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1. Introduction

In this paper we are concerned with sums of kth powers for k in the range 5<k<15. As
usual, we let G(k) denote the smallest number s such that every sufficiently large natural
number is the sum of, at most, s kth powers of natural numbers. The last few years have
seen remarkable progress in the stubborn problem of reducing the upper bound for G(k);

{!) Research supported in part by a SERC Senior Fellowship (first author), and N.S.F. Grant
DMS-8610730 (second author).
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Table 1.1
k 5 6 7 8 9 10 11 12 13 14 .15
Vaughan [6], (7] 21 31 45 62 82
Vaughan [8], [9] 19 20 41 57 75 93 109 125 141 156 171
Briidern {1} 18
Vaughan and Wooley [10] 18 28 92 108 124 139 153 168
Wooley [13] 27 36 47 55 63 70 v9 87 95 103

in Table 1.1 we display the upper bounds for G(k) which have been obtained recently in
the range considered here.

By exploiting the flexibility of the new iterative methods in Waring’s problem, we
now achieve the following bounds.

THEOREM 1.1. G(5)<17, G(6)<25, G(7)<33, G(8)<43, G(9)<51.

The calculations involved in the proofs are decidedly heavy, especially in the excep-
tionally awkward case k=6, and in general grow steadily with k. However, for larger k
there is an increasingly common pattern. Thus, whilst we have not exhaustively analysed
for such k all possible variants of our methods, we have performed sufficient calculations
to establish, in combination with results in {12] and {16], the upper bounds G(10)<59,
G(11)<67, G(12)<76, G(13)< 84, G(14)<92, G(15)<100.

There are many applications of the methods we develop, these depending on the
underlying mean value theorems. For example, we are able to improve results on the
distribution of fractional parts of sequences an®, and on the solubility of systems of
simultaneous additive equations. We intend pursuing some of these applications in a
future memoir. Furthermore, we have found some rather technical refinements which
permit the above bounds for G(k) to be improved when k=6 and k=8. Thus, in the
sequel papers [11] and [12], we describe some delicate innovations which permit the
mean values of this paper to be slightly better exploited, thereby establishing the bounds
G(6)<24 and G(8)<42.

As is usual in much of the modern work on Waring’s problem, the method is depen-
dent on upper bounds for the number of solutions of auxiliary equations of the type

¥z =gk, (1.1)
with z;,y; € A(P, R), where throughout we write

A(P,R)={1<n<P:p prime, p|n implies p < R}.
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In Wooley [13] an improvement over the strategy of Vaughan [8], [9] is established which,
through the use of more efficient differences, enables one to obtain better estimates than
have been obtained hitherto for the number of solutions of (1.1) when £>6. In that
memoir, no attempt was made to exploit the finer properties of the polynomials arising
from the efficient differencing procedure. Furthermore, the underlying themes of this
improved strategy permit a more flexible approach than was employed therein. In this
paper we take advantage of this greater flexibility in a number of ways. This requires
the exponential sums arising from the efficient differencing procedure to be examined in
some detail with regard to their second and fourth moments, and their supremum on
appropriate choices of minor arcs. This we do in §§3 and 4, respectively. In this way we
are able to obtain satisfactory bounds for the number of solutions of (1.1) for appropriate
ranges of k£ and s.

In order to set the overall pattern we first of all treat fifth powers. In §§5 and 6 we
apply the results of §§3 and 4, respectively. In the final iteration of the method, we are
presented with the recurring problem that, in our estimate for the number of solutions
of equation (1.1), the dominant contribution arises from the “major arcs”. We overcome
this obstacle in §7 by modifying the arguments of Vaughan and Wooley [10]. Having
illustrated the framework of our method with fifth powers, we apply the results of §3 to
higher values of k£ in §§8, 9, 10 and 11. It then remains to complete our arguments by
applying the results of §4. Thus we consider sixth powers in §12. In §13 we consider some
rather general arguments of use in the Hardy-Littlewood dissections used for larger k.
Finally the values k=7, 8,9 are treated in §§14, 15 and 16, respectively.

Before proceeding to the details, in §2 below we describe the strategies which underly
our new analysis, and also introduce some notation.

The authors thank the Institute for Advanced Study for its generous hospitality
during the period in which this paper was written.

2. Preliminary lemmata

The methods we adopt lead to more complex iterative processes than have been used in
Waring’s problem hitherto. We take this opportunity to explain the underlying themes
in a little detail for & an arbitrary integer exceeding 2. First we shall establish some
notation, which we use in this section and in those following.

Throughout, s will denote a positive integer, and £ and 1 will denote sufficiently
small positive numbers. We take P to be a large positive real number depending at most
on k, s, € and 7. We use < and > to denote Vinogradov’s well-known notation, implicit
constants depending at most on k, s, £ and 7. We make frequent use of vector notation
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for brevity. For example, (c;,...,ct) is abbreviated to c. Also, we shall write e(a) for
e?™e and jz] for the greatest integer not exceeding z. We use p to denote a prime
number, and write p*||n when p|n but p**'fn. Finally, ||z|| denotes minyez |z—y|.

In an effort to simplify our analysis, we adopt the following convention concerning
the numbers ¢ and R. Whenever ¢ or R appear in a statement, either implicitly or
explicitly, we assert that for each £>0, there exists a positive number 74(¢, s, k) such
that the statement holds whenever R=P", with 0<n<ng(e, s, k). Note that the “value”
of e, and 7y, may change from statement to statement, and hence also the dependency of
implicit constants on ¢ and . Thus, for example, if f<P*R* and g« P*R?*, then we
shall conclude that fg<« P® without comment. Notice that since our iterative methods
will involve only a finite number of statements (depending at most on k, s and ¢), there is
no danger of losing control of implicit constants through the successive changes implicit
in our arguments. Finally, we use the symbol = to indicate that constants and powers
of R and P¢ are to be ignored.

For each s€N we take ¢;=¢; , (i=1,...,k) to be real numbers, with 0<¢;<1/k, to
be chosen later. We then take

P;=2P, M;=P%, H;=P;M;* Q;=P;(M;..M;)"" (1<j<k).
For the sake of concision, we shall also adopt the convention of writing

] J
ﬁjZﬁH,‘ and Mj:HMiR-
i i=1

=1

We define the modified forward difference operator, A}, by
AL (f(2); h;m) =m™*(f(z+hm*)— f(z)),
and define A} recursively by
1 (F(@) by, hypsma, oy mggn) = AT(AT(f(2); Ry ooy hysma, o my ) By mgga)-

We also adopt the convention that Ay(f(z); h;m)=f(z).
For 0<j<k let

\I/j = \I-’_,'(Z; hl, vey hj;ml, ...,mj) = A;(f(z), 2’7,1, veey 2h]‘; mi, ...,m]‘),

where f(2)=(z—hymf—...—h;mk)k.
Write
file)= Z e(azk).

z€A(Q;,R)
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Also, write

Fi(a)= ) e(a¥;(z;h;m)),

z,hm

where the summation is over z, h, m with
1<z< P, M;<m; <M;R, mi€ A(P,R), 1<h;<27'H; (1<i<}j). (2.1)

(Notice in particular the condition m;€.A(P, R). In Wooley [13] the variables m; were
permitted to range over a complete interval, whereas the analyses of §§2 and 3 of that
paper in fact allow the restriction to the set A(P, R).)

We let Sgk)(P, R) denote the number of solutions of the equation

a4k =yF 4k,

with z;,y; € A(P, R) (1<i<s). When no confusion is possible, we shall suppress the
superscript k. Suppose that the real numbers A, and u, (1<s<o0o) have the property
that

S (P, R) < Pt and S¥)(P,R) < P*se. (2.2)

Such numbers certainly exist, since we may trivially take A\,=2s and u,=2s.
We list below some useful lemmata.

LEMMA 2.1. We have

1 1
/0 |F0(a)2f0(a)23|da<<PfM;-’-s—1(PM,Q?~+ /0 |Fl(a)f1(a)23|da). (2.3)

Proof. This follows from Lemma 2.3 of Wooley [13], and the argument of the proof
of Lemma 3.1 of Wooley [13], on considering the underlying diophantine equations.

We shall abbreviate an inequality of the form (2.3) symbolically by
F ' — R fe.
LEMMA 2.2. Whenever 0<t<s and 1<j<k—1, we have
1 —~ —~
/ |Fj () fj(0)®|do < PE(Q})/2(H;M; M3 T 40)1 2, (2.4)
0
where

1
Tjr1 =Tjn(Ps X ¢)=PHJ'MJ'+1Q?1’{'+/O |Fjt1(@) fig1(a)** %] da. (2.5)
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Proof. By Schwarz’s inequality we have

[ @s@?das ([ i@ da)w ([ 1Bz s da)m.

The proof of the lemma now follows by the arguments of the proofs of Lemmata 2.3 and
3.1 of Wooley [13], on considering the underlying diophantine equations.

We abbreviate an inequality of the form (2.4) symbolically by

2 452t
ijjs —— j+1fj:-1

|

g

There are two other ways of estimating the integral on the left hand side of equa-
tion (2.4).
(i) We may apply Holder’s inequality in the form

1
/ |Fy(a) f;()?| da < ISRV,
(1]

where .
In= [ IF@™da (m=1,2)
0
and

Uu=Allfj(a)I2uda (u=v,w),

in which v and w are non-negative integers and a, b, ¢, d are non-negative real numbers
with

a+b+c+d=1, 2a+4b=1, wvctwd=s.
The second and fourth power mean values of F; may be estimated in terms of the number

of solutions of certain diophantine equations. Also, we have U, < Q;‘"“ and U, < Q?‘“”.
We abbreviate an inequality (H) of this form symbolically by

Fyffe == (F})*(F})*(f3)°(F7)*.

There is, of course, the possibility of using higher moments of F;(«). However, estimates
for such moments are too weak to be of value in the current state of knowledge.

(ii) We may apply the Hardy-Littlewood method along the lines of §3 of Vaughan [8].
We then abbreviate the resulting inequality (M) symbolically in the form

Fif} == (F))(f3°).
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By considering the underlying diophantine equations, we have

1
Sei1(P,R) < / |Fo(@)? fo(e)*] da,

and hence we may use a sequence X, of connected inequalities (in the obvious sense)
to bound S,(Q, R) in terms of Sy(Q’, R) (t=1,2,...). Such a sequence will be called an
iterative procedure. A finite subsequence of a sequence (X;)5° of iterative procedures will
be called an iterative scheme.

Thus far, we have merely indicated possible methods for estimating certain inte-
grals, without indicating how such estimates may be used to obtain upper bounds of the
form (2.2) for Sgk)(P, R). We now outline a possible strategy.

Suppose that we have taken j+1 differences, and so are left to bound an expression
of the form T}1, as defined by equation (2.5). By applying a process of the type (H) or
(M), we may obtain a bound of the form

Tj1 < PH; M1 Q2 +V (P X 9), (2.6)

for some expression V(P; A; ¢) depending explicitly only on P, A and ¢=(¢,)Zill . We
may then obtain a bound for T;;; by minimising the expression on the right-hand side
of (2.6). In our applications, a close approximation to the minimum occurs when a choice
of ¢ is taken so that
=Y Azo-
PH; M;1Q73T = V(P; X ).

This relation determines some equation,
Aji1(A;0)=0, (2.7)

connecting the ¢; (1<i<j+1) in an obvious manner.
With the optimal choice of ¢ given by (2.7), the bound (2.4) now becomes

1
oLy - ¢t A2s—
/0 |F;(e)f;(0)| doo< PE(PRERIZMA 2 QM Qo)1 /2.
This bound may now be used to bound an expression of the form T; via Lemma 2.2, and
we obtain an inequality of the form
T; <« P (PH; 1 M; Q) +(PH MM Q) Q73 ) %),

Optimising the right-hand side gives rise to a further equation connecting the ¢, say
Aj(X; ¢)=0. We may continue this process, next bounding an expression of the form

/ IFy1(0) i1 ()| da
0
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in like manner, and so on.

In this way, for each s we obtain 7+1 equations
APA9)=0 (1<i<j+1),

in j+1 variables ¢; (1<i<j+1). These permit us to solve for ¢ in terms of A, and
provided that a solution is found with 0<¢;<1/k for each 1<i<j+1, then it follows
that

1
A lFO(a)sz(a)%’ da<<Pl+eM123Qi\a’
with ¢; given by the solution ¢ of the simultaneous equations
AL (X;¢)=0.

It therefore follows that
Ss+1(P7 R) < PA;+1+€a

with
N1 =As(1—¢1) +1425¢,.

By adopting this entire process for s=1,2, ..., we may define a new sequence of exponents,
A*, by taking
A =min{),,\,} (s=1,2,..).

s =

Further, we have the sequence of bounds
S.(P,R) < P *e.

In principle we may obtain the optimal A by solving the equations A=A7. Indeed, for
smaller values of s, and in particular when the A\, with t>s do not occur explicitly in
the formulae involving A, , this may be the easiest way to proceed. In practice, however,
we proceed to calculate values for A as follows. Starting from a known sequence A we
calculate At as described above. Then we use the A in place of the ), in the equations
AU)(X; ¢)=0. Thus, by applying this iterative scheme repeatedly, we obtain a sequence
of sequences (A\{™) with A"V <A for each 7 and s. Since diagonal solutions provide us
with the lower bound A" 2 s, the sequence must converge to some limit (A*). Moreover,
A* has the property that
S,(P,R) < Pie,

The method outlined above involves an iteration process in which each /\STH) (1
s<oo) depends on each A (1<s<00). It will become plain that certain economies may
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be made in this procedure. Thus, for example, for s exceeding some so we have A\;=2s—k.
Further, for certain values of s the iterative procedure for A\; may be independent of A; for
t>s. In this latter case it may then be possible to obtain A* independently of A} (t>s).
In the sections which follow we discuss what were found to be the optimal methods for
bounding the ,\g"’. In many instances the method is appropriate only for a single value
of k. Nonetheless, for the purpose of more clearly indicating the recurring themes, we
shall analyse the method as it applies more generally.

3. Estimates for the number of solutions of auxiliary equations

Our first step in facilitating the analysis outlined in the previous section will be to obtain
estimates for the number of solutions of certain auxiliary equations, these enabling us to

make use of the inequality
Fy 3 —— (FD () () (7)1

We first need to set up some notation.
Let us write &; for h,—m;‘. Then we have

¥, =A%(f(2); 2, ..., 2hj5ma, ... my),

with
f(2)=(z—&—...—&)".

Thus, in a manner similar to that of §2 of Vaughan [8], we obtain

\Ilj: Z Z 01...9]'(7711...mj)_k(z‘+‘01§1+...+0j£j)k

Or=%1 ;=1

DD DD k1 ...6,2"0(6:61)™ ... (8;6,)"
o 1 uq! ] K
0TE1 61 w30 w30 uoluq! .. uyl (my ...my)
wo+u1+...+u;j=k

Y YLY K2 hy . Rz €

} 1§ . |
S50 o3 u! 2ui+1)! ... (20 +1)!

ut2vu+...42v;=k—j

In particular, we obtain

k—2
Uy o= Lk12673R, . hk_2(3z2+Z£,~2), (3.1)

i=1
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k—4
\Ilk_4=313k!2’“_7h1...hk_4(15z4+30z2253+10 > §,§]+3Z§,>. (3.2)

i=1 1€i<i<k—4

Let R;s)(P; ¢) denote the number of solutions of the diophantine equation

8 S
Y ¥5(2;;h;mD) =" U5(wy; g5 n), (3.3)
=1 i=1
with
1<z, wi <Py, 1<k, gl <297t H,, (3.4)
M, <m{ ) < MR, mP 0 e AP, R), (3.5)

for 1<t<y, 1<i<s.
We shall be concerned only with estimates for Rgs) with s=1 or 2, the estimates
obtainable by current methods being otherwise too weak to be of value. We begin by

establishing a relation between R§.2), and Rg.l and Rﬁ)l

LEMMA 3.1. When 1<j<k~2, we have

RP(P; 1, ..., 0;) < PHAM2R) (P; ¢, ..., ¢;)+ HEM2RS) (P, 1, ..., 95, 0).
Proof. On considering the underlying diophantine equation, by (3.3) we have

1

RP(Pig)= [ IR da. (36)

But by applying standard Weyl differencing, combined with Cauchy’s inequality, we have
|Fj(@)|? < PH2M? + H; M;|G(a),

where

)=3" > Y ela(¥;(z+hihym)—T;(z;h;m))),

hom 1<hSP; 1<2<P;~h

and the summation over h and m is over the ranges given in (3.4) and (3.5). Then from
(3.6) we have

R (P ¢>)<<PH2M2/ |F;(a)?da+H; M, / |G(a)F;(a)?| da.

Then by applying Schwarz’s inequality, and considering the underlying diophantine equa-

tions, we have

R (P; ¢) < PRI MIRS" (P; ¢)+ H;M;(R (P; 6)-)/2,
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where S denotes the number of solutions of the equation
AL(¥;(zh;m); b 1) = AT(¥;(w; g;m); g3 1),
with the variables h, g, m, n, satisfying (3.4) and (3.5), and with 1<h, g< P}, 1<2<P;—h
and 1<w< Pj—g. But we have
2°AL(;(z;hym); by 1) = A%, ((22—26 —...—2¢;)¥; 4h, 2h;m, 1)
=¥;11(22+h;2h, h;m, 1),
and hence the result follows on noting that 224+h<2P;=P;4,.

Next we provide an estimate for Rg-l) which is valid uniformly in k and j. Later we
shall refine this estimate for a fairly large set of k£ and j.

LEMMA 3.2. When 1<j<k—2, we have
R (P;¢) < P H, 2.
Proof. We have )
RP(Pig) =Y (Y Rimh)),
n \h

where the second summation is over h satisfying (3.4), and where for a fixed h, R(n;h)
denotes the number of solutions of the equation ¥;(z; h;m)=n with z and m satisfying
(3.4) and (3.5). But if 2z, h and m satisfy (3.4) and (3.5), then ¥;(z;h;m) is divisible by
hi...h;, and further is non-zero. Therefore

RV(P) <Y <Z . 3 R(m; h))z.

n h1|n h,-|n

But R(0;h)=0, so on combining standard estimates for the divisor function with
Cauchy’s inequality, we obtain

RV (P;¢)< P> S R(n;h)?. (3.7)
h n

Further, by assigning values to the m, and solving directly for z, we have R(n; h)<<]\7[ i
and hence the desired conclusion follows from (3.7).

Before we consider refinements of the above lemma, we require a definition. When
k—j is odd, or when k—j=2 or 4, we put J=[3(k—j)]. We then define K;(P;¢) to be
the number of solutions of the system of diophantine equations

J
D R (mITt-ni™)=0 (1<r<J), (3.8)

i=1



158 R.C. VAUGHAN AND T.D. WOOLEY

with h, m and n satisfying (3.4) and (3.5). Notice, in particular, that by counting
diagonal solutions of (3.8), we have

K;(P; ¢)> H; M,;. (3.9)

We now establish a reduction formula relating R;l) with Kj.

