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Introduction

In a broad sense, the objective of this paper is to call attention to certain relations
that exist between non self-adjoint operator algebras on Hilbert space and the C*-algebras
they generate. These relations make it possible to predict, from knowledge of the subalgebra
alone, certain features of its generated C*-algebra. As a typical application, one is able to
conclude that certain isometric linear maps between certain non self-adjoint operator
algebras are implemented by s-isomorphisms of their generated C*-algebras (2.2.5). In
turn, the latter makes it possible to obtain a classification (to unitary equivalence) of
certain Hilbert space operators which are neither normal nor compact (3.6.12 and 3.2.11).
The invariants of this classification involve an infinite-dimensional analogue of the
minimum polynomial of a matrix.

A principal concept underlying these results is that of boundary representations. Let
B be an (abstract) C*-algebra and let 4 be a linear subspace of B. An irreducible represen-
tation ;z of B on a Hilbert space §) is called a boundary representation for A if the only
completely positive linear map of B into L($)) which agrees with  on A is x itself. Thus,
boundary representations have unique completely positive linear extensions from their
restrictions to A. It is crucial for the applications that this definition make sense in general,
requiring no a prioré relationship between A and B (for example, 4 +A4* need not be
dense in B). The properties of boundary representations are developed in Chapter 2.

Chapter 3 contains a variety of examples of boundary representations, along with
applications to operators on Hilbert space. We regard this as the main chapter, at least in
terms of immediate applications, and refer the reader to the introductory paragraphs of
chapter 3 for a summary of its contents.

The first chapter contains a discussion of completely positive linear maps of C*-algebas.
The most basic result here is an extension theorem, of Hahn-Banach type, for operator-
valued linear maps of subspaces of C*-algebras (1.2.3). Most of the results of this paper
depend, ultimately, upon this extension theorem. In section 1.3 we identify the commutant
of the image of a C*-algebra under a completely positive linear map, and in the last section
1.4 we give solutions to a number of extremal problems in the partially ordered cone of
completely positive maps of a C*-algebra.

Our original plan was to include two additional chapters dealing with a generalized
dilation theory for the Hilbert space representations of arbitrary Banach algebras. These
chapters have been omitted, due to the length of Chapter 3, and we will take up dilation
theory in a subsequent paper.

For the most part, our terminology follows [4], with the following exceptions. The term

C*-algebra means a complex involutive Banach algebra B satisfying ||«*z]| =||=||? (x€ B)
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and which contains a multiplicative identity. L($) (resp. LC()) denotes the algebra of all
bounded (resp. compact) operators on a Hilbert space §. For T €L($) we shall write P(T')
for the norm-closed algebra generated by all polynomials in 7', and C*(7') for the C*.algebra
generated by 7 and the identity. More generally, C*(8) for S a subset of a C*-algebra B
means the C*-subalgebra of B generated by § and the identity.

We will say two operators T, €L($,) (i =1, 2) are algebraically equivalent if there is a
s-isomorphism o of C*(T';) on C*(T,) such that o(T;) = T,. It is easy to see that two normal
operators are algebraically equivalent iff they have the same spectrum (the spectrum of 7'
will be written sp (7). Thus, one may regard algebraically equivalent nonnormal operators
as having the same “spectrum” in a generalized sense. 7, and 7T, are said to be quasi-
equivalent if the above map « can be extended to a x-isomorphism between the respective
von Neumann algebras generated by T'; and T',. Again, for normal operators 7'; on separ-
able spaces, one can show that quasi-equivalence is the same as requiring that sp (T,) =
sp (T'y) and the spectral measures of 7, and 7', be mutually absolutely continuous. Finally,
and in a more familiar sense, 7 and 7'y are unitarily equivalent if there is a unitary operator
U from §, to H, such that UT, =T, U. Each of these equivalence relations clearly implies
the preceding one.

Sets of (bounded, linear) operators are written with script letters 4, B, R, etc.,and R’
denotes the commutant of R. German letters stand for Hilbert spaces and their subsets,
Greek letters stand for vectors, and the usual brackets are employed for closed linear
spans (e.g., [ 4] denotes the closed linear span of all vectors T¢, T € 4, £€9). The spectrum
of an operator T€L($) is written sp (T). A reducing subspace for a subset 4SL(D) is
a closed subspace of § which is invariant under both 4 and 4* 4 is irreducible if only
the trivial subspaces, 0 and §), reduce 4. Remaining notations are (we hope) defined in
context.

We remark, finally, that some of the results of this paper were announced in [1].

Chapter 1. Completely positive maps

1.1. Preliminaries. This section beging with a discussion of a theorem of Stinespring
characterizing completely positive operator-valued linear maps of C*.algebras, and some
associated material, much of which is known. We then describe, for later use in section
1.2, some topological properties of certain spaces of operator-valued linear maps.

Let Band B’ be C*-algebras, and let ¢ be linear map of Binto B’. ¢ is positive if p(x) =0
for every positive 2 in B. For every integer n:>1, let M, be the C*-algebra of all complex

n x n matrices. There is a natural way to make the algebra B®M, of all » x n matrices
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over B into a s-algebra (for example, the involution is (x,)* =(z;*)), and moreover, there
is a unique C*-norm on this »-algebra (existence follows by tensoring faithful representa-
tions of B and M,, and uniqueness follows from p. 18 of [4]). Thus, it is not ambiguous
to speak of B® M, as a C*-algebra. Note that unique means identical, not merely equiva-
lent, so that the preceding statement would be false for a general Banach algebra in place
of B. Now given the linear map ¢, one can define a linear map ¢,: BOM,~B @M, by
applying ¢ element by element to each matrix over B. ¢ is called completely positive if
each g, is positive, n > 1. The term is due to W. F. Stinespring [23], as are some of the results
we will presently describe.

A x-homomorphism is easily seen to be completely positive. It is shown in [23] that
every positive map of a commutative C*-algebra into L(§) is completely positive, as is
every scalar-valued positive linear map of a general C*-algebra. It follows easily from the
latter that a positive map into a commutative C*-algebra is completely positive (see, for
example, the proof of 1.2.2). It follows that a positive linear map of B into B’ is completely
positive if either B, or B’, is commutative.

In even the simplest non-commutative cases, however, there exist positive maps which
are not completely positive. While an example is given in [23], we shall describe here a
somewhat simpler one. Let n>>2 be an integer and let B=B'=M,. Let ¢ be the positive
linear map of M, into itself which takes every matrix to its transpose (note that ¢ is an
anti-automorphism of M,). We will show that @, is not completely positive. Let {E,;:
1 <4, j <n} be the canonical system of matrix units for M, and define E€ M, ® M, to be the
n x  matrix (£,,). Note that (1/»)E is a self-adjoint projection, and so is positive. But ¢,(E)
is the matrix (p(E,))=(E,;), which is self-adjoint, nonscalar, and satisfies p,(E)2=1 (I
denoting the identity in M,®M,); ie., ¢,(E) is a nonscalar self-adjoint unitary element.
Such an operator must have the form 2P — I, where P is a self-adjoint projection different
from 0 and I, and obviously no such operator is positive. Thus, ¢ is not completely positive.

Let § be a Hilbert space, and let B be a C*-algebra. If V is a bounded linear operator
from § into some other Hilbert space &, and x is a representation of B on &, then ¢(z)=
V*n(x) V defines a linear map of B into L(§)). It is easy to see that ¢ is completely positive;
for if (z,) is a positive » x » matrix over B, and &, ..., £, €9, then choose z,,€ B such that

(#y;) =(24)* (2,;) and observe that

> (@) £ £) =3 (@) VEVE) = 3 (2w VEp 2z VE) = 2 | 2 2z VE | > 0.

i3

This implies that the operator matrix (p(z;)) is positive, as an operator on HRC*=
H@...0H, and hence ¢, is positive. Because n was arbitrary, the complete positivity of
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@ is established. W. F. Stinespring proved in [23] that this in fact characterizes completely
positive maps. For the reader’s convenience, we will state this formally and outline a
(slightly simplified) proof.

TaeorEM 1.1.1 (Stinespring). Let B be a C*-algebra with identity and let § be a Hilbert
space. Then every completely positive linear map of B into L(D) has the form @(x)=V*n(x)V,
where 7 is a representation of B on some Hilbert space & and V is a bounded operator from

Hto R

Proof. Consider the vector space tensor product B® $, and define a bilinear form <-,- )
on BY as follows; if u=x,®& +... +2,®&, and v=9,®n +... + ¥, O%,, put

{u, v) = g (@ =) & ),

g being the given map of B into L($)). The fact that ¢ is completely positive guarantees
that (-, is positive semi-definite. For each z€ B, define a linear transformation sy(x)
on BRYH by mlx): 2 z,®&->2 2x;QE,. m, is an algebra homomorphism for which
{u, o) v) = mo(x*)u, v), for all u, v€E BR$. It follows that, for fixed u, o(x) = (my(x) %, u)
defines a positive linear functional on B, i.e., g(x*x) >0, hence

{ag(®) w, 7ol @) w) = {Tryl@*)mo(w) u, u) = {mo(x*x)u, u) = p(x*x) < ||z*z||o(e) = ||=||2<Cu, v,

where e is the identity of B.

Now let R={u€B®Y: (u, wy=0}. N is a linear subspace of BRY), invariant under
7y(x) for every x€ B (by the preceding sentence), and <-,-> determines a positive definite
inner product on the quotient B®H/N in the usual way: (u+N, v+ N> ={u, v>. Letting
& be the Hilbert space completion of the quotient, the preceding paragraph implies that
there is a unique representation z of B on & such that

(@) (w+N) =mox)u+N, 2€B, u€BRY.

Finally, define a linear map ¥V of §) into & by V&=e®£&+N. It follows that || VE&||2=
(p(e)&, &) <|lp(e)|| I€]|?, so that V is bounded, and the required formula ¢(z)=V*n(x)V
follows from the definition of V by a routine computation.

Remarks. Let g(x)=V*n(z) V be as in the theorem. Letting &,=[z(B) V], then the
restriction 7, of 7 to & also satisfies @(x) = V*my(x) V, and so there is no essential loss if we
require that [#(B) VH]=&. Such a pair (=, V) will be called minimal. Observe that a mini-
mal pair is uniquely determined by ¢ in the following sense. Let 7, and 7, be representations
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of B on Hilbert spaces &, and &,, and let V,€L(H, &) be such that [n,(B)V,H]=8, and
Vimy(x) Vy=Viny(x) V, for every x € B; then there is a unitary map U of &, on &, such that
UV,=V, and Un,(z) =n,(z) U for all € B (for the proof, simply check that the mapping

n
Sm@ViE~ S m@Vats #EB, €9

is a densely defined isometry of &, on a dense subspace of &, whose unitary extension U
has the stated properties).

Let @(z)=V*n(x) V be as in the theorem. Note that if p(e¢) =1 then V*V =1, that is,
V is an isometric embedding of § in &. Using V, then, we can identify §) with a subspace
of &, and the original equation takes the form g¢(x) =Pr(x)|g, P being the projection of
K on § (the new V is the inclusion map of §) into &, whose adjoint is P).

It should also be pointed out that a theorem very similar to Stinespring’s was found
independently by Sz.-Nagy [25]. We have given Stinespring’s version for two reasons. First,
it is formulated in terms of C*-algebras, with which we are concerned in this paper. More
importantly, however, it makes explicit the role of complete positivity, in terms of the
“matrix” algebras BQM,, n=1,2, .... Indeed, the results of this paper have strongly
indicated that to effectively study general (non self-adjoint) operator algebras on Hilbert
space, one should study not only the algebra 4 but also the sequence of algebras AQM,
(each regarded as a subalgebra of the corresponding C*-algebra C*(A4)Q@M,). Accordingly,
given a nonnormal operator 7', we shall consider ‘‘matrix-valued” (as well as scalar-valued)
polynomials in 7 (cf., 3.6 and 3.7).

We now describe certain topological properties of the space of all operator-valued
linear maps of a subspace of a C*-algebra, for use later on in section 1.2. Let S be a linear
subspace of a C*-algebra B, and let §) be a Hilbert space, fixed throughout the remainder
of this section. B(S, §) will denote the vector space of all bounded linear maps of 8 into
L($). Note that B(S, ) is a Banach space in the obvious norm. We shall endow B(S, )
with a certain weak topology, relative to which it becomes the dual of another Banach
space.

For r>0, let B,(S, §)) denote the closed ball of radius r: B,(S, 9)={p€ B (8, §):
llp(@)|| <r|la|| for all a € 8}. First, topologize B, as follows: by definition, a net ¢, € B,(S, H)
converges to @€ B,(S, ) if ¢,(a)—>@(a) in the weak operator topology, for every a€S.
A convex subset U of B(S, §) is open if UN B,(S ) is an open subset of B, (S, §), for
every r>0. The convex open sets form a base for a locally convex Hausdorff topology on
B(S, ), which we shall call the BW-topology (this topology is Hausdorff because the con-
vex sets of the form Uz ,.q..:={@€ B(S, ): Re (p(a)§, n) <t}, &, n€H, a€S, {ER, are BW-
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open and separate elements of B(S, §)). Equivalently, the BW-topology is the strongest
locally convex topology on B(S, ) which relativizes to the prescribed topology on each
ball B,(S, §), r>0.

It is clear that a linear functional f on B(S, £) is BW-continuous iff the restriction of
f to every B,(S, §) is continuous. By linearity, we conclude that f is BW-continuous iff the
restriction of f to By(S, H) is continuous.

There are other ways the BW-topology could have been defined (for example, see
1.1.4), but the description above is easiest to apply for our immediate purposes. In fact,
we shall require only one or two properties of this topology.

Remark 1.1.2. For every r >0, B,(S, $) is compact in the relative BW-topology. Indeed,

this is an immediate consequence of a general theorem of R. V. Kadison [14].

Remark 1.1.3. The restriction map ¢—¢|s of B(B, §) into B(S, ) is BW-continuous.
For since restriction is linear, it suffices to show that g—f(p|s) is a BW-continuous linear
functional on B(B, §), for every BW-continuous linear functional f on B(S, 9); and by the
above remarks, this will follow from the BW-continuity on B,(B, §). But if ¢, is a net in
B(B, 9), |lg.]| <1, and ¢,~¢ (BW), then in particular ¢,(a)—¢p(a) in the weak operator
topology, for every a€S, and thus @,|s—>@l|s in the relative BW-topology of B,(S, §).
Thus ¢,|s—>¢|s (BW), by definition of the topology, and f(p, |s)—>f(@|s) follows.

This topology has a number of pleasant properties, which we do not need, some of which
we now describe (without proof) for the benefit of the reader. The proofs are not difficult
and, by and large, the methods are adapted from those on pp. 427429 and p. 512 of [6].
Let B(S, ). denote the vector space of all BW-continuous linear functionals on B(S, 9).
Because such functionals are necessarily bounded relative to the norm topology on B(S, ),
B(S, ) becomes a normed linear space with the norm ||f[| =sup {|/(¢)]: ¢ € Bi(S, H)}-
Then we have:

(i) B(S, D)« is a Banach space.

(i) The duality g, > =Fp), ¢ € B(S, ), € B(S, D). defines an isometric isomorphism

of B(S, D) onto the dual of B(S, D)y which identifies the BW-topology with the
1.1.4.  weak*-topology.

(iii) The elements of B(S, )« are precisely those linear functionals that admit a repre-

sentation of the form f(g) =211 0,(p(a,)), where {a,} is a bounded sequence in S
and {p,} is a sequence of ultraweakly continuous linear functionals on L() such
that z”@ﬂ“ <oo.

The preceding discussion fits nicely into a more general format. It is not hard to see

that, if one replaces B(S, §) with the Banach space B(X, Y*) of all bounded linear maps
10 — 692908 Acta mathematica 123. Imprimé le 21 Janvier 1970
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of a Banach space X into the dual of a Banach space Y, and if one imitates the definition
of the BW-topology in this setting, then all the preceding statements remain true (note,
incidentally, that L($) is the dual of the Banach space L(), of all ultraweakly continuous
linear functionals on L(H) [5], so that B(S, §) does have the form B(X, Y*)). The repre-
sentation (iii), for example, becomes f(p) =25 1{p(z,), ¥, where {z,} is a bounded se-
quence in X, y,€ Y is such that 3 ||y, < oo, and {-,-) is the canonical pairing of Y*and Y.

1.2, An extension theorem. Let S be a self-adjoint linear subspace of a C*-algebra B,
such that the identity e of B belongs to S. A familiar theorem of M. Krein ([17], p. 227)
implies that every positive linear functional on § has a positive linear extension to
B (p: 8->C is positive if p{a) >0 for every positive element a in S). The fact that ¢€ S insures
that there are plenty of positive elements in S, indeed |a|le —a is positive for every seli-
adjoint a; and from this it follows easily that a positive linear functional on § is necessarily
self-adjoint (cf. the proof of 1.2.3). We shall require a generalization of Krein’s theorem
to operator-valued maps, under the additional requirement that S be norm-closed. A
linear map ¢ of § into another C*-algebra B’ is called positive if p(a) >0 for every positive
element a of 8. Significantly, the obvious generalization of Krein’s theorem is false: an
operator-valued positive linear map ¢: S—~L(D) (P denoting a Hilbert space) need not have
a positive extension to B, even when B is commutative and §) is finite-dimensional (an
example is given in appendix A.2).

The proper generalization involves the notion of complete positivity. For S< B as
above and % a positive integer, the linear space S® M, of all » x n matrices over S is a sub-
space of the C*-algebra B® M, and a linear map ¢ of S into another C*.algebra B’ induces
a linear map ¢,: S® M, —~ B’® M, by applying ¢ element by element to each matrix over 8.

Definition 1.2.1. ¢ is called completely positive, completely contractive, or completely
tsomelric according as each g, is positive, contractive (i.e., ||g,|| <1), or isometric.

Theorem 1.2.3 below asserts that a completely positive linear map of § into L() has
a completely positive extension: the following result implies that a scalar-valued positive

linear map is already completely positive. Thus, 1.2.3 generalizes Krein’s theorem.

ProrosiTiOoN 1.2.2. Let 8 be a self-adjoint subspace of @ C*-algebra B, and let B’ be a
commutative C*-algebra. Then every positive linear map of S into B’ is completely positive.

Proof. We can assume that B’ =C(X), for X a compact Hausdorff space. Let ¢ be a
positive map of S into C(X), let n be a positive integer, and let (a,;) be a positive element
of BQM, such that a,,€S for all 1, J.
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Let f,;=gp(ay,;)€C(X); we must show that the matrix (f,;) is a positive element of
O(X)®M,,. This will follow if we show that (f,,(2)) is a positive matrix for every € X (one
way to check this known result is to use the fact that every pure state of C{X)® M, has the
form 8,®g where g is a pure state of M, and J, is the evaluation functional for some z€ X,
see [27]; thus o((f,;)) >0 for every pure state o of C(X)® M, and it is apparent from this
that (f,;) >0). But if 4,, ..., 4, €C then for each x€X we have

‘Zj fis() 2-111 = (2 f!}lizi) (%)= (Z olay) ljzi) (z) = tp(Z aii}'jzi) (x)=0,

because . ay;A4, is a positive element of § and ¢ is a positive linear map. That completes
the proof.

We can now state the main extension theorem.

TrEOREM 1.2.3. Let S be a norm-closed self-adjoint linear subspace of a C*-algebra B,
which contains the identity of B, and let  be a Hilbert space. Then for every completely positive
Linear map @: S—I(D), there is a completely positive linear map @,: B—~L(D) such that
P1ls=9.

The proof will occupy a number of steps, some of which we state as lemmas. First
let CP (8, ) (resp. CP (B, H)) denote the set of all completely positive linear maps of S
(resp. B) into L($). Each is a subset of B(S, $) and B(B, ), respectively, and thus inherits
a BW-topology from the larger space (cf. section 1.1). In addition, it is apparent that
both CP (8, §) and OP (B, §) are convex cones, and the set CP (B, 8)|s of all restrictions
of maps in OP (B, ) to 8 is a subcone of CP (S, ). We must prove, of course, that
CP (B, §)|s=CP (8, 9).

Lrmma 1.2.4. OP (B, §)|s ts a closed cone in B(S, D), relative to the BW-topology.

Proof. We claim first that ||@| =|l¢|s||, for every p €CP (B, §). Choose z and V, as
in Theorem 1.1.1., such that g(z)=V*a(z)V, x€B. Then |¢|| <||V*||-|V]=||V*7]| =
llp(e}]]; since e€8 it follows that ||g) < ||¢]s]|. The opposite inequality is trivial.

Next, observe that CP(B, §) is a BW-closed subset of B(B, ); indeed, since CP (B, )
is convex, then by definition it is closed iff CP (B, ) n B.(B, D) is (relatively) closed, for
every r>0. But if ¢, is a bounded net in CP (B, §)) such that ¢,~¢€ B(B, ) (BW), then
@,(x)—>@(z) in the weak operator topology, for every x€ B, and this makes it plain that ¢
must also be completely positive.

By remark 1.1.2, it follows that for every »>0, CP (B, $) N B,(B, §) is BW-compact.
The first paragraph of the proof shows that the restriction map ¢—¢| carries CP (B, ) n



150 WILLIAM B. ARVESON

B.(B, §) onto CP (B, H)|sN B.(S, H), and by remark 1.1.3, restriction is BW-continuous;
we conclude that CP (B, §)|sN B,(S, ) is compact, and therefore closed. Since CP (B, §)|s
is convex, it follows from the definition of the BW-topology that this set is closed, and the
proof of the lemma is complete.

Now let f be an arbitrary BW-continuous linear functional such that
Re f(CP (B, 9)|s)>0;

we will show that Re f(¢) >0 for every ¢ €CP (8, ). This, along with 1.2.4 and a standard
separation theorem, leads to the desired conclusion CP (S, H)<CP (B, H)|s-

The first step is to find a complex-linear functional ¢ on B(S, §) which agrees with
Re f on CP (8, £), as follows. Introduce an involution p—¢~ in B(S, ) by ¢~ (x) =p(z*)*
(here we use the fact that S§=S*). Note that every ¢ €CP (S, §) is selfadjoint in the sense
that ¢ =¢~, or what is the same, @(a)=¢(a)* for every self-adjoint a in 8. Indeed, both
|la]le and ||lalle—-a are positive elements of S, thus g(a)=¢(||a|e) —¢(||a]e~a) is a dif-
ference of positive operators in L($), so ¢(a) is self-adjoint. Now define g on B(S, §) by the

equation g(y) =3(f(y) +f(yp~)). It is clear that y—>y~ is BW-continuous on bounded subsets
of B(S, D) (because X—>X* is a weakly continuous map of L(D)), and so by definition of
the BW-topology y—+y~ is continuous. ¢ is therefore a complex-linear BW-continuous
functional, and the preceding remarks show that g=Re f on CP (8, ). What we must
prove, therefore, is that g(CP (B, §)|s) >0 implies g(CP (S, H)) =0.

