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§ 3. The Levine form

Let ¥ be a complex vector space of dimension n+1 with n€N. Suppose that a Her-
mitian product (]) is given on V. On each V[p], an associated Hermitian product (|) is
induced such that for every orthonormal base a=(ay, ..., a,) the set

{0pm A oo Aty | € Z(p, n+1)}

defines an orthonormal base of V[p]. If 0+ € V[p+1]and 0+n€ V[g+1] withp+g<n-—1,
then the projective distance from  to y) is defined by

y
tl Iyl

nmn=}“

If £€P(V(p-+1]) and v EP(V[g+1]), then the projective distance from & to v is well-defined
by
€0l =[lz:9]l i o(x) =¢& and o(y) =v,

where ¢ are the respective projections. Especially, this projective distance is defined as
a real analytic function on @?(V) x &4(V) with

0< |&:0]| <1 if (&, v) EG(V) x GY(V).

In the following, the vector space V, V[p+1], V[p+2] and € with n—p=r will be
considered. The natural projections are denoted by

(1) This research was partially supported by the National Science Foundation under grant NSF
GP-3988.
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0:V—{0}~B(V), o: Vip+2]- {0}~ B(V[p+2)),
0: VIp+1]— {0}>P(V[p+1], ¢:0 —{0}~>P(C).

The euclidean forms are denoted by
v and v, on V, v and v, on Vip+2],
vandy,on V[p+1], v and v, on C.
The projective forms are denoted by
w and o, on V —{0}, ® and o, on P(V),
® and o, on V[p+1]—{0}, @ and &, on P(V[p+1]),
o and @, on V[p+2]—{0}, @& and &, on P(V[p+2]),
o and o, on €'~ {0},  and @, on P(C").
For 2 €@?(V), a holomorphic map
7y P(V) — E(a) > P(V[p+2])

is defined by the following procedure: Take a€g—(x). Pick any wEP(V) — E(x). Take
fv €0~Xw). Then 1 A a +0. Define 71, (w) =g(iv A a). Then 7, is well defined and holomorphic
in P(V)— E(«) and meromorphic(!) on P(ﬁV) and maps P(V)— E(«) into &*+1(V). Then =z,
defines a lifting = of the forms on P(V[p+2]) to forms on P(V) — B(«). Define(?)

®(«) =7%(é) on P(V) — E(a).

Then ®(«) is defined, real analytic, non-negative and of bidegree (1,1) on P(V)— E(x).
Moreover,

dD(x) =0 on P(V) — E(«).
It will be necessary, to use a simpler, but base dependent definition of ®(«):

Levwma 3.1. Let V be a complex vector space of dimension n+1 with a Hermitian product
(|). Let 0<p<n and r=n—p. Take a€G?(V). Let a=(ay, -.., 0,) be an orthonormal base
of V with oo=g(agA ... A ). Define G,:V—>C" by

n
T Zoz,,aﬂ) = (Zps1s «ees Zg)-
s

(1) Let G and H be complex spaces. Let A be open and dense in G. Let f: A ~H be holomorphic.
Let F be the closure of {(z, f(z)) |z€A} in @ x H. Let 7: F—~ @ be the projection defined by 7(z, w) ==z.
Then f is said to be meromorphic on & if and only if F' is an analytic subset of G x H and if 7 is proper.
See Remmert [14], Stoll [23] and Stein [17]. ‘

(2) See Levine [12] and Chern {3].
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Then E(c) is the kernel of the linear map &,. One and only one map
0 P(V) — E(a)~P(C")
exists such that o, 00 = go&“ and this map o, is holomorphic on P(V)— E(x) and meromorphic
in P(V). Moreover,
@ () = 65(D).

Proof. Clearly, Kern &,=E(x), because E(c) is the subspace spanned by aqy, ..., a,.
Clearly ¢, is well defined by 0’a°Q=Q°5'w holomorphic on P(V)— E(x) and meromorphic
in P(¥). Now, define z,: V- V[p+2] by setting

TW) =W AagA...ANa, If WEV.

Then 7, is linear and E(«) its kernel. Moreover, 7,00 =0 ox,. Because a is an orthonormal

base, it is
| 7a(i0) =] A ag... A g |2 = ”3;1 [w, |2 =] aa(t0) 2
Now w(r)=}d'd log fr] if revVip+2]—-{0},
o(3)=4d*d log 3] if €0 —{0}.
Hence 0x (@) (10) = } d*d log |o,(1v)|
= 3d*d log |m.(10)| = () *(w) (1),
which implies @*(0%(®)) = 5%(0*(®)) = 63(®) = (72)* ()

= (7)* (¢*(@)) = 0*(z (¥)) = uX(D());

because p* is injective, this implies o%(w) =®(«), q.e.d.

An easy, but important consequence is

LEMMA 3.2. Let V be a complex vector space of dimension n + 1 with a Hermitian product:
(]). Let 0<p<mn and r=n—p. Take a €&G*(V). Then

O(x)" =0.
Proof. Apply Lemma 3.1 with the same notations. Then
(2)" = 07(@") = 0%(0) =0

because dim P(C")=r—1, q.e.d.
There is another way to define ®(x), namely:
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LeMMA 3.3. Let V be a complex vector space of dimension n+1 with a Hermitian pro-
duct (|). Let 0<p<n. Take a €&?(V). Then,

N a(w) = D(a) (w) =} dd* log [lw:«l|,
if wEP(V) — B(a).
Proof. An V~{0} is @=}d*log |[w]|. Pick a€g~*(a). Then 70) =1v A a. Hence, if
w€P(V) — E(x) and wE€p~(w), then
0% (0 — P(a) = @ ~ g*(7z (@) = o — (7)* (0*(@))
=0~ (7)* (0) = © — }d*d log |,(i)|
1
=1dd* log —— +3iddtlog lwAa
3 g lml |ﬂ| 2 g | I
[t A a|=
|vo||a]

Because g* is injective, this proves the assertion of the Lemma, q.e.d.

Again, let ¥ be a complex vector space of dimension 7 +1 with a Hermitian product
(]). Let 0<p<n and define r=n—p. For each a€®?(V), define the Levine(l) form of
order r by

=1dd* log 0*(3 dd* log ||w:al|).

1 .
Z (I)(a)’/\ wr—v-l.

Tr=-D15

Afa)

Then A(x) is a non-negative, real analytic form of bidegree (r—1,r—1) on P(V)— E(a)
with dA(a) =0. For r=1 is A(a)=1. The following Lemma is due to Levine [12].

LemMMA 3.4.(2) Let V be a complex vector space of dimension n+1 with an Hermitian
product (|). Let 0<p<n and r=n —p. Take a €B?(V) then

. 3 dd* log ||w:a| A Ala) (w) =1 - ,(w)
for we€P(V) - E(x).

Proof. According to Lemma 3.3 is

r-1
%ddl lOg IIw.a" /\A(a):.—w._(l)(a) /\r_]; z (I)(a)v/\ ('A')r—l—v
c »=0

1. .
= @ ) =rw,

because ()" =0 according to Lemma 3.2, q.e.d.
Now, it shall be shown that certain integrals exist which involve the Levine form.

(*) See Levine [12] and Chern [3] (44).
(?) See Levine [12] (9).
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LeMMA 3.5. Let M be a pure m-dimensional complex manifold. Let V be a complex
vector space of Jimensi(m n+1 with an Hermitian product (|). Let r€N with p=n—r=>0
and ¢ =m —r=>0. Let f: M —P(V) be a holomorphic map which is general of order r for « € (V).
Let y be a measurable differential form of bidegree (g+1, q¢+1) on M with locally bounded,
coefficients. Let K be a compact subset of M. Then

1
log — f*(A
Og“f:oc”f( (NN X

18 integrable over K.

Proof. 1t is sufficient to show, that for »=0, 1, ..., r — 1, the form
1 * 4 K r—1—v
W=10gmf(®(a))Af(w YAX

is integrable over a neighborhood of each point of K. Take a€K. If a¢f-1(H(x)), this
form is real analytic in a neighborhood of «, hence integrable over any compact subneigh-
borhood. Hence, suppose that a€f~*(#(«x)). Now, apply Lemma 2.5 with the same nota-
tions. Define g =pg'of| A. Then g=ay+ D51 f,a,. Hence

ClgAag A Ag|

1 n
”f-‘x”_lgl,lao/\ A ﬂplﬂm l/u=g+1f”al‘/\ QA oo A Oy

S s el
(ﬂ=p+1|fﬂl) Igl

|
Hence logm=log lg| —log ||

Define ¢, and &, as in Lemma 3.1. Then ¢,09=¢ and

f(@() = g*og*oos (&) = g*057 0g*(®)

_ i (dpldp) _(dple A (¢ldp)

= (0:09)*() = ¢*(@) = } d*d Lo
@ 2 gl‘l" ) |‘P|2 I‘PI4

Define Q(3) = |3 [2@(3) for 3€C"— {0} and Q(0)=0. Then Q is a non-negative form on €’
with locally bounded coefficients. Hence f*(®(«))=|p|-2¢*(Q) almost everywhere on 4,
where f*((2) is measurable and has locally bounded coefficients on 4.

Let 4, be compact neighborhood of @ with 4, A. Apply Proposition 1.7 twice using
the tables
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1.7 M|m|flplglx|le|lel @ T | K x 4

Here I (A {m |@|rlqg|l]o|v|m—v|m-v |4, Mo Ay Q>

HereII A |m || r|q|O0|rv|v]m-yv|m-y| 4, loglglf*(&.)'_l"’)/\x Qw

Therefore, the forms

log 1 s 9°(@¥) A £ 1°7) = —log gl (@) A 1677 A2

and o g(@¥) Alog o] 167 A =1log gl @) AT A2

are integrable over A4,. Hence, their sum y is also integrable over 4, q.e.d.

