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Introduction

1. Let R denote the region formed by the boundary and interior of the star-
shaped octagon whose sides are segments of the lines x= +Il{y+1), y= +i(x+1),
where [>1. Let A, B, C, D denote the vertices

1 l l l
0o, (3 25) 0 (~=5 i23)

respectively, and let A’, B', ¢’, D’ denote their images in the origin O. Let the angle
ABC be 20, and so I is equal to tan (45°+ 0). Then for 30°< 0 <45° Mordell [3]
has in effect shown that the determinant of a critical lattice of R is

P(®+41+5)

Er2i—1)
He has also shown that there are two critical lattices, which can be regarded as
being defined by squares whose vertices and the mid-points of whose sides lie on the
boundary of R; for 30° <0 <45° these are the only critical lattices, for 6 =30° there
are two further critical lattices.

By similar methods I shall prove that the determinant of a critical lattice of i is

1+2ll if 224°<6<30°,
2B(1+1)(31+1) o
GE-1) if §,<0<22%,
and P*+41+5)

(lz+2l—1)2 if 15 <0<00,
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z=~l(y+1)

Diagram 1.

where 0, is given by
B +4P 71 -24P -T2 +41+3=0. (1)

The critical lattices will be described later.

The region N, which consists of two intersecting parallelograms, depends on a
parameter I. T shall thus find the determinant of a eritical lattice of 3 for a range
of values of the parameter. The only other result of this nature is, I believe, that

due to Mahler [1], who considered the region formed by the two intersecting ellipses
2 2 2 1 2
*+y'=1, Air +1y=1,

where A>1. By applying his general theory of lattice points in two-dimensional star
domains he found the determinant of a critical lattice of this region for the range

of values of the parameter A given by
2<A+1/A<25.

In section 11 I shall give a brief account of the ideas which suggested the above

conclusions.
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Finally I shall prove that if, and only if, I takes one of the values
Q+Vr2+1)/n (n=1,2,...) or V+1)/(n—1) (n=2,3,...)

then the determinant of a critical lattice of M is equal to that of one of the two
intersecting parallelograms of which R is composed (see diagram 8).

The substitution t=1I+1""! reduces (1) to the form
363 +41°—16t—32=0,

which has precisely one real root ¢, Since 2 <f,<3 it follows that (1) has two distinct

positive roots I,, l;' (where I,>1). It is easily verified that
2.00 <1, < 2.01,

and so 0.3333 <tan 6,= (l,—1)/(l,+ 1) <0.3356,

whence 18°25' < §, < 18°34".

The following table will be useful:

6 l
30° 2+V3
22 4° 1+ V2
15° V3

Proof of Result for 22 1°<0<30°

2. Introduction (see diagram 2).

TueorEM L If 221°<0<30°, ie. if 14+ V2<I<2+V3, then the determinant of
a critical lattice of N s
A=1+1/21

Moreover the lattice A, generated by A(1,0), L}, A) and its image Ay in the line
x=y are critical. For 22 %°< § < 30° A, A1 are the only critical lattices; for 6 =30° there
are two further critical lattices, viz. A, generated by the points (3 (V3—1), $(3V3-1)),
(1(3V3-1), —1(V3-1)), and its image Ag in the y-axis.

Ag, Ao can be regarded as being defined by squares whose vertices and the
mid-points of whose sides lie on the boundary of R; see Mordell [3]. I shall show

at the end of section 4 that these lattices are admissible for .
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Diagram 2.

Lemma 1. A, is admissible for R.

Proof. Since 2A>1/(l—1), the lattice line y=2 A contains no point of R. Further
the lattice line y=A meets the sides BC, CD in the points L(}, A), M(~ %, A) re-
spectively, and L, M are points of A,. Finally the point L+ A4, i.e. (3, A), lies on or
to the right of AB; for the equation of AB is lx~y—10=0, and §I-A—-1>0 ac-
cording as I>1+ V2. This completes the proof of the lemma.

Let now A be any lattice of determinant A. I shall prove either that A is one
of the critical lattices mentioned in the enunciation of theorem I, or that A contains
a point (other than O) in the interior of R.

Consider the rectangle of area 4 A defined by

|z]<1, |y|<A.
Every point of this rectangle is either
(i) an interior point of R; or
(ii) a point of R,, where R, is the region formed by the interior and boundary

of the triangle CLM; or
(iii) a point of H;, where NR; is the image of R, in O.
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By Minkowski’s theorem this rectangle contains a primitive () point P (z,, ;) of A.
If P is an interior point of R there is no more to prove. If not it can be assumed
that P lies in N, and, without loss of generality, that z,>0. I shall prove either

that A is one of the above-mentioned critical lattices, or that the lattice line
Avzy,—xy=A

(which is 'pamllel to OP and at a perpendicular distance A/OP from it) contains a
point of A in the interior of .

The general idea of the proof of this last statement is as follows. Let A meet
the lines OB, BA, AD', D'C’ in the points W, X, Y, Z respectively; for future re-
ference the coordinates of W, X, Y, Z (insofar as they are well-defined points of

intersection) are given in the table below:

W (lA—i—lxl’ A+ly1) OB
ly,— =z, ly,—x,

x (A ——lzl’ lA—lyl) BA
Y —lxy Y —lxy

y (A +lx1’ _lA—lyl) AD
Y+l Y +izy

P (lA—lxl, _A +ly1) Do
Ly, + 2, ly+ =,

It will be shown in Lemma 3 that, unless P is one of at most three points, its
co-ordinates satisfy either the inequality (3) or the inequality (4). If (3) is satisfied
then W, X, Y, Z lie on the sides(?) OB, BA, AD', D'(’ respectively and XY <OP
while (by Lemma 2) WZ>20P. If (4) is satisfied then ¥, Z lie on the sides A D',
D'’ respectively and Y Z>OP. Since 1 contains points of A equally spaced at a
distance OP apart there is, in either case, a point of A in the interior of R. The
exceptional points mentioned above may lead to the critical lattices.

I shall prove Lemmas 2 and 3 in section 3 and the theorem itself in section 4.

() A point P of a lattice is primitive if (i) it is distinct from O, and (ii) the lattice line O P
contains no lattice point lying between O and P.

