FINDING A BOUNDARY FOR A HILBERT CUBE MANIFOLD

BY

T. A. CHAPMAN(1) and L. C. SIEBENMANN

University of Kentucky Lexington, Ky, USA Université de Paris-Sud Orsay, France

1. Introduction

In [21] Siebenmann considers the problem of putting a boundary on an open smooth manifold. A necessary condition is that the manifold have a finite number of ends, that the system of fundamental groups of connected open neighborhoods of each end be "essentially constant" and that there exist arbitrarily small open neighborhoods of ∞ homotopically dominated by finite complexes. When the manifold has dimension greater than five and has a single such end, there is an obstruction $\sigma(\infty)$ to the manifold having a boundary; it lies in $\tilde{K}_0\pi_1(\infty)$, the projective class group of the fundamental group at ∞ . When the manifold does admit a connected boundary, and is therefore the interior of a compact smooth manifold, such compactifications are conveniently classified relative to a fixed one by certain torsions τ in Wh $\pi_1(\infty)$, the Whitehead group of $\pi_1(\infty)$. In other words, σ is the obstruction to putting a boundary on the manifold and τ then classifies the different ways in which this can be done. One can deal with manifolds having a finite number of ends by treating each one in the above manner.

In this paper we carry out a similar program for the problem of putting boundaries on non-compact Q-manifolds, where a Q-manifold M is a separable metric manifold modeled on the Hilbert cube Q (the countable-infinite product of closed intervals). The first problem is to decide upon a suitable definition of a boundary for a Q-manifold; for example $B^n \times Q$ is a perfectly good Q-manifold and $(\partial B^n) \times Q$ has every right to be called its boundary, but unfortunately there exist homeomorphisms of $B^n \times Q$ onto itself taking $(\partial B^n) \times Q$ into its complement. To see this just write Q as $[0, 1] \times Q$ and note that there exists a homeomorphism of $B^n \times [0, 1]$ onto itself taking $(\partial B^n) \times [0, 1]$ into its complement. In the

⁽¹⁾ An A.P. Sloan Fellow and supported in part by NSF Grant GP-28374.

⁽²⁾ It is, for example, conjectured that Q-manifolds are precisely those ANR's that locally are compact ∞ -dimensional and homogeneous.

absence of any intrinsic notion of a boundary we adopt the following rather general definition. A compact metric space Z is a boundary for M is there exists a compact Q-manifold $N \supset M$ such that N - M = Z and such that Z is contained in some closed collared subset of N. Such a compactum Z is also known as a Z-set in N and is equally-well characterized by the existence, for every $\varepsilon > 0$, of an ε -map of N into N - Z. (The notion of a Z-set is an important tool in the study of Q-manifolds.) The above definition of boundary makes sense in finite-dimensional manifolds; Z will simply be a compact subset of the usual intrinsic boundary ∂N of N. Thus our problem is more ambitious than the finite-dimensional one solved in [21]; indeed it strongly suggests that the thesis [21] admits a generalization along the lines of this article, cf. [24].

It is easy to find examples of Q-manifolds which do not admit boundaries, for any which does must have finite homotopy type; indeed using the notation above we have $M = N - Z \simeq N = \text{(finite complex)} \times Q$ by [7]. An example with finite type is given by Whitehead's example of a contractible open subset W of R^3 which is not homeomorphic to R^3 ; the contractible Q-manifold $W \times Q$ does not admit a boundary.

We find that if a Q-manifold M satisfies certain minimal necessary homotopy theoretic conditions (finite type and tameness at ∞), there exists a unified obstrction $\beta(M)$ to M having a boundary; it lies in an algebraically-defined abelian group $S_{\infty}(M)$, which is none other than the quotient of the group S(M) of all infinite simple homotopy types on M by the image of the Whitehead group $\operatorname{Wh} \pi_1(M)$. This group depends only on the inverse system $\{\pi_1(M-A) \mid A \subseteq M \text{ compact}\}$, where the homomorphisms are inclusion-induced. Secondly we determine that the different boundaries that can be put on M constitute a whole shape class and we classify the different ways of putting boundaries on M by elements of the group $\operatorname{Wh} \pi_1 E(M) = \lim \{\operatorname{Wh} \pi_1(M-A) \mid A \subseteq M \text{ compact}\}$.

Here is an attractive way to describe the obstruction $\beta(M) \in S_{\infty}(M)$ to finding a boundary. If M is of finite type and tame at ∞ (cf. § 2), one readily forms a homotopy commutative ladder

$$\begin{array}{c} M \hookleftarrow U_1 \hookleftarrow U_2 \hookleftarrow \dots \\ \simeq \bigvee \bigvee \bigvee \bigvee \\ X_0 \hookleftarrow X_1 \hookleftarrow X_2 \hookleftarrow \dots \end{array}$$

where $\{U_i\}$ is a basis of neighborhoods of ∞ in M and each X_i is a finite complex. Letting Map (σ) denote the infinite mapping cylinder of the inverse sequence

$$\sigma: X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \dots$$
 (cf. § 2),

the homotopy commutativity mentioned assures that one can form a proper map

 $f: \operatorname{Map}(\sigma) \to M$. With some further care f can be chosen to be a proper equivalence (1); this is carried out explicitly in Appendix II. Then $\beta(M)$ is none other than the class of f in $S_{\infty}(M)$.

The invariant $\beta(M) \in S_{\infty}(M)$ is an absolute torsion invariant just as are the Reidemeister torsions of lens spaces; and it enjoys the corresponding naturality properties. We will leave the reader to seek (if he wishes) a more algebraic definition of $\beta(M)$ in the spirit of [12].

The reader will find in this article two essentially independent proofs that a Q-manifold M of finite type and tame at ∞ admits a boundary precisely if $\beta(M) = 0 \in S_{\infty}(M)$. The one suggested by the above definition requires above all a proof that $\beta(M)$ as described above is well-defined. This amounts to proving that a proper equivalence of two infinite mapping cylinders Map $(\sigma) \to \text{Map } (\sigma')$ has its torsion zero in S_{∞} . (This proof is marred only by the tedium of the "further care" required in the construction of f: Map $(\sigma) \to M$.) To pick out this proof the reader should read § 8 and Appendix 2.

The second proof is somewhat longer, but at the same time richer since we define and interpret geometrically, two partial obstructions $\sigma_{\infty}(M)$ and $\tau_{\infty}(M)$ analogous to obstructions σ_{∞} and τ_{∞} of infinite simple homotopy theory [22]. Since the theory was only sketched in [22] this article is intended to offer instruction in the theory that has become the basis of the classification of non-compact Q-manifolds [23]. For this proof the reader should read straight through, avoiding only § 8.

In § 2 we give more detailed statements of our results. The remaining sections are devoted to proofs. Here is a list of contents.

§	1.	Introduction
§	2.	Statements of results
§	3.	Simple homotopy and Q -manifold preliminaries
§	4.	Infinite mapping cylinders
§	5 .	The class group obstruction
§	6.	The residual obstruction
§	7.	Realization of the obstructions
§	8.	The total obstruction
§	9.	A practical boundary theorem
§	10.	Classification of boundaries

⁽¹⁾ If dim X_i is uniformly bounded, this f is automatically a proper equivalence by a criterion (π_*) of [22]. Whether f as constructed is always a proper homotopy equivalence is a special case of the open problem: Is a weak proper homotopy equivalence of infinite-dimensional polyhedra a (genuine) proper homotopy equivalence? (Cf. Appendix 2.)

§ 11. Classification of compactifications	199
Appendix I. The realization theorem for σ_{∞}	201
Appendix 2. An alternate description of the total obstruction	204
Appendix 3. What does it mean to have a boundary	206
References	207

2. Statements of results

One of the most useful tools in this paper is the notion of the *infinite mapping cylinder* of an inverse sequence of spaces. If $\sigma = \{X_i, f_i\}_{i=1}^{\infty}$ is an inverse sequence of compact metric spaces, $X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \leftarrow \ldots$, then we use Map (σ) to denote the locally compact space formed by sewing together the usual mapping cylinders $M(f_i)$ along their naturally-identified ends. With these identifications we have Map $(\sigma) = M(f_1) \cup M(f_2) \cup \ldots$, which is naturally compactified by adding on the inverse limit $\varprojlim \sigma$ of σ . It is obvious that $\varprojlim \sigma$ is a Ξ -set in Map $(\sigma) \cup \varprojlim \sigma$. It follows from [28] that if each X_i is a compact polyhedron, then Map $(\sigma) \times Q$ is a Q-manifold. Here is a sharper statement.

Theorem 1: Cylinder completion (see § 4). If σ is an inverse sequence of compact Q-manifold factors, then (Map $(\sigma) \cup \underline{\lim} \sigma) \times Q$ is a compact Q-manifold homeomorphic to $X_1 \times Q$ and therefore $\underline{\lim} \sigma \times Q$ is a boundary for Map $(\sigma) \times Q$.

By a Q-manifold factor we mean a space which yields a Q-manifold upon multiplication by Q. The class of Q-manifold factors includes at least all locally-finite CW complexes [28], (and may perhaps include all locally compact ANR's).(1) We therefore obtain a large class of Q-manifolds which admit boundaries by considering Map $(\sigma) \times Q$, for σ any inverse sequence of compact Q-manifold factors. The next result shows that this characterizes all such Q-manifolds.

Theorem 2: Geometric characterization (see § 4). A Q-manifold admits a boundary if and only if it is homeomorphic to Map $(\sigma) \times Q$, for some inverse sequence σ of compact polyhedra.

The basic necessary condition for a Q-manifold M to admit a boundary is that M be tame at ∞ , where tame at ∞ means that for each compactum $A \subseteq M$ there exists a larger compactum $B \subseteq M$ such that the inclusion $M - B \hookrightarrow M - A$ factors up to homotopy through some finite complex. Note that Whitehead's example cited in § 1 fails to be tame at ∞ . It

⁽¹⁾ Added 1976: This has been proved by R. D. Edwards [11], [9].

follows from the Geometric characterization above that this condition is necessary for M to admit a boundary, and it is easy to see that it is an invariant of proper homotopy type. (Recall that a proper map or proper homotopy is one for which pre-images of compacta are compact.) If M is a Q-manifold which is tame at ∞ , we will first define two obstructions to M having a boundary. Later on we will combine them into a single obstruction.

For any Q-manifold M we say that a Q-manifold $M' \subset M$ is clean provided that M' is closed and the topological frontier $\delta M'$ of M' in M is a Q-manifold which is collared in M' and in the closure of M-M'. It follows from the triangulation of Q-manifolds [7] that every Q-manifold has arbitrarily large compact and clean submanifolds. Observe also that triangulability implies that if $M' \subset M$ is compact and clean and M admits a boundary, then M-M' must have finite type. Our first obstruction is the obstruction to all such M-M' having finite type; using Wall's finiteness obstruction this turns out to be just an element $\sigma_{\infty}(M)$ of

$$\tilde{K}_0\pi_1E(M)=\lim_{\longleftarrow}\big\{\tilde{K}_0\pi_1(M-A)\,\big|\,A\!\subset\!M\text{ compact}\big\}.$$

Here $\tilde{K}_0\pi_1$ is the projective class group functor and the homomorphisms are inclusion-induced. $\tilde{K}_0\pi_1 E(M)$ clearly depends only on the inverse system $\{\pi_1(M-A) \mid A \subseteq M \text{ compact}\}.$

Theorem 3: Class group obstruction (see § 5). If M is a Q-manifold which is tame at ∞ , the obstruction $\sigma_{\infty}(M) \in \tilde{K}_0 \pi_1 E(M)$, an invariant of (infinite) simple homotopy type, is zero if and only if there exist arbitrarily large clean compact M' in M such that the inclusion $\delta(M') \hookrightarrow M$ —Int (M') is a homotopy equivalence.(1)

It is somewhat suprising that if $\sigma_{\infty}(M) = 0$, then there is yet a further obstruction to M having a boundary. This is identified in our next theorem.

Theorem 4: Residual obstruction (see § 6). If M is a Q-manifold which is tame at ∞ and for which $\sigma_{\infty}(M) = 0$, then there is an obstruction $\tau_{\infty}(M) \in \operatorname{Wh} \pi_1 E'(M)$ which vanishes if and only if M admits a boundary. It is an invariant of simple homotopy type.

The abelian group Wh $\pi_1 E'(M)$ is the first derived limit of the inverse system

$$\{\operatorname{Wh} \pi_1(M-A) \mid A \subseteq M \text{ compact}\},\$$

where Wh π_1 is the Whitehead group functor. (The article [18] is a good reference for the derived limit construction, but in § 6 we clearly state the definition.) To show the necessity of the obstruction τ_{∞} we give in § 7 an example (based on [2]) of a Q-manifold which is tame at ∞ and for which $\sigma_{\infty}(M)=0$, yet M does not admit a boundary.

⁽¹⁾ The symbols δ and Int indicate frontier and interior respectively (in M).

The obstruction $\tau_{\infty}(M)$ occurs as follows. Using the Class group obstruction theorem choose a sequence $M_1 \subseteq M_2 \subseteq ...$ of compact clean submanifolds of M such that M_i lies in the topological interior of M_{i+1} and $\delta(M_i) \hookrightarrow M - \operatorname{Int}(M_i)$ is a homotopy equivalence. If τ_i denotes the Whitehead torson of the inclusion

$$\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$$

i=1, 2, ..., experts will recognize that the sequence $(\tau_1, \tau_2, ...)$ determines an element of Wh $\pi_1 E'(M)$. It is $\tau_{\infty}(M)$, and we will show in § 6 that $\tau_{\infty}(M)=0$ if and only if the M_i can be rechosen so that the τ_i are all 0, i.e. if and only if M admits a boundary.

Essential in our definition of the total boundary obstruction is the following result, which is of independent interest.

THEOREM 5: HOMOTOPY BOUNDARY CRITERION (see § 5). A Q-manifold M is proper homotopy equivalent to one which admits a boundary if M has finite type and is tame at ∞ .

We give two proofs of this result. The first one relies upon Theorem 3 plus the realization of elements of the class group at infinity $\tilde{K}_0\pi_1 E(M)$ by proper homotopy equivalences, as explained in [22]; since the argument was only sketched there we given a full discussion in Appendix 1. The second proof relies upon Appendix 2 to show that we can choose a proper homotopy equivalence Map $(\sigma) \simeq M$, for some σ (cf. § 1).

By the Hauptvermutung and Triangulation results for Q-manifolds [8], [23], the infinite simple type theory [22] extends canonically from locally compact polyhedra to Q-manifolds. If $f: N \to M$ is a proper equivalence of Q-manifolds the infinite torsion $\tau(f)$ in S(M), the group of simple types on M, vanishes if and only if f is proper homotopic to a homeomorphism. Also one easily shows that the image $\beta(f)$ of $\tau(f)$ in S(M)/Image Wh $\pi_1(M)$ is zero if and only if f is proper homotopic to a map that is a homeomorphism near infinity. (All this is explained in § 2.)