LEMMA 3.3. Suppose that 1<j<k—2, and k—j is odd, or k—j=2 or 4. Then

RV(P; ¢) < P1**K;(P; ¢).

Proof. In each of the cases under consideration, we may start by observing that
hy ... h; divides ¥;(2z; h;m), and so as in the proof of Lemma 3.2 we have

RV(P;¢) < P°R*(P; ¢),
where now we write R*(P; ¢) for the number of solutions of the equation
¥;(z;h;m) = ¥;(w; h;n), (3.10)

with 2, w,h, m, n satisfying (3.4) and (3.5).
We now divide into cases.

(i) k—j=2. Then from (3.1), the equation (3.10) in this case becomes
k—2
3(22—w?)+ Y hi(mP*—n?*)=0. (3.11)
i=1

From (3.8), the number of solutions with z=w is
<K PK_2(P; ¢). (3.12)

Now count solutions of (3.11) with z#w. We may assign h, m and n in O(ﬁk_gﬂ,f_z)
ways. Fixing this choice, we may use standard estimates for the divisor function to
deduce that there are O(P¢) solutions of this type in z and w. Then the total number
of solutions of this type is

<<P€I~{k_21\7f,f_2 < PH—Eﬁk_sz_g. (313)

When k—j=2, the result now follows on combining (3.9), (3.12) and (3.13).
(ii) k—j=4. Then from (3.2), the equation (3.10) in this case becomes

15(u? —v?) = 10(E} ~T'?) +2(Z,-T3), (3.14)
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in which

k—4 k—4
2, = = 2, 2%k o= _ 4, 4k
u=2z“+=, :1—2 him;”, Hg—z h;m;”,
i=1 i=1

and v,['y, 'y are defined similarly in terms of w, h and n.

Consider first solutions of (3.14) counted by R*(P; ¢) with u7#v. We may assign h, m
and n in O(I?kvd\? ,f_ 4) ways. Fixing this choice, we may then use standard estimates
for the divisor function to deduce that there are O(P¢) solutions of this type in « and v,
and hence in z and w. Then the total number of sclutions of this type is

<<P5ﬁk_4M£M4<<P1+€ﬁk_4Mk_4. (3.15)

Now consider solutions of (3.14) counted by R*(P;¢) with u=v. Then we have
k—4
(22 —w?)+ Y h2(mZ*—nZ*)=0. (3.16)

=1

As in case (i), the number of solutions with z#£w is
< P H,_ 4M_g. (3.17)

Otherwise z=w, and from (3.16) we have Z,=T";, and hence from (3.14), Z,=T"5. Then
from (3.8), the total number of solutions of this type is

K PKj_4(P; @). (3.18)
Then when k—j=4, the result follows by combining (3.9), (3.15), (3.17) and (3.18).

(iii) k—7 odd. Write k—j=2J+1. Then

J
U,(z;h;m)=Chy ...hjz(ZcT22r>, (3.19)
r=0

where C depends at most on k and j, and ¢,=¢.(£€) (0<r<J) is a symmetric polynomial
in €2, ..., §]2~ of degree J—r, with coeflicients depending at most on k and j.
On noting that ¥;(z;h;m) is divisible by 2, hy,...,h;, we find, as in the proof of
Lemma 3.2, that
R{(P; ¢) < P°R*(P; ¢),

where now we write Rt (P; ¢) for the number of solutions of the equation

U,(z;h;m) =¥;(z; h;n), (3.20)
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with z,h, m, n satisfying (3.4) and (3.5). But on noting (3.19), equation (3.20) becomes

J
Z(cr(hlm’f, ey hjm;?) —cr(hank, ..., hjnf))z% =0. (3.21)
r=0

Consider first solutions of (3.21) with

er(hamf, ..., hym%) # e (hanf, ..., hjn}),

for some r. We may assign h,m and n in O(fl ]-M ]2) ways. Fixing this choice, we have
that z is determined by a non-trivial polynomial. So there are O(1) such solutions in z,
and hence the number of solutions of this type is

< H;M? < PH;M;. (3.22)

Otherwise
ham§, ..., hym%) = e, (hanf, ..., hjn§
cr( 1My -y ]m] ) - CT( 177500 Jn_] )7
for 0<r<J. But then, by using elementary results on symmetric polynomials, we have
J
SRt -ty =0 (1<r<J).
i=1

Then from (3.8), the number of solutions of this type is
< PK;(P; ¢). (3.23)

When k—j is odd, the result now follows on combining (3.9), {3.22) and (3.23), and
this completes the proof of the lemma.

We must now attend to the matter of bounding K;(P; ¢). We might hope to achieve
the essentially best possible bound K j(P;¢)<<P5MJ~I?j, dominated by diagonal solu-
tions. In the light of our estimates for S,(P, R), this may seem excessively optimistic,
yet we very nearly achieve this goal. Unfortunately our methods are somewhat diverse,
and will take a little time to explain. More precise estimates can be obtained by our
methods, but we choose simplicity of exposition. We start with a useful lemma, depend-
ing for its effectiveness on estimates for the number of solutions of a homogeneous system
of equations.

We define S,(Q, R;t, k) to be the number of solutions of the system of diophantine

equations
S

D (@ —yitty =0 (1<n<t),

i=1
with z;,y,€ A(Q,R) (1<i<s). We note that estimates for S;(Q, R;t,k) are available
from Wooley [14], [15].
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LEMMA 3.4. Suppose that 2<j<k—2. Let l= [%j], and define
Li(P)=H;*So.(M;R, R; J, k) +(S-(M;R, R; J, k))?

and
- (P) L;,(P), J even,
i, = .
(Li,l(P)Li’H_l(P))l/z, ¥ Odd
Then

E 1/5
K;(P;¢) < P*H; (Hmin{L;,(P), S;(M;R, R; J, k)}) .
i=1

Proof. Write

r

9-(a; H,Q,R)= Y

1<hSH

Z e(ash? c¥* 4. + o h%2?)
z€ A(Q,R)

Then we have

J
K;(P;¢) < / [192(e; 27" H;, M;R, R) da, (3.24)
J

i=1
where here, and throughout, we write T for [0, 1].

As applications of Hélder’s inequality, we have

g2(a;H’ Q?R)] < Hj_lg2j(a; Ha Q’R)a
g92(e; H,Q, RY < H'"%g;(e H,Q, R)?,
92(0; Ha QaR)J <<I:I'j_zgj—l(‘l; H» Qa R)gj-i-l(a;HaQa R)

But by considering the underlying diophantine equations, we have
/ g2j(c; H,Q, R) dox < HS;(Q, R; J, k). (3.25)
T

Also, for each integer 7 we have that

/ g2r(a;H,Q,R)2 da
T

is bounded above by the number of solutions of the system of diophantine equations

T ™

RENY (afF—yf) = g™ Y (uf"t—0f™) (1<n< ), (3.26)

i=1 i=1
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with 1<h,g<H and xi,yi, ui, v; € A(Q, R). The number of solutions counted in which
the left hand side of (3.26) is zero is

< (HS(Q, R; J,k))%.

Meanwhile, if the left hand side is non-zero, using a by now familiar argument, we may
bound the number of solutions of (3.26) by P° H*¢ times the number of solutions of the

system
T r

D (@t —yir) =3 (uiF o) (1<ng ),

i=1 i=1

with z;, y;, us, v; €A(Q, R). Since this is <S2,.(Q, R; J, k), we have
/ g2r-(0; 277" H;, M;R, R)* doe < P*H?L; ,(P). (3.27)
TJ

Furthermore, by using Schwarz’s inequality combined with the analysis above, we deduce
that when u is an odd integer, we have

Gu— a,H,,M,R,R Gu a;Hi)MiRaR da
= gusa( ) 529

& PEH}(Liju-1(P)Liws1(P)Y2.
Now applying Holder’s inequality to (3.24), we may combine (3.25), (3.27) and (3.28)

to complete the proof of the lemma.

Before describing our final approach to bounding K;, we shall require an elementary

lemma on solutions of binary quadratic forms.

LEMMA 3.5. The number of solutions, S(a,b, c; P), of the equation
ar’+by’=c (abc#£0),

with 1<z, y< P, is < (abcP)*.

Proof. The conclusion of the lemma follows in an elementary manner from results
of Chapter 11 of Hua [2]. We shall therefore merely sketch the required argument.

We first note that by changes of variable, combined with standard estimates for the
divisor function, it suffices to show that when d is a non-zero square-free number, then
the number of solutions of the equation

X2-dY?=n (n#£0), (3.29)

with (X,Y)=1 and 1< X,Y<P, is O((ndP)¢). By Theorem 4.1 of Hua [2], for each
solution (X,Y) of (3.29), there exists a unique integer I, with 0</<2n, satisfying 12=4d
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(mod 4n). Since d is square-free, the number of solutions of this congruence is O(n°®),
and so it suffices to show that there are O((ndP)¢) solutions of (3.29) corresponding to
each [.

(i) Suppose that d<0. By Theorem 4.3 of Hua [2], there are at most 4 solutions
(X,Y) of (3.29) corresponding to each I.

(ii) Suppose that d>0. Then it follows from Theorems 4.2 and 4.4 of Hua [2] that,
if (X,Y) and (X',Y") are any two solutions of (3.29) corresponding to the same [, then

X+VAY =+ (t+uvd ) (X' +VdY"), (3.30)

for some integer k, and choice of + or —. Here (¢, u) is the unique integer solution of the
equation t2 —du®=1 with ¢t>0,u>0, and t+u+/d least. But for each solution of (3.29) we
have 1< IX +\/c_in < (1+\/E )P, and hence the desired conclusion follows from (3.30) on
noting that t+uvd >1+vd >2.

This completes the proof of the lemma.

We now aim to exploit the differing sizes of the H; via the previous lemma. We shall
consider the number of solutions, N;(P; @), of the equation

J
> ¥ (mZ*—nZ*) =0, (3.31)
=1

with h, m and n satisfying (3.4) and (3.5). First, however, we shall consider the number
of solutions, N;(P; ¢), of the equation (3.31) subject to the additional condition m;#n;
(1<igy).

We suppose in the following four lemmata that j>1 and ¢12¢22...2¢;, as is the

case in our applications.

LEMMA 3.6. We have

j o~
* € IT AA Mi
N}(P;¢)< P HjM]-<1+ ; Hi_lHi).

Jj—1 even

Proof. We proceed by induction on j. When j=1 the estimate is trivial, and when
j=2 the estimate follows almost trivially by use of divisor function estimates. Further,
we have that N3 (P; ¢) is the number of solutions of the equation

h(ni* —mi*)+h3(n3F —m3") = h(m3" —n3*) #0,

with h,m, n satisfying (3.4) and (3.5). Thus, by standard estimates for the divisor
function, we have
N2 (P; ¢) < PSH,M3.

12-950233 Acta Mathematica 174. Imprimé le 20 juin 1995
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Therefore, recalling the condition on ¢, and applying the trivial inequality
|21 <. zn| < |2 |" +-.. | 20|,

we obtain
N;(P; ¢) < PEHZPML® « P*(H; M3+ M3),
and so the result follows when j=3.
Suppose now that j>3. By applying Lemma 3.5, we deduce that the number of
solutions of (3.31) counted by N} (P;¢) with

j-2
> hE(mZ*—nZ*)#£0 (3.32)
i=1
is _
Pl o = peii ity | -2 3.33
< PH;-oMy =P H;M; =" )- (3.33)

Meanwhile, by the inductive hypothesis, the number of solutions of (3.31) counted by
N;(P; ¢) with the left hand side of (3.32) zero is

.MI.
o

)

o

j-2 ~
~ - M;
<<P€H,-M]?Hj_2M]—_2(1+ A )

) 14:3
i Jreven (3.34)
<<P6ﬁj1\71j< z - H)

i=
j—1 even

The proof of the lemma is now completed on combining (3.33) and (3.34).

LEMMA 3.7. We have

M;
N;(P;¢9) < P‘H M 1+
e <r i (143 5l)

Proof. Let t>0 and i, (1<u<t) be integers with 1<i; <i3<...<1;<j. Now consider
the number of solutions of (3.31) counted by N;(P;¢) in which m;#n; whenever i=i,,
(1<u<t), and m;=n; otherwise. On noting that when ¢t=0 there are only diagonal
solutions, we deduce from Lemma 3.6, by a change of variables, that the number of such

solutions is

H, | H,

t ®

~ -~ M R

<<P€HJ~M,-(1+§ &—-)
u=3 tu—1

The lemma now follows on observing that M; /H; <«<M; ,1/H:, 41

There are a number of improvements which are of use in special circumstances.
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LEmMA 3.8. We have
N;(P; ¢) < P*(H;M;N;-1(P; )+ H; 1 M}_,),

and in particular

i
P: PEH M3 1 .
N3(P; ¢) K 3 3( +H3M3)

Proof. The number of solutions of (3.31) counted by N;(P;¢) with m;=n; is
< H;M;RN;_1(P;¢). Meanwhile, by using standard estimates for the divisor function,
the number of solutions with m;#n; is <<P5I}j_1]\2]?_1.

The bound for N3(P;¢) given by Lemma 3.8 is superior to that of Lemma 3.7
whenever Hy<M3.

LEMMA 3.9. When j>2 we have
N;(P; ¢) < P*(H;_yH;M; 1 M;N;_(P; ¢)+H,; 2 M?_,(H; M; +M?_, M?)),

and wn particular

~ M. M.
N4(P;¢)<<P5H4M4(1+ 2 4 4 )

H3Ms3  H3H,
Proof. The number of solutions of (3.31) counted by N,(P;¢) with
h?_ (m2E —nZE ) +hI(m2F —n?k) =0 (3.35)

is
K P*H; _H;M;_1M;N,_(P; ¢).

Meanwhile, if the left hand side of (3.35) is non-zero, we may either apply standard
divisor function estimates, or Lemma 3.5. Thus, the number of solutions in this case
with m;#n; (i=j—1o0r i=j) is

< PEH; oM}, (H;Mj+H;_\Mj_1+ M2\ M?).

This completes the proof of the lemma.

We now collect together the conclusions of this section in a simplified form, this
being of use in our later applications.
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THEOREM 3.10. Suppose that 1<j<k—2. Let I=[}j], J=[3(k—j)] and for r>1

)\gzjk)——r. Suppose that 6, is increasing with v, and let € be 0 or 1 according

write 6, =
as j is even or odd.
{Ia) Unconditionally, if j=1, or
(Ib) if k—37 is odd, or k—j=2 or 4, and any one of the following conditions hold,
() 1T+
(il) 24+e<j<2J+2—e€ and (k+8;1)p1<1;
(iii) when 73, we have

I
> pitk(pr-1+or)<2 (3<KIL));

=1
then .
/O |Fj(a)? da < P M; H;. (a)

If none of (i)-(iii) hold, we have
1
/0 |F;(a)|? do < P M}*7 Hj, (b)

where 0=6;/7. Furthermore, if (k+6z045)—26145)01<1 (f=0,¢€), we may take o=

(6i+b1te)/d.
(I1) In any case, we have

/OI;F,(Q)V da < P**¢M2H;. (c)

Proof. Part (Ia) follows from Lemma 2.1 of Vaughan [9], and part (II) follows from
Lemma 3.2, on considering the underlying diophantine equation. So suppose that k—j
is odd, or k—j=2 or 4. Then estimate (a) will follow from Lemma 3.3, on considering
the underlying diophantine equation, providing we can show that

K;(P; ¢) < P*H; M;. (3.36)

The number of solutions of the system of equations
8
D (@ -yt =0 (1<n<t),
=1

with 1<z;, 3 <P (1<i<3), is O(P®) when 1<s<¢. This follows by an elimination ar-
gument, for example. Also, when s=t+1, the number of solutions is O(P*+1*¢), by
Theorem 1 of Wooley [14]. Then when (i) holds, we plainly have

Sj(MiRa Rv Jv k) < (MiR)j+ea
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and hence (3.36) follows, by Lemma 3.4.
Now suppose that condition (ii) holds. Then we have [+e<J+1, so as above,

S-(M;R,R; J, k)< (MiR)H_E,

when r=I,l4+e. Now, by discarding all but one of the implicit equations, we deduce that
for each u,
Su(MiR, R; J, k) < S7®) (M;R, R) < (M; R)*"""+¢. (3.37)

Hence, by the definition of H;, the condition on ¢;, and the (implicit) assumption ¢; >¢;
(i21), we have
H; 'S, (M;R,R; J, k) < P°M?",

when r=I,l+e. Then, in Lemma 3.4, we have L;‘J(P)<<P5Mij, and once again (3.36)
follows.
Now suppose that condition (iii) holds. Then by Lemma 3.7, we have

N;(P; ) < P*H; M;,

whence, by discarding all but one of the subsistent equations, (3.36) follows once again.
Finally, if none of (i)-(iii) hold, we use (3.37) in Lemma 3.4 with u=I+f,j+f
(f=0,¢e) to obtain estimate (b).
This completes the proof of the theorem.

THEOREM 3.11. Suppose that 1<j<k—3, and let J=[1(k—j—1)]. Otherwise make
the same hypotheses, and adopt the same notation, as in Theorem 3.10.

(1) Suppose that 3<k—j<b or, when =1 and k29, that k is odd. Then if j=1, or
any one of conditions (i)—(iii) of Theorem 3.10 hold, then

1
/0 |Fj(a)|* do < PP**M3H}. (a)
If none of the conditions (1)-(iii) of Theorem 3.10 hold, then
1 —~ o~
/O |Fj(a)|* do < PP M;*° HY. (b)
(II) In any case, we have

1
/0 |Fj(a)|* dav < PP+ RILERS, (©)
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Proof. When j=1, part (I) follows from equations (2.14) and (2.15) of Vaughan [9].
Next, note that by Lemma 3.2,

R (P, ..., $;,0) < PP H; M2,

and hence part (II) follows from Lemmata 3.1 and 3.2. So suppose that 3<k—j<5.
When one of conditions (i)-(iii) hold, estimate (a) will follow from Lemmata 3.1 and 3.3,

on considering the underlying diophantine equation, providing we can show that
K;(P;¢) < P°H;M; and K;i(P;,0)< P'**H,M;.

The first estimate follows as in the proof of Theorem 3.10. Also, on considering the

implicit diophantine equations, we have
Kj+1(P;9,0) < PK;(P; ¢),

where K (P; ¢) denotes the number of solutions of the system of equations (3.8), subject
to our revised definition of J. Hence the same analysis as in the proof of Theorem 3.10
gives the desired conclusion.

Finally, if none of (i)-(iii) hold, we use (3.37), as in Theorem 3.10, in the above
analysis to obtain estimate (b).