LemMa 3.6. Let M be a pure m-dimensional complex manifold. Let V be a complex
vector space of dimension n+1. Let r€EN with p=n—r>0 and ¢=m—r=>0. Let f: M—->P(V)
be an holomorphic map which is general of order r for x € &?(V). Let y be a measurable differ-
ential form of degree 2q+1 on M with locally bounded coefficients. Let K be a compact subset

of M. Then
d*log ||f:e]| AfHA()) Ay
35 integrable over K.

Proof. It is sufficient to show that for »=0, 1, ..., »—1 the form
y=d*log ||f:a|| A D)) A fHoo™ 1) Ay

is integrable over a meighborhood of each point of K. Take a€K. If a¢f1(#(x)), the
form y is real analytic in a neighborhood of @, hence integrable over any compact sub-
neighborhood. Hence, suppose that a€f-1(%(«)). Now, apply Lemma 2.5 with the same
notations. Define

g=05 of|[4=0s+2 f0,
and ¢ =(fp41, ..., fn): 4 —=>C". As in the proof of Lemma 3.5, it is

log ||f:a|| =1log || —log |g]

1 (D(x)) = ¢*(w) on 4.

)= (¢ldp) _i (dgl9) —(gldg)

i (do|g
Moreover, a+ ] )l = v (g
og ||f:«l| 2 “Plz 2 lglz
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Define 7= 9" dplo) A 1 @) A PG A1,

ra=5" 9 (pldg) A (@) A G ) A
vs="5 |9I""(dglg) A f1@()) A @) A R,

va=3 |91 %gldg) A (@) A 4@ ) A 2.

Now, measurable differential forms X, of bidegee (u, ») with locally bounded coefficients
exists such that

x=,u+v=2q+1 x,w.
Then L= )N Xgqv »
Ta=1 &) A Zgrr,ar
~ % 1oy
x3=_2‘ (dggll f* -1- )A xq g+1s
- 1 (g]d
x4=_2_ ( ||g| ) /\f*(wr -1- v)/\Xq+1 a

are measurable differential forms with locally bounded coefficients on 4. Define Q,(0) =
Q(0)=0 and

d
0,p)=4 ¢ 3'{’” Asker, it 360 (o)
Q @) =39

Then Q, and Q are measurable differential forms with locally bounded coefficient on A
A comparison of bidegrees shows that

1

"= lzvﬂ QN

[pfFT
— @) A
V2 |(p|2v+1 VAL 2

-1 .
Vs= |¢|2v PN X

1, .
=1 Q)/\Z.
Vs |<P|2 @*( 4
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Let A, be a compact neighborhood of a with A, A. Apply Proposition 1.7 four
times using the table

1.7 M| m i D q % | 8 ¢ I T E|l x| o |k
Here 1 | A | m | ¢ | r q 0 |v+1f » |m—v-1] m—» |4y | |1
Here 2 A m ¢ r q 0 v [v+1| m—v |[m—v—1]4,| 2| Q| 1
Here 3 A m @ r q 0 v v m—v m—v |4y | 1| Q 1
Here 4 A m @ + q 1] » v m—v m—v A, ;}4 Q 1

Hence, y,, y,, v and y, are integrable over A,. Therefore y =y, +y,+y;+y, is integrable
over 4,, q.e.d.

LeEMMA 3.7. Let M be a pure m-dimensional complex manifold. Let 0 <s<q<m. Let y
be a non-negative form of bidegree (s, s) on a subset A of M. Let V be a complex vector space
of dimension n+1 with an Hermitian product (|). Let r=m—q and p=n—r. Suppose that
0<p<n. Let f: M—-P(V) be a holomorphic map which is general of order r for a €G?(V).
Let a€A—f(E(a)). Then f*(A(@)) Ay is a form of bidegree (r—1+s, r—1-+s) which is
non-negative at a.

Proof. Because
1 i .
A AL =357 2 (@@ A @) AR
(r—1)!,5
and because f*(A(x)) and f*(w) are non-negative (II Lemma 2.5) and because both have
bidegree (1, 1), the form f*(A(x)) A x is non-negative at a, according to II Theorem 2.6,
q.ed.

§ 4. The First Main Theorem

Stokes’ integral theorem will be used in the proof of the First Main Theorem. Let M
be an oriented differentiable manifold of class C* and pure real dimension m. Let S be a
pure s-dimensional, oriented differential manifold of class C* with ¥>1. A map f:S—~>M
of class C* is said to be regular if and only if the rank of the Jacobian of f is the minimum
of m and s for every point of S. The pure s-dimensional, oriented manifold S of class C*
is said to be a submanifold of class C* of M if and only if S is a subspace of M and if the
inclusion map j:8—M is of class C*. The submanifold S is said to be smooth if and only
if § is regular.
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Let H be an open subset of M. The pure s-dimensional oriented manifold § of class
C* is said to be a boundary manifold of M if and only if the following properties are true:

1. 8 is a relative open subset of H-H.

2. s=m—1, and S is a smooth submanifold of class C* of M.

3. If a€S, then an open neighborkood U of a, an open subset U” of R™-1, an interval
I={x|z€R, |z| <n} with >0 and diffeomorphic maps

w:U~IxU"  p:UNS~U"

of class C* and with a positive Jacobian, and a surjective map g: U — I of class C* exist such
that
«z) = (9(x), Bx)) i z€U

UNH = {z|z€U, —n<g(z)<0}
UnS={z|z€U, g(xr)=0}
UNH = {z|z€U, 5>g(x)>0}.

If S satisfies conditions 1 and 2, then one and only one orientation of § exists which
makes § into a boundary manifold of class C*. If M is a complex manifold of pure dimen-
sion m, these remarks apply also, because M can be considered as a real manifold of dimen-
sion 2m.

Let M be a differential manifold of pure real dimension m. Then a differential form
£ of degree » on M satisfies locally a Lipschitz condition, if and only if for every a€M,
a diffeomorphic, orientation preserving map o: U~ U’ of class C* and functions §, on U
and a constant L exist such that

1. U is an open neighborhood of a in M and U’ is open in R™.
2. If a=(xy, ..., z,), then

E = Z S(pdx‘p(l) Aol A dxq,(n)
geI(n,m)

on U.
3. If z€U and &' €U, then

|€ (@) — & (') | <L|af) — af’)|.

If & satisfies locally a Lipschitz condition, then £ is continuous, and almost everywhere

d¢ exists. Moreover, if n=m—1, then d{ is integrable over every compact subset of M.

TEEOREM 4.1. (Stokes) Let M be an oriented differentiable manifold of class C* and
with pure dimension m. Let H =D be an open subset of M. Let S be empty or a boundary
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manifold of class C* of H with k=1, Let & be a form of degree m—1 on M with support T.
Suppose that H N T is compact and 8= (H-H)N T. Then

fo-

For a proof of this well-known Theorem see, for instance, [18] Satz 8.
For the rest of the paper, the following assumptions shall be made:

AssumrTION 4.2. Let M be a pure m-dimensional complex manifold. Let V be a com-
plex vector space of dimensional n+1 with an Hermitian product (|). Let r be a positive
integer with p=n—r>0 and q=m—r=>0. Let a€&(V). Suppose that f: M—->P(V) is a
holomorphic map which is general of order r for o. On M, an exterior differential form y of
class C* and of bidegree (q, q) ¢s given.

If » and v are functions of class C! on M and if £ is a differential form of bidegree
(m—1, m—1) on M, then du A dv A & has bidegree (m +1, m —1) and du A Ov A £ has bidegree

(m—1, m+1). Hence both forms are zero. Therefore
du Nd*o NE = 1(Ou+0u) A (Ov —w) N E
=4(Ov A du+3u A w)AE.

Hence duNd*oANE=dvAd*uNE.

ProPosITION 4.3.() Let H be an open subset of M. Suppose that H is compact and
that S=H —H is empty or a boundary manifold of H. Let j:8—~M be the inclusion map.
Let vy be a function of class C? on M. Define

n =log ||f:af|f(Alx) Adp Ay
Suppose that at least one of the following assumptions a) or b) or c) or d) is true:
a) The form n (that means §*(n)) ts integrable over S.
b) The form j*(n) is non-negative on 8.
¢) The form §*(n) is non-positive on 8.
d) The form y is non-negative. For every a€8 an open neighborhood U of a exists such
that y(z) >yp(a) if z€UNH.
Then 7 is integrable over S and

(1) For r =1, compare Stoll [21], Satz 6.2.
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[ 10g l7:ell Pan A iy n

- fHde d* log ||f:all A fH(A@)AZ+ Llog I7:ell F4(A() A ddtp A 2 )

- Llog f:all F(A) A dtop A d.

Proof. At first, observe, that the existence of the integrals over H is implied by Lemma
3.5 and Lemma 3.6.

At first, it will be shown, that every point of H has an open neighborhood A such that
the theorem holds if y has compact support in A. :

Take a € H. If a ¢ f-2(#(x)), take an open neighborhood 4 of asuch that 4 N f-1(E(a)) =D.
Suppose that y has compact support in A, then all the integrands of (1) are continuous
on M and 7 is of class C* on M. Therefore (1) is an immediate consequence of the Stokes
integral theorem.

Suppose that a € H N f~1(#(«)). Determine an open neighborhood 4 of a, holomorphic
functions f,, ..., f, and an orthonormal base a=(qay, ..., 0,) of ¥ as in Lemma 2.5. Hence
o(ag) =f(a) and g(ay A ... A a,) =a. Define

n
g=0ay +’Z:1fvav = 951°f|A,

@=(fps+1, ee0s fn): A= C",
Then log ||f: || =log || ~log |g], F*(@(x))=g*().