THEOREM 6: Total obstruction (see § 8 and Appendix 2). If M is a Q-manifold which has finite type and is tame at ∞ , then there is an element $\beta(M) \in S_{\infty}(M) = S(M)/Wh \pi_1(M)$ which vanishes if and only if M admits a boundary. It can be defined unambigously as the residue of the infinite torsion $\tau(f) \in S(M)$, where $f: N \to M$ is a proper homotopy equivalence and N admits a boundary.

The surprising feature of this result is isolated in the following statement that we take time to prove both geometrically and using naturality properties of the obstructions σ_{∞} and τ_{∞} above.

THEOREM 7: PERIPHERAL HOMEOMORHPISM PARADOX (see § 8). If $f: M \rightarrow N$ is a (merely!) proper homotopy equivalence of Q-manifolds which admit boundaries, then f is proper

homotopic to a homeomorphism near ∞ . If M and N are contractible, then f is proper homotopic to a homeomorphism.

It is worth noting that the obstruction $\beta(M) \in S_{\infty}(M)$ can still be defined if we drop the requirement that M have finite type and only assume it to be tame at ∞ . For such an M there is a compact polyhedron which homotopically dominates M (see § 5, Lemma 5.1) and the mapping cone of such a dominating map yields, upon multiplication by Q, a Q-manifold N which is simply connected (and hence has finite type) and which agrees with M off some compactum. Then N has finite type and is tame at ∞ , and we can define $\beta(M) = \beta(N)$, which is well-defined.

We also remark that for every Q-manifold M there is an exact sequence

$$0 \to \operatorname{Wh} \pi_1 E'(M) \to S_{\infty}(M) \to \tilde{K}_0 \pi_1 E(M) \to \tilde{K}_0 \pi_1(M),$$

which comes from amalgamating the two exact sequences of [22]. If M has finite type and is tame at ∞ , we will observe (see § 8, Proposition 8.1) that

- (1) $\sigma_{\infty}(M)$ is the image of $\beta(M)$ in $\tilde{K}_0 \pi_1 E(M)$ and
- (2) if $\sigma_{\infty}(M) = 0$, then $\beta(M)$ is the image of $\tau_{\infty}(M) \in Wh \pi_1 E'(M)$.

Here are some applications of the above results.

THEOREM 8: PRATICAL BOUNDARY THEOREM (see § 9). If M is a 1-ended Q-manifold which is tame at ∞ such that π_1 is essentially constant at ∞ , with $\pi_1(\infty)$ free or free abelian, then $S_{\infty}(M) = 0$ and therefore M admits a boundary.

Corollary. If M is a Q-manifold which is LC^1 at ∞ and for which the homology $H_*(M)$ is finitely generated, then M admits a boundary.

Concerning the classification of possible boundaries we prove the following result. Its proof relies on the main result of [6], which classifies shapes of compact \mathbb{Z} -sets in Q in terms of the homeomorphism types of their complements (see [24] for an alternate proof in the spirit of this article).

THEOREM 9: BOUNDARY CLASSIFICATION (see § 10). If Z is a boundary for M, then a compact metric space Z' is also a boundary for M if and only if Z' is shape equivalent to Z (in the sense of [4]).

If N is a compactification of M, then we say that another compactification N' of M is equivalent to N if for every compactum $A \subset M$ there exists a homeomorphism of N onto N' fixing A pointwise. The following result classifies these equivalence classes of compactifications of M.

Theorem 10: Compactification classification (see § 11). If M admits a compactification, then the equivalence classes of compactifications of M are in 1-1 correspondence with the elements of Wh $\pi_1 E(M)$.

Here Wh $\pi_1 E(M)$ is the inverse limit $\lim \{ \operatorname{Wh} \pi_1(M-A) \mid A \subseteq M \text{ compact} \}$.

3. Simple homotopy and Q-manifold preliminaries

The purpose of this section is to recall some basic facts from simple homotopy theory and Q-manifold theory. Our basic references for simple homotopy theory are [10] and [22], and our basic references for Q-manifold theory are [7], [8], [9] and [23].

A proper homotopy equivalence (p.h.e.) $f: X \to Y$ of (locally compact) polyhedra is a simple homotopy equivalence (s.h.e.) provided that there exists a polyhedron Z and proper, contractible PL surjections $\alpha: Z \to X$, $\beta: Z \to Y$ such that $f\alpha$ is proper homotopic to β . (A contractible map is one for which all inverse images of points are contractible in themselves.)

For a given polyhdron X we let S(X) be the set of all equivalence classes [Y, X] of pairs (Y, X) where X is a subpolyhedron of Y and $X \hookrightarrow Y$ is a p.h.e. We define $(Y', X) \in [Y, X]$ provided that there exists a s.h.e. $f: Y \to Y'$ fixing X pointwise. Addition in S(X) is defined by

$$[Y, X] + [Z, X] = [Y \cup_X Z, X],$$

where $Y \cup_X Z$ is the polyhedron formed by sewing Y and Z together along X. Then with this operation S(X) becomes an abelian group. It is the group of all simple types on X. For X compact it is canonically isomorphic to Wh $\pi_1(X)$.

If $f: X_1 \to X_2$ is a proper map of polyhedra and $g: X_1 \to X_2$ is any PL map which is proper homotopic to f, then we get an induced homomorphism $f_*: S(X_1) \to S(X_2)$ by setting

$$f_*(\lceil Y, X \rceil) = \lceil Y \cup_X M(g), X_2 \rceil,$$

where M(g) is the polyhedral mapping cylinder of g and X_1 , X_2 are naturally identified subpolyhedra of M(g). The torsion of a p.h.e. $f: X \to Y$ is the element $\tau(f) = f_*([M(g), X]) \in \mathcal{S}(Y)$, where $g: X \to Y$ is any PL map which is proper homotopic to f.

The algebraically-defined Whitehead group Wh $\pi_1(X)$ is naturally isomorphic to the direct limit

$$\varinjlim \{S(X_1) | X_1 \subseteq X \text{ is a compact subpolyhedron}\},$$

where the homomorphisms are inclusion-induced. This gives a homomorphism Wh $\pi_1(X) \to S(X)$ and we define $S_{\infty}(X) = S(X)/\text{Image (Wh }\pi_1(X))$. This homomorphism is natural in the sense that if $f: X \to Y$ is a proper map, then the following diagram commutes:

$$\begin{array}{ccc}
S(X) & \xrightarrow{f_*} & S(Y) \\
\downarrow & & \downarrow \\
\operatorname{Wh} \pi_1(X) & \longrightarrow & \operatorname{Wh} \pi_1(Y)
\end{array}$$

(Here Wh $\pi_1(X) \rightarrow$ Wh $\pi_1(Y)$ is induced by f.) Thus S_{∞} is functorial for such f.

If $f: X \to Y$ is a p.h.e., then we use $\beta(f)$ for the image of $\tau(f)$ in $S_{\infty}(Y)$ and we call it the torsion of f near ∞ . We say that f is a s.h.e. near ∞ if $\beta(f) = 0$. The naturality diagram above implies that the formulas for the torsion of a composition [22, p. 481] [10, p. 72] and the Sum theorem [22, p. 482] [10, p. 76] translate into corresponding formulas for β .

We now recall some facts from Q-manifold theory. All spaces here and in the sequel will be locally compact, separable and metric. (Closed) \mathbb{Z} -sets in Q-manifolds are important because of the following approximation, unknotting and collaring results. If $f: X \to M$ is a proper map of a space X into a Q-manifold M, then f can be arbitrarily closely approximated by \mathbb{Z} -embeddings $g: X \to M$, i.e. g(X) is a \mathbb{Z} -set in M. For \mathbb{Z} -embeddings $f, g: X \to M$ which are proper homotopic, there exists an ambient isotopy $h_t: M \to M$ such that $h_0 = \mathrm{id}$ and $h_1 f = g$. If M is a \mathbb{Z} -set in the Q-manifold N, then M is collared in N, i.e. there exists an open embedding $g: M \times [0, 1) \to N$ such that f(m, 0) = m, for all $m \in M$.

If $f: X \to Y$ is a map between compact polyhedra, then $M(f) \times Q$ is a Q-manifold. In fact $r \times \mathrm{id}_Q \colon M(f) \times Q \to Y \times Q$ can be arbitrarily closely approximated by homeomorphisms, where $r: M(f) \to Y$ is the collapse of M(f) to its base Y obtained by retracting along the rays of M(f). (We call $r \times \mathrm{id}$ a near homeomorphism.) It is also true that $X \times Q$ is a Q-manifold, for any polyhedron X. The "Hauptvermutung" for Q-manifolds asserts that a p.h.e. $f: X \to Y$ of polyhedra is a s.h.e. iff $f \times \mathrm{id} \colon X \times Q \to Y \times Q$ is proper homotopic to a homeomorphism.

All Q-manifolds can be triangulated (i.e. are homeomorphic to $X \times Q$, for some polyhedron X). In fact we have the following relative version. If M is a Q-manifold which is a \mathbb{Z} -set in a Q-manifold N and $\alpha: M \to X \times Q$ is a triangulation of M, then there exists a triangulation $\beta: N \to Y \times Q$ such that X is a subpolyhedron of Y and β extends α .

If $f: M \to N$ is a p.h.e. of Q-manifolds, then we can define a torsion $\tau(f) \in S(N)$ which vanishes if and only if f is proper homotopic to a homeomorphism. This is done by choosing triangulations $M \cong X \times Q$, $N \cong Y \times Q$ and a p.h.e. $f_0: X \to Y$ which makes the following diagram proper homotopy commute:

$$M \cong X \times Q \xrightarrow{\text{proj}} X$$

$$f \downarrow \qquad \qquad \downarrow f_0$$

$$N \cong Y \times Q \xrightarrow{\text{proj}} Y$$

Then put $\tau(f) = \tau(f_0)$, where we recall from § 2 that by definition S(M) = S(X) and S(N) = S(Y). It easily follows from the "Hauptvermutung" that S(M) and S(N) are well defined up to canonical isomorphism independent of the triangulations chosen, and that $\tau(f) = 0$ if and only if f is proper homotopic to a homeomorphism.

In analogy with the definition of $\tau(f)$ above we could also define $\beta(f) = \beta(f_0) \in S_{\infty}(Y) = S_{\infty}(N)$. We assert that $\beta(f) = 0$ iff f is proper homotopic to a homeomorphism near ∞ . [To verify this first suppose that $\beta(f) = 0$. This means that f_0 factorizes, $X \stackrel{\varphi}{\hookrightarrow} X' \stackrel{\psi}{\longrightarrow} Y$, where X' - X consists of finitely many cells and $X' \rightarrow Y$ is a simple proper equivalence. As both $\varphi \times (\operatorname{id} | Q)$ and $\varphi \times (\operatorname{id} | Q)$ are proper homotopic to homeomorphisms near ∞ , the same is true of their composition $f_0 \times (\operatorname{id} | Q)$ and so of f. Conversely, supposing f proper homotopic to f', a homeomorphism near ∞ , we can artificially choose the triangulations $M \cong X \times Q$ and $N \cong Y \times Q$ (by using the relative triangulation theorem) so that X = Y near ∞ and

$$X \times Q \cong M \xrightarrow{f'} N \cong Y \times Q$$

is the identity map near ∞ . Then clearly $\beta(f_0) = 0$.

4. Infinite mapping cylinders

In this section we will prove the *Cylinder completion* and *Geometric characterization* theorems of § 2 concerning infinite mapping cylinders. First we will introduce some additional notation which will clarify the paragraph preceding the statement of the *Cylinder completion* theorem.

Let σ be the inverse sequence $\{X_i, f_i\}_{i=1}^{\infty}$ and for each $i \geq 1$ let $M(f_i)$ denote the mapping cylinder of $f_i \colon X_{i+1} \to X_i$. We regard $M(f_i)$ as the disjoint union $X_{i+1} \times [0, 1) \cup X_i$ along with an appropriate topology. The source of $M(f_i)$ is $X_{i+1} = X_{i+1} \times \{0\}$ and the target of $M(f_i)$ is X_i . For each $i \geq 1$ let $M_i(\sigma)$ denote the compact space formed by sewing together the mapping cylinders $M(f_1), \ldots, M(f_i)$ along their naturally identified sources and targets. Then we have $M_{i+1}(\sigma) = M_i(\sigma) \cup M(f_{i+1})$ and Map $(\sigma) = \bigcup_{i=1}^{\infty} M_i(\sigma)$. There is also a natural map $g_i \colon M_{i+1}(\sigma) \to M_i(\sigma)$ which is the identity on $M_i(\sigma)$ and on $M(f_{i+1})$ it is just the collapse to the base X_i . The compactification of Map (σ) by $\varprojlim \sigma$ that was mentioned in § 2 is just the inverse limit $X_{\sigma} = \varprojlim \{M_i(\sigma), g_i\}_{i=1}^{\infty}$. Clearly we may write $X_{\sigma} = \operatorname{Map}(\sigma) \cup \varinjlim \sigma$ and we note that $\varprojlim \sigma$ is a \mathbb{Z} -set in X_{σ} .

Proof of the Cylinder completion theorem. The Cylinder completion theorem asserts that if $\sigma = \{X_i, f_i\}_{i=1}^{\infty}$ is an inverse sequence of compact Q-manifold factors, then $X_{\sigma} \times Q$ is a Q-manifold which is homeomorphic to $X_1 \times Q$. Consider the sequence $\{M_i(\sigma), g_i\}_{i=1}^{\infty}$, which is an inverse sequence of compact Q-manifold factors. Since each $g_i: M_{i+1}(\sigma) \to M_i(\sigma)$ is just

the collapse of a mapping cylinder to its base, it follows that each $g_i \times \mathrm{id}$: $M_{i+1}(\sigma) \times Q \to M_i(\sigma) \times Q$ is a near homeomorphism. It is shown in [5] (see Lemma 4.1 below) that if $\{Y_i, h_i\}_{i=1}^{\infty}$ is an inverse sequence of compact metric spaces and the h_i 's are near homeomorphisms, then $\varprojlim \{Y_i, h_i\}_{i=1}^{\infty}$ is homeomorphic to Y_1 . Applying this result to $\{M_i(\sigma) \times Q, g_i \times \mathrm{id}\}_{i=1}^{\infty}$ we get our desired result.

In the following result we sketch a proof of the main result of [5] which was used above.

Lemma 4.1. If $X_1 \stackrel{f_1}{\longleftarrow} X_2 \stackrel{f_2}{\longleftarrow} \dots$ is an inverse sequence of compact metric spaces, then we can choose neighborhoods \mathcal{U}_i of f_i in $C(X_{i+1}, X_i)$ such that if $g_i \in \mathcal{U}_i$, then

$$\underline{\lim} \{X_i, f_i\} \cong \underline{\lim} \{X_i, g_i\}.$$

 $(C(X_{i+1}, X_i))$ is the space of continuous functions from X_{i+1} to X_i .