(3) I make & distinction between the infinite straight line C B and the segment (or side) C B.
The latter consists of those points of the line C B which lie between, or coincide with one of, the
points C, B.
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3. LeMmMA 2. Let P(x,,y,) be any point of R,, then
IA+}P>P(y, — 32 —af. 2)
(This result shows that WZ>20P.)
Proof. The equation
IA+}P=(1y—}l-z)(ly—3!+2) (29

is that of a hyperbola with asymptotes ly+z =11, i.e. lines parallel to ¢ D, C B and
intersecting in (0, }). The lowest point of the upper branch of this hyperbola is given by

=0, y=%+VA/I+}.
Since 1+ VA/l+}>A,

M, lies in the open region bounded by the upper branch of the hyperbola (2’) and
its asymptotes, and so (2) holds for every point P(x,,y,) of R,

Lemma 3. Let Pz, y,) be any point of R, for which x,>0. Then, provided P
is not one of the points (0,1), (3, A) or (if 0=30°) (} (V3—1), $(3V3—1)), either

2IA <y -2t 421y, (3)
or P—P-1)A>ly+2— ) (g + 1z, 1) 4)
(The inequalities (3), (4) show that XY <OP, Y Z >0 P respectively.)

Proof. The equation
H: 2IA+P=(y+ 1 - P2l=(y+1-lz)(y+1+12) (3)

is that of a hyperbola (3,;) with asymptotes 4 B, A’'D. N, intersects BC in the
points C (0, 1), R{21(I+1)/(@*—1), (*+21+1)/(*—1)}, and intersects LM in the
points S(A/l, A), T(—A/l, A). S lies to the left of or coincides with L according
as A/l< or =1, ie. according as I> or =1+ V2; R lies to the left of or coincides
with L according as 2I(l+1)/(I*— 1)< or =}, i.e. according as I> or =1+ V2. For
every point P lying inside the upper branch of ¥, the inequality (3) is satisfied.

Now consider the equation

WU B—(B-DA=(y+z—1)(y+lz—1). 4)

Since 2—(*—1)A< or =0 according as !> or =1+ V2 it follows that (4') is, for

I>1+V2, the equation of a hyperbola with asymptotes CD, AD’ and, for I=1+1V2,
that of the two straight lines C D, AD’. This “hyperbola’ (3,) intersects L M in the
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Diagram 3.

The hyperbola ?l, —————
The hyperbola H, — - — -~ - — . -

points L(}, A), T(—A/l, A), and BC in the points L,
U —-21-1)/2@+1), QB+E-1)/21(E+1)}.

U lies to the right of or coincides with C according as (I*—21—1)/2(1*+1)> or =0,

ie. according as !> or=1+V2; also U lies to the left of or coincides with R ac-

cording as (*—21—1)/2(B+ 1)< or =21(I+1)/(I*—1), i.e. according as [ < or =2+ V/3.

For every point P lying inside the ‘“‘upper branch” of H, the inequality (4) is satisfied.
For 1=2+1V3 the points R, U both become

G(/3-1), $@BV3—-1)).

Now let K be the mid-point of LM (and so K lies inside the upper branch of
#H,). Then, for 22 1° <6 <30°, it follows from what has already been proved that

(i) every point of the quadrilateral C RS K, except for the vertices C, R, S,
lies inside the upper branch of ¥,; and

(ii) every point of the triangle LRS, except for the vertex L, lies inside the
upper branch of H, (since R, S lie inside the upper branch of H,).

Therefore every point of the triangle CL K, except for the vertices C, L, lies inside
either the upper branch of ¥, or the upper branch of H,.

This, with slight modifications in the wording of the last paragraph when
6=221° or when 6=30°, completes the proof of the lemma.

4. Proof of Theorem 1.

Let P(z,,y,) be any point of M, for which z,>0. Then ly,— =z, >1>0 (since P
does not lie below C'B) and y,+1z,>0, ly, +,>0 (since z,>0, y, >0); further, if
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the inequality (3) is satisfied,
l z, > gZLA_;y_l) =0

1= Y+ lay

(since y, <A). It follows (see section 2) that W, Y, Z and, if (3) is satisfied, X are
well-defined points of intersection.
Suppose firstly that the inequality (3) is satisfied. Then
Bai<yi+2ly,—21A,
and so loy—ly, + A(l-1) < Vf+ 21y, —21A 1y, + A1) (5)
Now  {lgy— A(—D}—(i+2ly—21A)= (5~ D) { -1y, —A(~ 1721}  (6)
Since A (I—1)/(1+1)+21/(1*—1)> A >y,, each factor on the right of (6) is <0; therefore

{ly,— AQ-D}E >y +21y, — 21A.
Also, since y, =1,

ly,—A(@-1)=1-A@-1)=(+1)/21>0
and so ly,— A(Q—-1)= Vi + 21y, —21A,
whence, by (5), ly—ly, +A(I-1)<0. (7)

I now show that W, X, Y, Z lie on the sides OB, BA, AD’', D' (' respectively.
For from the inequalities at the beginning of this paragraph, together with (7) and
0<z, <4, 1<y, <A, it follows that

_UA—z) LAtz _ 1
lyy+z,  ly,—=z -

0

—

<A+lx1<A—lx1<_l__

and £ £
ytlzy, y—lz 1-1

(the last part of each of these inequalities following from (7)). The first inequality
proves the assertion for W and Z, the second for X and Y.
Also WZ>20P and XY <OP. To prove the first of these it suffices to show that

A+ly, A+ly
+__—__
lyy—z ly+x;

>2y;

this is so since HA+1y)>Byi—~af
by (2). To prove the second of these it suffices to show that

HA-—y)  UA-w) .
y-lz, * htlz <%
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this is so since 21(A—y,)<yi— B}

by (3).
I have now shown that, if (8) is satisfied, there is a point (other than O) of A
in the interior of N.

Suppose secondly that the inequality (4) is satisfied. Since

lay+1ly,—(1—-1)A=l—-(—-1)A>0,

it follows that 1< A+l < —l—
y1+lx1 l—l

IA—-2) . 1

d Q< - "1/
an <ly1+x1 <73

Therefore Y, Z lie on the sides A D', D'C’ respectively.
Further YZ>O0OP. To prove this it suffices to show that

_l(A"?h) A+ly
itiz, ly+x

Y1

this is so since, by (4),
AQ=B)+1(yy+1ay) +1(y +2) > (3, + 1) Cyy +2y)-

1 have now shown that, if (4) is satisfied, there is a point (other than O) of A
in the interior of N.

Suppose lastly that P is one of the two (or, if 0=30°, three) exceptional points
mentioned in the enunciation of Lemma 3. Then either A is one of the critical lattices
mentioned in the enunciation of Theorem I, or there is a point (other than 0) of A
in the interior of R.

Thus if §=30° and P is the point (}(V/3—1), }(3V3—1)) then, as before,
W, X, Y, Z lie on the sides CB, BA, AD’, D' (' respectively but now X Y=Y Z=0P
(since the inequalities (3) and (4) become equalities). By substituting the known
numerical values of I, A, x,, y, it is easily verified that WX <OP, and that the
lattice line 2y, —»,y=2A has no point in common with R. It follows that (i) the
lattice A, generated by P{}(V3—1), }(3V3—1)}, Y {}(3V3—1), —}(V/3—1)} is ad-
missible for R; (ii) either there is a point (other than O) of A in the interior of
R, or A is the critical lattice A,.