Take a function § of class C* on R such that 0<j(z)<1 for all z€R and §(z)=)
if <0 and §(x)=1 if x>1. A constant B>0 exists such that

2|§'(x)| <B if z€R.
For ¢ >0, define a function g, of class C® on R by setting

20—
gol®) =7 ( = ").

Then a) For 2€R is 0<g,(x) <1.
b) For z€R is p|g,(x)| <B.
¢) For z<p/2 is g (x)=0.

d) For x>p is g (z) =1.
Define y, on M by setting
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) = g(|p)|) if z€A4,
¢ 1 if 26 M—A.

Then yp and yp|S are measurable functions on M respectively S. Moreover, y,|4 is of
class O, Moreover, y,| 4 is zero on the open neighborhood 4,={z||p(z)]| < 0/2, 2€ A} of
AN 0)=4 0 {2 E(a)).

Suppose that y has compact support in 4. Then y,y is a form of class C* on M which

is identically zero in an open neighborhood of ~2((«)). Therefore Stoke’s Theorem implies

[ retogli:all Fir@) natpnx
= [ yed 108 I5:all A PG Ay 2
+ [ yotoglf:all ke ndtynz
~ [ e og I1:all ra Aty nax

+ [ 10g Il 1 A Aty
H
According to Lemma 3.5 and Lemma 3.6, the forms
dlog ||f:a|| A f(A(@) Adiyp A g =dypAdtlog ||f:al] AfH(A(X) Ay,

log ||f:a||f*(A() Addp Ay and log ||f:aff*(A(x) Adiy Ady

are integrable over H, hence also over H.
If z€ M —f-1(E(a)), then y,(z)—~1 for g—0, where |y,(z)| <1. Since H N f(E(x)) is a

set of measure zero on H, this implies

nyQd log |[f:e|| A fHA@)AdpAYX - fde) Adtlog || fral| A PHA@)AX=I,
for g0 and

| retog ol piaenndampnr ~ [ tog Izl Ph@ A ddprz=1,
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for g0 and

Lye'log If:all MA@ AdipndE  ~ Llog If:all FH(A@)) A dp Ade=1,
for 0.

Ondis  dn=glelalel=silel g @rle)+ pldp),

where |g,(|¢|) ||| <B on 4 for all p>0. Define
701~ | Tog Il e A F1@() A T A by
J (0)= fﬂlog I1f:all dyo A FH(A()) A dryp A X.

r-1
Then T =5 =57 2,0

P v=0

Let T be the support of 2. Then 7' is a compact subset of 4. For 0 <p <1, define

L<e>={zlzeT,§ <|<z)|<e}

On M define the continuous forms

H =1 ) Ny Ay, xs=10g |91
X2 =M@ 1) NP Ay, xa=log |g|xe

On €’ — {0} define the forms

Qu(3)= 5131 (d313) 1 0¥ = 2403)

Q)= 5 317 G1d8) A 0* = Q403).

For 3=0 define Q,(0)=0 for v=1, 2, 3, 4. Then Q, for »=1, 2, 3, 4 has locally bounded
and measurable coefficients on €". Define 4, on 4 by

ho(2) = |@(2) | 9ol | @(2)])-

Then |h,(z)| <B for all >0 and all z€A4. Then
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log ||£:]] dye A fH(@@) A O™ 7)Ao A X

= (log || ~1log [g]) g2 (%)) 2T1<P—| (| @)+ (@]dp)) A (") A @ 1) A i(ep—Fy) A 1.

1 1
= —, log | ¢ PP @*(Qy) A Xy F R log 9] PP PHQ) A Xy

For =1, 2, define

For A=3, 4, define

1 1
e Q) N Xy — by PP ¢HQ) N %,

Because dy, has its support in L{p), this implies

Now, apply Proposition 1.7 four times

1
Ji(o)= fum by o7 @*(Q1) A Xa

Ju(e)= +J3(0) — I¥(e) + I3(e) — T3()-

1 1
Jh =f ko log 7 =g 91 (Q) A 2.
O ) M B gl fpprr M

1.7 M f % s ¢ o T 1| % | ke
Here I A @ 1 jv+1| » [m-v~1| m-v» 21| Q1| ke
Here II | 4 @ 1 v |v+1| m—y |m-v-1 Ao | Qa| ke
Here I1I| 4 @ 0 |»+1| » |m—v—-11 m—v % | Qs hy
Here IV | A @ 0 v |v+1] m-v |m-»-1 Xa | Q| ke

Therefore Jf,'(g)—-)O if p—~0 for 1=1,2,3,4 and »=0, 1, ...,r—1. Hence J,(9)—~0 if o0

forvy=0,1, ...,r—1. Hence

Therefore, the following limit exist

with

I‘=Il+12—'[8

J{p)~>0 for p—0

I‘=3i_13) L'yg log ||f: ]l F*(A()) Ad*p A X

Now, the different cases a) b) ¢) and d) have to be considered:
a) Because 0 <y, <1, because y,(z)—>1 for g->0 if 2€ S~ f-1(E(«)), becanse f1(E(x)) N 8

is a set of measure zero on S and because # is integrable over S, it follows
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'~ [ tog I sal A Ay 2,
s

which proves the theorem if the support of y is compact and contained in 4.

b) I 7*(n) has a non-negative density on 8, then

Lm*(nh Ly‘*(m <oo

if p— oo by the same reasoning as in a), and

oo >1'=1lim fyey'*(n)=f *(n) =f7l
e->0 Jgs S s

which proves the theorem if the support of X is compact and contained in 4.

¢} Replace p by —y and the case reduces to the case b).
d) If y is non-negative, so is f*(A(x)) A y. According to Stoll [21] Satz 4.5, j%(n) is

non-negative. Hence the case reduces to the case b).

Now, consider the general case. Finitely many points ay, ..., @, in H and finitely many
open sets 4., ..., 4, with a,€ A4, exist such that the Theorem is true if the support of ¥
is compact and contained in A, and such that HS 4, U...U 4,. Take function g, ..., g,
of class C* on M such that 0<g, <1 on M and such that the support of g, is compact
and contained in 4, and such that >5_; g,(2)=1 if z€H. If a, b, ¢, or d is true for y then

a), b), ¢) or d) are true respectively for g,y. Hence
[ 1og e i@y n dtyp g
= f dy Adtlog || Frall A FH(A(X)) A geX -+ f log [|f:a]l f*(A(x)) A dd* A goX
H H

- Llog 1f:all F(AG) A dip A digat).

Because >5_;g.(z)=1 for z€ H, addition yields formula (1) with all integrals existing,
q.ed.

It is remarkable, that Stokes Theorem still holds for such a singular integrand as in
formula (1). If y and log ||f:«| are exchanged, then the singularities become so strong as
to invalidate the Stokes Theorem. However, a residue Theorem can be proved, which
will be the base for the First Main Theorem.
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THEOREM 4.4. (4 residue formula).(1) The assumption 4.2 is made. Let H be an open
subset of M. Suppose that H is compact and that S=H — H is empty or a boundary manifold
of H. Let j:8~M be the inclusion map. Let p be a continuous function on H, which satisfies
locally a Lipschitz condition on H. Let K be the support of wy on S. Suppose that S,—
K nfYE(x)) is a set of measure zero on f~(E(x)). Suppose that

7 =vd* log [|f:a|| A (Al@)) Ay
ts integrable over S. Then

[ i 108 17l 1 o) 2
= [y astoglf:all A s nx

- Lwd* log [|f:afl A fH(Aa)) A d2

r

. 27
+2 *w)ANX— 2; X.
’L"” (@) N % (T—l)!fanf—‘(ﬁ(a))vl( )y

Remark: If ¢=0, then y is a function and the last integral means summation over the

finitely many points of H N f~1(&(a)).

Proof. At first, it will be shown, that every point of H has an open neighborhood 4
such that the theorem holds if x has compact support in 4. By Stokes’ Theorem, this
is trivial, if a € H — f1(E(a)). ‘

Take a €H N f-1(H(a)). Construct 4, f,, ..., fn, a=(0g, -, ), 9> @, § B, g, ¥, 88 in the
beginning of the Proof of Proposition 4.3. Suppose that y has compact support 7"in 4.
Then p,y is a form of class C* on M, which is identically zero in a neighborhood of FUE(x)).

Therefore Stokes” Theorem implies:

[ repasrog Izl n a1 2
~ [ vy rasogli:al n paenz

- Lm’ dtlog ||/l A fH(A()) A dX

(1) For r =1, see Stoll [21], Satz 6.3.
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+ Lyew dd* log [|f: ll A f*(Afe)) A X

+ [ pdvendtlog If:all A 1A A 2

Now, the limit of these integrals for g—0 has to be studied. They are denoted in order
by I(p), I;(p), ..., I4() such that

I(g) = Ii(e) + Ix(0) + Isle) + I4(0)-
According to Lemma 3.4 and Lemma 3.6, the forms
dy Ad*log ||f:a]| A fHA(@) Ay,
v dtlog ||f:a| AFHA(R) Ady,

v dd*log [[f:af| AfH(A(x) Ay =2rpf*w,) Ny

are integrable over H, hence also over H. Moreover,

7*(n) =7*(wd* log ||f:af| A f*(Afa) Ag)

is integrable over S by assumption. On H, the set HNjf-!(E(x)) and on S, the set

SN {7 (E(x)) are sets of measure zero. Because 0<y,<1 and because y,(z)—1 for g0
if z€H —f-1(H(«)), it follows that

I(o)~ Lwd* log [1f:al A F(A@)E=1
L)~ de Ad*log || al| A FPA@) A 2 =1,
I(0)—> — fH¢dl log || f:al] A f*(A(@)) A dX =1,

L) ~>2r wa*(c'br) Ax=1I4
for p—0. Hence I,=lim,_, ¢ I,(p) exists and
I=1+I,+I,+1,
It remains to compute the limit 7,. Define

L(a)={z|zeT withg <|p@)| <g}.