This completes the proof of the theorem.

4. Major and minor arc estimates

We must now obtain estimates of use in a Hardy-Littlewood dissection. Broadly speak-
ing, we follow the pattern established by §3 of Vaughan [8]. As a consequence of the
more efficient differencing procedure of Wooley [13], however, we have more variables to
average over. We use an argument based on the large sieve to make some savings on these
extra variables. Also, we develop particularly precise estimates for certain exponential
sums, these enabling us to obtain an essentially best possible result for a (k—j+1)th
power mean value estimate for F; over the major arcs.

Throughout this section, we shall suppose that 1<j<k—2. When C is a non-zero
integer, and B=B(hj1, ..., hk—2) is a subinterval of [0, P;], we define

Dj(e; P,¢:B,C)= Y .. Y > Y

h1<2i-1Hy  hjSHj hjp1SP; he_2<P;

2

Z e(Cah1 hk_zﬁz) y

Z€B

where we write £=22+h;1+...+hr—2. We then define

Dj(a; P,¢)= sup supDj(a; P,¢;B,C). (4.1)
Cge-1 B
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LEMMA 4.1. Suppose that (a,q)=1 and |a—a/q|<q™2. Then

Q;

m+P-1Q§+q+Qf|aq—a|) .
J

mwaw«#(

Proof. This is only a slight elaboration on the proof of Lemma 3.1 of Vaughan [8].

We shall suppose throughout Lemmata 4.2 to 4.6 that J, H, M are positive real
numbers with J <« P*¥, M < P'/* and H< PM~*. As a notational convenience, we shall
also write Q* for JH3M?*. When C is a subset of ZN(M, MR], we define

E(o; JJHM;C)=>_ >

J<J h<H

i (4.2)

Z e(ajh®mk)

mec

LEMMA 4.2. Suppose that M¥ < X <Q*M~*, and that (a,q)=1, ¢< X and |ga—a|<
X 1. Then uniformly in C, we have

JHM?
(g+QF|ag—al)t/k

Ei(o;J,H,M;C) K Pe( +JHM+P2H).

Proof. We may apply the argument of the proof of Lemma 3.2 of Vaughan (8] to

show that the sum in question is
< E+PS(JHM +H3M?),

where

2
E<<P5<JHM+ JHM )

(g+QF|ag—al)t/*
This completes the proof of the lemma.

COROLLARY 4.2.1. Suppose that k—3j>4, M{°<X<Q§M{’°, (a,9)=1, ¢<X and
lga—a|< X 1. Then uniformly in C, we have

sup El(a;C’Pk_j_szlij,Hl,Ml;C)

Cge?

< PRI B M2 (g + Q¥ lag—al) R+ MY,

Proof. We merely note that when k—j>4, we have P*~9=2H,>> P2H,.

When k—3<3 the following lemma usually provides a bound superior to that of

Lemma 4.2.
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LEMMA 4.3. Suppose that
Y <min{M, JH™3,Q'/*, (Q* M ~*)!/%}, (4.3)

that YE X <Q*Y ~%, and that (a,q)=1, ¢< X and |ga—a|<X~1. Then uniformly in C,

we have
JHM?

(4+Q*|ag—al)!/*

Er(a; J, H,M;C)<<P€( +JHM2Y—1).

Proof. The exponential sum in question is at most

> Y min{J, [la(m3* —mi*)A®||~'}.

M<my,ma<MR h<H

Since Y < M, the contribution from terms with m;=m3, combined with that from any
terms with
lla(m3* —mi*)p®|| = <4JY 1,

is « PPHJM?*Y 1. Thus we need only consider

3 3 I+ Jlle(mEE —m*R) 7 (4.4)

my,ma h<H
where the first summation is over m; and mg satisfying
M<m <my<MR and |a(m2*—mZ*)R3| < (4J)" Y. (4.5)
For given my, mo, h, we may choose n so that
lla(m3® —mi*)h®|| = |a(m3* —m3*)R® —n].

Let R=(4JH3Y ~1)}/2. Then for given m;,ms, by Dirichlet’s theorem we may choose
b,r with
(br)=1, r<R and |a(mZ*-—m2*)—b/r|<(rR)" .

Notice that if b=0 then r=1. Hence, for any m,,ms, h included in the above sum we
have

YH3 1/2
) st

[bh® —nr|=|b/r—n/h3|rh3 < 2(

since by assumption, Y < JH 3. Thus bh®=nr, and if n=0 then =0 and r=1. Hence
in all cases r|h®. Put r=r72r3 where r3 is maximal and (r;,72)=1. Then riryr3|h. Let
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ho=h/(r1r2r3). Then the sum over h in (4.4) is

< ) -
3 3 3k, 2k) _
ho<H  ourars) 1+ Jh3(rirars)3|a(mik —m2*)—b/r|

JH(T1T2T3)_1
(1+ JH3|a(mZ* —m2*)—b/r|)1/3
JHr—1/3

<

< W TH a(mZF—mP) —b/r)1/5
Thus
Ei(0) < PS(A+JHM?*Y 1),
where JH
A= ,
Z (r+JH3)a(m2k —m¥*)r—b|)1/3

mi,m2

and the summation is over m; and mg satisfying (4.5). Plainly, we may also restrict the
summation to be with

r+JH3|a(m2F —m2*)r —b| < R7*Y3. (4.6)
We put
jz(m17m2)7 anl/j7 l:(m2_m1)/ja

so that
J<MR, I<MR/j, M/j<n<n+l<MR/j, (n,n+l)=1.

Now, of course, b and r will depend on j,I,n. Let S=((MR/5)**~H3J)1/2, Then given
j and [, by Dirichlet’s theorem we may choose ¢, s with

(c,s)=1, s<8 and |aj?*i—c/s|<(sS)7L.

Again we observe that if c=0, then s=1. Let D=((n+1)?* —n?*)/l. Then

n+l
D= ? / 2 ldg,

and so
2k(M/5)%*~1 < D < 2k(MR/§)*1.

Thus condition (4.6) implies that r<R™*Y?3, and

b ys
iR g —
=B\ S S DT R
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Therefore

b Y:D Y3§
|c7‘D——bs| = ‘E_E|STD < W+ TR <4kR—ky3(H3J)—1/2(MR/j)k—1/2 <1,

since by assumption,
YO QM T = HA T M 2F
~ - .

Thus crD=bs. Hence r|s. Let s;=s/r. Then cD=s1b. Hence c|b and s;1|D. Therefore,
as (n,n+!1)=1, we have (n(n+!), s1)=1 and we may conclude that

HJ(s1/s)'/3
A< Z Z ZZ(1+H3J(M/j)2k—1Iajzkl_c/sl)l/:}’ (4.7)

F<MR ISMR/j sils ™

where the final summation is over n satisfying
n<MR/j, (n(n+l),s1)=1 and s1|D. (4.8)

By a simple argument, as in the proof of Lemma 3.2 of Vaughan [8] (see pages 22, 23),
there are O((s11)¢) choices of n (mod s1) satisfying (4.8). Thus the innermost sum in
(4.7) is

< MR+1 Pe(s1/8)'/3HJ
js1 (1+H3J(M/5)*ajkl—c/s|)1/3
The contribution to A from terms in (4.7) with MR<js; is therefore <« P MHJ. Thus,
from (4.7) and (4.9), we have

(4.9)

A< PS(B+JHM?*Y ™),

where

HJIM;™!
b= i : . 4.10
jSXA;R lS%/j (s+H3J(M/j)*-1aj2kls—c|)1/3 ( )

Plainly, we may restrict the second summation in (4.10) to those ! satisfying
s+H3J(M/§)* aj*is—c| < R72(Y/j).

Let T=(M/j)*(H3J)'/2. Then given j, by Dirichlet’s theorem we may choose d
and ¢ with
(d,t)=1, t<T and |aj*—d/t|<(T)"

Once again, if d=0 then ¢=1. Then for j and [ included in the summation in (4.10), we

have

c d

-1 \3
Urst< 2RY(Y/j)

(AT T(M /)

1
ls <b
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since, by assumption, Y6 <Q*M'~4* L H3J. Thus ct=dsl, and so s|t. Let t;=t/s. Then
cty=dl. Thus ¢;]l. Let ly=I/t;. Then ¢=dl;. Therefore

HJjM;!
BS Z Z(tl/t)l/S Z (1+H3J(M/j)2k_1l1tl|aj2k_d/t')1/3'

JSMR t)t Iy <MR/jt,

By Lemma 7.1 of Vaughan and Wooley [10], the innermost sum is

HJM?Rj~2t;!
(1+H3J(M/J)2’°lay2" dft)r/3’
Thus
B P(C+JHM?*Y ™),
where

HJM?
C= Z S ,
Gt (G HP T (M) ot —d])173

and we may restrict the summation to those j satisfying
t+H3J(M/§)**|aj®t—d| < L(Y/5)*. (4.11)
Let U=Q*/2. Then by Dirichlet’s theorem we may choose e, u with
(e,u)=1, u<U and |ou—e|<U™L.

On noting that ¢ is non-zero, we find that for any j satisfying (4.11), we have j<Y. Then
when j satisfies (4.11), we have

€

2k U Y2k Y2kU
€ 2k, o Ly i3 (Y <i—4— < <
a7 <Y T e ) S ot <

since by assumption, Y2 <Q*/2. Thus ej?*t=du. Hence t|u. Let ug=u/t. Then ej**=
dug. Hence uo|j?*. Let ug=u1u% ... u2¥ where uay is maximal and w;, ..., ugx_; are square-

free and coprime in pairs. Then u; ... ugg|j, whence

IIJIM2 (wuyus .. U2k)_2t_1/3
C<X D T EIM e e )

wtur,...,Usk
where the second summation is over t,uy, ..., uz satisfying tuju? ... u2¥ =u. Thus

PEHJM?
(u+QF|lau—e|)/k"

<k
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When u+QF|au—e|>3Y* we are done, so we may suppose that u+Q*|au—e|<iY*k.
Thus

- 14D:¢ N Yk

u —— —

1S 9QrF Tax

€ a

u q

<1

since by assumption, Y*< X <Q*Y ~*. Hence eq=au, so that u=q, e=a, and the bound
for E;(ca) follows at once.
This completes the proof of the lemma.

In the next two lemmata we prepare a large sieve argument which yields a further
useful bound on E(). In Lemmata 4.4 to 4.6, the variable N denotes a large positive
integer with M?* < N < P*. Then in particular, JHN > Q.

LEMMA 4.4. Let c¢(n) (n€eN) be arbitrary complex numbers, and define

SB)=Y

Jj=1

2

N
3" e(n)e(Bjn)

n=1

Suppose that (a,q)=1 and |3—a/q|<q"?. Then

JN

N
HJN—W+J+N+Q+JNWQ—3!) > letm)?.

n=1

s) <

Proof. On squaring out, interchanging the order of summation, and performing the
summation over j, we find that

N

S@<I Y lemP+ 3 lelni)elng) min{ e —n)| V). (412)
n=1 1€n1<na KN

Thus it suffices to treat the second term on the right hand side of (4.12), which by the

arithmetic-geometric mean inequality is

< Y (ldm)P+le(n2)*) min{J, | B(na—n)]| '}

1<n1<nz&N
N N
<Y lem)? Y min{J, ||8A[ "}
n=1 h=1
When ¢> NJ the lemma follows trivially by Cauchy’s inequality. Then we may suppose
that ¢<NJ, and so by Lemma 2.2 of Vaughan {5] we have

N
S(BY< PS(NJg ' +J+N+q) ) _ [e(n)]*. (4.13)

n=1
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If NJ|Bq—a|<q then we are done. We therefore suppose that NJ|Gg—a|>¢, and that a
and q satisfy the hypotheses of the lemma.
By Dirichlet’s theorem we may choose b and r with

(b,ry=1, r<2|fg—al™! and |Br-b|< %[ﬂq—a|.
It follows that b/r#a/q and |Gr—b|<(2¢)~!. Thus
(gr)~' <|B-a/gl+1B-b/r| <|B~a/gl+(2¢r) ",
whence (2|8g—al|)~! <r. Therefore, by (4.13) with ¢ replaced by r, we have
N
S(B) < PE(NJr~'+J+N+7) Y |e(n)?
n=1

N
< P*(JN|Bg—al+J+N+|Bg—al™") Y le(n)?,
n=1

and the desired conclusion follows.

LeEMMA 4.5. Let c¢(n) {(neN) be arbitrary complez numbers, and define

T(@)=Y Y

iSJh<H

N

Z c(n)e(ah®jn)

n=1

2

Suppose that
Y <min{N, J,(JNH3)/?},

that Y3<X<Q*Y 3, and that (a,q)=1, ¢< X and |ga—a|<X~1. Then
N

+JHNY-1> > lem)l?.

n=1

JHN
(g+Q¥|ag—al)'/?

T(a) « P* (

Proof. Let S=NJY ~!. Then given h, by Dirichlet’s theorem we may choose c and s
with
(c,8)=1, s<S and |ah3s—c|<S7L (4.14)

Thus, by Lemma 4.4 we have
JN i
T{a) < P* Z (——-+J+N+s+JN]ah3s—cl> Z le(n)]?.

35—
i s+ JN|ah3s—c|

n=1
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But by (4.14), we have
s+JNlah®s—c| <Y +NJY !,

so in view of the hypotheses on the size of Y, we have

N

JN —

T(a)«Pe(Z W"FHJNY 1>Z]c(n)|2
h<H n=1

Thus it remains to estimate

Z (s+JN|ah3s—c|)72, (4.15)
h<H

where, plainly, we may restrict the summation to those A with
s+JN|ah®s—c| < 1Y. (4.16)
Let T=(H3JN)'/2. Then by Dirichlet’s theorem we may choose d and ¢ with
(d,t)=1, t<T and |a—d/t|<(T)™ .

Then for each h satisfying (4.16), we have

3 3\1/2
th3s<Hy+K<Y<H) <1,

d_ ¢
2T " 2JN =" \JN

t h3s

|dh®s —ct| = ’

since by assumption, Y2<JNH 3. Thus dh3s=ct, and so s|t. Let to=t/s. Then dh®=
cto. Therefore, to|h®, so by puting to=t1¢3t3 with ¢3 maximal and ¢,,t; squarefree, we
have ¢,t2t3|h. Hence the sum (4.15) is

(to/t)
SO 1+JN(jt1t02ts)3la~d/tl

toft J<H/(titats)

(to/t)H
<<tz|; Gtata (1T INH3|a—djt]) /3
0

Ht*
(t+QF|at—d|)1/3"

<

If t+Q*|at—d|> Y3, then we are done. Thus we may suppose that t+QF|at—d|<1Y3.

Therefore
Y3 v3Xx
<1,

t ~t <
I<2x * gk
since by assumption, Y3<X <Q*Y~3. Hence at=dg, so that g=t and a=d, and the

bound for T(«) follows at once.

d
PRVEES
t g

This completes the proof of the lemma.
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LEMMA 4.6. Suppose that
Y <min{M?** J, (JM?* H~3)Y/2}, (4.17)

that Y3< X <QFY 73, and that (a,9)=1, ¢<X and |gqa—a|< X!, Then uniformly in C
satisfying CCA(MR, R)N(M, MR), we have

E (o J, H,M;C) <« PETHM" 2 (Y 4 (¢+Q*|ag—al)~/3).
Proof. For n€N, define c(n) to be the number of solutions of the diophantine equa-
tion z#*+4...+x%*=n, with z;€C (1<i<s). Also, let N=(MR)?>*. Then by (4.2), it

follows that E(o;J, H, M;C) is an exponential sum of the form T(a) of Lemma 4.5.
The lemma then follows on noting that M%< N« P*, and

N
Z n)|? <« S (MR, R) < PM* .

We now attend to the matter of obtaining suitable major arc estimates for the

exponential sums Fj(a).

LEMMA 4.7. Suppose that (a,q)=1, B=a—a/q and gP~'Q¥R¥, =1 |5|<1. Then

Pg~7;( 0.0, h, m) 7 g(k—i=1)/ (k=) +e
<<ZZ (1+|8lhy ... h; P*- ])1/(k—j)+Hijq ’

where the summation is over h and m satisfying (2.1), and

ie(%‘lg(r,h,m))‘. (4.18)

r=1

Tj (Qa a, ha m) =

Proof. The proof we give is a simple modification of the proof of Lemma 3.5 of
Vaughan [8]. We have
=) S(a;h;m), (4.19)
h m

where

S(a;h;m) = Z e(a¥;(z; h; m)).

1<2€ Py
Hence, on writing a=a/q+(, a standard argument gives

S(e;h,m)=¢~* > o(g,a,b,h,m)T(8,b,h,m), (4.20)

—4a<b<iq
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where
a b
o(g,a,b,h,m)= e(—\Il‘r,h,m +—r>
( ) ; p i ) p
and b
T(8,b,h,m)= e(ﬁ\Ilj(z,h, m)——z).
1<2<P; q

Each coefficient of ¥; is divisible by h, ... h;, and so if d is the greatest common divi-
sor of the coefficients of a¥,(r,h,m)+br and g, then d<(q, h; ... hj,b). Therefore by
Theorem 7.1 of Vaughan [5], we have

o(q,a,b,h,m) <« g*kI"D/k=D4e(g b, | p )/ k=D, (4.21)
Let b
¢(7) :/B\I,j(’yvh? m)_57 (422)
Then b k!
- I = —. o 5 _k
where

y+him?  p1+hamd ¢j—1+hj'm;‘ ki1
1:/ / / W dy; dipy - di
Y

—hlm’f ¢1—h2m’2° 1,/)]-_1—h_,-m;.°
Thus, when |y|<27 P, we have
<2J’k—!|ﬂ|h hi(27 P+hym¥+...+hymh)Fi71 < L
< (k——]—l)' 1.5 1My +... im; 4q

When —1g<b<1q and |y|<27P, we therefore have |¢'(7)|<2. Further, when b#0 we

have

b
'(—1+¢I(’Y)

16/ (3)] > '%

Therefore, by Lemma 4.2 of Vaughan [5], we have

1

T(8,b,h,m)= > I(8,b,h,m,u)+0(1),

u=-—1
where )
2ip

I(8,b,h,m, u) = / e(S(y)—yu) dv. (4.23)

0
By integrating by parts we deduce that

I(3,b,h,m, £1) < 1,
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and further, when b#0,

I(ﬂ,b,h,m,0)<<%.

Therefore
T(8,0,h,m)=1(5,0,h,m,0)+0(1)

and, when b#0,

T(3,b,h, m) < I%l

Hence, by (4.20) and (4.21), we have

S(a,h,m)~g '0(g,a,0,h,m)I(8,0,h,m,0) < Y b7 tqk I/ (Emiite(q p)t/(k=d)
1<b< 3

& qtk=i=D/(k=i)+e.

