ZOJn, A --OOn, A --OJn, A ) 

2 ( n - 1 ) / n - ( - 1 / n ) - ( - 1 / n )  = 2, 

= 2 ( - 1 / n ) - ( - 1 / n ) - ( n - l ) / n = - l ,  

2 ( - l / n ) -  (-X/n) - ( - l / n )  -- 0, 

if i - j - O ,  

if i - j  -- 4-1, 

otherwise. 

(4.12) 

i _ f l ,  ifi=_O, 
(1, Yn,A)n,A-- I --1, if i - - - - l ,  

O, otherwise. 

(4.13) 

Therefore, i {yn,Ali=O, 1, ...,n--2} constitute a set of the simple roots of the simple Lie 

algebra of type An_l. [] 

Notice that Vn,A is the Coxeter element of the Weyl group of A,~-I. 

LEMMA 4.4. For iEZ,~, 
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Proof. 

(1,  i = Yn,a)n,A (l,win,A(i--Wn,a))n,A 
= qOA(O.)nf A --03n,iA -1 ) 

1, if i --0,  

= -1 ,  if i - - l ,  

0, otherwise. 

[] 

THEOREM 4.5. The family S n , A : ( Q n , A ;  ( ' , " )n ,A;  1) is a U-shell of type I. 

4-2  e(O ,A)O, Proof. We first notice that for any u=)"~i= o #i n,A 

O - -  /U 4 - -2 ,  (U, i = ~ ,Yn,A )n,a ~l'Zn-2' O= Yn,A)n,a - ~ - # i + l + # i  (rood Z), (4.14) 

for i=0,1  .... , n - 3 .  By induction on i, we have #iEZ. That is, uER a. So (QmA)~ A 
by Lemmas 4.3 and 4.4. By Proposition 4.2, RA/Qn,A=(I+Q A) is of order n. Moreover, 

n - - 1  
(1, 1)n,a = - -  

n 

We call 8,~,A the U-sheU of type An-i. 
Now let nl, ...,nk be k integers greater than 1. Set 

_ A Lj-Rn~,  QAd=Qn~,A, ( ' , ' ) j : ( ' , ' ) n ~ , A  on Lj; 

k k for jeff(k).  Define L=(~j=ILj,  ( . , . )A=(~j=I( . , . ) j  
k ~j=l  QA,j where n=(nx, ..., nk). Set 

M 
M =l.c.m.{n3ljE a(k)}, 

For c=(cl,..., Ck)eZkM, define 

XA,c : Z ~M(Cj)T,A, j.  
j = l  

Let C be a code of length k o v e r  Z M.  We define 

LA[n, CI=EZxA,c+Qn,A.  
tee  

Like (2.19), set 

( 4 . 1 5 )  

[] 

XA,j : 1 in Lj, (4.16) 

as in (2.7) and let Qn,A = 

d=(et , . . . ,~k) .  (4.17) 

(4.18) 

(4.19) 

(4.20) n[n] = { (c lnx , . . . ,  cknk) I cj e ZM}. 

Then by Theorem 2.5, we have: 

10-950414 Acta Mathematica 175. lmprim~ le 1 septembrr 1995 
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THEOREM 4.6. The lattice LA[n,C] is integral if and only if C is self-orthogonal 
relative to d. Moreover, if C is self-dual relative to d, then LA[n,C] is a self-dual lattice. 

Conversely, if C~TC[n] and LAIn, C] is a self-dual lattice, then C is a self-dual lattice 
relative to d. [] 

Remark 4.7. For any c , c ' E Z ~ ,  

k 
n j - 1  

<XA,c,  A,c,>A = (4.21) 
i=l 

Therefore, LA[n,C] is even if M is odd and C is self-orthogogal relative to d. When M 

is even and C is self-orthogonal relative to d, then LAIn, C] is even if and only if 

k 

~"~.(nj - 1)r (Cj)~?M(Cj) -- 0 (mod 2M) (4.22) 
j----1 

for any cEC. By Proposition 4.2 and Lemma 4.3, this condition is equivalent to that the 

generators of C satisfy (4.22). An example of such codes is a doubly-even self-dual code 

when all nj are equal to 2. 