11 — 672906 Acta mathematica. 118. Imprimé le 19 juin 1967.
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Then I(0) =f wdy, A dtlog ||f el A fH(A@) A X.
L@

for 0<p<1. For »=0,1,...,r—1 define

Ji(e) = fmwd? Ndtlog ||fzall A f (@) A (@™ )AL

r-1

1
Then I(0) = =1 vZ J*(0)-

=0
For =0, 1, ..., r—1 define the continuous forms
21 =) Ay
%2 =0log |g| A fH (@™ 2) Ayy

xa=201log |g| A f(@1) Ayy
on 4. On C"— {0}, define

Q) = (d3]3) A Ggld3) A |32 00,
Q,(3) = (d3]3) A |3/ 0®,
Qy(3) = (3]d3) A |37 0.

For 3=0 define Q4(3)=0 for A=1, 2, 3. Then Q; for A=1, 2, 3 has locally bounded and
measurable coefficients on C’. On 4 define A, by setting

ho(@) = |p(2} ge(l9(2)|)

Then |h,(z)] <B for all p>0 and all 2€ 4. On 4 is

(de|o) + (@|dp)

d'}’e=%gc:(|¢’l) I‘PI

dtlog || f: || =d* log |@| — d* log |gl,
where ((dp| @)+ (p|de)) A d* log |g|

=2|’W (g | @)+ (p]dp)) A ((dolp) — (¢|de))

=—F;F(d¢|¢)/\(¢ld¢)-
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Therefore
pdy A dt log [|f el A fH(@(@)) A fH@ ) A X

L L "
= —5 0ol [ @190 A @19 A g @) A 1+ 5 gl [y ple) A @@ A T

i, 1
=5 gl|@l) T (@ ldp) A (@) A X,
29|‘P| I‘PI ‘PI‘P @ 3

% 1 % 1 % 1
=gk [P PN+ 5 Fe o Q)AL hewm Q) A Xs-
For 0<p<1and »=0,1,...,r=1 define
Si@=] b mme Q)AL
L@ |‘P|
2 1 *
i@ =] i ¢ Q) A Xy
o el
- 73 1 *
Jo@)=| b mm PH(Q) A Zs
o |9l ,
Then J, (o) =t J3 (o) +i J2(o) _3 J3 (o).
14 2 14 2 b4 2 v
Now, apply Proposition 1.7 three times:
1.7 M m f P q »® s t c T K1lx @ hy

Here I 4 m @ r q 0 |[v+1|v+l|m—r—1|m—v-1| T | x| Q,| ko

Here IT | 4 m @ r q 0 |v+1| » |m—-»—1] m-» T x| Q| ke

Here IIT | A4 m @ r q 0 v [v+1f m—» [m-—v—1] T | 25| 51| ko

where in I the case » =r —1 has to be excluded. Therefore
Ji)»0 for o0,

if A=1and»=0,1,..,r—2,andif 1=2, 83 and »=0, 1, ..., r—1.

Hence
J(e)=0 for ¢-0 »=0,1,..r-2.

¢ 1 .
Hence I,= T3 eIt 512100 J7-1(o)-
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Let A, be an open neighborhood of T with 4, compact and with 4,< 4. Define 2,3)=
9.(]3]). Then

_i_ 1 = 1 *

gr—1)1 7@ LMd log |¢| A dAgop A @*(@r-1) A 2.

Here, 4,N H is an open subset of 4 with 4on HS A, 4 where 4,0 H is compact. Let
K, be the support of yy in 4,N H—A4,N H. Then

ANH-AnHs A nH-A,n HS ((Ay—A4o) N H)U (440 8).
Because K, N (d,—A4,) =D and because K,NS<K N A4, it is
Kyng-1(0)= Ky N (4o N S) N (0)S K N AN f2(B(a)).

Hence K, N @~1(0) is a set of measure zero on ¢~(0), respectively empty if ¢=0.
Lemma 1.8 implies

i 2n"

L= —— Iim J',(o)= — f for p=0.
YR Y B S A s VY1) POV Ll g

According to Lemma 2.5 is v ,(2) =(2; ) for every simple point of g=1(0) N A =4 N L E(x)).
Because y has compact support in A4, this implies

r

247 2n J'
I= ——1 = —— zi o) pX
T T L.nnnrum”""”" =11 Jansaee 2 Y

which proves the Theorem if y has compact support in 4.

Now, consider the general case. Finitely many points @y, ..., @, in H and finitely many
open sets 4, ..., A, with a €4, exist such that the Theorem is true if the support of y is
compact and contained in 4, and such that H< 4,V ...U 4,. Take functions g, ..., g, of
class C® on M such that 0<g,<1 on M and such that the support of g, is compact and
contained in A,, and such that 3%, g,(2) =1 if 2€H. Then

[ watsoglfiad A A At
= Ld pAdtlog ||f:all A f(A@) A gk

~ [ part0g 1:ll Ao A 0

r

. 27
+2 *(w,) A go X — z: X
’L"” (@) A gok ('—1)!fnnf-1(2(z))v’( %) 99

Because >3 go(2) =1 for z€ H, addition proves the theorem, q.e.d.
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For any number » €N, define

as the volume of the ball of radius 1 in C*. By setting =1 in Theorem 4.4, the so called
unintegrated First Main Theorem is obtained:

TaEOREM 4.5. (The unintegrated First Main Theorem.) The assumptions 4.2 are made.
Let H be an open subset of M such that H is compact and such that H —H =8 is empty or a
boundary manifold of H. Suppose that 80 f-L(E(a)) is a set of measure zero on f~1(K(x)).

Suppose that
d* log ||f:a|| AFH(A(@) Ay

18 tntegrable over S. Suppose that dy =0 on H. Then

11 . ' . .
2 W=D Ld log || f: el A f (A(a))/\x+f vz ) X

HNf-(E(a))

1 [ e
=W—mfo () A X

Remark 1. If q=0, then y is a function and the integral over H N f-1(E(x)) means a
sum over this finite set.

Remark 2. If y is non-negaiive, both integrals

ny(H; ) =f vz o) X
HNf-1(E(x))

1

Af(H)zT(r) fﬂf*(é}r)A 4

are non-negative, where upon
1
. - L . *
wS50)= gz [ @ log Izl A A 2
does not have to have a fixed sign. It is
#:(S; o) +n(H; o) = A (H).
Remark 3. If q=0, and y=1 the Theorem is due to Levine [12]. Observe, that then

n(H; ) = EZHv,(z; o).
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If q=0, and y sotisfies the assumptions, then x is a function of class C* with dy —=0. Hence
g s constant on any component of H. Hence Theorem 4.5 is not more general then Levine [12],
if g=0.

Proof. Set p=1 in Theorem 4.4, q.e.d. If M =H is compact, then S=¢. Hence the

following consequence is obtained:

THEOREM 4.6. The assumptions 4.2 are made. Suppose that M 15 compact. Suppose
that dy =0 on M. Then

1 [ ..
ff-l(is"'(z)) wlzs o) 2 T W) f Mf () A X

which means that n (M, a)= §r-1z@)vs(2z, «) X 18 constant for every a € &(V) for which f is
general of order r. Especially, if r =n and if f is q-fibering then

1 -
f“ @ ve(z; o)X = 7o) fuf (w) A X
for all x€P(V).

Therefore Theorem 4.6 is a generalization of II Theorem 3.8 if M is compact and
f:M—~P(V}) is g-fibering. Theorem 4.6 asserts in this case that the fiber integral is not
only continuous but constant and even gives the value of the constant. Therefore the
question arises, if the fiber integral is constant provided M is compact, f: M —~N holo-
morphic and g-fibering with dim M —dim ¥ =¢ and dy =0.(})

AssUMPTIONS 4.7.(%)
The assumptions 4.2 are made. In addition it is assumed:

. In M, open subsets G and g with compact closures G and § are given, where g G.
I'=G— @ is a boundary manifold of G.

y =7 —g s a boundary manifold of g.

. The form y is non-negative on M. Moreover, dy =0 on M.

SO

. 4 continuous function p on M is given such that
a) p|(G—g) is of class C2 on (G —g).
b) For z€ M —G is y(2) =0. For 2€§ is yp(z) = R =constant.
¢) For z€G—gis 0<yp(z)<R.

6. For n€N is W(n)=x"/n!

7. Define the compensation functions by

(*) Added in proof: As it is easily seen, this is true and is a consequence of the continuity of
the fiber integral.
(2) Compare Stoll [21], IV page 77 and V page 80.



A GENERAL FIRST MAIN THEOREM OF VALUE DISTRIBUTION II 169

L1 . .
my(y; o) ~3a Wor=1) Llog M7l fFA@) AdtypAx

1 1

N X
m,(I‘;oc)=% Wor=1) frlog 7l fEA) Adrp AR,

where d*y on y and T is formed as the continuous continuation of d*y on G —g

8. Define the valance function by

N (G5 )= f vr(2; o) PX
F1(E(x))

9. Define the characteristic function by

1 .
T/ = s f V@) A

10. Define the deficit by

MG )= 5 e | o i A A dty
If these assumptions are made, then
ve(z; )y =0 and yf*(w,) A x=0.
Hence N,(G; )20 and TH@G)=0.
According to Stoll [21] Satz 4.5 is

R N
log m!‘(A(a))/\d pAZ=0

along I" and y. Hence
my(y, a)=20 and m(I', x)=>0.

