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0. Introduction

An important theorem of Marcel Riesz, cf. [14], states that the polynomials are dense in
L*u), when u is a determinate measure on the real line. In the indeterminate case Riesz
also characterized the measures u for which the polynomials are dense in L*(x). They
are the so-called Nevanlinna extremal measures, introduced in Nevanlinna [11].

It does not seem to be known whether the polynomials are dense in L2(x), when u
is a determinate measure on R?,d>1, cf. the expository paper by Fuglede [7], as well as
the research problems book {8, p. 529}, where Devinatz poses the problem as question
1 and ascribes it to the physicist John Challifour (1978).

In this paper we shall settle the question in the negative. There exist rotation
invariant measures 4 on RY, d>1, which are determinate but for which the polynomials

are not dense in L*(u). Such measures u are necessarily of the following very special
form

where o,>0, w, is the normalized uniform distribution on the sphere ||x||=r and
O<trp<r;<...— are the zeros of an entire function of order <2. Thus, if a rotation
invariant and determinate measure x4 does not have this form, in particular if x has a
density with respect to Lebesgue measure on R? then the polynomials are dense in
L uw).

The above result is obtained by studying the relation between a rotation invariant
measure u and its image o under the mapping x—s|/x||> of R? onto [0, «[. Our main
results are Theorems 3.2 and 3.6 from section 3 below. They contain the following
results:

(1) u is determinate if and only if ¢ is determinate in the sense of Stieltjes.
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(2) The polynomials in d>1 variables are dense in L*(u) if and only if the
polynomials in one variable are dense in LX(#*da (1)) for any integer k=0.

The result corresponding to (2) in one dimension reads as follows (where u is
symmetric and o is the image under x—>x?):

(3) The polynomials in one variable are dense in L2(x) if and only if the polynomi-
als in one variable are dense in L*0) and in LXtdo (1)).

The difference in the nature of the results in (2) and (3) stems from the theory of
spherical harmonics. In dimension one there exist homogeneous harmonic polynomials
of degrees 0 and 1 only, but in higher dimensions there exist homogeneous harmonic
polynomials of any degree.

The existence of a rotation invariant measure u which is determinate, but for which
the polynomials are not dense in L%(u), follows, if we construct a measure o on [0, ®[
which is determinate in the sense of Stieltjes, but for which the polynomials are not
dense in L¥(¢*do (¢)) for some integer k (necessarily =3). In sections 4 and 5 we show
how to construct and characterize such measures o.

Despite the solution in the negative of the Challifour-Devinatz problem, it turns
out that the polynomials are dense in L?(x) for any p €[1,2[, when u is determinate and
rotation invariant, cf. Corollary 3.10.

If the polynomials are not dense in L%(x) for some rotation invariant measure y,
then they are far from being dense in the sense that the orthogonal complement of the
polynomials is of infinite dimension, cf. Theorem 4.3.

In section 1 we have put together some basic facts about measures and moments.

Section 2 treats rotation invariant measures, and we give necessary and sufficient
conditions for a sequence s: N>R to be the moment sequence of a rotation invariant
measure. For a rotation invariant measure x on R? d>1, we present a method of
describing a canonical family of orthogonal polynomials with respect to x4 in terms of
the orthogonal polynomials with respect to each of the measures ¢ da (1), where o is the
image measure of x4 under x—||x|]? and k is any integer =0.

Section 3 contains the main results as described above.

In [7] Fuglede introduced the notions of strong determinacy and ultradeterminacy.
A determinate measure u for which the polynomials are not dense in L*(u) is not
strongly determinate, thereby showing that strong determinacy is a de facto stronger
condition than determinacy. In [15] Schmiidgen gives another example of a determinate
measure which is not strongly determinate, and he also gives an example of a strongly
determinate measure which is not ultradeterminate.



ROTATION INVARIANT MOMENT PROBLEMS 209

That ultradeterminacy is de facto stronger than strong determinacy is not demon-
strated in this paper. We prove on the contrary that the two concepts coincide within
the class of rotation invariant measures with the concept of those measures u for which
the polynomials are dense in Lz(,u). These questions together with a condition of
Nelson, cf. [10], are discussed in section 6, which also contains some examples.

1. Preliminaries about measures and moments

For a locally compact space X we denote by C(X) the set of continuous functions
f: X—C with compact support and by M(X) the set of positive Radon measures on X.
We shall equip M(X) with the vague topology, i.c., the weakest topology in which the
evaluations u— [ fdu at functions f€ C.(X) are continuous.

If X, Y are locally compact spaces and j: X— Y is continuous, we can define the
(Radon) image measure u’ € M(Y) of a Radon measure u on X provided that j is proper
in the sense that j~!(K) is compact in X for any compact set Kc Y. The image measure
is characterized by the equations

f fdu' = f fojdu forall fEC/Y).

Let #*(R% denote the set of all positive Radon measures u on Euclidean space
R? having moments of every order, meaning that x*€L'(u) for every a EN?, where
we use the multi-index notation x*=x"... x3¢ for x=(x,, ..., x) ER?, a=(a;, ...,a)) € N*
N={0,1,...}. As usual we put jaj=a;+...+ay.