If all the nj above are equal to n, we denote LAIn, C] by Ln,A[C]. Notice that Ln,A[C] 

is a type-A complex lattice. Set 

QE, ---- La,A[CJ], QE, = La,A[Zl3], (4.23) 

where C~ is a ternary code generated by the rows of the matrix: 

( 1  1 1 1  -1  1 ) "  (4.24) 

Then QE8 and QE~ are the root lattices of the simple Lie algebras of types Es and E6, 

respectively. One can find the equivalent definition of QE8 in [29]. So far, we did not 

lind the above construction of QEe in the literatures. 

Remark 4.8. In [24], we present the induced U-shells by means of untwisted type-A 

lattices. We also present the U-shells of type D. 

Let n be a positive integer. 

Set 

5. Twisted type-A lattices 

All the related settings are the same as in the last section. 

(5.1) Wn,A ---- ] --O'~n,A 

where 1--Wn,A is invertible in QA by Proposition 4.2. Then we have the following im- 

portant properties. 
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LEMMA 5.1. Wn,AEQAn and 

,~-1 { -(~-11/~, 
( W . , a ,  Wn,a ) ,~ ,a  = , W, J ( n , a , Y n , A ) n , a  = 12n 1/n, 

Proof. By (4.3), 
n--1 

Wn,A= ! Z(n_ j ) to~ ,  A EQA. 
n j= l  

According to (4.15), 

8 -1 (n_j)to~,A (tOn'A' W n ' A ) n ' A  = toS'A' n j = l  n,A 

ifj=O, 

otherwise. 
(5.2) 

(5.3) 

n n - 1  . _ ( n - s l - Z ~ = l  (n-31 
- n 2  ( 5 . 4 )  

_ _  n ( n - s ) -  i n ( n -  1) 
n 2 

n+ l - 2 s  
2n ' 

where 1 ~< s ~< n -  1. Furthermore, 

) (W.,a, Wn,a)n,a = (n--s)to,~,a, Wn,a 
s = l  n,A 
n - 1  

1 Z ( n _ s ) ( n + l _ 2 s )  
= 2n2 

s = 1  

n - - 1  

= 1 Z[n(n+l )_ (3n+l ) s+2s2  ] 
2n 2 

s : l  

= nCn- 1)(n+ 1 ) -  �89 1)(3n+ 1) +2-~ ( n -  1)n(2n-  1) 
2n 2 

( n -  1)[6(n + 1) - 3(3n+ 1)+ 2(2n-  1)] 
12n 

n 2 - 1  
12n 

By (4.13) and (5.3), we have 
n - - 1  

(w,,,a, y . ,a) . ,a  = (n-8)to. ,a,  y,~,a 
s = l  n,A 

, ,-I ( n - s )  j _ ,  
= ~_. ~ (1 ,y . ,~ ) . ,A  

s = l  

- ( n - 1 ) / n ,  if j = 0 ,  
= [] 

1/ n, otherwise. 
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n-2 
Any yEQ~,A can be uniquely written as Y=~,i=o . i A,Yn, A with Ai E Z. We define 

~--2 

T(y) = Z A,. 
i=0  

L E M M A  5 . 2 .  For any yEQn ,A ,  

T(Wn,A y) = T(y) (mod n). 

Proof. Assume y - V ' n - z  A ~ Then ~Z-~i----1 i Yn,A " 

n--3 In- -2  ~ n--3 n--2 

Wn,Ay : ~iO)n,AYn,A-- n-2  n,A Yn,A : " i 'Yn,A--~.4  )kn--2Yn,A. 
i=0  i=O i=0  i=O 

H e n c e  T(U)n,A y) = T ( y )  -n )~n -2 .  

Set 

On,A = {Y e Qn,A I T(y) ~ 0 (rood n)}. 

(5.5) 

(5.6) 

[] 

(5.7) 

Then by the lemma above, On,A is an RA-module. By (4.3), - X- Qn,A=R,~yn,a is a free 

RA-module of rank 1, where Yn,A = (1 --~n,A)Yn,A. 