Assume, from here on in the proof, that g(CP (B, $)|s) >0.

Now let F be the net of all finite-dimensional projections in L(), directed in the
increasing sense by the usual partial order P <. We will define a net g, of linear functionals
as follows. First, define PpP for ¢ € B(S, ) by PpP(a)=Pp(a)P, a€S. It is clear that for
fixed P, ¢—~PgP is linear and BW-continuous (again, it suffices to check continuity on
bounded sets, but that is obvious), and carries CP (S, 9) into itself. Now let gp(p)=
g(PpP).

LeMma 1.2.5. limp g5(@) =g(g), for every € B(S, ).

Proof. Since g is BW-continuous, it suffices to show that limp PpP =¢ in the BW-
topology, for every @ € B(S, $). Now the net {P} converges to the identity operator in the
strong operator topology, and since multiplication is strongly continuous on the unit ball
of L(H), it follows that PXP~ X strongly, for every X €L(§). In particular, Pp(a) P—¢(a)
in the weak operator topology, for every a €S; and since {PpP} is a bounded net, it follows
from the definition of the BW-topology that limp PpP =¢, completing the proof.
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Using 1.2.5, then, g(CP (S, £)) 20 will follow if we prove that g,(CP (8, §)) =0, for
every finite-dimensional projection P €L($)). Now fix such a P, and let # be the dimension

of P. The next step is the decisive one.

Lemma 1.2.6. Let £, &,, ..., &, be an orthonormal base for P$). Then there is an n xn
array a;; of elements of S such that

gr ()= Z (play) &5, &),

for every @ € B(S, ). Y

Proof. Let {E,;} be a family of partial isometries in L(P$)) such that B ;& =0,&;, 1, 4,
k<n. For the moment, fix ¢ and j, 1<¢, j<n. Every bounded linear functional ¥ on §
defines an element F® E,; of B(S, ) in the following way: F® B {a)=F(a)E,;, a€s.
Now if g is as above define an element «,; in the bidual of § by a;(F)=g9(FQ E,;). We
claim: «;; is a weak*-continuous linear functional on the dual of 8. By the Krein-Smulyan
theorem ([6], p. 429), it suffices to show that «,; is weak*-continuous on the unit ball.
But if 7, is a net of functionals on S such that || F,[| <1 and F,—~F (weak*), then F,(a) E,,
tends boundedly to F(a)E;; in the weak operator topology of L(), for every a€S. Thus,
F,Q E,;;~FQE,; in the BW-topology of B(S, §), and since g is BW-continuous, we see

that

i (F,) =9(F,QLE,;)>9(FRQE,;) = a,(F),
as asserted.

Because S is norm-closed, there is an array a, €8 such that g(F®E,;)=o;(F)=
F(a,;), for every bounded functional F on 8. Now fix ¢ € B(S, ), and define functionals
Fon 8§ by Fila)=(p(a)é;, &). Letting P; be the projection on [£;] we have, for every
a€l, P,p(a)P;=(p(a)s;, &) Eyy=F;Q E,;(a), and therefore

grlgp) =9'(P97P) = g g(PipPj) =,-,Z; g F,;QE,) = Z oy {Fy) = Z Fylay)= Z (play) &5 &1)-

The proof of the lemma is complete.

Now, in the notation of the preceding lemma, we claim that the n x » matrix (a,) is a
positive element of B® M. Choose a faithful representation  of B on some Hilbert space
&. Then the canonical representation n,: BQM,—~L({®C") defined by m,(z,,) = (n(z,;))
(the latter regarded as an » x n operator matrix, acting on §&...® &) is also faithful, and
thus it suffices to show that the operator matrix (n(a))=n,(a;,) is positive. Choose an
arbitrary set of n vectors ,, ..., {, from &. Since &,, ..., &, are linearly independent vectors
in P$, there is a unique bounded linear transformation V€L($, &) defined by V&=,
1<i<n, and ¥ =0 on PHH*. We can now write
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% (relay) &5 C) =g (V*lay)VE;, &) =gp(V*aV|s) =g(V*aVs) >0,

because PV*zVP =V*zV, V*nV belongs to CP (B, $), and g(CP (B, H)|s)>0. This shows
that (n(a;))>0, proving the assertion.

We can now prove that g (CP (S, §))=0. Indeed, if p€CP (B, §) then we have, by
1.2.6, gplp)=2(p(a,)&, &,); but (p(ay)) is a positive operator matrix, by the preceding
paragraph and the fact that @ is completely positive. Thus gp(¢) >0, and the proof of the
theorem is complete.

No doubt, one could weaken the requirement that ¢€S by assuming merely that §
contains a bounded approximate identity for B. For our purposes, however, 1.2.3 will be
enough.

We shall now indicate how 1.2.3 can be adapted to cover the case where § isnot neces-
sarily self-adjoint. Recall that the numerical radius w(T) of an operator T' € L(§)) is defined by

w(T) =sup {|(TE, &)|: £€H, ||E]| =1}

LEMMA 1.2.7. Let A be a linear subspace of a C*-algebra B, such that e€ A, and let ¢
be a linear map of A into L(S), for some Hilbert space §, such that p(e)=1I and |p| =1.
Then w(p(a)+@b)*)<|a+b*||, for every a, bEA.

Proof. Fix £€9), ||£]| =1. Then the linear functional a € 4 —~(¢(a), §) has norm at most
1, and takes the value 1 at e. By the Hahn-Banach theorem it has a norm-preserving ex-

tension ¢ to B. Clearly |[jo]| =o(e) =1, so that g is a state, and in particular g(a) =o(a*) for
every a€A. Thus,

| (@) +p®)) & )| = (p(a) &, &) + (p(0) £, &) | = | e(@) +eB) | = |e(@ + %) | <[l a +B*].
The required conclusion follows by taking the supremum over {||£]] =1}.

ProProsiTiON 1.2.8. Let A be a linear subspace of a C*-algebra B, such that e€ A, and
let S be the norm-closure of A+ A*. Then every contractive linear map ¢ of A in L(D), for
which p(e) = I, has a unique bounded self-adjoint linear extension @, to 8. @, is positive, and it is
completely positive if ¢ is completely contractive.

Proof. It is plain that, if a bounded self-adjoint extension to S exists at all, it must be
unique. By 1.2.7 we have, for a,b€4, |p(a)+p®d)*| <2w(p(a)+pbd)*) <2|la+b*|, and
thus there is a bounded linear map @, of 8 such that ¢,(a +b*) =¢(a) +@(b)*, a,bEA. ¢, is
clearly a self-adjoint extension of ¢ to S.
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To see that ¢, is positive, choose a unit vector £€$). As in the proof of 1.2.7, there is
a state o of B such that o(a)=(p(a)é, &), a€ A. Because ¢ and ¢, are both self-adjoint,
we have p(z) =(p.(2)&, &) for all z€S. So if z is a positive element in S we see that
(p1(2) &, &) =p(2) 2 0; it follows that ¢, is positive.

Now assume ¢ is completely contractive. For each »>1, note that A@ M, +{4A @M ,)*
is dense in S® M, so that the argument of the preceding paragraph shows that ¢, ,= 0
That completes the proof.

We can now state an analogoue of theorem 1.2.3 for linear subspaces which are not

necessarily self-adjoint.

TarOREM 1.2.9. Let A be a linear subspace of a C*-algebra B, such that e€ A, and let
$ be a Hilbert space. Let ¢ be a completely contractive linear map of A into L() such that
g(ey=1. Then @ has a completely positive linear extension to B.

Proof. By 1.2.8, ¢ has a unique completely positive extension to the closure of 4+ 4%,
and now 1.2.3 applies to complete the proof.

Remarks. One can regard the preceding theorem as providing operator-valued “repre-
senting measures” for certain linear maps of subspaces of C*-algebras.

Combining 1.2.9 with 1.1.1, we see that there is a representation s of B on a Hilbert
space & and a linear map V €L(S), &) such that ¢p(a) = V*n(a) V, a € A. The condition ¢(e) =1
implies that ¥ is an isometry. If 4 is a subalgebra of B and ¢ is a (completely contractive)
homomorphism of 4,then it follows from the multiplicativity of p that V') is a semi-invariant
subspace of & for the algebra n{4) (see A.1). Thus, the pair (m, V) gives a generalized
“dilation” of ¢, completely analogous to the unitary (power) dilation of a contraction.
We will take up dilation theory in a subsequent paper.

We shall make repeated use of the following two observations.

ProrosiTion 1.2.10. Let 8 be a closed self-adjoint linear subspace of a C*-algebra B,
such that e€S, and let ¢ be a completely positive linear map of S into a C*-algebra B,. Then
for every n>1, @, has norm |jp(e)|.

Proof. There is no loss if we assume B, is a sub-C*-algebra of L(§)) for some Hilbert
space §). Note first that ||p]| =|[@(e)|); for by 1.2.3 and Stinespring’s theorem (1.1.1), there
is a representation 7 of B on a Hilbert space £ and an operator V€L($, &) such that
#a)= V2@V, aeS. Thus, p@)] <[ V*]- [@]|-| V]| <llal-| 7*V]| =]la] - lp(e)], and
the opposite inequality is trivial.

If n>1, then ¢, is a completely positive map of S® M, so that ||@,|| =|jp(e)]| follows
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from the preceding and the fact that if e, is the identity of B® M, then |[g,(e,)| = |l¢(e)]|.
That completes the proof.

We remark that 1.2.10 is false for positive linear maps of § (see A.2). Note also that
1.2.10 and 1.2.9 together imply that if ¢ is a linear map of S into L() such that ¢(e) =1,
then ¢ is completely positive if, and only if, it is completely contractive.

ProrositionN 1.2.11. Let A be a linear subspace of a C*-algebra B, such that e€A.
Then every contractive linear map of A into a commutative C*-algebra, which preserves the

tdentity, is completely contractive.

Proof. Call the map ¢, and let S be the norm-closure of 4 +4*. According to 1.2.8
@ has a unique positive linear extension ¢, to S. By 1.2.2, ¢, is completely positive, thus the

conclusion follows from the preceding proposition.

1.3. Lifting Commutants. Let B be a C*-algebra with identity, let § be a Hilbert space,
and let @ be a completely positive linear map of B into L(§)). According to Stinespring’s
theorem (1.1.1) there is a representation 7 of B on a Hilbert space &, and a bounded linear
map V: §— & such that p(x) = V*z(x) V and [#(B) VH]=&. In the sequel, we shall require
information about operators commuting with the self-adjoint linear space of operators
@(B). Because of the arbitrariness in the relation of ¥ and the subspace [V$] to z(B) (for
example, [V$] need not be affiliated with either #(B)" or z(B)"), it may be somewhat un-
expected that there is an intimate relation between ¢(B)’ and s(B)’. This is based on the

following.

TarorEM 1.3.1. Let ), & be Hilbert spaces, let V be a bounded linear operator from
$ into &, and let B be a self-adjoint subalgebra of L(K) such that [ BVH] =K. Then for every
T €L(9) which commutes with V* BV, there is a unique operator T, € L(R) having the properties

(i) T,€B
(i) 7,Vv=V"T.

The map T—T, is an ultraweakly continuous surjective *-homomorphism of V*BV' on
B' N {VV*Y, for which T, =0 iff VI =VT*=0. In particular, when V has trivial nullspace,
T-T, is a +isomorphism.

Proof. Fix T€EV*BV'. T, is constructed as follows. Let &,, ..., £,€9, 4, ..., 4,€B;
we claim that |3 A, VTE| <||T|- |2 Ax V&l Assume first that n=1. Then |AVTE|2=
(V*A*AVTE, TE). Now V*A*AVEV*BYV is a positive operator which commutes with 7',

and so must its positive square root K. Thus,
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|4V TE||* = (K*T¢, T&) = || KTE|* = | TKE| <||T||*|| KE||* = || 7[> [| A VE[>,

proving the claim for n =1. The case of a general integer n is reduced to the preceding by
the following device. Let ' =C"®§ (resp. & =C"®R{), let T"=1,® T €L(’) (I, denoting
the identity on C*), V' =I,@ VEL()’, &), and let A’ be the operator on & given by the
matrix

4, A4, ... 4,

P

(U 0
Then V'*4*A'V' € L(§’) has the matrix (V*47 4,V), which commutes with 7" because
V*AF A, VEV*BV for all ¢,§. So if we put &=£,0..0,€H" then ||ZA,VITE|E=
2\ VAT A, VTE, TE)=(V*A™A'V'TE, T'E') which is not greater than || T"||2]| 4" V'&'|[2 =

IT)?1> 4, VE]? by the argument already given. That proves the claim. Therefore the

operator
Ty:2 A VE w3 AVTE,

is well-defined, and extends uniquely to an operator on [ BV$]=8 of norm at most || 7|,
denoted by the same letter T,. Now [ BR] contains [ BV] =R, so that B= B* has trivial
nullspace; the double commutant theorem now shows that the strong closure of B contains
the identity, and from the relation T\ AVE=AVTE (€, A€ B) we may conclude that
T,V =VT by allowing A4 to approach I. That 7', commutes with B is evident from its
definition.

The remainder of the proof is routine, and we merely sketeh the details. The uniqueness
of the operator 7', satisfying (i) and (ii) is an immediate consequence of [ BVH]=8. It
follows that products and linear combinations behave right under the map 7'—7',. (T)*=
(T*), means T57V =VT*, or equivalently V*T,=TV*; to see this, let £€§), A€ B, and
write VT, AVE=V*AT, VE=V*AVTE=TV*AVE, using the fact that 7 commutes
with V*4V. The conclusion follows since [ BVH]=8&. This argument also shows that T';
commutes with VV*, for T, VV*=VTV*=V(VT*V*=V(TT V)*=VV*T,. Thus, T>T,
is a «-homomorphism of V*BV’ into B’ N {VV*}'. The kernel is easily identified; indeed
T,=0 implies 75 =0, so VT =T,V =0 and VT*=TFV =0. The converse implication is
clear from the relation (ii).

It remains to show that 7T, is surjective and continuous. Let T, € 4', T, VV*=
VV*T,. Let V=HW be the polar decomposition of V, where H is the positive square root
of VV*, W is a partial isometry in L(H, &), and WW*H =HWW*=H. Define T=W*T, W €
L(D). Then VI=HWW*T\W=HT,W=T,HW=T,V, since T, commutes with H=
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(VV*)}. A similar calculation shows that 7 commutes with V*BV. Thus, 77T, is a
surjective x-homomorphism whose kernel is ultraweakly closed. It is well known that such
a homomorphism is ultraweakly continuous. That completes the proof.

Now let B be a C*-algebra, and let ¢, 7, and V be as in the discussion preceding 1.3.1;
o(x)=V*n(x) V, x€B. The following characterization of @(B)' is an immediate conse-

quence of the preceding theorem.

COoROLLARY 1.3.2. Assume V has trivial nullspace. Then there is a canonical x-iso-
morphism between the von Neumann algebras ¢(B)' and =(B)' N {VV*}.

This corollary allows one to make certain gross statements about the “size” of ¢(B)’
in terms of 7, when V has trivial nullspace. For example, if 7z( B)’ is a finite von Neumann
algebra then so is ¢(B)’; if »(B) is multiplicity-free (i.e., z(B)’ is abelian) then so is ¢(B);
and if 7z is an irreducible representation of B then @(B) is an irreducible family of operators.

If T is a contraction on a Hilbert space §) such that the powers of 7™ tend strongly to
0, then the minimal unitary dilation of T is the shift of multiplicity dim § [9], and one may
associate with 7' a characteristic inner function U ({10], p. 103). It is natural to ask how
one may characterize certain properties of 7T, such as irreducibility, in terms of U. We
shall indicate how theorem 1.3.1 can be used to give quite a concrete answer to one of these
questions. We begin with a general lemma. Recall [20] that a subspace § of a Hilbert
space & is called semi-invariant under a subalgebra A4 of L(R) if the map 4 € 4—>PAlg (P
denoting the projection of & on §) is multiplicative. If IR, =[A4H] and I; =M,0H, then
M <M, each M, is A-invariant (cf. [20], Lemma 0), and H=IM,0M,. Let R be the
von Neumann algebra generated by A4, and suppose [R)]=&.

Lemma 1.3.3. Let A, R, and §=IM,0 N, be as above. Assume the linear space of opera-
tors A+ A* is weakly dense in R. Then for every TER', one has THSH if, and only if,
T?.,.Rgg mg and T*mlgml-

Proof. We note first that [ 4*H]DIM, is a direct sum decomposition of &. Indeed, if
€D, LeM, and A€ 4, then (4*E, ) =(&, AL)=0, since ALEM, and I, L H. The sum is
therefore direct; it clearly contains [A4*9] and [AD]=H®IM,, so that it contains [(4+
A)H1=[RH] =K.

If TH<H and TER’, then TI,=T[ADIS[ATHIS[AD]=M,, and similarly
TIA*Q1=[A*H]. But by the above note, [4*H]=IMt, and so T*M, =, follows from
T < M. Conversely, if T €L(H) is such that T, I, and T*M, < IR,, then T} < Mt
so that H=PLOM, =M, N M} is an intersection of 7-invariant subspaces, therefore
invariant itself. That completes the proof.

The following is an immediate consequence.
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CoROLLARY 1.3.4. Under the above hypotheses, an operator T € R' ts reduced by
if, and only if, it is reduced by both M, and M,.

Now let € be a separable Hilbert space, let T be the unit circle with normalized
Lebesgue measure do, and consider the Hilbert space LT, g; €) of all square-integrable
measurable §-valued functions on T. We want to consider a certain semi-invariant sub-
space for the unitary operator L, (multiplication by ¢®), as follows. Let H be the closed
linear span of all functions of the form &,+e%%; +... +¢™%,, £,€C, n>0, and let U (e®)
be a (weakly) measurable function on T taking values in the unitary group of L(€). We
assume U is an inner function in the sense that all the negative Fourier coefficients of each
function (U(e®)£, n) (&, n€E) vanish. U gives rise to a unitary operator L, on ILXT, o; €)
(Ly is “pointwise” multiplication by U in the usual sense) and the analyticity requirement
cited above insures that L, HE < Ha. Define § = Hz© Ly Hg, and let Sy be the projection

of L, onto §: Sy —PoL,|
v=LHLiz|9H-

Let R be the von Neumann algebra generated by L., and let 4 be the algebra of all poly-
nomials in L,. It is known that R is the algebra of all multiplications by scalar L* (T, o)
functions, R’ is the algebra of all multiplications by L(€)-valued bounded measurable
functions, and that 4+ A4* is ultraweakly dense in R (equivalently, trigonometric poly-
nomials are weak*-dense in L®(T, do); for the details see [10]).

The inner function U has a canonical analytic extension to the interior D={|z| <1}
of the unit dise, and we shall write U(D) for the set of operators {U(z): z€ D}. Now it
follows, from the known convergence U(e®®)=weak lim, ,, U(re®) almost everywhere on
T, that almost every unitary operator U(e®) belongs to the weak closure of U(D). More-
over, the subspace L, Hg is unaffected if we replace U by the function UW, where W is
any (constant) unitary operator in L(€). Therefore we shall assume U is so normalized that
the identity operator belongs to the weak closure of U(D) (e.g., replace U with U- U(e®)*
for an appropriate choice of 8). Finally, we shall assume that U is completely nonconstant
(i.e., the only vector £€E for which z— U(2)£ is constant is £=0; cf. appendix A.1.). The
following result implies that Sy is irreducible precisely when U takes on enough values so
that U(D) is an irreducible subset of L(E).

THEOREM 1.3.5. Let T be an operator in L() which commutes with Sy and Sg. Then
there is a (constant) operator A€L(C) such that A commutes with U(D)U U(D)* and T =
L,|g. The correspondence T+<>A is a s-isomorphism between the von Neuwmann algebras
{8y, 8%} and (U(D)V U(D)*Y. In particular, Sy is irreducible if, and only if, U(D) is an
irreducible set of operators in L(E).
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Proof. Let T have the stated property. Taking for ¥V the inclusion map: §— &, we see
that V* is the projection of & on §, and Sy=V*L,V. Clearly T commutes with S% =
V*L AV and 83" =V*L;V for all n=>0. So if A4 is the algebra of all polynomials in L,, we
have T € V*(A4+ A*)V'; and since 4 + A4* is weakly dense in the von Neumann algebra
R generated by L, we conclude that T€V*RV’. Now [R)]=L*T, o; €), because U is
completely nonconstant (see A.l.3 and A.ll), and so we may apply Theorem 1.3.1. Thus,
there exists 7', € R’ such that 7T, commutes with VV*=Pg and T,|s="T. The preceding
remarks indicate that there is a measurable bounded L(C)-valued function A4(e®) on T
such that 7', =L,. Now, using A.1.3 once again, we see that [49]=Hg and [4H]OH =
LyHE; so an application of 1.3.4 gives L,Hi<HE, L, HecHg, L,LyHi<L Hz, and
L LyHi< Ly HE. Now the first two inclusions imply that both 4 and 4* are in HZ ... i.e.,
A is constant a.e. ¢ (we identify 4 with its constant value). The second two imply that
both Ue®*4U(e®) and (U(e®y* AU(e®)y* =U(e®)* 4*U(e®) are in HE, so there exists
a constant operator C such that U(e®®)* AU(e®)=C, or AU(e®)=U(e®)C almost every-
where on T. This formula extends to the interior of the disc to give AU(z) =U(2)C, |z| <1.
Since I€U(D)-, we may take an appropriate weak limit to conclude that C'=A4; thus
A€U(D). Now replace 4 with A* to obtain 4 € U(D)*. Note that L,, and therefore A4,
is uniquely determined by 7' (1.3.1); and since V has trivial nullspace, the mapping 7'—A4
is 1—1. A routine calculation shows that the algebraic operations are preserved (including
the *-operations), and finally the above steps can, in an obvious way, be reversed to show
that every A€ U(D)’ is the image of some T €{Sy, S%}’. That completes the proof of the
theorem.

It seems worth pointing out the fact, proved implicitly above, that a necessary and
sufficient condition for a (constant) operator 4 €L(€) to have the property L,(Hz © UHg)<
Hé@ UH?; is that 4 commute with U(D) (provided, of course, that U is normalized so
that the identity belongs to the weak closure of U{D)).

1.4. The order structure of CP (B, §). Let B be a C*-algebra and § a Hilbert space.
We wish to analyze the set CP (B, §)) of all completely positive linear maps of B into
L(), one goal of which is to give complete solutions to three extremal problems associated
with completely positive maps. While there is a considerable literature dealing with
similar problems in the set of positive maps (cf. [24] and [13] for two notable examples),
the known results are not always definitive, and it is somewhat surprising that the much
more tractable family of completely positive maps has not received very much attention.