For 4 € M*(R% the corresponding moment sequence s=s,:N*—R is defined by

s(a)=sﬂ(a)=f x*du (x), aEN?. (1.1
Rd

We define u, v € #M*(RY to be equivalent, denoted u~v, if s,(a)=s,(a)foralla € N°.
The equivalence class [u] consisting of all v € #*(R) having the same moments as uis a
convex set, which is compact in the vague topology, cf. [3, Proposition 6.1.7].

A measure ,uE./M*(Rd) or its moment sequence s is said to be determinate if [u]
reduces to a single measure, and indeterminate if this is not the case.

We define

MH([0, ) = {o € M*(R)| supp(o) [0, =[}.

For o€ #*([0, «[) the corresponding moment sequence s is called a Stieltjes moment
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sequence. We say that o or s is determinate in the sense of Stieltjes (short: det(S)) if o is
the only measure on [0, [ with the same moments as ¢, and we say that ¢ or s is
. indeterminate in the sense of Stieltjes (short: indet(S)) if there exist different measures
on {0, »f with the same moments as o. Clearly, if ¢ is indet(S) then o is indeterminate
(sometimes called indeterminate in the sense of Hamburger). It can happen that ¢ is
indeterminate and yet determinate in the sense of Stieltjes, cf. [1, p. 240].

If u€ M*(R) is indeterminate, then it is elementary to see that £ du(?) is again
indeterminate. Similarly, if o € #*([0, =) is indet(S), then tdo () is indet(S).

For u € #*(R% the vector space C[x;,...,xs] of polynomials on R? with complex
coefficients is contained in L”(u) for every p €[1, «[. We denote the norm in L?(u) by
.-

For an indeterminate u € 4(*(R?) the set [#] can be described via spectral measures of
certain commuting families of self-adjoint operators, see Fuglede [7] for details. In
dimension d=1 a much more precise result is available: The Nevanlinna parametriza-
tion, see Akhiezer [1] or Buchwalter and Cassier [5] for details. To describe it let N be
the set of Nevanlinna—Pick functions ¢ : C\R—C given by

tz+1

@)= az+ﬂ+f ;

do(t), (1.2)
-z

where a=0, 8€R and ¢ is a positive finite measure on R. Then NU{®} can be used as
parameter space for [u«] independent of the particular indeterminate u € #*(R) via the
bijection @y, of NU{x} onto [] given by

du, (1) _ AR 9@ ~C@) 1.3
f z—t  B@e)—-D@R)’ ZECAR, o

where A, B, C, D are certain entire functions associated with [u].

The Nevanlinna extremal solutions correspond to the constant functions ¢(z) =8,
with BERU {«}. The Nevanlinna extremal solution u, corresponding to the parameter
value =0 plays an important role later. It is the only Nevanlinna extremal measure
having mass at 0, and it is given by

to= D, od) e,

dEA

where A is the discrete set of zeros of the entire function D from the Nevanlinna
parametrization. According to [1]
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D@)=2), PO)P2) (1.4)

k=0

and

k=0

o -1
0@ = (2 1P(2) |2) : 1.5)

where (P)),., denote the orthonormal polynomials associated with [x], uniquely deter-
mined by orthonormality and the requirement that the leading coefficient of each P, is
positive.

In the Stieltjes case, where at least one of the measures o €[u] is concentrated on
[0, o[, all the zeros of P; are positive so we have (—1)*P,(x) >0 for x<0, hence D(x) <0
for x<0. The zero set A for D therefore consists of a sequence

0=d,<d <d)<..—>»,
SO uy is supported by [0, {. This yields a simple proof of the following known result:

ProposiTiON 1.1. Let 0 € M*([0, =) be det(S) and indeterminate. Then o is equal
to the Nevanlinna extremal solution o,.

CoRrOLLARY 1.2. Let 0 € M*([0, [) be det(S). Then the polynomials are dense in
L¥0).

Proof. This is a consequence of the theorem of Riesz [14], because o is either
determinate or the Nevanlinna extremal solution a. u

Corollary 1.2. is a preliminary result. For a stronger statement see Corollary 3.9.
We recall two classical results which will be used several times in the sequel:

ProrosiTioN 1.3 (Riesz [14]). Let u € M*(R). Then u is determinate if and only if
the polynomials are dense in LX((1+x?) du(x)).

For a proof see also [7, p. 58].
In Theorem 3.8 below we characterize determinacy in the sense of Stieltjes by
L*-denseness in analogy with Proposition 1.3.

ProrosITION 1.4. Let u €EM*(R) be indeterminate and Nevanlinna extremal and let
a€R. If u({a}) >0 then v=u—u{{a}) e, is determinate.

For a proof see [1, p. 115] or [2, p. 111].
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COROLLARY 1.5. Let u €EM*(R) be of the form u=age,+v where a>0 and v({a}) =0.
Then v is determinate if and only if the polynomials are dense in L*().

Proof. Assume first that C[x] is dense in L2(u). If u is determinate, so is the smaller
measure v. If 4 is indeterminate it is Nevanlinna extremal, so that v is determinate by
Proposition 1.4.

