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0. Introduction 

An important theorem of Marcel Riesz, cf. [14], states that the polynomials are dense in 

L2(/x), when/x is a determinate measure on the real line. In the indeterminate case Riesz 

also characterized the measures/x for which the polynomials are dense in L2(#). They 

are the so-called Nevanlinna extremal measures, introduced in Nevanlinna [11]. 

It does not seem to be known whether the polynomials are dense in L2(g), when/x 

is a determinate measure on R d, d> 1, cf. the expository paper by Fuglede [7], as well as 

the research problems book [8, p. 529], where Devinatz poses the problem as question 

1 and ascribes it to the physicist John Challifour (1978). 

In this paper we shall settle the question in the negative. There exist rotation 

invariant measures # on R d, d> 1, which are determinate but for which the polynomials 

are not dense in L2(p). Such measures/x are necessarily of the following very special 

form 
o0 

~.g = E~nO)rn,  
n=0 

where a ,>0,  to r is the normalized uniform distribution on the sphere [[x[l=r and 

0<~r0<rl< ...---~oo are the zeros of an entire function of order ~<2. Thus, if a rotation 

invariant and determinate measure p does not have this form, in particular if p has a 

density with respect to Lebesgue measure on R d, then the polynomials are dense in 
L2(/A). 

The above result is obtained by studying the relation between a rotation invariant 

measure/x and its image r under the mapping x llxll 2 of R onto [0, oo[. Our main 

results are Theorems 3.2 and 3.6 from section 3 below. They contain the following 

results: 

(1) p is determinate if and only if o is determinate in the sense of Stieltjes. 
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(2) The polynomials in d > l  variables are dense in L2(,u) if and only if the 

polynomials in one variable are dense in L2(tkda(t)) for any integer k~>0. 

The result corresponding to (2) in one dimension reads as follows (where/z is 

symmetric and o is the image under x~x2): 

(3) The polynomials in one variable are dense in LE(fl) if and only if the polynomi- 

als in one variable are dense in L2(o) and in L2(tdo(t)). 

The difference in the nature of the results in (2) and (3) stems from the theory of 

spherical harmonics. In dimension one there exist homogeneous harmonic polynomials 

of degrees 0 and 1 only, but in higher dimensions there exist homogeneous harmonic 

polynomials of any degree. 

The existence of a rotation invariant measure/, which is determinate, but for which 

the polynomials are not dense in L2(kt), follows, if we construct a measure o on [0, 0o[ 

which is determinate in the sense of Stieltjes, but for which the polynomials are not 

dense in L2(~do(t)) for some integer k (necessarily I>3). In sections 4 and 5 we show 

how to construct and characterize such measures o. 

Despite the solution in the negative of the Challifour-Devinatz problem, it turns 

out that the polynomials are dense in LP(/z) for any p E [ l, 2[, when/~ is determinate and 

rotation invariant, cf. Corollary 3.10. 

If the polynomials are not dense in L2(fl) for some rotation invariant measure/~, 

then they are far from being dense in the sense that the orthogonal complement of the 

polynomials is of infinite dimension, cf. Theorem 4.3. 

In section 1 we have put together some basic facts about measures and moments. 

Section 2 treats rotation invariant measures, and we give necessary and sufficient 

conditions for a sequence s: Nd-->R to be the moment sequence of a rotation invariant 

measure. For a rotation invariant measure/ ,  o n  R d, d > l ,  we present a method of 

describing a canonical family of orthogonal polynomials with respect to/~ in terms of 

the orthogonal polynomials with respect to each of the measures t g do (t), where o is the 

image measure of/a under Xv">HXI] 2 and k is any integer >10. 

Section 3 contains the main results as described above. 

In [7] Fuglede introduced the notions of strong determinacy and ultradeterminacy. 

A determinate measure/~ for which the polynomials are not dense in L2(kt) is not 

strongly determinate, thereby showing that strong determinacy is a de facto stronger 

condition than determinacy. In [15] SchmOdgen gives another example of a determinate 

measure which is not strongly determinate, and he also gives an example of a strongly 

determinate measure which is not ultradeterminate. 
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That ultradeterminacy is de facto stronger than strong determinacy is not demon- 

strated in this paper. We prove on the contrary that the two concepts coincide within 

the class of rotation invariant measures with the concept of those measures/~ for which 

the polynomials are dense in L2(/~). These questions together with a condition of 

Nelson, cf. [10], are discussed in section 6, which also contains some examples. 

1. Preliminaries about measures and moments  

For a locally compact space X we denote by Cc(X) the set of continuous functions 

f" X-->C with compact support and by M(X) the set of positive Radon measures on X. 

We shall equip M(X) with the vague topology, i.e., the weakest topology in which the 

eva lua t ions /~  [fdl~ at functions fE  Cc(X) are continuous. 

If X, Y are locally compact spaces and j:X--> Y is continuous, we can define the 

(Radon) image measure/~J E M(Y) of a Radon measure/t on X provided that j  is proper 
in the sense tha t j - l (K) i s  compact in X for any compact set K_  Y. The image measure 

is characterized by the equations 

f f d ~ J = f f o j d ~ f o r a l l f E C c ( Y ) .  

Let ~*(R d) denote the set of all positive Radon measures/~ on Euclidean space 

R d having moments of every order, meaning that x~EL~(Iz) for every a EN d, where 

we use the multi-index notation ~ ~l ~ x =x 1 ... x d for x=(xl . . . . .  Xd) E R d, a=(ab.. . ,  ad) E N a, 
N={0, 1 .... ). As usual we put lal=al+...+ad. 

