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1. Introduction

In an exterior domain 2 of R™, n>3, with smooth boundary S we consider the following
stationary problem for the Navier-Stokes equations:

—Aw+w-Vw+Vp=f (z€Q),
Vw=0 (zre), (1.1)

wlg=w*, w—0 (|z|—o00),

with a (smooth) prescribed boundary data w* and a smooth external force f of the form

F=(fiyenfn)y fi=) OkFy;, 8;=0/0x;. (1.2)

k=1

Here w=(wy, ..., w,) and p denote, respectively, unknown velocity and pressure; and
n n n
V=(61,...,6n), A=Za]2, V-u=§:0juj, u-Vu=Zuj8ju.
j=1 j=1 j=1

By an exterior domain we mean a connected open set with compact complement.
As shown in the next section, problem (1.1) possesses a solution w satisfying

lwl <C/lzl,  [Vw|<C/lef?, (1.3)

under appropriate assumptions on given data. In this paper we are interested in the
stability property of the solutions w as mentioned above. To be more precise, consider
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the nonstationary problem

Qg+v~Vv—Av+Vq=f (t>0, z€Q),

ot
Vau=0 (t20,z€0Q), (1.4)

vls=w", v—0 (Jz]>00), v|i=0=1vp.

Inserting v=w+u, vp=w+a and g=p+p’ into (1.4) we obtain the equations governing
the perturbation u:

@—Au+w-Vu+u-Vw+u~Vu+Vp'=O (t>0, z€Q),

ot
Vau=0 (t20,z€9Q), (1.5)

uls=0, ©v—0 (jzg]—>00), u|t=0=a.

Under some smallness assumptions on w, problem (1.5) was studied by [6], [20]-[22],
(31] and [34]. Inspired by the works [20], [21] of Heywood, Masuda [31] treated (1.5) in
the case where n=3 and w—w>® €R? as |z|— o0, and deduced an algebraic decay rate
in time of L*°-norm of a weak solution u. Heywood [22] then improved the decay result
of [31]. Miyakawa and Sohr [34] also studied (1.5), assuming n=3 and w—w>*€R3,
and proved that any weak solution u satisfying the strong energy inequality goes to 0 in
L%-norm as t—oo. In [6] the present authors also studied weak solutions and deduced
an algebraic decay rate in time of L%-norm in case w® =0 and a logarithmic decay rate
in case w™ #£0.

When n=3, it is known that a weak solution satisfying the strong energy inequality
becomes a strong (i.e. regular) solution after a finite time. Heywood [22] and Masuda [31]
used this fact in deducing decay rates of L*-norm of weak solutions. However, it is not
yet clear whether the L*-decay result of [22], [31] is optimal, mainly because of lack of
knowledge on the behavior of the derivative Vw of the stationary solution w. Kozono and
Ogawa [25] and Chen [11] have recently treated problem (1.5), assuming that we L™ and
VweL™? are small enough, and discussed asymptotic behavior of weak solutions ([11])
and strong solutions ([25]) of problem (1.5). However, their assumption: Vw€ L™/2 seems
too restrictive in case n=3. In fact, Galdi and Padula [16] shows that when n=3, such
a stationary flow w exists only in some unrealistic situations; and Kozono and Sohr [27]
shows that if n=3 and if w is a weak solution of (1.1) constructed as in Leray [29], then
Vuw is in L3/2 if and only if the total net force exerted to the obstacle R3\ 2 by the flow
(w,p) and the external force f vanishes:

/ v-(Tw, p| ~w* ®w*+F) dS =0, (1.6)
S
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where v is the unit outward normal to S and
T[wap] = (Tjk[wap]);l,kzla Tjk[w7p] = ‘6jkp+6jwk +akwj-

As shown in §2, the main reason for this difficulty in three dimensions lies in the fact
that if n=3, then the dual exponent n'=n/(n—1) of n equals $=21n, which is just the
exponent of required integrability of Vw.

To overcome the above-mentioned difficulty in three dimensions, we have to find out
the right behavior of Vw. In §2 we establish our existence result of a stationary flow
w, with the aid of the recent results of Deuring and Varnhorn [12] and Wiegner [47] on
Schauder estimates for the boundary layer potentials, and the estimate of Novotny and
Padula [35] for the volume potentials. Novotny and Padula [35] gave a complete proof of
the existence of a stationary flow satisfying (1.3) in a different functional setting, while

we had proved similar results for n>4 and the result
lw| <C/lz|, VweLY*nNL® (n>3), (1.3")

where LP denotes the weak LP spaces. This last result is actually equivalent to estimate
(1.3) from the point of view of stability theory, and our results in §§ 3-6 all hold even if we
replace (1.3) by (1.3'). However, we shall give in §2 a complete proof of (1.3) within the
framework of our functional setting, employing a result (see Lemma 2.2 in §2) from {35],
only in order to clarify the situation and to simplify the subsequent presentation. The
result of [35] contains additional information, especially on the behavior of the associated
pressure, and will be published elsewhere. Estimate (1.3) not only extends the result of
Finn to higher space dimensions, but also provides the estimate: |Vw|<Clz|=2 in all
dimensions n>3, while Finn [13] deduces only a weaker estimate: |Vw|<Clz|~?log|z|
in case n=3. We further show that if n=3, we L3 and Fe L%/2, then our solution w has
to satisfy (1.6) provided Vwe L3/2. In this sense, the result (1.3) for Vw seems to be
optimal when n=3.

After establishing our existence result for problem (1.1), we discuss the existence
and asymptotic behavior of solutions of perturbation equation (1.5). We first consider
in §3 the linearization of problem (1.5):

@—Au+w-Vu+u-Vw+Vp’ =0 (t>0,z€eQ),

ot
Vau=0 (t20,zeQ), (1.7)
uls =0, u—0 (|Jz|—00), ult=0o=a,

and show that if w is small in an appropriate sense, the correspondence a—u(t) defines a
bounded analytic Cy semigroup in general L™ spaces of solenoidal vector fields. We then
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apply simple perturbation arguments to the results of [4], [11], [23] to deduce various
decay estimates in general L" spaces for solutions of (1.7). These decay results will be
effectively applied in §§4 and 6 to the study of weak and strong solutions of nonlinear
problem (1.5).

§4 is devoted to the study of existence and asymptotic behavior of L? weak solutions
of (1.5). Based on the results of §3, we show that if w is small, then problem (1.5)
possesses for every a€ L? at least one weak solution whose L?-norm goes to 0 as t—o00.
We further deduce explicit decay rates for the weak solutions under additional smallness
assumptions on w, applying the results of §3. The decay result in §4 improves, in the
case w™ =0, our previous result obtained in [6]. We prove the result of §4 by employing a
spectral method, which was initiated in the case of the Cauchy problem by Schonbek [39],
[40] and Wiegner [46] in terms of the Fourier transformation and then systematically
developed by the works [3], [4], [5], [6], [24] of the present authors in an operator-theoretic
formulation.

§6 studies strong solutions of (1.5) belonging to the weak L™ space: L. It is now
well known in the Navier—Stokes theory that the space L™ is the basic space in which
to find a strong solution of the Navier-Stokes equations. In other words, we have so
far been able to construct global-in-time strong solutions of the Navier-Stokes equations
only when the initial velocities are small in L™. Since L™ CL?, our result in §6 contains
as a special case the known existence results of global strong solutions. The results in
§6 are closely related to the work [25] of Kozono and Ogawa, which establishes the same
type of existence results in L™, local in time for general initial data and global in time
for small initial data. Although our results provide only global solutions for small initial
data, they not only generalize and improve the global existence results of [25] to weak L™
spaces, but also include decay results for L°°-norm, which will be derived by employing
an idea of Chen [11]. We further show that if a€ L, VaeLy/* and als=0, then the
corresponding strong solution u also satisfies

u(t)€L?, and Vu(t)e L™? for all t>0. (1.8)

Observe that |z|~'€L? and |z!‘2€L$/ 2 and so our stationary solutions w obtained in
§2 always satisfy (1.8).

To find strong solutions satisfying (1.8), we need to examine the fractional powers of
the Stokes operator in weak L" spaces. This is the subject treated in §5. We introduce
Lorentz spaces L(™9 1<r <00, 1<¢<00, so that L™=L{"") and L{">) =L’  and discuss
properties of the Stokes operator in these spaces. In particular, we give a characterization
of the domain of (the square root of) the Stokes operator in Lorentz spaces and apply it
in §6 to finding global strong solutions of (1.5) satisfying (1.8).



ON STABILITY OF EXTERIOR STATIONARY NAVIER-STOKES FLOWS 315

The basic tool for proving our results is the so-called LP-L? estimates for the semi-
group defined by solutions of problem (1.7). These estimates are first deduced in §3 by
applying duality and perturbation arguments to the estimates for the Stokes semigroup
as given in [4], [11], [23], and then extended in §6 to estimates in weak L” spaces through
an interpolation argument. We apply these LP-L? estimates to the proof of the stability
results in §§4 and 6. In particular, it will be shown in §6 that they can be applied to
improving, in the case w* =0, the L°°-decay result of {22}, [31] for strong solutions of
problem (1.5).

As will be shown in §2, when n>4, problem (1.1) possesses a solution w satisfying

Vwe L"NL™® for some n'<r< in, (1.9)

under appropriate assumptions on given data. It should be noticed here that our basic
assumption (1.3} implies

Vwe LY NL>,
which is apparently weaker than property (1.9). Based on a result of [11], we show in

§§3, 4 and 6 that the time-decay properties of solutions of problems (1.5) and (1.7) can
be improved if the stationary flows w satisfy (1.9). When n=3, we have to assume that

Vwe L'NL™ for some 1<r< 3, (1.10)

in order to get similar improvements in time-decay properties for nonstationary problems.
However, condition (1.10) automatically implies Vwée L3/2 and so it turns out that we
are dealing with stationary flows w satisfying the vanishing flux condition (1.6). We do
not know if our time-decay rates for weak and strong solutions are optimal. We refer the
reader to [40], [41] for the optimality in the case of the Cauchy problem with w=0.

When w=0, problem (1.5) is just the exterior nonstationary problem for the Navier—
Stokes equations. Since the solution w=0 obviously satisfies (1.9) or (1.10), the above-
mentioned improvements hold also for the weak and strong solutions of the Navier—Stokes
equations. We note in particular that an L*™ decay result given in §6 actually improves
the known result of [26] for strong solutions of the Navier-Stokes equations.

2. Existence of stationary flows

We first collect some basic results on weak L" spaces, which will be effectively applied
throughout the paper. Let 1<r<oo. A measurable function f defined on a domain D of
R" is said to belong to L, =L7 (D) if and only if

1710 = suptD(1f1 > O/ < +o0,
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where D(|f|>t)={zeD:|f(z)|>t} and |E| denotes Lebesgue measure of a measurable
set E. It is easy to see that L™ C L7, with estimate || ||}, <||f||» for f€L", where |||,

denotes L™-norm, and that L7,(D)CL? (D) for any 1<s<r with continuous injection.
w loc )

Furthermore, f is in L], if and only if

1 £l7,w =sup IE[’HI/’/ |f] dz < +o0,
E E
and L7, is a Banach space with norm ||- ||, .. Indeed, we have
* r *
1710 <Dl < A1 (21)
To show (2.1), suppose f€L?, so that
AR =ID(fI > DI < (1fl17)7E"
Then, for any EC D with 0<|E|<+00, the function Ag(t)=|E(|f|>t)] satisfies
Ap(t) <min(A(8), | E|) <min((|F1I7,,)" 77, |1 E]).

Letting 8=||f||}.,/|EI*/", we thus obtain

/E|f|dw:/OmAE(t)dt=/0ﬂ/\E(t)dt+/:/\g(t)dt

B oo
<IEL [ e (Sl [ e dt= B

which implies the second inequality of (2.1). To show the first, we take E=E,=DNB,,
where B, is the ball with radius g centered at the origin. By Chebychev’s inequality we
get

HE,(If] > )| < /

[fldz <|If 1wl Be(1£] > ',
E(171>1)

and therefore t|E,(|f|>t)|'/" <||f|lrw- Letting p— oo gives
D1 > ) < llrws

which shows the first inequality of (2.1).

The following lemma is frequently used in this paper.
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LEMMA 2.1. (i) (The weak Hélder inequality.) Let 1<p< oo, 1<g<o0 and 1<r<oo
satisfy 1/r=1/p+1/q. If f€L? and ge Ly, then fgeL!, and the estimate

“fg“r,w < C”f”p,w“g”q,w

holds with C'>0 depending only on p and q. Here, we understand that LSS =1°°.
(ii) (The weak Young inequality.) Let 1<p<oo, 1<g<oo and 1<r<oo satisfy
1+1/r=1/p+1/q. If fe L2 (R™) and g€ LI, (R™), then the convolution fxg isin L7, (R™)

and satisfies the estimate

1 *gllrw,r < C"f”p,w,R" "g”q,w,R"

with C>0 depending only on p, ¢ and n.

Proof. (i) Suppose first that 1<p<oo. We need only deduce the desired inequality
in terms of the quasinorms || -||*. From Young’s inequality:

r T _—q/r r
|[fgl < —eP/T|fIP/"+—e"9/m(g|V
p q
for any £>0, we obtain
D(|fgl>t)C D(|f|> 1™ t7/P)uUD(|g| > eaet™9)
with constants ¢; and ¢; depending only on p and ¢. Direct calculation then gives

(I1fgli7w)” < CreP ([l £115,0)" +C2e™(llgll5,w)°

for all € >0 with C; and C; depending only on p and ¢. The result now follows by taking
the minimum with respect to £>0.
When p=o0, direct calculation shows that

[ 51dz <1l [ oo < 1 Flcllllacel B
E E
which shows the desired result.
(i1) is found in [37, pp. 31-32], so the details are omitted here.
In the rest of this section we establish an existence result for the problem:
—Aw+w-Vw+Vp=f (z€Q),
Vw=0 (zef), (2.2)

wls=w", w—0 (jz] - o00),
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with smooth prescribed boundary data w* and a smooth external force f of the form

f=(frynfa) fi= OcFi;. (2:3)

k=1

Under appropriate decay conditions on Fi; and VFy;, we apply the results of [12], [47]
and [35] and show in particular the existence of a stationary flow w such that

lwl <C/lz|"72, [Vl <C/lz}" . (2.4)

Novotny and Padula [35] gave a complete proof of (2.4) for the first time in case n=3
in a different functional setting. In this section we employ their technique of estimating
volume potentials and prove (2.4) in all dimensions n>3.

We formally transform (2.2) into the integral equation

w=%o(w) EE-(f—w-Vw)—F/S(cp'T[E, Q]-v+E-h)dS, (2.5)

where

B-(f-w-Vu)@)= [ Be-y)-(/-uw- Vo)) dy
and E=(E;;) and Q=(Q);) are the Stokes fundamental solution tensor with components

1 (6

—n  TGT
Bt = g (W2

|z

Here, v is the unit outward normal to S; T[E,Q]-v denotes the normal stress corre-

_ T
T wplz|?

>, Q; (=)

sponding to E and Q ([28], [36]); and w,, is the surface area of the (n—1)-dimensional
unit sphere. The function ¢=¢(w) will be defined below as a solution of the boundary
integral equation

%W/ ¢-T[E,Q)-vdS=g (26)
S

with the right-hand side

g=w"— (E.(f—'w'Vw)-}-/ E-hdS) (2.7)
s s
and
n(n+1)/2
h=h(w)= > e}, ci=ci(w)eR. (2.8)
i=1

Here, {¢}} is any fixed basis of null solutions of the integral equation adjoint to (2.6).
As shown in [28], [36], equation (2.6} is solvable for any given continuous g satisfying the

relation

/ngp; dS=0, i=1,..,in(n+1). (2.9)
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Moreover, the matrix A=(A;;) with components
A= [ v3()BE-m-vitn) dseas,
x

is nonsingular (see [28], [36]); so the coefficients ¢; in (2.8) are uniquely determined by
(2.9). To define the function ¢ in (2.6) uniquely, we also require

/s<p¢;‘ dS=0, i=1,..,3(n+1). (2.10)

Recall that (see [28], [36]) the boundary values of the single layer potentials [ E-y; dS
form a basis of the null space of integral equation (2.6), which consists of the boundary
values of the infinitesimal generators of rigid motions.