THEOREM 5.3. The family Sn,A=(Qn,A;(', ')n,A;1;Wn,A;yn,A) iS a T-shell of 

type I. 

Proof. (1) and (3) in Definition 3.1 are satisfied by Theorem 4.4 and (5.2), (5.7). Any 
o x"~n--I Oji i ~On,A, uE(Qn,A) can be uniquely written as u=2..,,=1 #i n,A" By the fact that  nyn, A 

(U~  i nyn,A)n,A ---- - -n#n-1  E Z.  

- 1  i i i - 1  Since (1--Wn,A)Yn,A=Yn,A--Yn,AEQn,A, we have 

0---- (u,(1 - I  -oJ.,a)y,, ,a)n,A 

- Y'.,A).,A 
n - 1  

�9 i 

j = l  

-=2~i-~i-1-1~,+1 (rood Z), 

(5.8) 

(5.9) 

for 1 < i < n -  1. Similarly, 

O ~ - ( U ,  - 1  n - 1  (1--Wn,A)Yn,A)n,A--=2Dn-l - -Dn-2 (mod Z). (5.10) 
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Therefore, #n-2-2#n-~ (mod Z). By (5.9) and the induction on i, we can prove that 

#n-i--'i#n-x (mod Z). We can assume # n - l - # / n  (mod Z), #EZ by (5.8). Thus u=  

#W,,,A+V, vER A. This proves (2) in Definition 3.1. [] 

We call Sn,A the T-shell of type An-1. 
Let nl,  ...,nk be k integers greater than 1 and assume 

n31nl, jeff(k).  (5.11) 

We use the same settings as in (4.16)-(4.18). Set 

,5.,A = {(On,,A; (","),b,A; 1; Wnj,A; Y,b,A) IJ E ff(k)}. (5.1z) 

PROPOSITION 5.4. When nt is odd, any code of length k over Z,~ 1 is admissible 
with respect to 8n,a. If nt is even,, a length-k code C is admissible with respect to Sn,A 

if and only if 
k 

E ejO,~(cj) is even for all e = (c : ,  ..., ck) E C. (5.13) 
j = l  

In particular, if C is self-orthogonal relative to d, then C is admissible. 

Proof. Set 

Notice that 

k 

W n , A = ~ W n j , A  . (5.14) 
j=l  

nj--1 (1 ) 
, = - -  (nj--Z)  nj,A (Xj, Wn,A)A = (1, Wn~ A)A 1, nj Z " wi 

i=1 A 

"'-tnj-___~= 1 ( n j ( n j - 1 ) )  1 -n j  
= -  = 

(5.15) 

Let TEZkn, 

consider the equation 

be any given vector and t be an integral indeterminate. For any c E Z ~ ,  

k 

E Onl(CJ ) ( W n ' A '  Xj)A 
j = l  

+ (XA,T, Zr +t(W.,A, YA,1)a 

t -nj  t-,, , ,(T, c)d (5.16) 
j----1 3 

2(t_rb~l(T ' k c)d)+E~=l(~j-n~)n.,(cj) 

(Wn,A -}- TA,T, XA ~e nU tyA,1 ) A =-- 

2ni 
=0  (mod Z). 
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If nl is odd, then all ej are odd. Hence ~ j - n l  is even for each jE~(k) .  Set 

k 

CA,T(C) = r]nl(T, C)d q- ~ ~-:~(~j--nl)~]n,(Cj). (5.17) 
j= l  

So t=CA,T(c) is a solution of (5.16). If nl is even, then (5.16) has a solution if and only 

if 
k k 

(mod2) (mod2). (5.18) 
j= l  j= l  

If (5.18) is satisfied, t=r is again a solution. Since Q(7/n,(cj)) 2 and ej~b~l(cj) 
must be even or odd simultaneously and ~n,(c~)-(~ln,(cj)) 2 (mod nl), equation (5.18) 

is satisfied if (c, c)d =0. For any length-k code C satisfying (5.13) over Z,~I, then T and 

CA,T are the related admissible vector and map, respectively. When C is self-orthogonal 

relative to d, C must satisfy (5.13). The proof is completed. [] 

Remark 5.5. Notice that T,r above are independent of any specific code, and 

T can be chosen arbitrarily. 