Assume next that v is determinate. Then C[x] is dense in L*(u) by a result of Berg
and Christensen, cf. [2, p. 113]. a

2. Rotation invariant measures and their moments

The orthogonal group O(d) operates continuously in the convex cone M(RY of positive
Radon measures on R in the following way: If # € M(R? and R € O(d) then 1 € M(R%)
is the image measure of x4 under R.

We say that 4 € M(R®) is rotation invariant if u®=p for all R € O(d) and denote by
M,(R% the set of rotation invariant positive Radon measures on R?.

Let dR refer to the normalized Haar measure on O(d), and let Q, denote the unit
sphere in R% For £€Q, and ¢ € C(Q,) we have

f @(RE)dR = f @ dw, (2.1)
o) Q,

where w is the normalized surface measure of Q, characterized by being the only
rotation invariant probability on Q,.
For 1 € M(RY) the vector integral

A= f u®dR 2.2
o)
defines a measure £ € M,(R% such that

f fdii= f ( f f(Rx) d,u(x)) dR, fEC.RY.
o) \ JrR?

Let y:R“>R and j: [0, ©[xQ,—R’ denote the functions
d
@) =[P =D 2, jt.EH=VT & 2.3)
i=1

Using (2.1) we find
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f fdii= f f SR8 due) deo®)
Q,/r?

= J J' V1O (@) do(E) = ffd(,u"’@w)",
Q,Jo

showing that
fi=u"®wy for u€M®RY, 2.4

i.e. i is the image measure under j of the product of the measures 4¥ and w. In
particular we have

u=W'wy for €M, (RY. 2.5

For 0 € M([0, «[) the measure u=(0®@w)’ belongs to M,(RY) and u¥=0 as is easily seen.
We may summarize the above formulas in the following way:

ProOPOSITION 2.1. Let y and j be defined by (2.3). Then u—u is a bijection of
M (RY onto M([0, <[), and the inverse mapping is o—(c®@wY.

Let u € Mo (RY). If u € M*(RY) then u¥ € #*([0, =) and
f " du¥(t) = f (1|2 ddx). (2.6)
Conversely, if o€ #*([0, »]) then u=(c®w)’ € M*(R¢) and

f x* du(x) = j 12 dot(r) J £ daw(®). 2.7
¢ Q,

It is clear that [£* dw(§) =0 if at least one ¢; is odd, and it is easy to see that

F(a1+1/2) I‘(ad+1/2) I,( d) —dn
L@+ ... +a,+d/2) 2)"

f §dw(®) =
2y

This shows that % (R%):=M*R%)NM(R? is in one-to-one correspondence with
M*(10, ==[) under the bijection of Proposition 2.1, and that the non-trivial moments
s(a)=[x*du(x) (all a; even) of u€ M,’.‘:,,(R") are expressed as in (2.7) in terms of the
Stieltjes moments of the corresponding measure o=x" on [0, o|[.

The d-dimensional moment problem consists in characterizing those sequences
s: N>R which are the moment sequence of some measure u € #M*(R%.
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To s:N“—R we associate the C-linear functional L,: C[xy, ...,x,]—C on the space
of complex polynomials given by

L(x*) =s(a), a€N‘

We recall the following results (see e.g. [3]):

(i) s is a moment sequence if and only if L, is non-negative on non-negative
polynomials.

(ii) If s is 2 moment sequence then s is positive definite on the semigroup N, (i.e.
the kernel (a, B)+>s(a+p) is positive semidefinite on NYxN9).

(iii) Let s be positive definite on N Then s is a moment sequence if d=1
(Hamburger’s theorem), but s need not be a moment sequence if d>1.

We shall see that in the rotation invariant case positive definiteness of s is
sufficient for s to be a moment sequence.

ProPOSITION 2.2. The following properties of a function s : N>R are equivalent:

(i) s is the moment sequence of a measure u€ ./”::)t(Rd).

(i) s is positive definite and L, is rotation invariant in the sense that
L{poR)=L{p) for p€Clxy,...,xs] and REO().

(iii) There exists a Stieltjes moment sequence t such that

0, a; is odd for some i=1, ...,d,

s(@)= t(%la[)f &%dw(E), a,is even for every i=1,...,d.
Qd

Proof. The implication “‘(i)=-(ii)”’ is obvious.

To prove that *“(ii) =>(iii)"* we define #(n) =L(|{x|{*"), n=0, and want to show that  is
a Stieltjes moment sequence. We shall show that r and the shifted sequence
(Et}(n)=t(n+1) are both positive definite. For ¢y, ¢y, ..., ¢, €C we have

n n 2
E i+ ¢;¢;= Ls( 2 clx¥ ) =0

i,j=0 i=0
2
=0,

where we have used that L(|p|*) =0 for any p €Clx,, ..., x4], since s is positive definite.

and

n

d
> ti+j+1)c,é; = ELS(
k=1

i,j=0

(i c,~||x||2") %

i=0
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We next have to show that the equality in (iii) holds. Let a EN. If some of the
coordinates of a are odd we find

s(@)=L(x)=0= j §% dw(f),
2y

by considering the reflection in a coordinate in which a is odd and using the rotation
invariance. We can thus restrict our attention to the case where « is of the form a=24
with BEN?. We have to show that

L,(%) = Ly(x|#) f £8 du(®). 2.8)
Q

For any polynomial p € C[x,, ..., x;] we define a rotation invariant polynomial j by
the vector integral

p= j PoRdR,
o(d)

and since L; is rotation invariant we have Ly(p) =L,(p). For p(x) =x* we find

plx)= P(Rx)dR = J

o) Q,

p(x|&) () = ||x]|[*# f £ do(®),
Qd

and (2.8) follows.