The results in the later portions of this section go somewhat beyond our immediate

needs in this paper; we feel, however, that these results may be interesting, and that they
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will prove useful in future developments. We also remark that, while a few of the results
of this section resemble results in [24], a close reading shows that they are somewhat
different.

There is a natural partial ordering on CP (B, §), defined by y <g if ¢ —y is completely
positive. We begin by deseribing this ordering in terms of the representations = of B
associated with elements ¢ €CP (B, §) through the relation ¢ =V*zV.

Lemma 1.4.1. Let ¢, and ¢, belong to CP (B, ), and suppose ¢, <@,. Let @,(x)=
Vi (x) V, be the canonical expression of p,, where 7, is a representation of B on &; such that
[ (B)V:91=8,, t=1, 2. Then there exists a contraction T € L(R,, &;) such that

(i) TVy=V,, and
(ii) Try(x) =ory(x) T, 2€B.

Proof. Let &,,...,£,€8, z,...,2,€ B. Then
" ; 7 (%) V) 5,-“2 :g (Vim (xfx,) V&, &)

=g (P (xij) &, &) < % (o (f ) &, &) = "zj 75 (2)) Vz‘fjuz,

since ¢, <@, and the matrix (z} ;) is a positive element of B® M,,. Therefore, there is a
unique contraction 7' defined on [7,(B) V,H]=8&, which satisfies Tm,(x) V& =m,(2) V&,
for all € B, £€5). Taking x=e, we have TV,=V,, and Ta,(x)=n,(x) T follows from the
definition via T'y(2)75(y) Vo& = T'rts(wy) Vo€ =y (xy) V1 & =7, (2)70,(y) V1§ =m0y (2) Trp(y) Vo,
using once more the fact that [7,(B) V,§]=R,. That proves the lemma.

The next result can be thought of as a Radon-Nikodym theorem, and gives quite a
useful description of the order relation in the set of completely positive maps. Some nota-
tion will be of help: for p €CP (B, §), let [0, ] ={yw€CP (B, §): y<g@}. [0, ¢] is a convex
set, which is at the same time an order ideal in CP (B, §). Let ¢(x) = V*n(x) V be the canoni-
cal expression of g, where 7 is a representation of B in L(§) and V€L($, &) is such that
[7(B) VH]=8&. For each operator T €n(B)’, define a linear map ¢;: B—>L(D) by @r(z) =
V*Tn(x) V. Clearly the correspondence T'—g; is linear, and it is injective because if ¢, =0,
then for all »,y€B and &£,%€H, one has (Tr(x)VE, n(y) V) =(V*Tr(y*z) V& n) =
(@o(y*x)€, 1) =0 and from [z(B) VH] =& it follows that 7' =0.

TEEOREM 1.4.2. T'—¢, is an affine order isomorphism of the partially ordered convex
set of operators {T €En(B)': 0<T <1} onto [0, p].

Proof. The preceding remarks show that the correspondence is affine and 1—1. Let
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T €n(BY, 0<T<1. We claim ¢,€[0, ¢]. Indeed, if &, ..., £, €H and (z;;) is a positive matrix
in B M, then letting K €x(B)’ be the positive square root of 7', we have

g (pr(xy) &1 &) = Z (Ka a(xy)VE,,VE) = Z ((zy) KV§,KVE) =0,

since the matrix (n(z,;)) is a positive element of L(®) ® M,. This shows that ¢, is completely
positive. Replacing 7' with 7 — T, we conclude also that g, <g@. Thus, p,€{0, ¢]. In the same
way, we see that if T,€x(B) and 0<7T,<7T,<1 then 0<gp, <@r, <@ (Consider T, —T).

We claim next that if 7€n(B)’ and g, is completely positive, then T'>0. Indeed,
if €R has the form { =n(x,) V& +... +7(z,) V&, (£,€9, x,€B), then

(T, &y= ‘Z, (V*rla)* Ta(z) VE), £) = 2 (V* Ta(a} 2) VE;, &) = 2 (gr (ol 2)) &5, £) >0,

since (xf z,) is a positive element of B® M,. T >0 follows because such {’s are dense in &.
By considering differences as in the preceding paragraph, we conclude from the above
that if T, T,€x(B) and 0 <gp, <@r, <@, then 0<T, <T,<I.

It remains to show that every y €[0, ¢] is of the form ¢, for some T €n(B)’, 0<T<1.
Since y is completely positive, there is a representation ¢ of B on £, and a linear map W
of § into &, such that [¢(B) WH]=K, and y(x)=W*o(x) W. By lemma 1.4.1, there is a
contraction X: 8> &, such that XV =W and Xn(z)=06(z)X, 2€B. Put T'=X*X. Then
clearly 0<T<I, and Tn(z)=X*s(x)X =n(z) T, so that T €x(B)’. Finally, we have, for

EneEY,

(pr(@)&, ) = (X*Xn(z) VE, Vi) = (Xn(x) V', X V) = (o(x) XVE, X V)
= (o(@) W&, Wn) = (y()&, 7).

That completes the proof.
There are a number of extremal problems associated with completely positive maps,
of which we shall consider three. The problems are to identity the following sets:

(i) the extreme rays of the cone CP (B, §)

(ii) the extreme poinis of [0, ¢] (for a fized ¢ in CP (B, D)

(iil) the extreme points of the set CP (B, §; K)={p€CP (B, D): p(e)=K}, where K is a
fized positive operator in L(H).

The descriptions of (i) and (ii) are almost immediate consequences of the preceding
theorem. First, let us call a completely positive map ¢ €CP (B, ) pure if, for every
p€CP(B, ), y<gp implies y is a scalar multiple of ¢; equivalently, ¢ is pure if the only



SUBALGEBRAS OF C*-ALGEBRAS 161

possible decompositions of ¢ of the form p(z) =@, (z) +@a(z) (p;€CP (B, £)) are when each
@; is a scalar multiple of ¢. The extreme rays ([15], p. 133, and [16], p. 87, 123) of CP (B, §)
can be characterized as the half-lines {tp: t>>0}, where ¢ is a pure element of CP (B, H).
Thus, the solution of (i) is given by:

CorOLLARY 1.4.3. The nonzero pure elements of CP (B, ) are precisely those of the
form p(x)=V*a(x)V where m is an trreducible representation of B on some Hilbert space &
and VEL(H, &), V ==0.

Proof. Let ¢ be a nonzero pure element, and let p(x) = V*n(z) V be its canonical repre-
sentation. 1.4.2 shows that {7 €n(B)": 0< T < I} consists of scalar multiples of the identity,
which implies that = is irreducible. Conversely, if & is any irreducible representation of
B on & and V is any nonzero element of L(f), &), then [V§] =0 is necessarily cyclic for
7t(B), and another application of 1.4.2, along with the fact that n(B) =scalars, shows that
@(x)=V*n(x)V is pure. The proof is complete.

Note that 1.4.3 generalizes a familiar theorem of Gelfand and Segal about positive
linear functionals on C*-algebras. The commutative case B=C(X), X compact Hausdorff,
is also noteworthy. The nonzero pure elements of CP (C(X), §)) are those of the form
o(f)=f(p)H, f€C(X), where p is a point of X and H is a positive operator of rank 1 (here,
& is one-dimensional, 7(f) =f(p) I, and V has rank 1 ... so V*V has rank 1 and the repre-
sentation follows by taking H =V*V).

The description of (ii) is an equally direct consequence.

COoROLLARY 1.4.4. Let p(x)=V*n(x)V be nonzero and completely positive. Then the
extreme points of [0, ¢] are those maps of the form @ p, where P is a projection in (B)'.

Proof. This follows from 1.4.2, and the well-known fact that for any von Neumann
algebra R, the extreme points of {7'€ R: 0 <T < I} are the projections in R.

We turn now to the extremal problem (iii). Recall that a closed subspace I of a Hilbert
space §) is said to be a separating subspace for a von Neumann algebra R< () if for every
X€R, XM ={0} implies X =0; equivalently, the linear map p(X)=PgX | of L(H) into
L(IN) satisfies the condition: p(X*X)=0 implies X =0, for every X € R. The following
property, which is somewhat stronger, plays an essential role in the discussion to follow.

Definition 1.4.5. A closed subspace IR of § is said to be faithful for a von Neumann
algebra R if, for every X € R, PX | =0 implies X =0, P denoting the projection of § on .
Before proceeding with the extremal problem, we give a few examples of faithful sub-
spaces. Note first that a faithful subspace R (for R) must also be separating, which is the
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same as being cyclic for R": [R'IM] =9 ([5], p. 6). On the other hand, as some of the follow-
ing examples show, a cyclic subspace for R’ need not be faithful for R. In the special case
where I reduces R, however, then PX |z =0 if X |;=0, for every X € R, so that IR is
faithful for R if and only if [R'IMN]=9.

There are interesting examples of faithful subspaces which are affiliated with neither
Rnor R'. Asone example, let m be Haar measure on the unit circle T, and let § =L*T, m).
Let R be the von Neumann algebra of all multiplications L, by bounded measurable funec-
tions f and, as usual, let H?2 be the closed linear span of the functions eq(e®) =e®, n>0.
It is a familiar fact that B = R’. Note also that H? is a faithful subspace for R; indeed if

fEL=(T, m), then for every m, n>0 one has
B Lytus o) = (fen ) = [ (6% o 0dim,

and from the condition PyL,|sm =0 it follows that every Fourier coefficient of f vanishes,
hence L;=0 (for rather different purposes, this fact has already been pointed out in [2]).
Note also that it follows from the above argument that if S is any set of integers such that
S—8=Z7 (e.g., §={0,1,3,5,7,...}), then M=[e,: n€S] is a faithful subspace for the
muitiplication algebra R.

If U is any unitary operator which normalizes R (URU-1=R) and IR is a faithful
subspace for R, then so is UIR, as a very simple argument shows. So if M and R are as in
the preceding paragraph and w€L®(T, m) is such that |¢|=1 almost everywhere, then
p IR =L, M is faithful for R. A different class of examples arises as the subspaces of the
form UIN, where U is the (normalizing) unitary operator induced by an invertible measure-
preserving transformation of T.

The following examples of subspaces of L¥T, dm) which are not faithful for the multi-
plication algebra will be of interest in the sequel. Let  be an inner function in LT, m)
(i.e., |y] =1 a.e. and (y, e,) =0 for all n<0), and let P = H2QypH?. It is shown in A.1 that
M is eyclic for the multiplication algebra R; but M is not faithful because - My HE< I,
hence Py L, |sm =0, while of course L, ==0.

We can now state the solution of the extremal problem (iii). Let B be a C*-algebra
with identity, let §) be a Hilbert space, and let K be a positive operator in L($). Let ¢ be
a completely positive map of B into L($)), and let ¢(x) = V*n(x) V be the canonical expres-
sion for ¢, with 7 a representation of B on & and V €L($), &). Then of course, p€CP (B, H; K)
if, and only if, V*V =K.

THEOREM 1.4.6. Let o = V*nV be as above, with V*V =K. Then ¢ is an extreme point of
CP (B, $; K) if, and only if, (V] is a faithful subspace for the commutant n(B)" of n(B).
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Proof. Suppose first that M=[VH] is faithful for =(B)’, and let p=ty, +(1 —t)p,
with 9,€CP (B, §; K), 0<t<1. Then ¢ >ty,, so by 1.4.2 there is an operator T €mn(B)’,
0<T <1, such that ty,(x)=V*Tr(x) V, € B. Setting x=e we obtain V*TV =tK =tV*V,
and so (P TVE, Vi) =(V*TVE, n)=HVE, Vy) for all & n€9. It follows that Py Tlgn =tlgp
and hence T =tIg because IR is faithful. Thus ty, =tV*aV =tp and we conclude p, =y, =¢p.
Thus, ¢ is extreme.

Conversely, suppose ¢ is extreme. Define the positive linear map u: 7(B)’ —L(IN)
by u(X) =Py X |;m. We must show that g is injective. Take X € R’ such that u(X)=0; we
claim X =0. Since u preserves adjoints, it follows that u(Re X)=pu(Im X)=0, and so we
can assume that X is self-adjoint. Choose positive scalars s, ¢ such that } /g <sX +tle<3Ig
and put 4 =sX +tIq. Then } Iy <u(A) =tIgy < $Ip, so that 0 <t <1. Definey,(z) = V*4An(z) V
and yy(x) = V*(I — A)n(x) V. Then y, and y, are completely positive (1.4.2) because 0 <A <
Ig, one has y,(e)=V*AV=V*u(A)V =tV*V =tK, and similarly y,(e)=V*u(I—-A4)V =
(1-t)K. Of course, y; +y,=¢. Since -1y, and (1 —t)"ly, are in CP (B, §; K), it follows
from the extremality of ¢ that t-ly; =(1—¢)"ly,=¢. In particular, V*4n(z) V =y, (z)=
tV*n(x) V for every x€B. From the uniqueness statement of 1.4.2 we conclude that
A =t-Ig; so finally sX, and therefore X itself, must be 0. That completes the proof.

The following two corollaries describe the multiplicative properties of certain extremal
positive maps.

CoroLLARY 1.4.7. Let @ be an extreme point of CP (B, §; I) and let Z be the center of B.
Assume p(Z)S @(B)'. Then @(az) =p(x)p(z), for every x€B, 2€Z.

Proof. Let ¢ = V*nV be the canonical expression for g, with 7: B->L(®) and V €L($), ®).
Then V*V =g¢(e)=1, so V is an isometry and hence VV* is a projection in L(R). Let z€Z.
Then ¢(z) Ep(B)’ so by 1.3.1 there is an operator T €x(B), TVV*=VV*T, such that TV =
Vo(z), hence V*TV =g@(z). On the other hand, n(z)En(B) and V*n(z) V =¢(z)=V*TV.
But the map T €n(B) - V*TV is injective, by extremality of ¢ and 1.4.6, so that n(z) =T';
in particular, 7(z) commutes with VV*. Thus, g(zz)= V*n(z)n(z) V= V*n(z)n(z) VV*V =
V¥a(x) VV*n(z) V =¢@(x)@(z), completing the proof.

Note in particular that the preceding gives a new proof of the known result that an
extreme point of CP (B, §; I) is multiplicative, when both B and ¢(B) are commutative.
Also, the reader will have no trouble modifying the preceding proof to obtain the following
result, which should be compared with Theorem 3.1 of [24]. Let ¢ = V*aV be an extreme
point of CP (B, §; I) (B is a general C*-algebra with identity) and let T €n(B)’ be such
that Ty=V*TV commutes with (B); then V*n(z) TV =¢(x) T,, for every z€ B.

It is known that for commutative C*-algebras B, and B,, the extreme points of the
11 — 692908 Acta mathematica 123. Imprimé le 22 Janvier 1970
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identity preserving positive maps of B, into B, are precisely the »-homomorphisms [24],
[12]. It is known (and follows directly from 1.4.6, for example, by taking H=8&, ¢ ==,
and V =identity) that a representation of B is extremal in CP (B, §; I). On the other hand,
an extreme point of CP (B, §; I) need not be multiplicative, even when B is commutative
{an example relevant to this work follows 1.4.8). Recall, incidentally, that when B is com-
mutative, positive maps of B are identical with completely positive maps [23]. One natural
question, for a commutative B, is how “close” do the extreme points of CP (B, ; I) come
to being multiplicative? The answer is that the kernel, at least, of an extreme point is the

same as the kernel of a representation.

CoROLLARY 1.4.8. Let B be a commutative C*-algebra with identity, and let K be a posi-
tive operator on o Hilbert space §. Then for every extreme point ¢ of CP (B, H; K), {x€B:
@(x) =0} is a closed ideal in B.

Proof. Let ¢(x) = V*n(x) V be the representation of ¢ as in 1.4.6. We show that kergp =
ker 7. It is apparent that n(x)=0 implies ¢(x)=0. Conversely if p(x) =0=V*a(x)V, then
if follows that Piyg)n(x)|ive1=0. 7(B) is commutative and thus n{z)€n(B)’; since [VH]
is faithful for 7(B)’ we conclude that {x) =0, and the proof is complete.

We digress, momentarily, to present a simple example. Consider the commutative
C*.algebra C(T) of continuous functions on the unit circle T, let m be Haar measure on
T, and let H? be the usual subspace of LT, m). Define a positive linear map ¢ of C(T)
into L(H?) by

¢(f) =P Lyl [€C(T),

L, denoting “multiplication by f”’. Letting » be the representation of C(T) on LA(T, m)
defined by n(f) =L, and V the inclusion map of H2< L? into L?, then ¢ = V*= V is the canoni-
cal representation of . Now 7z(C(T))’ is the algebra of all multiplications by L*(T, m)
functions, and the discussion following 1.4.5 shows that H? is faithful for =(C(T)). It
follows from 1.4.6 that ¢ is an extreme point of CP (C(T), H?; I). Clearly ¢ is not multi-
plicative on C(T), while in this case ker @ is the trivial ideal 0.

We conclude this section with some information about the question: when is a sum of
extremal maps extremal? These results allow us to give a complete description of the
extremal positive maps of C(X) into a matrix algebra, thus solving a problem taken up in
[24].

Now, it is not hard to see that if ¢ is an extreme point of CP (B, §; K) and p€[0, ¢],
then y is an extreme point of CP (B, §; y(e)) (the proof makes use of 1.4.2 to obtain the
canonical expression for y in terms of that for ¢, so that 1.4.6 can be applied in a straight-

forward manner; we omit the details since this result does not bear directly on the sequel).
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It follows that if ¢,€CP (B, H; K,) and @, +...+¢, is an extreme point of CP (B, H;
K, +...+ K,), then each ¢, is extreme in CP (B, §; K,). The following lemma, gives a partial
converse.

We shall say an operator T'€L()) lives in a closed subspace IR of § if both T and T*
vanish on IRt equivalently, IR contains the range of both 7' and T*. A finite collection
{My, ..., M,} of subspaces of § is called weakly independent if, whenever T'; lives in I,
and 7, +...+7,=0, then T,=...=T,=0. A linearly independent family of subspaces
(ie., £&,€M; and & +... +&,=0 implies & =...=&, =0) is necessarily weakly independent,
but the converse is false. A simple example is obtained by taking IR, =[£], M, =[xn] and
I, =[&+n], where & and % are linearly independent vectors; {I,, M,, M;} is not linearly
independent, but some simple calculations (which we leave to the reader) will show that
it is a weakly independent family. We also remark that when $ is finite dimensional, weak
independence of {IN,, ..., M,} is equivalent to the linear independence of the family {3}
of subspaces of HR defined by R;=[E®@n: & n€M,]. This rests on the fact that the
vector space L(§) is isomorphic with §®§, in such a way that the subspace of operators
that live on IN; corresponds to N; (the details of which we again leave to the reader).

We also recall Mackey’s notion of disjointness: Two representations sr; and 7, of a
C*.algebra B are disjoint (7, & 7,) if no nonzero subrepresentation of 7, is equivalent to

any subrepresentation of 7,. It follows that if &, and n, are respectively multiples of two
inequivalent irreducible representations, then s, &7z,.

LeMMA 1.4.9. Let B be a C*-algebra, § a Hilbert space, let K, ..., K, be positive operators
on 9, and let o, =Vin;V, be an extreme point of CP (B, §; K,) 1 <i¢<n. Assume that

(i) 7;&m, if 11, and
(i) {[K19], ..., [K,D]1} is a weakly independent family of subspaces of $).

Then @1+ ...+, ts an extreme point of CP (B, §; K, +...+ K,).

Proof. First, we shall exhibit the canonical expression for ¢ =@, +... +@,. Let &, be
the Hilbert space on which 7, acts; we can assume, of course, that [7;(B) V,$]=&,. Define
the operator VEL(H, £,®..®K,) by VE=V,£®...®V &, and put z(x) =7, () D ... D7, (x) €
L&, ®...®8,), x€B. Then V*aV=> Vim,V,=2 ¢, so that V*zV will be the canonical
expression for @;+...~+¢@, provided that [z(B)VH]= ®7-18;. But since the x; are pair-
wise disjoint it follows that 7, & @,4;7; ([4], Prop. 5.2.3), and so the projection E, of
£,®...®8K, on its jth coordinate space belongs to the center of n(B)” ([4], Prop. 5.2.4).
Thus, [#(B)V$H] contains [n(B)E;VH1=0®...0r(B)V,;0]1®..00=00..08,8...00
(the nonzero summand occurs in the jth place) for 1 <j <=, and hence [#(B) V] contains
f:®...08,, as required.
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To show that ¢, +... +¢, is extremal, we make use of 1.4.6. Choose T €7(B)’ such that
V*T'V =0. For each j, we have TE,€n(B)Ej, so that T has the “diagonal” form 7 =
T:®..®T,, where T,EL(R,) and commutes with 7,(B). Now 0=V*TV=ViT,V,+...+
Vi T,V,,andofcourse Vi T,V livesin [V} V,R,]=[K,D]. By (ii), then, we have V] T, V,=0,
1<j<n. Since each ¢, is extremal and 7T,€En,(B)’, 1.4.6 implies that 7, =...=T,=0,
hence T=T,®..®T,=0, and the proof is completed by another application of 1.4.6.

We can now describe the extremal positive maps from a commutative C*-algebra

into a matrix algebra.

THEOREM 1.4.10. Let X be a compact Hausdorff space, let § be a finite dimensional
Hilbert space, and let K be a positive operator on §). Then the extreme poinis of CP (C(X),§; K)

are the positive maps of the form
(p(/) = f(xl)Kl + .. +f(xn)-Km IEC(X),
where n>1, x,, ..., %, are distinct points of X, and K, ..., K, are positive operators satisfying

(i) Ki+..+K,=K, and
(i) {[K,D), ..., [K, D]} i3 a weakly independent family of subspaces.

Proof. Suppose ¢ has the given form ¢(f) =2 ,f(z,) K;, and set ¢,(f)=f(z,) K ;. Let &=
[K,9),V,=K}, and let n(f), be the scalar operator f(2;) Is,. Then ¢,(f) = Vi,(f) V;, and clear-
ly [V;9]1=[K}D]=[K,;H]1=8&,, so that this is the canonical form for ¢, If TEL(K,) and
ViTV,=0=K}TK}, then clearly 7=0 because K} is an isomorphism of [K,$] onto
itself. 1.4.6 now shows that ¢, is extreme. Since z; +x, we have n; & =; by the remark preced-
ing 1.4.9, and so by 1.4.9 it follows that ¢, +... +¢, is extreme in CP (C(X), §; K, +... + K,).