Hence the valence function, compensation functions, and characteristic functions are
non-negative if the assumption 4.7 is made.

TarorEM 4.8. The First Main Theorem. The assumption 4.7 are made. Then
NAG; ) +mAT; &) —m(y; ) = TH(G) +AAG; ).

Proof. Let y be y with the opposite orientation. Define H=G —g. Then S=T"'U7y is
a boundary manifold of H and H —H =8. Let A be a function of class C® on M with com-
pact support in G and with 1|g=1 and such that 0<A<1 on M. Then
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1
7, =1log TFal A Adp A Ax

has density 0 along I' and a non-positive density along y. According to Proposition 4.3,
7y is integrable along ¥, hence along y. Observe, that along y

1
7, =log ol PN AdypA X
and that 7, has a non-negative density on y. Hence m/(y; «) exists. Define

1
7, =log m M)A AdpA(L-A)X.

Then 7, has a non-negative density on I' and density 0 on y. According to Proposition 4.3,
7, is integrable along I'. Observe that along I is

1
Ny =log ”f . “” M) Ad p A2

and has a non-negative density on I'. Hence m /(T'; «) exists. Therefore, log 1/||f: «||/*(A(a)) A
d'y Ay is integrable along I'Up, but does not have a fixed sign along I'Uy. According
to Proposition 4.3 is

1 1 1, )
2x W(r—1) fslog 72l fFA@)NdpA X

11

T2aWe-1) L%A d*log [[f:all A F(A) A X

11 1, .
+ﬁ——W(r—l) fﬂlog—||f’“|| FHA()) Addryp A X.

Because  is constant on g this implies

my(; &) —my(y; a) = ———z—_T) fadw Adtlog ||f:e| A FH(A(x) A X+ ALG, o),

2nW(r
where especially all the integrals involved exist. According to Stoll [21] p. 62 Hilfssatz 1,
the function y satisfies locally a Lipschitz condition on M. The support of ¢y on I is empty

and
pdtlog ||f:al AfHA() A g
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is 0 along T, hence integrable over I". Hence Theorem 4.4 can be applied with H replaced
by @ and 8 replaced by I' which implies()

1
0 =m de’q)/\ da+ log ||foz|| A f*(A(“)) ANX

1 .
Y *w,) A X — ;
W(r) f GW () N2 f GNIER) (e @) 9X

1 1
or Nr(G;ra) o Wir—1) de Adtlog [|f:all A fH(A@) A X+ THG).
Addition implies
Ni(G; o) +mg(T; &) —my(y; &) = THG) +AAG; @) q.e.d.

Now, it shall be shown, that special known versions of the First Main Theorem can
be obtained from Theorem 4.8.

1. Stoll [21]: Let r=1. Then ¢g=m—1. Suppose that y is positive definite. Then
p=y(@) can be chosen uniquely to & such that dd*yp A y=0 on @ —7 and such that

1 1
— | @prz=—| doprx=1.
5m ), YN 2nfr vAX

Then A[G, «)=0. Then Satz 8.2 of Stoll [21] follows for holomorphic maps. Satz 8.2
holds also for meromorphic maps f: M —-P(V).

2. H. Weyl and J. Weyl [29]. (Special case of 1): Take m=r=1=y. Then ¢=0. Take
ddty=0 in H=G—g. Then y is a harmonic function on H. Adjust B such that

1 1
_ Ly = d.l. =1.
Then (4.2) p. 182 of H. Weyl and J. Weyl [29] follows with A,=0.

3. H. Kneser [8], (Special case of 1): Take r=1=n. Then g=m—1. Take M =C".
Take y =v,, ;. Take

(1) If Theorem 4.4 would be applied separately to G —§ and g, then the ugly question of the ex-
stence of the integral

f pa*log || f:al| Af*(Afe) Ay
rd

would arise. This difficulty is avoided by the application of Theorem 4.4 to & with y satisfying locally
a Lipschitz condition. The same trick was already used in Stoll [21] Satz 6.5.
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¢ =13l [s] <r} and g = {3] 3] <ro}
with 0 <ry<r. On G'—§=H define

1 1 1
Y@= gm—2 \[ZE" 2 22
Then the First Main Theorem of H. Kneser [8], p. 32 follows in a somewhat modified
formulation (see Stoll [19], p. 212 (1.7)).

4. 8. 8. Chern [3]. Take r=m=n. Then ¢=p=0. Take M =C™. Take y=1. Define
G, g and p as in 3. Then the First Main Theorem of Chern [3], p. 15 follows where

Here | Ny(@,x) | ms(G, @) | msly, x) TGy | AMG, )

r
dr
There | N(r,A) | I(r, A) I(ry, Ay=rconst | T(r) S(r,A)—2mf I(r, 4y —

To r

'Surprisingly, the same ‘““choice” of p occurs in 3 and 4. Of course, the original approach
in 3 and 4 did not include a choice. Also Theorem 4.8 gives a clearer picture of the inte-
grands of N, m;, T'; and 4, then that was possible in [3)].

If M=C" and G={3| |3]| <r} and g={3| |3]| <70} with 0<r,<r, then Theorem 4.8
suggests other choices for ¢ and y such that A, has a non-negative integrand; for instance
p=logr/|3] on G—g and v, on €" gives dd*y Ay =2w Av, on G—g; or p=3}(r*—|3|?) on
G —g and v, on C™ gives dd'y A y = (g +1)vy,, on G—g.

§ 5. Open maps into the projective space

Let V be a complex vector space of dimension n + 1. Suppose that an Hermitian scalar
product (|) on V is given. Then ®(x) and A(ax) are formed for r—=n that is p=0. For
a €V — {0} define

o) = L _(wla) )
alt0) = o ((dm|a> wf (@)
for 3€ V—E (a). If A€C— {0}, then
2
Eza(m)=|—ﬂ &a(10).

If g is a complex valued function of class C* on an open subset U of V and if g(iv) =0 for
€U, then

Loy 9(1D)
&alg(n) - 10 lg(0)] g(tn)]'f"(m)'
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For a €V — {0} define

s
%) = 3 &a(10) A £y()
for W€V — E(a). Because 714(g(Iv) w) =7,(iv), one and only one form 7, of bidegree (1, 1)
exists on P(V)— #(«) such that g*(7,) =7 where g: V> {0}>P(V) is the natural projection
and where g(a)=«. The form 7, is non-negative and idempotent, i.e. 74 A 7,=0. Hence

7, is non-negative and
Tu N Ty =0.

LemMMmA 5.1.(1) On P(V)— E(a) is

® — Ty = ||oc:w||20(ar).
Proof. Define r,: ¥V~ V[2] by 7,() =10 A a where a €p—(a). Let 0: V21— {0} ~P(V[2])

be the natural projection. Then n,:P(V)— E(x)>P(V[2]) is well defined by 7,00 =pomn,.
According to the definition of ®(«) is

0"(®(a)) (10) = g*(w (&) (1) = (3)* (@*(@)) (10)

= (71.)*(w) (0) =} d*d log |10 A af

4
2

& log [(0|w) |af*~ (w|a) (a] )]

[ SR

1

_i 1
2w A al?

[(dw|diw) |a]* — (@] a) A (a]diw)]

;1
_%.__lm NaF [(d | ) |al?>—(dw]a) (a]| w)] [(tv]|dw) |a>— (]| a) (a|div)].

Hence o*(@) (W) — || 1w :a]? g*(®(x)) (1)
_ i (dw|dw) i (div|w)A (iv]di)
2 [|wp 2 |t
_ 4 (dw|dw) i (dw]a)A (a|dw)
2 |wP "2 |wfaf

(1) See Chern [3] (42).
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i

1
+5 [ A GE[wE|af [(dw|w) |al?— (dw]a) (a| )] A [(t0]dw) [a]*— (v a) (a]div)]

_i (@m|a) A (a|diw) i [(w]a)* (@dw|mw) A (w]div)

2 [wAaf 2w A aft [w[*

_ i (w]a) (dw|w)A(a]dw) i (a]w) (dw]a)A (w]|d)

2 [wAaf [ "2 [wAaf? [
_i 1 _(w]a) _{a]w) ]
“2lm/\a|2|:(dm|a) [ (dmlm)]/\ [(aldm) [wf? (| div)

[

[P

£4(10) A £q(D) = @*(%.) (10).

Because g* is injective, this proves the Lemma; q.e.d.
If «€P(V) and r=n, then,

1 n-1

Alw) ==y 2, Q@A
1 n}—:I . .
= Ta . Aot
w115 @7 Twral?
1 n—1 . , n—1-v
—_—— y __ %a/\ o o
(n—'l)!,go (@ = )"7”3“"2
n-1 1 . 1 n-1 y . .
- -1 2 A Gon-s.
2 Toral® 9171 2, Tl =/ o
H A n-1 1 . 1 n-1 v . R ) 1
o @3, Tral® 51 2, el o oo <>

Let M and N be oriented pure-dimensional manifolds of class C®°. Let m be the real
dimension of M and let » be the real dimension of N. Let < M and A< N, where 4 is
measurable. Let # be a form of degree n on A4: Suppose that for every €4 a form y(u)
of degree p is given on C. Take z€C. Let &(M) be the oriented C®-structure of M. If
x€EE(M) with z€ U, then

y) ()= X (2, u;a) dxiay A ... A dagy,.
peT(p, m)

Then y(u)y is said to be integrable over 4 at z if all the integrals [,y,(z, u; «)n exist.
Clearly, this definition does not depend on the choice of o, and
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fA Y (u) (Z) n= z (J:q yq;(z; u, “) 7]) dx;(l) Ao A dx;‘,(,,)

peZ(p. m)

is independent of the choice of «. If y(u)y is integrable over 4 for every z€C, then y(u)y
is said to be integrable over 4 on C; moreover, a form [,y(u)n of degree p is defined on
C by setting

(LV(“) ’7) (z)=f47(u) (2)n for z€C.