For/~ E M*(R d) the corresponding moment sequence s=s t, : Na--->R is defined by 

= su(a) = JnfdXad/z(X)' aENd" (1.I) s(a) 

We define/z, v E ~*(R d) to be equivalent, denoted/~-v, if s,(a) =sv(a) for all a E N d. 

The equivalence class [#] consisting of all v E ~*(R) having the same moments as/~ is a 

convex set, which is compact in the vague topology, cf. [3, Proposition 6.1.7]. 

A measure/z E ~*(R d) or its moment sequence s is said to be determinate if I/z] 

reduces to a single measure, and indeterminate if this is not the case. 

We define 

~*([0, ~[) = {oE ~*(R)I supp(cr) ~_ [0, ~[}. 

For ~rE ~*([0, ~[) the corresponding moment sequence s is called a Stieltjes moment 
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sequence. We say that a or s is determinate in the sense of  Stieltjes (short: det(S)) if o is 

the only measure on [0, ~[  with the same moments as o, and we say that a or s is 

indeterminate in the sense of  Stieltjes (short: indet(S)) if there exist different measures 

on [0, oa[ with the same moments  as o. Clearly, if o is indet(S) then o is indeterminate 

(sometimes called indeterminate in the sense of Hamburger). It can happen that o is 

indeterminate and yet determinate in the sense of Stieltjes, cf. [1, p. 240]. 

I f /~E~*(R)  is indeterminate, then it is elementary to see that t2d/~(t) is again 

indeterminate. Similarly, if o E At*([0, oo D is indet(S), then t do (t) is indet(S). 

For ~ E ~*(R d) the vector space C[xl . . . . .  Xd] of polynomials on R d with complex 

coefficients is contained in LP(p) for every p E [1, oo[. We denote the norm in LP(/0 by 

For an indeterminate/~ E ~t*(R d) the set [/~] can be described via spectral measures of 

certain commuting families of  self-adjoint operators, see Fuglede [7] for details. In 

dimension d=  1 a much more precise result is available: The Nevanlinna parametriza- 
tion, see Akhiezer [1] or Buchwalter and Cassier [5] for details. To describe it let N be 

the set of Nevanlinna-Pick functions q0 : C\R--->C given by 

qJ(z) = az+fl+ f tz+ 1 do(t), (1.2) 
J t - - z  

where a~>0,flER and o is a positive finite measure on R. Then NU {oo} can be used as 

parameter space for [p] independent of the particular indeterminate p E AA*(R) via the 

bijection q~-->/~ of  NU (~}  onto [/~] given by 

f dt~o(t) _ A(z) q~(z) -C(z) 
z - t  B(z)q~(z)-D(z)' zE C \ R ,  (1.3) 

where A, B, C, D are certain entire functions associated with [p]. 

The Nevanlinna extremal solutions correspond to the constant functions q0(z)=fl, 

with fl E R O { oo ). The Nevanlinna extremal solution P0 corresponding to the parameter 

value f l=0 plays an important role later. It is the only Nevanlinna extremal measure 

having mass at 0, and it is given by 

lUo = E o(d)ed, 
dEA 

where A is the discrete set of zeros of the entire function D from the Nevanlinna 

parametrization. According to [1] 
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and 

D(z) = z E Pk(O) P~(z) 
k=O 

(1.4) 

)' 
o(z)  = IPk(z) 12 , (1 .5)  

k=O 

where (Pk)k>~O denote the orthonormal polynomials associated with [/z], uniquely deter- 

mined by orthonormality and the requirement that the leading coefficient of each Pk is 

positive. 

In the Stieltjes case, where at least one of the measures aE [/z] is concentrated on 

[0, ~[, all the zeros of Pk are positive so we have (-l)kPk(x)>0 for x~<0, hence D(x)<0 

for x<0. The zero set A for D therefore consists of a sequence 

O= do < dl < d2 < ...--> ~,  

so/z0 is supported by [0, o0[. This yields a simple proof of the following known result: 

PROPOSITION 1.1. Let oE d/t*([0, oo[) be det(S) and indeterminate. Then o is equal 

to the Nevanlinna extremal solution Oo. 

COROLLARY 1.2. Let eEM*([0, o0[) be det(S). Then the polynomials are dense in 
LE(a). 

Proof. This is a consequence of the theorem of Riesz [14], because o is either 

determinate or the Nevanlinna extremal solution o0. [] 

Corollary 1.2. is a preliminary result. For a stronger statement see Corollary 3.9. 

We recall two classical results which will be used several times in the sequel: 

PROPOSITION 1.3 (Riesz [14]). Let/~ E ~*(R). Then I ~ is determinate if and only i f  

the polynomials are dense in L2((1 +x 2) dlt(x)). 

For a proof see also [7, p. 58]. 

In Theorem 3.8 below we characterize determinacy in the sense of Stieltjes by 

L2-denseness in analogy with Proposition 1.3. 

PROPOSITION 1.4. Let iz Ed~*(R) be indeterminate and Nevanlinna extremal and let 

a E R. If l~({a})>0 then V=l~-Iz({a})ea is determinate. 

For a proof see [1, p. 115] or [2, p. 111]. 
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COROLLARY 1.5. Let Iz EJ~*(R) be of  the form t~=aea+V where a>0  and v({a}) =0. 

Then v is determinate if  and only if  the polynomials are dense in L2(/~). 

Proof. Assume first that C[x] is dense in L2(/t). If/t is determinate, so is the smaller 

measure v. If/~ is indeterminate it is Nevanlinna extremal, so that v is determinate by 

Proposition 1.4. 

Assume next that v is determinate. Then C[x] is dense in L2(/t) by a result of Berg 

and Christensen, cf. [2, p. 113]. [] 

2. Rotation invariant measures and their moments 

The orthogonal group O(d) operates continuously in the convex cone M(R ~) of positive 

Radon measures o n  R d in the following way: I fp  EM(R d) and R E O(d) then/~R EM(R d) 

is the image measure of/~ under R. 