Now suppose that the tensor F satisfies the decay condition

|Fikl <C/lzl*™",  |VEu| <C/lal®, (2.11)
for some ©>3, and introduce the Banach space
X, ={weC'(Q)": sup |z|* *|w|+sup |z|* "} |Vw| < +o0}
with norm
lwlix, = sup|o|*~2jw|+sup |z|#~|Vw|.

(Here and in what follows we assume that 0¢{.)

Given w*€C?(S), FEX, 41 and weX, with w|s=w"*, we estimate the function
®(w) in the space X, applying the Schauder estimates of [12], [47] for potentials defined
by E and @, and the estimates

Clz|**=8 (0<B<n),

r—-y|~* P = .
/Ql yI7*(1+1yl) dy<{C’lx|"° (B>n), (2.12)

which hold for 0<a<n and a+3>n. Suppose first that n>3 and 3<u<n, and fix
0<a<1. By Theorem 1 of [47], the double layer potential belongs to the Hélder space
C't%(Q) if the corresponding density is in C'**(S). This implies that the integral
operator in (2.6) defines a bounded linear operator from C**+*(5) into itself; so equation
(2.6) is inverted under constraints (2.9)-(2.10) to yield the estimate

lelicr+a(sy < Cliglicr+asy, (2.13)

where || - ||c1+a is the usual Holder norm. Since g is defined by (2.7), we get

/E»hdS
s

lgllcre(sy <llwllezsy +HIE-(f ~w-Vw)llgrea@+
Ci+a(fl) (2.14)

= lw*llez(sy+h + 12
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The last two terms are estimated in the following way. Firstly, (2.11) and (2.12) imply
|E-(f —w V)| C(IFlix, . + 0]k, )24, (2.15)

and
IVE-(f—w-Vw)| <C(||Fllx, ;s +llwll%, )l . (2.16)

Moreover, since |VE|<Clz—y|'™", applying Morrey’s inequality [15] implies that the
a-Hélder seminorm of VE-(f —w-Vw) is estimated as

<Clf —w-Vully <C(IFlix . +llwl,), (2.17)

where r>n is taken so that a=1-n/r. Since |z]~1€L>®(2) because of the assumption
0¢Q, combining (2.15)—(2.17) gives

L<CO(IF X, +Hlwlik,)- (2.18)
Secondly, to estimate J> we use the following result of [12], [47]:
I <C|lhllcags)- (2.19)

By (2.8), ||hllca(s)<C Y, |ei(w)], and c;(w) are determined by constraint (2.9). So, by
(2.12) and (2.19) we have

I <Cllhlicacs) € C(”’”'“C?(S)‘l‘sgp |E-(f—w-Vw)l|)

<Cllwllexs) +CUIFlx, . +Hiwlk, )izl (2.20)
<C(lwllo2(s) +I1F Nl x,ps + 0%, ),

since |z|~1€ L>°() by assumption 0¢Q. From (2.13), (2.14), (2.18) and (2.20) we obtain
lellcrra(sy S Clw oz s) + N Fllx,.., +lwlik, )- (2.21)

Using (2.21), we can now estimate in X, the nonlinear map ® defined by (2.5). By (2.15)
and (2.16) we obtain

E-(f-w-Vw)lx, <CIFlix,,, +llwlk,)- (2.22)

The single and double layer potentials on the right-hand side of (2.5) are estimated as
follows: Choose R>0 so that (R"\Q)C{|z|<R}. Then, by (2.21),

sup |z|*~?
|l¢|>R

< CR”‘IOHOOYS < CR“QOHCI-hx(S)

/Sc,o-T[E, Ql-vdS (2.23)

<Cllwllcz(sy + 1Pl x,ps +llwlk,)-
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By Theorem 1 of [47] and (2.21),

/np-T[E,Q]q/dS‘ < Cgrsup
s o

sup |z|*?
Qn{|z|<R}

/S¢-T[E,Q]-uds‘

<Cr (2.24)

/so-T[E,Q]wdS
S

<Cllellor+acs)
<C(lw*llczcs)+ 1 Fll X,y +llwllk,)-

In the same way, we can estimate the first derivatives, to obtain the following estimate

C1+e(q)

for the double layer:

/S o T(B,Ql-vdS|  <C(w loxs) +IFllx, ., +lwl%, ). (2.25)

Xy

To estimate the single layer potential in (2.5), we apply the result of [12], [47] as used
in deducing (2.19), which asserts that the single layer potential is in C'**(Q) if the

corresponding density is in C*(S). Using this and (2.20), we obtain as above
| S| <Clillcns < CQlulloas)+ 1P, o+l (2.26)
X“f

By (2.22), (2.25) and (2.26), we conclude that if 3<u<n, then ® maps X, into itself
with the estimates

12(w)llx,. < Collw*llc2(s)+CulFllx,... +Callwllk,

and
|8 (w1)—®(wa)llx, < Ca(llwrllx, + 1wl x, ) Jwr —wallx,,.

So, the contraction mapping principle ensures the existence of a unique solution of (2.5)
in X, provided that w* and F are sufficiently small in C?(S) and in X u+1, respectively.

When p>n>3, the foregoing calculation, together with (2.12) in case §>n, applies
with slight modification to deduce that ® maps X, into itself and there hold the estimates

[1®(w)llx, < Collw*llo2(s)+C1ll Fllx,. + Callwllk,

and
@ (w1) —@(w2)llx, < Cs(llwnllx, +llwallx,)llwi —wellx,-

The existence of a desired solution we X, of (2.5) is again deduced via the contraction
mapping principle.

We next prove the existence of w satisfying (2.4), assuming n>3 and F€X, 4. In
this case, however, the foregoing estimate for the volume potential does not work for
deducing estimate (2.22) with u=n, and so we are forced to employ another way. It is
here, where we appeal to the following lemma, which is due to Novotny and Padula [35].
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LEMMA 2.2, Let n23, FEXn.H, f=(f1, ...,fn) and
n
fi= Zakaj-
k=1

Then
|E-(f—w-Vw)|x, SCUIFlx0p, +lwllk,),

with C >0 independent of F' and we X,,.

Proof. The proof below is due to [35]. We may assume without loss of generality
that |z|>1 if z€Q. An integration by parts gives

E (f-w-Vw) =/ E.v-(F-w®w)dS+(VE)-(F-wQw).
s
Applying the result of [12), we see as in the foregoing paragraph that

[ Bv(F-wsw)as| < ClF-voulees el
S

(2.27)
SCUIF N Xnys +wllk, )z,

while (VE)-(F-w®w) is directly estimated as
SCUFN X i Jrllwlig(,.)/Q lz—y'"yl' " dy < C(I Fllxy +llwllk,)le)*~". (2.28)

To deduce the bound for the derivatives of E-(f—w-Vw), we divide the integral into
several terms. We may assume that R=|z| is sufficiently large. Let

Ql :QOBR/z(O), szBl(z), QSZBR/2(‘T)\BI(Z)?
Q4 = B3gr/2(0)\(Br/2(0)UBg/2(x)), 5=\ Bsgr/2(0),

where B,(y) is the open ball with radius r centered at y. We write
(VE)-(f-w-Vw)(z) = (VE)-(V-(F-w@w))
5 5
=3 [ (VENe-)(V-(F-wsu)W)dy=3 "1,
j=17% j=1
and estimate each term separately. First, integrating by parts gives

/ (VE)(V'(F—w®w))dS|

ILi<C /Q 2~y ~"(F ~wow)(y)| dy+

+C lz—y|" | (F-w@w)(y)| dS,.
ly|=R/2
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By Theorem 1 of [47], the integral over S is estimated as
< C|F—w®wl|ca(s)lz]' ™" S C(IFll x,p, +llwlk, )l ™
On the other hand, since |y|< 3R implies |z—y|> 3R, and since
[(F=w@w)(y)| S CUIF |l xss Jyl* ™+l [91* %) S CUF Y xps + llie, D™,
the integral on {|y|=%R} is bounded as
SO(IF N xnys Hwllk, )BT = CUIF Nl x0 +Hllwllk 2l

while the integral over §2; is bounded as
<Pl +lwlfe B [ 101
1

SCUFlxpys +lwlik )R '™ dy
lyl<R/2

= C(I|Fllxnss +lwllk, ) B ™" = C(IF || x0 +llwli%, el "

‘We thus have

1] < CUIF N x0s + w0l 2 (2.29)
Secondly, we have
ILl<C le—y|' " V(F - ww)(y)| dy
ly—z|<1
—nl—-n 2.30
<C(||F||x,.+l+uwu§(n>I B T Tt (2:30)
y—z|<

SOIF g+l )zl ™™

Third, y€€3 implies 1|z —y|<3R; so |y|>R-|y—z|> 3R, and

\Is| SC(llFllwalwll%{")/Q |z =yl "y} ™ dy

S C(IF | xpsy %, )R le—y|* " dy (2.31)
1<jz—y|<R/2
<C(IFl|x., +lwl%, )R = C(IFllx, . +lwli&, )z
Fourth, y€ 4 implies |z—y|> 1R and JR<|y|<3R. Thus,
Ll<C fn 2 —y[' |V (F ~w®w)(y)| dy
4
<C(IFxo,, +Hwl,) /ﬂ o~y "yl dy (2.32)
4
sC(anxM+||w||§n)R1-2"/ dy = C(|Fllx..,, +Iwl%, )z~
lyi<3R/2
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Finally, if y€5, then
lz—y| > |yl —R > |y|-3ly| > 3yl

and so,
T3] < CUF 1 x00 +oll. ) /Q oy "y~ dy
5

(2.33)

<CIFllx s +llwllk,) 1 /2Iy|1‘2" dy

vI>R
= C(IFll x sz 1wl el ™
Combining (2.27)-(2.33) gives the desired result. This proves Lemma 2.2.

By Lemma 2.2, we can now apply the contraction mapping principle to the map &
in X,, and obtain the desired solution w. In conclusion, we have proved

THEOREM 2.3. (i) Let n>3 and 3<u<n. If w*€C?(S)" and FeX, 11 are suffi-
ciently small, there erists a unique solution w of (2.2) such that

lw|<C/Jax|*7%,  |Vw|<C/|z|*1.

(ii) Let n>3 and n<pu<oo. If w*€C%(S)" and F€ X, 41 are sufficiently small, there
exists a unique solution w of (2.2) such that

lwl <C/lz|*7?, |Vl <C/lz|*

Remark. Theorem 2.3 generalizes the three-dimensional existence result of Finn [13],
[14] to the case of general space dimensions n>3 (but, only in the case where w—0 as
|z|]—00). By the standard regularity result of [1], {9] for the stationary Stokes system,
the function w is a classical solution of (2.2). As seen from its proof, Theorem 2.3
is most difficult to prove in case n=3; in fact, we had to appeal to the technique of
Novotny and Padula [35] in estimating the volume potential. In {35] they deal with the
three-dimensional case in a different functional setting and give a complete proof of the
existence of solutions with the above-mentioned decay property. They further prove a
decay result for the associated pressure. When n>3 and u>3, we have

o>~ € Ly/#=PnL*® c L*"NL® and |z|'"*€LY/* VnL>®cL™*NL>,
so that the solution w given in Theorem 2.3 with p>3 satisfies
weL"NL®, |Vw|eL"?nL™. (2.4)
Stability of stationary flows w satisfying (2.4') for n>3 was discussed in [11], [25].

However, when n=3, condition (2.4') seems to be too restrictive, as easily seen from the
following result (note that n'=1n=2 if n=3).
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THEOREM 2.4. Letn>3 and let w be any solution of (2.2) given in Theorem 2.3 (ii).
If Fe L™ and VweL™, then we have

/ v-(T{w, pl - w* ®w* +F) dS =0, (2.34)
S

where
Tlw,pl = (Tielw, p))F k=1, Tjr[w,p] = —8;kp+0;wi +Orw;.

Proof. First observe that the equation in (2.2) is written as
V(T(w,p)-w@w+F)=0. (2.35)
Multiplying (2.35) by ¢ €Cg§°(Q)™ such that V- =0 and then integrating by parts gives
2(e(w), el¢)) = —(F—w®w, Vo), {2.36)

where

e(w) = (gjr(W))] k=1,  €jr(w) = 3(8jwr+0kw;).
Since Vwe L™, it follows from the Sobolev-type inequality as given in [8], [19], [34] that
weL™ (=2 Thus, we L m=2NL>®CL", and we conclude that w@weL™. Hence,
both sides of (2.36) are continuous in ¢ with respect to the norm ||Vy|,. We fix an
arbitrary ce R™ with ¢#0, take Y €C°(R") so that ¥(z)=1 if |z|>R and ¢(z)=0 if
|z|< 3R for some large R so that (R"\Q)C {|z|<3R}. Consider the function

pe=c—Sp(c-Vh)

where Sp is the operator introduced in [4, Proposition 3.3] with respect to the bounded
domain D={}R<|z|<2R}. Then p.€C®(R), V-p.=0, and ¢ (z)=c (|z|>3R),
po(x)=0 (Jz|<3R). As shown in [7], [17], ¢. is approximated in the norm [V,
by functions ¢ in C§°(Q)™ with V-, =0; so (2.36) with = implies

2e(w), e(¢e)) = —(F—wdw, Vo). (2.37)

We next multiply (2.35) by ¢, and integrate over QN{|z{<4R} to get

/ V-(w®w)-<pcdz=/ V- (T|w,p]+F) pcdz.
Qn{lz{<4R} Qn{|z|<4R}

Since V.=0 for |z| 24R, integration by parts gives

/ V-(w@w)-(,ocda:z/ v-(w@w)-cdS—(ww, V),
Qn{|z|<4R} |zi=4R
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and
[ v@wpltF)pede= [ v (Tlwpl+F)-cdS-2e(w).e(oe)) - (F, Vo)
Qn{|z|<4R} |z|=4R
Thus, in view of (2.37) we have
/ v-(T{w,p]+F)-cdS= v-(w®w)-¢dS.
|z}=4R |z|=4R

But, ¢ was arbitrary; so

/ v-(Tlw,p]-w®w+F)dS =0. (2.38)

|lz]|=4R

Integrating {2.35) over 2N B,p(0), applying the divergence theorem and taking (2.38)
into account, we obtain (2.34). The proof is complete.

The following result examines the integrability property of Vw when w satisfies the
assumption of Theorem 2.4.

THEOREM 2.5. Let n>3 and let w be the stationary flow given in Theorem 2.3 with
FeX,1 for some p>2n+1.

(i) Suppose that n>4, we L™ ™=2) gnd VweL™. Then VweL" for all 1<r<oc.

(i) If n=3, VweL? for some 1<q<3/2 and weL? with 1/¢*=1/q—1/3, then
VweL" for all 1<r<oo.

Proof. By the assumptions on w and Vw and by Theorem 2.4, the function w
satisfies the vanishing total flux condition (2.34) together with an associated pressure p.
To examine the integrability property of p we write w=w; +w; and p=p, +p-2, where
(w1, p1) solves

—Auv,;+Vp; =0 inQ,
V-w1 =0 in Q,

wyls=w*, lim w, =0,
|z]—o00

and (wz, p2) satisfies
—Auwa+Vp, =V-(F—w®w) in Q,

V-‘ID2 =0 in Q,

w2|s=0, lim wWa =0.
Jz}— o0
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As is well known ([28], [36]), the pair of functions (w;,p;) can be taken to satisfy

(@) =0(z|'™"),  |Vp1(z)|=0(z|™),
lwi(z)] =0(|z*™"),  |Vwr(z)|=0(z|'""),

as |z|—o0. So we see in particular that Vw; €L® and p;€L? for all n’<s<n. Thus,
Vwe=Vw—Vw,€L* for all n’ <s<n. On the other hand, the assumption implies that
F-w®welL* for all n’<s<n. Hence, it follows from (4, Theorem 3.5 (ii)] that p, can
be taken to satisfy p, € L*® for all n’ <s<n. We thus conclude that p€ L* for all n’ <s<n.
Using this integrability property of the function p, we can apply the standard argument
of the potential theory to obtain the representation

w(m):E-(V-(F—W®w))+/S E.-v-Tlw,p] dS+[gw*-T[E,Q]~VdS
=(VE)-(F—w®w)+/SE'u~(T[w,p]~w*®w*+F)dS+/Sw"'T[E,Q]-udS.