Conversely, let ¢ be an extreme point of CP (B, §; K), and let ¢ = V*zV be its canoni-
cal representation, with 7 a representation of C(X)on &, VE€L(H, &), and [#n(C(X)) VH] =K.
By 1.4.6, the linear map T €n(C(X))' —V*TVEL(H) is injective, so that n(C(X)) is a
finite dimensional von Neumann algebra. In particular, the reducing subspaces for the
C*.algebra 7(C(X)) satisfy the chain conditions, and a familiar argument shows that = is
a finite direct sum of irreducible representations. Each irreducible representation is of
the form f—f(x)I (I being a one-dimensional identity operator and « being a point of X),

so that we can arrange s in the form
a(f) = f(@) By + .. + (%) By, fEC(X),

where @, %z, if i+4, and E,, ..., B, is a set of mutually orthogonal projections in L(&)
with sum I. Since the subrepresentations f— f(x,) B, are mutually disjoint, it follows that
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E,en(C(X))" ([4], Prop. 5.24), 1<i<n. Now put K,=V*E,V, and note that ¢(f)=
>y V) E;V =2 ,f(x,)K,. Clearly > K,=g(1l)=K; we shall complete the proof by showing
{[K, 9], ..., [K, D]} is a weakly independent family of subspaces of §.

Choose T,€EL($) such that T, lives in [K,H] and T, +...+T,=0. Put V,=E,V€
L($, E,R). Then V;V,=K,, so that the polar decomposition of ¥V, takes the form V,=
U,K}, where U, is a partial isometry with initial space [K,] and range [E, V). Now the
restriction of K} to [K,)] is injective, so it has a positive inverse Ky * €L([K,§]). Define
the operator 4;€L(R) by 4,=U,K;*T,K;U}; then A, lives in [U,]=[E,;VH], and we
have ViA,V,=1T, 1<j<n. So if we put 4=A4,+...+ A,EL(R) (note that the sum is
direct), then each A; commutes with {E,}, hence A4€n(C(X))’. Moreover, V*4V =
>;ViA;V,=2,T,=0. Since ¢ is extreme, 1.4.6 implies that 4 =0, hence 4,=E,4 =0,
hence T';,=V}A4;V,=0, 1 <j<n. That completes the proof.

Chapter 2. Boundary representations and Silov boundaries

We now take up the general problem mentioned in the introduction: to what extent
does an algebra of operators on a Hilbert space determine the structure of the C*-algebra
it generates? More precisely, let § be a Hilbert space and let 4 be a subalgebra of L($)
which contains the identity operator. The meaning of this question can be illustrated in
terms of invariants. Let us say a property of C*(4) is invariant (relative to 4) if, for every
operator algebra 4, which is completely isometrically isomorphic to 4, C*(4,) has the
property when, and only when, 0*(4) has it. Accordingly, if there are enough invariant
properties to determine C*(4) to within x-isomorphism, then in an obvious sense 4 deter-
mines the structure of its generated C*-algebra.

It is not obvious that invariant properties should exist at all. We will show, however,
that certain irreducible representations of C*(4) (the boundary representations) are
A-invariant in the above sense. This leads to a body of general results, relating to analogues
of Silov boundaries and the problem of implementing certain linear maps of operator
algebras with x-isomorphisms {Section 2.2).

In sections 2.3 and 2.4, we obtain a characterization of boundary representations

which is more useful for specific applications, a number of which are taken up later in
Chapter 3.

2.1. Boundary Represeniations. Let A be a linear subspace of a C*-algebra B, such
that B=C*(4). We assume, throughout this chapter, that such an A always contains the



168 WILLIAM B. ARVESON

identity of B. If w is any representation of B, then w|A4 has just one multiplicative com-
pletely positive extension to B (namely w); in general, however, there may be other linear

completely positive extensions of w|4.

Definition 2.1.1. An irreducible representation w of B is called a boundary represenia-
tion for 4 if w|A has a unique completely positive linear extension to B.

When B=C(X) (for X a compact Hausdorff space), the irreducible representations
correspond to point evaluations; and if 4 is a separating linear subspace of C(X) then the
boundary representations correspond to points of X which have unique representing
measures (relative to 4). This is one of the characteristic properties of points in the Choquet
boundary of X relative to A [16]. When dealing with one-dimensional boundary representa-
tions of a general C*-algebra B, the analogy with Choquet boundary points carries over
quite well (cf. section 3.1). General boundary representations, on the other hand, can
possess properties for which there is no commutative counterpart {cf. section 3.5), and
one should probably not try to push the analogy too far.

The very useful feature of boundary representations of B is their invariance relative

to 4, as described in the following theorem.

TaroreM 2.1.2. Let B and B, be C*-algebras and let A and A, be linear subspaces of
B and B,, respectively. Assume B=C*(A) and B;=C*(A,). Let ¢ be a completely isometric
linear map of A on A, such that p(e)=e¢. Then for every boundary representation w of B
(relative to A) there exists a boundary representation w, of B, (relative to A,) such that w,op(a) =
w(a), a€A.

Proof. We may assume that B, acts on a Hilbert space §. By 1.2.9, ¢ may be extended
to a completely positive linear map of B into L{), which we denote by the same letter ¢.

Now the map ¢(a)+w(a), a€4, is a completely contractive linear map of 4, into
w(4)S L($),) which takes the identity to the identity, £, being the Hilbert space on
which w(B) acts, so by 1.2.9, there exists a completely positive linear map g: B, —~L(9,,)
such that pog(a)=w(a), a€ 4. We will show that such a p must be a representation of B,.
This will complete the proof, for two representations which agree on g(4)=A4; must agree
on 0*(4,)=B,, and such a p must be irreducible because g(B;)=C*(pop(4)) =C*w(4))=
w(B) and w is irreducible; thus g is the required boundary representation of B, relative to 4,.

Now clearly C*(g(B)) 2 C*(p(4)) = B,, so there is, by 1.2.3, a completely positive map
0: C*(@(B))—~L(9,) such that p=p on B,. By 1.1.1, there is a representation 7 of C*(¢(B))
on & and an operator VEL(H,, &) such that g(z) = V*n(z) V, x€C*(@(B)), and V9, is cyclic
for 7(C*g(B)). For a€A, w(e)=gop(a)=V*mop(a)V, so that z€EB->V*nop(x)V is a
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completely positive extension of w|A4 to B. Since w is a boundary representation, we con-
clude that w(z)=V*mog(x)V, for all x€ B.

We claim now that V is unitary. Indeed, V*V = V¥zogp(e) V =w(e) =1, so V is isometric,
and it suffices to show that [V,]=8&. But [V9,] is cyclic for z(C*(p(B))) = C*(moqp(B)),
and so [V,]=8 follows if we prove that the self-adjoint family of operators mog(B)

leaves [V§,] invariant. Choose a unitary element % in B. Then for £€§,, we have
lmop(u) VE— Vo u)€||? = |rop(w) VE||2—2 Re (Vrop(u) VE, w@)&) + [w(w)é||?
= [lmoq(u) VE|? — [lo(@)€[|* = [lwop(w) V&[> —[|£]|* < [|&]|* - lE]]* = O,

since V*mop(u) V=wmw(u), w(u) is unitary, and ||mogp(u)|| <1. Thus, mogp(u) Vi=Vw(u)é€
[V§,), for every £€§),, and hence mog(u) leaves [V§),] invariant. Since B is the norm-
closed linear span of its unitary elements, we see that mop(B) leaves [V§,] invariant;
by the above comments, V is unitary.

Thus o = V-1zV is a representation of C*(p(B)), and hence p=p| B, is a representation
of B,. That completes the proof.

Note that the proof shows somewhat more than we have claimed, when B, acts on a
Hilbert space §); namely, for every completely positive extension ¢ of ¢ to B, there exists
a unique completely positive map g: C*(@(B))—~L($), which is necessarily a x-representa-
tion, such that pog(x) =w(x), € B.

We shall give a number of applications of this theorem, a basic result of this paper,
in the following two sections and in Chapter 3. Chapter 3 also contains a number of examples
of boundary representations.

Let X be a compact Hausdorff space and let 4 be a linear subspace of C(X) which
contains the constants and separate points of X. Then there is a smallest closed subset
K of X such that every function in A achieves its maximum modulus on K, called the
Silov boundary of X relative to 4 [16]. We now introduce a non-commutative generaliza-

tion of the Silov boundary.

Definition 2.1.3. Let 4 be a linear subspace of a C*-algebra B such that 4 contains
the identity and generates B as a O*-algebra. A closed (two-sided) ideal J in B is called
a boundary ideal for A if the canonical quotient map ¢: B-B/J is completely isometric
on 4. A boundary ideal is called the Silov boundary for A if it contains every other bound-
ary ideal.

If B=0(X) and K is a closed subset of X, then J ={f€C(X): {(K) =0} is a closed ideal
in B, and the quotient norm in B/J is given by ||/| K|| =sup, g |f(2}|, for f€C(X). Thus,
J is a boundary ideal for 4 iff K is a boundary for 4 in the sense of the discussion preceding
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2.1.3 (here we use the fact that a constant-preserving isometric linear map between sub-
spaces of abelian C*-algebras is completely isometric, by 1.2.11). The known correspondence
between closed subsets of X and ideals in C(X) now shows that 2.1.3 reduces to the usual
definition of the Silov boundary for subspaces of commutative C*-algebras.

Note that the Silov boundary of A< B is unique, whenever it exists. Whether or not
it always exists under the general conditions of 2.1.3 is, however, still an open question.
In the commutative case B=C(X), it is known that the closure of the set of all Choquet
boundary points is the Silov boundary. We will show in the next section that a similar
fact is true for “admissible” subspaces of arbitrary C*-algebras, but that is the best general
result we now know. For reasons brought out clearly in the next section, this question
has significance in the development of an abstract theory of (non self-adjoint) operator

algebras.

2.2. Admissible subspaces of C*-algebras. In this section, we show that the Silov boundary
exists for “admissible” subspaces, and we obtain some consequences; toward the end of the
section we discuss a sufficient condition for admissibility.

Let A be a linear subspace of a C*-algebra B such that B =(C*(4). We remind the reader
that 4 is always assumed to contain the identity.

Definition 2.2.1. A is called an admissible subspace of B if the intersection of the
kernels of the boundary representations (for 4) is a boundary ideal for 4.

Let bd A4 denote the class of all boundary representations for 4 (to avoid set-theoretic
difficulties, one should regard bd A as a set of representatives, one taken from each uni-
tary equivalence class of boundary representations: we shall be deliberately casual about
this kind of distinction). The reader can easily see that 4 is admissible if, and only if, it
satisfies the condition: for every integer N =1 and every N x N matriz {(a,;) over A, one has

" (@) " =m§l:£4 " (w(ay)) ",

where the norm of (a,,) is inherited from B® M. Note also that, since a representation of
B is always completely contractive, one need only check the inequality <. It is significant
that admissibility is an invariant for completely isometric linear maps:

THEOREM 2.2.2, Let A (resp. A,) be a linear subspace of a C*-algebra B (resp. B,)
such that B=C*(4) (resp. B, =C*(A,)) and suppose there is a completely isometric linear map
@ of A on A, such that p(e)=e. If A is admissible then so 1s A,.

Proof. We will show that A, satisfies the condition of the preceding paragraph. Let

N be a positive integer and let (b;;) be an N x N matrix over 4,. Then there exists elements
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a;;€4 such that ¢(a;;)=b,;. For each w€bd 4, let @, be the element of bd A4, satisfying

w,0p =0 (by 2.1.2). Since 4 is admissible and ¢ is completely isometric, we have

Iep =@l = sup (@] = sup Jl(@GNl< sup |G,
and the proof is complete.

PrROPOSITION 2.2.3. Let 4 be a subspace of B such that C*(A) = B, let J be a boundary
ideal for A, and let w€bd A. Then J < ker w.

Proof. Let ¢ be the quotient map of B into B/J. Then ¢|4 is completely isometric,
gle)=e, and C*(g(A))=q(C*(4))=¢q(B)=B/J. By 2.1.2, there exists a representation w,
of B/J such that w,0¢=w on 4. Since w,0q and © are x-homomorphisms and A generates
B, we have w,0q¢=w on B. Thus, if z€J =Ker ¢, then w(z) =w,0q(x)=0; thus J < ker w,
completing the proof.

THEOREM 2.2.3. Let 4 be an admissible subspace of B, and let K be the intersection of all
kernels of boundary representations. Then K is the Silov boundary ideal for A.

Proof. By hypothesis, K is a boundary ideal. If J is any other boundary ideal and if
w€bd 4, then by 2.2.2 we have J < Ker w; hence, J< K, and we are done.

Now let A be an admissible subspace of B, let K =1, epq4 Ker w be the Silov boundary
for 4, and let ¢ be the quotient map of B onto B/K. The process of passing from A4 to
g(A)< B/K is analogous to passing from a subspace 4 of C(X) to the space of restrictions
A|eX < C(@X), and in dealing with “abstract” admissible subspaces, it is convenient to
do this. Note, for example, that we have the following.

ProrosiTiON 2.2.4, Let A be an admissible subspace of a C*-algebra B such that
B=C*A), let K be the Silov boundary ideal for A, and let g be the quotient map of B in B/K.
Then g(A) is an admissible subspace of B|K which has {0} as its Silov boundary.

Proof. The admissibility of ¢(4) is evident from 2.2.2. By 2.1.2, the relation w,cq=w
sets up a bijective correspondence w<—w, between the boundary representations for 4
and those for g(4) (note that the equation w,0q=w on A entails its validity on B=C*4),
since w, w,, and ¢ are all x-homomorphisms). Thus, for 2 € B, ¢(x) € N ker w, implies w(z) =
w,09(z)=0 for all w€bd 4, hence €N ,epauKer w=K, and so g(x)=0. 2.2.3 now shows
that {0} is the Silov boundary for ¢(4).

It is natural to ask the extent to which a subalgebra or subspace, 4, of a C*-algebra
B determines the structure of B. Even when B is commutative and is generated by 4,

there can be quite a variation of structure. For example, let D be the closed unit disc, and
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let A be the closed subalgebra of C(D) consisting of all sup-norm limits of polynomials.
4 separates points of D and thus C*(4)=C(D). On the other hand, the unit circle T is a
subset of D, and the restriction map f€C(D)—>f|r€ C(T) is a x-homomorphism of C(D)
on C(T) which is completely isometric on 4 by the maximum modulus principle (cf. 1.2.11).
Thus, A, =A|r is the “same” as A, whereas 0*(4,)=C(T) is quite different from C(D).

The following result implies, among other things, that an admissible subspace com-
pletely determines the structure of its generated C*-algebra, once one has factored by the

Silov boundary ideal.

TEEOREM 2.2.5. Let A (resp. A,) be an admissible subspace of a C*-algebra B (resp. By)
such that B =C*(A) (resp. B; =C*(A,)). Assume that both A and A, have trivial Silov boundary
ideals. Then every completely isometric linear map of A on A, which takes e to e, is imple-

mented by a «-tsomorphism of B on B,.

Proof. Let S be the set of all equivalence classes of boundary representations of B
(for A). For each n€S choose a representative w, for n. Let ¢ be a completely isometric
linear map of A on 4, such that p(e) =e. By 2.1.2, there exists, for each €S, a boundary
representation w, of B, (for 4,)such that w,0@ =w, on A. As n runs over S, w, runs over
all (classes) of boundary representations of B,. So by hypothesis, and 2.2.3, we have
N, Kerw,=N, Ker w, ={0}. Thus the representations n=®, w, and n'= @ ,w, are,
respectively, faithful representations of B and B,. Moreover, n'o@p=x on 4, by con-
struction. It follows that z'(B,;) =C*' op(A)) =C*(n(4)) =7n(B), and since both 5 and =’
are injective, the mapping ¢ =(x')"'ox is in fact a x-isomorphism of B on B;. The rela-

tion 7'og(a) =7(a), a€ A, implies 6|4 =¢, and the proof is complete.

CoroLLARY 2.2.6. Let A be an admissible subalgebra of a C*-algebra B, such that B=
C*(A). Then every completely isometric linear mapping of A onto itself which leaves the identity

fized is an algebra automorphism.

Proof. Let K be the Silov boundary ideal for 4 and let ¢ be the quotient map of B
on B/K. Let ¢ be a completely isometric map of 4 on A4 such that @(e) =e, and put ¢, =
gogogqi: g(A)—~gq(4). By 2.2.5, ¢, is implemented by a x-automorphism of B/K, and in
particular ¢, is multiplicative on ¢(A4). Since ¢ is an algebra isomorphism of 4 on g(A4),
it follows that ¢ =g 'o¢p,0q is multiplicative on 4. That completes the proof.

We conclude this section with a discussion of one sufficient condition for a subspace
to be admissible. This condition is not always satisfied, but it is effective in dealing with a
variety of examples. Also, we point out that some related questions will be taken up in

section 2.4.
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Let A be a linear subspace of a C*-algebra B and let o be an irreducible representa-
tion of B. Define the set M, to be all b in the closure of 4 + A* for which w(b) has the form
6| U, where U is a unitary operator. #/, consitsts of those elements of (4 4+ 4*)~ which, in

a sense, take on their “maximum modulus” in w. Note, too, that Mi=M,,.

THEOREM 2.2.7. Let A be a linear subspace of a C*-algebra B and let o be an irreducible
representation of B such that M, generates B as a C*-algebra. Then o is a boundary repre-

sentation for A.

Proof. Let o be any completely positive extension of w|A4, say o= V*zV, where 7 is
a representation of B on a Hilbert space & and V is an operator from the Hilbert space £
on which w acts to &, such that [n(B) V]=&. As in 2.1.2, it suffices to show that p is a
representation, or what is the same, that V is unitary. Now V*V =p(e)=w(e)=1I, so ¥V
is isometric, and we need only prove that [VH]=8.

Note that ¢ must equal @ on the closure of 4 + A%, since both are bounded self-adjoint
linear maps. Take 2€(A4 +.4*)~. Then for every £€§), we have

[7(2) VE - Vor@)€|)2 = |u(z) VE|2 — 2 Re (V*a(2) VE, 0(2)€) + || Varl2) £[]?
= [ln@) VE[l? — fleo(z) |2,

since V*n(z) V=w(z) and V is isometric. So if z€M,, then |w(z)&|2=||z|2[|||, hence
[|7(2) VE||2 — ||v(2) €]|2 <0, and it follows that 7t(z) VE = Veo(z) & €[ VH]. Thus, [V H]is invariant
under the self-adjoint family of operators m(M,), which generates m(B) as a C*-algebra.
We conclude that & =[z(B) VOI<[VH], as required.

Some examples are noteworthy. Suppose 4 is a linear subspace of B such that the
unitary elements of (4 +4*)” generate B as a C*-algebra; for example, 4 +4* could be
dense in B, or 4 could be the algebra generated by a semigroup of unitary operators which
contains e and generates B as a C*-algebra. Then by 2.2.7, every irreducible representation
of B is a boundary representation for 4; hence 4 is admissible and, in fact, the Silov
boundary of 4 is the trivial ideal {0}. Thus, making use also of 2.2.5, we can state the

following.

COROLLARY 2.2.8. Let A be a subspace of a C*-algebra B such that the unitary elements
in (A + A*)~ generate B as a C*-algebra. Then every trreducible representation of B is a bound-
ary representation jor 4, the Silov boundary ideal for A is trivial, and every completely iso-
metric linear map of A onto itself which leaves the identity fized is tmplemented by a *-auto-
morphism of B.

We remark that the same conclusion can be drawn from weaker, though less easily

verified, hypotheses. For convenience, let us call an irreducible representation w of B
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peaking for A if M, (<= (A+A4*)~) generates B as a C*-algebra. Then the conclusion of
2.2.8 is valid provided only that the intersection of the kernels of all peaking representa-
tions is trivial.

2.3. Finite representations of operator algebras. This section serves two purposes; it
contains material which is preparatory for the characterization of boundary representa-
tions in 2.4, and we introduce here certain notions and terminology which will be used
in the entire sequel.

In this section and the next, we shall be interested in subalgebras (rather than sub-
spaces) of C*-algebras. Recall first the definition of semi-invariant subspaces. A closed
subspace IR of a Hilbert space §) is said to be semi-invariant under a subalgebra 4 of
L($) (A is assumed to contain the identity) if the map ¢(T') = Py T |q is multiplicative on 4.
The definition is due to Sarason [20], who pointed out the following characterization. If
M is semi-invariant for 4, then My =[AM]O M is A-invariant, so that M =[AM]OM,
is a nested difference of 4-invariant subspaces; conversely if 9t =, © M, where MW= I,
are 4-invariant, then N is semi-invariant for 4. Thus when 4 is a self-adjoint algebra the
semi-invariant subspaces are reducing subspaces. In general, of course, a semi-invariant
subspace need not even be invariant.

Let A be a subalgebra of a C*-algebra B; A4 is always assumed to contain the identity
of B. A representation of A is a homomorphism ¢ of 4 into the algebra of operators on some
Hilbert space, such that

@) @le)=1I, and
(i) |lp@)]<|la|, foralla€A.

Our reason for imposing the condition (ii) is to make this definition coincide with the usual
usage of the term for C*-algebras. Indeed, if ¢ is a representation of 4 =B, then (i) and (ii)
together imply that ¢ is positive (1.2.8), and thus p(z*) =¢(z)* for all z€ B. In general, if ¢
is a representation of 4 on $ and I is a semi-invariant subspace for ¢(4), then we may

define a new representation ¢, of 4 on IN by

®ol@) = Poop(a)l;m, a€A.

Such a ¢, is called a subrepresentation of ¢. Note that, by the preceding comment about
semi-invariant subspaces for x-algebras, this definition too reduces to the usual one in
case A is self-adjoint.

Two representations ¢, and g, of 4 are said to be equivalent if there is a unitary operator
U between their respective Hilbert spaces such that Ugp,(a) =p,(a) U for all a€ 4.
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Definition 2.3.1. Let A be a subalgebra of a C*-algebra and let ¢ be a representation
of 4. p is called infinite if it is equivalent to a proper subrepresentation @, =g; @ is called
finite if it is not infinite.

Some examples are given after 2.3.4. The following description of finite representations

will be useful.

ProrosiTion 2.3.2. Let ¢ be a representation of A on . Then @ is finite if, and only
if, for every isometry V € L(D) the condition V¥p(a) V =p(a), for all a€ A, implies V is unitary.