Similarly, if P is the point (0, 1) then W (A, 1+17'A), X (A, }), Y(A, —3),
Z(A, —1-1"1A) lie on the sides CB, BA, AD’', D'’ respectively and XY =1=0P.
It is easily verified that now } < WX, YZ<1 with equality only if §=22}°. There-

2 - 665064 Acta mathematica. 99. Imprimé le 25 mars 1958
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fore either there is a point (other than O) of A in the interior of R, or A is the
critical lattice Aj.
Finally if P is the point (}, A) then Y is the point (I, 0) and Z is the point

A=} AQ+Dh)_,,
{1A+;~’ ‘1A+§}"(‘}’ A).

Y, Z lie on AD', D'C’ respectively and ¥ Z=0 P. In this case either there is a point
(other than O) of A in the'interior of R, or A is the critical lattice A,.
This completes the proof of Theorem I.

Proof of Result for ,<6<22}°
5. Introduction (see diagram 4).

TaEorEM L1 If 0,<0<22}°, ie if [,<I<1+V2, then the determinant of a
critical lattice of R s
2B(+1) (31+1)

A= @BE-1)?

Moreover the lattice A, generated by

S

Il+1) l(3l+l)} T{_l(l+1) l(3l+1);
37-1" 3BE-1/ 3E_1 3F-1/’

and its image As in the line x=y are critical. For 6,<0<223° A,, Az are the only
critical lattices; for 0=0, there are two further critical lattices Ay, As.

A; can be regarded as being defined by a square whose vertices and the mid-
points of whose sides lie on the boundary of R; see the enunciation of Theorem III
for the co-ordinates of a pair of points generating it. As is the image of A; in the
y-axis.

The lattice A, can be regarded as being defined by the line parallel to the z-axis
which has equal intercepts made on it by the sides 4 B, BC, C D, D A’; in fact, since
131+1) 1

<—>

<377 <11

the line y=1(30+1)/(81*~1) meets the sides 4 B, BC, C D, DA’ in the points

R{3l(l+l) 181+1)

31(0+1) I(3l+1)
321" 312~1}’ 8T, U{—

3-1" 3P-1

respectively and RS=8T=TU=21(+1)/(31—1).
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Diagram 4.

LemMMa 4. A, is admissible for R.
Proof. Firstly the lattice line y=21(37+1)/(81*—1) contains no point of f; for

21(31+1)_ 1

3P—1 I-1
if 1>(2+V7)/3, which is the case here since I>1],> 2.

Secondly the point {21(I+1)/(312—~1), 0} lies outside R for 6, <O<221° and
lies on the boundary of M (coinciding with 4) for §=221°.

This completes the proof of the lemma.

Let now A be any lattice of determinant A. I shall prove either that A is one
of the critical lattices mentioned in the enunciation of Theorem II, or that there is
a point (other then 0) of A in the interior of R.

Consider the rectangle of area 4A defined by

21(1+1) 1(31+1)

By Minkowski’s theorem this rectangle contains a primitive point P(z,, y,) of A. If
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P is an interior point of M there is no more to prove. Otherwise it can, without
loss of generality, be assumed that P belongs either
(i) to the region M, formed by the interior of the triangle C 8T together with
the two sides CS, CT but excluding the end-points 8, T'; or
(ii) to the region Ry formed by the interior and boundary of the triangle (which
reduces to a point when 6=221°) whose sides are the lines AB, AD' and
z=21(1+1)/(8—1).

Let R, R, denote the images of R,;, R; respectively in the line z=y. Since

20(0+1) _1(31+1)
3PF-1  3P-1

it follows that R; lies in R;. Therefore P lies either in R, or in R; and so, without
essential loss of generality, it can be assumed to lie in H,.
As before I consider the lattice line
Arzy —xy=A.
Its intersections W, X, Y, Z (!} with the lines CB, BA, AD’', D' C’ respectively are
well-defined. For if P(x, y,) is any point of ,, then ly, +,>1>0; further

LBl1+1) B(@+1)
32-1 3P-1

g~ lay>

since the right-hand side is the value of y—1lx at the point S (where y— lx obviously
takes a lower value than at any point of R,), and so
2
Y~ by > ——l(;—l‘z_”f—i__—l) >0;
similarly y, + 1z, >0.
Moreover W, X, Y, Z are interior points of the sides CB, B4, AD’, D' ' re-
spectively. For, if P(z,, y,) is any point of M,, it follows that

3 >H3L+U_ZU+D
BT RT R T 3R

since the right-hand side is the value of y —z at the point § (where y—x obviously
takes a lower value than at any point of 0,), and so

J 28 AP -1,
3—1 (+1H@l+1)” 1 7

Y—%

(1) The co-ordinates of W, X, Y, Z were given in Section 2.
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similarly Y+ > l—_l—-l A.
. W+ 1(31+1)
Since also |x1|<3lz—__1<A, |?I1|<m<A’

RICEENRISE N

it foll 1
it follows tha 0 Iy, ==, .ly1+x1 —1

(and so W, Z are interior points of the sides CB, D'(’), and
A—le, A+lx < l

1< ’
h—la htle 1-1

(and so X, Y are interior points of the sides BA, AD').

The general idea of the proof of Theorem II is now as follows.(!) I shall prove
in Lemmas 5 and 6 that, except for the point E {0, 2! (I+1)/(31*—1)}, the region
R, lies

(i) between the upper branch of the hyperbola

W 3IA+AP=(y—z—3)(y+z—13))
and its asymptotes;
(ii) inside the upper branch of the hyperbola
Hy: VA—y)=y*— B2,
These results imply that if P lies in M, and does not coincide with £ then WZ >30P
and XY <20P. If P coincides with B then WX=XY=YZ=0P. This proves
Theorem II when P lies in R,.

I next consider the case when P lies in R, but not in NR,. There is no loss of

generality in assuming , >0. The hyperbola
Hy: P-AB-1)=(y+z—1l)(y+lz—1)
passes through E and has the lines C D, A D' as asymptotes. The upper branch of

H; cuts the side CB in points I, J which lie respectively below and above the line
y=21(1+1)/(81*—1) (see diagram 5). The co-ordinates of I, J are given by

B-A@R-1)=(y+z—l(y+lz—-1), z=1l(y—1).
If y, denotes the ordinate of J, then y, is the greater root of
2P+ 1)y? 2B+ 1+ )y +2B0+1+ A1) =0.