The derivatives of the last term are O(|z| ™) as |z| — 00, so belong to L™ for all 1<r<oo.
By using (2.34), the single layer potential is rewritten as

]s E’(:c, y) v (T(w,p| -w* @w* +F)(y) dS,

where

_ 1
B(ay) = Blz—y)~B(0) = [ 5 E(a—60) .
0
Since
(VoE)(z,y)| <Clz|™ for large |z| and y € S,

with C'>0 independent of z and y, the derivatives of the single layer potential are in L" for
all 1<r<oo. It thus suffices to discuss the behavior of the function (V2E)-(F —w®w).
Suppose first that n>4. Then, since w€ L™, the assumption we L™ ("=2) implies that
w@weL for all 1<r<oo. Since Fe L™ for all 1<r< oo by assumption, and since V2E is
a Calderon-Zygmund kernel [43), it follows that (V2E)-(F—w®w)€L" for all 1<r<oo.
We thus obtain Vwe L™ for all 1<r<o0o. But, since we already know that Vwe& L™, this
shows the result in case n>4. Suppose next n=3. In this case,
v _ 3

2 2(3-9)

w@we L*NL® with ¢, = <q,

and so (V2E)-(F-~w®w)€L?. Hence, VweL?, and therefore weL% with 1/¢}=
1/q1—1/3, by the Sobolev-type inequality as given in (8], [19], [34]. Hence,

3q1

ww e LNL® with g, =
q2 2(3—q1)

<aq,
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and so (V2E)-(F—w®w)€ L%. Repeating these processes, we see that

<qj<q<§ (G=12,..), (2.39)

. 3
(VE)(F-weu) €L+, g1 = 5t 2

q;)

and that the sequence g; defined recursively by (2.39) tends to zero as j—oo. This
eventually shows that Vwe L" for all 1<r <00, and the proof is complete.

Remark. When n=3, we do not know if we L*NL* and Vwe L32NL> together
imply that VweL" for all 1<r<oo. Indeed, in this case the above proof of Theorem 2.5
merely implies that VweL3/2. Chen [11] discusses L? stability of stationary flows w
satisfying the assumption of Theorem 2.5 (ii). However, the existence of such flows is
guaranteed only in a very restrictive case; see [16].

3. Analysis of the linearized operators
In this section we fix a stationary flow w satisfying
lw|<C/lz|, |Vw|<C/|z|? (3.1)

and discuss large time behavior of solutions of linear problem (1.7). Observe that since
n—22>1 and %n;n' when n>3, the stationary flows w obtained in Theorem 2.3 all
satisfy condition (3.1). In case n>>4, we have n’< 1n; so Theorem 2.3 ensures existence
of a stationary flow w satisfying

[Vw| € LINL>  for some ¢ with n' <g < in. (3.1)

Employing a result of Chen [11], we further show that under condition (3.1’) the solutions
of (1.7) behave better than in the case of condition (3.1).

The following notation is adopted: Let L7, 1<r<oo, be the L"-closure of the set
C5% () of compactly supported smooth solenoidal vector fields in €. Then we have the
Helmholtz decomposition [33], [42]:

L'Q)" =L, aG",
where L}, and G" are characterized as
Ly ={ueL"(Q)":V.u=0,uv|s=0}, G ={VpeL (Q)":peL] (D}
We denote by P=P, the associated bounded projector onto L],. As shown in [33],

Ly =LY, (G")'=G", Pr=P. (1/r'=1-1/r),
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where (L7 )* and (G")* mean the dual spaces and P} the dual operator. We next intro-
duce the Stokes operator in L7,
A=A,=-PA

and the operator
L=A+B, Bu=B,u=P.(w-Vut+u-Vw) (3.2)

with
D(L)=D(A)={ue W™ (Q)":u|s =0,V -u=0}.

It is also shown in [33] that

Ar=Ap, 1)r=1-1/r.

T

We examine properties of the operator L and its adjoint L*, and apply them to the study
of solutions of (1.7). The results will then be applied in §§ 4 and 6 in discussing existence
and asymptotic behavior of weak and strong solutions of problem (1.5).

We begin with the proof of

LeMMA 3.1. Let n>3 and let Q1 be a smooth exterior domain in R™.
(i) For 1<r<n there is a number C=C,>0 such that we have the estimate

lw-Vull, < Cllwll-|V?ull-, ueD(4,), (3.3)
where || - ||~ is the L™-norm and
[[w]l = sup(|z|-[w(z)]).
(ii) For 1<r<in there is a number C=C,>0 such that we have the estimate
lu-Vwl, <CIIVwll-|V?ul., ueD(4,), (34)

where

IVl = sup(|z|*| Vw(z)]).

(iii) For 1<r<in we have
1Bullr, |1 B*ull- < Cr(llwll + | Vw|)IV?ull,, uwe D(A4,), (3.5)

where B* is the adjoint to B.
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Proof. We first recall the Sobolev-type inequalities due to (8], {19], [34]:
1wl nr/n—2r) < C1l|Vllnrj(n—ry < C2||VPulf,, ueW"(Q), (3.6)
for 1<r<%n, n23, and
lellne/n-ry CIIVUllr, ueWhT(Q), (3.6")
for 1<r<n, n2>2. Consider now the Riesz potentials

Tig(z)= / le—yV "g(y)dy, j=1,2, n23.

Since |z|"'€ L7 and |z|'""€L?, Lemma 2.1 gives

Tig
= < Cr”Tlgnnr/(n—r),w,R" S Cr”g"r,w,R" (37)
I.’L‘, raw,R™
for 1<r<mn. Similarly, we have
Tag
W < Cr“T29llnr/(n—2'r),W,R" < CT”g”T,w,R“ (38)
rw,R"

for 1<r<in. Applying the Marcinkiewicz interpolation theorem [2], [43], [45] to each of
(3.7) and (3.8), we obtain

T
2] <Culglens << (3.7)
|IL'| rnR"
and T
2 <Crligllnrs (1<r<in). (3.8
|1:I »R"®
Since

lu(z)] S CaT(IV7ul)(z), j=1,2,

for ue Cg°(R™), it follows from (3.7) and (3.8') that

=l <ColiVullre, uweWIT(RM), (3.7")
|.’L‘, rnR"
for 1<r<n, and
2ol <CAVulge, weW T (RY), (3.8")
"TI rR"™




ON STABILITY OF EXTERIOR STATIONARY NAVIER-STOKES FLOWS 331

for 1<r<1n. We next show that

HFZT <ColVullr, ueWhr(Q), (3.9)
for 1<r<n, and
l—;F <CH|IV2ull,, ue W (9), (3.10)

for 1<r<in. Indeed, choose a function y€C*°(R") so that
0<¥<l, $(2)=0 (z/<R), ¥(@)=1 (ls|>2R),

for some fixed R>0 satisfying (R"\Q)C{|z{<R}. Then estimates (3.7”), (3.6') and
Holder’s inequality together yield, with 1/r*=1/r—1/n,

I
B

<OV ()il < CUlY Vull-+[[uVel,)
<C(IIVullr+]lull-) < ClVully.

(3.11)

On the other hand, since we assume 0¢), it follows that |z|~1€ L>°(Q); thus, (3.6') and
Holder’s inequality together yield

”(l—w)u

||

< Cllullr,angizj<2ry < Cllullr < C||Vu||,. (3.12)

Combining (3.11) and (3.12) gives (3.9). To prove (3.10), we apply (3.6) and (3.8") to
get

25| <crvzn,
< C(V2ull, +VEVull, +[uV?]l,) (3.13)
<C(IV2ullr +IVullre +llullre-) < C|[V2u|,
and
(_1_156;,2_)11 . < Cllullrongizi<2ry € Cllulle-- < C||V2ul,, (3.14)

where 1/r**=1/r—2/n. Estimate (3.10) follows by combining (3.13) and (3.14).
Now, estimate (3.3) is obtained from (3.9) as

Vu

w-Vu|l, < ||lw ‘ —

n ol | 7

<Collwl-IV2ull.  (1<r<n),
,

and estimate (3.4) is similarly obtained from (3.10). Finally, estimates (3.5) are deduced
from (3.3), (3.4) and the boundedness of the projector P,. The proof is complete.
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PROPOSITION 3.2. Let L be the operator defined in (3.2) and L* its formal adjoint.
For 1<r<%n and 0<w<%7r, there is a number n=n(r,w)>0 such that if

lwl|+Vw{l <n,
then we have the estimates
HOA+L) ully < Crllullo /1AL IA+L%)  ull, < Crllull- /1A, (3.15)
and
IV2(A+L) tull, < Crllullr,  IV2A+L*)ullr < Crlullr, (3.16)

for allue L, and Ae C\0 with |arg A|<m—w.

Proof. Due to the equality
AM-L=X+A+B=(I+B(M\+A)"H)(A+A) on D(4),

we can formally write

(A+L) lu=(A+4)"! i(—B(MA)—l)J'u. (3.17)
7=0
From the estimate [|VZ(A+A4) 'ul|,<C,|lull, for 1<r<in (see [8]) and from (3.5) we
get
I(BO+A) " ull, < [C'(lwll+[Vwl)P

s0 the right-hand side of (3.17) converges provided C'(||w||+||Vwl|)<1. Estimates (3.15)
and (3.16) are then deduced from the estimates

IA+ATH<C/ML I+ 4) < C,
as established in [8]. The case of the adjoint operator L* is treated similarly. The proof
is complete.

COROLLARY 3.3. (i) For each 1<r<oo and O<w<irm there is a number n=
n(r,w)>0 so that if
l[wll+[|Vwl| <n

then (A+L)™! and (\+L*)"?! ezist as bounded operators in L7, for A€ C\0 with |arg A|<
m—w and satisfy the estimates

I+ C/IAL - I+ THISC/IAL
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(i) If 1<r<in and
lwll+ I Vwll <n,

then the operators V(A+L)™! and V(A+L*)"! exist as bounded operators from L7 to
L7 satisfying

IVOA+L)HISC/IAYE,  IVO+L) T < C/IAMY2.

Proof. (i) We see by duality that (3.15) holds for 1<r<in and n/(n—2)<r<oo.
Since the spaces L7, form a complex interpolation family, we obtain (3.15) for all 1<r<oo
by interpolating between the above two cases. (ii) is a consequence of (3.15), (3.16) and

the estimate
M2Vl < OOl ) /212l 2.

The proof is complete.

In view of the standard theory of analytic semigroups in a Banach space as given
for instance in [37] and [44], Corollary 3.3 (i) asserts that the operators —L and —L*
generate in L7, 1<r<oo, bounded analytic semigroups, which we denote by {et};>0
and {e~*L" };>0, respectively, through the Dunford integrals

1 - 1
—tL At A —ld —tL / At *\—1 .
e = i/re (ALY tda, e =5m r‘e (A+L")" " dA

Here, the path I' of integration in the complex plane is taken in the form
=T ulul'_,

where
Fy={ret™:1/t<r<+o0}, To={t"1e¥: —wOhW},

for an arbitrarily fixed w with {r<w<m. Furthermore, these integrals, together with
Corollary 3.3 (ii), yield the estimates

Ve Eull < Crt 7 lully, Ve ull, < Crt ™/ ?|ully, (3.18)

for1<r< %n Estimates of the form (3.18) are indispensable for our purposes and so are
desirable to be extended to the case of more general r. This extension is given by the

following
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PRroOPOSITION 3.4. Let n'<r<n and O<w<%7r. Then there exists a number n=
n(r,w)>0 such that if
llwll <n,

then we have the estimates (as bounded operators from L7, to L")
IVA+L) < C/IA2, VL) YIS C/INM?,
for all A\e C\0 with |arg A\|<7—w.

Proof. This time, we write

V(A+L)_1=Vi (—(A+A)"1BY(A+4)71 (3.19)
7=0
and
V(A+L*)~ —VZ( (A+A4)"'B*Y(A+A4)7! (3.20)
=0

and discuss convergence of the right-hand sides. To do so, we need the following
LEMMA 3.5. If n’<r<n, we have the estimates
IV(A+A4)~!Bull, < Cllw||-[Vull, u€D(4,), (3.21)
and
IV(A+A4)'B*ul|, < Cllw||-||Vull-, ue€D(A4,), (3.22)
uniformly for A€ C\0 with |arg A\|<T—w.

Admitting Lemma 3.5 for a moment, we continue the proof of Proposition 3.4. From
estimates (3.21) and (3.22) it follows that if ||w|| is sufficiently small, then

[o o}

IVO+L) ], < (Z(cuwn)") IVO+A) "l SCIVOA+A) ., (3.29)

=0
and
IVA+L*) ull- < (Z(Cllwﬂ)j) IVO+A) " ull- <CIVA+A) Hull,. (3.24)
=0
On the other hand, since r<n, we see by Theorem 4.4 of [4] that

[V(A+4)  ull, <CIAY2(A+4) My,
SCIAA+A) Ml 2+ A ull2 < Cllull- /A2,
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and the desired result follows.
Proof of Lemma 3.5. We apply a duality argument. In what follows (-, -} denotes
the duality pairing between various Banach spaces. For p€Cg°(€1) we have
KV(A+A4)" Bu,p)| = |(Bu, (A+4) "' P(Vp))|
[(w-Vu, (A +A) T P(Ve))|+|(u-Vw, (A+A4) ' P(Ve))|
(

<
= (u, w- V(A+A) P P(Ve)) |+ {w, u- V(A+A) " P(Vip))
<2)lw))- Nz ull- I V(A4 A) T P(V )l

<Clwll- Vel V(A+A4) T P(Vp)

and

(VOA+A4)" B u, )| = |{B"u, A+ A) ' P(Ve))| = lu, B(A+A4) " P(Vy))|
< Hu, w- V(A+A) T P(V)) [+ [(n, (A+ 4) T P(Vp) - V)|
= |(u,w-V(A+ ) P(VO) |+ [(A+4) T P(Ve)-Vu, w)|
<Cllwll-|Vull-[V(A+4) " P(Ve)||.

Estimates (3.21) and (3.22) are thus deduced from

LEMMA 3.6. Ifn'<r<n, then
IVOA+A) " P(Vo)ll < Cligll-, ¢ €C5(R),

uniformly in A€ C\0 with |arg \| <7 —w.

Proof. In view of the relation
V(A+A4) ' P(Ve) = V(A +A) Y2 A+ A)"YV2IP(Vy)

and the fact that (A+A4)~*/2PV is just the dual to V(A\+4)~1/2, it suffices to show that
if n’ <r<n, then the estimate

IV(A+4)""2ull, < Clluf- (3.25)
holds uniformly in A#0 with Jarg A\|<7—w. Since r<n, by Theorem 4.4 of [4] we have
(V(A+A)"V 20|, < CYA2(A+A) "V 24)),. (3.26)

Hence we get (3.25) for A>0 (see [30]). For general )\, we write A=|)\|e*® with 0<}8)<
m—w. Then, as shown below, the standard evaluation of the Dunford integral shows that
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the fractional powers (e *%4)1/2 and (|A|+e"A4)~1/2 are well defined and satisfy the
relation
A1/2 =ei0/2(e—-z’0A)1/2, ()\+A)_1/2 =e—i0/2(')\|+e—i€A)—1/2. (3.27)

It thus follows from (3.26) and (3.27) that (see [30])
IVO+A)72ull. < Cll(e™A) (Il +e7A) " 2ull. < Collull, < Colully,

which proves Lemma 3.6.