Proof. Assume, first, that ¢ is finite, and let V be an isometry in L() such that
V*V =g¢. Let P=VV* be the projection on the range of V. We will prove that V is unitary
by showing P=1. Now V*pV=¢ implies PpP=VeV* hence for a,b€A we have
Po(a)Pp(b)P =Vp(a) V*Ve((b)V*=Ve(a)p(d) V*, because V*V=I. Thus P is semi-
invariant under g(4). Define the subrepresentation go(a)=Pg(a)|pg, of 4 on PH=VH.
Then V is a unitary map of § on V9, and @, V =PpV =V V*pV = V. As ¢ is finite, we have
pola) =pla), a€4, and so P=1 follows by taking a to be the identity.

Conversely, suppose that ¢ is infinite. Then there is a semi.invariant subspace IR
for p(4), M=+H, and an isometric operator ¥V of § onto I such that Pye(a) VE=Ve(a)é
for all £€§). If we regard V as an element of L(§)), then Py =V V*, so the above equation
is VV*pV = Vo; multiply on the left by V* to get V*pV =¢@. V cannot be unitary because
VH=M=$, and that completes the proof.

If A= B is self-adjoint and ¢ is a representation of 4 on £, then as we have already
noted, the subrepresentations of ¢ correspond to projections in the commutant ¢(A4)’
of p(A4); and a proper subrepresentation of ¢ is equivalent to @ iff there is an isometry in
@(B) with range the indicated semi-invariant subspace. Thus we have the known result
that a representation ¢ of a C*-algebra is finite iff the von Neumann algebra ¢(B)’ is
finite (a von Neumann algebra is finite if it contains no non-unitary isometries).

We know of no analogous characterization of finite representations of general (non
self-adjoint) algebras. Consider the following example. Let 4 be a subalgebra of a C*-
algebra B and let 7 be a representation of B on a Hilbert space &. Then ¢ =n| 4 is a repre-
sentation of 4, and so is every subrepresentation of . Note that the subrepresentations
of ¢ may differ greatly from ¢; for instance, if B is abelian then the operators in ¢{4) are
normal, while no such thing is true for the images of 4 under subrepresentations. Never-
theless, in the special case where 4 +A4* is dense in B, there is an effective method for

determining when subrepresentations of ¢ are finite (2.3.4).
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LeEMmA 2.3.3. Let A be an algebra of operators on a Hilbert space & such that 4+ A* is
weakly dense in a von Neumann algebra R. Let §) be a subspace of & and define p(X)=
Py X |o€L(D), XEL(R). Then for every isometry VEL() such that V*e(X)V =¢(X), X € A
there exists an isometry V,€ R’ such that V |g=V.

Proof. Let us write the projection on §) simply as P, Note that we have V*p(X) V =¢(X)
for all X€R, because both sides of the equation are weakly continuous -preserving
linear functions of X, equality was assumed to hold on 4, and 4+ A4* is weakly dense in R.

Let &£, 7€% and X, Y€ R. Then since PV =V we have (XVE, YV} =(V*Y*XVE, 5)=
(V*PY*XVE, n)= (Vp(Y*X)VE ) =(@(Y*X)VE, 7)) = (X&, Y7). Thus we can define an
isometric linear map V: [RPI=[RVH)S[RH] by the formula

Vo 2 X6~ 2 X,VE,
351 i

where &, ...,£,€9, X, ..., X,€ER.

A trivial calculation shows that Vo X=XV, on [RD], so if we define V,EL(R) by
Vi E=Vy& for £E[RH] and V,&=£ for EE[RH]*, then V, is an isometry in R’, and clearly
V,£=VE for £€8. That completes the proof.

THEOREM 2.3.4. Let A be a subalgebra of a C*-algebra B such that A + A* is dense in B.
Let 7 be a finite representation of B in L(K), let § be a semi-invariant subspace for m(4),
and let p(a)=Pg n(a)|p for a€A. Then @ is a finite representation of A if, and only if, every
unitary operator in 7(B)’ which leaves §) invariant is reduced by 9.

Proof. Assume first that ¢ is finite, and let U be a unitary operator in 7z(B)’ such that
UHSH. If § does not reduce U, then V =U g is a non-unitary isometry in L(D). Letting
P stand for the projection on §, we have V*=PU* |g» so that if a€A and £€$ then
V*p{a) VE=PU*Pn(a) Ut =PU*nla) U =Pr{a)t =p(a)¢, using PU*P=PU*. By 232, ¢
must be infinite, a contradiction.

Conversely, assume g is infinite. We will show that there is a unitary operator U €x(B)’
such that U is properly contained in § (thus § does not reduce U). By 2.3.2 there is a
non-unitary isometry Ve€L($) such that V*pla)V =p(a), a€A4. Now the norm closure of
a(A) +7(A)* =n(4 + A*) is 7(B), so that the weak operator closure of 7(4)+m(4)* is the
von Neumann algebra z2(B)”. By 2.3.3, there is an isometry U €z(B)' such that Ulg=7V.
Since 7(B)’ is a finite von Neumann algebra {by the remarks following 2.3.2), U must in
fact be unitary. We have U§=V§) so U is a proper subspace of §, and thus the condition

of the theorem is violated.
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We can now give some pertinent examples. It is well-known (and follows from the dis.
cussion after 2.3.2) that the subrepresentations of a finite representation of a C*-algebra
are always finite. Such is not the case for representations of non-self-adjoint algebras, as
the following examples show.

Let T be the unit circle, let B=C(T), and let 4 be the closure in C(T) of the poly-
nomials. Then A4 is a subalgebra of C(T) for which 4 4 A* is dense in C(T) (i.e., 4 is a Di-
richlet algebra). Let m be Haar measure on T and let 7(f) = “multiplication by f”, f€C(T),
be the usual representation of C(T) on L(T, m). Since 7z(C(T))’ is the finite von Neumann
algebra of all multiplications by L*(T, m) functions, we see that  is a finite representation
of C(T).

Example 1: Let (f) =n(f), for f€A. Then ¢ is a representation of 4 on §=L*T, m),
and trivially, every unitary operator in 7(C(T))’ which leaves LT, m) invariant is reduced
by LT, m). By 2.3.3, ¢ is finite.

Example 2: Let 7w be as above, and take §=H? (H? is the closed linear span of {¢'™%;
n>0}). Then H? is invariant, hence semi-invariant, for 71(4) so that ¢(f) = Pupn(f)|y is a
subrepresentation of x|, on H2 Now the unitary operator “multiplication by ¢’ com-
mutes with 7z(C(T)) and has H? as a non-reducing invariant subspace. By 2.3.4 we conclude
that ¢ is an infinite representation of A. Since ¢ is a subrepresentation of the one in example

1, we have here an infinite subrepresentation of a finite representation.

Ezxample 3: Let v be a non-constant inner function in H® (see the discussion pre-
ceding 1.4.6 for definitions), and let § = H2CyH?. If x is as before, then §) is semi-invariant
under 7z(4), so that ¢(f) =Pgn(f) | gives a representation of 4. We claim that ¢ is finite.

Indeed, by A.1.3 we have that [n(4)]=H? since H? is obviously a cyclic subspace
for z(C(T)) we have that [7(C(T)) H]=LA*(T, m). Thus by 2.3.4, it suffices to show that if
U is a unitary operator in 5(C(T))’ such that U< §, then §) reduces U. By 1.3.3 we see
that UH?< H? and U*pH?*<yH? Now U is multiplication by a function % € L®(T, m) such
that [#]| =1 almost everywhere. It follows, then, that wH2< H? and @H2< H?; in particular
w€H? and % € H?, so that » must be a constant. Thus U is a scalar, which of course is re-
duced by . By 2.3.4, ¢ is finite.

There is an analogous result on finiteness for subrepresentations of finife direct sums
of 7 (i.e. projections of shifts of finite multiplicity). It is also easy to see that the projec-
tion of a shift of infinite multiplicity onto one of its semi-invariant (but not invariant)

subspaces gives rise to a representation which need not be finite.

Example 4: As a final example, let 4 be a subalgebra of a C*-algebra B, and let w
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be a boundary representation for 4. Then w|, is a finite representation of 4. This is proved
in the following section (2.4.1).

2.4. A characterization of boundary represeniations. Let A be a subalgebra of a C*-
algebra B. Tt is not at all clear from the definition, in most examples, which irreducible
representations of B give rise to boundary representations for 4. In particular, if 4 is an
irreducible algebra of operators on some Hilbert space, when is the identity representation
a boundary representation? What is required is an intrinsic description of boundary repre-
sentations in terms of their restrictions to 4. We shall obtain three necessary conditions
which, together, are also sufficient (2.4.5); two are intrinsic, while the third is easily checked

in specific examples. These results are essential for many of the applications in Chapter 3.

LrevMma 2.4.1. Let 4 be a subalgebra of a C*-algebra B and let w be an irredubible repre-
sentation of B. If w is a boundary representation for A, then w| 4 is finite.

Proof. Suppose w acts on the Hilbert space § and let ¥ be an isometry in L($) such
that V*w(a) V =w(a) for all a€ A. Then x€ B~ V*w(z) V is a completely positive extension
of |,, and hence V*wV =w on B, because w is a boundary representation. Thus V*wV
is a representation of the C*-algebra B; it follows that VH(+0) is a semi-invariant, hence
reducing, subspace of §) for w(B) (cf. the discussion preceding 2.3.1). Since w(B) is irreducible
we must have V§ =, i.e., V is unitary. By 2.3.2 we conclude that | , is finite, as required.

We now introduce an extension, to linear subspaces of C*-algebras, of the notion of

pure completely positive map.

Definition 2.4.2. Let S be a self-adjoint linear subspace (containing the identity) of
a C*.algebra B, and let ¢ be a completely positive linear map of S into L(), for some Hil-
bert space §. ¢ is called pure if the only linear maps y: §—~L(§), for which both y and

@ — are completely positive, are scalar multiples of ¢.

LevmMa 2.4.3. Let A, B and o be as in 2.4.1, and suppose o is a boundary representation
for A. Then the restriction of o to the closure of A+ A* is pure.

Proof. Let S=(A 4+ A*)~, and let § be the space on which w acts. Let ¢;, , €CP(S, §)
be such that w|s=@, +@,. By 1.2.3 there are completely positive linear maps y;: B -L(D)
such that y,|s=@,, i=1, 2. In particular, the linear map z€ B—>y,(x) +y,(r) is a completely
positive extension of w|,. Since w is a boundary representation for A we must have
(%) +95(x) =w(x) for all € B. Now o is an irreducible representation of B, so by 1.4.3
it is a pure element of CP (B, §). Thus, there are scalars ¢;>0 such that y;=¢;0 on B.

Restricting to S we see ¢, =t;w|s, and thus w|s is pure.
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Definition 2.4.4. Let A be a subalgebra of a C*-algebra B, and let @ be an irreducible
representation of B. Say that 4 separates w if, whenever x is an irreducible representa-
tion of B such that w|, is equivalent to a subrepresentation of |, then % and o are
equivalent representations of B. A4 is called a separating subalgebra if it separates every
irreducible representation of B.

Note that if B=C(X) with X a compact Hausdorff space, then a subalgebra is se-
parating iff it separates points of X; by the Stone-Weierstrass theorem, this is equivalent
to the assertion B=C*(4). One noncommutative analogue of this assertion is: 4 is a sepa-
rating subalgebra of B iff B=C*(4). Neither implication is known to be true in general
(see, however, [8], and [4] p. 223).

Let A be a subalgebra of B, and let @ be an irreducible representation of B on a Hilbert
space . It is easily seen that 4 separates w iff the following condition is satisfied: for every
srreducible representation 7 of B on §) and every isometry V EL(H, &), V*n(a) V =w(a) for all
a €A implies n and w are equivalent representations of B. In this form, this definition makes
sense if 4 is merely a linear subspace of B. We shall have no need for such a definition

here, however.

Some non-commutative examples of separating subalgebras are given in Chapter 3.

Remarks. Let @ be an irreducible representation of B which is a boundary representa-
tion for a subalgebra 4 of B. We claim: 4 separates w. Making use of the preceding ob-
servation, it suffices to show that if 7 is an irreducible representation of B and ¥V isan
isometry such that V*n(a) V=w(a), a€4, then n and w are equivalent. But V*aV is a
completely positive linear extension of w| 4, and since w is a boundary representation the
preceding formula implies V*7(x) V =w(z) for all € B. Now argue as in the proof of 2.4.1
to conclude that V is an isometry whose range reduces the (irreducible) C*-algebra 7(B);
therefore V is unitary, and the formula V-7V = now shows that z and w are equivalent

representations of B.

We now have the promised characterization of boundary representations.

THEOREM 2.4.5. Let A be a subalgebra of a O*-algebra B such that B=C*(4), and let
w be an irreducible representation of B. Then o is a boundary representation for A if, and
only if, the following three conditions are satisfied:

(i) |18 a finite representation of A
(il) the restriction of w to (A +A*)~ is pure
(iii) A4 separates w.

Proof. The necessity of the conditions is established in 2.4.1, 2.4.3 and the above
remark. So assume (i), (i), and (iii) are satisfied. Let K={p€CP (B, §): ¢|,=w|,}. We

must show that K is a singleton {w}. Now K is a convex subset of CP (B, §) which is closed
12 — 692908 Acta mathematica 123, Tmprimé le 22 Janvier 1970
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in the BW-topology of CP (B, §); K is not empty (w€K), and for every p €K we have
llell = lete}|| = [|wle)|| =1. Hence by remark 1.1.2, K is BW-compact. The Krein-Milman
theorem implies that K is the closed convex hull of its extreme points, and thus we need
only prove that an extreme point of K must necessarily be w.

Let @ be an extreme point of K. We claim first that ¢ is a pure element of CP (B, §).
To see this, choose nonzero elements @,, p,€CP (B, ) such that @, () + @4(x) =@(x), x€ B.
Now both ¢ and w are self-adjoint bounded linear maps of B, and they agree on 4;
therefore they must agree on (44 A*)-. Hence, ¢,(b) +¢,(b) =w(b) for all bE(A4+4%),
By (ii), there are scalars ;>0 such that ¢,(b) =t,w(b), bE(4A +A4*)~. If #,=0, then since
¢€A4 we have ¢,(e) =0, hence ¢, =0, contrary to the choice of ;. Thus ¢, >0, and similarly
t,>0. By taking b=e in the preceding equations we also see that #, +£{,=1. Now put p,=
t7'@,. Then ¢, €K and ¢,9, +t,y, =¢. By extremality of ¢ we conclude that y, =y, =g, thus
¢, =t,@. This proves that ¢ is pure.

By 1.1.1 and 1.4.3, there is an irreducible representation 7 of B on a Hilbert space
K and an operator V €L(S), &) such that ¢ = V*a V. Restricting to 4, we have w(a) = V*n(a) V
for a€ A. Taking a=e we see that I=V*V, so V is an isometry. Because A separates w
it follows that 7 is equivalent to w, that is, there is a unitary operator U €EL(K, $) such that
7=U-1oU. The above formula now becomes w(a)=(UV)*w(a) UV for all a€A. Now UV
is an isometry in L($)) and according to (i) | 4 is finite; so by 2.3.2, the preceding implies
UV is unitary. Hence V =U-1UV is a unitary operator in L(§, &). The original equation
w|4=V*aV ]|, now becomes w(a)=V-1n(a)V, a€A. V-'nV is a representation of B which
agrees with @ on A, hence V-1xV agrees with w on C*(4)= B. Therefore, p =w on B, and
the proof is complete.

Combining the preceding with 1.2.3., one may prove the following result, which seems
noteworthy: Let S be a closed self-adjoint linear subspace of a C*-algebra B, such that e€S.
Then every pure element of OP (S, ) extends to a pure element of CP (B, §). Thus, using
1.1.1 and 1.4.3, every pure element of CP (S, ) has a representation ¢(a)=V*n(a)V
(@€8) where 7 is an irreducible representation of B on a Hilbert space § and V€L(H, K).

Note also that essentially no use was made of the fact that A4 is an algebra, in proving
2.4.5, and in fact the theorem is true for linear subspaces as well. One need only give

definitions which make sense in context.

Chapter 3. Applications to nonnormal operators

This chapter contains a number of applications of the preceding theory to certain
operators on Hilbert space. The main results are in sections 3.1, 3.2, 3.5, 3.6, and 3.7.
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In 3.1 we show that for an arbitrary Hilbert space operator 7', spectral points of 7
which are on the boundary of the numerical range of 7' correspond to one-dimensional
boundary representations of C*(T') for P(T). In 3.2 we classify certain operators which
satisfy a polynomial equation p(7") =0. Sections 3.3 and 3.4 contain results of a preliminary
nature for the discussion in 3.6. In 3.5 we determine the boundary representations of
C*(T) for P(T) where T is the projection of the bilateral shift (of multiplicity 1) onto
certain of its semi-invariant subspaces. 3.6 contains a classification theorem, and associated
results, for certain operators on Hilbert space; these results are probably the most sig-
nificant applications that we have at the present time. In 3.7, we show how the Volterra
operator Vf(z)=[{ f(t)dé (fE€L?(0, 1)) can be characterized by the norms of certain poly-
nomials in V.

3.1. Characters of C*(T') and sp (T')NoW(T). Let T be an operator on a Hilbert space
£. We prove, in this section, the useful and perhaps surprising fact that points in the spec-
trum of 7' which lie on the boundary of the numerical range of T' correspond to characters
(i.e., complex homomorphisms) of C*(7"); moreover, these characters give rise to one-
dimensional boundary representations for P(7T).

Recall that the numerical range of T is the set of complex numbers W(T)={(T§¢, &):
£€H, ||&]| =1}. Note that Re T'>0 if, and only if, W(T) is contained in the right half-
plane {Re z>0}; in this event J + 7' is invertible (because the spectrum sp (T') is contained
in the closure of W(T') [9]), and in fact (I —7){J+ 7)1 has norm at most 1 ([18], pp.
442-443). The following lemma provides a bit more information.

Lremma 3.1.1. If Re T >0, then (I + T) can be norm-approximated by polynomials in T.

Proof. Note that P(T) is a commutative Banach algebra with identity, and we have
to show that 7+ T is invertible in P(T"). Suppose A€C is such that 7' A7 is not invertible
n P(T); then we claim that Re 220 (this yields the desired conclusion). Since 7' —A[ lies
in a proper maximal ideal, there is a nontrivial complex homomorphism w of P(T') such
that w(7T)=A. We have |lw]|=1=w(l), and so there is a linear functional ¢ on C*(T)
such that [o||=1 and ¢g=w on P(T) (by the Hahn-Banach theorem). The conditions
lle]| =1=p(I) imply that ¢ is positive ([4], p. 25), hence Re A=Re o(T)=p(Re T)>0,
completing the proof.
TueoREM 3.1.2. Let T be an operator on §) and let A€sp (T) NoW(T). Then there exists
a character X of C*(T) such that y(T)=2; x is a one-dimensional boundary representation
for P(T).
Proof. We first make a reduction. Since W(T') is a convex set ([9], p. 110) which con.

tains 4 on its boundary, there is a.supporting tangent line at A, i.e. a complex number
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a =0 such that Re ad <Re o(T¢, ), for all £=9, ||&|| =1. By replacing 7' with (T —21),
we may assume A=0 and W(T) is contained in the right half plane {Re z>0}.

Now define a linear functional w on P(T') as follows. For every polynomial p, we have
{by the spectral mapping theorem)

|2(0)] <sup {|p(z)|: z€sp (T')} = sup|sp(p(T))| <|2(T)|,

so there exists a unique bounded linear functional w on P(T) such that w(p(T") =p(0) for
every polynomial p. Clearly w is multiplicative, w(T)=1=0, and ||o|| =w(I)=1. We must
show, first, that there is a character on C*(7T') which extends w, and second, that this char-
acter is the only positive extension of w to C*(T). Since P(T') generates C*(T) as a C*-
algebra, two characters which agree on P(T) must agree everywhere; thus it suffices to
show, first, that w has a positive extension to C*(T) and second, that every positive ex-
tension is a character.

The first conclusion is immediate from the Hahn-Banach theorem: choose a linear
functional p on C*(T') such that g=w on P(T) and ||g|| =||w| =1. Thus |jo|| =¢(I) and it
follows ([4], p. 25) that g is positive.

We claim now that any such positive extension g is a character. For this, define the
operator S=(I—T)(I+T). Then C*8)=C*T), ||S]|<1 by the preceding remarks,
and Lemma 3.1.1 shows that S€P(T). Since p is multiplicative on P(T") we have p(8)=
(1 —o(T) (1 +0o(T))1=1. A familiar theorem of Gelfand and Segal ([4], p. 32-33) provides
a representation 7 of C*(S) on a Hilbert space & and a unit vector { € such that o(X)=
(X)L, £), for all X €C*(S). We will show that the one-dimensional subspace [{] is invariant
under 7(C*(8)); the theorem will follow, because then n(X){ =p(X){ for every X € C*(8),

and hence g is multiplicative everywhere. Now we can write

l2(8)¢ — ]2 = |n(8)C||2—2Re ((S)E, £) +1 =||n(S)||2—2Re o(8) +1 =||2($)¢ |2 -1 <0,

since ||7(S)|| <||S|| <1. Therefore, #(S)¢={. Since g(8*)=g(8)=1, the same argument
shows 7(8*){ ={. Thus, [{] is invariant under the self-adjoint family of operators {=(S),
7t(8*), I}, and since the norm-closed algebra generated by the latter is 7z(C*(8S)), the proof
1is complete.

As one noteworthy application, let 7'€L($), and suppose 4 is a point in the spectrum
of T such that |4] =||T'||. Since sp (T)= W(T)~< {|z| <||T||}, A must be a boundary point
of W(T). Thus, there is a unique character y of C*(T') such that y(7T')=A. To restate the
argument, suppose 7' is such that 0*(7) has no maximal ideals of codimension 1. Then for
every spectral value 4, we must have [A| <||T'||; i.e., 7(T) <||T|| (+(T) denoting the spectral
radius of 7). That proves:
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CoROLLARY 3.1.3. Let T be a Hilbert space operator such that C*(T) has no characters.
Then the spectral radius of T' is less than ||T||.

Note that an operator 7 is normal iff there are enough characters of C*(7') to separate
points. In this case, of course, we have r(f(T'))=||/(T)|| for every bounded Borel function

fonsp (7). 3.1.3 shows how thoroughly the latter fails for operators at the opposite extreme
from normal operators.