We say that/~ E M(R a) is rotation inoariant if/tR=/~ for all R E O(d) and denote by 

Mrot(R d) the set of rotation invariant positive Radon measures o n  R d. 

Let dR refer to the normalized Haar measure on O(d), and let f~d denote the unit 

sphere in R d. For ~ E Qd and q0 E C(~d) we have 

fo(d) ~O(R~) dR = f~ q~ dto, (2.1) 

where to is the normalized surface measure of f~d characterized by being the only 

rotation invariant probability on ff~d. 

For/~ E M(R d) the vector integral 

= R dR (2.2) 

defines a measure/2 EMrot(R d) such that 

f f d~= fo~ ( fRf(Rx)d~(x)) dR, fECc( Rd)" 

Let ~ : Rd--~R and j : [0, ~[ x ~d--.~R d denote the functions 

d 

~o(x) = Ilxll 2 = Z x~, j(t, ~) = x/-7- ~. (2.3) 
i= 1 

Using (2.1) we find 
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f f dfi = f f d09(~) Jo~JRf(llxll~) dm (x) 

foff f = f ( v T ~ )  dtx*(t) d09(~) = fd(Ix~| j, 
d 

213 

/~ = (/~v,| for /~ E M(Rd), (2.4) 

i.e. # is the image measure under j of the product of the measu re s /~  and 09. In 

particular we have 

/~=(/~| for aEMrot(Ra). (2.5) 

For o E M([0, oo D the measure/~= (0@09) i belongs to Mrot(R d) a n d / d = e  as is easily seen. 

We may summarize the above formulas in the following way: 

PROPOSITION 2.1. Let ~p and j be defined by (2.3). Then I~,/~ w is a bijection of 
Mrot(R a) o n t o  M([0, ooD, and the inoerse mapping is o~-*(o| j. 

Let/~ E Mmt(Ra). If/~ E ~*(R a) then bt ~ E ~*([0, oo D and 

f : d~(t)= f llxll2n d~(x). (2.6) 

Conversely, if e E .,~*([0, oo ]) then/~ = (a| j E ~*(R a) and 

fx~dlz(x)=fo| ~d09(,). (2.7) 

It is clear that j ' ~  d09(~) =0 if at least one ai is odd, and it is easy to see that 

f ~2a F(al + 1/2)... F(aa+ 1/2) 

This shows that ~*ot(Ra):--~*(Rd)NMrot(R a) is in one-to-one correspondence with 

.,~*([0, ~[) under the bijection of Proposition 2.1, and that the non-trivial moments 

s(a)=fxad~(x) (all ai even) of ~E ~*ot(R a) are expressed as in (2.7) in terms of the 

Stieltjes moments of the corresponding measure e--9 ~ on [0, ~ [. 

The d-dimensional moment problem consists in characterizing those sequences 

s : Na--*R which are the moment sequence of some measure ~ E.a*(Ra). 
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To s : Nd----->R we associate the C-linear functional Ls : C[x~ . . . . .  Xd]--->C on the space 

of complex polynomials given by 

Ls(x ~) = s(a), a E N a. 

We recall the following results (see e.g. [3]): 

(i) s is a moment  sequence if and only if Ls is non-negative on non-negative 

polynomials. 

(ii) If  s is a moment  sequence then s is positive definite on the semigroup N d, (i.e. 

the kernel (a, f l )~s (a+f l )  is positive semidefinite on NdxNd). 

(iii) Le t  s be positive definite on N d. Then s is a moment  sequence if d = l  

(Hamburger 's  theorem),  but s need not be a moment  sequence if d > l .  

We shall see that in the rotation invariant case positive definiteness of  s is 

sufficient for s to be a moment  sequence.  

PROPOSITION 2.2. The fol lowing properties o f  a funct ion s : Nd-->R are equivalent: 

(i) s is the moment  sequence o f  a measure/x E J/t*ot(Rd). 

(ii) s is positive definite and Ls is rotation invariant in the sense that 

Ls(poR) =L~(p) for  p E C[xz . . . . .  Xd] and R ~ O(d). 

(iii) There exists a Stieltjes moment  sequence t such that 

f~ tfo s ( a ) =  t lal ~ & o ( O ,  
d 

a i is odd for some i= 1 . . . . .  d, 

a i is even for every i=  I . . . . .  d. 

Proof. The implication "(i)=~(ii)" is obvious. 

To prove that "(ii) =*,(iii)" we define t(n) =Ls({lxii2n), 0 3 0 ,  and want to show that t is 

a Stieltjes moment  sequence.  We shall show that t and the shifted sequence 

(Et)(n)=t(n+ I) are both positive definite. For  Co, Cl . . . . .  cn E C we have 

  ot(i+j)cjej=L ( 1 c llxll  )i>o 
and 

i,j=O i=0 

where we have used that Ls(Lol 2) t>0 for any p E C[xl . . . . .  xd], since s is positive definite. 
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We next have to show that the equality in (iii) holds. Let  a E N d. If  some of the 

coordinates of a are odd we find 

s(a) = Ls(x ~) = 0 = dw(~), 
J n  d 

by considering the reflection in a coordinate in which a is odd and using the rotation 

invariance. We can thus restrict our attention to the case where a is of the form a=2fl 
with fl E N d. We have to show that 

Ls(x2~) --- Ls(llxll2~l) ( ~2~ do(~). (2.8) 
J f l  

d 

For any polynomial p fi C[xl . . . . .  Xd] we define a rotation invariant polynomial/~ by 

the vector integral 

= ( p o R d R ,  P 
3o (d) 

and since L~ is rotation invariant we have Ls(/~) =L~(p). For p(x) =x  2~ we find 

P(x) = fo ca) p(Rx) dR = f..P(llxllO d~~ = llxllZ~l f.~ ~2# dw(~)' 

and (2.8) follows. 