Assume finally that (iii) holds and let o € #*([0, «[) be a representing measure
for . Then u=(0®w)’ belongs to At;“m(Rd), and its moment sequence is easily seen
to be s. O

We next want to show how to obtain orthogonal polynomials with respect to a
rotation invariant measure. This constitutes a natural extension of the results in [6,
section 1.

Let ,uGJ%;‘;t(Rd), d>1, and let o=u”. For kEN let (P, ,(1),ey denote the system of
orthonormal polynomials associated with the measure r*do(r). Let %, denote the
space of spherical harmonics (i.e. homogeneous harmonic polynomials) of degree k on
R Let S, i» j=1,...,dim %, denote an orthonormal basis of #}, considered as a
subspace of L¥(w).

For k,n€EN and j=1,...,dim %, we define

Pin; 0 =P, (") S, () €EClx,, ..., x,).
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These polynemials form an orthonormal basis of C[x;, ..., x,] considered as a subspace
of L*(u). Indeed every polynomial in Clx,, ..., x,] is a sum of polynomials of the form
p(|x]) S(x), where p(£) € Clr] and S(x) is a spherical harmonic, cf. [16, p. 139). More-
over one has

f Pin Py du= f P, (P (O do(r) f S Sy do.
R 0 Q,

The last factor vanishes when (k,j)#(k',j"). If k=k’ and j=j' the above expression
equals

f P, (OP  (Otdo®)=0,,.
0

3. Main results

We first give a set of functions which is total in L°(u), when p €[1, «[ and yu is an
arbitrary measure in M(RY).

ProPOSITION 3.1. Let u€ M(RY) and p€[1,[. The linear span of the functions
FUxID S(x), where fE€ C({0, ©[) and S(x) is a spherical harmonic, is a dense subspace
in LP(u).

Proof. By disintegration of x with respect to the mapping ¥ : x—||x|* from R onto
[0, of we get

/4=f A, do(?),
0

where 0 =u¥, and A, is a probability measure on the sphere
{x€RY |lxl|=V'1}

for t €[0, [, cf. Bourbaki [4, Chapter 6, p. 58]. Assume that g € L%u) annihilates all the
functions in question, g being the dual exponent of p. We shall show that g=0 u-a.e..
By assumption we have

0= f FIxIP) S(x) g(x) dutx)

= f (f(t) f Sg dz,) do(1),
0



ROTATION INVARIANT MOMENT PROBLEMS 217

and since f€ C ([0, «[) is arbitrary, we get for every spherical harmonic § that

f Sgdi, =0 3.1)
Iul=vT

for o-almost all ¢€[0, «[. Using a (countable) orthonormal basis for L*(w) of spherical
harmonics we see that there exists a o-null set Nc[0, «[ such that (3.1) holds for all
spherical harmonics § and for all 1€ [0, [\ N. The linear span of the set of restrictions
of spherical harmonics S to the sphere ||x||=Vt is uniformly dense in the continuous
functions on the sphere, cf. [16, p. 139], and we therefore get g=0 A,-a.¢. for o-almost
all ¢, hence g=0 u-a.e.. ]

THEOREM 3.2. Let u € M*(R?) where d>1, define o=u¥ and let p€[1, x[. If Clt] is
dense in LP(#*"” do(t)) for every integer k=0 then Clxi, ..., x,] is dense in L”(u).
The converse holds when u is rotation invariant and p=2.

Proof. Assume first that C[¢] is dense in LP(#*? do(1)) for every integer k=0. To see
that C[x;,...,x,] is dense in LP(w), it suffices by Proposition 3.1 to approximate
Sl S(x) arbitrarily well in L”(4) by polynomials, f€ C.([0, [) and S(x) a spherical
harmonic being given. Let k& be the degree of S(x). For h(t)€C[s] we define
Ox) =h(||x||) S(x) EC[x1, ..., x4] and notice that

A SG) = Q) L, , = AP =Rl xS e/l

lﬂ,p

<sup IS | G = AP AP, s

which can be made as small as we please since the second factor equals ||f—#]|;, ,
where for simplicity of notation we have put

7= do(t),

and we assume that C[¢] is dense in LP(z7).