The lemma now follows from (4.19) on observing that by (4.22), (4.23) and Theorem 7.3
of Vaughan [5], we have

I(8,0,h,m,0) < P(1+|B}h; ... h; PE=7) "1/ (F=3),

In the following lemma we provide an estimate for an exponential sum which we will
use ultimately to estimate 7;(g, a,h, m) when j<k-3.

LEMMA 4.8. Suppose that n22. When geN and ai,...,a,€2Z, define f(x;a)=

n y
pd
Zj:l a;z’ and

sm,@:%{@).

Let d=(q,a1,...,an) and r=g/d. Define r; (1<j<n) by

rj:Hpj (1<j<n) and r,= H P

Pl pilimizn

Then

n
S(g,a) < ¢y’ r;—l/].

=2

Proof. Let r=q/d and bj=a;/d (1<j<n). Then we have S(g,a)=dS(r,b), with
{r,b1,...,5,)=1. In view of the multiplicative property of S(g,b) (see the proof of Theo-
rem 7.1 of Vaughan [5]), it suffices to treat the case in which r is a prime power, say p’.

13-950233 Acta Mathematica 174. Imprimé le 20 juin 1995
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Suppose that (p,ci,...,c,)=1. Then by Corollary 2F of Chapter II of Schmidt [3], we
have

S(p,c) <p'’?,
and by Theorem 7.1 of Vaughan [5], for each t>n we have

S(p',e) <p' ™",

Thus we may assume that 2<t<n—-1.
By making the transformation z+—u+vp?~! with 1<ugpt~!, 1<v<p, we have

B St ) St

u=1v=1 u=1

where the final summation includes only those u with p|f’(u;c). But since
(p) C1, 262, cery nc'n) < n(pa Clyeny cn) =n,

the congruence f’(u;c)=0 (mod p) has at most n(n—1) solutions (mod p), say &1,...,€n.
Thus

Z Zpe( Sansi )) <n(n-1)p*"
w=1 j=1
and this completes the proof of the lemma.

We are now able to establish a suitable estimate for a moment of Fj(a) of use on

the major arcs.
Definition 4.9. (i) Let m; denote the set of points in [0, 1] with the property that
whenever there are a€Z and g€ N with (a,g)=1 and

gPr Q¥R Dja—a/q| <1, (4.24)

then ¢>P. Further, let D;=[0, 1]\ m;.

(i) When (a, ¢)=1, let MM;(g, a) be the set of e in [0, 1] for which (4.24) holds. (Note
that the (g, a) with 0<a<g< P are disjoint.)

(iii) Define F}(a) to be the function of c taking the value zero whenever a€m;, and

ZZ 17'] q,a h m)
1+|ﬂ|h1 h; PR=0)1/(k=5)”

whenever a€9;(g,a) and 0<a<g<P. Here 7; is defined as in (4.18), and we have
written 3 for a—a/q.

by
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LEMMA 4.10. Suppose that 1<j<k—3 and t=2k—j+1. Then

1
/ |F7 ()|t da < P(PH,; M;)'Q;*
0

M

Proof. The integral to be estimated is

Z Z / Pq~'7;(¢g,a,h,m) td
M; (q,a) (1+|a—a/q|h1 by PF—3)1/(R=5)

q<P a=1
{a,q)=1

Let h=h; ... h;, and for a typical ¢ from the summation, put r=q/(q, k). Write r=
Hle r;, where the r; (1<i<k—j) are defined as in the statement of Lemma 4.8. On
recalling the definition of ¥, and applying Lemma 4.8 to (4.18), we obtain

k—j
7j(g,a,h,m) < ¢* (g, B)ry”* [ ri /"
=2
Hence b |
Pqg~'7;(¢,a,h,m lbe & ~
< ~ &« P M;J(q, H, 4.
Zm:fh':(1+|a—a/q|h1...thk—J)l/(k—J)<< 3J(g, Hy), (4.25)
where 1/2 L
V2 kg -1
H)= i
Ja )= (1+|a a/q|hPk=3)1/(k=3)

h<{H

Here, of course, the r; depend implicitly on both ¢ and h. We may classify the values
of h in the last summation according to the size of d=(g, h). Thus we deduce that

H< Y 1/2]'[ S/ Hd'? (4.26)
1 (1+[a—a/qHP )1/’ '

dr=q

where r= H 1 J7;, as in the statement of Lemma 4.8. Therefore, by (4.25), (4.26) and
Holder’s inequality, we obtain

3 Z / \F? (@) |'de < P*(PH; 1) Jo(q), (4.27)

a<P a=1 YMMj(g.a)
(a,q)=1

where

[ @
1= || Teaar
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and
1 2k_j i)
LOEDIDY (d—lr; 2T /1).
=2
We have
J<LQ;*. (4.28)
Also, on noting that

k—j t
{ORDINDY r(r;” H/)

d<P r<P i=2

k—j oo
< H (1+pl—t/2+zpz—t+ Z pl—tl/(k—]))’
p<P i=2 i=k—j+1

we deduce that for some fixed s, we have

o(g) < [[ 1+~ < Pe. (4.29)
p<P

The lemma now follows on combining (4.27), (4.28) and (4.29).

5. The iterative scheme for fifth powers, I
The iterative scheme for s>6 is rather more complicated than that for s<6. We defer
the treatment of the former cases to §6. For s=1 and 2 we have the classical bounds

So(P,R) < P*+¢,

and for s=3 and 4 we use the results of Theorem 1.4 of Vaughan [9]. These give

. . 4420
/\3=3+20 and A= —1_—0,
where 6 is the smallest non-negative root of the polynomial 3—426—278%—-4263. Thus
we obtain A}<3.136258 and A} <4.438657. We display below the iterative procedures we

adopt for s=5 and 6.
§=35.

g f3 Fif} Faf§ (F3)Y4(£8)3/4

|

10
1 -



FURTHER IMPROVEMENTS IN WARING’S PROBLEM 183

R 30— Rufl0 ——= Fuff = (F{J 402 (32

12
1

In what follows, we let (X;) be an iterate of the sequence converging to (A\*), and
we write @ for ¢; and ¢ for ¢,. Note that to obtain a reasonable initial iterate (\,), we
may use the values given by Lemma 3.2 of Wooley [13].

(i) s=5. By Theorem 3.11 (1), case (i), we have

1
/0 |Fo(a)|* da < P2 H3MS3. (5.1)

Then proceeding as described in §2, using the iterative sequence for s=5 given above,
the equations for A5, 6 and ¢ are determined by

PH, M, MyQ) ~ (P2(HyHy My My)®)* (@2 )4, (5.2)
PM QY ~ (P(MHY )2 MEQY Q) /2, (5.3)
P ~ PMBQJN. (5.4)
On writing
5=3-X;, (5.5)

equation (5.2) leads to the equation

§(1—0—¢)+0—44=0,

and hence 6+5(1-6)
$= —a5 (5.6)
Meanwhile, equation (5.3) leads to the equation
21460+ 20;(1-0))=As(1-8)+ A\5(1—0— ) +3—80+6¢.
On writing £=As —2)] + A3, we obtain
E(1-0)+1-100=(\;-6)¢. (5.7)
Write N6
=28 (5.8)

= axs
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Then (5.6) and (5.7) yield
1+€—ab

T 10+E+a(1-8)
By (5.4), the next iterate for A5 is therefore given by

E=A(1-6)+1+86.
The above iteration process converges to Af, with
A =A5(1—65)+1+865,
where 85 is a root of the equation given by substituting the expression (5.9) into
(10+&*+a{1-6))8s =1+E* —ab,
with £* =X —2A;+ 3. We find that
E=X3+1+805—X;(1+85),

and so
(8=ADOZ+(3+A5+a(1-6))85s—(2+ A — A —ab) =0,

(5.9)

(5.10)

with § and a given by (5.5) and (5.8), respectively. It transpires that 65 is the positive

root of equation (5.10), whence A <5.925080.

(ii) s=6. We observe that the estimate (5.1) holds once again. Then proceeding as

described in §2, using the iterative sequence for s=6 given above, the equations for Ag,

8 and ¢ are determined by

PH1M1M2Q;)>,‘; ~ (Pz(H1H2M1M2)3)1/4 (Qé\; )1/2 (Qéc)l/‘i,
PMQ}F ~ (P(M1H1)2M§Q;; '1\6)1/2,

P ~ PM}°Q}5.
On writing §'=} A%+ 1A¢— A}, equation (5.11) leads to the equation
8 (1-0-¢)+0—4¢=0,
and hence
b= 0+6'(1-6)
T 448
Meanwhile, equation (5.12) leads to the equation

2(14+0+25(1—6)) =A6(1—-0)+2;(1-0—¢)+3—80+84.

(5.11)
(5.12)
(5.13)

(5.14)
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On writing £'=Xg —2A{+ A}, we obtain

E'(1-0)+1-108=()\;—8)¢. (5.15)
Write N8
r_ N
* T are

Then (5.14) and (5.15) yield
o 14E&8-d¥
C10+E+a’(1-8)°
By (5.13), the next iterate for Ag is therefore given by
A =Ai(1-6)+1+106.

The above iteration process converges to Ag, with
A =A5(1—66)+1+1066, (5.16)
where f¢ is a root of the equation
(10+E*+a*(1—6%))06 =1+E* — a6,

in which N g
6 = %Ag+§,\g—/\;, EX=XNg—2)\ 4], a'= _—416* )
and in §*, £* and o* we substitute for A} from (5.16).

The root of the resulting cubic polynomial can be found directly. Alternatively, one
may continue the iteration process to obtain a good approximation to the root. Thus,

by (5.16) we obtain A§<7.541755.

6. The iterative scheme for fifth powers, 11

We display below the iterative procedures we adopt for s=7 and 8.

s=T.
R fiP—— A f12 — B fi? == (F)(f7?)
12
14
s=8.

F fot— R fi* — R fy* = (F)(£2?)

|

16
1 -

The iterative procedures for A\; and Ag must be taken together. Before we go on to

explain the iterative procedures themselves, we shall require a lemma.
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LEMMA 6.1. Let t be an integer with t>3. Suppose that 1275, ¢2<5¢1—3,
U < min{M,, PH  H; %, Q}/*, Q3/® M; 1%/¢}, (6.1)

and
Z = Py (P32 10k L/t (6.2)

Then )
/ |Fa(0) f2(@)'?] dae < P* My Hy(Z71/1Q5% + QP M54,
0

Proof. On using standard Weyl differencing, we have

|Fy(a)|* < P(MHy)?+ My Ha |G o), (6.3)
where
Gla)=3_ > J(a),
h h<P
and

J(a):Z Z e(&a¥s(2z+h;2h, h;m, 1)).

m 0<z<Pa—h

Here the summations are over m and h satisfying (2.1). But by (3.1),

where

K(a;h,h)=

’

3" e(60ahhihy(22+h)?)

0<z<Py—h

and for i=1,2,

Li(o;h, h) = ‘Z e(80ahhy hyh?m!®)

Write C(M) for A(MR, R)N(M, MR)]. Recalling (4.1) and (4.2), we find that by Holder’s
inequality, we have
G(a) < D(a)'/? Ey(@)'/* By () /712, (6.4)

where

D(a)=Y_ K(a;h,h)? < Dy(a; P, ),
h,h

El(a) =ZL1(a; h, h)2t <<PsEt(a;80H2P2,2H1,M1;C(M1)),
h,h

Ey(a)=)_ Ly(a;h, h)**(D « PE (M R)* "V Ey (a3 160H, Py, Hy, My; C(My)).
h,h



FURTHER IMPROVEMENTS IN WARING’S PROBLEM 187

We now recall Definition 4.9. Suppose that a€m;. By Dirichlet’s theorem there
exist b€Z and reN with

(b,r)=1, r<P7'Q} and |ar-b<PQ;°. (6.5)

On noting that our assumptions on ¢ imply that P<P~1Q3, we deduce from Lemma

4.1 that 5
Q3

D(a) <P <r+Qg|ar—b|

+P—1Q3>.
But a€msy, so either r>P or @3|ar—b|>>PR~1% and hence
D(a) € P71Q5 <« P?t¢H,. (6.6)
Next we observe that our hypotheses on ¢ imply that
P,HMPH3 > P Y (MPM;Y)S > P8 and M > PY/3,
Then we may apply Lemma 4.6, with Y=P!/3 and X=P~1Q3, to deduce that

Ei(e) < PHEHMP10((r+Q3lar b))~ /3 4+ P79)

< P, MO, ©0

Finally, since U < M,, we have U%< P, and hence
U< PTIQI<UTQS.
Then by Lemma 4.3, we have

Ea(e) < P H M D (r 4+ QSlar—b)) /54U

< PYeE,MIT/ Dyt (¢

Thus, by (6.3), (6.4), (6.6), (6.7) and (6.8), we have

sup |Fa(a)| < P\ HyMa 214, (6.9)

acmy

Now suppose that a€91;. By Dirichlet’s theorem there exist a€Z and geN with
(a,q)=1 and satisfying (4.24). Then since a¢my, such a and ¢ exist with 0<a<q<P.
Thus, by Lemma 4.7 we have

Fy(a) < F3(a)+ P34 HyM,, (6.10)
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where Fj () is defined as in Definition 4.9 (iii). Our hypotheses on ¢t and ¢ imply that
Z1/4 < (Pl+1/3tM2)1/4 g P1/3,

and so by (6.9) and (6.10) we deduce that
1
/ \Fy() fa(@)'?] dov < P Hy i, 2 -1/4Q 41, 6.11)
0

where
I= [ 1Fj(@)fa(a)'?|do.
M
But by Hélder’s inequality,
1< I3, (6.12)
where

1
J1=/ fa(@)[®da and J2=/ I3 ()]* da.
0 M2

We have J; <<Q§\8+E, and by Lemma 4.10 we have J2<<P5(PI?2]\712)4Q{5. The lemma
now follows by (6.11) and (6.12).

We are now in a position to describe the iterative processes when s=7 and 8. As in
§5, we let ()\s) be an iterate of the sequence converging to (A}), and we write 8 for ¢,
and ¢ for ¢s.

(i) s=7. By Lemma 6.1 we have

1
/ |Fa(a) fo()'2] da < P(Uy+U3), (6.13)
0
where
Uy = PMyH,Z71/4Q), (6.14)
Uy = PMy Hy Q4 =5/4, (6.15)

and we must take t>3, ¢12% and ¢2<5¢1—§. Here we take Z to be as large as is
consistent with the conditions of Lemma 6.1. Suitable values of u; may be obtained by
means of Lemma 3.2 of Wooley [13]. Using these values, it transpires that a good choice
for t is 22, and we may take uop=234.228489.

For the moment, suppose that our ultimate choices for § and ¢ imply that U; is
the dominating contribution. Then proceeding as described in §2, using the iterative
sequence for s=7 given above, the equations for A7, 8 and ¢ are determined by

PH M MyQ) ~ PMy My Hy Hy Z71/4Q)% (6.16)
PMiQ} ~ (P(My Hy P MPQ)E Q) %, (6.17)

PM~ PMI2QJ. (6.18)
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Write A=A;—7 and é=pq2—34. Suppose now that our ultimate choices for § and ¢
imply that (6.1) holds when
U=Q5/om; e, (6.19)

The equations (6.2), (6.16) and (6.17) then yield

21(5-249-56)  1-380
132 66 °
100 =1+(5—A)¢.

4-206=1+

Therefore
_ 289+105604-660

2136 '

and hence
3581 —289A

T 20835+ 105A—66(5—A)
Calculating 6 and ¢, we find that §<0.163961 and ¢$<0.143465. A simple calculation
now shows that our choices for U and Z were indeed justified.

0

(6.20)

We must now check that U is indeed the dominating contribution. This will follow
from (6.14) and (6.15) provided that

Z_l/4Q3; > Qg3)\s—5)/4'

This inequality holds provided that

21(5-24¢—560) 1-—360

405 +5— —~0— 1
(40§ +5-3Xg)(1 ¢)>1+ 132 56

(6.21)

In order to check that the condition (8.21) is satisfied, we shall plainly require a suitable
estimate for Ag. We can, however, make do with a relatively poor estimate, and to this
end we will make use of inequality (k—2) of §4 of Vaughan {8]. Thus it suffices to use
the iterates

344y, 125 _ 34 139
M=t As=FAt+ T

whence we deduce that Ag<11.10486. In view of our choices for # and ¢, this is enough
to show that U; is indeed the dominating contribution.
Since the value of 8 given by (6.20) is independent of A, with s>6, we deduce from
(6.18) that
T=As(1-60)+1+126.

Thus we obtain A7<9.272729.
(ii) s=8. Initially, we may proceed precisely as in case (i), using the estimate
(6.13). For the moment, suppose that our ultimate choices for § and ¢ imply that Uy
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is the dominating contribution. Then proceeding as described in §2, using the iterative
sequence for s=8 given above, the equations for )\g, # and ¢ are determined by

PH, My MyQ)° ~ PMy My Hy Hy Z7Y/4Q)% (6.22)
PMQY7 ~ (P(My Hy )P MPQ) Q) /*, (6:23)
P m PMMQY . (6.24)

Write E=Xg—2A5+ )], Also, as in case (i), write A=X{—7 and §=p92—34. Suppose
that our ultimate choices for # and ¢ imply that (6.1) holds when U satisfies (6.19). The
equations (6.2), (6.22) and (6.23) then yield

21(5—24¢—59)+1—369
132 66 ’
100 =1+€(1-8)+(5—-A)¢.

4-20p=1+

Therefore
289+1058+660
o= 2136 ’ (6.25)
and hence
-289A
3581+2136& 289 (6.26)

~ 20835+ 2136E+105A—66(5—A)

Given an iterate for Ag, we therefore obtain the next iterate as follows. We compute 8
and ¢ from (6.25) and (6.26). We then check that the choice of U given by (6.19) is
indeed permissible, and check that U; is the dominating contribution. The latter follows
provided that (6.21) holds. The next iterate for Ag is then given by (6.18), that is, by

L= AN(1—6)+1+149. (6.27)

To succeed with this iteration process, we need to start with an initial iterate for Ag
reasonably close to A§. For this purpose we can use inequality (k—2) of §4 of Vaughan [8]
once again. We therefore take

— 34ys_ 139
A8—41/\7+ 41

A computation now shows that A3 <11.077363. We note that A§ can be calculated directly
as the larger root of the quadratic equation obtained by eliminating  between (6.26) and
(6.27), equating Ag and Ag and recalling that A\g occurs linearly in €.