There remains to establish (3.27). We shall show below more generally that if
A=[\|e*, |§]<m—w and 0<a <1, then the fractional powers (e ~*A) and (|A|+e~%A4)~>
are well defined and satisfy

A% = eioza(e—ioA)o(7 ()\-{—A)—a — e‘iao(l)\l+e"ieA)"°. (3.27/)

In what follows we assume without loss of generality that >0, and write || |[,=]|-|].
Since ||(u—e""A)7!||<Cp/|u| for 1#0 in a conic neighborhood of the negative real axis,
the fractional power (e *A)* is defined as

sin o

[o. <}
(e"PA)y / t* 1t e PA) (e A u dt,
0

™

for ue D(e=**A)=D(A) (see [30]). By the change of the variable p=te®, we have
(e~ A)*u = 5“7#(3-”9 /F 2t A) Audp, (3.28)
where the path of integration
T={te’®: 0 <t < 400}

is oriented in the direction from ¢=0 to t=+o00. Now fix 0<e<R. Since o(—A4)CR_,
where o(—A) is the spectrum of —A, the integrand of (3.28) is analytic in the closed
region surrounded by the closed curve

C={e<t<R}UCRUI, grUC,,

with
T.r={te’’:e<t<R}

and
Cr={Re"?:0<p<0}, C.={ee*:0>¢p>0}.
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By the Cauchy integral theorem in the complex function theory, we have

R
/ u"_l(u+A)“1Aud,u=/ t* 7 (t+A) " Audt
Fe.R £
+/ p* Hp+A) " Audp (3.29)
Cr
+/ p (p+A)" Audp.
Ce
The norm of the integral over C'g is estimated as
8
<R / I(Re™+A)~"||-| Au|| Rdip < COR*™ || Au]| -0,
0
while the norm of the integral over C; is estimated as
9 .
< E“‘l/ | A(ee'® +A) " ulle dp < COe*||ul| — 0.
0

Hence, (3.29) gives

/u""l(p+A)_1Audp=/ t*"1(t+A) "1 Audt

T 0

for ue D(A). Combining this with (3.28) gives the first assertion of (3.27"). To show the
second assertion of (3.27'), we use the representation (see [44])

sin o

(A+A) %u= /wt_"(t+)\+A)"lu dt (3.30)

0

for all u€ L. Since
(t+A+A) "t =e O (te 0 4|\ +e94) 7!,

the change of the variable u=te™*® applied to (3.30) yields

—ia ST

(A+4) %u= -

/ p o (uH A +eA) udy, (3.31)
r
where the path of integration

D= {te®:0<t< +o0}

is oriented from t=0 to t=+o00. Since o(—|\|—e"?4)=—|\| —e~%a(A), the integrand of
(3.31) is analytic in the closed region surrounded by the closed curve

C=TgUCRUC.U{R2>2t>¢},
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with
Tr.={te ?:e<t<R}
and
Cr={Re": -0<p<0}, Ce={ee:0>¢9>-0}.

The integral over Cp is estimated as
< R_“/BH(RG"“’H/\I+e""’A)‘1ll Jlull Rde < Cix0R™%||uf — 0
as R— o0, while the (i)ntegral over C. is estimated as
< E""/Oall(*st‘fi“’+ IA[+e7PA) |- lulle dp < Cip 8% ||ul| =0

as £—0, since in this case the resolvent is bounded as e—0. So, by the Cauchy integral
theorem,

o0
/u_"(p+|/\|+e‘i9A)‘1udu=/ t(t+| A +eA) Tudt.
r 0

This, together with (3.31), yields the result.
COROLLARY 3.7. For each 1<r<n there is a number n=n(r)>0 such that if
lwll+{IVwl <,
then we have the estimates (3.18)."

Proof. The result immediately follows from Corollary 3.3 (ii), Proposition 3.4 and
complex interpolation. The proof is complete.

The above proof of Proposition 3.4 implies the following result for the resolvents
of —L and —L*, which is interesting when compared with Proposition 3.2 in that no
assumptions on Vw are needed.

PROPOSITION 3.8. Let n’<r<n and 0<w<%7r. Then there exists a number n=
n{r,w) such that if

l[wll <m,
then we have (as bounded operators in L))
[A+L)HISC/AL - I+ TS C/IN,
for all X\e C\O with |arg \|<m—w.

Proof. Since n' <r<n if and only if n’ <r’<n, it suffices only to deduce the estimate

for operator L. As in the proof of Proposition 3.4, we write
o0
(A+L) 1= (-(A+A)'BY (A +4)7". (3.32)
Jj=0
In addition to Lemma 3.5, we here also apply
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LEMMA 3.9. If n'<r<n, we have the estimate
I(A+4) Bull, <CI\| "2 |lwl-[|Vull,, u€D(A), (3.33)

for all A€ C\0 with |arg A|<7m—w.

We continue the proof of Proposition 3.8, admitting Lemma 3.9 for a moment. From
Lemmas 3.5 and 3.9 we see that if |w}| is small enough, then

IA+L) " ull, < CIA " ull-+Cllw||-| A~/ (Z(C’llwl{)j"l) VOA+A4) ul|,
i=1
<O elir,

which proves Proposition 3.8.
Proof of Lemma 3.9. As in the proof of Lemma 3.5, we apply a duality argument.
For peCg5, () we have

[{(A+4) 7! Bu, ¢)| =|(Bu, (A+4) ")
< -V, A+ A) 7o)+ {w, u- V(A + A) L)
< lwli-IVull 27 A+ A) " ol +lwll- el ™ ull- IV (A+4) "l
< Cliw||-[Vull IVA+A4) " i < CIN T2 |w]|- | Vuli- el
which shows Lemma 3.9.
Corollary 3.3, Propositions 3.4 and 3.8 together imply

THEOREM 3.10. (i) Let n23 and 1<r<oo. Then there is a number A=X(n,7)>0
such that if

[wll+ IVl <A,

then {e~tL},50 and {e**" }150 are bounded analytic Cy semigroups on LT,.
(ii) Let n23 and n’ <r<n. Then there is a number n=n(n,r)>0 such that if

flwll <,
then {e"**};50 and {e " }150 are bounded analytic Co semigroups on L7, and sat-
isfy (3.18).
(iii) Let n>3. For 1<g<r<oco, there is a number N'=X(n,r,q)>0 such that if

lwll+{Vwli <X,

23-950233 Acta Mathematica 174. Imprimé le 20 juin 1995
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then we have the estimates
le~*al, le™* all, < Mt~ /a2 |al],. (3.34)
(iv) Let n>3. For 1<g<r<n, there is a number n'=n'(n,r,q)>0 such that if
il + Vel <7,
then we have the estimates
IVe~*all,, Ve all, < Mt=1/2=(/an/D/2| g (3.35)
(v) Under the assumptions of (i) and (iii) with ¢<r, we have
Jim [le™all, =0, lim le™""a|l, =0,

for allaeL].

Estimates (3.34) and (3.35) are deduced from (3.18) via the Sobolev inequality.
When w=0, Iwashita [23] shows that (3.35) holds for 1<g<r<n. Assertion (v) follows
from (3.34), the boundedness of the semigroups in L, and the fact that C§5, () is dense
in L.

Remark. Kozono and Ogawa [25] prove (3.18) for 1<r<in, or for 1<r<2 and
n=3,4, assuming that
we LM (Q)NL®(Q), Vwe LY2(Q)NL>(Q) (3.36)
and that ||wlln +||Vwll,/2 is small, depending on 7. Obviously, our results improve those
of [25).

When n>4, we have n'< %n Thus, the stationary flow w obtained for instance in
Theorem 2.3 (ii) satisfies
VweL" foralln'<r<in.

Using this kind of condition, we can improve Theorem 3.10. Our subsequent arguments
of this section are based on the following result, which is due to Chen [11].

PROPOSITION 3.11. Let n>3. Then we have the estimate
lle™talloo < Mpt ™ ?"|lall, (1 <7< 2n).

Proposition 3.11 is proved in [11, Appendix] for n=3; but the proof applies in all
dimensions 12> 3.
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PROPOSITION 3.12. (i) Let n>4 and suppose VwELLNL™ for some n'<g<in.
Then we have the estimates

le™*A Buloo+ || Ve "4 Buj|, < Ct—™/?P(14-t)~"/2rtn/2p (337)
X (1V0 g+ Vo0 ) ([l oo+ | V]l ) '

and

”e_tAB*U”co"'”ve—tAB*u”n < Ct—n/2p(1+t)—n/2r+n/2p (3 37,)
X (IVwllgw+1IVwlloo)(llulloo + 1 V), '

for ueC§2,(Q) with g<r<in<p<n.
When p=n, estimates of the form (3.37) and (3.37') hold with ||Vw/||q,w replaced by
lwll+ I Vw||g,uw-

(ii) Let n=3 and suppose that Vwe LINL™ for some 1<q< % Then we have
lle™*4 Bufloo + | Ve ™ Bulls < Ct~3/2P(14¢)=3/2r+3/2p (3.38)
X (| Vwllg+IVwlloo ) (Ilelloo + 1 Vulis) '

and

He—-tAB-uunoo+nve—tABxu”3 < Ct—3/2p(1 +t)—3/21‘+3/2p (3 38/)
x (1wl + 1| Vwlloo)lulleo + | Vulla), '

for ueC§S,(Q) with g<r<$<p<3.
When p=3, estimates of the form (3.38) and (3.38') hold with ||Vw||, replaced by
l[wll+{[Vewly.

Proof. We here prove only (i); statement (ii) is proved similarly. For s=p,r, Propo-
sition 3.11 yields
lle™* Bulloo < Ct™™/*(llw- V|l + |u- Vao )
SO 2 (wllns o) 1 Vel + el oo | V0]
<CtE |Vl (|[ulloo + 1 Vulln)
<SCE 2 (| Vwllguw + I Vwlloo) (oo + | Vulln)
and, similarly by [23],
Ve Bulla < ™2 (||w- V|l s +|u- Vaolls)
<SCEE(|Vw ]l + Voo ) (1o +§ Vuslln)-
Since n/2p<1<n/2r, we obtain (3.37). When p=n, we apply the estimate
lwVulln < llwlloo | Vulln < Cllwl]-[|Vulln
in the above calculations and obtain (3.37) with p=n. Estimate (3.37") is deduced in the

same way. The proof is complete.
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THEOREM 3.13. (i) Let n>4 and let w satisfy the assumption of Proposition 3.12 (i).
Then we have the estimates

e %alloo, lle™* alloo < Mot~ **llall, (1<s<n) (3:39)

and
Ve aln, IVe tE alln < Mot™™/%|ja)l, (1<s<n), (3.39")
provided |w(|+ || Vw||gw+||Vwl o is sufficiently small, depending on s.
(i) Let n=3 and let w satisfy the assumption of Proposition 3.12 (ii). Then we have
le™*alloo, ™ allec < Myt™**|lafl, (1<5<3) (3.40)
and
IVe™*alls, [[Ve™* alls < Mst™*/*|lafl, (1<5<3), (3.40°)
provided ||w||+||Vw|lq+||Vw|le is sufficiently small, depending on s.

Proof. (i) We deduce (3.39) and (3.39’) only for the semigroup {e~*£};>0; the case

of the dual semigroup is treated similarly. Furthermore, in view of Theorem 3.10, it

—tL

suffices to assume in<s<n. Now, the function v(t)=e~*a satisfies

t
u(t) = e_ma——/ e t"MABy(7) dr.
0

We take q<r<%n<p<n, set

V()= sup 7%(|lv]loo+V0lla)(7)
O<r<t

and apply Propositions 3.11 and 3.12, to obtain
[o(®)lloo < Crt™™*|lall,

t
+Cy / (b=r) /2 (= 74 1)/ 2028 ol o+ [ V0l ) ()
0

<t (34
+CaV(2) /0 (b= r)I2P(g g 1)/ 2Ry gy
and
[Vu(t)ln < it~ |lall,
+C /t(t_T)‘"/z”(t—H1)'"/2T+"/2”(|Ivlloo+lIVvlln)(T) dr
0 (3.42)

<Cit*all,

¢
+QV(e) [ (=) (1) A g,
0
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where C; and Cj are constant multiples of ||[Vw||g.«+||Vw||c. Consider the integral

t t/2 t
I=/ (t—7) /2P (t—741) /2t /2ppn/2e d7-=/ +/ =L+Dh.
0 0 t/2
When t21, the change of the variable T=to yields

1/2
I = tl—-n/2r~n/2s / (1_0,)—n/2p(1_U+t—1)—n/2r+n/2po_—n/2s do.
V]
By our choice of p, r and s, we get
1/2
Il < Ctl——n/2r—n/2s / (1_0,)—n/2p0.—n/2a do < Ct_"/z,. (343)
0

When 0<t<1, we apply 1—o+t~1>¢"! to obtain

1/2
L Stl—n/Zr—n/2s_tn/2r—n/2p/ / (1_0,)—n/2po,—n/2.sda
0

(3.44)
— Ctl—n/2p—n/2s < Ct—n/2s-
On the other hand, we easily see that
t/2
I, < Ct—n/2s/ T—n/Zp(T+1)—n/2r+n/2P dr
0 (3.45)

< Ct—n/Ze /wT_n/2p(T+1)——n/2r+n/2p dr= Ct-n/2a'
0

Combining (3.41)-(3.42) with (3.43)~(3.45) we obtain
o)l + I VO(E)lln < Ct™/(llall, +C'V (2))

and therefore

V(t) < Cllall, +C'V (1)),

where C' is a constant multiple of ||w||+||Vwl|lqw+||Vwl|loo. Taking w sufficiently small,
we get V(1)< C|la|ls- This proves (i). Assertion (ii) is proved similarly, so the details are
omitted.

COROLLARY 3.14. Under the assumption of Theorem 3.13, we have

e tLalls K Mt™™4|la ., a€LinL'. 3.46
o

Proof. We apply a duality argument. Given p€Cg5,(2), Theorem 3.13 implies

l{e™*a,0)| = [{a, e @) < llallile™ plloo < Ct|lall1 ]l pla-
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Since C§2,(€2) is dense in L2, we see that e *ae(L2)*=L2 and (3.46) holds. The proof
is complete.

Remark. Proposition 3.12, Theorem 3.13 and Corollary 3.14 are essentially due to
Chen [11]. He deduced similar estimates, assuming that n=3 and

Vwe L'NL? for some 1<r<3<pg2. (3.47)

We note that if n=3 the assumption of Proposition 3.12 or Theorem 3.13 implies Vwe
L3? and so by Theorem 2.4 the total net force exerted to the obstacle by the flow w
vanishes identically. Thus, in case n=3 the stationary flows w with this property exist
in a very restrictive situation (see [16]).

4. Stability in L2

We first define the notion of weak solution of perturbation equation (1.5). The definition
is due to Masuda [32]. Given a€ L2, a weakly continuous function u: [0, 00) — L2 is called
a weak solution of (1.5) with initial velocity a if

u€ L®(0,00; L2), Vue L ([0,00); L*(Q)), u(0)=a,

and the identity
(u(t) p() = (o), )+ [ (Vu, V) dr
:/t(u,(p') dr—/t(w®u+u®w+u®u,V<p) dr

holds for all 0<s<¢ and all peC([0, 00); LZNW(Q)NL™())NC([0, 00); L2). Condi-
tion ¢ € L™(N) is needed for the nonlinear term to make sense when n>5.
In this section we prove the following

THEOREM 4.1. Let w be a stationary flow with the property that
lwll+ | Vewl} < +o0.
There is a constant C,, with 0<C, < %(n—2) such that if
lwll < Cn,

then w is stable in the following sense.
(i) For each a€L?, problem (1.5) possesses at least one weak solution u defined for
all t20 such that
Jim Ju(®)ls =0,
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(ii) For each 0<§< 3 there is a positive number n=n(6) such that if
lw]| < min(Cr,n),
and if the initial perturbation a€ L2 satisfies
lle7talla=0(t"*) ast— oo

for some >0, then, as t— o0,

o(t™=) (e < in—6),
i

lu(t)lz = { O(t6—"/4) (a > n—é),

(iii) Suppose in addition that Vwe LLNL™ for some n'<qg< %n in case n>4, and
that Vwe LINL™® for some 1<q<32 in case n=3. There ezists p=p(n)>0 so that if

lwli+1Vwlgw+Vullo <p (n24), -
or if
[wll+IVwllg+Vwlleo < (n=3),

then the following result holds: Let a€ L% satisfy
le tfall;=0(t™*) ast— oo

for some a>0. Then, as t— o0,

3 Oo(t™) (a<
umnm-{ouﬂﬂ)(a>

n),
n).