Sketch of proof. For any choice of the \mathcal{U}_i and $g_i \in \mathcal{U}_i$ we have inverse sequences

$$\sigma_0: X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} \dots$$

$$\sigma_1: X_1 \xleftarrow{g_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} \dots$$

$$\sigma_2: X_1 \xleftarrow{g_1} X_2 \xleftarrow{g_2} X_3 \xrightarrow{f_3} X_4 \xleftarrow{f_4} \dots$$

$$\vdots$$

Let A_i denote the inverse limit of σ_i and define φ_i : $A_i \rightarrow A_{i+1}$ by

$$\varphi_i(x_1, x_2, \ldots) = (g_1g_2 \ldots g_{i+1}(x_{i+2}), g_2 \ldots g_{i+1}(x_{i+2}), g_{i+1}(x_{i+2}), x_{i+2}, x_{i+3}, \ldots).$$

Then φ_i is a homeomorphism and, if \mathcal{U}_i is chosen sufficiently close to f_i , the sequence of embeddings

$$\begin{split} \varphi_0 \colon A_0 &\to \prod_{i=1}^\infty X_i, \\ \varphi_1 \, \varphi_0 \colon A_0 &\to \prod_{i=1}^\infty X_i, \\ \vdots \end{split}$$

is Cauchy in the complete space of embeddings of A_0 into $\prod_{i=1}^{\infty} X_i$. Therefore $\varphi = \lim_{n \to \infty} \varphi_n \varphi_{n-1} \dots \varphi_2 \varphi_1 \colon A_0 \to \prod_{i=1}^{\infty} X_i$ gives a homeomorphism of $\varprojlim \{X_i, f_i\}$ onto $\varprojlim \{X_i, g_i\}$.

Proof of the Geometric characterization theorem. The Geometric characterization theorem asserts that a Q-manifold admits a boundary iff it is homeomorphic to Map $(\sigma) \times Q$, for

some inverse sequence σ of compact polyhedra. The "if" part follows from the *Cylinder completion* theorem. For the other part let M be a Q-manifold which admits a boundary Z and let $N=M\cup Z$ be a compactification of M. Since Z is a Z-set we may replace N by $N\times [0,1]$ and assume that $Z\subseteq N\times \{0\}$. To see this we first recall that N is homeomorphic to $N\times [0,1]$ and then use Z-set unknotting. With this notation we must prove that $N\times [0,1]-Z$ is homeomorphic to some Map $(\sigma)\times Q$.

Since N can be triangulated we can write $Z = \bigcap_{i=1}^{\infty} M_i$, where

$$N \times \{0\} \supset M_1 \supset M_2 \supset \dots$$

is a basis of compact and clean neighborhoods of Z in $N \times \{0\}$. By "poking-in" along the [0, 1]-direction we can enlarge the M_i 's to obtain $Z = \bigcap_{i=1}^{\infty} N_i$, where

$$N \times [0, 1] \supset N_1 \supset N_2 \supset \dots$$

is a basis of compact and clean neighborhoods of Z in $N \times [0, 1]$ such that each N_i is a collar on $\delta(N_i)$, the frontier of N_i .

In the picture above the shaded region represents N_i . Its intersection with $N \times \{0\}$ is just M_i .

Choose compact polyhedra X_0, X_1, \dots and homeomorphisms

$$\begin{split} h_0 &: X_0 \times Q \rightarrow N \times [0, \ 1] - \operatorname{Int}(N_1), \\ h_1 &: X_1 \times Q \rightarrow \delta(N_1), \\ h_2 &: X_2 \times Q \rightarrow \delta(N_2), \\ &: \end{split}$$

We will construct maps $f_i: X_{i+1} \to X_i$ such that if $\sigma = \{X_i, f_i\}_{i=0}^{\infty}$, then $\operatorname{Map}(\sigma) \times Q \cong N \times [0, 1] - Z$.

Define $f_0: X_1 \to X_0$ and $f_i: X_{i+1} \to X_i$, $i \ge 1$, so that the following rectangles homotopy commute:

Here $\delta(N_{i+1}) \rightarrow \delta(N_i)$ is a composition

$$\delta(N_{i+1}) \hookrightarrow N_i - \operatorname{Int}(N_{i+1}) \to \delta(N_i),$$

where the last arrow is a homotopy inverse of inclusion.

Consider the infinite mapping cylinder Map (σ) and write Map $(\sigma) = A_0 \cup A_1 \cup ...$, where in the picture of Map (σ) below we have indicated A_0 , A_1 and A_2 .

Using our notation for mapping cylinders we have

$$\begin{split} A_0 &= (X_1 \times [\frac{1}{2},\, 1)) \cup X_0, \\ A_1 &= (X_2 \times [\frac{1}{2},\, 1)) \cup (X_1 \times [0,\, \frac{1}{2}]), \\ &: \end{split}$$

Now $X_0 \times Q \hookrightarrow A_0 \times Q$ is homotopic to a homeomorphism, thus using h_0 we get a homeomorphism $g_0: A_0 \times Q \to N \times [0, 1] - \mathrm{Int}(N_1)$ which, by \mathbb{Z} -set unknotting, can be adjusted so that $g_0 \mid X_1 \times \{\frac{1}{2}\} \times Q$ is given by h_1 , i.e. $g_0(x, \frac{1}{2}, q) = h_1(x, q)$ for all $x \in X_1$. This uses the commutativity of the first rectangle above. Using the second rectangle we can similarly construct homeomorphisms

$$g_i: A_i \times Q \rightarrow N_i - \text{Int } (N_{i+1}), \quad i \geq 1,$$

such that $g_i(x, \frac{1}{2}, q) = h_{i+1}(x, q)$, for all $x \in X_{i+1}$, and $g_i(x, \frac{1}{2}, q) = h_i(x, q)$, for all $x \in X_i$. Then the g_i 's clearly piece together to give a homeomorphism of Map $(\sigma) \times Q$ onto $N \times [0, 1] - Z$.

The following consequence of the above proof will be useful in the sequel.

COROLLARY 4.2. If M is a Q-manifold which is written as $M = \bigcup_{i=1}^{\infty} M_i$, where the M_i 's are compact and clean, $M_i \subset \operatorname{Int}(M_{i+1})$, and each $\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$ is a s.h.e., then M admits a boundary.

5. The class group obstruction

In this section we prove the Class group obstruction and Homotopy boundary criterion theorems. In a further result (Naturality) we relate σ_{∞} as defined here to a homomorphism σ_{∞} : $S(M) \rightarrow \tilde{K}_0 \pi_1 E(M)$ defined in [22]. We will first need the following result.

12 - 762901 Acta mathematica 137. Imprimé le 20 Janvier 1977

DOMINATION LEMMA 5.1. If X is a polyhedron which is tame at ∞ , then X is dominated by a compact polyhedron.

Proof. Since X is tame at ∞ we can write $X = X_1 \cup X_2$, where X_1 and X_2 are subpolyhedra such that X_1 is compact and $X_2 \hookrightarrow X$ factors up to homotopy through some compact polyhedron Y. Then we have a homotopy commutative diagram

$$X_2 \hookrightarrow X$$
 $\alpha \searrow \beta$

Let $F_t: X_2 \to X$ be a homotopy such that $F_0 = \beta \alpha$ and $F_1: X_2 \hookrightarrow X$. Using the homotopy extension theorem we can find a homotopy $G_t: X_1 \to X$ such that $G_t = F_t$ on $X_1 \cap X_2$ and $G_1: X_1 \hookrightarrow X$. Define $H_t: X \to X$ by setting $H_t = F_t$ on X_2 and $H_t = G_t$ on X_1 . Then we have a homotopy commutative diagram

$$X \hookrightarrow X$$

$$H_0 \setminus \int Z$$

where Z is any compact subpolyhedron of X containing $H_0(X)$. This means that Z dominates X.

The following corollary makes the notion of tameness much more concrete.

COROLLARY. If M is a Q-manifold which is tame at ∞ and $M' \subset M$ is compact and clean, then M-M' is finitely dominated.

Proof. By the triangulation of Q-manifolds we have M-M' proper homotopy equivalent to some polyhedron, which must be tame at ∞ .

Proof of the Class group obstruction theorem. Let M be a Q-manifold which is tame at ∞ . We want to define an element $\sigma_{\infty}(M) \in \tilde{K}_0 \pi_1 E(M)$ which vanishes iff M-M' has finite type, for each compact and clean $M' \subseteq M$. Write $M = \bigcup_{i=1}^{\infty} M_i$, where the M_i 's are compact and clean and $M_i \subseteq \operatorname{Int}(M_{i+1})$. The above Corollary implies that each $M-M_i$ is finitely dominated. Thus there is an element $\sigma(M-M_i) \in \tilde{K}_0 \pi_1(M-M_i)$ (the Wall obstruction [27]) which vanishes iff $M-M_i$ has finite type. This makes good sense even if the $M-M_i$'s are not connected [21]. If j > i, then the fact that $M_j - M_i$ has finite type implies that the inclusion-induced homomorphism of $\tilde{K}_0 \pi_1(M-M_j)$ to $\tilde{K}_0 \pi_1(M-M_i)$ sends $\sigma(M-M_j)$ to $\sigma(M-M_i)$. Thus we have an element $\{\sigma(M-M_i)\}_{i=1}^{\infty}$ of $\lim_{i \to \infty} \{\tilde{K}_0 \pi_1(M-M_i)\}_{i=1}^{\infty} = \tilde{K}_0 \pi_1 E(M)$ which we call $\sigma_{\infty}(M)$. Clearly $\sigma_{\infty}(M) = 0$ iff M-M' has finite type, for each compact and clean $M' \subseteq M$.

To see that $\sigma_{\infty}(M)$ is an invariant of infinite simple homotopy type let $f: M \to N$ be an infinite simple homotopy equivalence to another Q-manifold N. Then f induces an isomorphism $f_*: \tilde{K}_0\pi_1 E(M) \to \tilde{K}_0\pi_1 E(N)$ and we need to check that $f_*\sigma_{\infty}(M) = \sigma_{\infty}(N)$. We can replace f by any map in its proper homotopy class, so we may assume that f is a homeomorphism. If $M = \bigcup_{i=1}^{\infty} M_i$ and $\sigma_{\infty}(M)$ is represented by $\{\sigma(M-M_i)\}_{i=1}^{\infty}$ above, then $N = \bigcup_{i=1}^{\infty} f(N_i)$ and $\sigma_{\infty}(N)$ may be represented by $\{\sigma(f(M)-f(M_i)\}_{i=1}^{\infty}$. But f_* clearly sends $\{\sigma(M-M_i)\}$ to $\{\sigma(f(M)-f(M_i))\}$ because the Wall obstruction is an invariant of homotopy type.

We now state and prove the *Naturality theorem*. Recall from [22] that for each polyhedron X there exists a homomorphism σ_{∞} : $S(X) \to \tilde{K}_0 \pi_1 E(X)$. Since Q-manifolds can be triangulated this naturally defines a homomorphism σ_{∞} : $S(M) \to \tilde{K}_0 \pi_1 E(M)$, for each Q-manifold M.

Theorem 5.2. Naturality. If $f: M \rightarrow N$ is a p.h.e. of Q-manifolds which are tame at ∞ , then

$$\sigma_{\infty}(N) = \sigma_{\infty}(f) + f_*\sigma_{\infty}(M),$$

where $f_*: \tilde{K}_0\pi_1 E(M) \rightarrow \tilde{K}_0\pi_1 E(N)$ is induced by f.

Proof. Writing $M = X \times Q$ and $N = Y \times Q$ it will suffice to consider a p.h.e. $f: X \to Y$, of polyhedra which are tame at ∞ such that f is the inclusion $f: X \hookrightarrow Y$, where $\sigma_{\infty}(X) = \sigma_{\infty}(M)$ and $\sigma_{\infty}(Y) = \sigma_{\infty}(N)$ could be defined in analogy with $\sigma_{\infty}(M)$ and $\sigma_{\infty}(N)$.

Write $Y = \bigcup_{i=1}^{\infty} Y_i$, where the Y_i 's are compact subpolyhedra such that $\delta(Y_i)$ is PL bicollared and $Y_i \subset \operatorname{Int}(Y_{i+1})$. Then $\sigma_{\infty}(X \hookrightarrow Y)$ is defined to be the element of $\tilde{K}_0 \pi_1 E(Y)$ which is represented by

$$\{\sigma(Y-Y_i, (Y-Y_i) \cap X)\}_{i=1}^{\infty},$$

where $\sigma(Y-Y_i, (Y-Y_i) \cap X) \in \tilde{K}_0\pi_1(Y-Y_i)$ is the relative finiteness obstruction of [27]. Note that $Y-Y_i$ and $(Y-Y_i) \cap X$ are finitely dominated. Using [27, p. 138] we have

$$\sigma(Y - Y_i, (Y - Y_i) \cap X) + (j_i)_* \sigma((Y - Y_i) \cap X) = \sigma(Y - Y_i),$$

where $(j_i)_*$ is inclusion-induced. This gives

$$\sigma_{\infty}(Y) = \sigma_{\infty}(f) + f_{*}\sigma_{\infty}(X)$$

as we wanted.

We now turn to the proof of the *Homotopy boundary criterion* theorem. The following result, which is crucial for its proof, will also be needed for the *Residual obstruction* theorem of § 6.

SPLITTING PROPOSITION 5.3. If M is a Q-manifold which is tame at ∞ and for which $\sigma_{\infty}(M) = 0$, then we can write $M = \bigcup_{i=1}^{\infty} M_i$ such that the M_i 's are compact and clean, $M_i \subset \operatorname{Int}(M_{i+1})$, and each inclusion $\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$ is a homotopy equivalence.

Proof. Choose any compact and clean $M' \subseteq M$. It will suffice to construct a compact and clean $M'' \supseteq M'$ such that $\delta(M'') \hookrightarrow M - \operatorname{Int}(M'')$ is a homotopy equivalence. Since $\sigma_{\infty}(M) = 0$ it follows that $M - \operatorname{Int}(M')$ has finite type. Thus there is a compact polyhedron X and a homotopy equivalence $f: X \times Q \to M - \operatorname{Int}(M')$. Let $g: X \times Q \to M - \operatorname{Int}(M')$ be a \mathbb{Z} -embedding which is homotopic to f. Using \mathbb{Z} -set unknotting we can find a homeomorphism h of $M - \operatorname{Int}(M')$ onto itself such that $h(\delta(M')) \subseteq g(X \times Q)$. Then $h^{-1}g: X \times Q \to M - \operatorname{Int}(M')$ is a \mathbb{Z} -embedding which is a homotopy equivalence and whose image contains $\delta(M')$. Let $N = h^{-1}g(X \times Q)$, which is a Q-manifold. Since N is a \mathbb{Z} -set in $M - \operatorname{Int}(M')$ we can find a collaring $\theta: N \times [0, 1) \to M - \operatorname{Int}(M')$ of N. Then

$$M'' = M' \cup \theta(N \times [0, \frac{1}{2}])$$

fulfills our requirements.