(1) To avoid special cases I shall, for the remainder of this section, assume that 0,<0<22 %°.



14 L. E. CLARKE

@i+

~ Y= 31
N Y=
\\
Y= 3e

Diagram 5. The hyperbola H, ——— -~ .
1(31+1)
321
21(1+1)
3121

R ly+z—120,ly—2-1>0, y<

R,:ly+2-120, ly-2-120, y<

2}%3: ly+z—120,ly-xz-120, y<y,.

In particular, if P lies in R, (that part of N, lying below the line y=y,) but not
in R, then P lies inside the upper branch of #;. I shall show that if P lies inside
the upper branch of H; then YZ> 0P, and so Theorem II is proved in this case also.

Finally if P lies in that part of R, not already covered, i.e. if P lies neither in
R, nor inside the upper branch of H,, then (still assuming x,>0) I shall show that
P lies inside the upper branch of the hyperbola

#4: Lyo— A)=(x+1ly—1) (x—y,)-

This result implies that the side D'(C’ and the line x =y, now make an intercept on
A of length greater than OP. It follows that there is a point (other than O) of A
either in the interior of N or in the image of M; in the line x=y. The proof of
Theorem II is then completed by appealing to the proofs covering the first two cases.

6. LEMMA 5. Let P(x,, y,) be any point of Ry; then
FIA+P= Ly~ 2 — 3D by + 2 — 3D), (8)

with equality if and only if P and E coincide.
(This result shows that WZ>30P.)

Proof. The equation
W 3IA+BP=(y—2-3) (ly+z—}D) (8")

is that of a hyperbola (H,) with asymptotes ly Xz —41=0, ie. lines parallel to CD,
CB intersecting in the point (0, ). The lowest point of the upper branch of , is
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E, and E lies on the upper boundary of ®,. The lemma follows since (8) (with in-
equality) is satisfied at all points lying between the upper branch of ¥, and its
asymptotes.
LemMMa 6. Let P(x, y,) be any point of Ry; then
A —yy) <9 -k (©)
(This result shows that XY <20P.)
Proof. The equation
Hy: IA+3P=(y—lx+ 3l (y+lx+ })) 9"

is that of a hyperbola (#;) with asymptotes y+lx+}1=0. The lowest point of the
upper branch of H, is given by

x=0, y=—31+VIA+}P
The inequality (9) is satisfied at all points lying inside the upper branch of H,. To
show that all points of R, lie inside the upper branch of ¥, it suffices to show that
(i) C lies inside it; and

(ii) the upper branch of ¥, intersects the line BC in a point lying above the
line y=21(+1)/(31°—1).

To show (i) I have to show that
-3+ ViIA+3P<]1,
ie. that JA<l+1; this is the case since
I+1-1A=@1+1)3I*—-2B -6 +1)/(31*—1)®
=1+ {PI-2)+282 @ -4)+ 288 +1}/(312—1)*

and I>1;>2. To show (ii) I have to show that the greater root of

W=y — QU+ y+IA+1=0 (10)
is greater than 21/(I+1)/(31"—1). Since the lowest point of the upper branch of #,
lies below the line BC while, for numerically large x, H, lies above this line, it follows

that the quadratic (10) has real roots. Since the arithmetic mean of the roots of (10)
is (21*+1)/2(*—1) it therefore suffices to show that

2018 +1 >2l(l+1)
20°-1)" 3F-1"

ie. that 205—41' 2P +312+414+3>0.
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This is so since
2P 41 2B+ 312+ 41+3=212(1-2)-2I+ ) (*-21-1)+2
and 1+V2>1>10,>2.

LemmMa 7. Let P(x,, 9,) be any point of M, which does not lie in R, and for

‘which ©,>0. Let y, be the greater root of
2@+1)y—2(2B+1+1)y+2B+1+A(@-1"")=0. (11)

Then for 0,<0<22%°
either P-A@R-1)>y+z,— 1) (y, +1l2, 1) (12)
or Lgo— A)> (w3 + 1y, — 1) (21— %) (13)
except when 0=10, and P=(ly,—1, y,)=J in which case (12) and (13) both become
equalities; further the inequality (12) holds when 0=2231°.

(The inequality (12) shows that ¥ Z>OP; (13) shows that the side D'’ and the
line =y, make an intercept on 1 of length greater than OP.)

Proof. Consider the equation
Hy: P-AP-1)=(y+z—1) (y+1lz-]). (12
Now P—A@P-1)=F@*-21-1)(3-21-83)/81F-1)

and so is < or=0 according as I< or=1+V2(3P~21-3>0 since I>[,>2>
(1+V10)/3). Therefore (12’) is, for 6,<6<221°, the equation of a hyperbola with
asymptotes CD, AD' and, for §=22}°, that of the two straight lines C' D, 4 D’. This
“hyperbola” (#,) passes through EZ and meets the y-axis in the further point

{0, B-1)@BI+1)/BB~-1)},
which lies above ST since
(#-1) (3l+l)>l(3'l+1).
321 32-1

Further #, meets the line BC in the points I, J given by
2(B+1) g —2QB+I+ ) y+2B+1+ A1) =0,

i.e. by (11). The roots of (11) are real since the substitution y=21(Z+1)/(37*—1)in
the left-hand side gives {(I*—21—1)(21*~1*—41-3)/(31°— 1), and this is <0 since

2P - —4]-3=(1—-2) (2 +31+2)+1>0



THE CRITICAL LATTICES OF A STAR-SHAPED OCTAGON 17

for 1>1,>2; this shows further that, for 6,<0<221° I, J lie one on each side of
the line y=21(l+1)/(31>~1).

If §=221° H, reduces to a pair of straight lines and the region R, consists of
the single point C' (for E coincides with ¢ when 6=221°). The points of intersection
of H, and the line BC are now, as is easily verified, C' and S. Since (12) is satisfied
at all points lying inside the ‘“‘upper branch” of ¥, it follows that the lemma is
proved when 6=22}°.

Suppose now that 6,<0<22%°. The lines 4 D', BC meet in the point

10-1) l(l+1)}

P+1’ Pyl
I¢+1) 1(3l+1)
and so Y<ELT < 3P_1 <A.
The equation Hy: Lyy— A)=(x+1ly—l(x—y,) (13")

is therefore that of a hyperbola (#,) with asymptotes C D, z=y, and the inequality
(13) is satisfied at all points lying inside the upper branch of ¥, In particular (13)
is satisfied if P is the point K {0, (37+1)/(3/*—1)} (i.e. the mid-point of ST} or
the point S, for in either case it is equivalent to y,>21(l+1)/(31*— 1), which is true
since J (the upper of the two points I, J) lies above the line y=21(I+1)/(31*—1);
it follows that K and S lie inside the upper branch of ¥, (it is clear that they do
not lie inside the lower branch).