We summarise in the Appendix the converged values of A* as computed to 15 sig-
nificant figures and rounded up in the last figure displayed.
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7. The proof of Theorem 1.1 for fifth powers

191

We shall prove Theorem 1.1 for fifth powers by using a variant of the Hardy-Littlewood

method. In this section our notational demands are somewhat different. We suppose

that &, 7 and 7 are sufficiently small positive numbers, with n and 7 depending at most

on ¢, and ¢ and 7, respectively. In addition, we suppose that n is sufficiently large in

terms of €, n and 7. We adopt the convention that whenever § appears in a statement,

then the statement holds for some positive number § independent of n. Write

P=n!5 R=P" o=i and §=

Bl

We let Mj, ..., Mg be real numbers satisfying
PP < M, < PO
and for convenience write
Qs=PM;' and H,=PM;".
Consider the number r(n; M)=r(n; My, ..., Mg) of solutions of the equation
4Py 4+ Sy =0,
with the p, primes satisfying
ps=—1 (mod 5), M,<p,<2M,,
and with
1<z,y<P, z;€A(P,R) (1<j<7), y;€AQsR) (1<sK8).
We shall show that

Z Zr(n; M) > ni?/5,

My Ms

where the multiple sum is over all choices of M, of the form

M,=2"P?

(7.1)

(7.3)

(7.4)

(7.5)

and satisfying (7.1). Since ps> R, each solution of (7.2) gives rise to a unique representa-

tion of n as the sum of 17 fifth powers of positive integers in the sense that the ordered

17-tuple z,y, 11, ..., 7, P1Y1, ---, PsYs is unique. Hence the verification of (7.4) is sufficient

to establish Theorem 1.1 when £=5.
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We henceforth assume that the M, are of the form (7.5). Let

F(a)= Z e(azs), gs(a): Z e(axs)a

1<e<P z€A(Q.,R)
flay=" D" elaz®), hs(o) ngaps
z€A(P,R)

where the p, satisfy (7.3). Then

r(n;M)=/Ofl(a)]-'2(a)e(——an) do

where

Fi(e)=F(a)f(a
.7'-2((1 H

Let C=25-32%, M=P%t" and Q=PM~!. Write

),

I: (C_IPI—GQ—S, 1+C_1P1—GQ_5].

Let m denote the set of real numbers « in Z with the property that whenever

a€Z, geN, (a,¢)=1 and |ag—a|<C'P77Q 5,

then one has ¢>P!~"M?®. Let 9 denote the major arcs Z\m; that is, the union of the

intervals
M(q,a) ={a:lag—a|<C~'P'77Q%},

with 1<a<g< P77 M3 and (a,q)=1.
We first consider the minor arcs m.

LeMmaA 7.1. We have

/ Fi(a)Fz(a)e(—an) da < P24,

Proof. By Schwarz’s inequality we have

/ .7:1 .7:2 om) da| <

(/ |F1( |2da>1/2</|]-'2 Pda>1/2.

(7.9)



FURTHER IMPROVEMENTS IN WARING’S PROBLEM 193

The first integral on the right-hand side is
1
[ 1F@2 sy da P, (7.10)
0

by using the conclusions of §6 (see, for example, the note at the end of §3 of Wooley [13]).
Also, by the argument of Lemma 3.2 of Vaughan and Wooley [10], we have

1 16
/ (Z Ig(api)l) do < M, P37+,
0
Ps

where
)\g:)\7(1——0)+1+140. (7.11)

Note in particular that Af <11.079825. Using this estimate, we may follow through the
argument of §4 of Vaughan and Wooley [10] to obtain

8
/ | Fale)|? da < [[(MI1,+7,)V°,
m

g=1

where
— +y5r
.)3<<Qf 202 pf, prs +57+e

and
I, < (PM, +(PM3)1_2"+€HS)Q;\B+E.

A little computation reveals that
/lfz(a)P da < P13~41 (7.12)
m

with §; >0.082. The lemma now follows on combining (7.7)~(7.10) and (7.12).

We now consider the major arcs 9. Let
v(B)= Y 3o/ e(ba)
1<zgn

and

S(g,a)=>_e(ar®/q).

r=1

Define V(a) on 9 by taking
V(a)=q7"S(q,a)v(a—a/q),

whenever a€M(qg,a). Since the M(q,a) with 1<a<g< P~ M? are disjoint, it follows
that V() is well-defined.
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LEMMA 7.2. We have
8

Z r(n; M) = / V(a)?f(a)T ( H Z hs(a)) e(—an) da+O0(PY*7%).
M m s=1 M,
Proof. Write A(a)=F(a)—V(a). Then by Theorem 2 of Vaughan (4], we have
Ale) € ¢¢(g+P%|ag—a))}? (aeM(q,a)). (7.13)
Hence, for a€9M we have A(a)< P?¢(P'~?M5)}/2. Then by Schwarz’s inequality,
/Sm]A(a)? F(@)hy()®|da < Pot4e MO g 2 1), (7.14)
where L L
J1 =/ |f()]**da and J; =/ |hs(a)|*® dav.
By the conclusions of the ;))revious section, ’
Ji < PAFe, (7.15)
Also, it follows by the argument of Lemma 3.1 of Vaughan and Wooley [10] that
T P)\'s*'+5'r+5’ (7.16)
where A is given by (7.11). Then the right hand side of (7.14) is
< Pl—a+4eMs(P,\7+sP,\;+51—+s)1/2 < P26,
Next, by appealing to Lemma 4.6 of Vaughan [5], we obtain
V(o) < P(q+P°lag=al)"'/* (a€M(q,0)),
and hence, by (7.13),
V(e)A(a) < P+2(P1-7 M%)3/10 (o e M(q,a)).
Therefore, as above, we obtain

/ [V(a)A(a)f(a) hy(a)®| da < P1H2E(PY=0 MO)3/10 312 J1/2  p12-6 - (7.17)
m

by (7.15) and (7.16). Collecting together (7.6)—(7.8), (7.14), (7.17) and Lemma 7.1, the
proof of the lemma is completed.

Before proceeding to estimate the contribution of the major arcs, we establish an
auxiliary lemma. Let

1 1
K1=/ |f(a)|*®da and Kés):/
0 0

18
da. (7.18)

> h(a)
M,
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LEMMA 7.3. We have

K <PB and K{”<P3 (1<s<8).

Proof. Write fi(a) for f(a), and fa(a) for 3, hs(a). Let

Fia)= ) elaz®) (i=1,2),

1<e<P;

with P;=2i"1P. Also, for the sake of convenience, write Ko for K§°. Then by considering
the underlying diophantine equations, we have for i=1, 2,

1
Ki< [ 1Fi@) (a)'| do.
0
We apply the Hardy-Littlewood method. Define

W(g,a) = {a:lga—a| < 5P},

7

for 1<a<g<P and (a,¢g)=1, and define 28 to be the union of these arcs, and w=

(P74, 1+4 P74 \W. Then by Weyl's inequality, we have sup,¢,, |Fi(a)| <P+,

Hence
K; < P2-20+2. pA\ite / |Fi(a)? fi(a)*®| da, (7.19)
w

where A\f (which satisfies \§ > Ag) is given by (7.11). By using Lemma 5.1 of Vaughan [8]
combined with Holder’s inequality, we deduce that

/thi(ani(a)lﬂda« ( /mm-(anwda)l/g ( / @ da)8/9<<P13/9K5/9-

Then by (7.19),
K; <<P13‘6+P13/9K§/9,

and hence K; < P3, which completes the proof of the lemma.

We now attend to the matter of pruning the major arcs. Let W denote a parameter
to be chosen later, and let 91 denote the union of the intervals

N(g,a)={a:|ag—a| < WP—5},

with (a,¢)=1 and 1<a<g<W. We assume that 1<W < P/2, so that MCOM. Let P=
MA\N.

14-950233 Acta Mathematica 174. Imprimé le 20 juin 1995



196 R.C. VAUGHAN AND T.D. WOOLEY

By Holder’s inequality combined with the methods of §4.4 of Vaughan [5] (cf. Lem-
ma 5.1 of Vaughan [8]), we obtain, on recalling (7.18),

rormr oo (fsef(ores]

<<(P13)5/6(P7 66)1/6<<P12W— .
By the methods of §5 of Vaughan [8], when W <log P, ¢<log P and (a,q)=1, we

have

s= l

S 0u(ap) =47 $(a.0)us(a-0/a) +O( o p 4+ Plag—=a) ),

Ps

where

in{lo, z =1/ 2/
wi@= 3 minlonPe )Iog2) L mapsy(BE DM ) (g,

<3Py 4log M, ‘57 log R

and o(z) is Dickman’s function, defined for real = by

o(z) =0 when £ <0,
o(z)=1 when 0 <z <1,
¢ is continuous for z > 0,
o is differentiable for £ > 1,
zo' (z)=—p(z—1) for > 1.

Also, by Lemma 5.4 of Vaughan [8], we have

@) =7 S(a.a)u(a=a/a)+0( - 5 e+ Plag-a)

and
w(B) < P(1+P%||]})~*/5,

where

wi)= Y. ém"“/so(;‘l’fg",’z) (8m).

R8<m<gn

Then as in §5 of Vaughan and Wooley [10], we deduce that when ¢ is sufficiently
small, and W =(log P)?, then we have

]V(a)zf(a)7(Hh (a))e( —an) do = &(n)J(n)+O(P2(log P)~879),

s=1
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where S(n) is the usual singular series in Waring’s problem,

=Y Y (¢7'S(q,0)) " e(~an/q)

q:l a=
(a,9)=1

and

J()=/v(ﬂ (Hus ) Bn) dg.

Now by Theorem 4.6 of Vaughan [5], we have 1€ &« 1, and a simple counting argument
shows that J(n)>n!?/5(logn)~8. Thus

8
Sor(mM) =3 [ Vi) @) ( I] hr(e) e(~an)da+O(P(og P ) > n,
M M YN s=1

and this completes the proof of Theorem 1.1 for fifth powers.

8. The iterative schemes for k>6: second differences

In the remainder of this paper we shall restrict attention to those k¥ with 6<k<9. As
usual, for s=1 and 2 we have the classical bounds

Sy(P,R) < P°*¢,

and for s=3 and 4 we use the results of Theorem 1.4 of Vaughan [9]. These give

4+(k—3)8

N=3+20 and Nj=———,

where 8 is the smallest non-negative root of the polynomial
—(3k% —(e+11)k+e+22)0— (k(e+15) —3e—48)6* — (2k+2e+32)6°

and

0 when £=6,7,9,
1 when k=8.

The values of A and A} obtained in this way are listed in the Appendix.
In what follows, we let (A;) be an iterate of the sequence converging to (A}), and
we write 0=¢; and ¢=¢,. Note that to obtain a reasonable initial iterate (\,), we may
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use the values given by Lemma 3.2 of Wooley [13]. Our argument divides into cases

according to the values of s and k.

(i) s=5 and k=6,7,8. In these cases we adopt the iterative procedure displayed

below.

B 1§ > o} — Fuff = (F)*/(F}) O (F0)/°

10
1 -

Let
{ 0 when k=38,
e=

1 when k=6,7.

Then by Theorem 3.10 (Ib), case (i), when k=6, 7, and Theorem 3.10 (II) when k=8, we

have )
/0 |Fa(e)? da < P, B2

(8.1)

Also, by Theorem 3.11(I), case (i), when k=6, 7, and Theorem 3.11 (II) when k=8, we

have .
/0 |Fo(a)|* do < PP H3ME .

(8.2)

Then proceeding as described in §2, using the iterative sequence for s=5 given above,

the equations for A5, # and ¢ are determined by

PH, M, MyQy3 m PY2(Hy Hp)3/5 (M, My) ! =2¢/5(Q)¢)
PM;Q}* =~ (P(My Hy ) MEQ) Q%) /2,

P~ PMQy:.
On writing §=6A5 — 1013, equation (8.3) leads to the equation
8(1-0—¢)+4(k—e)0—3—(6k+4e)p =0,
and hence _ A(k—e)0+5(1-6)—3

¢ 6k+4e+6
Meanwhile, equation (8.4) leads to the equation

2(14+0+X5(1—0)) = As(1—0) + A;(1—0— ) +3— (2k—2)0+6¢.

On writing £=X5—2A;+ A3, we obtain

E(1-6)+1—2kf = (A\}—6).

3/5
k)

(8.3)
(8.4)
(8.5)

(8.6)

(8.7)
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Write
oo A —6
" 6k+de+6
Then (8.6) and (8.7) yield
1+&+a(3-9)

T 2k+E+a(d(k—e)—6)

From (8.5), the next iterate for A5 is therefore given by
s =A3(1-0)+1+86.
The above iteration process converges to A}, with
A;=A3(1—65)+1+865, (8.8)

where 5 is a root of the cubic equation obtained by substituting the expression (8.8)

into
(2k+E* +a* (A(k—e)—6))0s = 1+ E* +a* (3—6%),
with
B = BAT—10M%, £ = A'—2AI4N, qf= 2376
e ® R ~ 6k+4e+6*

The values of Af obtained in this way are listed in the Appendix.
(ii) s=6 and k=6,7,8. In these cases we adopt the iterative procedure displayed
below.

F(? (}O.r F1f110 szg:(Fg)l/al(f%())lﬁ(lez)l/al

12
17

We observe that the estimates (8.1) and (8.2) hold once again. Then proceeding as

described in §2, using the iterative sequence for s=6 given above, the equations for \g,
8 and ¢ are determined by

PH1M1M2Q;\; e P1/2(H1H2)3/4(M1M2)1—e/4 (Q;\; )1/2 (Qée)l/ti, (89)
PM QY ~ (P(My Hy )P MEQy Q0)' 7, (8.10)
P~ PMIOQYS. (8.11)

On writing §=2A%+X¢—4)}, equation (8.9) leads to the equation

8(1—0—¢)+(k—e)f—(3k+e)p =0,
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and hence (h—e)9+5(1—0)
—e)0+ -
¢= 3k+e+6 (8.12)
Meanwhile, equation (8.10) leads to the equation
2(1+0+25(1-6)) =26(1—0)+ A5 (1—0— @) +3—2(k—1)0+8¢.
On writing £=Xg—2A;+ A}, we obtain
E(1-6)+1-2k0=(A;—8)¢. (8.13)
Write
o= A;-8
© 3k+eté
Then (8.12) and (8.13) yield
_ 1+€—-ab
" 2k+E+a(k—e—6)’
From (8.11), the next iterate for Ag is therefore given by
6= (1=0)+1+106.
The above iteration process converges to Aj, with
Af =Ai(1—6g)+1+1066, (8.14)

where f¢ is a root of the cubic equation obtained by substituting the expression (8.14)
into
(2k+E& +a*(k—e—6%))0g =14+E"—a™6",
with
B =N —4N], = A—2MI4A], =S
3k+e+6*

The values of A§ obtained in this way are listed in the Appendix.

(iil) s=5,6 and k=9. In these cases we use the iterative procedures displayed below.

s§=H.
F§f3 3% Py f§ == (F3)'/*(f}*)1/?

|

10
i -
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F3 % — 1 f1' — Py f§ == (F§)V/*(F3)"/°(f3%)*/*
1l2
fal
The iterative procedure is now more complicated since both schemes depend on both Ay
and >\6-

By Theorem 3.10 (Ib), case (i), we have estimate (8.1) with e=1. Also, by Theo-
rem 3.11 (IT), we have estimate (8.2) with e=0. Thus we find that the initial arguments
of parts (i) and (ii) of this section hold, but with (8.3) replaced by

PH, My My Q)¢ ~ PY2(Hy Hy My M) Y2 (Q)0 )2,
and (8.9) replaced by
PHlMlMgQ;‘; ~ P1/2(H1H2)2/3(M1M2)5/6 (Q;G)
Writing 6, ¢, for ¢1, @2 for each s, we find that the next iterates for (As, 85, ¢s) (s=5,6)

are given by

2/3

5 =A5(1—65)+1+86s,

with
b5 = (k—1)05+65(1—05)—1
5= k+1+65 ’
s — 1+85~a5(1—65)
8T 2%k +Es—as(k—1-65)’
Es = A5 —2A1+ )],
b5 = Ag —2)3,
673
N 146
and
,62)\5(1—06)+1+1006,
with

_ (2k—1)85+66(1~05)—1
- 4k+1+66 ’
_ 1+&—ap(1-66)

- 2k+E&—ag(2k—1—6g)’
E6=A6—2A5+ A},

®s

O

66 =4Ag—6AL,
o= M
" Ak+1+66°

The converged values for A} and A§ obtained in this way are listed in the Appendix.
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9. The iterative process for k>6: third differences

When k>6 we need to make use of differences higher than the second. As usual we
let (XAs) be an iterate of the sequence converging to (A}), and to simplify formulae we
write 8=¢;, ¢=¢2 and Y=¢3. Note also that we may use the A} already established
for smaller ¢, and Lemma 3.2 of Wooley [13] to provide initial values for the A; under

consideration.
Let

0 when k=9,
1 when £=6,7,8.
By Theorem 3.10 (Ib), case (i), when k£=7,8, and Theorem 3.10 (II) when k=9, we have

1
/ |Fy(a)[? da < PY+ A2, 9.1)
0
Also, by Theorem 3.10 (Ib), case (iii), estimate (9.1) also holds when k=6 provided that

0+(k+1)(d+9) < 2. (9.2)

Further, by Theorem 3.11 (I), case (i), when k=8, and Theorem 3.11 (IT) when k=9, we
have .
/ |Fa(a)|* da < P2+ A3 R13-. (9.3)
0

Also, by Theorem 3.11 (I), case (iii), estimate (9.3) also holds when k=6 and 7 provided
that inequality (9.2) is satisfied.

We divide into cases according to the values of s and %.

(i) s=7 and k=6, 7. In these cases we adopt the iterative procedure displayed below.

F {5 —— FLfi? —— P2 f}° — F3 f§ == (F})"/(F3)"/5(£3%)*/3

L

14 12
1 2

As one discovers on performing the iteration described below, the values of 8, ¢, ¢ arising
when k=6 and 7 satisfy inequality (9.2). Then proceeding as described in §2, using the
iterative sequence above, the equations for A\, 8, ¢ and vy are determined by

Pﬁ2M2M3Q§; R~ P1/2(ﬁ3M3)2/3Q§'\5/3, (9.4)
PHlMleQQ‘; R~ (P(ﬁ2ﬂ2)2M38Q;;Q§;)1/2, (9.5)
PMyQ) ~ (P(H My MPQ)Y Q%) 7, (9.6)

P~ PMI2Q). (9.7)
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On writing §=4)\} —6\%, equation (9.4) leads to the equation

§(1—0—d—1)+(2k—2)(8+¢) — (4k+2)yp—3 =0,

and hence (k-2 8)(6+4)—345
—2-6)(0+4)—3+
V= 4k+2+6 ' ©8)
Similarly, on writing
Ea=A5—2);+ )], (9.9)
equation (9.5) leads to the equation
E(1-0—¢)+1—2kd=(\;—8)y. (9.10)
Write
o= ;-8
27 4k+2+6
Then (9.8) and (9.10) yield
1+&(1-0)+a2(3—-6—(2k—2-6)0)
= 11
¢ 2+ €5+ 0z (2k—2—0) (9-11)
On writing
E1 =X —=2)5+ 23, (9.12)
equation (9.6) leads to the equation
£1(1-6)+1-2k6={);—10)¢. (9.13)
Write
o= Ai—10
T %kt 6+ (2k—2-6)
Then (9.11) and (9.13) yield
- 1+51—01(1+52+a2(3—6))
T 2k+& —a1(E2+0x(2k—2-6))°
From (9.7), the next iterate for A; is therefore given by
A =A5(1—-60)+1+126. (9.14)

The values of A; obtained through the use of this iterative procedure are displayed in

the Appendix.
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(ii) =7 and k=8, 9. In these cases we adopt the iterative procedure displayed below.