Obviously, the following rules hold:

a) If y,(u)n and y,(u)n are integrable over A on C, so is (y,(u) +y,(u))y and

f (Y1 (w) + 2 (u)) n= f ri(w)n+ f ya(u) .
A Y A

b) If y(u)n is integrable over 4 on C and if ¢ is a form of bidegree ¢ on C, then
(y(u) Ap)n is integrable over 4 on C and

[ ewnran=([ vam)re.

¢) If y(u)n is integrable over A on C if M’ is a pure m'-dimensional oriented manifold
of class %, if f: M'~M is a map of class C* and if " =f-1(C), then f*(y(u))7 is integrable

over 4 on ' and
[ rownn=r(] ywn).

d) If y(u)n is integrable over 4 on C, if 5 is non-negative on A, if C is measurable
and if g is a measurable form of degree m —p on C such that y(u) Ap is integrable over C
and such that (f¢|y(x) Ag|)7 is integrable over 4, then

[ ([} ()

Now, the integral meanvalue

1 1
— log —— A(x) A &,
W) ) werarr & Jwza]) A @nl)

shall be computed. Some preparations are necessary:

LeMmaA 5.2. Define
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n-1
g(x)=(log z) 2, v&* for >0
v=0

and
1 |agff+... +]a Iz) |aa?
[ —|aolt—...—|an|? 0 n
B oo k) e e
n-1 N
then L="> (n=1-9)

=0 (V+ 1)2 ’

Proof. Without loss of generality A=1. Substitute

=V, €%, %da,,/\ da, =} dt, A do,

ty ...+t t
and —ty—--.—tn (“ ") 1 dt,...dt,.
f f t,+ ..t e, T

Now substitute (1)

to=1(8;F+...+s8,) 0>71<1l 0<g<oo

=(1—-1)s, if v=1,...,n
ty tot+...+t,
= s, =t, >—" "
tot ...ty t1+ T
B .t
then ot F=5t+. s, (1 T)_t——o+...+t,,
a(to’”'a ) n— 1
—2 2 P = (g +...+ 1—
A(T, 815 +++r8y) (51 o) (1-7)
‘ 1 1 0 oo
Hence Il=f g (T—) (1—1)"“d1:f f e~HT g ds, ... ds,
0 -7 0 Jo

1 1 n-1
= L log =% Eo p(l—7)" 1 "dr

-1
flog1 Z(n 1-9) (1 -2y dr—z‘-”(Tl—)z-’, qed.

»—0

LuMma 5.3. Define g(x) as in Lemma 5.2. For A+ g the integral

1 |aof* +... +]a !2) @14,
- — (agf* =+ an]® 0 n A
. ”"“fcme g(|a1|2+ e [+ lap @

exists and 18 zero.

(1) See Weyl [29] p. 227.
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Proof. Obviously |a;d,| <3} |asf* +|a,|* implies that I, exists and |I;| <} (Zi+1,).
The substitution
o if p+i
# —a; if u =2.

shows that I;,= —1;, Hence I;,=0, q.e.d.

LeMma 5.4. Let V be a complex vector space of dimension (n+1) with an Hermitian
product (|). Let u, v, 0 be in V. For a€V, define

L(a, u, v, w) = (u]a) (a]|v) + | 0| ~*| (0] a) | 2(u| w) (10| b)
— |w|-%(a]w) (u]a) (tv|v)
— | w]|-2(w]|a)(a|v)(u]tw)
Define g(z) =log x"i: v for £>0.

Then the integral

1
A(u: n7m) =W f

14

e_,a|,g(| 1 )L(a,u,b,m)

[wea®) [wnaf @

exists and 18

(1]v) " Yp—1—9)

1
A(u,n,rv)=~[‘m|2 TP (11|1U)(m|11)]20 TR

Proof. An orthonormal base e =(ey, ..., e,) of V exists such that
0 =Wy€y, U =uoeo+ulel, b =vo'e0+vle1 +'0232~

Then a =27 ,a,¢, and
L(a,u, v, 0) = |a1|2 U, Uy + Gy 45U, D,

|10 A af*=wol* (|ay [ +... +|an]?),

_ laol?+ ... +|a,
la P+ ... +|a,[*

[[to:af®

Hence A(u, v, iv) exists and

ud, *un-1—y w5,

Au,v,w)=1,- |wo|2=v-0 W+ 1) Iwo|2

lv) (u[w) (wjo) 1
Now WP~ o el

which proves the lemma, q.e.d.
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LEMMA 5.5. For w€P(V) define

A(w)= | Z ",w szta(w) Wn(),

W(") aeP(V) " w: “I

then Aw)=1} z fn—1-9)

v-0 ( +1)2 w(w)

Proof. Define A4,(1w) =0*(4) (1v). Then (*)

1 1
= —— | g la* (w a
Ay() 5 "+1fve log 1 3a"2 v=0 ”m allz, Ta(10) v 41 (a).

" £,(10) A E(0)

Now -ra(h))=%
_t (dw]a)A(a]dw) i |(w]a)|® (@w]w) A (10]tv)
2 |wAaf 2|wnaal? [t

i (w|a) (dw|w)A (a|dw) ¢ (aw) (dw]a)A (v]dw)
“2|wAaf [w]? " 2[wAaa? [io]?

Hence, if x € &(V) is a coordinate system, then

i 1
Ta(1) =3, Z L(a, w,,, v,,, 0) wAa |2dz,,/\dz,,
Hence
o(m)—— Z A(w,,, W, ) dz, A dZ,
4,520
S EIlo) S (o, )~ (0, |10) (0] 1w,) de A 25
S 1 4w 2, 21 02,) = (10, 2y) G2,
S5 BN | dio) — (@ o) A (0] dio))
2 o1y afwp!
1" n—-1—v
=32 prip @M
n-1_, __
or Aw) =23 22122 ), ged.

,o(+1)2“’

Lemma 5.6. If weP(V), define

B(w)= g"w o] 2 z "w <" ().

W(n) ae (V)

(') See Weyl [29] p. 128 and Stoll [18] Hilfssatz 1 p. 142,
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-
Th y="
en 2 g (,,+ 1)

Proof. Take W€V with g(iv) =w. Then

B(w)=—1———f e~lel o 1 nil 1 (a)
2" 1), w:alP,% Twza P2

Using the same substitutions as in the Proof of Lemma 5.2, it follows

R e A AN
=< “hoeTin]og 01 0 ) dty...dt
B(w) ff t+...+t,,,§o(t1+...+t,,) 0+« n

)(1 " lf f —s=mon (g L+ 8,) dsy ... ds,

ProrosiTIiON 5.7. For weP(V) is

Alo) N oq (@)=

L f log -
W(n) Jew g llw: el
Proof. According to (1) is

1

1 . . 1 .
W(n) P(V)log lw:af Afa) A (o) = B(w)wn-1— oy ¥ A(w) A w2

E"'l 1 . 1 lp—1—yp.. A
2,50+ 1" T 2m-1),5 (+1)2“’ Dn-2

Now, the assumptions 4.2 and 4.7 with » =% and p =0 are made. Then

1
L dL
log ”f:“" Al ANdpA X

has a non-negative densitiy along y and I'. Hence
12 — 672906 Acta mathematica. 118. Imprimsé le 19 juin 1967.
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1 1 .
dr
W(n) Jecrn (2n Wn—1) f 08 Tf. Nl ||f «fl FHA(@) A diy A X) wq()

1 1 L
“22 W(n—l)f (W(n) cercr " w el A‘“’“’”‘“’)Ad"’”

n

-1 1
g v+12n W(n 1)

=in d"y)/\ F(wn-1) A X.

Define the mean compensation function u(I') and u(y) by

11 e
HI(F)=% Wn=1) J;d YA Hwn-1) A X,

11 e
us(y) = om Wn=1) J;d YA fHwn-1) A X.

Then these integrals have a non-negative integrand and

n-1

1 . -
Wim) J;m mg(y, a) wa(a) = Z " + Tl pr(y)

n—1

1 . 1 1
W) ~L(V)mf(l", o) wy () = 3 go e u(T).

THEOREM 5.8. Suppose that the assumptions 4.2 and 4.7 hold with r =n and p =0.
Then

1 .
TG=——f N, (G, &) 0, (x).
A= G5 |, M) ion(e)
Moreover, define the mean deficit by

11
A= W=

f ddl"l) A f*((:bn—l) A Z,
]

n—l 1
then o) J ApG, &) wy(ax)= Zo ey A(@)
and AAG) = py(T) — puyly)-

Proof. The map f is open and g¢-fibering. According to II Proposition 2.2 and its

Remark is
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1

W(n) - ‘Nf(G: “) c""n (“) .

1 .
W) Jew (L—l(a)navij) @n{e)

1 .
= =T,(G).
Taking the mean value over the First Main Theorem implies

T(G)+= 1 nzl 1 r
(@ ) (s (1) — s ()

1 .
=T,(6)+ W) frm AL(G, o) 0, ().
Stokes Theorem implies
#eD) —ps(y) = éf(G)-
1 1

)=W l,(V)A,(G, o) w,(a), q.e.d.