The upper branch of H, meets the line BC in points given by
21"~ 221 +yp) y+ 21+ yp+A4)=0. (14)
The reality of the roots of (14) is implied by (15). The point J (ly,—1, y,) will lie
between these two points or coincide with one of them provided that

2(I-1)yg— (41— 1)y, + (21+A) <O, (15)
i.e. provided that

P4+3l+A(P+21-1)/1
o = 2
P+4l+1
(since y, satisfies (11)). Since

@RI+ VERBHIH1E -2+ 1) 2B +I+A (-1}
Yo= 2%+ 1)

CRHI+1)+VI+1)2B—1+1)—-2(* -1)A/L
2(2+1) ’

it follows that (15) is satisfied provided that
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Vi+1)@B-1+1)—-2("-1)A/l

1505081630+ 531 + 118 ~T 301
= (BE—12(B+41+1)

(16)

This inequality will be satisfied if

2711 472018 + 6912 — 10411 — 3451 — 7361° — 887 I8
— 84817~ 55918 — 24815 — 1714 + 563+ 452 + 161+ 3> 0. 17)

Since the left-hand side of (17) is the product of
3P +4P-TI—24P—-T1+41+3
and 918 +1207 +281°+280°+ 301 +200° + 1212+ 41+ 1

it follows that (17) is true, with equality only if 6 =0, (when the first factor va-
nishes). Since
=150 —515+ 63015+ 531+ 11— 712 —-31—-1
=—5(-1)(3F+4P—-T1*~24—71*+41+3)
+8(I° -4+ 128+ 612 —1-2)

and P—dal+128+612-1—2
~(1—2){IF1—2)+8F+22]+43} +84

is positive when [=1;, it follows that the right-hand side of (16) is positive when
I=1, and so there is equality in (15) if and only if 0=4,.
Now if 6,<6<22}° it follows from what has already been proved that

(i) every point of the triangle S K J lies inside the upper branch of H, (since
S, K and J lie inside it);

(il) every point of the triangles JK E, EJI, except for the vertices K, I, J,
lies inside the upper branch of H; (since E, I, J lie on and K lies inside
the upper branch of ¥,).

Therefore the region defined by

21(0+1)_ _1B3I+1)

0<x<l(y—1), 312_1 Yy 3l2_1

(i.e. that part of :;, which does not lie in R, and for which z>0) lies either inside
the upper branch of H, or inside the upper branch of H,. This still holds if 6=0,
except that the point J now lies on both H; and #,.
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7. Proof of Theorem I1.

Suppose firstly that P lies in N,. If P is distinct from E then WZ>30P and
XY <20P. To prove the first of these it suffices to show that

A+l;z/1+A+ly1

>3y, ;
lyy—2, ly+xy %

this is so since
20A+1y) >3y, —2) (lyy + 1)
by (8). The proof that XY <20P follows in the same way from (9). Thus there is

a point (other than O) of A in the interior of . If P coincides with E then W, X,
Y, Z are the images of R, 8, T', U respectively in the line x=y and

WX=XY=YZ=0P.

It follows either that there is a point (other than O) of A in the interior of R or
that A is the critical lattice As.

Assume henceforth that P is any point of R, which does not lie in R, and for
L4
which x; > 0.

Suppose secondly that (12) is satisfied. It follows that YZ>OP and so there is
a point (other than O) of A in the interior of ®. This completes the proof if § =22 1°.
It also completes the proof if y, <y, (i.e. if P lies in Hy) or if z,=0; for it follows
from the last paragraph of section 6 that (12) is satisfied at every point (other than
the vertices K, I, J) of the quadrilateral KET1J.

Suppose thirdly that (13) is satisfied and that x;>0. Then the point Z+ P lies
either in the interior of R or in the image of M, in the line x=y. For the abscissa

of Z+P is
1A—x)

+ x4,
Ly + 2, !

which is <y, by (13), and the ordinate of Z+ P is < —1+1(3!1+1)/(8IP-1)<1
(this inequality is necessary to ensure that the point Z+ P does not lie above R).
It follows that there is a point (other than O) of A either in the interior of R or
in the image of M, in the line x=y. If the second alternative holds, the proof of

the theorem is completed by appealing to the proofs covering the first two cases.

Suppose lastly that 6#=6, and P coincides with J. In this case YZ=0P and
either there is a point (other than O) of A in the interior of i or A is the critical
lattice As; defined in Theorem III. To verify this second statement it is sufficient to

show that the angle POY is now a right-angle and so P and Y are now the mid-
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points of two sides of a square (one of whose vertices is Z) whose vertices and the
mid-points of whose sides lie on the boundary of . That the angle POY is now
right-angle follows from the fact that (12) and (13) are now equalities; the geomet-
rical significance of these equalities is that Y lies on the line x =y, as well as on
the side AD" and so has co-ordinates (y,, —ly,+17). This gives the desired result
since now P=J (ly,—1, y,)-

Proof of Result for 15°<0<86,
8. Introduction (see Diagram 6).

Theorem III. If 15°<0<8, ie. if V3<I<l, then the determinant of a critical
lattice of N s
B(*+41+5)
A= e
Br2i-1)

Moreover the lattice A, generated by

g 102 1 } p[ 10D 1043) |
Fir2i—1" B+2i-1 Pr2i—1’ F+2l—1

and its tmage Ag in the line x=1y are critical. For 15°<0<0, A,;, As are the only
- critical lattices; for §=0, there are two further critical lattices Ay, As.

See the enunciation of Theorem II for the co-ordinates of a pair of points
generating A,; A is the image of A, in the line z=y.

The lattices Ay, Az can be regarded as being defined by squares whose vertices
and the mid-points of whose sides lie on the boundary of N, and whose centres are
at O. There are two, and only two, such squares, viz. FHF' H' and LN L'N’, the
nomenclature of the vertices being fixed by taking EF as the mid-point of FH’ and
L, N' as the images of F, H respectively in the line z=y. Let E, G, E', " denote
the mid-points of H'F, FH, HF' F'H' respectively and let K, M, K', M’ denote the
mid-points of N'L, LN, NL', L' N’ respectively.

LeMMA 8. A, ts admissible for R.

Proof. Az consists of the points o« B+ fG where o, § are integers. The required
result follows after proving that

(i) if max (||, |f])>3 then the point « £ +pG does not lie in R; and
(i) if max (||, |8])=2 then the point aE +B@ lies either outside R or on the
boundary of R.

The points for which max (J«|, [])=1 all lie on the boundary of &.
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Diagram 6.