B £ —= Fif}? szo Fyf§ == (R (E) 4 ()7
14 12
1 2 -

The argument of part (i) of this section holds, but with (9.4) replaced by
PIT, My @) ~ PR S5 QU
On writing §=8A7 —14A}, this modified relation leads to the equation

§(1—0——1p)+(6k—6e)(6+¢) — (8k+6€)tp—11 =0,

and hence
b= (6k—6e—6)(0+¢)~11+6
o 8k+6e+6 '
Write
o A8
27 Bk+6e+6

Then proceeding as in case (i), we find that

_ 14+E(1-0)+ay(11—6— (6k—6e—6)6)

¢ 2k+E,+ 0z (6k—6e—0) ’

where & satisfies (9.9). Next, on writing

o= A-10
1T 2k+E +ay(6k—6e—0)’

we find that
1+&; —a1(1+£2+a2(11—6))

T 2k+ & —ay(E2+ap(6k—6e—0))’

where &; satisfies (9.12). With these definitions, the next iterate A} can be calculated
via (9.14) once again. The converged values of A; are given in the Appendix.

(iii) s=8 and k=6,7,8,9. In these cases we use the following iterative procedure.

R} = il —— Faff? —> Faf}0 = (B (1) 4(34)?

L

16 14
1 2
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As one discovers on performing the iteration described below, the values of 8, ¢, 1 arising
when k=6 and 7 satisfy inequality (9.2). Then proceeding as described in §2, using the
iterative sequence above, the equations for Ag, 8, ¢ and 9 are determined by

Pﬁ2M2M3Q§; zPl/zﬁg/“]\};—5/4Q?’:3/4Q;\;/2’
. s s

PH M My Q% ~ (P(H M) M3°Q7 Q%)

PMQY ~ (P(Hy My )2MEQ Q)

P ~ PMI*Q}.

Let
§=2X5 4+ 25—,
_A-10
2 3 et
E2=XE—2X5+ AL,
AL —12

N Skt Eatan(k—e—0)
E1= Mg —2AH AL

Then, arguing as in previous cases we obtain

(k—e—8)(8+¢)—1+6

V= 3k+e+d ’
6= 1+€2(1—-0)+a2(1——6—(k—e~6)0)
B 2k+&+ag(k—e—06) ’

_ 1+&—a1(1+E+a2(1-6))
- 2k+51—a1(52+a2(k—e—6)) )

The next iterate for Ag is given by

L= A3(1-6)+1+149.

The converged values of A\§ are given in the Appendix.
(iv) s=9 and k=8. In this case we use the following scheme.

FE fo®— P fi° R fy F3f3% == (F35)"/*(£}6)*/*

|

18 16
1 2
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The equations for Ag, 8, ¢ and i are now determined by

PﬁzMzMgQé\; z1)1/2(-FIBJA\I:S):3/4@3)‘;/4’
PH1M1M2Q;; ~ (P(ﬁzﬁz)zMsle;\g Q;;\; )1/2

)

PM;Q}* ~ (P(H My M3 Q1 Q)7)' %,
P ~ PM}*Q}*.
Let
5=3\5—4X,
o Ne—12
27 3k+1+6’
Ey=A5—2M54 AL,
r—14
(631 A7

T 2k+Er+ax(k-1-8)’
&y 21\9—2/\54—)\;.

Then, arguing as in previous cases we obtain

(k=1-6)(0+¢)—1+6

v= 3k+1+6 ’

bm 1+E(1—-0)+az(1-6—(k—1-6)6)
- 2k+Ey+az(k—1-6) ’

6= 1+81—a1(1+82+a2(1—6))

. 2k+£1—a1(82+a2(k—1—6)) '
The next iterate for Ag is given by
Ag=A5(1-0)+1+168.

The converged value of Aj is given in the Appendix.

10. The iterative process for k>7: fourth differences

In the analysis of the iterative procedures involving fourth differences, we follow the
pattern established in previous sections. In our applications of Theorems 3.10 and 3.11,
we require bounds on certain )\gwk). By using Theorem 1.4 of Vaughan [9], in the same
manner as at the start of §8, we find that

A <4.10200120, A9 <4.08542333, A$P <4.03655147, ALY < 4.03192910.
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Then by Theorem 3.10 (Ib), case (ii}, and Theorem 3.11 (I), case (ii), we have the bounds
1 1
/ |Fa(a)|? da < P Hy My, / |Fy(a)|* da < PP HIM3,
0 0
whenever ¢; <O(k), where

©(7)=0.140805, ©(8)=0.124431, ©(9)=0.110718.

It transpires that for k=7,8,9 the condition ¢; <O(k) is always met in the cases consid-
ered here.
(1) s=9 and k=7. In this case we adopt the following iterative scheme.

F3 3% — R fi° Py f3* F3f3* —— Fyfi° == (F{)V4(F)Y3(£16)*/®
18 &6 1i4
1 2 3 -

Thus Ag and ¢y, ..., ¢4 are determined by the equations

PH;MsM,Q) ~ PY2(HyM3)3/8Q3% /8, (10.1)
PH, [, MsQ3% ~ (P(Hals ) MP°Q) Q%)%
PHIMMyQy = (P(H M) MPZ Q) Q3¢ )' 7,
PMQY = (P(H: My MEQ @))%,
P~ PMMQ).
On writing 6=5A§ —8A;, we obtain

(3k—3”5)(¢1+¢2+¢3)—8+5‘

5k+3+6
Next, on writing
E3=A7—2X5+)3, (10.2)
e — A:—10
*7 Bk+3+6’

we have

bs = 1+E3(1 =01 —¢2) +a(8—8—(3k-3~6)($1+¢2))
3= 2k+£3+0£3(3k—3—5) '

Then, on writing

2= A= 203422, (10.3)
_ A —12
B 2k+&E3+03(3k—3-86)’

az
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we find that

¢ _ 1+(€2—a2$3)(1—¢1)—a2(1+a3(8—6—(3k—3—6)¢1))
2= 2k+E2—aa(E3+as(3k—3-4)) '

Finally, on writing

£1= Ao—2A+ AL, (10.4)
_ Ar—14
- 2k+€2—a2(53+a3(3k—3——6)) ’

(23}

we deduce that
14&1—a1(1+&—ay(l +S3+Oé3(8—§)))

T 2k+& —an(Er—az(E3+3(3k—3-0)))

The next iterate for Ag is given by

b1

0=X3(1—¢1)+1+16¢1. (10.5)

The converged value of A is given in the Appendix.
(ii) s=9 and k=9. In this case we adopt the following iterative scheme.

B0 — Ruf" FT“ stz FT:"ﬁ'(Ff)?/w(F:)l/w(fzS)s/g
18 16 14
1 2 3

Thus, on replacing (10.1) by the equation
PI~13]\7[3M4Q;\§ zP1/2(f{41\714)5/9Q3/\9/9’

and leaving the remaining defining equations unchanged, we may apply an analogous
analysis to that used in part (i) of this section. Thus we obtain

(8k—8—06)(¢p1+d2+¢3)—23+6
10k+8+6 !

s =
where §=10X9 —18);. Next we obtain

_ 1+€3(1—¢1—¢2)+a3(23—6—(8k—8—6)(¢1+¢2))

93 2k+E3+as(8k—8—6) ’

where &3 satisfies (10.2), and
A;—10

* = 10k +8+6
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Then we find that

_ 1+(52—agﬁg)(1—¢1)—a2(1+a3(23—6—(8k—8—6)¢1))
B 2k+Ex —a(Es3+az(8k—8—0)) ’

b2

where &, satisfies (10.3), and

_ Ag—12
N 2k+E3+a3(8k—8—6) "

a2

Finally, we deduce that

b= 1+51—a1(1+£2—a2(1+53+a3(23—6)))
YT k4 & —ay (6 —a(Es+as(8k—8—6)))

where &; satisfies (10.4), and

_ A;-14
B 2k+E; —a2(53+a3(8k—8—6)) )

ai

The next iterate for Ag is then given by (10.5), and thus we obtain the converged value
of Aj given in the Appendix.

(iii) =10 and k=7,8,9. In these cases we use the iterative scheme displayed below.

F fo* — Fifi® — F2f3° Fyf5 Fufg? == (FH)V4(£19)*/*
120 f218 :;.6‘

Thus Ajp and ¢y, ..., ¢4 are determined by the equations
Pﬁ3M3M4Q2; zPl/2(1"?41\74)3/4(22/\5/4,
Pﬁ21\712M3Q§\; ~ (P(ﬁzﬂs)zMPQ;; Q:a )1/2,
PHy My M@y = (P(Hy M) MY QY Q37) %,
PMiQY ~ (P(H M M@ @)3)
P~ PMPEQY.

Hence we obtain
(k—1-8)(d1+d2+¢3)—2+6

¢s= 3 T145 , (10.6)
where §=3A5 —4Xg. Next we find that
s = 1+83(1—¢1—¢2) +as(2—6—(k—1-6)(¢1+¢2)) (10.7)

2k+&3+az(k—1-6) ’
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where £3=A5—2X3+ g and

o = Ag—12
5T Sk+146
Then
by = 1+(82—azé'g)(l—¢1)—a2(1+a3(2—6—(k—1—6)¢1)) (10 8)
2 2k+E—aa(Es+as(k—1—6)) ’ '
where £2=A5—2A;+ A5 and
o A —14
2T %+ Etaz(k—1-6)
Finally, we deduce that
—a(1 —ag(1 2—-6
¢1 _ 1+51 al( +€2 02( +53+a3( ))) (109)

2k+81—a1(£2—az(53+03(k—1—6))) ’
where £ =X19—2A§+ 2} and

_ A4—16
T 2k+E—az(Es3+as(k—1-6))

a
The next iterate for Ajg is then given by
lo=As(1—¢1)+1+18¢1,

and thus we obtain the converged values of A}, given in the Appendix.
(iv) s=11 and k=7,8,9. In these cases we use the iterative scheme displayed below.

FR 3 — R f1° Rf3® F3f§® — Fyfi* == (FOY(fi%) 2 (f°)/*
l22 l20 §8
1 2 3

Thus Ay; and ¢, ..., ¢4 are determined by the equations

PH3M;MyQ) 0 PV2(H M, )3 AQ)3 /3 o/,

PH, i MsQ3 ~ (P(Hs M2 MM QP Q)7 )2,
PH1M1M2Q2; ~ (P(ﬁ2M2)2M§6Q;;°Q;; )1/2’
PMlQi‘;O ~ (P(H1M1)2M218Qi\“ Q;g )1/2,

A1 20 N A1
Pt = PMPT Q.
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Hence we obtain ¢4 as in (10.6), but with §=A};+2A§—4A7. Next we find that @3 is as
in (10.7), but with £3=2§ —2A;+ A3 and

oo Ni—14
3T 3k+1+6
Then ¢ is as in (10.8), but with E2=A]y—2A5+A§ and

_ Ag—16
- 2k+E3+as(k—1-86)"

Q2

Finally, we deduce that ¢, is as in (10.9), but with £ =X;; —2A},+A§ and

~ 2p—18
B 2k+&—az(Es+az(k—1-6))°

231
The next iterate for A;; is then given by
A= Alo(1—¢1)+1+420¢,

and thus we obtain the converged values of A]; given in the Appendix.
(v) s=12 and k=7. In this case we use the following iterative scheme.

F3 f§* — P f{? F21‘§° Faf}s ——>F4fs == (F)VA(fI) /(s /2
24 22 20
1 2 K

Thus A2 and ¢4, ..., ¢4 are determined by the equations

P§3M3M4Q:; ~ P1/2I_~I;3/4M2/4Q2Io/4+'\;1/2’
PﬁzﬁzMana ~ (P(ﬁ3M3)2M416Q2;°Q2; )1/2,
PH, M; My Q3 ~ (P(Ha M) M3*Q; Q3%) 7,
PM@}™ w (P(HL M) ME Q) @) /2,
P/\m ~ PM122Q1\;1
Hence we obtain ¢4 as in (10.6), but with §=A}y+2A}; —4);. Next we find that ¢; is as
in (10.7), but with £3=X};—2 5+ A} and

A5—16

= TR i1+6

15-950233 Acta Mathematica 174. Imprimé le 20 juin 1995
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Then ¢, is as in (10.8), but with £;,=A}; —2A},+Aj and

~ A —18
- 2k+£3+a3(k—1—6) '

Q2

Finally, we deduce that ¢; is as in (10.9), but with & =XA;2—2A};+ A}, and

_ 10—20
- 2k+82—a2(€3+a3(k—1—6)) )

a1

The next iterate for A;2 is then given by
12 =M1 (1-61)+1+22¢4,

and thus we obtain the converged value of A], listed in the Appendix.

11. The iterative process for k2> 8: fifth and sixth differences

In the following analyses we once again follow the pattern established in previous sections.

In our applications of Theorem 3.10 and 3.11, we require bounds on certain /\f,”"). By

using Theorem 1.4 of Vaughan [9] and Lemma 3.2 of Wooley [13], we find that

A® <3.0000996, A'®) <3.0076932, A{'® <5.2248045,
ALY < 6.4002032, AL < 6.3497957.

(a) When k=8, by Theorem 3.11 (I), whenever
1 <0.119329 (11.1)

we have the estimate .

/0 [Fs(@)| dos « P HIMT, (11.2)
where

=1 +2{%) - 1<0.002000.

(b) When k=9, by Theorem 3.11 (I), case (iii), the estimate (11.2) holds with 7=0
provided that

I
Y bitk(pr1+¢1)<2, (11.3)

i=1
when I=3,4,5. Also, by Theorem 3.11 (I), whenever

¢1 £0.107131 (11.4)
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we have the estimate L
/O |Fy(a)|* da < PP H3 RT3, (11.5)

where
7=12{" ~1<0.002565.

Further, by Theorem 3.11 (1), case (iii), the estimate (11.5) holds with 7=0 provided
that (11.3) holds when I=3,4,5,6. Under the same condition, by Theorem 3.10(Ib),
case (iii), we have

1
/ |Fa(a)[? da < P+ Hy il (11.6)
0

Naturally, we may use the weaker estimates contained in Theorems 3.10 and 3.11 in
order to obtain a good approximation to the converged solution. In the cases under
consideration, this amounts merely to using a slightly inflated value of 7.

(i) k=8 and s=12,13,14,15, and k=9 and s=12,13. In each of these cases we use
the scheme

F02 023—2 5 F1f12.9—2 5F2f228_4 5 stgs—ﬁ

L

252
2 f5°

—— Ffi T Fafy T —— (B ) (f30)

L

2s—4 25—6
3 4

where
t=[14s-17)], a,=36, b,=3(1-6), 6=t—3(45—20).

It transpires that in the execution of the iterative process described below, the values
of ¢ which arise ultimately satisfy condition (11.1) when k=8, and condition (11.3) when
k=9. Thus (11.2) holds with

0.002000 when k=8,
T =
0 when k=9.
Then A; and ¢ are determined by the equations

Pﬁ41\715Q;;_5 zP1/2ﬁ§/4M§3+T)/4Q(53/4)9A:‘1+(3/4)(1_0)/\:, (11.7)
. ~ A ~ o~ i A As_i_1n\1/2 .
PH; L\ M,Q 7 ~ (PO M) MIT0Qy - @iy ) (1=4,3,2), (11.8)
AT o A% o\1/2
PM;Q)" " ~ (P(H My )2 M2 QM Qy ), (11.9)

Pr n PMET2QN (11.10)
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Let
§=30A;_,+(3-30)\; —4X\]_g,
Ex = =2X,_1+ X0, (11.11)
€j=)\;_j+1—2)\:_j+)\;_j_1 (1=2,3,4). (11.12)
Write
0 =2s—j)-X_; (2<i<5). (11.13)
Define

a5=(3k+1+5—7)_1, Bs=—k+1+6—-71, ~5=06-3,

and for j=4,3,2, 1, define a;, B; and v; successively by

Vi =1+&+ 5105017541, (11.14)
Bi =&+ 1105418541, (11.15)
a; = (2k+5;)" L (11.16)

Then we find that ¢ and X, satisfy
¢ = (v —Bi(hr+...+¢;-1)) (1<5i<5) (11.17)

and
Ae=25-1(1—61)+1+(25-2)¢1. (11.18)

The values of A} obtained in this way are displayed in the Appendix.
(ii) k=9 and s=14. In this case we use the following scheme.

F3 f§® — F1f}° P f3 F3fi? Fyf§ —
lS lﬁ L
1 2 3
> R i Rl — (R REL R
A

It transpires that in the execution of the iterative process described below, the values
of ¢ which arise ultimately satisfy condition (11.3) for 1=3,4,5,6. Consequently, A4
and ¢ are determined by the equation

Pﬁsﬂng\g e~ P1/2(ﬁ6M6)8/11Qg8/11)’\;‘,
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together with (11.8) (for s=14 and 2<;<5), and (11.9) and (11.10) (with s=14). Let
§=16)1;~-22);, op=(16k+6+6)"", Be=—6k+6+6, ~6¢=06—25.

Then with s=14 and k=9, we find that ¢ and A}, satisfy (11.17) (1<;j<6) and (11.18),
with (11.13) (1<j<5), and for j=5, ..., 1, (11.14), (11.15), (11.16).

The value of A}, obtained in this way is given in the Appendix.

(iii) k=9 and s=15,16,17,18. In these cases we use the scheme

Fgfga—Z > F1f125—2 5 F2f225—4 5 F3f328_6 > ..

|

28 23—-2
1 2

. _____,Fﬁfszs—lz —— (Fél)l/4(f62t—2)a, (fgt)b,

25—8
f5°

where
t=[3(4s-21)], a,=360, b,=3(1-0), 6=t—1(4s-24).