Assume finally that (iii) holds and let oE~t*([0, oo[) be a representing measure 

for t. Then ~=(tr|  j belongs to ~*ot(Rd), and its moment sequence is easily seen 

to be s. [] 

We next want to show how to obtain orthogonal polynomials with respect to a 

rotation invariant measure. This constitutes a natural extension of the results in [6, 

section I]. 

Let/~EJR*t(Rd), d >  1, and let tr=/~ ~. For  k ~ N let (Pk,n(t)),er~ denote the system of 

orthonormal polynomials associated with the measure tkda(t). Let  ~d,k denote the 

space of spherical harmonics (i.e. homogeneous harmonic polynomials) of  degree k on 

R d. Let S~j, j =  l . . . .  , dim ~d,k denote an orthonormal basis of ~gd,k considered as a 

subspace of LE(to). 

For  k, n E N and j =  1 . . . . .  dim ~gd, k we define 

Pk,. j (x)  = Pk,. (llxll 2) sk, j(x) ~ C[x~ . . . . .  x~]. 
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These polynomials form an orthonormal basis of  C[xt . . . . .  Xd] considered as a subspace 

of L2(/0. Indeed every polynomial in C[xl . . . . .  Xd] is a sum of polynomials of  the form 

p(llxll2)S(x), where p(t)EC[t] and S(x) is a spherical harmonic, cf. [16, p. 139]. More- 

over one has 

f.: f/ fo k,n,j Pk',n',j' dl~ = Pk, n(t)Pk,,n,(t) t(k+k')/2do(t) Sk, j Sk,,j, dto. 
d 

The last factor vanishes when (k,j)*(k' , j ' ) .  If k=k' and j=j' the above expression 

equals 

fo Pk, n(t) Pk, n'(t) tk do(t) = 6~,. 

3. Main results 

We first give a set of  functions which is total in LP(/a), when p E [1, oo[ and/~ is an 

arbitrary measure in M(Rd). 

PROPOSITION 3.1. Let /zEM(R d) and p E [1, o0[. The linear span of  the functions 

f(llx[I 2) S(x), where fE  Co([0, o0D and S(x) is a spherical harmonic, is a dense subspace 
in L"(/a). 

Proof. By disintegration of/z with respect  to the mapping ~p : X~">]lXl[ 2 from R d onto 

[0, oo [ we get 

~ = 2 t do(t), 

where o = ~0, and 2t is a probability measure on the sphere 

{xERdl Ilxll = V-i-} 

for t E [0, o0[, cf. Bourbaki  [4, Chapter  6, p. 58]. Assume that g ELq(iz) annihilates all the 

functions in question, q being the dual exponent  o f p .  We shall show that g=0  ~-a.e..  

By assumption we have 

-- If(llxll2) S(x) g(x) dl~(X) 0 



ROTATION INVARIANT MOMENT PROBLEMS 217 

and since f E  Cc([O, o0 D is arbitrary, we get for every spherical harmonic S that 

fllx = 0 (3.1) Sg d2 t 
ii=x/-? 

for a-almost all t E [0, oo [. Using a (countable) orthonormal basis for L2(to) of spherical 

harmonics we see that there exists a a-null set Nc[0 ,  oo[ such that (3.1) holds for all 

spherical harmonics S and for all t E [0, oo [ \ N .  The linear span of the set of restrictions 

of spherical harmonics S to the sphere Plxll=x/-7- is uniformly dense in the continuous 

functions on the sphere, cf. [16, p. 139], and we therefore get g=0 ~t-a.e. for a-almost 

all t, hence g=0/z-a.e..  [] 

TaEOREM 3.2. Let  #E M*(R d) where d > l ,  define a=kt ~~ and let p E [I, oo[. I fC[t] is 

dense in LP(t ~/2 do( t ) ) for  every integer k~O then C[Xl .. . . .  Xd] is dense in LP(IO. 

The converse holds when tz is rotation invariant and p=2.  

Proof. ~ Assume first that C[t] is dense in LP(t ~r2 do(t)) for every integer k~>0. To see 

that C[Xl .... ,X d] is dense in LP(/z), it suffices by Proposition 3.I to approximate 

f(llxll 2) S(x) arbitrarily well in LP(/z) by polynomials, f E  Cr oo[) and S(x) a spherical 

harmonic being given. Let k be the degree of S(x). For h(t)EC[t] we define 

Q(x) =h(llxll 2) S(x) ~ C[x~ . . . . .  xd] and notice that 

IIf(llxll z) S(x) -Q(x)Ilu, p = II(f(llxll 2) -h(llx]12)) HxllkS(x/llxll)ll~,. 

~<sup IS(O I. II(f(llxllb -h(llxll2))(11x112)~211,,,, 
~Efl d 

which can be made as small as we please since the second factor equals ]]f-hll~,p, 
where for simplicity of notation we have put 

r = t kp/2 do(t), 

and we assume that C[t] is dense in LP(r). 

Assume next that /z is rotation invariant, p=2  and that C[t] is not dense in 

L2(t k do(t)) for some integer k~>0. Then there is a function f E  L2(t k do(t)) \ {0} which is 

orthogonal to C[t]. Let Sk(x) be a non-zero spherical harmonic of degree k on R d. Then 

f(llxll 2) S,(x) belongs to L2(/.t)N{0}, because by (2.5) we have 

Itf(llxll~) s,(x) I1~.~ = Ilfll~ a~o,211S,ll~,2. 