To show (i) it suffices to show that B lies to the left of the lattice line con-

taining those lattice points for which o =3. This line has equation

L(IB+41+5)

l+2)z+y=3 Eioi=1

and so it suffices to show that

1(IP+41+5)

3 2+21-1

—(l+2)i——l >0;

1
the left-hand side of this inequality is equal to 21(* +282—1—-6)/(1—1) (B+21-1)
and B2t 1—6=1(B—1)+2(2—3)

is positive for 1> V3.

To show (ii) it suffices, by symmetry, to show that the points
2B+ G (a=2; =-1,0,1,2)

lie either outside R or on the boundary of R. The points B and E+G (ie. F) lie
on the boundary of M and so the points 2E and 2E + 2@ lie ouside R. The ab-
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scissa of the point 2E—G or 3E—F is [(21+5)/(I*+ 21~ 1), which is greater than
1/{1—1); therefore 2B — @ lies to the right of BD’' and so outside R. There remains

the point 2E+G or B+ F
1(21+3) 1i+4) )|
B+21—-1 P+r2l-1

This lies on or to the right of the side 4 B according as {= or > V3.

This completes the proof of the lemma.

Let now A be any lattice of determinant A. T shall prove either that A is one
of the critical lattices mentioned in the enunciation of Theorem III, or that A con-

tains a point (other than O) in the interior of M. Consider the parallelogram of area

4 A defined by
1%+ 41+5)
: | < s
ly+lx|<l, |(I+2)y+=] a1
the boundary of this parallelogram consists of the lines 4 D', A’D and LN, L’N'.
By Minkowski’s theorem this parallelogram contains a primitive point @, of A. If
@, is an interior point of N there is no more to prove. Otherwise it can, without
loss of generality, be taken as lying inside or on the boundary of the triangle C M N.
In a similar way it is possible to show that, if A is admissible for H, there exist
primitive points @,, ¢,;, @, of A inside or on the boundaries of the triangles C F @,
AKL, AH'E respectively.

Lemma 9. If A is admissible for R and is distinct from Az, Aj, then the points
@1, Qs Q. @, are not all distinet.

Proof. Suppose the points @,, @, Qs @, are all distinet. I show first that O,
Q,, @ are not collinear. For if they are, the co-ordinates (z’, ') of the lattice point

Q, — @, satisfy the inequalities

Ld+1) . .
N e
|2 Frai=i (i.e. the abscissa of F)
Li+3) . .
d <557 - .. -0).
an (¥ Fraioi 1  (i.e. the ordinate of F—O)
Therefore lz']<1, |y|<1

and so the point @, — @, is a point (other than O) of A in the interior of R; this
contradicts the hypothesis on A. Similarly O, @,, @, are not collinear.

I next prove that @, cannot lie in the region N, formed by the interior and
boundary of the quadrilateral GC M J, where J is the point of intersection of LN,
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FH. For if it did, the triangle O FG of area 1A would contain two points Q,, @,
of A where O, @,, @, are not collinear; this is only possible if @, =@, Q,=F and so
A=A (1)

Similarly @, cannot lie in 3,, and @,, @, cannot lie in the image R; of R, in
the line x=y.

Let Q1, Q: denote the images of @,, @, in 0. Then I show that Q,, @, lie strictly
between the lattice lines @, Q, and @;@:. For @, lies on or below JN and to the
left of the y-axis (because @, lies inside or on the triangle C M N but not in %)
while @, lies above the line JM and to the right of the y-axis (because @, lies inside
or on the triangle C F G but not in $N,); therefore the lattice line Q, @, passes above
L. Similarly the lattice line @i Qs passes below H'.

Now the area of the triangle 0Q, @, is }A; for on the one hand its area does
not exceed that of the triangle O F N, which is

PP+41+3
(l(2+2l—1)2)<A;
on the other hand its area is a positive integral multiple of } A. Therefore @,, @,
generate the lattice A and all points of A lying strictly between the lattice lines
@, @, and @; Q; lie on the line through O parallel to @, Q,, i.e. O, @;, @, are collinear.

This contradiction completes the proof of the lemma.

Since @y, @2, @3, @4 are not all distinet it can, without loss of generality, be as-
sumed that @, =@,=P (x;,y,), say, and so there is a point P(x,,y,) of A in R,. As
before I consider the lattice line

At zy,—xyy=A.
Its intersections W, X, Y, Z(2) with the lines CB, BA, AD', D'C’ respectively are
well-defined. For if P(z,, y,) is any point of N, then

(i) ly,>2,>1>0;
.. 1i+2)-12
(i) ntla>po 1

since the right-hand side is the value of, say, y—~lx at the point

l 11+2)
B+21-1" By2i-1)’

x|

and so y, +lxz,>0.

(1) I use here the Lemma. Let O A B be a triangle having one of its vertices at the origin and
area 4 A. Then if two points P, @ of a lattice A of determinant A lie inside or on the boundary of
this triangle and if O, P, @ are not collinear it follows that either P= A, Q=Bor P=B,Q=A4.
Further P, @ generate A.

(%) The co-ordinates of W, X, Y, Z were given in Section 2,
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Moreover, W, X, Y, Z are interior points of the sides C B, B4, AD’, D'C’ re-
spectively. For, if P is any point of M, y, tx, 21+ 1)/(E+21—1), since the right-
hand side is the value of, say, y —x at the point M ; it follows that y, + =, > A (I—1)/L.
Also |z, |<U/(*+21—1) (i.e. the abscissa of M) and |y, |<I(®+41+5)/(1+2) (1*+21-1)
(ie. the ordinate of J) and so [z;|<A, |y,|<A. Therefore
l(A+x1)’ l(A—x1)<

0< _ld
ly,~x, ly,+o, 1-1

(and so W, Z are interior points of the sides C B, D'(’),

A—lz, A+lx1<

l
d 1 ) —
an <y1—lx1 iz, 1-1

(and so X, Y are interior points of the sides BA, AD').

The general idea of the proof of Theorem III is now as follows. I can, without
loss of generality, assume that z;>0. It will then be shown in Lemma 11 that, un-
less P is one of at most two points, its co-ordinates satisfy either the inequality (19)
or the inequality (20). If (19) is satisfied then YZ >0 P. If (20) is satisfied then
WZ>30P while, by Lemma 10, XY <20 P. In either case it follows that there is
a point (other than 0) of A in the interior or . The exceptional points mentioned

above may lead to critical lattices.

9. LemMa 10. Let P(x, y,) be any point of N,; then
XY<20P.

Proof. T show first that X does not lie to the right of

1(1+3) I(I+1)
Eyoi—1 B+2i—-1)

A-lz,_ 10+3)

ie. th <
Le. that y—lx, B+21-1

This inequality is equivalent to
I(B+41+5) (18)

C+3)y—(+Vm > 5

which holds for all points P of H, since
(i) the lines (I+3)y— (I+ 1)z =constant have gradient (!+1)/(!+3) and
(I+1)/0+3)>1/l (i.e. the gradient of CB)

for I> 1/5, and
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(ii) the right-hand side of (18) is the value of
(I+3)y—(+1)x at the point M.