Here, the number p=p(n)>0 is taken so that the semigroup {e "*L" },5¢ satisfies estimates
of Theorem 3.13 with s=2n.

F Ll N

Remark. Theorem 4.1 improves our previous results obtained in [6], in which is
shown among others that if n=3, |lw||<1 and if |[e~**a|];=0(t~%), then

3 o) (a<3),
MMMh—{qun)(az)’

where 0<E<% is arbitrary. When n>3 and w=0, we proved in [5] that

o) (a<in),
llu(®)ll2 = { O(t="4) (a3 1n),

D= N
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provided [le~*4al|,=0(t~%).

We notice that in the case of Theorem 4.1 (iii), there exists an initial perturbation
a satisfying ||e~*La|ls=0(t~"/%), as shown in Corollary 3.14. It should also be noticed
that no assumption is imposed in statements (i) and (ii) on the size of Vw.

Given a€ L%, we construct approximate solutions u of problem (1.5), solving the
integral equation

t
up(t)=e~Lay~ / eI P -V )ug (1) dr. (4.1)
0

Here, ar=(I+k"1L;)"'a and @ is the standard (spatial) mollification of the zero-
extension of ux. As shown below in the proof of Theorem 4.1, L3 is a regularly accretive
operator (44] in LZ provided ||jw||<$(n—2), and so, in this case, ||ai)j2<||allz. For any
fixed k, integral equation (4.1) is easily solved globally in time by applying the contrac-
tion mapping principle, and the convergence of (a subsequence of) u; to a weak solution
is proved in the standard manner; see [34] for the details.

In what follows we write simply u=wu; and deduce decay estimates for u which are
uniform in approximation. The desired decay results are then obtained for the con-
structed weak solution through passage to the limit k—o0. Let

oo
A2=/ AdE,
0

be the spectral decomposition for the positive self-adjoint operator A;. As in our previous
works [3]-[6], the key estimate for the nonlinear term is given by the following

LEMMA 4.2. (i) For each 0<6<} there erists a number n=n(6)>0 such that if
llwll <,
then we have the estimate
I Ere™ P (D)l < G /AN 4-1/3-8 |y 1 =38 a5,

(ii) Suppose w satisfies the assumption of Theorem 4.1 (iii) with the same number
p=p(n)>0 as given there. Then we have the estimate

[Bxe™  P(a-Vu)llz < Ct=¥/* X374y ]| V2.

Proof. (i) We set s=n/(1+26). Then, Theorem 3.10 (ii) implies, for p€Cg,(92),

[{Bxe™EP(w V)u, )| = [(a®u, Ve *F 'Erp)
<l@@ully |Ve ™ Explls < Ct2ull3o | Exglls.
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Since n' <s<n and
1/s=1/n+26/n=1/2—(n/2-1-26)/n

with 2n—1-26>1-26>0if 0<6< 3, by Corollary 4.5 of [4] we have
IExells < CILAMEH 2 Byplla <OXMATH270 5.
On the other hand, since ||A/?u[|2=|[Vu||2 and since
1/2' =1/2-1/2s=1/2—(1/2+6)/n,
Corollary 4.5 of [4] gives
lullaer < CIAY* 2ully < Cllully = A 2ully/** = Clully* = [ Vuf'/2+,

which implies the result.
(ii) For p€CG%,(€2) we have

[(Exe™ " P(@-Vu), ¢)| = |[(a®u, Ve ™ "Exp)| < [ullzw Ve "Erglln.

The Sobolev embedding yields ||u||2n' <C(]|ull2||Vu]|2)}/2. On the other hand, applying
Theorem 3.13 with s=2n and Corollary 4.5 of [4] yields

(Ve tF Exelln < Ct_3/4|lEA‘P|f2n/3
< Ct¥/4| An=3/4E, |, < Ct3/AN=3/ 4 )| 5.

Combining these gives the desired result.

Proof of Theorem 4.1. We here prove only (i) and (ii), employing Lemma 4.2 (i),
since the proof of (iii) is the same as in (5] if we employ Lemma 4.2 (ii). The arguments
below are essentially the same as those developed in [4], [5]. We multiply the equation

du

= T Lut P@ Vu=0

by u and integrate by parts to get

l[ull3 +[IVull3 +(u- Vw, u) =0.

N | =
&~

But, since (see [28], [29])

2
< —
<Vl

U
||
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for ue Wy 2(Q), n>3, we have

_ 2
|(u- Vo, u)| = |(w, u- V)| < [[w]l- 2] w2 Vulls € — [lw]|- | Vu]lz.

It follows that

(Lo, u) = (4, L*u) = |Vl 2+ (- Vo, u) > (1—;%5an) V2.

Thus, if |w||<3(n—2), then both L and L* are regularly accretive in L2; N(L)=

N(L*)=01in L2; so R(L) is dense in L?; and therefore
lim |[e~*Lall;=0 for all ac L2.
t—o0

Furthermore, we get
d
= llull3+2Col| Vul <0

for some Cy>0, so that
oo
lu(®)ll2 < llakll2 < llallz  and 200/0 IVull3 ds < llak 3 < llall3-
Here, we apply the estimate
2 2 * 2
IVal = 14"2ul > [ xdlByul} > el - Equl?)
o
for any fixed ¢>0, to obtain from (4.2)
d
2Hu||2a;liﬂlleCoQHUIl% < 2Co0|| E,ull3-
Since ||E,ul|2<||u||2, we finally obtain
d
= 1ull2+Coellull2 < Coell Egullz.
On the other hand, integral equation (4.1) gives the estimate
t
Beulla <l Falla+ [ 1Bpe" "2 P(@-V)ula .
0

Applying Lemma 4.2 (i) then yields

t
[ Eoull2 < Ile‘tLa|I2+Co"/4_”2‘6/ (t=7)"?ully” Vel dr
0

< He_tLa”z+CQ"/4—1/2_6F1(t)1/2_6F2(t)1/2+6,

(4.2)

(4.3)

(4.5)
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where

4 4
Fit)= [ (t=n) Plulfdr, Fa)= [ ¢=n) 7 Vulan
0 0
We thus obtain from (4.4) and (4.5)
d _ n/d—1/2— _
i lullz+Coellullz < Coallle™ alla +Co™ 20 RPT R, (46)

Now, set g=m(Cyt) ! with a sufficiently large integer m >0 and then multiply both sides
of (4.6) by t™ to obtain

d _

= (" Jull) Sme™ (e~ Fallp + OV ATV AR AT R 20)

and therefore,

t
lu(®)ll <t / mr™1e~all, dr
0

t 1/2—-6 t 1/246
+Ctl/2+6-n/4 (t‘l/ F d'r) (t“l/ Fy dT) )
0 0

Since ||Vul|3€ L'(R..) by (4.3), we see that

(4.7)

i
t_I/ Fydr £ Ct_lfz’
0
so we get from (4.7)
‘ t 1/2-6
(e}l <t /0 mr™ e~ Lally dr + CH/4+8/2n/4 (t—l /0 A dT) 48
Now, |jullz€ L*(R+) by (4.3); so it follows from (4.8) that
t
lu(e)lle <t™™ / mr™ e~ Lal|y dr +CtH/2 /4 S0,
0

since ||e~*Lal|;—0. This shows assertion (i) of Theorem 1.1. Furthermore, (4.8) yields
lu(®)llz < C(E=+t/27m/%)

provided |e~*Lalls=0(t*), and this shows assertion (i) for a<in—3. Ifa>in—3, we
have |[u|2=0(t"'/?); so F1€L®(R.), and therefore

t
t_l/ FldTSC
0
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It thus follows from (4.8) that
lu(t)llz < (¢ +81 /482774y < Ot +43/57/%),

This shows the result for a<in—3. If a>in—3, we have ||ullZ=0(t3/4) so that

t 1/2—6
(t‘l/ F dT) SOt~V L o118
(1]

and therefore (4.8) gives
()]l < Ot~ +£3/16+8/2=1/4)  O(y=a 4.45/16-n/4y

which shows the result for a<in— 3. If a>in— 3, we have |Jul|3=0(t""/8) so that

t 1/2—6
0

and therefore (4.8) gives
”u(t)||2 <C(t™™ +t5/32+6/2—n/4) < C(t-a+t9/32_n/4),

which shows the result for a<3in— 3.

Repeating these processes, we arrive at the situation where

lu@®lf =0(t*)  (a< jn—(271+1)/2"Y),

@I SOE2+¢741%) (o> dn—(2 7 41)/24), o

for an arbitrarily given integer />0. Since Fn—(2'"1+1)/2!>1-2"! we have |u[3=
O(t~1+1/2" in the latter case of (4.9), which implies

t 1/2-6 .
(t*/ F dr) < Ct1/2=1/2)(1/2-8)
0

and so (4.8) gives
[u(t)ll2 < Gt +45-n/4+m),

where u-—‘(%—é)ﬂ'. Since we may take ! so that %n—&—p}%—é—u>%, we can set
in—0-p>i+x
with 3>0. Thus, we obtain

lu()|f < CE2*+¢7172). (4.10)
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Suppose now that n>4. Then, in view of (4.9) and (4.10), we may assume that 2a>
n/2—(2"1+1)/2!>3/2—1/2! for some large . So, (4.10) implies that ||ul|3€ L}(R ).

Hence,
¢ 1/2-6
(t"1/ F dT) L Ct71/4+8/2
0

which, together with (4.8), yields

lu(®)lls <CE*+8577/4) (4.11)
and the proof is complete. Consider next the case n=3. Then, if 2a>1-1/2!, we obtain
lulZ=0@=+/?'Y from (4.9). So, the argument above implies |juljz=0(t"*) in case
a<3. When a>1, the same argument as above shows llullZ=0(t1*1/2') for all I; so
we get (4.10) for some 3 >0, which in turn implies ||[u||Z=0(t=1~") for some 7>0 since

2a>1. Hence, ||ul|2€ L} (R, ) and we arrive at the desired result (4.11). There remains
to discuss the case a=1. By (4.3), (4.9) and (4.10) we may assume

lu®)ll < C(E+1) 7 +(t+1)7172) (4.12)

for some s>0. It follows from (4.12) that

t 1/2—-6
(t—lf F dT) SC([t™ Y2 log(t+1)]1/2 -0 44~ 1/4+6/2)
0
which, together with (4.8), implies that
”U(t)”g < C(t-—1/2 +t_1+6/2(10g t)1/2—6 +t6-3/4) — O(t_l/z).

This completes the proof of Theorem 4.1.

5. Fractional powers of the Stokes operator in Lorentz spaces

In this section we study the Stokes operator A in the Lorentz spaces over an exterior
domain Q. The result will be applied in §6 to show the existence of a global-in-time
solution u of problem (1.5), satisfying

w(t) €L, Vu(t)e LY? for all t>0.

Notice that the stationary solutions w obtained in §2 all satisfy these properties.
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We first recall the definition of the Lorentz spaces (see [2], [45]). Let 1<r<oo and
1<¢<00. A measurable function f defined on a domain DCR" is said to belong to
L(~a9)(D) if and only if

/oo(tl/rf*(t))qglz<+oo (g<00), supt/Tf*(t)<+o0 (g=00), (5.1)
0 t >0

where f* is the nonincreasing rearrangement of f. It is well known that the quantity

(¢ [[wrrar )" <o,

sup,5o t1/7 f*(t) (g=00)

£ 1l7e =

defines a quasinorm on the vector space L(™9 (D). Notice also that L") =L" and
Lm®)=L" in our previous notation. As shown in §2, L7, is a Banach space with respect
to a norm which is equivalent to the quasinorm || - ||7 .. The same is true of general Lm9;
indeed, the interpolation theory of Banach spaces [2], [45] gives the following result.

THEOREM 5.1. Let 1<r<oo and 1<g<o00.
(i) We have
L"9(D)=(LY(D),L*(D))pg, 1/r=1-6,

where (- ,-)g,q stands for the real interpolation spaces constructed via the K-method.
(ii) If 1<rog<ri<oo, 1€g<o00 and 0<0<1, then
(L™(D),L™(D))s.q = L'"P(D), 1/r=(1-6)/ro+0/r,.

(i) If 1<r<oo and 1<q¢< 00, then

(LEND) =L D), 1/r'=1-1/r, 1/¢' =1-1/q.

For the proof of (i) and (iii) we refer to [2], [45]. (ii} follows from the reiteration
theorem in the interpolation theory. In this section we denote the norm of the space
LD by [-fg.

We next consider the Helmholtz decomposition of the space L(’”’)(Q)" over a smooth
exterior domain QCR"™, n>2. Let P=P, be the projector associated with the Helmholtz
decomposition of L™(f2)". Then, P defines a bounded projector on each of L9 (Q)",
1<r<oo, 1€g<00.

THEOREM 5.2. Let LS"® =R(P) and G"9=N(P). Then

L(T,Q)(Q)n = Lgr,q)égg(r,q) (5.2)
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and
Lg"ﬂ)={u€L(r’q)(Q)nVU’:O,UVISZO}7 (5 3)
G(r,q) — {vp c L(T,q) (Q)'n pE Ll((:‘,cq) (ﬁ)}
Furthermore, if 1<g<00, then
(LEOYy =L, (G =g, (5.4)

Proof. Since P is a bounded projector, (5.2) is obvious. Relation (5.4) follows from
Theorem 5.1 (iii) by interpolating the relation: P=P, in L7. It is also easy from the
interpolation theory to see that the spaces on the left-hand sides of (5.3) are included
in the right-hand sides. So, it suffices to show that the intersection of the spaces on the
right-hand side consists only of 0. But, this is easily obtained from the following lemma,

so the proof is complete.

LEMMA 5.3. Let p be a distribution on an exterior domain Q@ of R™, n>2, with
smooth boundary S. Suppose Vpe L{"®)(Q)" for some 1<r<oo. If

=0,

Ap=0 in §], ?2
ov|g

then Vp=0.

Proof. By assumption Vp is harmonic in Q. Taking z€§) with B(x, %|z|) cQ, we

apply the mean value theorem for harmonic functions to get
Vp(z) = 'B(:c, %|x|)l—I/BVp(;g) dy, B=B(z,3lzl).
Then
Vo(e) < |B (e, 3ial)] " [ 19pldy

<|B(, L1z])| " 1VPllr0o| B(z, Ll])]
= |VDllr,00| B(z, %m)]‘”r -0,

1-1/7

as |z|—o0. Hence, the expansion theorem for harmonic functions yields
O(lz>™™) (n>3),

Vp(a)] = { B
O(lz|™") (n=2).

Thus, |p(z}]| is bounded in Q if n 24 and |p(z)]| < C1 +C2 log |z| for large |z| in case n=2, 3.
Applying again the expansion theorem yields
(@) po+pilz)* " +0(Jz['™) (n>3),
nr)=
po+piloglz|+O(lz|™)  (n=2),
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with some constants pg and p;. But, since the assumption implies

[ Zas=g
l

z|=r or
for large r, it follows from the expansion theorem that p; =0. We thus obtain
p(z)=po+O(|z|'™) sothat |Vp(z)|=0(|z|™")

as |z|—o00. Let B, be the open ball of radius r centered at the origin. Since p has zero
flux through each point of S, we can integrate by parts to see that the function g=p—py
satisfies, for large r>0,

/ |Vq|2dz=/ q@ ds<Cr™™,
B,NQ zj=r OF

Letting r— oo yields ||Vg||2=0 and so Vg=Vp=0. The proof is complete.