We want to show that f(llxll2)Sk(x) is orthogonal to C[xl .....  Xd]. Every polynomial in 

15-918289 Acta Mathematica 167. Imprim~ le 5 novembre 1991 
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C[xt .....  Xd] is a sum of polynomials of the form p(llxll 2) S(x) where p(t)E C[t] and S(x) is 

a spherical harmonic, cf. [16, p. 139]. If the degree of S(x) is m, we have (again by (2.5)) 

S f/ t BIIxll 2) Sk(x) p(llxll z) S(x) d (x) -- f(t) ~ t (k+m)/2 do(t) S k 
d 

Here, the second factor vanishes when m4:k, and the first factor vanishes when m=k. 
[] 

On the real line there exist spherical harmonics of degree 0 and I only. For d= 1 

one obtains therefore the following result from Proposition 3.1: 

TrIEOREM 3.3. Let/~EM*(R), define cr=~t w and let pE[1,  oo[. I f  C[t] is dense in 

LP(o) and in LP(t p/2 dtr(t)) then C[x] is dense in LP(~t). 

The conoerse holds when ~ is symmetric and p=2.  

COROLLARY 3.4. Let ~ E M*(R d) and consider the measure 12 defined by (2.2). I f  

C[x 1 ..... Xa] is dense in L2(12), then C[x 1 .. . . .  Xd] is dense in L2(~). 

This result is obvious for d= I because in that case/a~<212. 

To establish (1) from the introduction we need 

PROPOSITION 3.5. Let/~ E M*(R d) and put cr=~t ~. Assume that C[t] is dense in LP(~r) 

for some pE] I ,  oo[. Then C[x I . . . . .  Xd] is dense in LP'(~) for every p' E [1,p[. 

Proof. Let p'  E[1,p[. By Theorems 3.2. and 3.3 it suffices to show that C[t] is 

dense in LP'(t ~'/2 do(t)) for every integer k~>0. Let k E N and f E  Co([0, ~ D. For h(t) E C[t] 

we have 

\p ' i . l  f \~/s 
flf(t)-h(t)lP't  "2do(t)<.(flf(t)-h(t)l do(t)) 

where s is the dual exponent ofp/p' in H61der's inequality. The first factor can be made 

arbitrarily small, because we assume that C[t] is dense in LP(cr). [] 

The following theorem (which establishes (1)) is well-known in the one-dimensional 

symmetric case, see e.g. Heyde [9, p. 92] or Chihara [6, p. 333]. Their proofs are based 

upon the Nevanlinna parametrization and are not applicable in the multidimensional 

case. Our proof parallels Petersen's proof that/t E M*(R d) is determinate if its marginal 

distributions are determinate, cf. [13, Theorem 3]. 
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THEOREM 3.6. Let IX E ~*(R  a) and put a=ix ~. I f  a is det(S) then IX is determinate. 

The converse holds if IX E J,/*ot(Rd). 

Proof. We shall need that a measure v E [IX] is an extreme point of  [IX] if and only if 

the polynomials are dense in if(v).  This is shown in [1, p. 47] for d = l ,  but the proof 

applies in any dimension. 

Assume that a is det(S). For  vE [IX] we have v ~ a  by (2.6), hence v~=a. Since the 

polynomials are dense in L2(a)=LZ(v ~) by Corollary 1.2, it follows by Proposition 3.5 

that C[x I . . . . .  Xd] is dense in Ll(v), so that v is an extreme point of  [IX]. The measure 

v ~ [IX] being arbitrary, this is only possible if IX is determinate. 

Assume next that IX E J, gr*ot(R d) and that a is indet(S). Then IX is indeterminate, 

because if tEA/*([0, oo[) is equivalent to a then (r| by (2.7). [] 

COROLLARY 3.7. Let p E ~/*(R d) and consider the measure ft defined by (2.2). I f  f~ 

is determinate then IX is determinate. 

This result is obvious for d---- 1 because in that case ~-..<2/J. 

We shall now give the analogue of  Proposition 1.3 for the Stieltjes case. 

THEOREM 3.8. Let aE./R*([0, ~[). Then a is det(S) if  and only i f  C[t] is dense in 

L2((1 + t) do(t)) and in L2(t(1 + t) do(t)). 

Proof. Let IX E ~t*(R) be the unique symmetric measure for which IxW=a. By 

Theorem 3.6 the measure a is det(S) precisely when IX is determinate. By Proposition 

1.3 the measure IX is determinate if and only if C[x] is dense in L2((1 +x 2) dix(x)), and by 

Theorem 3.3 this is equivalent to C[t] being dense in L2((l+t)do(t)) and in 
L2(t(1 +t) do(t)). [] 

COROLLARY 3.9. I f  a ~  J//*([0, oo[) is det(S), then C[t] is dense in LZ(a), LZ(tdo(t)) 
and in L2(t 2 do(t)). 

COROLLARY 3.10. Let /u E ,/~r*ot(R d) be determinate. Then the polynomials are dense 

in LP((1 + I[xll 2) d#gx)) and in LP(ilxl12(1+ lixll 2) d#gx)) for any p E [I, 2[. In particular the 

polynomials are dense in LP(IX) for any such p. 

Proof. This follows immediately by combination of Theorem 3.6, Theorem 3.8 and 

Proposition 3.5. [] 

PROPOSITION 3.11. Let/2 E eg*(R d) have a density with respect to Lebesgue meas- 

ure./fC[t] is dense in LE(IX ~) then C[x I . . . . .  Xd] is dense in L2(IX). 
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Proof. The measure cr=/t ~ is not discrete, because spheres are Lebesgue null sets. 