1 n=
Hence 3 g

The last formula could also have been proved by exchanging the order of integration,
without the use of the First Main Theorem.

THEOREM 5.9. Suppose that the assumptions 4.2 and 4.7 hold with r=n and p=0.
Suppose that w is a non-negative continuous form of bidegree (1, 1) on G such that dd*yp<w
on G —g. Define

A(G,u)= _uA fH@n-1) A X

2n W(n— 1) f

Define b(G@)= ()

B W(n) e
as the normed volume of the image of G. Then

n—-1
0<(1- (»Tf(a)<lz L (AAGw+ )).

Proof. Of course b((F) exists, because f(@) is an open non-empty subset of P(V) and

1 .
0<b(E) < W) Joer, ™~ b

Define § on P(V) by d(x) =1-if «€f(F) and §(x) =0 if a¢f(Q). U x¢f(GF), then N (G, a)=0.
Hence
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1 O(a) NA(G, ) o () =

1 .
W P(V) W('IL) NI(G’ @) wn(“) = Tf(G)

Because dd'y<u, it is 0 <u —dd*yp and

1 1 %

Hence ANG, o) <%z m J log II_/%H w A PA@) A X
Hence N (G, ) ST (@) +m,(y, a) + A(G, @)
implies  T,(6) <b(@) T,(6) + ’Wtﬁ f S mlp,0) i, (o)

1 1

— 1 £ ]
W(n) P(V)a(“) 27 W(n—1) jG_;log Tl FA@)AunX

<)Y T AQ) + W—l(ns .L(V) m(y, &) waer)

1 1 1
-t o .
+2” Woilei (W(n) PV) 8 7. 1l ”f «l F(Aa) wn(oc)) AuNX
n-1
or T,(6) <b(G) T,(G)+ b il )+ A (@, ), qed.

Let g be fixed, and let & be the set of all open subsets @ of M such that G>§ and &
or compact, and such that I' =G — @G is a boundary manifold of G. Any function s(G) on &
can be considered as a Moore-Smith sequence, in respect to the set (& which is directed
by <. Define the total deficit by

D, =lim 7= T(G) (#r(7) + MG, ).

1 "
Because T b(@)—=b= W(n) fumwn

Theorem 5.9 seems to imply
1 n-1
(I=b7)< < Z

v+1 D;. (2)

Especially, if D;=0, then f maps onto almost all of P(V) and if D,< oo, then the measure
of the complement of f(M) is estimated.
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However, there are certain shortcomings to this reasoning. First of all, 7'(G)=0
may happen. Second, T'{(@), u,(y) and Ay(G, «) all depend on y respectively u. For each
fixed @, there are infinitely many possible choices of v and for each choice of y infinitely
many possible choices of . Hence estimate (2) becomes meaningful only, if some reason-

able, a priori choice of y and » is made. Three examples of such choices shall be given here.

1. ExaMPLE (Stoll [21]). Here, M is a connected complex manifold of dimension .
The form y is of class C° and positive on M with bidegree (m —1, m —1) such that dy =0.
The set g is open in M with compact closure g. The boundary y=g—g is a boundary
manifold of g. Let & be the set of all open subsets @ of M , such that §— @ and @ is com-
pact and such that I'=G —@ is a boundary manifold of G. For GE®, the function y is
uniquely defined on M as a continuous function on M which is of class O® on G —g such
that

a) p(z)=0if zEM —G,
b) p(z) = R(G) =constant >0 if z€7,
c) ddtyAy=0o0nG—g,

1 1
d = dyng=— | dtyprz=1.
@ 2nr”’xznfy"’x

Here E(()>0 is uniquely defined and 0 <y < R(G) on M. The vector space V is C% and
[:M —P(V)=P is a meromorphic, non-constant function on M without points of indeter-

mination. Then n=1=r,¢g=m —1, p=0 and

1 .
7,6)-1 [ vz

Ny (@, 06)=f vz a)pX

fU)nG

1 1
Ta)=-— | logi— d*pAZ,
(s 2) Zﬂfr‘ 0g||f=<x||dw\x

1 1
me(y,ay=— | log s—Fdty A X,
=g 8 i 4
Af(Gs“)=O:
urG) =py) = 1.

Define T{M)=sup {T{G)|GEG}<oo.

Because 7'/(G) is monotonically increasing in @, it converges
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T(@)->T(M) forG—-M.
Then Theorem 5.9 implies:

TaEOREM 5.10. Under the assumptions of the Examples 1, the following statement s true

0<(1—b,)< if T,(M)< oo

1
2T, ()
b=1 if T/(M)=o0
Of course, if f has points of indetermination, then f(M)=P and b,=1. If R(M)=
sup {R(G)|G€G} is infinite, then 7T, (M)=oco. (Stoll [21], Satz 11.4.) Such manifolds
where called of global capacity zero.

THEOREM 5.11. If the global capacity of M in respect to y and g is infinite, then every
non-constant meromorphic function f on M assumes almost all values on M.

2. ExaMPLE (Chern [3] for x=m and m=n). Here, V is a complex vector space
of dimension n+1. Define M =C™ with m >n. Define g=m —n. Choose y =, on C”, where

the euclidean form v, on €™ is denoted by v, to distinguish it from the corresponding
form on V. Take r,>0 and define

9=1{]| ls] <r} incC"

_ y = {3l 3] =ro}-

For r=r, define
a(r) = {3 [3] <}
I(r) = {3] 13| =r}-

Take any non-negative integer x. For 3€@(r) —g define

1 1 1 .
1/)’!(3) = 2 2 — 2 (|8|2,‘_2’_ rz,‘_z) lf ’ﬂ:': ].

%(a)=10gﬁ if x=1.

For 3€C™—G(r) define y,(3) =0 for 3€7 define y.(3) by the constant value of y on g—g.
Let f:C"—P(V) be an open holomorphic map. Then f is general of order s for every

s in 1 <s<n. The characteristic for this order is

1 o -
W (s) fa(r)wnf (@q) A Vs

Ty 4(r) =T (G(r))=

. 1 . .
Define A (r)y=A;,(G(r)) = m fc(n Mw.) A vm_s.
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Obviously, 7', ; and A, ; are monotonically increasing continuous non-negative functions

of r if r>r,. Now )
) A Om—s =gV,

where g is a non-negative C®-function on €™. Let I'(1) be the unit sphere in €™ considered

as a boundary manifold of the unit ball. Let ¢ be the euclidean volume element of I'(1).

Then
1
hy(t)= W) fbe rw g(tv) o(v)

is a continuous function of ¢ in 0 <{ < co. Then
T
A, ()= fo £2m-1h(t) de.

Hence A4, (r) is a differential function of r for r >0 with the continuous derivative

A; (1) =P Thy(r).
If % =+1 and r =7, then

Tl 1 1
Ts-f(r) = f 2% —9 (t2n—2 - r2u—2) t2m—1 hs(t) dt

0

1 1 1
+ 2y —2 (1‘%"_2 - 7.2:«—2) A, 5{ro).

Hence, T, ((r) is a differential function of r for r >, with the continuous derivative

’ ]- T - ].
Ts_,(r)=r27_1f th lh(t)dt'l"m As_,(ro)

To

, 1
or Tsr(r)= e Ay, 1(r).
4 dt .
Therefore Ty s(r) =J Ay, (2) 1 if x+1.

If x=1 and r>7,, then

T, /(r) = f logy #77h() di-+ log 7: A, 4(ro).

Again T, /(r) is a differentiable function of r if r >, with the continuous derivative

, 1
7is0=1 [ e @] 4,00



186 WILHELM STOLL

, 1
or T ,(r)= ; A,.,(T).

Therefore, if >, and % >0, then

r dt
Ts.f(r) =f As./(t) im

To

If ry<|3] <r, then
ddry,—i BlB) _ Gl9)A Gl

5 3P

Define u=2]3] 2% on G(r)—g, then dd*y, <u on G(r) —g. Then A d,= (¢ +1)Dq,, implies

g+1

éf("):éf(g(r)’ u) = m G- alt’}lzn

f* ((0,,, 1) A 'Uq+1

Hence Af(")=(q%l) f £ R, () dt
r
qgt+t1 [ , dt
= f“An—l.f(t) 1

Define b(r) - Wl(l_) G (-b"

1 .-
and b =— n
(=) W(n) ff(C"*) @
According to Theorem 5.9 is

1" 1 d
0<A-bN T, <3 3 17 (U [ dioas ) g ),

where u,(y) does not depend on .

This implies immediately the following generalization of a theorem of Chern [3].

THEOREM 5.12. Suppose that the assumptions of Example 2 are made. Suppose that

T,,',(r)—>oo for r—>oo

dt
v [T, A f
Trs(r) fr, noL S g2l -0 for r—>oo

then P(V)—f(C™) is a set of measure zero, i.e. | assumes almost every value in P(V).
This Theorem is due to 8. 8. Chern [3] if ¢=0 and x=m. It connects the charac-

teristic of f as a map general of order » with the characteristic of f as a map general of
order n—1.



A GENERAL FIRST MAIN THEOREM OF VALUE DISTRIBUTION II 187

3. ExamPpLE. A pair (M, k) is said to be a Levi-manifold if and only if

a) M 1is a connected, non-compact, m-dimensional complex manifold.

b) k is a non-negative function of class C® on M.

c) h us plurisubharmonic, that means d*dh>0.

d) & is proper, that means for every‘r>0 the set

G(r) = {z|h(z) <r}
has a compact closure.