COROLLARY. If M is as above, then M is p.h.e. to Map $(\sigma) \times Q$, for some inverse sequence σ of compact polyhedra.

Proof. This is similar to the proof of the Geometric characterization theorem of § 4. If we knew that each inclusion $\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$ were a s.h.e., then by the Corollary of the Geometric characterization theorem we would have a homeomorphism $M \cong \operatorname{Map}(\sigma) \times Q$. As each inclusion $\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$ is only known to be a homotopy equivalence, the same argument gives a p.h.e. of M with $\operatorname{Map}(\sigma) \times Q$.

First proof of the Homotopy boundary criterion theorem. We are given a Q-manifold M which has finite type and is tame at ∞ and we want to prove that M is p.h.e. to a Q-manifold which admits a boundary.

Note that $\sigma_{\infty}(M)$ is an element of $\tilde{K}_0\pi_1 E(M)$ which is sent to 0 by the homomorphism $\tilde{K}_0\pi_1 E(M) \to \tilde{K}_0\pi_1(M)$ induced by inclusions. In Appendix 1 we prove that there exists a Q-manifold N and a p.h.e. $f: N \to M$ such that $\sigma_{\infty}(f) = \sigma_{\infty}(M)$. By Naturality we have

$$\sigma_{\infty}(M) = \sigma_{\infty}(f) + f_*\sigma_{\infty}(N),$$

and therefore $\sigma_{\infty}(N) = 0$. Then apply the above Corollary.

Second proof of the Homotopy boundary criterion theorem. It follows from Appendix 2 that if M has finite type and is tame at ∞ , then M is proper homotopy equivalent to Map (σ) , for some inverse sequence σ of compact polyhedra. Then apply the Geometric characterization theorem.

6. The residual obstruction

Proposition 5.3 above tells us precisely when a Q-manifold M can be filtered as $M = \bigcup_{i=1}^{\infty} M_i$, where the M_i 's are compact and clean, $M_i \subset \operatorname{Int}(M_{i+1})$, and each $\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$ is a homotopy equivalence. Supposing this done, in this section we define an obstruction to improving such a filtration so that in addition each $\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$ is a s.h.e. By the Corollary of the Geometric characterization theorem we know this means that M admits a boundary. This will complete our proof of the Residual obstruction theorem. In a further result (Naturality) we relate our residual obstruction to a similar obstruction of [22].

First it will be convenient to recall the definition of Wh $\pi_1 E'(X)$ for X any locally compact ANR. Write $X = \bigcup_{i=1}^{\infty} C_i$, where the C_i 's are compact and $C_i \subseteq \text{Int}(C_{i+1})$, let $G_i = \text{Wh } \pi_1(X - C_i)$ and consider the sequence

$$G_1 \leftarrow \frac{p_1}{G_2} \leftarrow G_2 \leftarrow \frac{p_2}{G_3} \leftarrow G_3 \leftarrow \frac{p_3}{G_3} \cdots$$

where the p_i 's are inclusion-induced. Define the shift operator Δ from $\prod_{i=1}^{\infty} G_i$ to itself by $\Delta(\tau_1, \tau_2, ...) = (\tau_1 - p_1(\tau_2), \tau_2 - p_2(\tau_3), ...)$, and let

$$\underset{\longleftarrow}{\lim} {}^{1} \{ \operatorname{Wh} \pi_{1}(X - C_{i}) \} = \prod_{i=1}^{\infty} G_{i} / \operatorname{Image}(\Delta).$$

If $(\tau_1, \tau_2, ...) \in \prod_{i=1}^{\infty} G_i$, we use $\langle \tau_1, \tau_2, ... \rangle$ for its image in $\lim_{i \to 1} \{ \operatorname{Wh} \pi_1(X - C_i) \}$. If $X = \bigcup_{i=1}^{\infty} C_i'$ is a similarly-defined filtration of X, then $\lim_{i \to 1} \{ \operatorname{Wh} \pi_1(X - C_i) \}$ and $\lim_{i \to 1} \{ \operatorname{Wh} \pi_1(X - C_i) \}$ are canonically isomorphic. To see this first note that there exists a filtration $X = \bigcup_{i=1}^{\infty} D_i$ such that $\{C_i\}_{i=1}^{\infty}$ and $\{D_i\}_{i=1}^{\infty}$ have subsequences in common and such that $\{D_i\}_{i=1}^{\infty}$ and $\{C_i'\}_{i=1}^{\infty}$ have subsequences in common. It therefore suffices to regard $\{C_i'\}_{i=1}^{\infty}$ as a subsequence, $\{C_{i(n)}\}_{n=1}^{\infty}$, of $\{C_i\}_{i=1}^{\infty}$. Then an isomorphism of $\lim_{i \to 1} \{ \operatorname{Wh} \pi_1(X - C_i) \}$ onto $\lim_{i \to 1} \{ \operatorname{Wh} \pi_1(X - C_i') \}$ is defined by sending $\langle \tau_1, \tau_2, ... \rangle$ to

$$\langle \tau_{i(1)} + \tau_{i(1)+1} + \ldots + \tau_{i(2)-1}, \tau_{i(2)} + \tau_{i(2)+1} + \ldots + \tau_{i(3)-1}, \ldots \rangle,$$

where we have avoided writing down compositions of p_i 's. Thus we can unambiguously define

$$\operatorname{Wh} \pi_1 E'(X) = \lim^1 \{ \operatorname{Wh} \pi_1 (N - C_i) \},$$

which is an invariant of proper homotopy type.

Proof of the Residual obstruction theorem. Let M be a Q-manifold which is tame at ∞ and for which $\sigma_{\infty}(M) = 0$. We want to define an element $\tau_{\infty}(M) \in Wh \, \pi_1 E'(M)$ which vanishes iff M admits a boundary. We divide the proof into convenient steps.

(i) Definition of $\tau_{\infty}(M)$. Using Proposition 5.3 write $M = \bigcup_{i=1}^{\infty} M_i$, where the M_i 's are compact and clean, $M_i \subset \operatorname{Int}(M_{i+1})$, and each j(i): $\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$ is a homotopy

equivalence. Then each $\delta(M_i) \hookrightarrow M_{i+1} - \operatorname{Int}(M_i)$ determines a torsion in Wh $\pi_1(M_{i+1} - \operatorname{Int}(M_i))$ and we let τ_i denote its image in Wh $\pi_1(M - \operatorname{Int}(M_i))$. We define $\tau_{\infty}(M)$ to be the element of Wh $\pi_1 E'(M)$ represented by the element

$$\langle \tau_1, \tau_2, \dots \rangle \in \lim^1 \{ \operatorname{Wh} \pi_1(M - \operatorname{Int}(M_i)) \}.$$

(ii) $\tau_{\infty}(M)$ is well-defined. If $\{M_i\}_{i=1}^{\infty}$ is replaced by a subsequence then the formula for the torsion of a composition implies that $\langle \tau_1, \tau_2, ... \rangle$ is replaced by

$$\langle \tau_{i(1)} + \tau_{i(1)+1} + \dots + \tau_{i(2)-1}, \tau_{i(2)} + \tau_{i(2)+1} + \dots + \tau_{i(3)-1}, \dots \rangle$$

where we have suppressed inclusion-induced homomorphisms. But this sequence represents the same element of Wh $\pi_1 E'(M)$.

- (iii) If M admits a boundary, then $\tau_{\infty}(M) = 0$. If M admits a boundary, then the Geometric characterisation theorem implies that $M \cong \operatorname{Map}(\sigma) \times Q$, and therefore we can write $M = \bigcup_{i=1}^{\infty} M_i$ such that $\delta(M_i) \hookrightarrow M_{i+1} \operatorname{Int}(M_i)$ is a s.h.e. Thus $\tau_{\infty}(M) = 0$.
- (iv) If $\tau_{\infty}(M) = 0$, then M admits a boundary. If $\tau_{\infty}(M) = 0$, then there is an element $(\mu_1, \mu_2, ...) \in \prod_{i=1}^{\infty} \operatorname{Wh} \pi_1(M \operatorname{Int}(M_i))$ such that $\Delta(\mu_1, \mu_2, ...) = (\tau_1, \tau_2, ...)$. We will use this to construct a new filtration $M = \bigcup_{i=1}^{\infty} M_i'$ such that each $\delta(M_i') \hookrightarrow M_{i+1}' \operatorname{Int}(M_i')$ is a s.h.e. Recall that the Corollary of the Geometric characterization theorem will then imply that M admits a boundary. Before giving this modification of the M_i 's we will need a lemma.

Lemma 6.1. If M is a compact Q-manifold and $\mu \in Wh \pi_1(M)$, then there is a decomposition $M \times [0, 1] = M_1 \cup M_2$ such that

- (1) the M_i 's are compact Q-manifolds and $M_1 \cap M_2$ is a bicollared Q-manifold,
- (2) $M \times \{0\} \subset \operatorname{Int}(M_1)$ and $M \times \{1\} \subset \operatorname{Int}(M_2)$, (interiors taken in $M \times [0, 1]$),
- (3) $M \times \{0\} \hookrightarrow M_1$ is a homotopy equivalence and $\mu = \tau(M \times \{0\} \hookrightarrow M_1)$,
- (4) δM_2) $\hookrightarrow M_2$ is a homotopy equivalence and $\tau(\delta(M_2) \hookrightarrow M_2) = -\mu$.

(All Whitehead groups in sight are identified naturally to Wh $\pi_1(M)$.)

Proof. Let $f: M \to N_1$ be a homotopy equivalence, where N_1 is a compact Q-manifold and $\tau(f) \equiv \tau(M) \hookrightarrow M(f)$) is μ , and similarly let $g: N_2 - N_1$ be a homotopy equivalence where $\tau(g) = -\mu$. Then sew two copies of M(f) to two copies of M(g) to get $X = M(f) \cup_{N_1} M(g) \cup_{N_2} M(g) \cup_{N_1} M(f)$ as pictured.

Note that $\tau(M \hookrightarrow X) = 0$, so multiplying everything by Q we get a homeomorphism h of $X \times Q$ onto $M \times [0, 1]$ which takes each $M \times Q$ onto one of $M \times \{0\}$ or $M \times \{1\}$. Then put

$$M_1 = h((M(f) \cup_{N_1} M(g)) \times Q), \quad M_2 = h((M(g) \cup_{N_1} M(f)) \times F).$$

Now let us return to the proof of step (iv) above. Using the fact that $\delta(M_i) \hookrightarrow M$ — Int (M_i) is a homotopy equivalence we can choose $\mu_i' \in \text{Wh } \pi_1(\delta(M_i))$ such that μ_i' is sent to μ_i by the inclusion-induced isomorphism. Let $\delta(M_i) \times [0, 1] \subset M_i - M_{i-1}$ be a collar on $\delta(M_i) \equiv \delta(M_i) \times \{0\}$ and use Lemma 6.1 to decompose $\delta(M_i) \times [0, 1]$ as $M_i^1 \cup M_i^2$ so that, if j denotes inclusion, $j_*(\mu_i') + \tau(\delta M_i x \{1\} \hookrightarrow M_i^2)$ and $\tau(M_i^1 \cap M_i^2 \hookrightarrow M_i^1) = -j_*(\mu_i')$, Here is a picture of $M_i - \text{Int}(M_{i-1})$.

$$\delta(M_{i-1}) \qquad \left| \begin{array}{c} \mu_i' \\ M_i^2 \end{array} \right| \frac{\mu_i'}{M_i^1} \delta(M_t)$$

If we define $M'_i = \text{closure } (M_i - M_i^1)$, then it is clear that $\delta(M'_i) \hookrightarrow M'_{i+1} - \text{Int}(M'_i)$ is a homotopy equivalence. But using the relationship $\Delta(\mu_1, \mu_2, ...) = (\tau_1, \tau_2, ...)$ and the formula for the torsion of a composition we now have $\delta(M'_i) \hookrightarrow M'_{i+1} - \text{Int}(M'_i)$ a s.h.e.

This completes the proof of step (iv). Finally we remark that τ_{∞} is an invariant of infinite simple homotopy type by the *Naturality theorem* below.

We now state and prove the *Naturality theorem*. Recall from [22] that if X is a polyhedron and σ_{∞} : $S(X) \to \tilde{K}_0 \pi_1 \subset E(X)$ is as mentioned in § 5, then there is a homomorphism τ_{∞} : Ker $(\sigma_{\infty}) \to \operatorname{Wh} \pi_1 E'(X)$. In view of our remarks in § 3 this is equally true if X is a Q-manifold.

THEOREM 6.2. NATURALITY. If $f: M \to N$ is a p.h.e. of Q-manifolds which are tame at ∞ and if $\sigma_{\infty}(M) = \sigma_{\infty}(N) = 0$, then $\tau_{\infty}(f)$ is defined and

$$\tau_{\infty}(N) = \tau_{\infty}(f) + f_{*}\tau_{\infty}(M).$$

Proof of Theorem 6.2. Using the Naturality theorem for σ_{∞} we have $\sigma_{\infty}(f) = 0$; which shows that $\tau_{\infty}(f)$ is defined.

We are at liberty to replace $f: M \to N$ by a p.h.e. $f: X \to Y$ of polyhedra (see § 3), a minor convenience letting us apply [22] more directly. We can assume f is an inclusion $X \hookrightarrow Y$. Recall from [22] that an inclusion $X \hookrightarrow Y$ is called "bumpy" if $\overline{Y - X}$ is a disjoint union $\bigcup_{i=1}^{\infty} B_i$ of compact subpolyhedra B_i of Y such that, for each i, the inclusion $B_i \cap X \hookrightarrow B_i$ is a homotopy equivalence. It is shown in [22] that $\sigma_{\infty}(f) = 0$ implies that, after expansion of Y, the inclusion $f: X \hookrightarrow Y$ is a composition $X \hookrightarrow Z \hookrightarrow Y$ of two bumpy inclusions;

and we note that σ_{∞} of everything in view is still zero. If we can verify the additivity equation for each of these two inclusions, then by adding up we deduce it for $f: X \hookrightarrow Y$. Hence we may assume with no loss of generality that $f: X \hookrightarrow Y$ is bumpy as described above.

Since $\sigma_{\infty}(X) = 0$, by expansion of $X^{(1)}$ we can arrange that X has a filtration $X_1 \subset X_2 \subset ...$ by subpolyhedra with $X_i \subset \operatorname{Int} X_{i+1}$, so that $\delta X_i \hookrightarrow (X - \operatorname{Int} X_i)$ is a homotopy equivalence.

Now $f: X \hookrightarrow Y = X \cup \{\bigcup_{i=1}^{\infty} B_i\}$ is still bumpy; what is more, by amalgamating the bumps B_i and refining the filtration of X we can arrange that

$$B_j \subseteq \text{Int } X_i \text{ for } j < i \text{ and}$$

 $B_j \subseteq X - X_i \text{ for } j > i.$

Then we get the following picture of Y.