Assume next that u is rotation invariant, p=2 and that C[¢] is not dense in
L*(#* do(r)) for some integer k=0. Then there is a function f€ LA(** da()) \ {0} which is
orthogonal to C[#]. Let S,(x) be a non-zero spherical harmonic of degree k on R?. Then
SUIx|P) S,(x) belongs to L*(u) \.{0}, because by (2.5) we have

”f(HXHZ)Sk(X) “/4,2 = “f”,“da(,),z”Sk”w,Z'

We want to show that f(|x|]) S,(x) is orthogonal to Clx;, ..., x,]. Every polynomial in

15—-918289 Acta Mathematica 167. Imprimé le 5 novembre 1991
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Clxy, ..., x4] is a sum of polynomials of the form p(||x||*) S(x) where p(¢) € C[#] and S(x) is
a spherical harmonic, cf. {16, p. 139]. If the degree of S(x) is m, we have (again by (2.5))

f SUP) Se®) p(HP) S dutx) = j £() p(t) £*7™7 do(1) f S, SE) dw(®).
0 Q,

Here, the second factor vanishes when m=k, and the first factor vanishes when m==«k.
O

On the real line there exist spherical harmonics of degree 0 and 1 only. For d=1
one obtains therefore the following result from Proposition 3.1:

THEOREM 3.3. Let u€ M*(R), define o=u" and let p€[1, (. If Clt] is dense in
L7(0) and in LP(t"? do(t)) then Cl[x] is dense in LP(w).
The converse holds when u is symmetric and p=2.

COROLLARY 3.4. Let u€ M*(R% and consider the measure ji defined by (2.2). If
Clx, ..., x,) is dense in L*(ji), then C[x,, ..., x,] is dense in L*(u).

This result is obvious for d=1 because in that case u<2ji.
To establish (1) from the introduction we need

PROPOSITION 3.5. Let 4 € M*(RY and put o=u?. Assume that C[t] is dense in L?(0)
for some pE]1, ©[. Then C[x,, ..., x,] is dense in L' () for every p' €[1, pl.

Proof. Let p’' €[1,p[. By Theorems 3.2. and 3.3 it suffices to show that C[{] is
dense in L7 (£ do(f)) for every integer k=0. Let k€N and f€ C.([0, [). For h(s) € C[¢]
we have

Y/ /s
f [f()~h@)f ¢ do(r) < ( f |f(z)—h(t)|”do(t))p ( j s da(t)) ,

where s is the dual exponent of p/p’ in Holder’s inequality. The first factor can be made
arbitrarily small, because we assume that C[¢] is dense in L?(0). a

The following theorem (which establishes (1)) is well-known in the one-dimensional
symmetric case, see e.g. Heyde [9, p. 92] or Chihara [6, p. 333). Their proofs are based
upon the Nevanlinna parametrization and are not applicable in the muitidimensional
case. Our proof parallels Petersen’s proof that u € #*(R®) is determinate if its marginal
distributions are determinate, cf. [13, Theorem 3].
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THEOREM 3.6. Let u € M*(R?) and put o=u". If o is det(S) then u is determinate.
The converse holds if u€ At;‘:,t(Rd).

Proof. We shall need that a measure v € [u] is an extreme point of [u] if and only if
the polynomials are dense in L'(v). This is shown in [1, p. 47] for d=1, but the proof
applies in any dimension.

Assume that o is det(S). For v €[u] we have v¥~¢ by (2.6), hence v¥=g. Since the
polynomials are dense in L*(0)=L*(»¥) by Corollary 1.2, it follows by Proposition 3.5
that C[x,,...,x,] is dense in L'(v), so that v is an extreme point of [x]. The measure
v €[u] being arbitrary, this is only possible if u is determinate.

Assume next that ue/l/t;‘:,t(Rd) and that o is indet(S). Then u is indeterminate,
because if 7€ .#*([0, [) is equivalent to ¢ then (t®@w)’'~u, by (2.7). 0

COROLLARY 3.7. Let u€ M*(R% and consider the measure ji defined by (2.2). If ji
is determinate then u is determinate.

This result is obvious for d=1 because in that case u<24.
We shall now give the analogue of Proposition 1.3 for the Stieltjes case.

THEOREM 3.8. Let 0 € M*([0, °]). Then o is det(S) if and only if Clt] is dense in
LX(1+8) do(2)) and in L}(t1(1+1) do(t)).

Proof. Let u€ M*(R) be the unique symmetric measure for which y¥=0. By
Theorem 3.6 the measure o is det(S) precisely when u is determinate. By Proposition
1.3 the measure u is determinate if and only if C[x] is dense in L*((1+x?) du(x)), and by
Theorem 3.3 this is equivalent to C[f] being dense in L*(1+1)do(t)) and in
L¥t(1+1£) do(1)). O

COROLLARY 3.9. If 0 € M*([0, o)) is det(S), then Clt] is dense in L*0), Lt do())
and in LA do(?)).

COROLLARY 3.10. Let ue J&t;‘;t(Rd) be determinate. Then the polynomials are dense
in L((1+||x|]) du(x)) and in L2(||x|P(1+|1xIP) dutx)) for any p€[1,2l. In particular the
polynomials are dense in L*(u) for any such p.

Proof. This follows immediately by combination of Theorem 3.6, Theorem 3.8 and
Proposition 3.5. ’ O

ProPoSITION 3.11. Let u € M*(R?) have a density with respect to Lebesgue meas-
ure. If Cl1] is dense in L u) then C[xy, ..., x,] is dense in L¥(u).
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Proof. The measure o=u" is not discrete, because spheres are Lebesgue null sets.
By Theorems 3.2 and 3.3 it suffices to prove that C[¢] is dense in L¥(#* do(?)) for any
integer k=0. Assume the contrary. Then there is a smallest k€N such that C[¢] is not
dense in L*(**do(s)). By assumption k=1. The measure v=£"'do(?) is indet(S) and
Nevanlinna extremal, but then 7 and o are discrete, which is a contradiction. O

4. Solution of the Challifour-Devinatz problem
It follows from Theorems 3.2 and 3.6 that u € #(* t(R"), d>1, is determinate and the

polynomials are not dense in L%(x) if and only if u=(c®w)’, where o€ #*([0, <[) is
det(S) such that the polynomials are not dense in L%(¢* do(f)) for some k €N (necessarily
=3 by Corollary 3.9).