Similarly Y does not lie to the right of H'.
It follows that XY<LH' =21(1+1)/*+21-1)<2<20P.

Lemma 11. Let P(x,, y,) be any point of R, for which x,>0. Then
either B-APB-1)>y,+tz,—1) (y, + 1z, 1) (19)

or 20(A+1y) >3y, —x,) Ly, +x,), (20)
except when (i) P is the point

M{ l .l(l+2)}’

Pt2l-1 P+21-1
tn which case (19) becomes an equality and (20) is false; or (ii) 8 =0, and P is the point

21(0+1)
{O’ 3rF—1 }

in which case (19) and (20) both become equalities.
(The inequalities (19), (20) show that YZ>0P, WZ>30P respectively.)

Proof. Consider the equation
H:P-A@PE-D)=Uy+zx-l)(y+1lz—1). (19')
Now P-A@-1)=-20F-3)/(+21-1)

and so is < or =0 according as [> or = V3. Therefore (19') is, for 15° < <0, the
equation of a hyperpola with asymptotes C D, A D’ and, for 6=15°, that of the two
straight lines €D, AD'. This “hyperbola” (},)- passes through M and intersects C M

in a further point U given by
_ 43P -1-1
Y"Er)@+2i-1)

U lies strictly between C' and M unless 6=15°, when it coincides with C. Further
H, intersects the positive y-axis in points R, 8 (R being the lower) given by

LB —-1) (P +41+5)
Er2i-ip 1)

y¥—>1+1)y+

and R, S lie one on each side of J; for when

(P +4l+5)
Y=(i+2)B+2i—1)

3 - 665064 Acta mathematica. 99. Imprimé le 25 mars 1958

(i.e. the ordinate of J)
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the left-hand side of (21) is the equal to —2I(B+41+5)/(+2)> (2 +21— 1)< 0 (this
verifies incidentally that the roots of (21) are, in fact, real and so positive). The in-
equality (19) is satisfied at all points P lying inside the “upper branch’ of .
Now consider the equation
2! 3IA+P=(y—ac—-3D)(y+z—-})). (20"

This is the equatlon of a hyperbola (H#,) with asymptotes l y—l—x 11. The inequality
(20) is satisfied at all pomts lying between the upper branch of H#, and its asymptotes.
3, meets the positive y-axis in a point 7' given by the positive root of

2 2A
e __ Tyt ¢
% 3 37 0. (22)

T lies between R and § if the positive root of (22) lies between the two roots of
(21)-(which are both positive). This is so if(1) .
3 +4P T —24P—T12+41+3<0,

which holds when 15°<0<6,. If =0, T coincides with one of the two points B, §;
it is implicit in what immediately follows that it must coincide with the lower of
these two points, namely B. = o

#. intersects the line BC in the point V given by y= A/2l+3/4

" B+3P-1-1 A 3 I(+2)
Now (l2+1)(l2+2l—1)<2l+4 Fr2i-1
the first inequality follows since it is equivalent to
| ’ O>l“+6l5+3l‘ 281 —2002~21+1
=) P4l BHE-TI4]),

and this is true since I*+4+12—7[+1 increases for !>} (— 1+ V22) (which is the case

if 1>V3) and
B+B—-T1,+1< (201 +(2.012-7(2)+1<0;

the second inequality follows since it is equivalent to
0<I4+ 2P -2 —6l—3=(2—3)(B+21+1).

In other words V lies between U and M or coincides with M according as I > or = V3.

(*) If each of the two quadratic equations
ay®+by+c=0, a’'y*+by+c' =0
has distinet real roots, then the roots “interlace” provided that

(ac’ —a’ )t~ (ab’ ~a'b) (be’ ~b"¢) <0,
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Diagram.7.

The h‘yperbt:)la.’:u1 —————
The hyperbola H, -~ T T

Now suppose that 15"<6<6, and consider a point moving along the upper
briafhch ‘Qvf H,; for numerically large &al‘ues of the abscissa it does not lie inside the
upper branch of I, but at the points 7', V it does. The upper branches of ¥,, ¥,
intersect in at most two points; for from the position of the asymptotes it follows
that the lower bfanches of H,, W, intersect in at least one point, and further that #,,
H, intersect. “at infinity”’. Thereforev the upper branches of ¥,, H, intersect in pre-
cisely two points; further one of these points lies to the left éf T and the other to
the right of V. it follows that all points on the arc T'V of ¥, lie inside the upper
branch. of #,. Therefore every point lying inside or on the boundary of the triangle
COMJ, with the exception of M , lies either inside the upper branch of #, or between
the upper branch of H, and its asymptotes. The argument in this paragraph com-
pletes the proof of the lemma if 15°<@ <6, Slight modifications are required if
6=15° or if 6 =0,; further, if 6=40,, T and R coincide in the point

{0, 21(1+1)/(32-1)}
mentioned in the enunciation of the lemma (this can be verified by using (1)).

10.- Proof of Theorem III.

If (19) 'is satisfied then, as befor¢, YZ>O0OP, and if (20) is satisfied then
W Z>30P. Since, by Lemma 10, XY <20 P it follows that, unless P is one of the
exceptional points mentioned in" the enunciation of Lemma "11, there is'a point (other
than 0) of A in the interier of R. If P coincides with M then Y Z = 0P and either
there is a point (other than O) of A in the interior of R or A is the critical lattice
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As. Finally, if 6=0, and P is the point {0, 21(!+1)/(3/°— 1)} then WX =XY =
YZ=0P and either there is a point (other than O) of A in the interior of R or
ANs the critical lattice A

Retrospect

11. In this section I give a brief account of the ideas which suggested the above
conclusions.

Mordell [3] had shown that for 30°<0<45° there were two critical lattices
(Ag> Ao) which could be regarded as being defined by squares whose vertices and the
mid-points of whose sides lay on the boundary of W (compare Diagram 6). For
30° < 0<45° these were the only critical lattices, but at §=30° two further critical
lattices (A;, A;) appeared. A, could be regarded as being defined by 4 and the line
parallel to the xz-axis which had an intercept equal O A4 made on it by the sides
CB,CD (see Diagram 2). It seemed reasonable to assume that the lattice A,, so
defined would be critical for @ sufficiently near to and less than 30°. A, was, in
fact, admissible for 6>22 %° (see Lemma 1), and so the result of Theorem 1 was
suggested.