Let Y' be the space formed from $X' \equiv X \times [-1, 1]$ by sewing the odd bumps onto $X \times \{1\}$ and the even bumps onto $X \times \{-1\}$. Then we get the following picture of Y'.

It will suffice to prove that

$$\tau_{\infty}(Y') = \tau_{\infty}(X \hookrightarrow Y') + (X \hookrightarrow Y')_* \tau_{\infty}(X),$$

where X is identified with $X \times \{0\}$ in Y'.

For our computation of $\tau_{\infty}(X)$ we use the filtration $X_2 \subset X_4 \subset X_6 \subset ...$ For our computation of $\tau_{\infty}(Y')$ we use the filtration $Y'_1 \subset Y'_3 \subset Y'_5 \subset ...$, where

$$Y_i' = (X_i \times [\, -1, \, 0]) \cup (X_{i+1} \times [0, \, 1]) \cup (B_1 \cup B_2 \cup \ldots \cup B_i).$$

⁽¹⁾ By abstractly amalgamating with Y along the old X this gives a simultaneous expansion of Y.

It is easy to see that $\delta(Y_i') \hookrightarrow Y'$ —Int Y_i' is a homotopy equivalence. In the picture above we have $X \equiv X \times \{0\}$ represented by the dotted line and the heavy solid lines mark $\delta(Y_1')$ and $\delta(Y_3')$.

Let b_i be the torsion of $B_i \cap X^+ \hookrightarrow B_i$; let τ_i be the torsion of $\delta X_i \hookrightarrow X - \text{Int } X_i$. Using the basic composition and sum theorems for torsion it is easy to see that the torsion τ_i' of the inclusion $\delta(Y_i') \hookrightarrow Y_{i+2}' - \text{Int } Y_i'$ is a sum

$$\tau_i' = (\tau_i + \tau_{i+1}) + (b_{i+1} + b_{i+2})$$

where we as usual suppress canonical inclusion induced maps to Wh $\pi_1(Y'-\text{Int }Y'_i)=G_i$. Then in Wh $\pi_1E'(Y')=\lim^1\left\{G_1\leftarrow G_3\leftarrow G_5\leftarrow\ldots\right\}$ we get

$$\begin{split} &\langle au_1',\, au_3',\,...\rangle \!=\! \langle au_1\!+\! au_2,\, au_3\!+\! au_4,\,...\rangle \!+\! \langle b_2\!+\!b_3,\,b_4\!+\!b_5,\,...\rangle \\ &= (X\!\hookrightarrow\!Y')_* au_\infty(X)\!+\! au_\infty(X\!\hookrightarrow\!Y'), \end{split}$$

where the equality $\langle b_2 + b_3, b_4 + b_5, ... \rangle = \tau_{\infty}(X \hookrightarrow Y')$ follows from the definition given in [22].

7. Realization of the obstructions

The naturality theorems for the obstructions σ_{∞} , τ_{∞} and β show that when the Q-manifold M varies in a fixed proper homotopy type, say running through all of $S(M_0)$, the obstructions $\sigma_{\infty}(M)$, $\tau_{\infty}(M)$ and $\beta(M)$ assume all conceivable values in their respective groups

$$\text{Kernel } \{\tilde{K}_0 \, \pi_1 \, E(M_0) \to \tilde{K}_0 \, \pi_1(M_0) \}, \text{ Wh } \pi_1 \, E'(M_0), \, \, \mathcal{S}_\infty(M_0).$$

(Of course τ_{∞} is not defined until $\sigma_{\infty} = 0$.)

Since the system $\{\pi_1(M_0-A) \mid A \text{ compact}\}\$ is in our case filtered by finitely presented groups (by tameness of M_0) the standard examples, say as given in [22], might suggest that Wh $\pi_1 E'(M_0)$ is always zero in our case.

This is not so, and we propose to give a counterexample in this section. To motivate the algebra we first recall how to pass from the nontrivial group to nontrivial geometric examples.

Geometric examples. Let G be the group $Z \times Z \times Z_6$ and let $\alpha: G \to G$ be given by $\alpha(a, b, c) = (2a, b, c)$. In Proposition 7.1 below we will prove that the first derived limit of the induced inverse sequence of Whitehead groups,

$$\operatorname{Wh}(G) \leftarrow \alpha_* - \operatorname{Wh}(G) \leftarrow \alpha_* - \dots,$$

is non-zero.

For each $i \ge 1$ let X_i be a compact connected polyhedron such that $\pi_1(X_i) \approx G$ and let $f_i \colon X_{i+1} \to X_i$ induce the map α above on the fundamental groups. Then the first derived limit

$$\lim^{1} \left\{ \operatorname{Wh} \pi_{1}(X_{i}), (f_{i})_{*} \right\} = \lim^{1} \left\{ \operatorname{Wh} (G) \overset{\alpha_{*}}{\longleftarrow} \operatorname{Wh} (G) \overset{\alpha_{*}}{\longleftarrow} \ldots \right\}$$

is non-zero so we may choose an element $(\tau_1, \tau_2, ...) \in \prod_{i=1}^{\infty} Wh \, \pi_1(X_i)$ such that $\langle \tau_1, \tau_2, ... \rangle \neq 0$. Consider the non-compact space X pictured below.

It is the union of compact polyhedra $A_1, A_2, ...$ and the mapping cylinders $M(f_i)$ (where $X_1', X_2', ...$ are copies of $X_1, X_2, ...$) and

- (1) there is a homeomorphism of X_i onto X'_i which is homotopic to the identity of X_i , with the homotopy taking place in A_i ,
- (2) $X_i \hookrightarrow A_i$ is a homotopy equivalence and $\tau(X_i \hookrightarrow A_i)$ equals the image of τ_i . The A_i 's are constructed just like the W_i 's in step (iv) of the proof of the Compactification classification theorem in § 11 below.

Clearly X is tame at ∞ and $\sigma_{\infty}(X) = 0$. Since $\tau(X_i \hookrightarrow A_i \cup M(f_i))$ equals the image of τ_i we have $\tau_{\infty}(X) \neq 0$. Then $M = X \times Q$ is our example.

It remains to verify

PROPOSITION 7.1. Let $G = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_6$ and let $\alpha: G \to G$ be given by $\alpha(a, b, c) = (2a, b, c)$. Then the first derived limit of

Wh
$$(G) \leftarrow^{\alpha_*} Wh (G) \leftarrow^{\alpha_*} \dots$$

is non-zero.

Proof. Here are the main steps in the proof. For convenience we write $G = Z \times H$, where $H = Z \times Z_6$.

- (i) We first recall that Wh (G) contains $\tilde{K}_0(H)$ as a direct summand.
- (ii) Next we show that α_* : Wh $(G) \rightarrow$ Wh (G) is a direct sum of the homomorphism μ_2 : $\tilde{K}_0(H) \rightarrow \tilde{K}_0(H)$ (multiplication by 2) with some other homomorphism.
- (iii) Finally we observe that $\tilde{K}_0(H)$ contains an infinite cyclic summand J.

Before these three steps let us show how they imply that our required first derived limit is non-zero. Steps (i) and (iii) give us

Wh
$$(G) = J \oplus K$$
,

for some K, and step (ii) implies that α_* : Wh $(G) \to \text{Wh}$ (G) is given by $\alpha_* = \mu_2 \oplus k$, where μ_2 : $J \to J$ is multiplication by 2. It is easy to see that a non-trivial element of the above first derived limit is given by

$$\langle 1 \oplus 0, -1 \oplus 0, 1 \oplus 0, -1 \oplus 0, \ldots \rangle$$

where 1 is a generator of J. (Note that $\langle 1 \oplus 0, 1 \oplus 0, ... \rangle$ will not work.). In fact such a lim¹ is always uncountable [15].

Proof of (i). The Fundamental theorem of algebraic K-Theory [3], [1, p. 663], (cf [25, p. 15]) asserts that

Wh
$$(G) \approx \tilde{K}_0(H) \oplus R$$
,

where the injection and projection to $\tilde{K}_0(H)$,

$$\operatorname{Wh}(G) \stackrel{p}{\underset{i}{\rightleftharpoons}} \tilde{K}_0(H),$$

are defined as follows. (We will need descriptions of p and j for step (ii)).

(a) Given $[P] \in \tilde{K}_0(H)$ we can naturally write

$$Z[G] \otimes P = P[t, t^{-1}] = \dots \oplus t^{-1}P \oplus P \oplus tP \oplus \dots,$$

where the tensor product is taken over Z[H] and t is a generator of Z in G. A shift automorphism of $P[t, t^{-1}]$ is given by multiplication by t and it represents $j[P] \in Wh$ (G).

(b) Let $[\varphi] \in Wh$ (G) be represented by a Z[G]-linear automorphism $\varphi \colon Z[G]^m \to Z[G]^m$. Naturally writing $Z[G]^m = Z[H]^m[t, t^{-1}]$ we let $B = Z[H]^m[t] \subseteq Z[G]^m$. Without changing the class $[\varphi]$ we can arrange it so that $\varphi(B) \subseteq B$ and $B/\varphi(B)$ is a f.g. projective Z[H] module. Then

$$p[\varphi] = [B/\varphi(B)] \in \tilde{K}_0(H).$$

Proof of (ii). We will first show that $\alpha_*|j\tilde{K}_0(H):j\tilde{K}_0(H)\to j\tilde{K}_0(H)$ is μ_2 . If $[P]\in \tilde{K}_0(H)$, then j[P] is represented by the shift automorphism on $P[t, t^{-1}]$ and $\alpha_*j[P]$ comes from substituting t^2 for t, then extending canonically to retrieve an automorphism of $P[t, t^{-1}]$. What we retrieve is the 2-fold shift automorphism $x\to t^2x$ which certainly represents 2j[P].

It remains only to show that α_* maps the "remainder" R to itself. Since R = Kernel (p) it suffices a fortiori to prove that

$$p\alpha_*[\varphi] = 2p[\varphi],$$

for all $[\varphi] \in Wh$ (G). If $[\varphi]$ is given by a Z[G]-linear automorphism $\varphi: Z[G]^m \to Z[G]^m$, then $\alpha_*[\varphi]$ is represented by the automorphism $\alpha_*[\varphi]$ obtained by substituting t^2 for t and then

extending canonically to a Z[G]-linear automorphism of $Z[G]^m$. (Again we use $Z[G]^m = Z[H]^m[t, t^{-1}]$.) As a Z[H]-linear automorphism, our $\alpha_{\neq} \varphi$ is thus a sum of 2 copies of

$$\varphi': ... \oplus t^{-2}Z[H]^m \oplus Z[H]^m \oplus t^2Z[H]^m \oplus ... \hookleftarrow$$

namely φ' and $t\varphi'$. Hence $B/\alpha_*\varphi(B)$ is isomorphic to a sum of 2 copies of $B_2/\varphi'(B_2)$, where B_2 is B with t^2 substituted for t. But clearly $B_2/\varphi'(B_2)$ is Z[H]-isomorphic to $B/\varphi(B)$. Thus $p\alpha_*[\varphi] = 2p[\varphi]$ as required.

Proof of (iii). For this we refer to [2, § 8.10], where it is shown that if $H = T \times F$, where T is torsion abelian with order divisible by two distinct primes and F is free of rank ≥ 1 , then $\tilde{K}_0(H)/T$ orsion is free of rank ≥ 1 (This rank comes from $\tilde{K}_{-1}(T) = \tilde{K}_{-1}(Z[T])$ via periodicity.) Certainly $T = Z_6$ and F = Z fulfill these requirements.

8. The total obstruction

For M a Q-manifold which has finite type and is tame at ∞ , we will show how to define an obstruction $\beta(M) \in \mathcal{S}_{\infty}(M)$ to M having a boundary and thereby prove the Total obstruction theorem. In a further result (Naturality) we relate our obstruction to β as defined in § 3 for infinite simple homotopy theory. As mentioned in § 2 the essential ingredient of our construction is the Peripheral homeomorphism paradox which we prove first. We will give two proofs of this result. The first is a short argument based upon the exact sequences of [22]; the second is longer but is completely geometric in nature.

First proof of the Peripheral homeomorphism paradox. We have a p.h.e. $f: M \to N$ between Q-manifolds which admit boundaries and we want to prove that f is proper homotopic to a homeomorphism near ∞ . If $\beta(f)$ is the torsion of f in $S_{\infty}(N)$, then by (§ 3) all we have to do is prove that $\beta(f) \in S_{\infty}(N)$ vanishes. There exists an exact sequence from [22] as we will explain again below:

$$0 \to \operatorname{Wh} \pi_1 E'(N) \to \mathfrak{S}_{\infty}(N) \to \tilde{K}_0 \pi_1 E(N)$$

Since M and N admit boundaries we have $\sigma_{\infty}(M) = \sigma_{\infty}(N) = \tau_{\infty}(M) = 0$. By Naturality this gives $\sigma_{\infty}(f) = 0$ and $\tau_{\infty}(f) = 0$, hence $\beta(f) = 0$ and therefore f is proper homotopic to a homeomorphism near ∞ .

If Wh $\pi_1(N) = 0$, which happens for example when M and N are contractible, then $\tau(f) = 0$ and therefore f is proper homotopic to a homeomorphism.

The second proof requires repeated use of the

Transversality Lemma. Let N be a Q-manifold and let $N_1 \subseteq N$ be a clean compact submanifold. Suppose $M \subseteq N$ is a \mathbb{Z} -set that is a Q-manifold. Then there exists a homeomor-

phism $h: N \to N$ arbitrarily close to $\operatorname{id} N$ such that h(M) = M' is a Q-manifold that cuts $\delta(N_1)$ transversally in the sense that $\delta(N_1)$ has a bicollaring in N restricting to a bicollaring of $M' \cap \delta(N_1)$ in M', while $M' \cap \delta(N_1)$ is itself a Q-manifold.

This follows easily from a PL transversality lemma using triangulations and Z-set properties. We leave the proof as an exercise.

Second proof of the Peripheral homeomorphism paradox. We are given a p.h.e. $f: M \to N$ of Q-manifolds which admit boundaries and without loss of generality we may assume that M is a \mathbb{Z} -set in N and f is the inclusion map. Since M and N admit boundaries we can clearly write $M = \bigcup_{i=1}^{\infty} M_i$ and $N = \bigcup_{i=1}^{\infty} N_i$ such that

- (1) the M_i 's and N_i 's are compact and clean,
- (2) $M_i \subset \operatorname{Int}(M_{i+1})$ and $N_i \subset \operatorname{Int}(N_{i+1})$,
- (3) the inclusions $\delta(M_i) \hookrightarrow M_{i+1} \operatorname{Int}(M_i)$ and $\delta(N_i) \hookrightarrow N_{i+1} \operatorname{Int}(N_i)$ are s.h.e.'s. (Here $\delta(M_i)$ and $\operatorname{Int}(M_i)$ are computed relative to M.)