We show below that such measures o exist, and we characterize them completely

in the next section. We need the following resulit:

ProrositioN 4.1. Let o€ M*([0,°[) be indet(S). Then Clt] is not dense in
L¥t* do(t)) for any integer k=3.

Proof. Suppose that C[7] is dense in L*(#* do(r)) for some integer k=3. The measure
v=t*do(f) is then indeterminate and Nevanlinna extremal, hence discrete. It is clear
that 0¢ supp(v). Since (1+7)'# increases with %, we have

a 1 __1
1+a® 2 1+¢

for t€supp(v),

where a>0 is the smallest element of supp(v). We then have

2

; *2do(t) =
a

a

2
a1 <!
1+

1+a* 2 1+7

dv().

Since v is Nevanlinna extremal, we know by Proposition 1.3 that the measure
(1+£%)7'dv(z) is determinate. By the inequality above #~2do(?) is also determinate,
which is impossible because ¢ and hence #*~2do(¢) is indet(S). O

From Theorems 3.2 and 3.6 we immediately get the following consequence of
Proposition 4.1:

COROLLARY 4.2. If /.te./“:n(Rd), d>1, is indeterminate, then the polynomials are
not dense in Lz(,u).

This is in contrast with the one-dimensional case, where an indeterminate symmet-
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ric moment problem always has (precisely two) symmetric Nevanlinna extremal solu-
tions, cf. [6].

We next show that the closure of C[x,,...,x,] in L¥u) is “‘small” in L¥w), if it is
not equal to L%(u).

THEOREM 4.3. Let u€ M*(R?, d>1. If the polynomials are not dense in L¥w),
then the closure of C[x,, ..., x,] has infinite co-dimension in LY u).

Proof. Assume that the polynomials are not dense in L%(«) and let g=u". Then C[t]
is not dense in L(#" do()) for some n€N, cf. Theorem 3.2. By Corollary 3.9 it follows
that " do(#) is indet(S), and Proposition 4.1 implies that C[¢] is not dense in LY do(p)
for kEN, k=n+3. For each of these infinitely many values of k, let £ € L*(¢* do(t))\ {0}
be orthogonal to C[r] and let S,(x) be a non-zero spherical harmonic of degree k on R°.
The functions f,(||x|]") S,(x) € L*(1)\.{0} then belong to the orthogonal complement of
Clx;5 ..., x4] in L*(u), cf. the proof of Theorem 3.2. Moreover, these functions are
pairwise orthogonal because

f Sl $,00) Fe () S x) duatn) = J Fd0) T 0 (492 dott) J S(8) $,(8) dw(8),
0 Q,

and the second factor vanishes when k’'=+k. 0

If o € A*([0, «[) is indeterminate, then oy also belongs to A*([0, «[) and is given by

0= >, 0(de,,

n=0

where 0=d;<d,<d,<... are the zeros of the function D, cf. (1.4).

The following class & of measures (& for Stieltjes) will be crucial for the solution of
the Challifour-Devinatz problem. '

F = {0y—0,({0}) | 0 € M*([0, =[) is indet(S)}.

With g, as above the measure v=0y—0y({0}) £ € ¥ is of the form

V= i o(d,) €4

n=1

and it is determinate by Proposition 1.4. Since *dv(t)=¢"doy(t) for k=1 and o, is
indet(S), Proposition 4.1 implies that C[¢] is not dense in L*(¢* dw(r)) for any k=3. The
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corresponding rotation invariant measure u=(®w)’ has the form

u=od)o
n=1 "

where w, is the normalized uniform distribution on the sphere ||x||=r in R?. We have
thereby shown the existence part of the following solution in the negative of the
Challifour-Devinatz problem from the introduction.

THEOREM 4.4. There exist determinate measures ue/ﬂ;“m(Rd), d>1, for which

Clx, ..., x4} is not dense in L¥u). Such measures are necessarily of the form
:u = 2 an wr,,’
n=1

where a,>0, 0<ry<r,<...—>o.

Proof. We have to prove that if 4 € #(* (R is determinate and the polynomials are
not dense in L*(u), then u has the special form of the theorem. By Theorems 3.2. and
3.6 we see that o=u" is det(S) and there exists an integer k (=3), such that C[#] is not
dense in L*(#* do(r)). Let k, be the smallest integer with this property. Then r=f" do(t)
is such that C[¢] is dense in L*(z) but not in L*(¢ dz(t)), so 7 is indet(S) by Corollary 3.9
and hence Nevanlinna extremal and in particular discrete. The mass points of ¢ and 7
are the same except that ¢ may have mass at the origin. This shows that 4 is a sequence
of uniform distributions on spheres as indicated. O

Remark. Since the mass points of a Nevanlinna extremal measure are the zeros of
an entire function of exponential type, cf. [1, p. 56], we see that the radii of the
corresponding spheres are the zeros of an entire function of order <2.