At 6=221° the points L+ A4, M—A of A, (see Diagram 2) came on to the
boundary of  and A; could then be regarded as being defined by the line parallel
to the z-axis which had equal intercepts made on it by the sides 4 B, BC, CD, DA’
This suggested a definition of a critical lattice (A,) for 0 sufficiently near to and
less than 221° (see Diagram 4).

Now the lattices defined by squares whose vertices and the mid-points of whose
sides lay on the boundary of 8 had determinant

P+41+5)
E+21-132"

therefore these lattices could only be admissible for R if

B@+41+5)_ B
>
@E+2i—12 " F1

B

since the right-hand side of this inequality was the determinant of a critical lattice

of one of the two intersecting parallelograms of which i was composed (see Section

12). This inequality was equivalent to /> /3. These lattices (A, A3) defined by squares
were admissible for § sufficiently near to and greater than 15°, and critical for §=15°.
This suggested that A, A; were, in fact, critical for 6 sufficiently near to and greater
than 15°.
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Finally A; had determinant

P(F-+41+5)
@+201—1p"’

and A, had determinant
28(1+1)(31+1)
(B12—1)%
P(*+41+5) 27 (1+1)(31+1)

and Er2lo1E = T T ey

according as
3B +4P -7 -24B -T2+ 41+3< or >0.

This suggested the definition of .

The ideas outlined in the previous three paragraphs suggested the results of
Theorems 1I and IIL

In an attempt to find the results for values of I less than V3 I found those
values of [ for which the determinant of a critical lattice of : was equal to that of
one of the two intersecting parallelegrams of which : was composed (see Section 12),
and found a critical lattice for each of these values of I; it was then possible to
make a reasonable conjecture as to a critical lattice for neighbouring values of each

of these values of I. However, I could get no general proof of these conjectures.

A Further Result

12. Let L, M denote the points of intersection of D’'4, DC and of BC, B' 4’
respectively, and let L', M’ denote their images in O (see Diagram 8). Then L is the
point {{/(1+1), I/(l+1)} and the star-shaped octagon is eomposed of the two inter-
secting parallelograms DLD' L', BM B'M’; each of these parallelograms has area
4B/ -1).

Suppose a lattice A of determinant A =1I%/(1®*—1) is admissible for the star-
shaped oectagon. It follows that it is admissible, and therefore ecritical, for each of
its component parallelograms and critical for the star-shaped octagon. Since A is a
critical lattice of each of the component parallelograms, the mid-points of at least
one pair of opposite sides of each parallelogram must be lattice points; see Min-
kowski [2].

Suppose the mid-point P {I/I*—1), I?/(I*—1)} of BM is a lattice point and either

(i) the mid-point @{—1/(1*—1), I?/(*— 1)} of LD is a lattice point; or
(i) the mid-point R{IF/(1®*—1), —1/(I*—1)} of LD’ is a lattice point.
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(i) and (i) cannot both occur; for if they did L would be a lattice point and A
‘would not be admissible for the star-shaped octagon.

Suppose firstly that (i) occurs; then, since O, P, @ are not collinear, the area
of the triangle OP@Q is $nA, where n is a positive integer. Therefore ! satisfies the

equation

and so takes one of the values
1 2
v;{1+Vn-+H (m=1,2,..) (23)

Since PQ=21/(I*—1) it follows that PQ=n.

Uonversely, 1t ¢ takes one of the values (23), the lattice generated by 4 and P
conta,lns @ (smce QP= nOA) and has determinant lz/ —1). This lattice is admissible
for the parallelogram BM B’M ! smce it contains the mld -point of BM. and a point
(4) on BM i s1m1larly it is admissible for the parallelogram DLD' L. Therefore the
lattwe is a,dmlsmble and critical for the star-ehaped octagon. It should be noted that
this lattlce and 1ts 1mage in the line x = -y are not necessarily the only critical lat-
tices; ‘thus if n—4 giving I=1(1+ Vl7),(the lattice generated by (2,0). and
{0, 1 (1+ Vl7)} is also admissible and ecritical.

Suppose secondly that (ii) occurs; then, since O, P, R are not collinear, the area
of the triangle OPR is §nA, where n is 'af/poeitlve integer; in fact n>1, since the
triangle O PR has area

B2 +1) I
SE—TETzEoT) A
Tt follows that I satisfies the equatiorl
B+l
B R
and so I takes one of the values |
Vo+1)/m—-1) (»=2,3,.) = (24)

PRrinterseets AB, C'D in the points

s L(B-1+2) _la%—2b—n}’ T:uzﬁ—42+1) _z%ﬂ+2l—1q

=S WA B T |

amiPS;RTeipéf‘
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Diagram 8.

Conversely, if [ takes one of the values (24), the lattice generated by S and P
contains B and 7. Tt is therefore admissible for the parallelograms BM B'M', DLD'L’
and so admissible and critical for the star-shaped octagon.

The above results can be summed up in the following theorem.

THEOREM IV. A necessary and sufficient condition that the determinant of a
critical lattice of the star-shaped octagon is equal to the determinant of a critical lattice

of one of its component parallelograms is that | takes one of the values

i(1+l/n2+1) m=1,2,..) (23)

or Vo+1)/(n—1) (n=2,3,..). (24)
COROLLARY. Let A denole the determinant of a critical lattice of the star-shaped
octagon. Then for n=2,3, ...

~1—1 A+VnP=22+2)21>V(n+1)/(n—1)

implies 10+VRP—2n+2)<A<}(n+1),
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and V(n+1)/(n—1)>l>}t(l+l/n2+ 1)

implies 1+ 1)<SA<I(A+Va2+1).

Proof. If 1, >1, the star-shaped octagon corresponding to I=1, is entirely con-
tained in that corresponding to I=1I, It follows that A is non-decreasing with de-

creasing [.
Further I2/(2—1)=4 (1+Vn2+1) or }(n+1) according as I =
Vin+1)/(n—1).

(1+Vn2+1) or

S

The above work formed part of my dissertation submitted for the degree of
Doctor of Philosophy in the University of Cambridge. I should like to take this
opportunity of thanking Professor L. J. Mordell and Mr. R. F. Churchouse for their
many helpful and detailed comments, and Dr. C. S. Davis for reading an earlier

draft version of sections 8-10.

References

{1]. K. MaurER, “Lattice points in two-dimensional star domains”, Proc. London Math. Soc
(2), 49 (1946), 128-183; see particularly pages 169-183.

{2]. H. Minkowsk1, ““Diophantische Approximationen’, (1907), 24-26.

{3]. L. J. MorDELL, “On the geometry of numbers in some non-convex vegions”, Proc. London
Math. Soc. (2), 48 (1945), 339-390; see particularly pages 365-369.