Now the assumptions and settings are the same as in Proposition 5.4 and its proof. 

For a given T = (o'1, . . . ,  O'k ) E zknl, we have 

(Wn,A +XA,T +tyA,1, Wn,A +XA,T +tyA,1)A 
k n2 1 k ~. \ k [ n j - l ~  2t 

+ - -  
lznj k znj ] j 1 k nj / nl (5.19) j = l  j : l  = 

--~'~k=lcj(n~'--l)+24[t+~-~k=ll~j~na(aJ)(l--~na((XJ))] (rood 2Z) 
12nl 

by (5.2) and (5.15). 

Definition 5.6. We call 

JA[n, T; t] = E~=I ej(n~ - 1)+24[t+E~=l �89 (5.20) 
12nl 

a twist factor of type A. An integer tA(n, T) is called a twist parameter of type A if 

JA[n,T;tA(n,T)]eZ. If T=Ok, we drop T in the above notations. If all nj are equal 

to n, we denote JA[n;t] by JA[n,k;t] and tA(n) by tA(n,k). We call them the basic 
homogeneous twist factor and parameter of type-A self-dual complex lattices, respectively. 

Remark 5.7. Notice that 

k 
tA(n, T) = t A ( n ) - - ~  �89 (5.21) 

j = l  
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Set 

OA,j = On.i,A, for j �9 a(k); 

k Furthermore, for any c�9 we let 

k k 

0.,A-- 0A,5+  (5.22) 
5-----1 j = l  

XA,c = xc +r (C)yA,1. (5.23) 

Suppose that tA(n, T) is a twist parameter. Set 

WA = Wn,A +XA,T +tA(n, T)yA,1. (5.24) 

Let C be a code of length k over Z m . Set 

LA[-, el = + E  Z A,o +0n,A- (5.25) 
eEC 

Then we have 

THEOREM 5.8. The lattice LA[n,C] is integral if and only if C is self-orthogonal 

relative to d. If C is self-dual relative to d, then LA[n,C] is self-dual. Conversely, C is 
self-dual if the following conditions are satisfied: 

(1) C~T~[n] (cf. (4.20)); 
1 (2) when nl is even, Cd ~ satisfies (5.13) and CB (~na, ..., �89 

(3) LAIn, Of is self-dual. 

Proof. The first and second statements follow from Theorem 3.5, expressions (4.13), 
(4.21), and the proof of Proposition 5.4. It remains to prove the third statement. Suppose 

that c e C~-. Then ~ A,c �9 (L A In, C]) l = L A In, Of. Now 

k n j - 1  k n j - 1  

5=1 i=l 5=1 i=l (5.26) 
z k  ~_ { 0 (mod Qn,A), if n is odd, 

-5=a eh"�89 , XA,(n,/2)~ (mod Qn,A), if n is even, 

by (5.3). Now the conclusion follows from: 

[(LA [n, C] n L) + Qn,A]/Qn,A ~- C/7~ [nl, (5.27) 

k A where L=~5=I  Rnj. [] 

When all nj are equal to n, we denote LA[n,C] by Ln,A[C]. 
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THEOREM 5.9. Let C be a self-orthogonal code of length k over Zn. Assume that 
CDU[(n, ..., n)] and C~ (�89 ..., �89 if n is even. The lattice Ln,A[C] is a type-A complex 
lattice if and only if lkEC and k=_O (mod 2n) when n is even. 

Proof. If Ln,A[C] is complex, then 

k 

XA,I~ +W~,IA E ~n(aj)YA,j = w~,~ [(1 --W~,A)WA --tA(n, k)(1 --Wn,A)YA,1] 
j=l  (5.28) 

e L ,A [c]. 

By (5.27), lk EC. Furthermore, we notice that CA,T(1) k =~'~j=l ~]n(aj)+ (�89 Thus 

(5.28) implies � 8 9  (rood n). Hence if n is even, then k=0 (mod 2n). 