By Theorems 3.2 and 3.3 it suffices to prove that C[t] is dense in L2(tkdo(t)) for any 

integer k~>0. Assume the contrary. Then there is a smallest k E N such that C[t] is not 

dense in L2(tkdo(t)). By assumption k~>l. The measure r= t  k-I do(t) is indet(S) and 

Nevanlinna extremal, but then r and tr are discrete, which is a contradiction. [] 

4. Solution of the Challifour-Devinatz problem 

It follows from Theorems 3.2 and 3.6 that / rE .~*ot(Rd), d > l ,  is determinate and the 

polynomials are not dense in L2(~t) if and only if/z=(tr| j, where oE~*([0, ~[) is 

det(S) such that the polynomials are not dense in L2(t k do(t)) for some k E N (necessarily 

>~3 by Corollary 3.9). 

We show below that such measures tr exist, and we characterize them completely 

in the next section. We need the following result: 

PROPOSITION 4.1. Let trEM*([0, oo[) be indet(S). Then C[t] is not dense in 

L2(tk do(t)) for any integer k~3. 

Proof. Suppose that C[t] is dense in L2(fl do(t)) for some integer k~>3. The measure 

v=tkdo(t) is then indeterminate and Nevanlinna extremal, hence discrete. It is clear 

that 0(~ supp(v). Since ( l+f l)- l t  2 increases with t 2, we have 

a 2 1 ~< 1 
l + a  2 t 2 1 - ~  f o r  tEsupp(v), 

where a>0 is the smallest element of supp(v). We then have 

a 2 a 2 1 dr(t)<<. 1 dr(t). t k-2 do(t) - 
l + a  2 l + a  2 t 2 l + t  ~ 

Since v is Nevanlinna extremal, we know by Proposition 1.3 that the measure 

(l+t2)-ldv(t) is determinate. By the inequality above tk-2do(t) is also determinate, 

which is impossible because tr and hence t k-2 do(t) is indet(S). [] 

From Theorems 3.2 and 3.6 we immediately get the following consequence of 

Proposition 4.1: 

COROLLARY 4.2. I f  l~E ~,~r*ot(Rd), d > l ,  is indeterminate, then the polynomials are 

not dense in L2(~). 

This is in contrast with the one-dimensional case, where an indeterminate symmet- 
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ric moment problem always has (precisely two) symmetric Nevanlinna extremal solu- 

tions, cf. [6]. 

We next show that the closure of C[x I . . . . .  xd] in L2(~) is "small" in LE(/z), if it is 

not equal to L2(~). 

THEOREM 4.3. Let/Z E./~*ot(Rd), d > l .  I f  the polynomials are not dense in L2(/z), 
then the closure of  C[x 1 ..... Xd] has infinite co-dimension in LE(fl). 

Proof. Assume that the polynomials are not dense in L2(It) and let o=/ff. Then C[t] 

is not dense in L2(t n do(t)) for some n E N, cf. Theorem 3.2. By Corollary 3.9 it follows 

that tndo(t) is indet(S), and Proposition 4.1 implies that C[t] is not dense in LE(tkdo(t)) 
for k E N, k>~n+3. For each of these infinitely many values of k, let fk E L2(t k do(t))\  {0} 

be orthogonal to C[t] and let Sk(X) be a non-zero spherical harmonic of degree k on R d. 

The functions fk(l[xH2)Sk(X)EL2(fl)~{0} then belong to the orthogonal complement of 

C[x I .. . . .  Xd] in L2(~t), cf. the proof of Theorem 3.2. Moreover, these functions are 

pairwise orthogonal because 

(llxll z) Sk(x) A,(llxll z) sk,(x) dtt(x) = fk(t) fk,(t) t (k+k')/2 do(t) Sk(~) Sk,(~) dw(~), 
�9 l f l  a 

and the second factor vanishes when k'~:k. [] 

I foE ug*([0, oo[) is indeterminate, then o0 also belongs to d~*([0, oo[) and is given by 

a o = ~ o(d,,)ea., 

where O=do<dl<d2<... are the zeros of the function D, cf. (1.4). 

The following class 5eof measures (Sefor Stieltjes) will be crucial for the solution of 

the Challifour-Devinatz problem. 

5e= {o0-o0({0})%1 oE d/*([O, ~[) is indet(S)}. 

With tr0 as above the measure v=o0-a0({0})e0E Aeis of the form 

v = ~ o(d.) %, 
n=l 

and it is determinate by Proposition 1.4. Since tkdv(t)=tkdoo(t) for k~>l and o0 is 

indet(S), Proposition 4.1 implies that C[t] is not dense in L2(tkdv(t)) for any k>~3. The 
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corresponding rotation invariant measure/~=(v| j has the form 

n=l  

where ~or is the normalized uniform distribution on the sphere Ilxll=r in R a. We have 

thereby shown the existence part of  the following solution in the negative of the 

Challifour-Devinatz problem from the introduction. 

THEOREM 4.4. There exist determinate measures ~E./~r*ot(Rd), d > l ,  for  which 

C[x 1 . . . .  ,xa] is not dense in L2(I~). Such measures are necessarily o f  the form 

oo 

= X anO)rn' 
n=l  

where an>0 , 0~<r0<rl< ... ---~oo. 

Proof. We have to prove that if/z E ./f~*ot(R d) is determinate and the polynomials are 

not dense in L2(/~), then/~ has the special form of the theorem. By Theorems 3.2. and 

3.6 we see that o=/~ w is det(S) and there exists an integer k (~>3), such that C[t] is not 

dense in L2(/kdG(t)). Let  k0 be the smallest integer with this property. Then r = t  k~ da(t)  

is such that C[t] is dense in L2(r) but not in L2(tdz(t)), so r is indet(S) by Corollary 3.9 

and hence Nevanlinna extremal and in particular discrete. The mass points of a and z 

are the same except that a may have mass at the origin. This shows that bt is a sequence 

of uniform distributions on spheres as indicated. [] 

Remark. Since the mass points of a Nevanlinna extremal measure are the zeros of 

an entire function of exponential type, cf. [1, p. 56], we see that the radii of the 

corresponding spheres are the zeros of an entire function of order ~<2. 