3.2, Simple algebraic operators. In this section we consider simple algebraic operators,
that is, operators 7' for which C*(T) is simple and which satisfy a polynomial equation
p(T)=0. A natural question is, to what extent is such an operator determined by its
minimum polynomial p? The most obvious examples of simple algebraic operators are
irreducible operators on finite-dimensional spaces; but even here there is apparently
little relation between the minimum polynomial of 7' and, say, C*(T'). In infinite di-
mensions, the situation is more complicated by the fact that algebraic operators have no
particular tendency to generate type I C*-algebras. Consider, for example, an operator
To€L(H) such that C*T,) is an infinite-dimensional UHF algebra [7] (such operators
exist, by [28]), and define T€L(C*® ) by the operator matrix

0o I T,
T=(OOI)-
00 0

A laborious but routine calculation shows that C*(T') is the algebra M,®C*(T) of allt
3 x 3 matrices over C*(T,), which is again a (simple) UHF algebra. Clearly T'3=0, and
thus we have a simple algebraic operator for which C*(7T') is antiliminal (the preceding is a
modification of an example due to C. Pearcy). Indeed, this observation shows that for
every simple operator Ty, M,®C*(T,) has the form C*(T) for some simple algebraic
operator 7. Since a great variety of separable C*-algebras are singly-generated as C*-alge-
bras, the situation for general simple algebraic operators is about as complicated as it can get.

It may be somewhat surprising, therefore, that in the presence of one additional
condition on norms (maximality), it is possible not only to predict the structure of C*(T')
from the minimum polynomial of 7', but also to classify such operators to unitary equiva-
lence (3.2.11-3.2.13).

Let T be a simple algebraic operator having minimum polynomial p(z)=(z —a;)™
(z—ay)™...(z—a,)". To avoid trivialities, we will always assume that 7' is not a scalar;
and there is no essential loss if we also require || 7']] =1. Since each @, belongs to the spectrum
of T, we conclude from 3.1.3 that |a,| <1. Let ¢ be the Blaschke product having p as its
numerator:
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w(z)=(f_“1)"'...("‘“'°)"*, 2] <1.

— ;2 1-a.z2

Note that y(7") =0 and A(T') =0 for every proper divisor 4 of y (proper means non-propor-
tional). A divisor g, of y is called large if its degree is one less than the degree of y; these

1—a
- 12.2) y(z), for 1<i<k. Now if y, is any proper divisor of
W

are of the form w,(z)=(

then it follows that |lye(7')|| <1 (because the closed unit disc is a spectral set for T'); we
shall call 7 maximal if there is a large Blaschke divisor v, of ¢ for which |lyo(T)|| =1.
Note that this entails ||A(T)|| =1 for every Blaschke divisior 4 of v, (indeed, |[A(7)]| <1
is automatic, and if wy=A4,4 where 1, is a Blaschke product then we have 1=||yo(T)|| <
14| - JAD)|| < JAT)). So for example, if the minimum polynomial of T is p(z)=

2", »>1, then T is maximal iff ||T|=[T?%)}=...=||7""*||=1. One exemple of such a
T is given by the operator on ¢*®@$) whose matrix is
0T, 0.. 0
0 0 T,... 0
0 7,
0 0 0
where T,€L() and ||Ty)|=...=||Toall =1 T1 T2-. Tuss]| = 1.

Another way maximality could be defined is to require ||A(T)|| =1 for every proper
divisor 4 of , or what is the same, ||[yo(T)|| =1 for every large divisor y,. While this appears
to be stronger than the above definition, the results below imply that the two are in fact
equivalent.

The first few results provide some facts about certain special maximal operators.
H?, as usual, denotes all functions in L? (of the unit circle) whose negative Fourier coeffi-
cients vanish, and for an inner function y, S, denotes the projection of the unilateral shift
S, (i.e., multiplication by e®, qua an operator on H?) onto H2©yH?. It is a familiar fact
that, for every « €0, |a| <1, the function e,(e®) = (1 — | |2)} (1 —&¢*)~ is a unit eigenvector

for 8% having eigenvalue &.

LemyA 3.2.1. Let y be an inner function and let « be a zero of y in the interior of the unit
disc. Then Ae, € H2OypH? for every divisor A of (Z_TO:) p(2).

Proof. Let p, be the inner function ( OZ) y(2), and let 4 be a divisor of y,. Then

o =Au for some inner function u, and hence y(z) = (%z) Au. Clearly e, € H2; and for
every g€ H?2 we have
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(Aea 9g) = (Aeqs (Sy—al) (I ~a8,) 7 Aug) = (€q; (S, —al) (I —28,)7 ug)
= ((8% —al)e,, (I -&S,) " ug) =0,
because “multiplication by ¢ is an isometry which commutes with S, and because 8% ¢, =
&e,. Thus, ye, € H2Oy, H?, as asserted.
Note, in particular, that e, € H2QpH? for every zero « of y in the interior of the unit
dise.
CoROLLARY 3.2.2. Let y be a finite Blaschke product of degree>2. Then ||S,| =1,

and 8, is @ maximal contraction whose minimum polynomial is the numerator of y.

Proof. It is clear that y(S,)=0 (for if f€ H2OypH?, then w(8,)f=vy f€pH?, so that
p(8,)f=Py(S,)f=0, P denoting the projection of H2 on H*OyH?); so if p is the numerator
of ¢ then we have p(§,)=0.

Since g is not constant, it must have at least one zero « in the interior of the unit

disc. Let wo(z)=(

lwolS )| = llwe(Sy)eall = [ Pwo-eall = llwo€al| =1, because |yy| =1 identically on the unit
circle and ¢, is a unit vector in L2,

1_“2) p(2). We claim that [[,(S,)||=1. Indeed, by 3.2.1 we have

22—

Note that the preceding paragraph actually shows that ||y,(S,)|| =1 for every large
divisor y, of y. It follows that ¢(S,) =0 for every polynomial q properly dividing p, so that
p is the minimum polynomial of S,,.

All that remains is to show that |8, || =1. Note that one inequality is immediate from
8l = |PS+|mepe]| <||S4|| =1. Now if y, is constant, then p has degree 1, and this con-
tradicts the hypothesis. So 1, necessarily has at least one zero § inside the unit disec.
Thus y, can be factored

Yole) (f—;,%) p1(2)

where g, is an inner (in fact, Blaschke) function. Now we have |[(S,)]| <1 (because
the unit disc is a spectral set for S, see [18], p. 442) and hence 1=[jye(S,)|| <[|(S,—
BI)(I—BS,)|. On the other hand, if ||S,]=r<1, then the (closed) disc of radius r is a
spectral set for S, so that

| (Sy— BI) (I = BSy) || < Sup

zl<r

<1,

z2—f
1-82

contradicting the above inequality. We conclude ||:S

»| =1, and the proof is complete.

LemMMA 3.2.3. Let p be a nonconstant inner function. Then 1 —p(0)y is a cyclic vector for
8, in H2OyH?
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Proof. Note first that |(0)| <1, by the maximum modulus principle, so that (1—
1/)?)1,0)“1 is bounded; in particular, 1 —W)«p is an outer function.

Next, observe that 1 —1/7(6)1/) €EH:oyH?. Indeed, if g€EH? then (1 —W)zp, vy) =
(1, (p —p(0))g) =0 since (p —y(0))g vanishes at the origin. Thus, 1 —}p_(f)-)rp is orthogonal to
wH?, and it clearly is in H2.

Now let P be the projection of H2 on H2CpH?. If g€ H? is such that g L Sy (1 —’l/J_(O—)’l/))
for every n >0, then Pg 1 S%(1 ——’(/J—(()_)tp, n=0. Now 1 —;(6)1/; is eyeclie for S, (since it is an
outer function), so that Pgl H2. Therefore, Pg=0, or g€ypH? and this proves that
H2oyH*c [Sy(1 —W)w): 720]. The conclusion follows.

CoroLLARY 3.24. Ify is a finite Blaschke product and « s a zero of v, then e, is a
: —&z) y(2), then H2OyH? is linearly spanned by
o

cyclic vector for S,,. Moreover, if py(z)= (
{pe.: @ ts a Blaschke divisor of y,}.

z—

Proof. We prove the second statement first. Let «;, ..., &, be the zeroes of p, repeated
according to multiplicities. Then clearly there is a polynomial p of degree n such that
»(8S,) =0 (the numerator of y is one such), and by 3.2.3 §,, has a cyclic vector f; it follows
that H2OyH? is spanned by f, S,f, ..., S; "' so that the dimension of H2OyH? is at most n.
Now by 3.2.1 we have Ae, € H2OpH? for every divisor A of y,, so it suffices to show that there
are at least » linearly independent elements of the form Ae,, 4 dividing 9. This we can do
as follows. Suppose a=a,. Then put 1,=1 and

_ zZ2—0 2~ 0
hie)= (1 _5‘12) (1 —al-lz)’

for 1<j<m. Clearly {A,e,, ..., Ane,} is a linearly independent set of functions, and 4|y,

by construction, so the second assertion follows.

The fact that e, is cyclic is an immediate consequence, for if P denotes the projection
of H2 on H:OyH?, then for 1 <j<n we have, using 3.2.1 again, 1,(S,)e,=PA(S,)e,=
Pl,e,=A,e,, and so [A,(S,)e,: 1<j<n]=H2OpH? That completes the proof.

COROLLARY 3.2.5. Let  be a nonconstant finite Blaschke product and let y, be a large
divisor of w. Then P(8,,) is linearly spanned by operators of the form A(S,,), where 2 is a Blaschke
divisor of .

Proof. Let X €P(8S,) and let « be the zero of y/y,, inside the unit disc. By the second
statement of 3.2.4, there are divisiors 4y, ..., 4, of y, and scalars c,, ..., ¢, such that Xe,=
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> Cehye,. Putting Xo=2, exAx(Sy), then we have Xe,=X,e,, and X =X, now follows from
the first statement of 3.2.4, completing the proof.

Now let T' be an algebraic operator on a Hilbert space such that ||7|| =1, and the
spectral radius of 7' is less than 1. Let ¢ be the finite Blaschke product which has the
minimum polynomial of 7' as its numerator. In the next two results we prove that if 7'
is maximal, then the map p(T)+p(S,) (p running over all polynomials) is a completely
contractive map of P(T) on P(S,).

LeMMA 3.2.6. Let T be an algebraic contraction on a Hilbert space §), such that the spectral
radius of T s less than 1, and let y be the Blaschke product associated with the minimum poly-
nomial of T'. Assume there is a unit cyclic vector & for T' such that |[yo(T)&| =1 for some large
Blaschke divisor vy, of . Then T is unitarily equivalent to 8.

Proof. Let U be the minimal unitary dilation of 7'; we can assume U acts on 29,
and 7" =PU"|p, n>0, where P is the projection of & on §. First, we claim A(U)&=A(T)&
for every Blaschke divisor 1 of y,. Indeed, since || =1 on sp (U)< {|z| =13}, it follows
from the operational calculus for normal operators that A(U) is unitary. Note also that
A(T)E|| =1. For ||A(T)&|| <||A(T)|| <1 because the closed unit disc is a spectral set for 7',
and if y is the Blaschke product satisfying y,=uld then we have 1 =|yp(T)&| =
|(TYAT)E|| < JJAUT)E]|, because ||u(T)|| <1 (as above). Now we can write

AU)E —MT)E|[2 =12 Re (AUV)&, (T)&)+1 =0,

because (A(U)E, A(T)&) =(PMOYE, A(T)E)=(MT)E&, A(T)€) =1, proving the assertion.

Now p(z)/py(2) has the form (z —a)/(1 —&2) for some «€C, |«| <I. Define the unitary
operator ¥V on & by V=(U—al)(I—-aU) L. We will define a unitary mapping of [V":
n=0, +1, +2, ...] on L¥T) (T denoting the unit circle) as follows. Note first that V& L V"
if m #+n. Indeed, if =1 then

PV yy(U)§ = PV 'p(U)E = PV"'Py(U)§ = PV 'p(T)& =0,

because (z— a)/(1 —&z) 4 (2) =(z) and the map X +> PX |4 is multiplicative on P(U). It
follows, because y,(U) is a unitary operator commuting with ¥, that

(V7E, &) = (Vo U)E, po(U)E) = (Vypo(D)&, wo( T)§) = (PVyo(U)§, wo(T)€) =0,

(note that we used the fact that po(U)&=vy,(T)&). The conclusion V*§LV™E (n4m) is
now an immediate consequence of the above. On the other hand, if e,(e®)=(1—|a|%)}
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(1—-ae®) and u(e®)=(e® —a) (1 —&e®)~1, then a routine calculation shows that {u"e,:
n=0, +1, +2, ...} is a complete orthonormal set in L*T). Therefore,

+00 +00
L: Y e, V> 2 cpule,
) —o0

defines a unitary map of [V™¢: n=0, +1,...] on LZA(T). If 8 denotes the bilateral shift on
L(T), then the definition of L implies L(U — ) (I —aU)t=(8 —al)(I —&S)1L, and an-
other calculation (i.e., solving the equation w = (z —a) (1l —&2)! for z) shows that LU =SL.

We claim:

i) [V & n=0]=[U"H: n=0],
(ii) L[V"&: n>0]=H?, and
(iii) L([V"E: n=0]0H) =ypH2.

Note that (i)-(iil), together with LU =S8L, imply the conclusion of the lemma. To see
that it does, note that M=[V"&: n>0]0H=[U"H: n=0]QY is a U-invariant subspace
of & (since §) is semi-invariant for U) and [U"$: n=>0] © M=, and thus L maps § onto
H2oyH?; and from this and the equation LU = SL, it follows in a routine manner that the
restriction Ly of L to § is a unitary map of § on H2QyH? which intertwines the projection
of U on § (i.e,, T) and the projection of 8 on H2OyH? (i.e. 8,). That is what the lemma
requires.

For (i), note that V=(U—al)(I—&U)! implies U=(V+al)(I+aV)l, so that
(V& n20]=[U": n>0)]. Clearly this is contained in [U"H: n>0] because £€$; on the
other hand, since vectors of the form A(T)& =A{U)& span § (for A a divisor of y,, by the first
paragraph of the proof), we have H < [U"&: n>>0], proving (i).

For (i), we have by definition of L that L[£, V&, V2, ..1=[e,, ue,, u%,, ...]. Now §
and the operator “multiplication by %’ are related in the same way as U and V; hence by
the preceding paragraph we have [u”,: n>0]=[S",: n=0]. Since ¢, is an outer function in
Hz2, it is a cyclic vector for S, and thus [S",: n>0]=[S%e,: n>0]=H2,

Next, we claim L§) = H2OyH?,; (iii) follows from this, (i) and (ii) by taking orthogonal
complements in [V"£: n>0] and H?, respectively. Let D be the set of all Blaschke divisors
of y,. Now if A€ D then by the first paragraph of the proof we have A(T)&=A(U)¢, so that
LAT)E=LAU)E=MS)LE=A(S)e, =A-e,; 3.2.4 shows that [A-e,: A€D]=H2OpH?, so that
L maps [A(T)&: A€ D] onto H2OpH?. On the other hand, T and S, have the same minimum
polynomial (by the definition of y), and so p(S,)+~p(T) (p ranging over polynomials) is
an algebra isomorphism of P(S,,) on P(T'). Now by 3.2.5 P(S,) is spanned by {A(S,): A€D}.
Since [P{T)&}= § by hypothesis, we conclude that
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LY = LIAT)E: A€D] =[A-e,: A€ED] = HXOypH?,

as required.
The proof is now complete.
The next theorem supplies a key step in the proof of 3.2.11, and seems to be of some

interest in itself.

TaeorEM 3.2.7. Let T be an algebraic contraction on a Hilbert space, such that the
spectral radius of T s less than 1, and let y be the finite Blaschke produét associated with the
minimum polynomial of T. Assume ||1po(T)|| =1 for some large Blaschke divisor vy, of v.
Then the map p(T)+>p(S,) ( p ranging over all polynomials) extends to a completely contractive
homomorphism of P(T) on P(8,).

Proof. We will construct a representation = of C*(T) on a Hilbert space §), and a unit
vector £€§ for which |[yy(m(T))&[|=1. Letting $,=I[&, n(T)&, n(T)%, ...], then clearly
the map X €P(T)+>n(X)|g, is a completely contractive homomorphism of P(T), and by
3.2.6 this map is unitarily equivalent to the given homomorphism p(7T') > p(S,,). Thus the
theorem will follow.

7t is obtained as follows. yy(T')*y,(T) is a positive operator of norm 1 in C*(T), so there
is a state g of C*(T') such that g(y(T)*p,(T)) =1. Simply let 7 be the canonical representa-
tion of O*(T) associated with ¢ and let & be the unit vector for which (7(X)¢&, &) =p(X),
X €C*(T). Clearly yo(w(T)) =n(yy(T)), and we have |lyo(7n(T))E||2 =0(wo T)*yo( T)) =1. That
completes the proof.

The following result will not be used in this section, but is of some interest for the

guestions taken up in section 3.6.

CoROLLARY 3.2.8. Let y be a nonconstant finite Blaschke product. Then every isometric
representation of P(8,) is completely isometric. (Representations are defined in 2.3.)

Proof. Let ¢ be an isometric representation of P(S,). By 3.6.8, ¢ is completely contrac-
tive. Let y, be any large divisor of y. 3.2.2. and the subsequent remark show that
l[wo(Sy) ]| =1. Letting T =¢(8,,), it follows that [jy(T)|| =1, because g is isometric, and we
conclude from 3.2.7 that ¢! is completely contractive. The proof is complete.

Our next step is to show that for operators T as in 3.2.7, the map p(T) > p(8,) is
implemented by a representation of C*(T') (3.2.10). At this point, because we have the
preceding corollary, it would be possible to prove 3.2.10 using the general results of sections
3.3 through 3.6. In this special case, however, it is possible to give a more direct proof
which, we feel, may be of some interest in its own right.

Let $ be a Hilbert space. Récall that a conjugation of § is a conjugate-linear isometry
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y of §) onto itself such that y2=1I (i.e., y~1=9). Let A4 be a subalgebra of L(). The existence
of a conjugation y of § for which yT'y =T*, for all T€ 4, is an indication of symmetry
between 4 and A4*; note, for example, that this implies that if /4 has a cyelic vector then so
does A*. Note also that the condition yT'y =T*, T € A, implies 4 is abelian (for S, T€ 4
we have T*5* = (8T')* =ySTy =ySyyTy =8*T*). If one requires such a symmetry condition
for noncommutative algebras, it is necessary to incorporate an anti-automorphism 7'+ 7%
of A as follows: yT*y =T*.

Let @ be a representation of a subalgebra A of a C*-algebra B, on a Hilbert space .
A unit vector £€§ is called a special vector for ¢ if {a€A4: ||p(a)é|| =]||a||} has all of 4 as
its closed linear span, and in addition & is cyclic for ¢(d4). The next result is more general
than we shall actually require.

THEOREM 3.2.9. Let A be a commudative closed subalgebra of a (perhaps non-commu-
tative) C*-algebra B, such that e€ A and B =C*(A). Let p be a completely contractive representa-
tion of A on a Hilbert space §, satisfying:

(i) @ has a special vector, and
(i) there exists a conjugation y of § such that yp(a)y =p(a)*, a€A.

Then @ is implemented by a representation nm of B. Moreover, n is the only completely
positive linear extension of ¢ to B.

Proof. Note that by 1.2.8, there is a (unique) completely positive extension of ¢ to
the closure of A +4*, which we denote by the same symbol ¢. By 1.2.3, there is at least
one completely positive extension of ¢ to B. Note, then, that the theorem will follow if
we prove that every completely positive extension of ¢ is a representation; for two repre-
sentations of B which agree on A must agree on B=C*(4).

Choose any completely positive extension ¢,: B—~L($) of ¢. By Stinespring’s theorem
(1.1.1), there is a representation w of B on a Hilbert space & and an isometry Ve€L(H, &)
such that V*w(x)V =g, (), and [w(B)VH]=8.

First, we claim w(4)VH<=VE. Let £ be a special vector for ¢ and put S={a€A4:
lp(@)é|| =|la|l}. If a €S, then

|lw(@) VE— Vo(a)&||? = ||w(a) VE||2—2Re (V*w(a) VE, p(a)é) + || Vola)&]?
= (@) VE[[2 — |lp(a) €]|? = ||eo(a) VE[2 ~ [|a}[*< 0.

Thus, w(a) V& = Vp(a)& holds for all a €S. Since A is the closed linear span of 3, this identity
in fact holds for all a€ 4. It follows that w(a) Vi=Ve(a)l, a€d, [€D; indeed, if ¢, b€EA
then w(a) Vo(b)é =w(a)w(®d) VE=w(ab) VE=Ve(ab)é = Ve(a)@(b)é, and the assertion follows
from the fact that [p(4)§)=$. The desired property, w(4)VH< VY, is now immediate.



SUBALGEBRAS OF C*-ALGEBRAS 191

Next, we claim that w(4*) VH< V. Indeed, |40 is a (completely contractive) repre-
sentation of A*, and if we can show that ¢ | has a special vector, then the assertion follows
from the same argument as in the preceding paragraph. Let  be the conjugation described
in (ii). We claim: p£ is a special vector for @|.. Indeed, [p(A*)yE]=[p(A)*E] =
[yp(4)y*]=yH =9, because & is cyclic for p(4). Moreover, if €S, then [pd*)y&| =
lye® & =llp®)€|| = ||b]| = ||b*||, so that {c€A*: |gp(c)yé||=]|c|} contains §* since S*
spans A* (because S spans 4), we see that & is a special vector for g| 4. As we pointed out
already, this implies w(4*) VH<V §.

Thus, V§ isinvariant under w(4) U w(4)*, and hence w(B) VH < V. Since [w(B) V9l=
8, it follows that ¥ is unitary, and hence @, = V-V is a representation. That completes
the proof.

We remark that if ¢(4) is an irreducible family of operators, then z is an irreducible
representation of B, and hence 3.2.9 implies 7 is a boundary representation for 4.

The decisive step in the proof of 3.2.11 can now be taken.

CoroLLARY 3.2.10. Let T and y be as in 3.2.7. Then there is a representation 7 of
C*(T) such that n(T) =8,

Proof. Detine ¢: P(T)—P(8,) by ¢(p(T))=p(8,), where p is an arbitrary polynomial.
By 3.2.7, ¢ is a completely contractive homomorphism, and we want to show that ¢ is
implemented by a representation of C*(T'). By 3.2.9, it suffices to show that ¢ has a special
vector, and that there is a conjugation y of H2OypH? such that yS,y =8,*.