Conversely, if lkeC and k=0 (mod 2n) when n is even, then �89 (mod n), 

because k--y~(lk, lk)--0 (mod n) when n is odd. Therefore, 

k k k 

j=l j=~ (5.29) 
k 

= + v ,  
j = l  

k where veQn,A. Hence wn,AWAeLA[n,C] by (5.28). We have ~-'~j=l ~]n(cj)-O (mod n) 
1 k for each cEC, since 0=(c, k)l =~j=l  cj in Zn. Thus 

k 

= e LAIn, C]. (5.30) 
j = l  

Now the conclusion follows from the fact that  0n,A is a complex lattice by Lemma 5.2 

and (5.22). [] 

Remark 5.10. If n is even, then (�89 ..., �89 for any self-dual code C over Z~. 

We have constructed the untwisted self-dual type-A complex lattice Ln,A [C] for each 

self-dual code C over Zn, and the twisted self-dual type-A complex lattice L~,A[C] for 

each self-dual code C9 1 over Zn. Next we show that these lattices are "self-dual complex 

lattices". 
L - ~ ~ k First, we notice Q--@j=IQn,A--Qn,A. We can define the generalized Hermitian 

form ( . , . )A on LQ by 

k k k 

(x,y)A=E)~ff~j ,  for x = E ) ~ j x j ,  y = E # j x j e L  Q. (5.31) 
j = l  j = l  j = l  

Then ( . , . ) A = ( ~ : I ( . ,  �9 )n,A =~OAO('," )A. 
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Definition 5.11. We define the complex dual of a complex RA-lattice s by 

~cd : {X E LQ [ (x, Y)A e (1 --Wn,A)R A ---- Qn,A for all  y E s  (5.32) 

The lattice F. is called a complex integral (self-dual) lattice if s162 D s  (s 

THEOREM 5.12. The lattice s is a complex self-dual RA-lattice if and only if it zs 

a self-dual complex R~-lattice with respect to ( .,. )A. 

Proof. It is sufficient to prove s163 First of all, s Ds by Proposition 4.2. 

Now let x E s  ~ For any yEs we set  (x, " ,-,n-2 y)A~-a=2..,i= o aiwn, A. Then 

1 n--2 
a ~ - -  Z as = ~A((x, ~ , ~  y)~) = (x, J.,~ y ~  e Z (5.33) 

~2 
i=O 

for j=-O, ..., n - 2  since s is an RA-module. Similarly, we have 

_ 1  Z ai=(X'Ca;)AY)A e Z .  (5.34) 
n i=o 

Thus, we have 
n-2  

a s ~ Z ;  E a ~ - ~ 0  (modn) .  (5.35) 
i---O 

~-,n-2 . ~--,n-2 " J 1)EQn,A by Proposition 4.2. That  is, This implies that  a=2.,~=o ai~-?_..,j=l aj twn,a-  
X E s []  

Remark 5.13. (a) The terms "complex self-dual" and "self-dual complex" above are 

different in the sense that  the first is defined with respect to ( . , . ) A  and the second is 

defined with respect to (- ,. )A. 

(b) In another work of ours [26], we prove that  Lp,A[C] and Lp,A[C] are free R A- 

modules of rank k, where p is a prime number, C is a self-dual code of length k over 

Zp and CBlk in the second case. One can check that  RA~-Z[wp]CC, where wp--e 2"i/p. 

In particular, L3,A[C] and L3,A[C] are also complex lattices in the sense of the definition 

given in [22]. 

The following fact also shows that  our definition of complex RA-lattice is very rea- 

sonable. 