5. Measures of finite index 

In order to obtain more information about the measures in Theorem 4.4. we need the 

following 

LEMMA 5.1. Let aE  d~*([0, oo D. I f  t2 do(t) is det(S) then o is determinate. 

Proof. Let  us assume that the measure t2dcr(t) is det(S). It has no atom at the 

origin, so by Proposition I. 1 it is also determinate. I f  r E ~*(R) has the same moments 
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as or, then we have t 2 d r ( t ) - t  a do(t) and hence t 2 dr( t )=t  2 o(t). This show that r = o ,  so 0 is 

determinate. 

PROPOSITION 5.2. The following properties o f  a measure oEd~*([0, ~[) are equiv- 

alent: 

(i) C[t] is dense in L2(tk do(t)) for every kEN,  

(ii) t k do(t) is det(S) for every k E N, 

(iii) tk do(t) is determinate for  every kEN,  

(iv) C[t] is dense in L2(tl' do(t)) for every pE [0, o0[. 

For a non-discrete measure 0 these properties are equivalent to C[t] being dense in 
L2(o). 

Proof. The implication "(i)=~(ii)" follows from Proposition 4.1, the implication 

"(ii)=~(iii)" follows from Lemma 5.1, and the implication "(iv)re-(i)" is obvious. 

Suppose next that (iii) holds and let p E [0, oo [. If  k= [p] then t~ + t 2) for t>~0, and by 

the theorem of Riesz C[t] is dense in L2(tk(1 + t  2) do(t)) and a fortiori in LZ(t p do(O), so 

(iv) holds. 

Suppose finally that tr is non-discrete and that C[t] is dense in L2(o). We claim that 

(i) holds. Assume the contrary. If  k E N is such that C[t] is dense in L2(t k do(t))but not 

dense in L2(t k+l do(t)), then tkdo(t) is indet(S) by Corollary 3.9 and hence Nevanlinna 

extremal. Therefore tkdo(t) is discrete, which is a contradiction. [] 

For a measure oE d~*([0, oo[) which is det(S) we introduce the index (of determina- 

cy) of  o as 

ind(o) = sup {k E N I tkdo(t) is det(S)}. 

The properties (i)-(iv) o f  Proposition 5.2 are equivalent to the statement ind(o)= ~.  

From Theorems 3.2, 3.6 and Proposition 5.2 we immediately get: 

PROPOSITION 5.3. Let It E d~*ot(Rd), d > l ,  and put o=I* v'. The following statements 

are then equivalent: 

(i) kt is determinate and the polynomials are not dense in L2(k0. 

(ii) o is det(S) and ind(o)<oo. 

We shall characterize the class ,9 o defined in section 4 as the measures of  index 

zero. As a preparation we need the following lemma. 

LEMMA 5.4. Assume that o E d~*([0, oo[) has index zero, i.e. o is det(S) and t do(t) is 

indet(S). Then o has no atom at the origin. 
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Proof. The polynomials are dense in L2((l+t)do(t))  by Theorem 3.8, because tr is 

det(S). Assume that o has an atom at the origin. Then also (1 +t) do(t) has an atom at the 

origin, but if this mass is removed,  the remaining measure is determinate by Corollary 

1.5, and so is the smaller measure tdo(t), in contradiction with the assumption. [] 

THEOREM 5.5. A measure vE ~t*([0, oo[) has index zero if  and only i f  it belongs to 

S e. In the affirmative case C[t] is dense in L2(t k dv(t))for k=0,1,2,  but not for any integer 

k>~3. 

Proof. We have already remarked that a measure v=v0-o0({0 }) e 0 E Se is determi- 

nate and hence det(S). Since t dr(t)= t dao(t), we see that t dr(t) is indet(S), so v E S~ has 

index zero. We have also remarked that C[t] is dense in L2(t k dr(t)) for k=0,1,2,  but  not 

for k~>3. 

For  the converse assume that vE M*([0, oo[) has index zero. By Lem m a  5.4 we get 

that v has no atom at the origin, so v is determinate by Proposition 1. I. Let  a > 0  and put 

o=aeo+v. The measure o is then indet(S) and satisfies o=o0 so that vE Se. Indeed one 

has tdo(t)=tdv(t), which is indet(S). Thus,  if tr were det(S), it would have index zero 

and thereby have no atom at the origin by Lem m a  5.4. We conclude that o is indet(S). 

Finally we have that C[t] is dense in L2(tr) by Corollary 1.5. This shows that o is 

Nevanlinna extremal with an atom at the origin and hence o=tr0. [] 

THEOREM 5.6. A measure oEM*([0, ~[) has finite index >~1 precisely When it is o f  

the form 

tr = ae o + t -j dr(t), 

where a~O, j  is an integer >-1 and vESf. 

In the affirmative case a=o({0}) ,  j= ind(o)  and v=tind~a) do(t) so that the above 

representation is unique. 

The polynomials are dense in L2(tk do(t)) for k=0,1 . . . . .  ind(o)+2 but not for any 

integer k~>ind(tr)+3. 

Proof. Assume that o E ~ * ( [ 0 ,  oo[) has finite index I>1. If follows by Theorem 5.5 

that v= t  ind~') do(t) belongs to S ~ so that the denseness assertion follows by Corollary 3.9 

and Theorem 5.5, and o has the form indicated. 