What is more, applying the Transversality lemma above we can assure that

(4) M crosses $\delta(N_i)$ transversally.

At this point, after refining and reindexing we have $M_i \subset N_i \subset M$ and the simple trick of subtracting from N_i the (interior of) a suitable collar on M-Int M_i will even assure that

(5)
$$M_i = N_i \cap M$$
,

The inclusion $M \hookrightarrow N$ factors into the composition

$$M \hookrightarrow M \cup N_1 \hookrightarrow N$$
,

where the first inclusion is clearly a homeomorphism near ∞ . So all we have to do is prove that $M \cup N_1 \hookrightarrow N$ is proper homotopic to a homeomorphism. This will also take care of the case in which M and N are contractible, for it then follows that M_1 , N_1 are Hilbert cubes and therefore $M \hookrightarrow M \cup N_1$ is proper homotopic to a homeomorphism.

We now propose to "inflate" $N_1 \cup M$ inductively to fill up all of N.

Observe first that for any $k \ge 2$ the inclusion

$$j: \delta N_1 \cup (M_k - \operatorname{Int} M_1) \hookrightarrow (N_k - \operatorname{Int} N_1)$$

is a simple homotopy equivalence (s.h.e.) because $\delta M_1 \hookrightarrow (M_k - \text{Int } M_1)$ and $\delta N_1 \hookrightarrow (N_k - \text{Int } N_1)$ are s.h.e.'s. Using the Hauptvermutung of [7] together with Ξ -set unknotting we deduce a homeomorphism

$$\theta: N_1 \cup M_k \to N_k$$

fixing δM_k and also all of N_1 except a small collar C of δN_1 .

Assertion: If k is sufficiently large, θ can be corrected so that $\theta^{-1}\delta N_k \subset M_k - \text{Int } M_1$.

Proof: Using the fact that M is a strong proper deformation retract of N together with homotopy extension properties it is not difficult to construct, for k large, a deformation retraction

$$\gamma$$
: $\delta N_1 \cup (M_k - \text{Int } M_1) \leftarrow (N_k - \text{Int } N_1)$

such that $\gamma(\delta N_k) \subset M_k - \text{Int } M_1$. Now $\theta^{-1} | \delta N_k$ is homotopic to $\gamma | \delta N_k$, as a map into $C \cup (M_k - \text{Int } M_1)$; indeed θ^{-1} and γ both give a homotopy inverse to $j \cup (\text{id } | C)$. Thus Ξ -set principles applied to this homotopy of $\theta^{-1} | \delta M_k$ let us correct θ as desired.

Extend the corrected θ by the identity to a homeomorphism

$$h_1{:}\; N_1 \cup M \to N_{k_1} \cup M \quad (k=k_1)$$

Repeat the construction of h_1 with N_{k_1} in place of N_1 to produce a homeomorphism h_2 : $N_{k_1} \cup M \rightarrow N_{k_2} \cup M$ and iterate to produce a sequence h_1, h_2, h_3, \ldots of homeomorphisms h_i : $N_{k_{i-1}} \cup M \rightarrow N_{k_i} \cup M$ such that h_i is supported on a small neighborhood of $\delta N_{k_{i-1}} \cup (M_{k_i} - 1)$ Int $M_{k_{i-1}}$) disjoint from $h_{i-1}(N_{k_{i-2}})$, which (see our assertion) lies in $\operatorname{Int}(N_{k_{i-1}})$. The limit

$$h(x) = \lim_{i \to \infty} h_i h_{i-1} \dots h_1(x)$$

is a homeomorphism $h: N_1 \cup M \to N$ since every point x in $N_1 \cup M$ has a neighborhood U_x such that the sequence of restrictions to U_x of the maps $h_1, h_2h_1, h_3h_2h_1, \dots$ moves at most twice to reach $h \mid U_x$.

Proof of the Total obstruction theorem. Let M be a Q-manifold which has finite type and is tame at ∞ . Using the Homotopy boundary criterion theorem there exists a Q-manifold N which has a boundary and a p.h.e. $f: N \to M$. We define $\beta(M) = \beta(f) \in S_{\infty}(M)$.

By § 3 we see that the vanishing of $\beta(M)$ is a sufficient condition for M to admit a boundary. To show that it is also necessary assume that M also admits a boundary. Then the *Peripheral homeomorphism paradox* implies that $\beta(M) = \beta(f) = 0$. It is clear that $\beta(M)$ is an invariant of infinite simple homotopy type.

Theorem 8.1: Naturality. If $f: M \to N$ is a p.h.e. of Q-manifolds which have finite type and are tame at ∞ , then

$$\beta(N) = \beta(f) + f_*\beta(M).$$

Proof. Let P be a Q-manifold which admits a boundary and let $g: P \to M$ be a p.h.e. Then $\beta(M) = \beta(g)$ and $\beta(N) = \beta(fg)$. The formula for the torsion of a composition gives

$$eta(N) = eta(fg) = eta(f) + f_*eta(g)$$

$$= eta(f) + f_*eta(M). \quad \blacksquare$$

Finally we establish a result which connects $\beta(M)$, $\sigma_{\infty}(M)$ and $\tau_{\infty}(M)$. The exact sequences of [22] give

$$S(M) \xrightarrow{\sigma_{\infty}} \tilde{K}_0 \pi_1 E(M) \xrightarrow{} \tilde{K}_0 \pi_1(M),$$

$$\operatorname{Wh} \pi_1 E(M) \longrightarrow \operatorname{Wh} \pi_1(N) \longrightarrow \operatorname{Ker} (\sigma_{\infty}) \xrightarrow{\tau_{\infty}} \operatorname{Wh} \pi_1 E'(M) \longrightarrow 0,$$

for any Q-manifold M, where σ_{∞} is as described in § 5 of this paper and τ_{∞} is as described in § 6. If we mod out Wh $\pi_1(M)$ we get an induced exact sequence

$$0 \longrightarrow \operatorname{Wh} \pi_1 E'(M) \longrightarrow \mathfrak{S}_{\infty}(M) \xrightarrow{\sigma_{\infty}} \tilde{K}_0 \pi_1 E(M) \longrightarrow \tilde{K}_0 \pi_1(M).$$

PROPOSITION 8.2. If M is a Q-manifold which has finite type and is tame at ∞ , then $\sigma_{\infty}(\beta(M)) = \sigma_{\infty}(M)$. If $\sigma_{\infty}(M) = 0$, then $\tau_{\infty}(\beta(M)) = \tau_{\infty}(M)$.

Proof. Choose a p.h.e. $f: N \rightarrow M$, where N admits a boundary, and use Naturality to get

$$\sigma_{\infty}(M) = \sigma_{\infty}(f) + f_*\sigma_{\infty}(N).$$

But $\sigma_{\infty}(N) = 0$ (since N admits a boundary), hence $\sigma_{\infty}(M) = \sigma_{\infty}(f) = \sigma_{\infty}(\beta(M))$. If $\sigma_{\infty}(M) = 0$, then again using Naturality we get $\tau_{\infty}(M) = \tau_{\infty}(f) = \tau_{\infty}(\beta(M))$.

9. A practical boundary theorem

In this section we prove the *Practical boundary theorem* and its Corollary. A non-compact Q-manifold M is said to be 1-ended provided that for each compactum $A \subseteq M$, M-A has exactly one unbounded component. This permits us to find a basis $U_1 \supseteq U_2 \supseteq ...$ of connected open neighborhoods of ∞ . We say that π_1 is essentially constant at ∞ if $\{U_i\}$ can be chosen so that the sequence

$$\pi_1(U_1) \leftarrow \overline{\varphi_1} - \pi_1(U_2) \leftarrow \overline{\varphi_2} \dots$$

induces isomorphisms

Image
$$(\varphi_1) \leftarrow \sim$$
 Image $(\varphi_2) \leftarrow \sim \cdots$

where $\varphi_1, \varphi_2, ...$ are inclusion-induced. Then $\pi_1(\infty) = \varprojlim \{ \text{Image } (\varphi_1) \}$ is well-defined up to isomorphism.

Proof of the Practical boundary theorem. We are given a 1-ended Q-manifold M which is tame at ∞ such that π_1 is essentially constant at ∞ , with $\pi_1(\infty)$ free or free abelian. We need to show that $S_{\infty}(M) = 0$. It follows from [22] that $S_{\infty}(M) \approx \tilde{K}_0 \pi_1(\infty)$ and for $\pi_1(\infty)$ free or free abelian we have $\tilde{K}_0 \pi_1(\infty) = 0$ by [3].

A non-compact Q-manifold J is said to be LC^1 at ∞ provided that M is 1-ended and for every compactum $A \subseteq M$ there exists a larger compactum $B \subseteq M$ such that every loop in M - B is null-homotopic in M - A.

Proof of the Corollary. We are given a Q-manifold M which is LC^1 at ∞ and for which $H_*(M)$ is f.g. It is easy to see that π_1 is essentially constant at ∞ , with $\pi_1(\infty) = 0$. Using the above result it suffices to prove that M is tame at ∞ .

It follows from the techniques of [22] that we can write $M = \bigcup_{i=1}^{\infty} M_i$, where the M_i 's are compact and clean, $M_i \subset \operatorname{Int}(M_{i+1})$, and $\delta(M_i)$, $M - \operatorname{Int}(M_i)$ are 1-connected. It will suffice to prove that each $M - \operatorname{Int}(M_i)$ has finite type. It follows from the homology exact sequence of the pair (M, M_i) that $H_*(M, M_i)$ is f.g. Using excision we get $H_*(M - \operatorname{Int}(M_i), \delta(M_i))$ if follows that $H_*(M - \operatorname{Int}(M_i))$ is f.g. Thus $M - \operatorname{Int}(M_i)$ has finite type [26, p. 420].

10. Classification of boundaries

The purpose of this section is to prove the *Boundary classification* theorem. For its proof we have to use the Z-set classification result of [6].

Proof of the Boundary classification theorem. For the first half of this result let Z and Z' be boundaries for M. We want to prove that Z and Z' have the same shape. Let $N = M \cup Z$ and $N' = M \cup Z'$, and replace N by $N \times [0, 1]$ so that $Z \subseteq N \times \{0\}$. There is a homeomorphism $h: (N \times [0, 1]) - Z \rightarrow N' - Z'$. Let $N \times \{1\}$ be regarded as a \mathbb{Z} -set in Q and put

$$\begin{split} Q_1 &= Q \cup (N \times [0,\,1]) \quad \text{(sewn along } N \times \{1\}), \\ Q_2 &= Q \cup N' \qquad \qquad \text{(sewn along } h(N \times \{1\}). \end{split}$$

Then Q_1 is clearly a copy of Q and Q_2 is a copy of Q because it is a compact contractible Q-manifold. Also Z and Z' are Z-sets in Q_1 and Q_2 , respectively. Since $Q_1 - Z \cong Q_2 - Z'$ we have Shape (Z') by the Z-set classification result of [6] cf. [9], [24].

For the other half let Z be a boundary for M and let Z' be shape equivalent to Z. We

want to prove that Z' is also a boundary for M. Let $N \times [0, 1] = M \cup Z$ be a compactification of M, where $Z \subset N \times \{0\}$, and form

$$Q_1 = Q \cup (N \times [0, 1])$$

as above. Then let $Z' \subseteq Q_1$ be embedded as a \mathbb{Z} -set and use [6] to get a homeomorphism h of $Q_1 - Z$ onto $Q_1 - Z'$. Clearly

$$h((N \times [0, 1]) - Z) \cup Z'$$

gives us a compactification of M with Z' as the boundary.

11. Classification of compactifications

In this section we classify the different ways in which a Q-manifold can be compactified. Let $N = M \cup Z$ be a fixed compactification of the Q-manifold M and let $N' = M \cup Z'$ be any other one. We will define an element $\tau(N, N') \in \text{Wh } \pi_1 E(M)$ which vanishes iff N' is equivalent to N (as defined in § 2). This defines a 1-1 correspondence between Wh $\pi_1 E(M)$ and the different compactifications of M.

Proof of the Compactification classification theorem. We have divided the proof into four steps.

(i) Construction of $\tau(N, N')$. Write $N-Z=\bigcup_{i=1}^{\infty}M_i$, where the M_i 's are compact and clean, $M_i \subset \operatorname{Int}(M_{i+1})$, and $\delta(M_i) \hookrightarrow N-\operatorname{Int}(M_i)$ is a s.h.e. Let $N'-Z'=\bigcup_{i=1}^{\infty}M'_i$ be a similar filtration and arrange it so that

$$M_1 \subset \operatorname{Int}(M_1') \subset M_1' \subset \operatorname{Int}(M_2) \subset M_2 \subset \operatorname{Int}(M_2') \subset M_2' \subset \dots$$

Then $\delta(M_i) \hookrightarrow M_i' - \operatorname{Int}(M_i)$ is a homotopy equivalence and we use x_i for the image of $\tau(\delta(M_i) \hookrightarrow M_i' - \operatorname{Int}(M_i))$ in Wh $\pi_1(M - \operatorname{Int}(M_i))$. It is not hard to see that the inclusion-induced homomorphism of Wh $\pi_1(M - \operatorname{Int}(M_{i+1}))$ to Wh $\pi_1(M - \operatorname{Int}(M_i))$ takes x_{i+1} to x_i . Then $(x_1, x_2, ...)$ defines an element of Wh $\pi_1 E(M)$ which we denote $\tau(N, N')$.

- (ii) $\tau(N, N')$ is well-defined. It is only necessary to show that if $\{M_i\}_{i=1}^{\infty}$ and $\{M'_i\}_{i=1}^{\infty}$ are replaced by subsequences $\{M_{k_i}\}_{i=1}^{\infty}$ and $\{M'_{k_i}\}_{i=1}^{\infty}$, then we get the same definition of $\tau(N, N')$. Let x'_{k_i} denote the image of $\tau(\delta(M_{k_i}) \hookrightarrow M'_{k_i} \operatorname{Int}(M_{k_i}))$ in Wh $\pi_1(M \operatorname{Int}(M_{k_i}))$. All we need to do is show that $(x_1, x_2, ...)$ and $(x'_{k_1}, x'_{k_2}, ...)$ give the same element of Wh $\pi_1 E(M)$, and for this it suffices to note that the image of x'_{k_i} in Wh $\pi_1(M \operatorname{Int}(M_i))$ is x_i .
- (iii) N' is equivalent to N iff $\tau(N, N') = 0$. First assume that $\tau(N, N') = 0$. Let $\{M_i\}$, $\{M'_i\}$ be chosen to define $\tau(N, N')$ and let $A \subseteq M$ be compact. Then for some i we have $A \subseteq \operatorname{Int}(M_i)$. Since $\delta(M_i) \hookrightarrow N \operatorname{Int}(M_i)$ is a s.h.e. we have a homeomorphism of N onto M_i fixing A. We also have a homeomorphism of N' onto M'_i fixing A. Then since $\delta(M_i) \hookrightarrow M$

13 - 762901 Acta mathematica 137. Imprimé le 20 Janvier 1977

 M'_i -Int (M_i) is a s.h.e. (which follows from $\tau(N, N') = 0$) we have a homeomorphism of M_i onto M'_i which is fixed on A.