THEOREM 5.4, Let 0<rp<r;<oo, 1€g<00, 0<0<1 and
1/r=(1-8)/ro+6/r;.

Then we have
LYD = (L2, L Yoar GO0 = (67, G o,

Proof. The result is easily verified since P is a bounded projector (see {45, pp. 22—
23)).

THEOREM 5.5. Let 1<r<oo and 1<q<oc. Then the set C§, () of smooth sole-

noidal vector fields with compact support in Q is dense in LS9,

Proof. By Theorem 5.4 and general theory of interpolation spaces, LT M L"! is dense
in L. It thus suffices to show that C5% () is dense in the space L;°NL7. Let

Fe(LronL) =L+ LD

so that we can decompose (non-uniquely) f=fo+ f1, f; EL;; , 7=0,1, and assume that f
annihilates C§2,(2). By [38, Theorem 17'], we have f=Vp for some distribution p on Q.
But, then

op
ol
Since A(Vp)=0 with Vpe L™+ L1, it follows from the mean value property of harmonic
functions that |Vp(z)|=0(|z|2~™) if n>3, and |Vp(z)|=0(|z|~!) if n=2. By the same
reasoning as in the proof of Lemma 5.3, we get Vp=0. This proves the result.

Ap=0 in Q, =0.

We next study the Helmholtz decomposition in more detail when 1<r<n. We begin
by extending the Sobolev-type inequality as given in §§2 and 3 to Lorentz spaces.
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LEMMA 5.6. Letn22, 1<r<n, 1€g<> and 1/r*=1/r-1/n.
(i) If feL®>®)(R") for some p<oo and if Ve LD (R™)", then fe L™ 9(R")
and the estimate
“f”r",q,R" < C“Vf”r,q,R"

holds with C>0 independent of f.
(i) If VfeLD(R™)™ for some distribution f, then there is a function

ge LUTD(R™) so that Vg=V{f.
Proof. (i) We may assume f is smooth in R". Indeed, C$°(R™) is dense in L("9)(R")

when g<oo; and when g=o00, we take f;=¢e!®f (t>0), the convolution of f by the heat
kernel, which belongs to C*°(R") and satisfies

}i_i% ”ft”r,oo = ”f”noo, th_{% ”Vft”r,oo = “Vf”r,oo-

For any fixed z we set

Yn(y)=9¢((y—z)/N)
where Y €C§°(R"), 0<¥ <1, ¢(y)=1if |y|<1, and (y)=0 if |y|>2. Using

f@)=vw@I@=- [ SuwHle+)d, lol=1
we get
£@I<C [ la=yP Vw0 .

The right-hand side is estimated as
<O [ lo=yl' " ((on V11 +1£96x D) dy

<C / lo—y|""|Vf(y)| dy+CN " 1F@)ldv.

N<[z-yI<2N

Since p< oo, the last term is estimated as

<CN™" |fldy SCN™P||fllpoo—0
B(x,2N)

as N — o0, so we get
f@I<C [ le=yP V1) dy.
Assertion (i) follows from the boundedness of the Riesz potential |z|*~™ from L("9)(R")

to L9 (RM).

24-950233 Acta Mathematica 174. Imprimé le 20 juin 1995
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(ii) By assertion (i) the space
Y —{fe LR Ve LD (R™)™}
is a Banach space with norm ||V f||, , r~. To prove (ii), it suffices to show that the map
V.Y o, Gha(R™)

is an isomorphism. To this end we first prove that

V:H}Y"(R") - G"(R") (1<r<n) (5.5)
is an isomorphism, where

Hy"(R")={f € L"(R™): Vf € L"(R")"}

is a Banach space with norm ||V fli, g~ (see {17], [19]). To show (5.5), observe that (i)
shows that R(V) is closed in G"(R"™). It thus suffices to show that R(V) is dense in
G"(R"). Suppose f=VpeG™'(R")=G"(R")* annihilates R(V). Then Ap=0 in R, so
A(Vp)=0 in R™, and therefore f=Vp=0 since Vpe L"(R"). This proves (5.5).

Now, let 1<r;<n (j=0,1), ro#r1, 1€¢<00, 0<0<1 and 1/r={(1-0)/rq+8/r:1.
Then, (5.5) implies that

V:(Hy™(R™), Hy™ (R™))o,e » GO (R™)
is an isomorphism. But, we easily see that
(g(}yTO(Rn), I}é,n (R™))eq C{f€ L(r‘,q)(Rn) Vfe L(f,q)(Rﬂ)"} = Y(r,q)’

and so V is surjective from Y™ to G("9(R"). Since it is obviously injective, we get
the desired result (ii). The proof is complete.

The following is a refinement of the Gagliardo-Nirenberg inequality [15].

LEMMA 5.7. Let n<r<oo, 1€q<, and suppose that fEL(W)(R") with Vfe
La(R™)™. Then fe L(R™) and we have the estimate

1_
£ lloo.m < CHV Al g ran.

Proof. Since L{"9 C L("®) we need only to consider the case g=0c. This time we
use

s0)=— [ Bl o wld =1,
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to obtain, as in the proof of Lemma 5.6 (i),

l9(@)| <C / [z —y[1="e~1= Y (g| +|Vgl)(y) dy
<C lz—y*~"(|g|+|Vgl)(y) dy+C e~ 1= ¥ (1g|+|Vg|)(y) dy
je—y|<1 Jz-y[>1

= C(Il +Ig)

Using the definition of the norm | g||,., as given in §2, we evaluate the above two integrals
in terms of the measure u={|g|+|Vg|) dy, to obtain

oo 1/e
Bl [ ultyila-yi > Qdie [ uffyieo v >
1 0
o 1/e
=/ u[B(z,t~1/ 1)) dt+/ u[B(z,logt™1)] dt
1 0
0o o 1/e ,
< Calllgllr,co +1Vgllr,00) (/ e dt+/0 (IOgt_I)n/r dt)
1
= Crn(llgllr00 +1Vllr,00)5
since n’/r'>1. We thus have
9lloo.rm < C(llgllr,c0,r™ + IV llr, 00,7 ).
We then insert g(z)=fi(z)=f(z/X), A>0, to obtain

“f”oo,R" < C(’\n/T”f”T,oo,R" +)‘_1+n/rllvf“r,ooyR")v

with C >0 independent of A>0. Taking the minimum with respect to A>0 gives the
desired result.

LEMMA 5.8. Let n>2 and let D be a smooth bounded domain in R™. For 1<r<n
and 1< g< oo we have the following:
() If VfeL™D(D)" jor a distribution f on D, then fe L 9(D) and we have

||f~|D|-1/Dfdx

with C independent of f.
(i) If feL™D(D) and VL9 (D)", then fe L9 (D) and the estimate

<ClIV{lirg,ps (5.6)

r*,q,D

If

holds with C>0 independent of f.

r*a.0 SC([|fllrq,0+[IV fllr.q,0)
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Proof. (i) The result is known to be valid with L{"9 (D) replaced by L"(D). This
implies in particular that the linear operator

T:G"(D)> Vfo—|D|‘1/ fdze L™ (D)
D
is well defined and bounded from G"(D) to L"'(D). By interpolation, the same operator
T is bounded from G(™9 (D) to L(""9)(D). This proves (i).

(ii) From (5.6) we have

”f”r*,q,D < C“Vf”r,qu"’

|:Dl-1 IR

/Dfdz

Since the constant function 1 belongs to L{*}(D) for all 1<p<oo and 1<s< 00 because

*.q,D

<CIVfllrgp+ID|™? -

r*,q,D-

D is bounded, the last integral is estimated as

‘/Dfd:v

We are now in a position to establish

< ”f“r,q,DHIHT’,q’,D = C“f”r,q,D-

This proves (ii).

THEOREM 5.9. Let 2 be a smooth exterior domain in R™, n>2.
(i) If fELCD(Q) and VLMD (Q)™ for some 1<r<n and 1<g< 00, then

I f

T*,q < C“v.fllr,q’ (5'7)

with C>0 independent of f.
(i) Let 1<r<n and 1<q<oo. If VFeLmI(Q)" for a distribution f on Q, there
exists a function g€ L("9(Q) such that Vg=V{.

Proof. (i) Suppose the contrary; then there exists a sequence f; such that

Wfillreg=1 WVFillrg—0 (5.8)

as j—oo. Since L9 CL(™*) with continuous injection, we may assume that fi
converges weakly* in L{"») to a function f. So, Vf=0, and therefore f=0 since
feLl™>°)(Q) and r* <co. On the other hand, we see from (5.8) that for any smooth
bounded subdomain DC{Q, f; are bounded in L*(D) for any s<r* and V f; —0 in LP(D)™
for any p<r. So, the Rellich-Kondrachov compactness theorem applies to see that f; —0
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in LP(D). Since we can take p, s and sp so that p<r<s<so<r* and since f; is bounded
in L**(D), it follows that f; converges also in L*(D). But, since (L*NLP)(D)C L{™9(D)
with continuous injection, and since f;—0 in (L*NLP)(D), we conclude that f;—0 in
L(9)(D). Therefore, by Lemma 5.8 (ii),

fi—0 in LU 9(D). (5.9)

On the other hand, let p€C>(R"™) be such that 0<p<1, p=1 for large |z| and ¢=0 in
a neighborhood of the complement of 2. Then Lemma 5.6 implies

1(f5 = fe)@llre g mm < CIVA(F5 = Fe))llr g
SCUVE = Fllra +1(F5 = fe) Vellrg)
<C

V(5= fllrg+ 15— fillrg,0) =0,

where D is a neighborhood in Q of the compact set supp V. This, together with (5.9),
|+ g=1. Thus,

implies that f;—0 in L(""»9)(Q), which contradicts the assumption ||f;
we get estimate (5.7).
(ii) Consider the Banach space

X,={feL”(Q):VfeL(Q)"} with norm |Vf],.
We already know (see (34]) that when 1<r<n,
V:X,—G" is an isomorphism.
Hence, by interpolation
Vi(Xro) Xri)o,g — G is an isomorphism.
But, we easily see that
(Xroy Xry)og C{fELTD(Q): Vfe LWO(Q)"} =Y (M9,
and so V maps Y (™% onto G("9. Since it is also injective, it follows that
(Xrgs Xry )0, = Yy (™)

and V defines an isomorphism between Y9 and G("9. The proof is complete.

The proof of Theorem 5.9 (ii) shows in particular the following
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COROLLARY 5.10. Let n22, 1<r<n, 1<g<o0 and 1/r*=1/r—1/n. Then, on a
smooth exterior domain Q) we have

G = {Vpe LD(Q)*: pe LT (Q)).

We now examine the fractional power Al/2 of the Stokes operator A in the Lorentz
spaces over an exterior domain. Let n>3 and 1<r<oco. We know by [8] that the linear
operators V/(A+1)~1, j=0,1,2, are bounded from L7 to L"(Q2). Interpolating between
the indices ro and r; with ro#r;, we see that the same operators are bounded from L9
to L(m9(0), 1< g<00; hence we obtain the estimate

Z ||vju”r,q < C(l| Aullrg+lulrq)- (5.10)

Jj=0

)]

Thus, A defines a closed linear operator in Lff with domain

Dirgy(A)={ueL§D : Viue LD(Q), j=1,2, uls =0}.

Notice that Dy, )(A) is dense in LT provided g<oo; indeed, in this case C55,(Q) is
dense.

Suppose next that u€ Dy, 4)(A) and Au=0. Applying (5.10) and Theorem 5.9 re-
peatedly, we see that u€ L(P9(Q) and Vue L9 (Q) for some p>n, so by Lemma 5.7,
ue L™(f). (Note that u{s=0.) Hence,

we (L®°NLPDYQYy c (LONLP=)) Q) C L)

for all s with p<s<oo, and therefore
/ |u|?|z|~" dz=0(log R) as R— cc.
an{jz|]<R}

The uniqueness theorem of Chang and Finn [10, Theorem 6] then implies u=0. This
shows that A is injective in L{"?. The parabolic resolvent estimate 8]

I3 +4) " ull < Cllull, /Al (1< <o0)

is also extended via interpolation to the space LS,M), and this implies that the semigroup

9 is bounded and analytic, and so the fractional powers of A

{e7*4}4>0 in the space Lt(,r
are well defined. However, notice that this semigroup is not strongly continuous at t=0

if g=00, since in this case D, .,)(A) is not dense in L),
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Consider next the space
D} = the completion of D(A,) in the norm ||Aul|, (1<r< in).
As shown in [4], [8],
Dl={ue Ly :Vue L™ (Q)", V2ue L"(Q)", u|s =0},
with 1/r**=1/r—2/n and 1/r*=1/r—1/n; and the estimate
C V2], < | Aul, <C|V?ul,, ueD},

holds with C'>0 independent of u€ D!. The first inequality above implies in particular
that
IV2(A+A4) " ull, <Cllull. (1<r<in),
for ue L], with C'>0 independent of A>0; so we see by interpolation that if we set
D(lr,q) = (D:()? Dil )qu’
for ro#r1, 1<g<00, 0<0<1 and 1/r=(1~0)/ro+6/r;, then
0-1”V2“”r,q < |[Aullrg < C”Vzuﬂnq (1 <r< %")’
for uED(lr 0 Combining these with Theorem 5.9 gives
THEOREM 5.11. Let n23, 1<r<in and 1<q<oo. Then
- - 2 3
Dl gy ={u€ Ly 9 :Vue L@, V2ue LD(Q)™, uls =0},
where 1/r**=1/r—2/n and 1/r*=1/r—1/n. Furthermore, A maps D(lryq) injectively onto
L&D with estimate
C'1I|VZUI|r,q <l Auflrg < C“Vzullr,‘r

The second assertion of Theorem 5.11 follows via interpolation from the fact that if
1<r<in, then A maps D! injectively onto L.
Let n23, 1<r<n and
DY/? = the completion of D(A!/?) in the norm ||4"/%ul,.
We next characterize

pY? — (D1/2 Dil/z)qu.

(rq) To ?
To do so, we introduce
I-AI&,’;(Q) = the completion of Cg, () in the L™-Dirichlet norm ||Vul|,.
As shown in [4] we have
Hyn(Q) = {ueLy :Vue L"(Q)™, uls = 0}.

We also recall the following result (see [4, Theorem 4.4]):
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THEOREM 5.12. Let n>3 and 1<r<n. Then
D}/? = Hy ()
and we have
CY|Vull, < |4V 2ull, < C[|Vul- (5.11)
for all ueDi/ % with C>0 independent of u.
Starting from Theorem 5.12, we now prove

THEOREM 5.13. Ifn2>3, 1<r<n, 1<g< and 1/r*=1/r—1/n, then

D% ={ue L™ : Vue LON@)”, uls =0},

and the estimate
CY[Vullrg < A 2ulr,q  ClVt]lr,g (5.12)

holds for uéD(lr/‘ 2) with C >0 independent of u.

Proof. Since R(AM?) is dense in L7, Theorem 5.12 implies that A1/2 is an isomor-
phism between D:/ ? and L7. By interpolation we see that

Al/2: (D1/2 D:(?)o

12 .= DY? _, L9 is an isomorphism. (5.13)

(rq)

Furthermore, interpolating between V: D,{/ 2—*LT(Q) yields

(DY/2,DY%)g o C {u€ LT 9 : Vue LD Q)" u|s =0} = Y™

To )
with continuous injection, and so

1/2
1Vullrq <CIAY 2ullng, uwe DS (5.14)

Consider next the operator Z as introduced in [4, §4]. We know by [4] that if 1<r<n,
then
Z: ﬁé,’;(R") — DY/?

is bounded and, with Ey denoting the zero-extension of functions,

ZEyu=u for u€ DY/?