THEOREM 5.14. Let s be an RA-complex lattice. If g is an RA-module automor- 

phism, then 
(g(x),g(y))A =(x ,y)A for all x, y e s  

r (5.36) 

(g(x), g(y))A = (x, Y)A for all x, y e s 
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Proof. " ~ "  is trivial since (.,.)a=~OAO( "," )A" 

Let us prove "=~". For any x, y E s  we let 

n -2  

,~i ~dn,A , 
i = 0  

Now by assumption, 

n - 2  

•i n,A, A i , # i E Q .  (5.37) 
i = 0  

n - 2  
n-2 1 E #  i 

i = 0  i=O 

for O<~j<.n-2 and 

n - 2  1 ~ ~, = <.~.,~g(~), g(~)>a = <.~.,~, ~) = 1 "-~ 
n n #i. 

i = 0  i=O 

(5.38) 

(5.39) 

Therefore, Ai =#i, i=O, 1, ..., n - 2 .  That  is, (g(x), g(Y))A =(z, y). I"1 

Remark 5.15. In [24], we have constructed certain induced T-shells by means of our 

twisted type-A lattices. We also introduced in [24] T-shells of type D. 

6. Basic homogeneous  twist  parameters  o f  type  A 

By analyzing the twist factor JA[n, k; t]=[k(n 2-1)+24t]/(12n), we divide our work into 

the following six cases. We simply denote JA(n, k; t) as JA. 

Case 1. n=6s+l, sEZ. 

JA = k(36s2+12s)+24t 
12n 

where �89  is always an integer. Therefore, 

~A = - � 8 9  (rood ~), 

_2[�89 
n 

JA is even. 

, (6.1) 

(6.2) 

Case 2. n=6s+2, sEZ. 

JA = k(36s2 +24s+3)+24t = k(4s(3s+ 2)+ l)+8t 
12.2(3s+I) 8(3s+I) 

The requirement for JA EZ: 
k = 81, 1 E Z. 

(6.3) 

(6.4) 
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Then 

Therefore, 

Ja= 
l[4s(3s+ 2) + 1] +t _ 41s+l+t 

3 s + l  3 s + l  
(mod 4). 

t A , 1  - -  - 4 l s - l  (mod n), JA is even; 

and 

tA,2----41s--l+�89 (mod n), JA is odd. 

Case 3. n=6s+3 ,  sEZ. 

JA = k(36s2 + 36s+8)+ 24t = 2[k(�89 1)+ 1) + 3t] 
12n 3n 

The requirement for JA E Z: 
k=3 / ,  IEZ.  

Then 

Therefore, 

JA = 2[t(�89 0+ t ]  
?2 

tA =----I(�89 (rood n), JA is even. 

Case 4. n=6s+4 ,  sEZ. 

JA = k(36s2 + 48s + 15) + 24t = k[4s(3s + 4) + 5] + St 
12.2(3s+2) 8(3s+2) 

The requirement for JA E Z: 
k=8 / ,  IEZ.  

Then 

Therefore, 

JA- 
l ( 2 s + l ) + t  l(8s+5)+t (mod 4) - (mod 2). 

3s+2 3s+2 

{A,1----/(2S+1) (mod n), JA is even; 

and 

tA,2 =----l(2s+l)+�89 (mod n), JA is odd. 

Case 5. n=6s-F5, sEZ. 

JA = k(36S2 +60S+24)+24t = 2 [k(�89 
12n n 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.1o) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 
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where �89 is always an integer. Therefore, 

tA =-�89 (mod n), JA is even. (6.18) 

Case 6. n=6s, sEZ. 

The requirement for JAZZ: 

Then 

Therefore, 

and 

k(36s2-1)+24t (6.19) 
JA= 12.6s 

k=24l,  l e Z .  (6.20) 

l(36s2--1)+t _ - - l + t  

3s 3s (mod 12). (6.21) 

~A,1 ---~l (mod n), JA is even; (6.22) 

1 (mod n), JA is odd. (6.23) tA,2 - - l + s n  

Thus, we find all basic homogeneous twist parameters of type-A self-dual complex 

lattices. Moreover, by Remark 4.6, (5.19) and (5.21), we have: 

THEOREM 6.1. The lattice Ln,A[C] is an even self-dual lattice under the following 

conditions: 

(1) n is odd or C satisfies (4.22); 

(2) tA(n, T) is as in (5.21), and 

t'A(n)---- { tA 
tA,1 

in Cases 1, 3, 5, 

in Cases 2, 4, 6. 
[] 
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