On the other hand assume that N' is equivalent to N and let $\{M_i\}$, $\{M'_i\}$ be chosen to define $\tau(N, N')$. Then there is a homeomorphism $h: N \to N'$ which is fixed on M_1 (pointwise). This implies that $\delta(M_1) \hookrightarrow N' - \operatorname{Int}(M_1)$ is a s.h.e. and as $\delta(M'_1) \hookrightarrow N' - \operatorname{Int}(M'_1)$ is a s.h.e. it follows that $\delta(M_1) \hookrightarrow M'_1 - \operatorname{Int}(M_1)$ is a s.h.e. In like manner we can prove that $\delta(M_i) \hookrightarrow M'_i - \operatorname{Int}(M_i)$ is a s.h.e., for each i. Thus $\tau(N, N') = 0$.

Now we define θ to be the function from the equivalence classes of compactifications of M to Wh $\pi_1 E(M)$ defined by the rule $N' \to \tau(N, N')$. The following step will finish our proof.

(iv) θ is a 1-1 correspondence. If N' and N'' are other compactifications of M, then it is easy to see that

$$\tau(N, N'') = \tau(N, N') + \tau(N', N'').$$

This therefore implies that θ is well-defined and 1-1. All we have left to do is prove that θ is onto. Choose $M = \bigcup_{i=1}^{\infty} M_i$ as in step (i) and choose $\{x_i\} \in \varprojlim \{ \operatorname{Wh} \pi_1(M - \operatorname{Int}(M_i)) \} = \operatorname{Wh} \pi_1 E(M)$. We must construct a compactification N' of N such that $\tau(N, N') = \{x_i\}$.

Since $\delta(M_i) \hookrightarrow M - \operatorname{Int}(M_i)$ is a homotopy equivalence we can find an element $y_i \in \operatorname{Wh} \pi_1(\delta(M_i))$ which is sent to x_i by the inclusion-induced homomorphism. Let $\delta(M_i) \times [0,1] \subset \operatorname{Int}(M_{i+1}) - \operatorname{Int}(M_i)$ be a closed collar on $\delta(M_i) \equiv \delta(M_i) \times \{0\}$. It is possible to find a clean $W_i \subset \delta(M_i) \times [0,1]$ containing $\delta(M_i)$ in its interior such that

- (1) $\delta(M_i) \hookrightarrow W_i$ is a homotopy equivalence and $\tau(\delta(M_i) \hookrightarrow W_i)$ equals the image of y_i ,
- (2) there exists a homeomorphism of $\delta(M_i)$ onto $\delta(W_i)$ which is homotopic to the identity on $\delta(M_i)$ with the homotopy taking place in W_i .

To see this consider the following picture of a Q-manifold

$$X = (\delta(M_i) \times [0, 1]) \cup R_1 \cup R_2$$

obtained from $\delta(M_i) \times [0, 1]$ by adding on compact Q-manifolds R_1 and R_2 such that

- (a) $R_k \cap (\delta(M_i) \times [0, 1]) \hookrightarrow R_k$ is a homotopy equivalence for k = 1, 2,
- (b) $\tau(\delta(M_i) \times \{0\} \hookrightarrow (\delta(M_i) \times (0, \frac{1}{2}]) \cup R_1)) = \text{image of } y_i,$
- (c) $\tau(\delta(M_i) \times \{1\} \hookrightarrow (\delta(M_i) \times [\frac{1}{2}, 1] \cup R_2)) = \text{image of } -y_i$.

Then $\delta(M_i) \times \{0\} \hookrightarrow X$ is a s.h.e. and we can construct a homeomorphism of X onto $\delta(M_i) \times [0, 1]$ so that our required W_i is the image of $(\delta(M_i) \times [0, \frac{1}{2}]) \cup R_1$.

Using (1) and (2) above it is easy to construct a homeomorphism h of $M-\mathrm{Int}(M_1)$ onto $M-\mathrm{Int}(M_1\cup W_1)$ such that $h(\delta(M_i))=\delta(W_i)$, for each i. Let N' be the compactification of M obtained by sewing M_1 to $h(M-\mathrm{Int}(M_1))$ by h. It is then clear that $\tau(N,N')=\{x_i\}$.

Appendix 1. The realization theorem for σ_{∞}

The purpose of this section is to give a proof of the Realization Theorem of [22], since only the barest outline of a proof was given there. Recall the proof of the *Naturality Theorem* 5.1 of this paper, where $\sigma_{\infty}(X \hookrightarrow Y) \in \tilde{K}_0 \pi_1 E(Y)$ was defined for a p.h.e. $X \hookrightarrow Y$ of polyhedra.

Realization theorem. Let X be a connected polyhedron and choose $x \in \tilde{K}_0\pi_1 E(X)$ which is sent to 0 by the inclusion-induced homomorphism $\tilde{K}_0\pi_1 E(X) \to \tilde{K}_0\pi_1(X)$. Then there exists a polyhedron Y containing X as a subpolyhedron such that $X \hookrightarrow Y$ is a p.h.e. and $\sigma_{\infty}(X \hookrightarrow Y)$ equals $(X \hookrightarrow Y)_*(x)$, the image of x in $\tilde{K}_0\pi_1 E(Y)$. Furthermore Y - X can consist of cells of dimension n and n+1 only, the n-cells trivially attached $(n \ge 2)$.

Needless to say, this result can be reformulated for locally finite CW complexes or for Q-manifolds.

Proof of the Realization theorem. We will construct Y so that $X \hookrightarrow Y$ is a p.h.e. near ∞ and $\sigma_{\infty}(X \hookrightarrow Y) = (X \hookrightarrow Y)_*(x)$. Recall from [22, p. 491] that this was the only missing part of the proof. For this we will not have to suppose that x goes to 0 in $\tilde{K}_0\pi_1(X)$.

We will assume for the moment that X has only one end. Thus we can write

$$X = X_1 \leftarrow X_2 \leftarrow ...,$$

a basis of connected open neighborhoods of ∞ in X. Note that $x \in \tilde{K}_0 \pi_1 E(X)$ gives a rule assigning to each X_i an element $x_i \in \tilde{K}_0 \pi_1(X_i)$ such that x_{i+1} goes to x_i under the inclusion-induced homeomorphism. Let x_i be represented by $[P_i]$, where P_i is a f.g. projective module over $\Lambda_i = Z[\pi_1(X_i)]$. Since $x_{i+1} \mapsto x_i$ we have P_i stably isomorphic to

$$P'_{i+1} = \Lambda_i \otimes_{\Lambda_{i+1}} P_{i+1},$$

where Λ_i may be regarded as a f.g. projective Λ_{i+1} -module because of the inclusion-induced homeomorphism $\pi_1(X_{i+1}) \rightarrow \pi_1(X_i)$. Therefore we can inductively choose f.g. projective Λ_i -modules Q_i , F_i , G_i , where F_i and G_i are free, and Λ_i -isomorphisms

$$\varphi_i: P_i \oplus Q_i \to F_i$$

$$\psi_i: Q_i \oplus P'_{i+1} \to G_i.$$

We will now add 2- and 3-cells to X to obtain our required Y. First wedge a collection B_i of 2-spheres onto X_i , one for each basis element of F_i . Do this for all i and set

$$\boldsymbol{Z}_i = \boldsymbol{X}_i \cup \boldsymbol{B}_i \cup \boldsymbol{B}_{i+1} \cup \dots.$$

Using \sim to indicate universal covers we see that $H_*(\tilde{Z}_i, \tilde{X}_i)$ (regarded as a Λ_i -module) is isolated in dimension 2 and

$$H_2(\widetilde{Z}_i, \widetilde{X}_i) \cong F_i \oplus F'_{i+1} \oplus F'_{i+2} \oplus \dots$$

(Primes indicate a module converted by tensoring with Λ_i to become a f.g. projective Λ_i module.) Using the isomorphisms φ_i we have

$$H_2(\widetilde{\mathbf{Z}}_i, \widetilde{\mathbf{X}}_i) \cong P_i \oplus Q_i \oplus P'_{i+1} \oplus Q'_{i+1} \oplus \dots$$

Using the isomorphism φ_i^{-1} we get a homomorphism

$$\Psi_i: G_i \to H_2(\widetilde{Z}_i, \widetilde{X}_i) = \pi_2(Z_i, X_i)$$

mapping isomorphically onto $Q_i \oplus P'_{i+1}$, where the last equality here follows from the Hurewicz isomorphism theorem. Since we have a retraction $r_i: Z_i \to X_i$ it follows from the homotopy sequence of (Z_i, X_i) that

$$\pi_2(Z_i, X_i) = \operatorname{Kernel}((r_i)_*) \subseteq \pi_2(Z_i),$$

where $(r_i)_*: \pi_2(Z_i) \to \pi_2(X_i)$. Thus for each basis element of G_i we have a homotopy class $S^2 \to Z_i$. For each base element we now attach a 3-cell and call these 3-cells

$$E_i = e_{i,1} \cup \ldots \cup e_{i,n}.$$

Make these additions for each i and set

$$Y_i = Z_i \cup E_i \cup E_{i+1} \cup ..., i \ge 1.$$

Then put $X = Y_1$ to complete our construction.

It is clear that $H_*(\tilde{Y}_i, \tilde{X}_i)$ is a f.g. Λ_i -module isolated in dimension 2 and

$$H_2(\widetilde{Y}_i, \widetilde{X}_i) \approx P_i$$

Thus to conclude that $\sigma_{\infty}(X \hookrightarrow Y) = (X \hookrightarrow Y)_*(x)$ all we need to do is prove that $X \hookrightarrow Y$ is a p.h.e. near ∞ .

As indicated in [22] a convenient way to do this is to verify the two conditions of [22] called $(\pi_1)_{\infty}$ and $(H_*)_{\infty}$, which together imply that $X \hookrightarrow Y$ is a p.h.e. near ∞ . It is essential

here that dim $(Y-X) < \infty$. The condition $(\pi_1)_*$ is satisfied since $\pi_k(X_i) \to \pi_k(Y_i)$ is an isomorphism for k=0 and 1. (If we had added 1- and 2-cells this might not be so.)

The condition $(H_*)_{\infty}$ is that for each i there exists a j > i so that

$$H_{\star}(\widetilde{Y}_{i}, \widetilde{X}_{i}) \leftarrow H_{\star}((Y_{j} \cup X_{i})^{\sim}, \widetilde{X}_{i})$$
 (†)

is zero. We will show that this is the case for $j \ge i+1$. The cellular complex for $H_*(\widetilde{Y}_i, \widetilde{X}_i)$ is

$$C_i(\widetilde{Y}_i, \widetilde{X}_i): 0 \rightarrow Q_i \oplus P'_{i+1} \oplus Q'_{i+1} \oplus \ldots \rightarrow P_i \oplus Q_i \oplus P'_{i+1} \oplus Q'_{i+1} \oplus \ldots \rightarrow 0,$$

the differential being inclusion. Now $C((Y_j \cup X_i)^{\sim}, \widetilde{X}_i)$ is the *subcomplex* similarly described with j in place of i (but primes everywhere). Hence the homology map (†) is the zero map: $Pi \stackrel{0}{\longleftarrow} P'_i$. This completes the proof for the case in which X has only one end.

The generalization for many ends runs as follows. We choose a basis $X_1 \leftarrow X_2 \leftarrow \dots$ of open neighborhoods of ∞ , each component of which is unbounded. Since X is connected, it is well-known that each X_i has only finitely many components. Collapsing each to a point we get the set $\pi_0(X_i)$. The inclusion-induced sequence

$$\sigma: \pi_0(X_1) \stackrel{f_1}{\longleftarrow} \pi_0(X_2) \stackrel{f_2}{\longleftarrow} \dots,$$

thought of as a sequence of compacta, has an infinite mapping cylinder Map (σ) . We map this onto X,

$$F: \operatorname{Map}(\sigma) \to X$$
,

so that by restriction we have

- (i) $\pi_0(X_i) \to X_i$ that is inverse to the quotient map and
- (ii) Map $(f_i) \rightarrow X_i$.

F is none other than a choice of base points and connecting base paths.

Define $\pi_1(X_i)$ to be the collection of π_1 's of the components of X_i taken at the above base points. We have an inclusion-induced sequence using F,

$$\pi_1(X_1) \leftarrow \pi_1(X_2) \leftarrow \dots$$

which can be thought of as a functor from the diagram(1) σ to groups. Similarly for $\pi_*(Z_i)$, $\pi_*(Z_i, X_i)$, $H_*(\widetilde{Y}_i, \widetilde{X}_i)$, $C_*(\widetilde{Y}_i, \widetilde{X}_i)$, etc.

By a projective module P_i over $Z[\pi_1(X_i)] = \Lambda_i$ is meant a collection

$$\{P_C | C \text{ a component of } X_i\}$$

⁽¹⁾ An object of σ is a component of some X_i , and an arrow of σ corresponds to an inclusion of components.

(really a function $C \mapsto P_C$), where P_C is a projective module over $Z[\pi_1(C)]$. A projective P_{i+1} over Λ_{i+1} yields one called $P'_{i+1} = \Lambda_i \otimes \Lambda_{i+1} P_{i+1}$ over Λ_i ; we just work component by component. When two more more components of X_{i+1} fall into the same component of X_i we add up (using \oplus) the projectives obtained by tensoring. With these conventions, the reader will perceive that the above proof can be repeated verbatim in the general case.

Appendix 2. An alternate description of the total obstruction

The purpose of this section is to show how to carry out the description of the total obstruction $\beta(M)$ which was outlined in the introduction § 1. For this it will be convenient to use the language of the weak proper homotopy category (cf. [6]). We say that proper maps $f, g: X \to Y$ are weakly proper homotopic provided that for every compactum $B \subseteq Y$ there exists a compactum $A \subseteq X$ and an ordinary homotopy from f to g, each level of which takes X - A into Y - B. Using this, one then defines weak p.h.e. in the obvious manner.

We are given a Q-manifold M which has finite type and is tame at ∞ and we want to prove that M is p.h.e. to Map (σ) , where σ is some inverse sequence of compact polyhedra which is defined as in § 1. Here are the main steps in the proof.

- (i) M is weakly p.h.e. to Map (σ) .
- (ii) If M, N are weakly p.h.e. Q-manifolds (or polyhedra) which have finite type and are tame at ∞ , then M, N are p.h.e.

Remark. (ii) is still true if the assumption "tame at∞" is dropped; see D. A. Edwards and H. M. Hastings, Trans. Amer. Math. Soc., 221 (1976), 239–248. For the question if every weak p.h.e., itself is a genuine p.h.e., compare H. M. Hastings, On weak and strong equivalences in pro-homtopy (to appear).