Thus,
Z: (B3 (R™), By (R™))e,g — (DX/?, DX/ ?)gq = D)2

ro ?
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is bounded and, by definition of Z given in (4, §4],
ZEwu=u foruecY ™o, (5.15)
But, as shown below, we have
(Ho* (R™), Hy 7 (R™))s g = {u € LY 9 (R™): Vue L9 (R™)™}. (5.16)

It follows from (5.15)—(5.16) that ZEo:Y (9 — D}/ ";) is bounded, so Y(”q)cD(‘,(ﬁ), and

(s
we have

A 2ullrg = |42 Z Eullrg < CIV Equllrg = C||Vullrg, ueY"?. (5.17)

The result follows from (5.14) and (5.17).
It remains to prove (5.16). As shown in the proof of Lemma 5.6 (ii),
(Hy™ (R™), Hy™ (R™))p, = {f € LD (R"): Vf € LOD(R™)"}. (5.18)

Let P be the bounded projector associated with the Helmholtz decomposition of L™(R)".

Since
n

(Pu);=Y_(8x+R;Re)ur, j=1,..,m,
k=1

where R; are the Riesz transforms [43], we see that
Hy [ (R™) = PHy" (R™)".
Since P defines a bounded projector on L9 (R™)", it follows from (5.18) that

(ﬁé:;o (R™), ﬁé,’;l (Rn))o'q - ﬁ{u € L(r‘,q)(Rn)n ‘Vue L(r»Q)(Rn)nﬁ}
={ue LI (R"): Vue LI (R™)™ ).

This proves (5.16).

6. Stability in L7}

We now discuss the existence and asymptotic behavior of strong solutions of perturbation
equation (1.5), assuming that the initial perturbations @ are small in the Banach space

Ly, ={ue Ly, (Q)":V-u=0,u-v|s=0}. (6.1)
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Notice that in (6.1) the trace u-v|s makes sense, since LT,(Q)C L () with continuous
injection, whenever 1<g<r<oo.

As is now well known, the space L7 is the basic space in which to find strong solutions
for the Navier—Stokes system, i.e., equation (1.5) with w=0. In other words, it has so far
been possible to get a global-in-time strong solution of the Navier-Stokes system only
when a is sufficiently small in L?. As shown by Kozono and Ogawa [25], the same is true

for perturbation equation (1.5) if
weL"NL®, VweLY?*NL>, (6.2)

and if ||w|ln+||Vw|ln/2 is small enough. We establish in this section an L} ,,-version of
the global existence result of [25]. To be more precise, we shall show that if

lwl<C/lzl, |Vwl<C/lal?, (6.3)

and if ||w||+||Vw|| is small enough, then equation (1.5) admits a unique strong solution
in L7, defined for all >0 provided that a is small in L7 . Since Ly C L7 ,,, this includes
the global existence result of [25] as a special case. We further remark that condition
(6.2) is much stronger than our condition (6.3) when n=3. In fact, when n=3, we have
shown in Theorem 2.4 that conditions (6.2) and F€ L3/2 together imply the vanishing of
the total net force:

/u.(T[w,p]-w*®w*+F)dS=o,
S

which would not always be valid for our stationary flows.

As in [25], we systematically use in this section the LP-L9 estimates for the semi-
groups {e~tL},50 and {e*
in LZ/ AL plays an important role. Kozono and Ogawa [25] deduced their version

L }t>0 as established in §3, so the size of the derivatives Vw

of LP-L9 estimates for the semigroups {e *f};50 and {€7**" };50, and applied it to dis-
cussing the solvability in L? of equation (1.5). Since our version of the LP-L? estimates
improves theirs, most of our results in this section are deduced in essentially the same
way as in [25]. However, we state our proofs in detail, since most readers would not be
familiar with the use of Lorentz spaces in the study of nonlinear differential equations
and since our results include an L* estimate, which is not discussed in [25].
We now introduce our class of strong solutions of problem (1.5), or equivalently, that
of the evolution equation
du

o HLutP(wV)u=0 (t>0), u(0)=a. (6.4)
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Definition 6.1. Let w satisfy assumption (6.3). Given a€ L} ,,, a measurable function
u defined on Qx(0,T) is called a strong solution of (6.4) on (0,T) if

(1) ueCu([0,T); L}, )NCH((0,T); L} . );

(2) LueC((0,T)i Ly,
and the function u satisfies (6.4). Here C,, stands for the weak* continuity. (Recall that
L7 = L) =(L(r" 1))

Our first results are the following; the second results (L™ estimate) will be stated
in Theorems 6.8 and 6.9 in the final paragraph.

THEOREM 6.2. There exists a (small) number A=X(n)>0 so that if
lallnw <A and  |wll+]|Vw| <A, (6.5)
then there is a unique strong solution u defined for all t 20 satisfying
u€BCy([0,00); L}, )NBC((0,00); L7 ), t*/*u(-) € BC((0, 00); L2*),

where BC stands for the space of bounded continuous functions. Moreover, for each
n<r<oo there is an n=n(n,r)>0 so that if

lwll+ [ Vwll <, (6.6)
then the solution u obtained above satisfies
lu(t)lq <Ct= ™D/ forn<g<r (6.7)

with some C=C(n,r,q)>0.

THEOREM 6.3. (i) Let 1<r<n anda€L] ,NL} . Then, there is a positive number
N=XMNnr)<A

so that if
lallnw <X and jlwl+[Vwl <N, (6.8)

then the solution u given in Theorem 6.2 satisfies
u€BC.([0, 00); LT, NBC((0, 00); L], ). (6.9)
Moreover, under the assumption (6.8) we have

t1/2vu(-) € BC((0, 00); LT). (6.10)
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(i) Let 1<p<n, a€Lb ,NL} , and assume (6.8) with r=p. Then for each p<r<oo

o,w

there is a positive ' =n'(n,p,r)<n so that if
lwll+ | Vwll <7, (6.11)
the function u satisfies, as t— o0,
lu(@)llg = 0@~ /P="/D/2)  forp<q<r. (6.12)

Moreover, suppose p<r<n and (6.8) holds. Then under the assumption (6.11), the
function u satisfies, as t— oo,

IVu(®)|l, = 0@ */P=n/D/2-1/2)  for p<q<r <. (6.13)
(iii) Let 1<p<n. For each >0 there is a number u=pu(p,e)>0 so that if
Hwll+l Vel <,
then
IVu(t)|l, = Ot %) ast—oo. (6.14)
THEOREM 6.4. (i) Under the assumption of Theorem 6.2, the solution u satisfies
Hm [[u(t)|ln,w =0
t—oo

provided a is in the Ly, -closure of CgS,(S2).
(ii) LetaelLy,,, VaeLl/? and a|ls=0. Then, under the assumption of Theorem 6.2,
we have
Vau e BC, ([0, 00); L%/2)NBC((0, 00); LV/?).

We shall deduce Theorems 6.2, 6.3 and 6.4, solving the integral equation
¢
u(t) = e’”’a—/ e~ L Py . V)u(r) dr (6.15)
0

in the class of mild solutions in the following sense:

Definition 6.5. Given a€ Lz, and n<r<oo, a measurable function u on Qx(0,T)
is called a mild solution of (1.5) in the class S,.(0,T) if it satisfies

(1) ueBCy([0,T); L ,)NBC((0,T); L7 ,,); t*~"/7/2u(-)eBC([0,T); LT); and

(2) (u(t), 8)=(e™* 0, 8)+ fy (u®u(r), Ve~ ¢~ ") dr,
for all € C§, () and 0<t<T.

Our definition of mild solution is essentially due to [25]. To establish an existence

and uniqueness theorem for equation (6.15) in the class of mild solutions, we interpolate
between estimates (3.34) and (3.35) to get similar estimates in Lorentz spaces.
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PROPOSITION 6.6. Letn>23, 1<p<oo and 1<g<00, and let || - ||p,q denote the norm
of the space L9 ().
(i) For each r with p<r<oo there is a number n(p,q,7)>0 so that if

wll+{|Vwll <n(p,g,7),

then we have
“e_tLa“r,qa He_tva“r,q < Mt—(n/p_n/r)/zna”pyq' (6.16)

Furthermore, when p<r<n, there is a number n'(p,q,7)>0 so that if
lwll+[Vwll <n'(p,g,7),

then
”Ve_tLa”r,q’ ”Ve_tva”r,q < Mt_l/z—(n/p“n/r)/z”a“p,tr (6.17)

(if) For each r with p<r<oo there is a number A(p,r)>0 so that if
lwll+[IVwll < Alp,7),

then we have
le™*all,, lle™** all, < My, ot~ /2="/D2 g, . (6.18)

Furthermore, when p<r<n, there is a number X (p,r)>0 so that if
lwll+[Vw] < X(p,7),
then

Ve tLall,, [Ve t a|, < M, t~ /2= (/P=n/0 /2 |g||,, . 6.19
P, P,

Proof. (i) follows by interpolating estimates (3.34) and (3.35) between the spaces
L9 Assertion (ii) is easily obtained from estimates (6.16) and (6.17) with g=o00, since

LpnLi cI? and ||fll, <C(po,pr, Ol el flip, w
provided that
po#p1, 0<6<1 and 1/p=(1-6)/po+6/p1.
The proof is complete.
Proof of Theorem 6.2. Consider now the iteration scheme:
up(t) =e tLa,
u;41(t) =uo(t)+v;(t), J20, (6.20)

vj(t)z—/o e~ ML P(u; - V)u;(r) dr.
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Assuming a€ Ly, to be sufficiently small, we show that the functions u; are well defined
and converge in an appropriate sense to a mild solution. The mild solution obtained
below is actually a strong solution; but, its proof is standard and so omitted in this
paper. The following argument is essentially the same as in {18], which deals with the
case of the Cauchy problem for the Navier-Stokes system in R?. Let

Kj = max(sup t"/*||u; (t)l2n, sup [0 (Dllnw), 5=0,1,2....
>0 >0
Proposition 6.6 and Lemma 2.1 (i) together imply that

[(u®u, Ve~ =L )| < [[u®ulfan/3,0 (| Ve " @l (gn /3y 1
L CM'||ullznllulln,w(t—7) "3 40|l 1

and
[(u@u, Ve~ "1 o) | < Jlu@ullnl| Ve~ ol < M |[ullf, (¢ —7) "% (l¢]l 2ny
for p€CSS, (). We thus have
le™ "L Pu-Vu)llnw < CM'(t=7) "4 ull2n |[t]ln,uw

and
lle™ =L P(u-Vu) 2n < M (t—7) "% 4|[ul2,.

This implies that
KOSMllla”n,w» Kj+1 ng”a”n,w'i'MZBK]?y ]205 (621)

where

Ml =max(Mn,2nsMn)1 M2 =max(CM’,M"),
A=max(B(3,3). B(3 1)),
and B(-,-) is the beta function. Thus, an elementary calculation shows that if
4M1M2ﬂ“a“n,w < 1»

then for each j>0,

1-1-AMMfllaflnw 1

k=
Kj<k oM M5’

(6.22)
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so that
g (Olinw <E, Nl ()llzn < kETH (6.23)

In the same way, the relation
t
W) = usa(O =0y == [ IRV g+ Pl D)) dr
0

implies that if we fix T'>0, then

lw;(E)lnw < 2M2kB sup |[w;-1(t)lln,w,
o<tgT

(6.24)
t1/4|w; (¢)ll2n < 2M2kB sup_t/*||lw;_1(t)|2n,
0<t<T

for t€(0,T]. Since 2M3k(3<1 by (6.22), it follows from (6.24) that there exists a function
u satisfying
() llnew ks lu(E)llzn < kt™H4, (6.23")

such that t1/4u;( ) and u;( - ) converge uniformly for bounded ¢>0 to t!/4u(-) and u(-),
respectively. It then easily follows that

(u(t), §) = (e *La, ¢) + /0 (u@u(r), Ve~ 1L ¢ dr (6.25)

for all p€Cge,. Estimate (6.23') ensures the absolute convergence in L7 ,,NL2" of the
integral on the right-hand side of (6.15); so it is continuous in ¢>0 with values in L? ,,
tL

and continuous in ¢>0 with values in LZ". The linear term e~*Lqa is continuous for ¢>0

with values in LgywﬂLf,", and weakly* continuous at t=0 with values in L} . These
observations, together with (6.23'), imply that

u € BCy([0,00); L7, )NBO((0,00): L7, ), £/4u(-) € BO((0, 00); L2").

Thus, u is a mild solution of class S3,. The proof of uniqueness is standard, so omitted.
We next prove (6.7). Since u€ S5, we obtain

lu(®)lg < Cllu(®)13n,wllu(®li < Cllu@Z, lu®)lly] < ct=¢-n/a/2

for n<q<2n, where 1/¢g=(1-6)/n+0/2n. This, together with (6.23'), shows (6.7) with
r=2n. When ¢>2n, we apply this with g=2n to (6.25), to get by Proposition 6.6,

t
u(®llg < Cq\iaHn,wt'“'"/“)/z+Mn,qk2/ (t—r)T1 /2 2 gr
0

= (Cyllallnw+ M, F2)t=-"/0/2 = [ g=(-n/D)/2,
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This completes the proof of (6.7).

Proof of Theorem 6.3. We first prove (6.10). Note that if 1<r<n, then 1/r+
1/g<1 for sufficiently large ¢. Thus, Proposition 6.6 and (6.7) together imply that if
||VUj(t)”r,w<Cjt_l/2, then

11
V41 (@)l < Coif'mllallr,w+M/0 (t=7) 722y o| Vg o (7) 7

¢
< Cot—1/2|!a”r‘w+MKqu/ (t—7)~1/2-n/2a=14n/2a g
0
= Cot™Y?||a||rw+MK,C;B(1/2—n/2q,n/2¢)t /2,
where K, is the constant in the estimate |lu;(¢)||q < K ¢~ ~"/9/2, Hence,

Cj+1 < Collallrw+MK,B(1/2—n/2q,n/29)C;.

Since we may assume K, sufficiently small as shown in the proof of (6.7), we obtain (6.10).
We can now prove (6.9), using (6.7) and (6.10). Let 1<r<n and choose g>1 so that
1/r+1/g<1. Since Lg’w=(L((,r ‘1))* by Theorem 5.2, the estimate

(- Vu(7), €= 8)] < Cllullg w1 Pullran(T) ™ larssa—rryn
L Cr~U=n/D/20=12 (4 _r)=n/2 ()|,
= Cr /(4 r) T 2 g

implies that
t
1u(®) o < My llall o +C / (t—7)~"/27=14n/20 g
0
= M, lla||lrw+CB(1—n/2q,n/2q).

This completes the proof of (6.9).

We next prove (6.12) and (6.13). When g=p=r, these results are just (6.9) and
(6.10), respectively. Let 1<p<r, and suppose that

0<1/p-1/r<1/n. (6.26)

We take a large s so that 1/s+1/p—1/r<1/n and apply (6.10) with the exponent p and
(6.7) with the exponent s to get by Proposition 6.6,

t
“u(t)“,- sMt——(n/p—n/r)/zna”p,w+M/ (t_T)—(n/s+n/p—n/r)/2,’.—1+n/2s dr
Q

= Mt=(/P=n/1)2) ||, o+ Mt (VP72
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since $(n/s+n/p—n/r)<1. This proves (6.12) for p<q=r under the assumption (6.26).
The result in case p<g<r is deduced via the interpolation inequality:

llullg < Cllulllulizn),  1/g=(1~6)/p+8/r.

The proof of (6.12) is thus complete under the assumption (6.26). In the same way, we
see that if r<n and if (6.26) holds, Proposition 6.6 yields
t
IIVu(t)H, <Mt—l/Z-(n/p—n/r)/2”a”pw+M/ (t_T)—-l/2—(n/s+n/p—n/r)/2,r—1+n/2s dr
0
= Mt~1/2~(n/p=n/r)/2

since 3+3(n/s+n/p—n/r)<1. This shows (6.13) for p<g=r<n under the assumption
(6.26); and the case p<g<r<n is deduced via interpolation.