It transpires that in the execution of the iterative process described below, the values
of ¢ which arise ultimately satisfy condition (11.4). Thus, on taking 7=0.002565, we
find that A\, and ¢ are determined by the equation

PﬁSMGQ;\:_o ~ P1/2I~{g/4ﬂé3+r)/4Q23/4)9/\.‘_1+(3/4)(1—G)AI

together with (11.8) (with j=5,4,3,2), (11.9) and (11.10). Let
§=30X;_,+(3-30)Ar —4X:_q,
and define £; as in (11.11) and (11.12) (2<35<5). Also, let

ag=3k+1+6~7)"1, Bg=-k+1+6-7, Yg=06—4.

Then with k=9, we find that the ¢ satisfy (11.17) (1<j5<6) and (11.18), with (11.13)
(1<5<5), and for 15 <5, (11.14), (11.15), (11.16).
The values of A} obtained in this way are given in the Appendix.
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12. The iterative scheme for sixth powers: s>9

For s>9, our treatment of sixth powers requires a Hardy-Littlewod dissection. Further,
since our conclusion entails the use of all available savings, the treatment requires con-
siderable attention to detail. The next iterates for Ag, A1p, A11 and Az are mutually
dependent, and so we are forced to iterate these values collectively. Our exposition will
be facilitated by first recording some preliminary lemmata.

LEMMA 12.1. Let t, u and v be positive integers exceeding 3, and let

v (241)
t—1\u v
Suppose that ¢1>¢2>¢3> 5,
U <min{Ms, PH, H, H; *,QY*, Qs M; 2%/%} (12.1)
and
7= PU1—tw(P1/3M§t—12—m)w(P1/3M22u—12—uu)1/u(P1/3M§v—12—m )l/v.
Then .
/0 |Fs(a) f3(@)1®| da < P M3 Hy(Z71/4Q5 +Qyro/HAn /27302y,
Proof. By standard Weyl differencing we have
|F3(a)|? < P(M3H;)?+ M3 Hs|G(a)], (12.2)

where

ZZ Z Z e(a2 %W (22+h;2h, h;m, 1)),

h m hg<P; 0<z<Ps—

and the summations are over m and h satisfying (2.1). Write
C(M)=A(MR, R)N(M, MR). (12.3)

Recalling (3.1), (4.1) and (4.2), we may follow the analysis of the proof of Lemma 6.1 to
deduce that

G(a)? € P°D(a)E;(a)' ™% Ey(a) Es(a)/*Eqy(a)'/?, (12.4)
where
D(a)=D3(a; P, ¢),
E1(a) = Ey(a; 7680 Hy Hy P3, Hy, Ms; C(Ms)),
Ey(a)=E;(a; 7680 H, Hy P3, H3, M3; C(M3)),
Es(a) = E,(a; 3840 Hy H3 Ps, 2H,, My; C(M,)),
E4(a) = Ey(0; 1920 Hy Hs Ps, 4Hy, My; C(My)).
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We now recall Definition 4.9. Suppose that aems. By Dirichlet’s theorem there

exist b€Z and reN with

(b,r)=1, r<P71Q} and |ar-b<PQ;°.

On noting that our assumptions on ¢ imply that P P~*Q$, we deduce from Lemma 4.1

that
Q5

D | —e——
(@) <P (T+Qg|ar——b|

+P‘1Q§).
But a€mg, so either 7> P or Q$|ar—b|>>PR~'8 and hence
D(a) < P°1Q% < P**< Hj.
Next, since U < M3, we have U P, and hence
U< P1QS<U°Qs.
Then by Lemma 4.3, we have

Ei(a) < P HsM2((r+QS|ar—b))"Y/8+U 1)
< PV H; MUY

We now observe that our hypotheses on ¢ imply that
8P3HyHo MYt H;3 > M3O(M M) 8 > P23 and M3% > P'/3,
Then we may apply Lemma 4.6, with Y=P1/3 and X=P~1Q8, to deduce that

Es(a) < P HyME 2 ((r+Q8|ar —b|) /3 4+ P71/3)
& P/3+e gy ti2,

Similarly, we have
Eg(a) < P2/3+Eﬁ3M;u+12

and
E4(a) < P23+ Hypivt12,

Thus, by (12.2), (12.4) and (12.5)-(12.9), we have

sup |F3(a)| < PYe M, Z1/4,

acmg

(12.5)

(12.6)

(12.7)

(12.8)

(12.9)

(12.10)
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Now suppose that a€93. By Dirichlet’s theorem there exist a€Z and ¢q€N with
(a,¢)=1 and satisfying (4.24). Then since a¢ms, such an a and q exist with 0<a<g<P.
Thus, by Lemma 4.7 we have

F3(a) < F3(a)+P*3+Hy M, (12.11)

where F(q) is defined as in Definition 4.9 (iii). Our hypotheses on ¢, u, v and ¢ imply

that
Zl/4 < (PUl—thtw/3)l/4 < P1/3,

and so by (12.10) and (12.11) we deduce that
1 -
/ |Fa(e) f2(0)'®] da < P+ Hy Mo 2-1/4Q2% 41, (12.12)
0

where

I= /m IF3(@) )’ do:

But by Hélder’s inequality,
< TR g4 (12.13)

where

1 1
J1=/ | f3()|*° da, J2=/ |fs(@)|?*da and Jz3= [ |F5(a)|*da.
0 0 My

We have J, <Q3°* and J, <« Q3"*¢. Further, by Lemma 4.10 we have
Ja < P*(PH3M;3)*Q3°.
The lemma now follows by (12.12) and (12.13).

Our analysis will be simplified by the use of the following lemma. We write

fleQ)= ) elas").

z€A(Q,R)

LEMMA 12.2. Suppose that /\12—18<é. Then
1
[ @@ dac@iere.
0

Proof. Write A=)\12—18. Then, by an argument mirroring precisely the proof of
Theorem 1.8 of Vaughan [8], we may draw the following conclusion. Suppose that
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0<é <115. Let m denote the set of real numbers a with the property that whenever
a€Z, qeN, (a,q)=1 and |a—a/q|<qg *Q'/?+%%=6  then one has ¢>Q/2+%¢ and let
g=£§(1—A). Then

sup |f(e5 Q) < QU (QT+Q™).

We take 6=¢g;. Then by hypothesis we have ¢>g;, and hence

[ dae@ons [Pt dacee. (214

Now suppose that a¢m. Then by Dirichlet’s theorem we may choose a and ¢ with
(a,9)=1, |ga—a|<QV?*%"% and ¢<Q'/?+%. (12.15)

We write (g, a) for the set of such o satisfying (12.15), and 9 for the union of the

M(q,a) with (a,q)=1 and 1<a<q<QY/?*%. Then if a€IM(g,a), by Lemma 7.2 of
Vaughan and Wooley [10] we have

f(2Q) < Q' ((¢+Q%|ag—a|) /12 +Q71/4). (12.16)
Define V*(a) to be the function of a taking the value zero whenever a€m, and by
V*(a)=Q"*(¢+Q%ag—a|)"1/2,

whenever a€M(q, a) with (a,g)=1 and 0<a<g<P. Then from (12.14) and (12.16) it
follows that

1 1
/ £ Q)% da < / V*(a)|f(e; Q)P dar Q12+
0 0

But by Hoélder’s inequality, the latter integral is
1 1/25 1 24/25
<([v@®a) ([Uara) .

0 0

1 1
/ (e Q) dar < Q1%+ + / V*(a)?® da < Q1%+,
0 0

Thus

which completes the proof of the lemma.
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LEMMA 12.3. Let t and u be positive integers exceeding 3, and w=1/(t—1)u. Let v
be either 9 or 10, and define K(Q):%)\u—}-%)\u—g, and

1
K(l()): %)\124—%)\13—% when Ao —182> )
14 when A2—18< 6—14.

Suppose that ¢1>¢2> {5, and
7= PMll_tw(Pl/lezt_l2_#t)w(P1/3M22u_12_Mu)1/u.

Then .
/o |F2(a)f2(a)2”|da<<P1+5M2ﬁ2(2_1/3Q;\“+Qf(”)).

Proof. By standard Weyl differencing we have

|Fy(a)|* < PP(MyH,)*+ P(M3H,)?|G(a)], (12.17)

Ga)=X"%" %} Y. e(2%aWa(22+l +2;2h, 1, lpym, 1, 1)),
h m

and the summations are over m and h satisfying (2.1). Recalling (12.3), (3.1), (4.1) and
(4.2), we may follow the analysis of the proof of Lemma 6.1 to deduce that

G(a)? < P*D(a)E;(a)! " Ey(a)” Es(a)'®, (12.18)
where
El(a = El(a; 480H2P22, 2H1, Ml;C(Ml)),

Ex(a) = Ey(a; 480 Ho P}, 2Hy, My;C(M,)),
Es(a) = E,(0;960H, PZ, Hy, My; C(My)).

D(a) :D2(a;P7 ¢)1
)

We now recall Definition 4.9. Suppose that a€m;. By Dirichlet’s theorem, there
exist b€Z and reN with

(b,r)=1, r<P7'QS and |ar-bl< PQ;°.

Therefore, by Lemma 4.1, we have

Q3

v <P (e

+P‘1Qg).
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But a€mjy, so either r>P or Q§|ar—b|>>PR~%* and hence
D(a) < P*7'Q5 <« P3*¢H,. (12.19)

Next, on noting that
M{ <P Q< M;°Qs,

we may apply Corollary 4.2.1 with X =P~'Q$ to deduce that

Ey(0) < PP Hy M2 ((r+Q8ar—b]) /8 + MY)

(12.20)
<:Fﬂ+efhfbﬂly

We now observe that our hypotheses on ¢ imply that
2PZH\MPH3 > MPM > P23 and Mj%> PY/3,
Then we may apply Lemma 4.6, with Y =P/3 and X=P~1Q$, to deduce that

Es(a) < P Hy MM 2 ((r4+ Q8 lar—bl) V34 P71/3)

<<P5/3+EHV’2M£%+12. (12'21)

Similarly, we have
E(a) < P33+ HyMit12, (12.22)

Thus, by (12.17)—(12.22), we have

sup |Fa(a)| < P HyM,Z /8, (12.23)

acmg

Now suppose that a€91,. By Dirichlet’s theorem there exist a€Z and ¢eN with
(a,q)=1 and satisfying (4.24). Then since agmy, such an a and g exist with 0<a<g¢<P.
Thus, by Lemma 4.7 we have

Fy(a) < Fy(a)+ P4t Hy My, (12.24)
where Fj () is as in Definition 4.9 (iii). Our hypotheses on ¢ imply that
Z<PYAM < P2,

and so by (12.23) and (12.24) we deduce that

1
/ |Fo(@) fo(@)?®| da < P Ho Mo Z71/3Q00 +1, (12.25)
0
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where

I= /%IFz*(a)fz(a)"’"l do.

But by Holder’s inequality,
1< I3, (12.26)

where

1
Ji= / (@) 2da and Jy= / \F} (o)} do.
0 Mo

By Lemma 4.10 we have
Jz < PS(PH;M,)°Q; . (12.27)

Also, by Hélder’s inequality, when v=9 we have

Ju < (@)@ )4, (12.28)

and when v=10 we have
Jl << (Qé\l2+5)1/2(Q3\13+€)1/2. (12.29)

Further, when A\;3—18< glz, we apply Lemma 12.2 and obtain

1
[ 1o da < @io+ (12.30)
0

The lemma now follows on combining (12.25)-(12.30).

We shall find, in future analyses, that it is convenient to have a modified form of
Lemma 12.3.

LEMMA 12.4. Let t be a positive integer exceeding 3, and BC(1, P]. Define

HB(Q)=Z Z Z Ze(a\p2(z7ha m))1

h M|<m1<M1R May<ma<M2R 2
mi€EB ma€.A(P,R)

where the summation is with h satisfying (2.1). Suppose that ¢1>d22 11—8 and
Z =PMITVYPUB M-I

Then L
/ |H(@) f2()?| da < P+ H, My (Z71/2Q +Q5 1),
0

where K(10) is defined in the statement of Lemma 12.3.

Proof. By standard Weyl differencing we have

|Hg(a)|* < P}(HyM,)*+ P(Hy M,)%|G(),
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with G(a) defined as in the proof of Lemma 12.3 save with the variable m; ranging over
my €B. Write

Ci={meB:My<m< MR} and Cr={meA(P,R): M; <m< M;R}.

Then recalling (3.1), (4.1) and (4.2), we may follow the proof of Lemma 6.1 to deduce
that
G(a)? < P*D(a)Ef(a)! "V E3 ()" M}V",

where
D(a) =D2(a; Pa ¢)’

E;(a) = El(a; 480H2P22, 2H1, M1; Cl),
E3(a) = Ei(a;960H, P2, Hy, M3; Co).
The proof now continues in precisely the same manner as that of Lemma 12.3.

We now divide into cases according to the value of s. As usual we let (\;) be an
iterate of the sequence converging to (\}), and to simplify formulae we write 6=¢;,
¢=¢2 and Y =¢3. We require suitable values for p, for various values of s. These may
be obtained through the use of Lemma 3.2 of Wooley [13]. We record here for future
reference the permissible values

p26 =40.3153804, pg7 =42.2641797 and p.s =44.2211063.

(i) s=9. In this case we use the following scheme.

F3 f38 Fifi8 Fy f3}® —— F3 3% == (F3)(f3®)
l16 Jﬁ
1 2 -

In executing the iterative process described below, it transpires that ¢ satisfies the con-
ditions of Lemma 12.1, and moreover good choices for ¢, u and v are t=26 and u=v=27.
Therefore, by Lemma 12.1 we have

1
/0 |Fs(a) fa(a)'®| dar < P* by + Uy),

where
U, = PFI;;M;;Z_I/‘!QQS

and
Uy = Pﬁ3M3Q§10/4+)\11/2—3/2.
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We take Z to be as large as is consistent with the conditions of Lemma 12.1. Write
6=%1X10+3A11—A5—3. Then proceeding as described in §2, using the iterative scheme
above, the equations for Ag, 8, ¢ and 1 are determined by

P~ PMISQJ, (12.31)

PMQ} ~ (P(MyH: P MIQYE Q%) %, (12.32)
PMi M HQy* ~ (P(MHo* M Q) @3 ) 2, (12.33)
PMyMsHyQ) ~ PRI H3Q) (2714 4+Q%). (12.34)

In our iterative process, we solve the equations (12.32)-(12.34) for ¢ subject to the
constraint (12.1), and taking care to consider the contributions of both U; and U,. The
core of the method will be apparent from the explanation below, where we pay attention
to the situation towards the end of the iteration process. We write A=X}-10.

For the moment, suppose that our ultimate choices for ¢, ¢ and ¥ imply that U;
is the dominating contribution. Write §; =p26—40 and 8;=p27—42. Suppose, as is
ultimately the case in our iteration, that

S0+o) << S(1-6-9).

It follows that (12.1) holds with U=Mj. Then the equations (12.32)-(12.34) yield

dooap—14 528, 20-809)  1-360  1-36¢

675 2025 81 81
12 =14+(6—A), (12.35)
120 =1+(6—A)¢. (12.36)
Therefore
6023+ 7562(0+¢)
T 50469-66;
and hence
b= 86607 —66; —6023A+75(6— A)620
T 605628726, —75(6—A)6,
and

_ 1125270—1086, —122745 A +6023 A% +66; A —75(6— A)6;

i 7267536 — 8646, — 75(6— A) (18— A)5;

On the other hand, if U, is the dominating contribution, then equations (12.32)-
(12.34) yield (12.35), (12.36) and

1—6+6(1—0—p—1p) =0.
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Then, on writing

1+6 5
_ —_—— - — 3 _A
=555 PTgrs md =674

we obtain
_ 124-9(14(+va)

T 1444+958(12+7)

(12.37)

and
b= 1+~y{a—p36)
T 12448

It transpires that I is the dominating contribution. By (12.31), the next iterate
for \g is given by
L= A(1—0)+1+168,

where 0 satisfies (12.37).
(ii) s=10 and 11. In each of these cases we use the following scheme.

R f —— R —— R == (R)(f"7)

|

28—-2
i .

In executing the iterative process described below, it transpires that ¢ satisfies the con-
ditions of Lemma, 12.3, and moreover good choices for ¢t and u are t=u=28. We divide
into cases.

(a) s=10. By Lemma 12.3 we have

1
/0 |Fy(a) fa()'®) da << P (Uy + Uy),

where
Uy =PH,M,Z~'/3Q)e

and

Uy = PﬁzlA\/:sz;/\“ﬁ*‘)‘”w“G/s.

Write 6= %)\11 +%)\12 —Ag— g. Then, proceeding as described in §2 with the above itera-
tive sequence for s=10, the equations for Ao, # and ¢ are determined by

P~ PMIBQy, (12.38)
PM,Q3° ~ (P(H1My)*M3*Q° Q)2 (12.39)
PH, MyQ)° ~ PHyMyQ3° (Z~ Y3 4+Q5). (12.40)



226 R.C. VAUGHAN AND T.D. WOOLEY

We write A=MXg—12.

For the time being, suppose that our ultimate choices for 8 and ¢ imply that U; is
the dominating contribution. Write §'=pu2s —44. Then the equations (12.39) and (12.40)
yield

26, 1-38'6 1-38¢
8—48¢=1+2—79+ 5968 + 84
120 =1+(6—A)¢. (12.41)
Therefore
15848 —(2184—34")60
9= —Tossea—sis
and hence

_ 203952-15848 A —816'
T 1319472—9908’ — 2184 A +38'A°

On the other hand, if U, is the dominating contribution, then equations (12.39) and
(12.40) yield (12.41) and

6 (12.42)

1-6¢+6(1—8—¢) =0.

Write
_6-A
=646
Then
o L+00-0)
Y
and 1+a(1+6)
«
0=—Toras (12.43)

As the iteration process converges, it transpires that U; provides the dominating
contribution. Then by (12.38), the next iterate for g is given by

Ao = Ao(1—6)+1+186,

with 8 given by (12.42).
(b) s=11. By Lemma 12.3 we have

1
/ |Fa(a) fa(e)™| dar < P* (U + Un),
(4]
where

Uy = PH,M,Z71/8Q),
U = PﬁzﬁzQé((lo),
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and K{(10) is defined as in the statement of Lemma 12.3. Write §=K(10)—A10. Then,
proceeding as described in §2 with the above iterative sequence for s=11, the equations
for A1, 8 and ¢ are determined by

P~ PMEQY, (12.44)
PMQ} ~ (P(H1Mp)> MZ°Q1 Q) /2, (12.45)
PH, M, M;Q)° ~ PH,Ma Q) (2184 Q)). (12.46)

For the time being, suppose that our ultimate choices for 8 and ¢ imply that U is
the dominating contribution. Then following the pattern set in the case s=10, we obtain

_ 20395215848 A — 8168’
T 1319472—9906' —2184A+36' A’

0

where 8 =pos—44 and A=X1o—14.
On the other hand, if > is the dominating contribution, then the equations (12.45)
and (12.46) yield (12.41) and

1-6¢+6(1—-0—¢)=0.