Proof of (i). Using the Corollary to Lemma 5.1 we can write $M = \bigcup_{i=1}^{\infty} M_i$, where the M_i 's are compact and clean, $M_i \subset \operatorname{Int}(M_{i+1})$ and such that there exist compact polyhedra $X_i \subset \operatorname{Int}(M_{i+1}) - M_i$ and maps $\alpha^i \colon M - \operatorname{Int}(M_i) \to X_i$ for which $\alpha^i \simeq \operatorname{id}$ (with the homotopy taking place in $M - \operatorname{Int}(M_i)$). Using the fact that M has finite type we can choose M_1 large enough so that there exists a compact polyhedron $X_0 \subset \operatorname{Int}(M_1)$ and a retraction $\alpha^0 \colon M \to X_0$ such that $\alpha^0 \simeq \operatorname{id}$. Let $\alpha^0_i \colon M \to M$ be such a homotopy with $\alpha^0_0 = \operatorname{id}$ and $\alpha^0_1 = \alpha^0$. Similarly let $\alpha^i_i \colon M - \operatorname{Int}(M_i) \to M - \operatorname{Int}(M_i)$ be a homotopy such that $\alpha^i_0 = \operatorname{id}$ and $\alpha^i_1 = \alpha^i$. Define $f_i \colon X_{i+1} \to X_i$ by $f_i = \alpha^i \mid X_{i+1}$, for all $i \geq 0$, and let σ be the inverse sequence $\{X_i, f_i\}$ $i \geq 0$.

Our next step is to define a proper map $f: \operatorname{Map}(\sigma) \to M$. To do this it suffices to define a map $f_i: M(f_i) \to M - \operatorname{Int}(M_i)$, for all $i \ge 0$ (where $M_0 = \phi$), which extends the inclusions on X_i and X_{i+1} . For $x \in X_i \cup X_{i+1}$ we therefore define $f_i(x) = x$ and for $(x, t) \in X_{i+1} \times [0, 1)$ we

put $f_i(x, t) = \alpha_t^i(x)$. (See § 4 for mapping cylinder notation.) Then we piece the f_i 's together to obtain our required f_i .

To show that f is a weak p.h.e. we will now define a weak proper homotopy inverse $g: M \to \operatorname{Map}(\sigma)$ of f. To define g it suffices to define a map $g_i: M_{i+1} - \operatorname{Int}(M_i) \to M(f_i)$, for all $i \ge 0$, which agrees with α^i on $\delta(M_i)$ and α^{i+1} on $\delta(M_{i+1})$. Let $\delta(M_i) \times [0, 2] \subseteq M_i - (\operatorname{Int}(M_{i-1}) \cup X_{i-1})$ be a collar on $\delta(M_i)$, for each $i \ge 1$, where $\delta(M_i) \equiv \delta(M_i) \times \{0\}$. Without loss of generality we may assume that α^i_i is defined on $(M - \operatorname{Int}(M_i)) \cup (\delta(M_i) \times [0, 2]$, for all $i \ge 1$. Define $g_i = \alpha^i$ on $M_{i+1} - [(\delta(M_{i+1}) \times [0, 2)) \cup \operatorname{Int}(M_i)]$, for all $i \ge 0$, and on $\delta(M_{i+1}) \times [0, 2]$ we define

$$g(x,t) = \begin{cases} \alpha^{i} \alpha_{2-t}^{i+1}(x), & \text{for } 1 \leq t \leq 2\\ (\alpha^{i+1}(x),t) \in X_{i+1} \times [0,1), & \text{for } 0 \leq t < 1 \end{cases}$$

We then piece the g_i 's together to get $g: M \to \operatorname{Map}(\sigma)$. We leave it as a manageable exercise to show that g is a weak proper homotopy inverse of f.

Proof of (ii). Let $f: M \to N$ be a weak p.h.e. If $M' \subset M$ is compact and clean, then we know from the Corollary of Lemma 5.1 that M-M' is finitely dominated. Using [20] we see that $(M-M') \times S^1$ has finite type. Applying Proposition 5.3 it follows that $M \times S^1$ is p.h.e. to Map $(\sigma)(^1)$, for some inverse sequence σ of compact polyhedra. Similarly $N \times S^1$ is p.h.e. to some Map (τ) . Thus we have a weakly proper homotopy commutative diagram

$$\begin{array}{c}
M \times S^1 \xrightarrow{f \times \mathrm{id}} N \times S^1 \\
\uparrow \qquad \qquad \uparrow \\
\mathrm{Map}(\sigma) \xrightarrow{g} \mathrm{Map}(\tau),
\end{array}$$

where the horizontal arrows are weak p.h.e.'s and the vertical arrows are genuine p.h.e.'s. By the proof of Proposition B of [24] we can find a genuine p.h.e. Map $(\sigma) \to \text{Map}(\tau)$ which is homotopic(2) to g. Thus we observe that there is a genuine p.h.e. h: $M \times S^1 \to N \times S^1$ for which the following diagram homotopy commutes:

$$M \times S^1 \xrightarrow{h} N \times S^1$$

$$\text{proj} \qquad \text{proj}$$

We will prove that the composition

$$h_0: M \xrightarrow{i} M \times S^1 \xrightarrow{h} N \times S^1 \xrightarrow{\text{proj}} N$$

(i(m)=(m,*)) is a genuine p.h.e.

⁽¹⁾ No knowledge of Wall's finiteness obstruction is required here!

⁽²⁾ In fact weakly proper homotopic to g.

Let $h': N \times S^1 \to M \times S^1$ be a proper homotopy inverse of h and let $h'_0: N \to M$ be defined in analogy with h_0 , i.e. $h'_0 = (\text{proj})h'$ i. Since h commutes with projection to S^1 (up to homotopy) it is easy to see that the composition i(proj)h i,

$$M \xrightarrow{i} M \times S^1 \xrightarrow{h} N \times S^1 \xrightarrow{\text{proj}} N \xrightarrow{i} N \times S^1$$

is proper homotopic to $hi: M \to N \times S^1$. Thus we have proper homotopies

$$\operatorname{id} M \simeq (\operatorname{proj}) h' h i \simeq (\operatorname{proj}) h' i (\operatorname{proj}) h i = h'_0 h_0$$

Similarly we can prove that $h_0 h_0': N \to N$ is proper homotopic to id N.

Appendix 3. What does it mean to have a boundary?(1)

There are, to be sure, other notions of boundary. Here we point out that some are essentially equivalent to ours (which was set out in the introduction § 1).

A first alternative was suggested by B. Rushing. Say that the Q-manifold M admits a globally-Z boundary B if there exists a compact Q-manifold N such that M is open in N while B = N - M and B is globally-Z in N in the following sense: for any neighborhood U of B in N the inclusion $(U - B) \hookrightarrow U$ is a homotopy equivalence.

Proposition. Suppose M admits, a globally-Z boundary. Then M admits a boundary (as in $\S 1$).

First we establish

Assertion (for above data). If V is any neighborhood of B in N, there exists a smaller clean compact neighborhood $W \subset V$ such that W is a collar on its frontier δW in N.

Proof of assertion. For convenience we can assume V is a compact and clean Q-submanifold of N. Since $V-B\hookrightarrow V$ is a homotopy equivalence, we can find a homotopy of $\operatorname{id} V$ fixing δV to a map $f\colon V\to V-B$. (To see this use for instance the fact $(V-B)\times 0$ is a strong deformation retract of $V\times [0,1]$, see [26, p. 31].) We can then arrange that f is an embedding onto a \mathbb{Z} -set in V-B. Then f(V) has a clean collaring $f(V)\times [0,1]$ in V-B, with $f(V)\times 0=f(V)$. Defining $W=V-f(V)\times [0,1]$. We observe that $\delta W=f(V)\times 1$, and that W is a collar on δW since $f(V)\hookrightarrow V$ is simple homotopy equivalence (indeed homotopic to a homeomorphism).

Proof of Proposition: The assertion shows that B is a nested intersection of compact clean neighborhoods W_i , with W_i and also W_i —Int W_{i+1} a collar on δW_i . Then criterion 4.2 shows that M admits a boundary.

⁽¹⁾ Added Jan., 1976.

As a second alternative, say that the Q-manifold M admits a boundary B in a compactum if there is a metric compactum N so that M is open in N while B = N - M with B a \mathbb{Z} -set in N in the following sense: there exists an ε -homotopy of $\operatorname{id} | N$ to a map into N - B = M.

In this situation, S. Ferry [14] has shown (using [11]) that N is a Q-manifold provided it is an ANR. But S. Kozlowski has observed (cf. [14]) that N is here necessarily an ANR, presumably by verifying that N is ε -dominated by locally finite complexes (because M is); which implies N is an ANR (Hanner's criterion [16]).

Thus this apparently more general notion of boundary is really identical to ours.

Finally we note that the problem of finding a boundary can reasonably be posed for locally compact ANR's. Say that a locally compact ANR M admits a boundary B in a compactum N (if just as above) $N = M \cup B$ with B a compact \mathbb{Z} -set in N. As above, N is necessarily an ANR.

For a locally compact ANR M to admit such a boundary it is certainly necessary that the Q-manifold $M \times Q$ (cf. [11]) admit a boundary (as in § 1). Question: Is it also sufficient?

References

- [1]. Bass, H., Algebraic K-theory, W. A. Benjamin Inc., New York, 1968.
- [2]. Bass, H. & Murthy, M. P., Grothendieck groups and Picard groups of abelian group rings. Ann. of Math., 86 (1967), 16-73.
- [3]. Bass, H., Heller, A. & Swan, R., The Whitehead group of a polynomial extension. Publ. Math. I.H.E.S., 22 (1964), 61-79.
- [4]. Borsuk, K., Concerning homotopy properties of compacta. Fund. Math., 62 (1968), 223-254.
- [5]. Brown, M., Some applications of an approximation theorem for inverse limits. Proc. Amer. Math. Soc., 11 (1960), 478–483.
- [6]. Chapman, T. A., On some applications of infinite-dimensional manifolds to the theory of shape. Fund. Math., 76 (1972), 181–193.
- [7]. Compact Hilbert cube manifolds and the invariance of Whitehead torsion. Bull. Amer. Math. Soc., 79 (1973), 52-56.
- [8]. Topological invariance of Whitehead torsion. Amer. J. of Math., 96 (1974), 488-497.
- [9]. Note on Hilbert cube manifolds. Amer. Math. Soc. Regional Conf. Ser., Greensborough lectures, 1975.
- [10]. Cohen, M. M., A course in simple homotopy theory. Springer-Verlag, New York, 1970.
- [11]. Edwards, R. D. University of California at Los Angeles.
- [12]. FARRELL, F. T. & WAGONER, J. B., Algebraic torsion for infinite simple homotopy types. Comment. Math. Helv., 47 (1972), 502-513.
- [13]. FARRELL, F. T., TAYLOR, L. R. & WAGONER, J. B., The Whitehead theorem in the proper category. Preprint.
- [14]. FERRY, S., Completions of Q-manifolds which are Q-manifolds. Preprint, U. of Kentucky at Lexington.
- [15]. Gray, B. I., Spaces of the same n-type, for all n. Topology, 5 (1966), 241-243.

- [16]. HANNER, C., Some theorems on absolute neighborhood retracts. Ark. Mat. 1 (1951), 389-408.
- [17]. HASTINGS, H. M., A counterexample in proper homotopy theory. Preprint.
- [18]. Jensen, C. U., Les foncteur dérivés de lim et leurs applications en théorie des modules. Springer Lecture Notes (254), 1972.
- [19]. Kervaire, M., Lectures on the theorem of Browder and Novikov and Siebenmann's thesis. Tata Inst., Colaba, Bombay 5, India, 1969.
- [20]. MATHER, M., Counting homotopy types of manifolds. Topology, 4 (1965), 93-94.
- [21]. SIEBENMANN, L. C., The obstruction to finding a boundary for an open manifold of dimension greater than five. Doctoral dissertation. Princeton Univ., 1965.
- [22]. Infinite simple homotopy types. Indag. Math., 32 (1970), 479-495.
- [23]. The topological invariance of simple homotopy type. Séminaire Bourbaki, 25e année, 1972–73, no 428, fevrier 1973, Springer Lecture Notes (383).
- [24]. —— Chapmans classification of shapes—a proof using collapsing. Manuscripta Math., 16 (1975), 373–384.
- [25]. A total Whitehead torsion obstruction to fibering over the circle. Comment. Math. Helv., 45 (1970), 1–48.
- [26]. SPANIER, E., Algebraic topology. McGraw-Hill, New York, 1966.
- [27]. WALL, C. T. C., Finiteness conditions for CW complexes II. Proc. Roy. Soc. Ser. A., 295 (1966), 129-139.
- [28]. West, J. E., Mapping cylinders of Hilbert cube factors. General topology and appl., 1 (1971), 111-125.
- [29] TUCKER, T. W., Non-compact 3-manifolds and the missing boundary problem, *Topology* 13 (1974), 267–273. (This article proves a 3-dimensional version of our boundary theorem.)
- [30] SIEBENMANN, L. C., GUILLOU, L. ET HÄHL, H., Les voisinages ouverts réguliers: critères homotopiques d'existence, Ann. Math. Ecole Normale Sup., 7 (1974), 431-462.

The last article treats in passing the case of our boundary theorem for isolated ends with "constant" (="moveable") shape.

We take this opportunity to correct an error in the last sentence of [30] preceeding the appendix; it was recently noticed by T. Chapman. Replace the sentence by:

« L'application $f\colon M\to S^1$ est homotope à une fibration localement triviale si et seulement si: (i) $\tau(M,f)=0$, (ii) \overline{M} est de type fini, et (iii) la torsion $p_*\tau(T)\in \operatorname{Wh}(\pi_1M)$ est zéro, $p\colon \overline{M}\to M$. Cette torsion $p_*\tau(T)$ est indépendante du type fini imposé sur \overline{M} vue la suite exacte $\operatorname{Wh}(\pi_1\overline{M}) \xrightarrow{\operatorname{id} -T_*} \operatorname{Wh}(\pi_1\overline{M}) \xrightarrow{p_*} \operatorname{Wh}(\pi_1M)$, par [25, Chap. III]. Supposant vérifiées ces trois conditions nécessaires, on peut choisir $F\simeq \overline{M}$ d'après (i), et choisir ensuite $\varrho\colon F\to F$ une équivalence simple d'après (iii), et même un homéomorphisme PL. Finalement on a $(M,f)\sim (F_\varrho\times Q,\operatorname{proj.})$ d'après (i), où visiblement proj.: $F_\varrho\times Q\to S^1$ est un fibré de fibre $F\times Q$ ».

This corrected triple condition is equivalent to $\tau(M, f) = 0 = \tau(M, \tilde{f})$ in Wh $(\pi_1 M)$, where \tilde{f} is f followed by complex conjugation.