Consider next the case
1/n<1/p—1/r<2/n (6.27)

and choose | with p<l<r so that
0<1/p—-1/i<i/n, 0<1/l-1/r<1/n.

Writing the integral equation (6.15) in the form

u(t)ze“”‘/zu(%t)—/t e~ =L p(u.V)u(r) dr, (6.28)
t/2

and bearing in mind the estimate
IVu()|l: < Cct1/2-(n/p=n/l)/2
we take s>1 so that 1/s+1/l—1/r<1/n and apply (6.7) with g=s, to get

lu®)ll- < Ct=mD2 lu ()],

t
+C [ (t—7)/stnli=n/r) /212~ (n p= /127 (1=n/5)/2 g
t/2

1
<Ot /e [ (t—g)=(nfstnfi=n/m 2 1= (n/p=n/s=n/D/2 4
t/2
< Ct—(n/p=n/r)/2

for t>0, since s can be taken so that 1/p>1/141/s. This shows (6.12) with p<g=r and
the case p<g<r is deduced via interpolation. Thus, we have proved (6.12) under the

25-950233 Acta Mathematica 174, Imprimé le 20 juin 1995
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assumption (6.27). Similarly, since +3(n/s+n/l—n/r)<1, assuming r<n we obtain

Vu®)|l- < Ct~1/2=(n/p—n/7)/2

t
+C (t_T)——1/2—(n/s+n/l-‘n/'r)/27_—1—(n/p—n/s—n/l)/2 dr

t/2
<Gt 1/2—(n/p=n/r)2,

This shows (6.13) for p<g=r<n under the assumption (6.27); and the case p<qg<r<n
is deduced via interpolation.
When
J/n<1/p=1/r<(j+1)/n, j22,
we choose [ so that p<I{<r and
0<1/p-1/l<j/n, O0<1/l-1/r<1/n,

and repeat the above processes to get (6.12) and (6.13) in all cases.
To prove (6.14), we rewrite (6.28) in the form

t
w(t) = e~/ 2u (L1) - / e~¢~DA(Byt P(u-Vu))(r) dr (6.28")
t/2
in terms of the Stokes operator A and apply the estimates of Iwashita [23]:
ne—tAaHT < Ct—(n/Q—n/T)hHanq (1 <gg<r< OO), (6 29)
IVe ™ Aall, < Ct=1/2= (/a2 q]l, (1<g<r<n). '

The function

¢
v (t) = e 142y (L) —/ e~ =AP(u.- Vu)(7) dr
t/2

is estimated as in the proof of {6.13) and we obtain
Vv ()]l = O(t™™/?P) ast— occ.
The remaining term

t
vz(t):-/ e"DABy(r)dr
t/2

is estimated as follows. Given a small §>0, we apply (6.29) to get

t
[Voa ()]l < C'//Q(t—T)_1+6(”w'vu”n/2(l~&)+“u'vw”n/2(1—6)) dr
t
4
<C// (t=7)" 0wl /=30 IVl 146+ IVl 2-38) [ullns)(7) dT
J172

t
<O Vwlin/2—36) /W(t—T)_Hb V|l 148 () dr

t
<OVl [/2(t—f)-1+5nwnn/(mmdr
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Since [|Vulln/1+5<C7~™/2P+4/2 provided w is small depending on 6>0 and p, it follows
that

t
[V0a(O)lla €C [ (t=r)H6rn/349/2 g = O (e /3015902)
t/2
which completes the proof of (6.14). The proof of Theorem 6.3 is complete.

Proof of Theorem 6.4. Let u; and ug be the solutions with the initial data a; and a3,
respectively. Then v=u;—uy satisfies

t
v(t) =e (a1 —ay) —/0 e~ L P((v-V)uy +(uy- Vo)) (1) dr,

so that

t
[0(®)lln,w < Millay —azlln,w+M2/O (t=7) "4 (lurllzn + luzllzn)vlln,w (r) dr

< Millar—azl|n,w+2M2kB sup ||v(7)||n,w.
>0
This shows that if we assume 4M1M,0||a;j||nw<1 for j=1,2, so that (6.22) holds, then
sup ||u1(7) —u2(7)|[n,» € Cllar — azl|n w,
>0

which shows that the map a+u is continuous from a neighborhood of 0 in L7, to
BCy([0,00); L} ,,). On the other hand, (6.12) shows that if ac L ,NL7 , for some 1<
r<mn, then ju(t)||n . —0 as t—oo0. Hence, Theorem 6.4 (i) follows through approximation
of the initial value a.

We finally prove Theorem 6.4 (ii). To this end we need

LEMMA 6.7. Let n23 and 1<r<n. Under the assumptions of Theorem 3.10 (i) or
(ii), we have the estimates

IVe™allrw, |Ve ™ a

v € Ml Vallrw (6.30)
for all t20 and a€Dyi=D/% .
Assuming Lemma 6.7 for a moment, we prove Theorem 6.4 (ii). Let a€Ly,,, Va€

and a|g=0 so that aEDiﬁ’w

(6.20). Lemma 6.7 and (6.16) yield

E/ 2 by Theorem 5.13. Consider the iteration scheme
o ()llnw + 11 Vuo(®)lln/2w < Mllallnw+{Valln/z,w)- (6.31)

Let
Kj = ?gg(“uj (t)“n,w+ “VUJ' (t>“n/2,w)- (632)
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The proof of Theorem 6.2 (i) shows that

41 (Bl < HUO(t)Hn,w+Cn/O (=) wsll2nllujlln,w(7) dr. (6.33)

Furthermore, (6.17) and the weak Hélder inequality together imply

t
IVujr1(Ollnsz,w < 1Vuo(®)lln/2,m+Cn / (=) lu- Vullznys,u(7) dr
0 (6.34)

t
< ”vuo(t)”n/2,w+cn/0 (t=7) " )ujll2nl| Vs 2,0 (7) dr.

Since ||u;(t)]|2n <kt~ by (6.23), it follows from (6.32)—(6.34) that
Kj1 < Ko+CrkB(%, 3)K;.

Since K is finite by (6.31), assuming k sufficiently small, we get a uniform bound for K.
Similarly, we can show the convergence of u; and Vu; by estimating w;=u;+1 —u;. This
proves Theorem 6.4 (ii).

Proof of Lemma 6.7. We consider only the case of operator L. The case of L* is
discussed similarly. Suppose first 1<r< %n and consider the Neumann series expansion

A+L) lu=(A+A4)"! i(—B(HA)"l)J‘u = f:(-(/\+A)"1B)j(A+A)_1u. (6.35)
j=0 Jj=0

Since 1<r<in, we get [|[VZ(A+A4)~1||<C||A(A\+A)7!||<C; and so
IV2(A+4)7! Bull, < Cl|Bu|l» < Cr(lw|| + 1Vl |Vl

Hence, (6.35) gives

IV2(A+ L)l < (Z[Cr(tlwll+l1lel)]j) IV2(A+A) " ull,.

=0

But, since 1<1‘<%n, we have

IV2(A+4) " ull, < CIAA+A) " ull = Cl(A+A) 7! Aull,

<
< CllAull+ /N <Ol V2ul|, /IAl.
Thus, assuming ||w||+||Vw]| to be small, we get from (6.35)

IV2(A+L) " ull, < CIIVZull,/IM] (6.36)
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for ue D}. Now, according to [4, Proposition 4.3 (ii)], the space Di/ 2

equals the complex
interpolation space [D}, L} ] /2. Thus, interpolating between (3.15) and (6.36) shows that

if 1<r<in, then we have
IV(A+L) ull, < C||Vull»/|Al, ueDY?2. (6.37)

Suppose next that n’<r<n. We again appeal to the Neumann series expansion (6.35)
and get (3.23):

IVO+L) " ull, < (}:wuwu)f) IVO+4) ]
=0

Since r <n, we have

IVA+4) " ull, < CIAYV2(A+A) Mull, = Cll(A+A) T A 2ul|,
<A )l /IN < CI V. /1N

for ue DY'2. Since [lw]l is small by assumption, this shows (6.37) for n’ <r<n. Now let
1<r<n and choose 1<ro<%n and n' <7, <n with ro<r<r;. Then, by [4, Proposition
4.3 (iii)] and [4, Theorem 4.4 (iii)], we have

[D}2,D}?,=D!?, 1/r=(1-8)/ro+0/r1. (6.38)

o ?

Hence, it follows via interpolation that (6.37) holds for all 1<r<n.
Now, (6.37) implies

Ve *al|, < M,||Va]l,, a€D!? (1<r<n). (6.39)

But, since
D% =(D}?,D}*)g e 1/r=(1-0)/ro+6/r1,

(r,o0) ro ?
estimate (6.30) follows by applying interpolation to (6.39). This proves Lemma 6.7.

Remarks. (i) In this section we have discussed only the existence of a (unique) global-
in-time mild solution in the sense of Definition 6.5. But, the properties of the obtained
mild solution as described above ensure that they are in fact strong solutions in the sense
of Definition 6.1. Since the proof is standard, the details are omitted.

(ii) The method of this section applies also to the proof of the existence of a (unique)
local-in-time strong solution if we take the initial value a from the usual LP spaces instead
of the weak LP spaces. This case is discussed in detail in {25] (but, under assumption
(6.2)), except for the fact that if a€ L and VaeL™/?, then u(t)eL? and Vu(t)e L™/?
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for all t>0 in the existence interval of the strong solution u. This latter result is proved
in almost the same way as Theorem 6.4 (ii), by applying Theorem 4.4 of [4].

(iii) For large initial data a in L7 ,, we do not know if there exists a corresponding

local-in-time strong solution. As noticed in [18], the main difficulty arises from the fact
that the semigroups {e *4};50, {e " }+>0 and {e~*L" };50 are not strongly continuous
at t=0 in the weak LP spaces, while they are all strongly continuous in the usual L?

spaces.
We conclude this paper with deducing decay rates of L>°-norm of strong solutions.

THEOREM 6.8. Let a€Ly,,NLY , for some 1<p<n and let u be the corresponding
strong solution given in Theorem 6.2.
(i) For each £>0 there is a number p=pu(p,€) so that if

lwl[+[Vwll < g,
then u(t)e L* for large t>0 and
lu(t)]loo = 0(t5~™/?P)  as t — oco.

(i) Let VweLy,NL> for some n'<q<in in case n>4, and let Vwe LINL™® for
some 1<q<3 in case n=3. There ezists a number u=p(p,n)>0 so that if

lwll+I1Vwllgw+ IVwllee <t (n24),
or if
lwli+Vullg+ Vol < (n=3),

then u(t)e L™ and Vu(t)eL" for large t>0 and
lu(t)lloo = O™™?P), |Vu(t)ln=0(t"/*) ast— oco.

Here, the number u(p,n)>0 is taken so that the semigroup {e *L}:>¢ satisfies estimates
of Theorem 3.13 with s=p and s=2n.

Remark. When w=0, Kozono, Ogawa and Sohr [26] deduce the decay result
lu(t)]loo = O ™?P(logt)!~1/™) ast— oo, (6.40)

for their strong solutions u corresponding to a€ LZNLE for some 1<p<2, via a variant
of Trudinger’s inequality and estimates (6.29) of Iwashita [23]. Contrary to [26], we
establish Theorem 6.8, applying Proposition 3.11 and Theorem 3.13, as well as Theorem
6.3 (ii). Note that Theorem 6.8 (ii) improves (6.40).
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On the other hand, when n=3 and w#0, Heywood {22] proved that if a€ L3NL2,
then
llu(t)|loo =O(t~H*) ast— oo. (6.41)

Theorem 6.8 (i) is stronger than (6.41) and is valid also in higher space dimensions, while
(6.41) holds also in the case w™ #0.

Proof of Theorem 6.8. (1) The function u satisfies

u(t) =e 4/ ?u(1) -/t/: e ("4 Bu+ P(u-Vu)) (1) dr. (6.42)

Applying Proposition 3.11, we see as in the proof of (6.14) that
lle™** Bulleo < Ct** (]| +I V0l Vullny1-46)
with C'>0 depending on §>0, and
||e_tAP(U‘Vu)“oo < Ct—1+6“u”n/(1—36)“Vu”n/(l-f—é)-
These estimates, together with (6.12) and (6.13), yield
R B e R T
< O(t~™P) £ Ot~ ™2 +38/2) | O(11/2-7/P) = O(="/2P+38/2),

since p<n. Choosing §>0 sufficiently small, we get (i).
(i) We write

um=e-t“2u(%t>—[:ze‘(‘“T)LP<u-Vu><r> dr (643)

and apply (6.12), (6.13) and Theorem 3.13 with s=p and s=2n, to obtain

i
lu(®)lloo < Ct’"””IIU(%t)II,,+C//2(t—T)‘3/4||u-Vu||2n/3(T) dr
t
i
<[ (t=r) S 4 (ulel Fulanss)(r) dr
t/2

1
SOt [ (t—7) 3442 | oo () dr
t/2
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and

t
IVa(®lln <CE4C [ (¢=r) /4 (lullanl| Vull)) dr
t/2
t
SCtVPAC | (t—7) 3471 A2 G|, (1) dr.

t/2

Thus, if we set V() =suprc, <, 7" % (||t]loc + || Vulln)(7) for a fixed T>0, we easily obtain
V(t) S CL+Cot/27YPY (1) < C1 +Co T2 PV (1)
since 1/2—n/2p<0. Taking T>0 sufficiently large, we obtain
V(t)<Ci+3V(t) fort>T.
Hence we get V(t)<C for large t, which proves (ii).
Finally, we prove a refined version of Theorem 6.8.

THEOREM 6.9. Let w satisfy the assumption of Theorem 6.8 (ii) with the same num-
ber pu=p(p,n)>0 as given there. Let u be the strong solution given in Theorem 6.2 with
initial value a€ LENLY. If 1<p<n’ or p=2, then

u(®)lloo = o(t™™/2%) as ¢ — oo
Proof. In view of the integral representation (6.43) and the calculations that follow,
it suffices to show that u(t)€ L? for all t>0 and
llu(t)lp—0 ast— oo. (6.44)

For p=2 this follows from the result of §4, since in the present situation u is the only one
weak solution corresponding to a. So, we need only to discuss the cases where 1<p<n/.

The argument below is due to [4, §5]. The assumption implies a€ L2, and so our
strong solution u is in the class of weak solutions. Thus, we have

(u(t), ¢) = (u(s), e‘(‘_s)L‘sO)—/t(U‘Vv(T), e =gy dr (6.45)

for all p€CgS, () and 0<s<t. The boundedness of the semigroup {e7*"}i5q in LY
implies
|(u-Vu, eI ) < Cllpllp ullzgry -2 | Vul2
1_ ’ U
<Nl lellz ™% Yl oy |Vl

<Cllelplully™ ™" [IVull 7.
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Hence, (6.45) gives

t ’ ’
lu(@®)ll, <C (I!e‘“_”Lu(S)llﬁ/ lallz ™™ |Vl /7 dT) ~ (6.46)

By assumption we have 1—n/p’>0 and 1+n/p’<2; so the integral in (6.46) with s=0 is
finite, since u is a weak solution. Furthermore, (6.12) and (6.13) together imply that

i |Vl it < Cr VA = Cre ) g =nj2p—1/2> 0,

for large 7>0. It follows from (6.46) that

@il <C <\ie"(‘—s)Lu(8)i§p+ [ i g d) (6.47)
and the integral on the right-hand side is finite for any fixed s >0. This shows in particular
that u(t)€ L for all t20. Applying Theorem 3.10 (v) to (6.47) gives

o ’ ’
limsup u(t)l, <C [ Jully™ [Vull; ™ dr -0

by letting s—o0. This shows (6.44) and the proof of Theorem 6.9 is complete.
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