The Levi-manifold is called strict if h is a strict plurisubharmonic function, that is,
d*dh>0. The connected, non-compact complex manifold M is said to be pseudo-convex
if and only if a real function A exists such that (M, k) is a Levi-manifold. The connected
complex manifold M is a Stein manifold, if and only if a real function % exists such that
(M, k) is a strict Levi-manifold.(1)

Now, suppose that a Levi-manifold (M, ) is given with dim M =m. As before define
G(r) = {z|h(z) <r} if 0<r€R. Define I'(r) = {z|h(z) =7} if 0<r€R. Take a€ M. Then h(M)
contains every r > h(a). A set E of measure 0 exists in R such that dh+0 on () if rER— E
and r>h(a). Take r,>h(a) with ry€R — K. Then g =GQ(r,) is open, non-empty and relative
compact in M with y =I'(r;) =§ —¢ as boundary manifold. Define

Ro = {r|ro<reR—E}.

For every r€R, is G(r) an open, relative compact neighborhood of § whose boundary
I'(r) = G(r) — Q(r) can be considered as a boundary manifold of G(r).
For s in 0 <s <m define

Xs= % dtdh A ... Ad'dh  (s-times)

(for =0, this means y,=1). Then ¥, is a non-negative form of bidegree (s, s) and of class
0% on M. Obviously, dy,=0.
For r>r; define p =y, by
r—r, if z€g
p@)=ir—h(z) if z€G(r)—7
0 if z€ M —Q(r).

Then ¢ is continuous on M and of class C® on G(r)—g. Moreover, 0<y<r—r, on M.

Then, on G(r) —g is

(!) See Grauert [5], [6] and Narasimhan' [13].
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dd*y =d*dh
ddty Ay = (s+1)Yes1-

Let V be a complex vector space of dimension n+1 with 0 <n <m. Define g=m —n
Let f: M—~P(V) be an open and holomorphic map. Then f is general of order s for each
s in 1 <s<n. The characteristic of order s for f on G(r) is

1 .
Ts,f(r) = Ts./(G(r)) = W JG(r) '/)rf.(ws) ANXm—s

for r >=r,. Define

1 .
As.f(r) = As,f(G(r)) = —WTS) fG(r) f*(ws) AXm—s-

Obviously, 7, ;and 4, ; are non-negative, monotonically increasing and continuous func-
tion of r if r>7,. Define I = {t|r,<t<r}. On (G(r) —g) x I define

et — 1 if h(z)<t
D=0 it hez)>t.
Then {t|A(z, £) =0} = {¢|h(z) <t <7}

{z| Mz, )£ 0} =G(t) if teN,.

Hence f A, ¢ dt= fr. Wl(s) fa(r)_al(z, £) f*(05) A X5 @t + (r—1o) Ay 1(7o)

To

- Wl(s) -9 (J‘r., Az t) dt) f* (@) A Xm—s + (r—10) As (7o)

- 1
W(s) Jew-o

(r = h(2)) f*(020) A Xm—s + (r = 70) A r(r6) = T £ ().
Hence e (r)= fr A4, ,(t)de
To
is a differentiable function of r for r >r, with derivative
T, fr) =4, /().
For r >r, and s=n and u=dd*yp, is

1 .
As(r) =Al(G(), u))__:(_q2+_nl) V-1 G(r)—-b_f*(wn_l) A Xq+1
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g+t1

or éf(’)=‘%“ (An-1,7(r) = Ap-1,7(r))-
Define b(r)= 1 f »
W) Jremr
b(M !

== | .

) Wn) Jran

Then 0<b(r)<b(M)<1 and b(r)—>b{(M) for r—ococ. According to Theorem 5.9 is
0<(1=b(r)) Ty, 5(r)

ln—l 1 q+1
S22 571 ( 27 (A"‘l-f(r)_A"—l.f("'o))"'llf()’)),

where u;(y) does not depend on 7.

Suppose that T, ;(r)>occ for r—>co.

. I T;—l.f(r) m— Ap_1.4(r)
Define 6, =1lim = .
T oo Tos(r) 1o Tyf(r)

Then the following defect theorem is proved.

THEOREM 5.13. Suppose thai the assumptions of example 3 are made, especially that
T, ir)=>oo for r—>oco. Then

<m—n+l Ll |

0<(1=b(21) 47 ov+1

oy

Especially, f assumes almost every value of P(V) (i.e., b(M)=1) if

Ap-1,5(r)

=0 forr—oo, *
T, () ©)

This Theorem generalizes the theorem of Chern [3] to Levi-manifolds for open holomorphie
maps into the complex projective space.

In the case n=1,

Ay () =M(r) = f 2

G

does not depend on f, and is the measure of G(r) in respect to the(!) “‘semi-Kaehler metric”’

Z1on M and (*) merely requires that T ,(r) increases stronger than this measure M(r).

(*) Of course, x, is a Kaehler metric only if x, >0, where upon here only ¥, >0 is required.



190

[l

[2).

[3].

[4).

[5].

[6].

(71

[8].
[9].

[10].

[11]).

[12).

[13].

[14].

[15].

[16).

[17].

[18].

[19]

[20].

[21].

[22].

[23]

[24]

WILHELM STOLL

References

BieBERBACH, L., Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche
eine schlichte volumtreue Abbildung des R, auf einen Teil seiner selbst vermitteln.
S.-B. Preuss. Akad. Wiss., 14/15 (1933), 476—479.

Bort, R. & CHERN, S. 8., Hermitian vector bundles and the equidistribution of the zeros
of their holomorphic sections. Acta Math., 114 (1965), 71-112.

CHERN, S. 8., The integrated form of the first main theorem for complex analytic mappings
in several complex variables. Ann. of Math. (2), 71 (1960), 536-551.

Farovu, P., Sur certaines fonctions uniformes de deux variables. C.R. Acad. Sci. Paris,
175 (1922), 1030-1033.

GRrAUERT, H., On Levi’s problem and the imbedding of real-analytic manifolds. Ann. of
Math. (2), 68 (1958), 460-472.

—— Une notion de dimension cohomologique dans la théorie des espaces complexes.
Bull. Soc. Math. France, 87 (1959), 341-350.

K~ESER, H., Ordnung und Nullstellen bei ganzen Funktionen zweier Verinderlicher.
S.-B. Preuss. Akad. Wiss., Phys.-math. Kl., 31 (1936), 446-462.

——— Zur Theorie der gebrochenen Funktionen mehrerer Verdnderlicher. Jber. Deutsch.
Math.-Verein., 48 (1938), 1-28.

Lerong, P., Sur lextension aux fonctions entiéres de n variables, d’ordre fini, d’'un
développment canonique de Weierstrass. C.R. Acad. Sci. Paris, 237 (1953), 691-693.

Sur ’étude des noyaux primaires et sur un théoréme de divisibilité des fonctions

entiéres de n variables, C.R. Acad. Sci. Paris, 237 (1953), 1379-1381.

Fonctions entiéres (n-variables) et fonctions plurisubharmoniques d’ordre fini dans
C". J. Analyse Math., 12 (1964), 365—407. ‘

LeviNg, H., A theorem on holomorphic mappings into complex projective space. Ann.
of Math. (2), 71 (1960), 529-535.

NARASIMHAN, R., The Levi problem for complex spaces. Math. Ann., 142 (1960/61)
355-365.

ReMMmERT, R., Holomorphe und meromorphe Abbildungen komplexer Réume. Math.
Ann., 133 (1957), 238-370.

ScewarTz, M.-H., Formules apparentées a la formule de Gauss-Bonnet pour certaines
applications d’une variété a n dimensions dans une autre. Acta Math., 91 (1954), 189-244.

— Formules apparentées a celles de Nevanlinna—Ahlfors pour certaines applications
d’une variété a n dimensions dans une autre. Bull. Soc. Math. France, 82 (1954), 317-360.

StEIN, K., Maximale holomorphe und meromorphe Abbildungen, II. Amer. J. Math.,
86 (1964), 823-868.

StorLL, W., Mehrfache Integrale auf komplexen Mannigfaltigkeiten. Math. Z., 57 (1952/53),
116-154.

—— Ganze Funktionen endlicher Ordnung mit gegebenen Nullstellenflichen. Math. Z.,
57 (1952/53), 211-237. '

—— Konstruktion Jacobischer und mehrfachperiodischer Funktionen zu gegebenen
Nullstellenflichen. Math. Ann., 126 (1953), 31-43.

Die beiden Hauptsitze der Wertverteilungstheorie bei Funktionen mehrerer kom-

plexer Verinderlichen I. Acta Math., 90 (1953), 1-115.

Die beiden Hauptsiitze der Wertverteilungstheorie bei Funktionen mehrerer kom-

plexer Verinderlichen I1. Acta Math., 92 (1954), 55-169.

Uber meromorphe Abbildungen komplexer Rdume I. Math. Ann., 136 (1959),
201-239.

—— Normal families of non-negative divisors. Math. Z., 84 (1964), 154-218.




A GENERAL FIRST MAIN THEOREM OF VALUE DISTRIBUTION II 191

{25]. —— The growth of the area of a transcendental analytic set, I. Math. Ann., 156 (1964),
47-78.

[26). —— The growth of the area of a transcendental analytic set, II. Math. Ann., 156 (1964),
144-170.

I=[27]. —— The multiplicity of a holomorphic map. Inventions Math., 2 (1966), 15-58.

II =[28]. —— The continuity of the fiber integral. Math. Z., 95 (1967), 87-138.

[29]. WYL, H. & WEYL, J., Meromorphic functions and analytic curves. Annals of Mathematics
Studies. No. 12. Princeton University Press, 1943, pp. 269.

Received April 6, 1966