Conversely,  i f a  has the form indicated, then fldo(t)=v is det(S). It follows that cr is 

det(S), and since t i+1 do(t)=tdv(t) is indet(S) because ind(v)=0, we see that ind(r 
[] 
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Because of Proposition 5.3, the Theorems 5.5 and 5.6 show how to construct all 

measures/~ E ~*ot(Rd), d> 1, which are determinate and for which the polynomials are 

not dense in L2(/.t). 

6. Complements 

For a measure/~ E ~*(R d) Fuglede [7] introduced the notions of strong determinacy and 

ultradeterminacy, and showed that the former is equivalent to C[x~ .. . . .  Xd] being dense 

in L2((1 +~)  d#(x)) for each j =  I . . . . .  d, while the latter is equivalent to C[x I . . . . .  xa] being 

dense in L2((1 + I lxll z) Fuglede noticed that ultradeterminacy of/a therefore im- 

plies strong determinacy which in turn implies determinacy and that the polynomials 

are dense in Lz(/~). 

By Theorem 4.4 it is clear that there exist determinate I a ~ d/~*ot(R d) which are not 
strongly determinate. 

For another example of a determinate measure which is not strongly determinate 

see [15], which also contains an example of a strongly determinate measure which is 

not ultradeterminate. 

For rotation invariant measures the two notions of strong determinacy and ultrade- 

terminacy coincide, as we shall see below. 

Let s : Nd---)R be positive definite (cf. section 2). For polynomials p(x)=E a cax ~ and 

q(x) = E# d: x ~ we define their scalar product as 

(P' q ) : =  E c~-d-~# s(a+fl)= Ls(pO). 
a,fl 

By the Cauchy-Schwarz inequality the set 2r of polynomials p with (p,p} =0 is an 

ideal in C[x I . . . . .  Xd]. The quotient space C[xt, ..., xe]/N is a pre-Hilbert space and we 

denote its completion by ~. The operator of multiplication with xj on C[x I . . . . .  Xd] 
induces a densely defined symmetric operator Xj in the Hilbert space ~ with domain 

CEx  . . . . .  xA/::. 
We shall say that s satisfies Nelson's condition if the symmetric operator 

X~+...+X 2 is essentially self-adjoint. If s satisfies Nelson's condition then a theorem 

of Nelson [10, p. 603; 12, p. 489] together with a theorem of Fuglede [7, p. 57] imply 

that s is the moment sequence of a strongly determinate measure. We shall say that a 

measure :z E ~*(R d) satisfies Nelson's condition if its moment sequence does. Fuglede 

[7, p. 59] noticed that Nelson's condition is equivalent to C[x I . . . . .  Xd] being dense in 

Z2((1 + [Ixl 14) d/z(x)). In that case/z is even ultradeterminate because 1 + IIx112~2(1 + Ilxl14). 



226 C. BERG AND M. THILL 

PROPOSITION 6.1. The following properties of  a measure/z E ./~r*ot(Rd), where d > l ,  

are equivalent: 
(i) C[x I . . . . .  Xd] is dense in L2(/z), 
(ii)/z satisfies Nelson's condition, 
(iii)/z is ultradeterminate, 
(iv)/z is strongly determinate. 

Proof. Assume that (i) holds and let a=/z ~. According to Theorem 3.2, the 

polynomials are dense in L2(tkda(t)) for every kEN. Proposition 5.2 then implies 

that tkdcr(t) is determinate for every kEN. But this means that C[t] is dense in 

L2((l+t2)tkda(t)) for every kEN, cf. Proposition 1.3. This in turn implies by Theorem 

3.2 that C[x~ ..... Xd] is dense in Z2((l+llxll4)d/~(x)). The implications "(ii)=~(iii)=~ 

(iv) =>(i)" are clear from the preceding discussion. [] 

Remark. Assume that/z has the four equivalent properties of Proposition 6.1. Then 

any measure v= h(x) d#(x) having a measurable and polynomially bounded density with 

respect to / t  satisfies Nelson's condition. 

To see this it suffices to show that the polynomials are dense in L2((1 +llxlD 

for any k E N. Assume the contrary and choose ko E N such that the polynomials are 

dense in t2((l+tlxll4)k~ but not dense in L2((l+llxll4)k~ The measure 

r=(1 + Ilxl14) k~ d/~(x) belongs to ~*ot(R d) and satisfies (i) but not (ii), which is a contradic- 

tion. 

We shall give two examples showing that the converse of the first statements of 

Theorems 3.2 and 3.6 do not hold without symmetry in dimension one. 

EXAMPLE 6.2. There exists a non-symmetric I~ E ~*(R) such that C[x] is dense in 

L2(/~) but not dense in L2(/zw). 

Proof. Let vEAe and define o=tdv(t). Let rE~*(R)  be the symmetric measure 

such that r~=a. Since cr is indet(S) and C[t] is dense in L2(a) and in L2(tdo(t)), cf. 

Theorem 5.5, we see that r is indeterminate and Nevanlinna extremal, hence of the 

form 
oo 

r= ~ Ctn(ea, + e_an), 
n~l 

where an>O and 0<al<a2<" �9 ". The measure 

= ~ an(ean +E-a n) + 2 a  1 •al -{-e 0 
n=2 
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is again indeterminate and Nevanlinna extremal,  cf. [2, section 4]. We have #~~ 0, 

and since o is indeterminate,  C[x] is not dense in L2(p ~~ by Corollary 1.5. 

EXAMPLE 6.3. There exists a non-symmetric and determinate It1 E./tt*(R) such that ~1 

is indet(S). 

Proof. We define pl=kt-eo with p as in Example 6.2. Then/-~1 is determinate by 

Proposition 1.4 and pl~=tr is indet(S). 
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