For the special vector, let o be a zero of 1 inside the unit dise, and let e, be as in 3.2.4.
Let D be the set of all Blaschke divisors of y(z) = 1-% 9(2). 3.2.4 shows that e, € H2OpH?
z—a

and 1-¢, € H*OpH? for every A€D. Thus, if P denotes the projection of H? on H2OwH?,
we have

1268 p)eall = |1 PAS ) eall = | P2- €] = ||A- e[| =1.
Since [|A(T)]] <1 (because the unit disc is a spectral set for T'), we see that {XeP(T):
lp(X)e,|| =1 X||} contains {A(T'): A€ D}, and the latter spans P(T) by 3.2.5 and the fact
that ¢ is a vector space isomorphism. e, is cyclic for P(8,)=@(P(T)) by the first sentence
of 3.2.4. Thus, e, is a special vector for ¢. '

We now define the conjugation y. First, define y,: L(T)~>L¥T) (T denoting the unit
circle) by p,f(e®)=e=®p(e®) f(e®), fELT). Clearly y, is a conjugate-linear isometry for
which yf=1. Moreover, if S denotes the bilateral shift and fELXT), then y,Sf(e?)—
e=2%(e®) f(e®®) = (8%, /) (¢®). Thus, Y187, =8*% A routine caleulation now shows that
{f: e HOpH?} =2p(H2OpH?) (where 2 € LX(T) is the funetion 2(e®) =¢™®), which is equiva-
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lent to the assertion y,(H*OyH?)=H2OyH?. Thus, y=y,|meym i8 a conjugation of
H2oyH2

We claim that y, P =Pyj, where P is the projection of L¥T) on H2©ypH?. Note first that
the usual polarization argument shows that ()£, y,19) =(g, f) for all f, g€LAT), and since
v3=1 it follows that (y;f, g)=(y.9, f). Thus, noting that Py, P=9,P (by the preceding
paragraph), we can write

(1Pl 9) = (PyiPf, 9) = (nPf, Pg) = (n Py, P) = (P Py, f)
=1Pg, ) = (nf, Pg) = (Pyi f, 9),
for all f, g€L¥(T), proving that Py, =y, P.
8,y =8,* now follows, for if { € H* QyH? then we have yS,y{ =y, PSy,{ =Py, 8y,{ =
PS8*;=8,*{, as required. The proof is complete.
We can now state the principal result of this section.

THEOREM 3.2.11. Let T be a simple algebraic operator of norm 1, and let v be the finite
Blaschke product associated with the minimum polynomial of T. If T is maximal, then it is
unitarily equivalent to an operator of the form I® 8, where I is the identity operafor on some
Hilbert space. C*(T) is x-tsomorphic with M,, n being the degree of the minimum polynomial
of T.

Proof. By 3.2.10, there is a representation 7z of C*(T) such that n(T')=S8,. ker 7 is an
ideal in C*(T') which is not all of C*(7"); therefore ker =0 by simplicity. It follows that
o=n"! is a representation of C*(S,), and of course o(S,)=T. Now S, is an irreducible
operator on H2GypH? and the latter has dimension n (cf. the proof of 3.2.4); therefore
C*(8,)=L{(H*©yH?), which is (s-isomorphic with) M,. Now a familiar variation of a
classical theorem of Burnside asserts that every representation of the (*-algebra L()
(for § finite dimensional) is equivalent to a multiple of the identity representation. Thus,
o is equivalent to a representation X €C*(8,)—~I®X, where I is the identity operator on
some Hilbert space. In particular, T'=0(8,) is equivalent to I®S,,

We have already observed that C*(S,) is isomorphic with M, and so the last sentence
of the theorem follows because ¢ is a faithful representation. That completes the proof.

We remark that a converse of this theorem is obvious, namely, /®S,, is a maximal
simple algebraic operator of norm 1 (3.2.2). Moreover, I®S, determines uniquely the
dimension of I (if dim I =m, then the commutant of C*I®8,)=I®C*(S,) is L(RK)® 1,
R being the space on which I acts, which is a factor of type I,,). This gives a complete
classification, to unitary equivalence, of all maximal simple algebraic operators of norm 1
which have the same minimum polynomial as 7.

In particular, we have:
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CorOLLARY 3.2.12. Two irreducible maximal simple algebraic operators. of norm 1
are unitarily equivalent if, and only if, they have the same minimum polynomial.

Noting that irreducible operators on finite dimensional spaces are always simple
and algebraic, we have the following application to matrices which, so far as we can tell,

is also new.

CorOLLARY 3.2.13. Let 8 and T be irreducible operators of norm 1, acting on finite-
dimensional spaces § and &, respectively. Suppose S and T are maximal, and have the same
minimum polynomial. Then dim H=dim &, and S and T are unitarily equivalent.

3.3. Almost simple operators and the commutator ideal in C*(T). In this section we define
a class of operators and C*-algebras and collect some general results for use later on. This
material provides a general setting for the problems taken up in the remainder of chapter 3.

Because we shall be considering ideals in C*-algebras as separate entities and because
ideals rarely contain an identity, we shall deviate from our usual assumption about the
presence of an identity; in this section (and in this section only), C*-algebras may or may not
contain an identity. Our terminology for representations, etec., follows [4].

Let B be a C*-algebra, which need not contain an identity. The term ideal always
means closed two-sided ideal; thus, ideals are necessarily self-adjoint. The commutator
tdeal in B is defined as the ideal generated by all elements of the form xy —yz, =, y€B.
We write this ideal as Comm (B); if B=C*(T') for some operator T on a Hilbert space,
then the commutator ideal is written simply as Comm (7).

It is clear that the quotient B/Comm (B) is commutative. Conversely, if K is any ideal
in B such that B/K is commutative, then K must contain Comm (B); hence, Comm (B)
is the smallest ideal in B having a commutative quotient. Comm (B) can be 0 (for B
commutative) or it can be all of B (for example, when B is simple). There is also a close

relation between Comm (B) and characters (i.e., nontrivial complex homomorphisms)
of B:

ProrosiTION 3.3.1. Comm (B) is the intersection of the kernels of all characters of B
(¢f B has no characters the infersection is taken as B itself).

Proof. Suppose first that B has no characters. We claim Comm (B) = B. For if
Comm (B) =+ B, then B/Comm (B) is a (nonzero) commutative C*-algebra, which therefore
has at least one character w; and thus the composition of w with the quotient map of B
onto B/Comm (B) gives a character of B. Contradiction.

Assume, then, that B has characters. Every character must vanish on Comm (B),
so that one inclusion is obvious. Conversely, suppose € B is such that y(x) =0 for every
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character y. Then we claim x €Comm (B). If Comm (B) = B, there is nothing to prove, so
assume Comm (B)==B. Consider the coset representative & for x in B/Comm (B). Since
the quotient is a (nonzero) commutative C*-algebra, there is a character w of B/Comm (B)
such that ||£|| = |w(%)|. But x(z) =w(2) is a character of B, so by hypothesis, w(%) =y(x) =0.
Thus, #=0 and so x€Comm (B), as asserted.

By analogy with the commutator subgroup of a group, one might at first expect to
obtain an entire sequence of ideals by taking Comm (B), then the commutator of this sub

C*-algebra, and so on. In fact, the process stops after the first step.
CoroLLARY 3.3.2. Comm (Comm (B)) = Comm (B).

Proof. By 3.3.1, it suffices to show that Comm (B) has no characters. Suppose it
does, and let w be one. Then w extends uniquely to a character w, of B ([4], p. 52). But then
we have Comm (B)<ker w,, and hence the restriction of w; to Comm (B) is 0, a contradic-
tion.

We shall require another simple algebraic fact.

ProrosiTiON 3.3.3. Let B be a C*-algebra with identity, and let S be a self-adjoint
subset of B such that B is generated, as a C*-algebra, by S and the identity. Then Comm (B) is
the (closed) ideal generated by {xy —yx: x, y€S}.

Proof. For x, y€ B, write [, y] for the commutator 2y —yz. Let K be the ideal gene-
rated by {[z,y]: z, y€S}. Evidently K <Comm (B), and we need only prove the reverse
inclusion.

Define B,={z€B: [z, S]= K}. From the identities [2*, y]= —[y*, 2]* and [y, z]=
x[y, z]+ [z, 2]y, and the fact that 8 =S¥, it follows that B, is a self-adjoint subalgebra of B.
Clearly B, is norm-closed, and contains S as well as the identity e of B ([e, 21=0 for all
2€ B). Thus, By= B, and we have [B, S]< K. Taking the adjoint of this condition we see
that —[8*, B*]c K*, or [S, B]< K. The argument can now be repeated with B in place of
S to obtain [B, B]< K. Since Comm (B) is the smallest ideal containing [B, B}, it follows
that Comm (B)< K, completing the proof.

CoROLLARY 3.3.4. Let T be an operator on a Hilbert space. Then Comm (T') is the ideal
(tn C*(T)) generated by T*T —TT*.

Proof. Simply take S = {T, T*} and note that [S, S] generates the same ideal as
{T*T -TT*}.
The “building blocks” for C*-algebras are the primitive ones (i.e., C*-algebras having

a faithful irreducible representation); the reason is that every C*-algebra is semi-simple,
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and is therefore a field of primitive C*-algebras over a compact (usually non-Hausdorff)
space [4]. For the moment, let us call an operator 7' primitive if C*(T') is a primitive C*-
algebra. Thus, every irreducible operator is primitive, and it seems too much to expect a
general classification of these operators in the near future, even with respect to algebraic
equivalence.

There is a subeclass of primitive operators which we feel is more tractable, and the bulk
of this chapter is devoted to a study of some of these operators. Recall that a C*-algebra
B is simple if it has no nontrivial ideals. A simple C*-algebra is automatically primitive
(indeed, every irreducible representation if faithful, because its kernel is an ideal+B,
which must then be 0 by simplicity). If the intersection of all maximal ideals in B is 0
{i.e., B is strongly semi-simple), then B is a field of simple C*.algebras in a way analogous
to the structure theory alluded to above [17], but not all C*-algebras have this property
(L(D) does not). The algebras that are of interest here can be described as extensions of

simple C*-.algebras by commutative C*-algebras, where the former need not contain an
identity. More precisely:

Definition 3.3.5. A C*-algebra B is called almost simple if Comm (B) is contained in
every nonzero ideal of B. An operator 7 is almost simple if C*(T') has that property.

In this definition, the commutator ideal is allowed to be 0. Thus, a normal operator
is almost simple; at the other extreme, a simple operator is almost simple. Here, we shall
be concerned almost exclusively with nonnormal almost simple operators; a class of examples
is described in 3.3.7.

Note that if B is an almost simple C*-algebra then Comm (B) is a simple C*-algebra
(the converse is false: consider the direct sum of a simple C*-algebra and a commutative
C*.algebra). In fact, it is easy to see that the following two conditions are equivalent to
almost simplicity, for a noncommutative C*-algebra B:

(i) Comm {B) is a simple C*-algebra.
(ii) for every ideal K in B, K N Comm (B)=0 implies K =0.

For many examples, however, (ii) is rather more difficult to verify than (i). The

following result provides a more tractable replacement for (ii).

ProrosiTioN 3.3.6. Let B be a noncommutative C*-algebra such that Comm (B) s
simple. Then B is almost simple if, and only if, it has a faithful irreducible representation.

Proof. Suppose first that B is almost simple. Then Comm (B) is a C*-algebra (nonzero,
because B is not commutative), and so there is an irreducible (nonzero) representation

7 of Comm (B) on a Hilbert space § ([4], p. 41). 7= extends uniquely to a representation
13 — 692908 Acta mathematica 123. Imprimé le 22 Janvier 1970
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7, of B ([4], p. 52) on . Now ker =, is an ideal in B, and we want to conclude that kers, =0.
But if ker 7, 40, then Comm (B)<ker x,, since B is almost simple, and this contradicts
the original choice of . Hence, m; is a faithful irreducible representation of B.

Conversely, let zz be a faithful irreducible representation of B on §). Let K be a nonzero
ideal in B; we must show K N Comm (B)=Comm (B). Let L be the ideal generated by
{xy: t€ K, y€Comm B}. Then L is contained in both K and Comm (B), and it suffices to
prove that L =0 (for then L =Comm (B), by simplicity of Comm (B)).

Since B is noncommutative and m faithful, we have a(Comm(B))=0. Thus,
[(Comm (B))$] is a nonzero z(B)-invariant subspace, so that [7{Comm (B))H]=9, by
irreducibility of z. Hence, [n(L)$] contains n(K)$, and the latter is not 0 because
K 40 and n is faithful. Thus, (L), and therefore L, is not 0. That completes the proof.

In particular, note that a noncommutative almost simple C*-algebra is primitive. We

can now describe a variety of almost simple operators.

CoROLLARY 3.3.7. Let T be an irreducible operator on a (necessarily separable) Hilbert
space §, of dimension greater than 1, such that T*T —TT* is compact. Then T is almost

simple. Moreover, Comm (T') ts the algebra of all compact operators on §.

Proof. Because T is irreducible and dim £>2, T' cannot be normal. Moreover, the
identity representation of C*(7T) is irreducible.

Let LC (§) be the C*-algebra of all compact operators on §. Then LC (£) is an ideal in
L (9), and so 3.3.4 shows that Comm (7T') is contained in LC (). On the other hand,
Comm (T') is an ideal in the irreducible C*-algebra C*(7') (nonzero because 7' is non-
normal), and so ([4], p. 53) Comm (T') is itself irreducible. But LC (§) contains no proper
irreducible C*-subalgebras ([4], p. 88), hence, Comm (T')=LC (§).

Since LC (D) is a simple C*-algebra, we now conclude from 3.3.6 that C*(T') is almost
simple.

Thus, every operator on a finite dimensional Hilbert space is a finite direct sum of
irreducible almost simple (in fact, simple) operators. For a general operator T'=T, +1T,,
T,=Trf, we have T*T — TT*=2i(T, Ty~ T,T,); thus an irreducible operator having com-
pact real or imaginary part is almost simple. The same is true of irreducible operators
which are “almost unitary” in the sense that both I —T*T and I—TT* are compact:
we consider some of the latter in the following sections.

We conclude this section with a final note on Comm (7'). One might wonder about the
structure of Comm (7') for general almost simple operators. 3.3.7 shows that Comm (7')

can be LC () for a number of examples. The following result shows that, in fact, Comm (7)
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is LC () whenever C*(T') is of type I (for our purposes, a separable C*-algebra B is type I
if whenever two irreducible representations of B have the same kernel then they are
equivalent; this definition is equivalent to a number of other natural properties [4]). We
shall make use of a theorem of A. Rosenberg [29], to the effect that if a separable C*-
algebra B has, to within equivalence, only one irreducible representation, then B is -iso-

morphic with the algebra of all compact operators on a separable Hilbert space.

ProrosiTioN 3.3.8. Let T be a nonnormal almost simple operator on a Hilbert space,
such that C*(T) is of type I. Then Comm (T') is x-isomorphic with the algebra of all compact

operators on a separable Hilbert space.

Proof. Comm (T') is nonzero, and it is separable because it is contained in the separable
C*-algebra C*(T'). As it has already been pointed out, Comm (7') is simple; hence any two
irreducible representations of Comm (7') have the same kernel, namely 0. Also, Comm (7')
is type I, because it is a nontrivial ideal in a type I C*-algebra (this follows, for example,
from the fact that a separable type I C*-algebra is postliminal [4], p. 168, p. 88). Thus, all
irreducible representations of Comm (7') are equivalent. The Rosenberg theorem cited
above now yields desired conclusion.

Note that the essential ingredient in the preceding is a proof of the (probably known)
fact that a separable, simple, type I C*-algebra is LC (£), where §) is separable.

Although most of the examples of almost simple operators in the following sections
do generate type I C*-algebras, we shall not make that an a priori assumption in stating
results.

Finally, we point out that the representations of certain almost simple C*-algebras

are determined in the following section.

3.4. The structure of C*(8,). In sections 3.5-3.7 we shall require certain information
about the C*-algebra generated by the projection of the bilateral shift onto one of its semi-
invariant subspaces. We need to know that such a C*-algebra is almost simple and type I,
the purpose of which is to give a description of its representation theory. The present
section is devoted to this discussion.

It is relevant, perhaps, to ‘point out that a description is given in [3] of the C*-algebra
generated by an isometry. While the problems of this section (as well as our methods)
are different from those of [3], it is of interest to note certain similarities in some of the
results; e.g., compare 3.4.2 with [3].

Our terminology here will follow [11]. Let ¢ denote normalized Lebesgue measure on
the unit circle T. Let z(e®) =¢®, and let L, be the operator multiplication by z in LX(T, do).
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Let H? denote all functions in L? whose negative Fourier coefficients vanish, and let y be
an inner function (i.e., y€H? and |y| =1 almost everywhere).

Let §=H20OyH? and let S, be the projection of L, on §. Since y takes on (scalar)
values of modulus 1 almost everywhere, it follows from 1.3.5 that S, is irreducible. We
shall show that I -8, S; and 7 -S,‘,',’ S, are compact; it will follow then from 3.3.7 and the
subsequent remarks that S, is almost simple and Comm (S,) is the algebra LC (§) of
all compact operators on §) (to avoid trivial exceptions, we assume y is such that H2OyH?
has dimension greater than 1). We begin with a routine formula.

Lemma 3.4.1. Let TEL(S), let T=UH be the polar decomposition of T (where H=
(T*T) and U is a partial isometry with initial and final spaces respectively [T*9] and [TH]),
and let P be the projection on the nullspace of T. Then

I—-T*T =P+ U*(I—-TT"U.

Proof. Simply note that I —P is the projection on [7*$]. Thus I —P=U*U, and we
have
I-P-U*I-TTU =U*TT*U = U*UH?*U*U = U*UT*TU*U = T*T,
from which the formula is evident.
Note that the ranges of the operators P and U*(I —-TT*)U are orthogonal; hence
I—T*T is compact (resp. has finite rank) if, and only if, 7 —TT™ is compact (resp. has
finite rank) and the nullspace of 7' is finite dimensional.

TaroreM 3.4.2. I-8,8; and I—8;8, are both of finite rank; 8, is almost simple,
and Comm (8,)=LC ().

Proof. We only need to point out that I—8, 8, has finite rank and S, has finite
dimensional nullspace; the remaining assertions follow from the preceding remarks and
3.3.7.

Note first that I —S,, Sy has rank 1. Indeed, the rank is at least 1 because S, is not an
isometry (for example, the powers of S; tend strongly to 0). Let P be the projection of
L? on H? and let § =Pl . Then Ipa— SS* is the projection on the one-dimensional space
of constant functions, § is invariant under S* and of course S, =Pg S|p. Thus, using

PgSPg=Pg S we can write
8,8y = PgSPyS*|g = Pg88* |5 = Pg(I;n — (I;n — 88*)) |s =I5 — Py (I — 88%) |

and thus Ig — 8,8, = Py (I;» — 88*)|g has rank at most 1.
Now let f belong to the nullspace of 8,. Then in particular f€ H% and Pgzf=0, or
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zf€ypH?, and hence zf€H2. On the other hand, f LyH? implies WGH“:E{ so that
zpfeHEN H2. Tt follows that f is a constant multiple of Zy, and we conclude that the null-
space of 8, is of dimension at most 1. That completes the proof.

We shall now find the characters of C*(S,). First, extend y analytically to the interior
of the unit dise D ={|z| <1}, so that the radial limits of the extension agree almost every-
where on the unit circle T={|z| =1} with the original function. Let Z,, be the “zero set”
of y; i.e., Z,, consists of the zeroes of y inside D, along with all points 4 on T for which y
cannot be continued analytically from D to A. It is known that Z,, is the spectrum of §,,
([10], p. 74; note that it is the spectrum of S}, rather than 8, that is described there).

Let T+ 7' be the canonical quotient map of 0*(8,) onto C*(S,)/Comm (S,). Since the
quotient is the abelian C*-algebra generated by §,, and the identity, there is an obvious
homeomorphism between the maximal ideal space of C*(S,)/Comm (S,) and sp (S,,,).
At the same time, there is a natural bijective correspondence between characters of C*(S,,)
and characters of C*(S,)/Comm (8,) (cf. 3.3.1); thus the characters of C*(S,) correspond
one-to-one with points in the spectrum of §,. Of course, we have yet to find the charac-
ters (or equivalently, sp (S"w)).

Note first that if y is a finite Blaschke product then ) = H2OyH? is clearly finite-di-
mensional; if 9 is not a finite Blaschke product then §) is infinite-dimensional. The latter is
easily seen by making use of the structure theory for inner functions; for example, yp hasan
infinite linearly ordered set of nonproportional divisors, and these correspond to an in-
finite chain of distinct subspaces of §). We omit the details.

THEOREM 3.4.3. (i) If v is a finite Blaschke product, then § is finite-dimensional,
C*(8,) has no characters, and in fact Comm (8,) =C*(S,) =L(9).

(ii) Ifw is not a finite Blaschke product, then for every point A in Z,, N T there is a unique
character y; of C*(8y) for which y;(8S,)=A. X)) is a bijective correspondence between Z,,N'T
and characters of C*(8,). C*(8,)/Comm (8,) is canonically x-isomorphic with the continuous
functions on Z,NT.

Proof. (i) follows from the fact that S, is an irreducible operator on a finite dimensional
space; for then C*(8,) =L(9) and the latter is known to have no characters, and now 3.3.1
shows that Comm (S,) must also equal L(S).

Suppose now that y is not a finite Blaschke product. It follows that Z,, must have at
least one point in common with T. Let A be such a point. Then || =1=||S,||, and by the
preceding remarks 1 also belongs to the spectrum of §,,. 3.1.2 shows that there is a unique
character y; of C*(8,) such that y;(8,) =A. Now let ¥ be any character of C*(S,); we must
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show that 1 =y(8,) belongs to Z,NT. Clearly A€sp (8,)=Z,, (for if (S, —2)"1=T were to
exist, then 7 would have to belong to C*(8,,) and hence 1 =x(T'(S, — 1)) =x(T) (x(8,) —4) =0,
an absurdity), and it suffices to show that |1|=1. But y vanishes on Comm (S,) =LC (£),
and so by 3.4.2 we have 0=x(I -8, 8,)=1—|%(S,)|? as required.

The last sentence follows from the remarks preceding the theorem.

We turn now to more general representations of C*(8,). The following decomposition
procedure will be useful. Let B be a C*-algebra with identity, and let K be an ideal in B.
Let u and ¢ be representations of K and B/K, respectively, on §) and & (note that K need
not possess an identity; a representation of K is defined as a sx-homomorphism of K into
L(9) for which [n(K)$H]=5). We can manufacture a representation of B out of u and ¢
in the following way. Let z2+>2 be the quotient map of B on B/K, and let & be the unique
extension of u to a representation of B on ) ([4], p. 52). Define a representation = of B

on HOK as follows:
n(x) = plx)Do(E), x€B.

The following lemma shows that this process allows one to reduce the representation theory
of B to that of K and B/K. Note first that if 7 is a representation of K such that n(K)=0,
then there is already a representation o of B/K such that n(x) =o(%), x € B. So we assume, in
the following, that s(K)=+0.

LEMMA 3.4.4. For every representation n of B such that n(K) +0, there are representa-
tions u and o of K and B[K, respectively, such that r(x) =j(x) Do(a), x€ B.

Proof. Define §,=[n(K)$]. Then §, is a nonzero reducing subspace for n(B). Define
a representation u of K on §, by u(z) =7(2) |, , 2€K.