5. Measures of finite index

In order to obtain more information about the measures in Theorem 4.4. we need the
following

LEmMA 5.1. Let 0 € M*([0, <[). If do(r) is det(S) then o is determinate.

Proof. Let us assume that the measure £ do(f) is det(S). It has no atom at the
origin, so by Proposition 1.1 it is also determinate. If 7 € #*(R) has the same moments
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as g, then we have 7 dr(r)~# do(¢) and hence £ dr(1)=7 o(z). This show that r=0, so o is
determinate.

ProrositioN 5.2. The following properties of a measure 0 €EM*([0, =[) are equiv-
alent:

(i) Cl1] is dense in LX(t* do(t)) for every k€EN,

(i) #*do(?) is det(S) for every kEN,

(iii) *do(?) is determinate for every KEN,

(iv) C[1] is dense in LXt* do(t)) for every p €[0, .

For a non-discrete measure o these properties are equivalent to C[t] being dense in
L¥0).

Proof. The implication *‘(i)=-(ii)’’ follows from Proposition 4.1, the implication
““(ii)=(iii)”’ follows from Lemma 5.1, and the implication ‘‘(iv)=-(i)"" is obvious.
Suppose next that (iii) holds and let p €[0, [. If k=[p] then £<¢*(1+7) for =0, and by
the theorem of Riesz C[f] is dense in L%(#(1+#) do(?)) and a fortiori in LX(# do()), so
(iv) holds.

Suppose finally that ¢ is non-discrete and that C[7] is dense in L*(0). We claim that
(i) holds. Assume the contrary. If k€N is such that C[¢] is dense in L*(# do(1)) but not
dense in L*(#**' do(r)), then #*do(f) is indet(S) by Corollary 3.9 and hence Nevanlinna
extremal. Therefore t*do(f) is discrete, which is a contradiction. a

For a measure o € #*([0, [) which is det(S) we introduce the index (of determina-
cy) of ¢ as

ind(g) = sup {kEN| ¢ do(?) is det(S)}.

The properties (i)-(iv) of Proposition 5.2 are equivalent to the statement ind(g)= .
From Theorems 3.2, 3.6 and Proposition 5.2 we immediately get:

ProrosiTiON 5.3. Let u€ /ﬂ;';t(Rd), d>1, and put o=p*. The following statements
are then equivalent:

(i) u is determinate and the polynomials are not dense in Lz(,u).

(ii) 0 is det(S) and ind(o)<.

We shall characterize the class & defined in section 4 as the measures of index
zero. As a preparation we need the following lemma.

LEMMA 5.4. Assume that 0 € M*([0, =[) has index zera, i.e. a is det(S) and t do(t) is
indet(S). Then g has no atom at the origin.
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Proof. The polynomials are dense in L2((1+£)do(#)) by Theorem 3.8, because o is
det(S). Assume that o has an atom at the origin. Then also (1+1) do(¢) has an atom at the
origin, but if this mass is removed, the remaining measure is determinate by Corollary
1.5, and so is the smaller measure ¢ do(f), in contradiction with the assumption. O

THEOREM 5.5. A measure v€ M*([0, ) has index zero if and only if it belongs to
&. In the affirmative case C[t) is dense in LXt* dv(t)) for k=0,1,2, but not for any integer
k=3,

Proof. We have already remarked that a measure v=0d,—0,({0}) ¢, € ¥ is determi-
nate and hence det(S). Since tdv(f)=1doy(f), we see that ¢ dv(z) is indet(S), so vE P has
index zero. We have also remarked that C[7] is dense in L¥(#* dv(r)) for k=0,1,2, but not
for k=3,

For the converse assume that v € #*([0, «[) has index zero. By Lemma 5.4 we get
that v has no atom at the origin, so v is determinate by Proposition 1.1. Let a>0 and put
o=agy+v. The measure o is then indet(S) and satisfies 0=0, so that v€ ¥. Indeed one
has tdo(t)=tdv(t), which is indet(S). Thus, if o were det(S), it would have index zero
and thereby have no atom at the origin by Lemma 5.4. We conclude that o is indet(S).
Finally we have that C[¢] is dense in L*g) by Corollary 1.5. This shows that ¢ is
Nevanlinna extremal with an atom at the origin and hence o=a0,. a

THEOREM 5.6. A measure o EM*([0, =) has finite index =1 precisely when it is of
the form

o=ag, + t av(p),

where a=0, j is an integer =1 and vE ¥.

In the affirmative case a=0({0}), j=ind(0) and v=£""do(t) so that the above
representation is unique.

The polynomials are dense in Lt do(t)) for k=0,1,...,ind(c)+2 but not for any
integer k=ind(o)+3.

Proof. Assume that g € #*([0, «[) has finite index =1. If follows by Theorem 5.5
that v=£" dg(r) belongs to ¥ so that the denseness assertion follows by Corollary 3.9
and Theorem 5.5, and o has the form indicated.

Conversely, if o has the form indicated, then ¢ do(f)=v is det(S). It follows that o is
det(S), and since #*! do(r)=t dv(?) is indet(S) because ind(»)=0, we see that ind(0)=/.