Thus, with the notation used for s=11, we find that 8 is given by (12.43). In order to
make use of these equations, we require a suitable upper bound for ;3. It suffices to use
inequality (k—2) of §4 of Vaughan [8], which gives

A3 Smax{Az(1-32)+1+24(3), 20}

As the iteration process converges, it transpires that U2 provides the dominating
contribution, and further that K(10)=14 is permissible. Under such circumstances, by
(12.44) the next iterate for A;; is given by

11 =A10(1-6)+1+2086,

where 8 satisfies
2-A

12-A

(iil) s=12. In this case we use the following scheme.

F3£8? — R f{? — B f’ = (F2)(f}°)

24
1 .

16-950233 Acta Mathematica 174, Imprimé le 20 juin 1995
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In executing the iterative process described below, it transpires that ¢ satisfies the con-
ditions of Lemma 12.4, and moreover a good choice for ¢t is t=28. By Lemma 12.4 we

have . )
[ 1Bs@) a0 da = [ |Hain (@) fa(0) | do < PG+ ),
where
Uy = PHy M, Z7 V8@
and

U = PH,M,QE(Y,

Write §=K(10)— A10. We now proceed as for the case s=11. The equations for A2, 6
and ¢ are given by

Pr2x PMEEQY, (12.47)
PM1Q1" = (P(MyHy ) M3°Q112 Q) /2, (12.48)
PHyM; Ma@Q)™ ~ PH My Q) (2718 4.Q8). (12.49)
For each s, define A, by
As =25—6+A,.
Let
E=X3—2A1+ )0 (12.50)

Then equations (12.48) and (12.49) yield

27 1-36¢
8—48¢ = 1+§§0+ YR
120=1+&E(1-6)+(6—A10) 0. (12.51)
Therefore
5878160
~4032-35"
and hence

7554 — 36— 587 A 1o+ & (4032 — 36)
T 48870—81A,0—366+£(4032—38)
On the other hand, when U> is the dominating contribution, the equations (12.48)
and (12.49) yield (12.51) and

1-6¢+6(1—0—¢) =0. (12.52)

Then, on writing
6— Ay

646 '
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we find that
_14+E+a(l+6)

12+E&+ab

As the iteration process converges we find that U, is the dominating contribution. In

(12.53)

such circumstances, by (12.47) the next iterate for A3 is given by
Mo =A11(1-6)+1+228, (12.54)

where 6 is given by (12.53). Moreover, as the iteration process converges, we find that
K(10)=14 is permissible. Thus §=—A;, a=1, and so by (12.52) and (12.53), we have

b= 1-Aye(1-0)
T 6-Ap
and
0= 2+&E—-Aqq
- 12+£—A10 )

But by (12.50), we have £=A12—2A11+ A0, and hence

24+ A12-241
g 2tB12—20n 12,
2421, —2A, (12.55)
But by (12.54),
g Mo—Au—1_ 1+A%-Ay (12:56)

22-A3 | 6-Ay
by using the natural induced notation. Therefore, by equating (12.55) and (12.56), we

deduce that the limit of the iteration process for A\;; and A2 satisfies

14+A5, - A} 2+A}-2A7
6—A%, 124+ AT, Z2A%,

On simplifying this expression, we obtain the equation
12(A1 241, +7)=0.

Then since A}, must be non-negative, it follows that A7,=0, and hence A},=18.

We summarise the values of )\, arising from our method in the Appendix.

We now complete the proof of Theorem 1.1 for k=6. Since A}, +1— 35 <25, we may
conclude by the methods of §5 of Vaughan [8] that G(6)<25. Moreover, as is evident,
we fail to obtain G(6)<24 by “¢”. This is a problem to which we return in Vaughan and
Wooley [11].
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13. The Hardy-Littlewood dissection for larger k

We now return to the pattern established in the sections preceding §12. Before consider-
ing the iterative procedures themselves, we record a lemma. We shall merely sketch the
proof of this lemma, the details closely resembling those of the proof of Lemma 6.1. We
shall find it convenient here, and in future sections, to define the quantity A, by

As=25—k+A,.

LEMMA 13.1. Suppose that j<k—4. Let u be a positive integer, and define

r=21ti"k t=[(k_]—+.—1)u+l], 0=t—(k_J-+.- )u
k—j k-j

__k=j
T k—j+1

and

Vy

(00¢_1+(1~8)A,).
Then )
/0 |F(a) f5(a)™) da < P B M,Q2* (PMy) Q2+ + Q).

Proof. On recalling Definition 4.9, we may imitate the analysis of the proof of
Lemma 6.1 to deduce that

1
f |Fy(a) f;(c)?*|da < Iy + Iz, (13.1)
0

where )
L= / |F? (@) f;(0)?* | do
1]

and
1
IL,= (P(k_"l)/("_’)’L‘Hij-f— sg“;: |F]-(cy)|)/0 |fi(@)|** da. (13.2)
« N

By Hoélder’s inequality,
1 . .
it ¢ ( / |F3 (o) da)l—t(’iIJ)ol't(k-J)(l—o)’
i}

where )
Ia=/ Ifi(@)|** da (s=t—1,1).
0

Then by Lemma 4.10,
I < PYYEEMQM R (13.3)
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Also, using a Weyl differencing argument, we may follow the pattern established in
Lemmata 6.1 and 12.1 to deduce, from Lemma 4.1 and Corollary 4.2.1, that

sup |Fj(a)| < P H,;M;(PM;)™". (13.4)

acm;
The proof of the lemma is completed on combining (13.1)-(13.4).

Our iterative procedures will be based on schemes of the following form.

FfP 2R fP s Rf?—s . —Ff = (F)(f7*7?).

| |

25—2 28-2
1 -1

In order to set the scene, we start by investigating the consequences of the assumption
(Asm1=Vs-1)(1—1—..— ;) 2 T(1+¢1), (13.5)

where v,_; is defined as in the statement of Lemma 13.1. Since 0<¢;<1/k (1<), it
follows that (13.5) holds whenever

Dg_1—Ve_y ;2”14%. (13.6)

By Lemma 13.1, whenever (13.5) holds, A, and ¢ are determined by the equations

PH; 1 M;Q}"" ~ PH;M;Q}"* (PMy) ™", (13.7)
PH MQ7 ™ ~(POLEPME QN Q) (1<i<y),  (138)
P~ PMPT2Q (13.9)

Write A=A,_;. Then equations (13.7) and (13.8) lead to the equations

k¢;=1-7(1+¢1), (13.10)
2kp; =1+ (k—A)pir1 (1<i<j). (13.11)

The recurrence relations (13.11) may be solved, as in Lemma 3.2 of Wooley [13], to give

1 1 k-AY™ gy
¢i=m+(¢j-m)(_2_k_) (1<i<j). (13.12)

k-A
a=—

2k

Write
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Then by (13.10), we have

(k+A)~ (1= )k~ = (k+A)"1)ai !

1= ey (13.13)
By (13.9), we find that A? is then given by
Ay =As1(1-¢1)+1+(25—-2)¢n. (13.14)

In order to check that (13.5) holds, we need to estimate v;_;. By inequality (k—2)
of §4 of Vaughan [8] (which, incidentally, is case j=1 of (13.13)), it follows that we may
assume that for each ¢,

_1493-F\A, — 2—k
(k—142°"%)A, — (k+1)2 70}, (13.15)

At+1 gmax{ k+22_k

whence a suitable estimate for v,_; follows. Alternatively, we may apply Lemma 3.2 of
Wooley [13], obtaining
App1 € A(1-0)+k6-1, (13.16)

1 1 1 k—A, !
= —— |~ —— .
k+A,  \k k+A, 2%k

14. The proof of Theorem 1.1 for seventh powers

where

We divide into cases according to the value of s.
(a) s=13. We use Lemma 13.1 with j=3. By reference to the Appendix with s=12,
we obtain by successive application of (13.15) the bound

Ajg—vip=A13— %Als > 0.2169,

and hence condition (13.6) is met. Then ¢; is given by (13.13) with A=A;,, and we
obtain the value of A\}; given in the Appendix by using (13.14).
(b) s=14. We use Lemma 13.1 with j=2. By successive application of (13.15) we
obtain
Arz—v13 =Dz — 3 As5— 5 A6 > 0.1506,

and hence condition (13.6) is met. Then ¢; is given by (13.13) with A=A,3, and we
obtain the value of A}, given in the Appendix by using (13.14).
(c) s=15. We use Lemma 13.1 with j=2. By successive application of (13.15) we
obtain
Ars—via=D1s—As6—2A17 > 0.1130,
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and hence condition (13.6) is met. Then ¢, is given by (13.13) with A=Ay4, and we
obtain the value of A}, given in the Appendix by using (13.14).
(d) s=16. In this case we are forced to modify our argument by using the following

scheme.
R R —— B f3* == (R)(f{*)

32
l .
We may apply Lemma 13.1 to estimate the final integral implicit in this scheme. Thus, as
in the case s=15 we find that (13.6) is satisfied, and hence A6, ¢1 and ¢, are determined
by the equations (13.7) with s=15 and j=2,

PMlQi\Is ~ (P(M1H1)2M228Q;\I4Qi\m )1/2’
and (13.9) with s=16. Write A=A;4 and £=X;16—2A]5+A]4. Then the equations for
A1, ¢1 and ¢, are determined by the equations (13.10) and

2k¢r =1+E(1~¢1)+(k—A)¢o.

Thus
217+1126-15A

9= e iE-A
By (13.9), we find that the next iterate for Ai¢ is given by

16 = Als(1— 1) +1+30¢;.
The converged value of Ajg is given in the Appendix.

Let X =Pk/(2k=1) and Z=PX 1. Define the generating function h(a) by
h(a)=>_ e(az*), (14.1)

el

where

C={z:z=pz, 1 X <p< X, z€A(Z,2M)}.
Let s be an even integer, and write s=2r. Define m to be the set of real numbers a in
((2k)~1P1=% 14(2k)~! P! ~*] with the property that whenever a€Z, ¢g€N, (a,g)=1 and
|a—a/q|<q X ~*(rZ*)~1, then one has ¢>X. Then the argument of §9 of Vaughan [8]

gives

sup |h(a)| < P1ote, (14.2)
aEm
where k= (k—1)A

By (14.2) with s=12, and using the value of A1z given in the Appendix, we have o>
0.01679703. Moreover, Aj¢+1—0<26. Then by Theorem 4 of Vaughan and Wooley [10],
we may finally conclude that G(7)<33.
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15. The proof of Theorem 1.1 for eighth powers

We divide into cases according to the value of s.
(a) s=16. We use Lemma 13.1 with j=3. By reference to the Appendix with s=15,
we obtain by successive application of (13.15) the bound

Ajs—v15 =A15— %Alg > 0.1563,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A=A;;, and we
obtain the value of Ajs given in the Appendix using (13.14).

(b) s=17. We use Lemma 13.1 with j=3. By reference to the Appendix with s=16,
we obtain by successive application of (13.15) the bound

Are—vie=A15—A19— 520 >0.1288,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A=A;4, and we
obtain the value of A}, given in the Appendix using (13.14).

(c) s=18. We use Lemma 13.1 with j=2. By reference to the Appendix with s=17,
we obtain by successive application of (13.15) the bound

Ar—17=0A7— %Alg— ;Azo > 0.0937,
and hence condition (13.6) is met. Then ¢, is given by (13.13) with A=A;7, and we

obtain the value of A} given in the Appendix using (13.14).

We now complete the proof of Theorem 1.1 for k=8 as in §14. Applying (14.3) with
s=16, we obtain ¢>0.01381643. Moreover, Aj3+7(1~0)<35. Then by Theorem 4 of
Vaughan and Wooley [10], we may finally conclude that G(8)<43.

16. The proof of Theorem 1.1 for ninth powers

We divide into cases according to the value of s.
(a) s=19. We use Lemma 13.1 with j=4. By reference to the Appendix with s=18,
we obtain by successive application of (13.16) the bound

Aig—vig=A18— Mg — 3 Az > 0.1659,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A=A;5, and we
may obtain the value of A}q given in the Appendix using (13.14).
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{b) s=20. We use Lemma 13.1 with j=4. By reference to the Appendix with s=19,
we obtain by successive application of (13.16) the bound

Alg —vig=A19— %Azz - §A23 >0.1307,

and hence condition (13.6) is met. Then ¢; is given by (13.13) with A=A;9, and we
may obtain the value of A}, given in the Appendix using (13.14).

(c) s=21. We use Lemma 13.1 with j=3. By reference to the Appendix with s=20,
we obtain by successive application of (13.16) the bound

Ago—vz0 = Doo— $A23— 2 A2, > 0.0912,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A=Ay, and we
may obtain the value of A}, given in the Appendix using (13.14).

(d) s=22. We use Lemma 13.1 with j=3. By reference to the Appendix with s=21,
we obtain by successive application of (13.16) the bound

Agy—voy =Ag1 — %A24 - ;A25 > 0.0703,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A=Aj;, and we
may obtain the value of A}, given in the Appendix using (13.14).

(e) s=23. We use Lemma 13.1 with j=3. By reference to the Appendix with s=22,
we obtain by successive application of (13.16) the bound

Azz —vyy=Ag— %‘A25 - %Azs > 0.0527,
and hence condition (13.6) is met. Then ¢, is given by (13.13) with A=A,,, and we

may obtain the value of A}, given in the Appendix using (13.14).

We now complete the proof of Theorem 1.1 for k=9 as in §14. Applying (14.3) with
§=20, we obtain 6>0.01150790. Moreover, A33+5(1—0)<42. Then by Theorem 4 of
Vaughan and Wooley [10], we may finally conclude that G(9)<51.
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Appendix. Numerical values for parameters

In this appendix we display in tabular form the numerical values of the parameters arising
in our iterative processes. The displayed figures are the converged values, calculated to
15 significant figures on a computer, and rounded up in the last digit displayed. We also
give the numerical values of the o(k) arising from (14.3), rounded down in the last digit
displayed.

k=5.

v

As ¢ ®2
3.1362571 0.06812854
4.4386563 0.10559577
5.9250797 0.13658426 0.07226662
7.5417546 0.15133422 0.11310401
9.2727289 0.16396009 0.14346470
11.0773627 0.17021105 0.14377599

W 3 & Ot = W

We note also that
Se(P,R) < P13,

Further, although worse than the corresponding estimate arising from Weyl’s inequality,
we have
o(5) 2 0.03257326.

@»

As ) ¢2 ?3

3.0909091 0.04545455

4.3333334 0.08333334

5.7246965 0.10673541 0.05080042

7.2315633 0.11855692 0.08751084

8.8505716 (0.12981369 0.10763684 0.05551767
10.5604127 0.13784851 0.12076716 0.08562337
12.3536709 0.14583058 0.13787203 0.12031506
10 14.2030055 0.15042244 0.14258278

11 16.0860412 0.15232648 0.14281844

12 1R8.0000000 0.15454265 0.14289604

O 00~y S Ul e W

We note also that Sy2(P, R)< P'#*¢, and although worse than Weyl’s inequality,
(6)>0.02301567.
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10
11
12
13
14
15
16
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As
3.0639191
4.2641175
5.5891167
7.0143820
8.5410894

10.1526323
11.8469485
13.6055676
15.4242973
17.2932208
19.1987053
21.1230182
23.0625298
25.0164264

o
0.03195955
0.06818559
0.08699398
0.09641272
0.10564538
0.11202654
0.11873997
0.12329153
0.12803790
0.13214156
0.13501034
0.13590250
0.13661685
0.13749920

b2

0.03541170
0.06937556
0.08803450
0.09889245
0.10797294
0.11453127
0.12028445
0.12611292
0.13272313
0.13271516
0.13270878
0.13270091

b3

0.04058919
0.06902202
0.08946112
0.09898491
0.10870656
0.11717668

b4

0.04150797
0.06609542
0.08585428
0.10266360

We have ¢(7)>0.01679703, which is superior to Weyl’s inequality.
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k-
Il
@

As () &2 ¢3 @4 o5

3.0496111 0.02480553

4.2289285 0.06077755

5.5116307 0.07496603 0.03518923

6.8806000 0.08220565 0.06261215

8.3284883 0.08748844 0.07303331 0.02548707

9.8579814 0.09336014 0.08199712 0.05500300
11.4648635 0.09880825 0.09013287 0.07343430
13.1382531 0.10304140 0.09589809 0.08328930 0.05353266
14.8742074 0.10725466 (0.10102623 0.09178812 0.07307451
16.6623509 0.11060434 0.10540355 0.09753530 0.08383402 0.05196286
18.4948992 0.11346253 0.10890495 0.10229102 0.09095506 0.06779771
20.3659701 0.11606386 0.11215719 0.10668910 0.09798016 0.08143693
22.2689476 0.11828320 0.11517483 0.11083494 0.10444347 0.09360961
24.1954446 0.11984099 0.11867153 0.11625125
26.1370265 0.12064517 0.11920252 0.11624496
28.0945483 0.12177604 0.12061807

WO 00 3 O Ot a W ®

I R - T S Sy GGy VO S VRN
0O ~J O Ut b W N = D

We have 0(8)>0.01381643, which is superior to Weyl’s inequality.
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10
11
12
13
14
15
16
17
18
19
20
21
22
23

3.0358052

4.1822894

5.4201075

6.7434120

8.1447208

9.6154494
11.1526889
12.7545442
14.4174241
16.1349528
17.9006237
19.7094207
21.5537941
23.4203887
25.3311019
27.2542905
29.1946817
31.1468279
33.1102975
35.0806499
37.0566117
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&
0.0179026
0.049417¢9
0.0622934
0.0705922
0.0763440
0.0803939
0.0841468
0.0878966
0.0914891
0.0946287
0.0973520
0.0998592
0.1018474
0.1036673
0.1052100
0.1064944
0.1075260
0.1081331
0.1088277
0.1091547
0.1094208

¢2

0.0120224
0.0500843
0.0659715
0.0729087
0.0774905
0.0819482
0.0863641
0.0902411
0.0934860
0.0964579
0.0989335
0.1010817
0.1030531
0.1047428
0.1069631
0.1074800
0.1083112
0.1085283
0.1087045

3

0.0299044
0.0537809
0.0640395
0.0717050
0.0785379
0.0839157
0.0881279
0.0919939
0.0948926
0.0976837
0.1001422
0.1023855
0.1058045
0.1061450
0.1072611
0.1072599
0.1072590

b4

0.0201554
0.0452838
0.0622043
0.0725554
0.0791991
0.0851563
0.0889089
0.0925898
0.0960512
0.0990896
0.1034200
0.1034158

s

0.0447782
0.0601626
0.0722296
0.0782184
0.0840732
0.0894131
0.0941699

We have ¢(9)>0.01150790, which is superior to Weyl’s inequality.

239

&6

0.0413991
0.0547876
0.0669177
0.0771596
0.0856692
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