0O
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Because of Proposition 5.3, the Theorems 5.5 and 5.6 show how to construct all
measures u € /tt;‘;,(R"), d>1, which are determinate and for which the polynomials are
not dense in LY(u).

6. Complements

For a measure u € #*(R“) Fuglede [7] introduced the notions of strong determinacy and
ultradeterminacy, and showed that the former is equivalent to C[x,, ..., x,] being dense
in L¥((1+x}) du(x)) for each j=1, ..., d, while the latter is equivalent to C[x,, ..., x,] being
dense in L*((1+]}x]|?) du(x)). Fuglede noticed that ultradeterminacy of u therefore im-
plies strong determinacy which in turn implies determinacy and that the polynomials
are dense in L(u).

By Theorem 4.4 it is clear that there exist determinate u€ M;‘;,[(Rd) which are not
strongly determinate.

For another example of a determinate measure which is not strongly determinate
see [15], which also contains an example of a strongly determinate measure which is
not ultradeterminate.

For rotation invariant measures the two notions of strong determinacy and ultrade-
terminacy coincide, as we shall see below.

Let s : N°—R be positive definite (cf. section 2). For polynomials px)=L,c,x*and
q(x)=Eﬂ dﬂxﬁ we define their scalar product as

(p.q):= Z ¢, dg s(a+B) = L(pg).
ap

By the Cauchy-Schwarz inequality the set & of polynomials p with (p,p)=0 is an
ideal in C[x,, ..., x,]. The quotient space C[x,,...,x,}// is a pre-Hilbert space and we
denote its completion by ?. The operator of multiplication with x; on C[x,, ..., x,]
induces a densely defined symmetric operator X; in the Hilbert space % with domain
Clxy, ..., x]/N.

We shall say that s satisfies Nelson’s condition if the symmetric operator
Xi+...+X% is essentially self-adjoint. If s satisfies Nelson’s condition then a theorem
of Nelson [10, p. 603; 12, p. 489] together with a theorem of Fuglede {7, p. 57] imply
that s is the moment sequence of a strongly determinate measure. We shall say that a
measure u € /#*(RY) satisfies Nelson’s condition if its moment sequence does. Fuglede
[7, p. 59] noticed that Nelson’s condition is equivalent to C[x,, ..., x,] being dense in
L((1+{lx|[") du(x)). In that case u is even ultradeterminate because 14 [|x{’<2(1+|lx||*).
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PROPOSITION 6.1. The following properties of a measure u € M% (R?, where d>1,
are equivalent:

() C[xy, ..., x,] is dense in L*(u),

(ii) u satisfies Nelson’s condition,

(iii) u is ultradeterminate,

(iv) u is strongly determinate.

Proof. Assume that (i) holds and let o=u¥. According to Theorem 3.2, the
polynomials are dense in L*(#do(r)) for every kEN. Proposition 5.2 then implies
that *do(z) is determinate for every k€N. But this means that C[¢] is dense in
L1+t do(t)) for every kEN, cf. Proposition 1.3. This in turn implies by Theorem
3.2 that C[x,,...,x,] is dense in L*(1+|x|*) du(x)). The implications “‘(ii)=(iii)=
(iv)=()" are clear from the preceding discussion. O

Remark. Assume that u has the four equivalent properties of Proposition 6.1. Then
any measure v=h(x) du(x) having a measurable and polynomially bounded density with
respect to u satisfies Nelson’s condition.

To see this it suffices to show that the polynomials are dense in LX((1+[x][)* du(x))
for any kEN. Assume the contrary and choose kyEN such that the polynomials are
dense in L2((1+|]x||)*du(x)) but not dense in L¥((1+|x|)""" du(x)). The measure
r=(1+||x||)® du(x) belongs to 4* (R%) and satisfies (i) but not (ii), which is a contradic-
tion.

We shall give two examples showing that the converse of the first statements of
Theorems 3.2 and 3.6 do not hold without symmetry in dimension one.

EXAMPLE 6.2. There exists a non-symmetric u € M*(R) such that Clx] is dense in
L¥u) but not dense in LY u").

Proof. Let v€ ¥ and define o=tdv(r). Let 7€ #*(R) be the symmetric measure
such that ¥=0. Since o is indet(S) and CJ[f] is dense in L*0) and in L¥tdo(t)), cf.
Theorem 5.5, we see that 7 is indeterminate and Nevanlinna extremal, hence of the
form

‘L’=Z a, (e, +€_g)s
n=1
where a,>0 and 0<a;<a,<:--. The measure

u= 22 a,(e, +e_o) 20,8, t&
n=
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is again indeterminate and Nevanlinna extremal, cf. [2, section 4]. We have u¥=0+¢,,
and since o is indeterminate, C[x] is not dense in L%(«¥) by Corollary 1.5.

EXAMPLE 6.3. There exists a non-symmetric and determinate u; € M*(R) such that u¥
is indet(S).

, Proof. We define u;=u—eg, with x4 as in Example 6.2. Then y, is determinate by
Proposition 1.4 and u{=0 is indet(S).

Acknowledgement. We wish to thank Bent Fuglede for valuable comments to the
manuscript and in particular for having simplified an earlier version of Proposition 3.1.
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