Now 7(K) vanishes on §3, so that the subrepresentation x,(x) =n(x) | o annihilates K.
Thus, there is a representation ¢ of B/K such that s,(x) =0(%), for € B. The required
decomposition 7(x) =ji(x) Do(%) now follows easily from ([4], p. 52).

If B is of the form C*(T) for some operator 7T, then a representation szt of C*(T) is
completely determined by the operator (7). It is convenient to specify representations
of C*(T) in this way, by simply giving their values at 7.

Now let T be an irreducible operator on a separable Hilbert space of dimension greater
than 1, such that 7*7 — TT* is compact. We can describe the representations of C*(T')
as follows. Suppose first that C*(7') has no characters. Then by 3.3.1, C*(T') =Comm (T'),
and by 3.3.7 we see that C*(T') must be the algebra of all compact operators. In particular,
the identity is compact and so the underlying space is finite-dimensional; hence C*(T')

is x-isomorphic with a (full) matrix algebra. A familiar theorem of Burnside asserts that
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every representation of C*(7T') is a multiple of the identity representation. Hence every
representation is equivalent to one defined by n(7') =1I® T, where I is the identity operator
on some Hilbert space.

Assume, now, that C*(7T') has characters. Note first that there are still representations
of the form n(T)=I® T, where I is as above. As a second example, let 7' be the image of
T in the quotient C*(T')/Comm (T), and let N be a normal operator on some Hilbert space
such that sp (N)<sp (7). Since both N and 7' are normal, we have by spectral theory that
l2(V)|| < ||p(T)| for every polynomial p in z and Z. Thus, there is a representation o of
C*(T)/Comm (T such that o(7") = N; and we obtain a representation n of C*(T) by taking
n(x) =c(£), x€CHT).

We claim, now, that every representation of C*(T') is equivalent to one or the other of
these two types, or a direct sum of both. By 3.4.4, it suffices to show that every repre-
sentation of Comm (7') is equivalent to a multiple of the identity representation, and for
every representation o of C*(7T)/Comm (T) the normal operator N =¢(7") has its spectrum
contained in sp (7'). But the second follows from the familiar fact that representations
shrink spectra, and the first follows from 3.3.7 and the fact that every representation of
LC (D) (for § separable) is equivalent to a multiple of the identity representation [29].

Applying this to 8, we have:

TureorEM 3.4.5. If y is a finite Blaschke product then every representation of C*(S,)
18 equivalent to one defined by 7(8S,) =I® 8, with I the identity operator on some Hilbert space.
If v is not a finite Blaschke product then for every unitary operator N such that sp (N)<=
Z,NT, there is a representation 7w of C*(S,) such that 7(S,)=N. Every representation of
C*(8,) ts either of this form, or is equivalent to a multiple of the identity representation (n(S,)) =

I®8,), or is a direct sum of these two.

Proof. We need only note that Z, N T is the spectrum of the image Sw of 8, in C*(8,)/
Comm (8,), by 3.4.3 and the discussion preceding it. The rest follows from 3.4.3 and the
preceding discussion.

COROLLARY 3.4.6. If y is a finite Blaschke product then every irreducible representation
of C*(8,,) is equivalent to the identity representation.

If y is not a finite Blaschke product, then the irreducible representations of C*(S,,) are,
to within unitary equivalence:

(i) the characiers corresponding to points in Z,N'T (distinct points giving rise to distinct
characters)

(ii) the identity representation.
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3.56. Boundary representations for P(S,). Let S,€L(H2OyH?) be as in the preceding
section. The question taken up in this section is, which irreducible representations of
C*(8,) are boundary representations for the algebra P(S,) of all norm limits of poly-
nomials in S, ?

According to 3.4.5, the irreducible representations of C*(8,,) are characters correspond-
ing to points in Z,, NT (which are absent when vy is a finite Blaschke product), and the
identity representation (up to equivalence, of course). By 3.1.2, the characters are all
one-dimensional boundary representations for P(S,). So the question reduces to this:
is the identity representation a boundary representation for P(S,)? As we will see, the
answer is sometimes yes, and sometimes no.

We begin with a general lemma. Let 4 be an algebra of operators on a Hilbert space
R, containing the identity, such that 4+ A4* is norm-dense in C*(A4). Let § be a semi-
invariant subspace for 4 such that [C*(4)9]=&. Define a (completely positive) linear map

¢: L(®)—=L(9) by
o(X) =P@X|5, X eL(R).

The restriction of ¢ to /4 is multiplicative, because §) is semi-invariant, hence J={4 € 4:
@(4)=0} is a norm-closed two-sided ideal in 4. We write id for the identity map of the
norm-closure of @(A4)+p(A)*.

LeMMa 3.5.1. Let u be a linear map of the norm closure of p(A) +@(A)* into L(D) such
that both u and id —u are completely positive. Then there is an operator T € L(&) with the pro-
perties

(i) O0<T<I, TeCH A

(i) TIDIS[AHIOH

(ili) pop(X)=@(TX), for all X € 4+ A*.

Proof. Since 4 + A* is norm-dense in C*(A4), p(C*(A)) is contained in the norm-closure
of p(A4) +¢(A)*. So we can define a linear map u,: C*(A4)~L($) by

i(X) = pop(X), XECHA).

Both u, and ¢ —u, are completely positive maps of the C*-algebra C*(4), so by 1.4.2 there
is an operator T €C*(A4), 0< T <1, such that u,(X)=¢(TX)=PgTX|g, X €C*(A). (i) and
(iii) are immediate, and we need consider only (ii).

Note first that ¢(7'J)=0. Indeed, if A€J then by definition of Jp(4)=0, hence
puop(A)=0 and thus p(7T4) =0, as required. Next, note that T[J] is orthogonal to [ 4*H].
For if £, n€9H, A€J and BE A4, then
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(TAE, B*n) = (BTAE, 1) =(TBAE, n) = (p(T'BA)¢, 1) =0,

by the preceding, because B4 € J. But since 4 + 4* is dense in C*(A4) and  is cyclic for
C*(A), it follows (as in the proof of 1.3.3) that [A*H]-=[AD]©H. Therefore (ii) is valid,
and that completes the proof.

As we shall see, this lemma is useful only when J is a “large” enough subset of A4;
indeed, if J=0 then (ii) is vacuous. On the other hand, note that [J$] is always contained
in [A49]09, and if equality happens to hold then (ii) becomes the requirement that 7'
leave the subspace [A4H]OH invariant.

The next lemma is known, and is only a minor variation of a construction in [11]}.
Let A4 denote the disc algebra, i.e., all continuous functions on the unit circle whose negative
Fourier coefficients vanish.

Lemma 3.5.2. Let K be a closed set of Lebesgue measure zero in the unit circle. Then
there exists a uniformly bounded sequence f, €A such that each f, vanishes precisely on K and
fo—1 uniformly on compact subsets of TN K.

Proof. We shall merely indicate how the proof of Fatou’s theorem on p. 80 of {11]
can be modified to prove this lemma. Let & be the function constructed there, and put
fo=€e"™". Then |f,| <e-¥™<1, and it is clear that f,€ 4 and tends to 1 uniformly on com-
pact subsets of T\ K (we are indebted to D. E. Sarason for pointing out essentially this
proof).

We can now state the main result of this section.

TEEOREM 3.5.3. Let p be an inner function such that Z,,N T has Lebesgue measure zero.
Then the identity representation of C*(8,,) is a boundary representation for P(S,).

Proof. We shall make use of the criteria of Theorem 2.4.5. It suffices to show that
the following three conditions are satisfied:

(i) P(8,) separates the identity representation of C*(S,) (cf. 2.4.4),
(ii) id|psy is a finite representation of P(S,) (cf. 2.3.1), and
(i) the restriction of id to the (norm) closure of P(S,,)+P(8S,)* is pure (cf. 2.4.2).

(i) is immediate from 3.4.5. Indeed, if H2OyH? is one-dimensional, then p is a single
simple Blaschke factor. By 3.4.5 id is the only irreducible representation of C* (S,), and the
separation property is trivial. Otherwise, the irreducible representations of C*(S,) which
are not equivalent to id are all one-dimensional (3.4.5 again), and since dim (H2QyH?)>1,
#d cannot be a subrepresentation of one of these.

(ii) follows from example 3 in section 2.3.
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We now establish (iii). Let u be a linear map of the closure of P(S,)+P(S,)* into
L(H*©yH?) such that both u and id —u are completely positive (on the closure of P(S,,) +
P(8,)*). We must prove that u is a scalar multiple of «d. In 3.5.1, take & =L*T, m) (m is
Lebesgue measure), take 4 to be the algebra of all multiplications L, by functions f€4,
and let  =H2OyH?. Since A + 4 is norm-dense in C(7), it follows that 4 + 4* is dense in
C*(A) (the latter consists of all multiplications by functions in C(T)) and that §) is cyclic
for C*(A4) (A.1.1 and A.1.3). Since polynomials in ¢ are dense in 4, polynomials in L,
are dense in 4; thus Pg 4 |g is a dense subalgebra of P(S,,). By 3.5.1, u has a representation
u(PyX|g)=PyTX|g for X €4+ 4*, where T is a positive operator in the commutant
of {L;: f€C(T)} such that T[JIDH]< [ADHIOPH, where J={Z€ A4 PgZ|5=0}. Now {L,
f€C(T)} is weakly dense in the multiplication algebra {L; f€L®(T, m)} (because C(T) is
weak*-dense in L%), and the latter is well-known to be a maximal abelian von Neumann
algebra. Thus, there is a nonnegative function h€L®(T, m) such that T =L,. We will com-
plete the proof by showing that % is constant.

We claim [J9] =[ADH]©H =yH? Let 4, be all functions in 4 which vanish on Z,nT.
Then pA, is a closed ideal in 4 ([11], pp. 68-69, p. 84), and note that J contains all multi-
plications by functions in pA4,. First, we show that [J] contains pH?2 For, if f, is the
sequence constructed in 3.5.2 (vanishing on Z,NT) and ¢ is in 4, then ygf, belongs to
w4, and tends boundedly and almost everywhere to g on T. An application of the domi-
nated convergence theorem shows that L,,, tends to L,, in the weak operator topology;
hence the weak closure of J contains {L,,: g€A}. It follows that [J$] contains y[A4H],
which is pH? by A.1.3. On the other hand, [4D]©H =yH? (A.1.3), and by the remarks
following 3.5.1 we know that [JD]IS[4D]O©H. Putting all of this together we obtain
pHAc [JH]S[ADIOH =pH?, and the claim is established.

The condition L,[JH]= [AD]OH now becomes hyHi=ywH2, or hH*< H2. Applying h
to the constant function 1 € H? gives h € H2, and since & is real-valued, we conclude that % is
constant. That completes the proof.

The argument in this proof is not reversible, and one might wonder if in fact the
theorem is valid for arbitrary inner functions . The answer is no; we shall indicate how the
results of the next section imply that if ¢ is an inner function such that Z, contains the
entire unit circle, then the identity representation is not a boundary representation for
P(8,).

Note first that it is easy to come by such inner functions. For example, let {1,} be a
countable dense subset of T, and take for y the Blaschke product having a simple zero at
each point {,=(1—-n-2)4, (cf. [11], p. 64; the condition >(1—|l,|)<co guarantees its
existence). Clearly every point of T is a cluster point of {{,}, and Z, 2T follows ([11], p. 68).
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To obtain a singular example, let u be the (singular) measure which assigns mass 2" to
each point 4, and mass 0 to T\ {4,, 45, ...}, and let y be the corresponding singular function
([11], pp. 68-69).

Now fix an inner function y such that Z, contains T, and let 4 be the disc algebra: as
before, to be regarded as a subalgebra of C(T). By 3.6.3, the mapping f€A~f(S,)isa
completely isometric representation of 4 on P(S,), and the same theorem shows that the
identity representation of C*(S,) is not a boundary representation for P(S,). This proves
the following:

TuEoREM 3.5.4. If p is an inner function such that Z,, contains T, then the identity

representation of C*(8,) is not a boundary representation for P(S,,).

The question of whether or not id is a boundary representation for P(S8,) in the inter-

mediate cases (Z, NT of positive measure but different from T) remains unresolved.(?)

3.6. Representations of the disc algebra. In the preceding section, it was shown that for
certain inner functions v, the identity representation of C*(8,,) is a boundary representation
for P(S,). We will show in this section how that fact leads to a complete classification
of certain almost simple contractions which possess ‘“‘minimum functions”, the latter being
an infinite-dimensional analogue of the minimum polynomial of a finite dimensional
operator (3.6.12). In a sense, these results generalize those of section 3.2.

It will be convenient, at times, to identify contractions with representations of the
disc algebra A (recall that A consists of all continuous functions on the unit circle T whose
negative Fourier coefficients vanish), in the following way. Let ¢ be a representation of 4
in L(9) (i.e., ¢ is a contractive homomorphism of 4 into L(§) for which ¢(1)=1I), and let
2€A4 be the function z(e”) =e®. Let T =g(z); then ||T|| <|2|| =1, so that T is a contrac-
tion. Conversely, if we start with any contraction 7 in L(f)), then because the unit disc is

a spectral set for T' ([18], p. 441), we have for any polynomial p:

| p(T) || < sup | p(z)| = sup | p(4)].
lef<1 AeT

2

Since polynomials are norm-dense in 4, there is a unique representation @, of 4 which
extends the map p+>p(T'). We sometimes write f(T') in place of p,(f), for f€ A. Thus, repre-
sentations of 4 correspond bijectively with Hilbert space contractions. Clearly, then, one
does not expect to classify general representations of 4, at least in the forseeable future.
We shall concentrate, instead, on those corresponding to almost simple operators T' which

fit well into the structure of 4, in an appropriate sense.

() Added in proof Nov. 16, 1969. By using the methods of Theorem 1 of [30], we have settled
this question in the affirmative.
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We begin with a description of the isometric representations of 4. It is desireable to
state this material for more general function algebras. Recall that a closed subalgebra
A of C(X) (X being a compact Hausdorff space) is called a Dirichlet algebra if 1€4 and
the linear space 4 + 4 is norm-dense in C(X) (the latter is equivalent to requiring that the

real parts of functions in 4 be dense in the set of real-valued continuous functions on X).

ProPOSITION 3.6.1. Let A be a Dirichlet algebra in C(X). Then every representation
(resp. isometric representation) of A is completely contractive (resp. completely isometric).

Proof. Let @ be a representation of 4 in L(§)). By 1.2.8, there is a unique positive linear
extension ¢, of ¢ to the closure of 4+ 4, i.e., C(X). But a positive linear map of C(X)
must be completely positive [23], therefore ¢, is completely contractive (1.2.10), thus ¢ is
completely contractive.

Suppose @ is isometric. By the preceding paragraph, we need only note that ¢~
is completely contractive, which follows directly from 1.2.11.

It would be of considerable interest to know if 3.6.1 is true for general function algebras.
Appendix A.2 suggests that the answer may be no.

Because the disc algebra is a Dirichlet algebra in C(T), it follows that every contrac-
tion T gives rise to a completely contractive representation; moreover, if ||p(T)| =
supi;<1|2(0)| for every polynomial p, then the representation is in fact completely iso-
metric (also, see 3.6.3).

In the next result, we assume that the compact Hausdorff space X contains at least
two points.

PROPOSITION 3.6.2. Let A be a closed subalgebra of C(X), which contains 1 and sepa-
rates points. Let ¢ be a completely isometric representation of A such that p(A) is an trreducible
family of operators. Then the identity representation of C*(@p(A4)) fails to be a boundary repre-
sentation for @(A).

Proof. Assume that id is a boundary representation for ¢(4). By 2.1.2, there is a
boundary representation w of O(X), for 4, such that w(f)=¢(f), f€ A. Now the irreducible
representations of C(X) correspond to points of X, and thus @ has the form w(f)=f(p) I,
where p€X and I is the identity operator for the space § on which ¢(A4) acts (note that §
is therefore one-dimensional). So for f€4 we have @(f)=f(p)I, and thus ||f]j=|/(p)]|
because ¢ is isometric. But A separates points of X, and it is therefore evident that X ={p}
is a singleton, contrary to our initial assumption.

We can apply these results to the disc algebra as follows.

THEOREM 3.6.3. Let T be a contraction on a Hilbert space. Then T gives rise to a com-
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pletely isometric representation of the disc algebra if, and only if, sp (T) contains the unit
circle. For such a T, the identity representation of C*(T) is never a boundary representation for
P(T).

Proof. Let T be a contraction such that sp (7') contains T. By the spectral mapping
theorem we have, for every polynomial p,

sup |p(A)| < sup |p(0)|=r(m(T) < |l p(D)],
14=1 L esp(T)

while of course ||p(T)| <supj-1|p(4)|- Thus, p+>p(T) extends to an isometric representa-
tion ¢ of the disc algebra 4. Since 4 is a Dirichlet algebra in C(T), 3.6.1 shows that g is
completely isometric. Conversely, let T be a contraction such that ||p(T)|| =sup_1 | (M)}
for every polynomial p; then we claim every point A€T is in sp (7'). Indeed, the equation
shows that |p(4)| <||p(T)|| for every polynomial p, so that there is a complex homo-
morphism w of P(7T) such that w(7)=A. Thus, 4 is in the spectrum of T relative to the
Banach algebra P(T). But since |A] =||7'|| =1, 2 must be a boundary point of the relative
spectrum of 7, and is therefore also a spectral value of T relative to the larger Banach
algebra C*(T) ([17], p. 33). This implies 2€sp (7'), and the first sentence of the theorem is
proved.

The second sentence is immediate from 3.6.2. That completes the proof.

A familiar example of a contraction 7' whose spectrum includes the unit circle is given
by any non-unitary isometry. More interesting is an example of the form 7'=S,, where
% is an inner function whose “zero set’ Z,, includes the full unit circle (the discussion follow-
ing 3.5.3 contains examples). As we have observed already, following 3.4.2, sp (8,)=Z,.

Intheremainder of thissection, we consider contractions 7' for which themap f € A+ f(T')
has nontrivial kernel; throughout the discussion, 4 will denote the disc algebra, qua a sub-
algebra of C(T).

For such a T let J ={f€A4: {(T)=0}. Then J is a nonzero closed ideal in 4, analogous
to the principal ideal generated by the minimum polynomial of a matrix. Indeed, there
exists a closed set K of Lebesgue measure zero in 7' and an inner function g for which
Z,NT< K, such that J ~ypA; where Ay ={f€4: {(K)=0} ([11], p. 85). This correspondence
between ideals and pairs (K, y) is bijective provided one identifies proportional inner
functions. We shall call J the order of T, and yp will be called the minimum function of T'.

It is worthwhile to look at the case of a finite-dimensional contraction 7 in more
detail. A known decomposition expresses T as a direct sum U® T, where U is unitary
and T is completely nonunitary (while one of the summands may be absent, we suppose
for the sake of illustration that both are present). Let sp (U)={ay, ..., a;} and sp (T) =
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{by, ..., b;}, and suppose p(z)=(z—b,)™ ... (¢—b;)® is the minimum polynomial of T';
then of course (z—a,) ... (z—a,)p(z) is the minimum polynomial of 7. We claim that
[b;] <1 for every j. Indeed, if |b,| =1, then by 3.1.2, there exists a character z of C*(T)
(the latter regarded as a family of operators on the subspace §, corresponding to the
summand T') such that 7z(T,) =b,; a character is a pure state, so it has a pure extension to
L(§,), and since £, is finite dimensional it follows that 7 is a vector state n(x) = (2&, &),
£€9,. Thus [£] reduces T,, and T &=>b,&, contradicting the fact that T', is completely
nonunitary.

Now let ¢ be the finite Blaschke product which has p as its numerator and let K =
{a, s, ..., ak}. An easy calculation, which we leave to the reader, shows that the kernel
J of the map f€ 4 — f(T') is none other than the ideal pA;. Note that here the intersection
Z,NT is empty. Thus, the minimum function of 7' corresponds to the “nonunitary”
factor of the minimum polynomial of 7'.

Returning now to the general discussion, we wish to define an analogue of completely
isometric representations for representations that have nontrivial kernels. Let T be a
contraction on §) and let o(f) =f(T), f€A. Suppose ker ¢ +0. Then @ induces a canonical
homomorphism ¢ of the quotient 4 /ker @ into L(§)) in the usual way: ¢>(f) =g(f), f. denoting
the coset determined by f. Clearly- leHll = llptf +9)|| for every g€ker ¢ and it follows that
@ is contractive because ¢ was. Now for an integer »>1, form the Banach algebra A®@ M,
of all n x n matrices over 4, endowed with the norm inherited from C(T)® M,. As usual,
we obtain a homomorphism ¢,: A ®M,~L(H)®M,, contractive because ¢ is completely
contractive (3.6.1), whose kernel is ker g®@ M. In a similar way, then, each ¢, induces a

contractive representation ¢, of A®M,/ker p@ M, into L(D)QM,,.

Definition 3.6.4. ¢ (resp. T) is called a maximal representation (resp. maximal operator)
if each ¢, is isometric.

The term maximal refers to the fact that the norm of ¢,(f), for every fEA® M, and
every n>1, is as large as possible. Moreover, using 3.6.7 below and the results of section
3.2, it is easy to see that this term is in harmony with the preceding usage in 3.2.

It is not obvious that maximal operators exist. However, 3.6.6 below shows that if y
is any inner function for which Z, N T has measure zero, then S, is a maximal operator
which has p as its minimum function. We first require a lemma which, for n=1, is closely
related to Lemma 2.1 of {22]. In its proof, we shall make use of a routine fact from the Iore
of integration theory, which we now state without proof. Let (u;;) and (o};) be n x n matrices
of (complex) Borel measures on T, and let 4 and o be the corresponding linear functionals

on C(M®M,:
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u(F) = iZiffﬁdum o(F) = ‘Z]J‘fudo'm

F=(f,,)€C(T)® M,,. If each u,, is singular with respect to each g, then ||u+a| =||u| + |lo|-

We write F for the representative of FEA® M, in the quotient algebra A@M af
pAr®M,, and ) for H2OypH? We regard L($))® M, as acting on the Hilbert space H @ C",
and for F=(f,;)€EA®M,, F(S,) will denote the operator matrix (f,(S,))EL(H)®M,.

LemMMA 3.6.5. Assume Z,,N'T =K has Lebesgue measure zero. Let o be a linear functional
of norm 1 on the Banach space AQM,|pAx@M,. Then there exists a linear functional o
on O(T)® M, and there are vectors £,, 1, in HRC*, 1 <v<n, all of which satisfy:

@) llell<l, and |o(F)| <] ol sup | F(A)| for all FECT)® M, (i.e., o lives on K),
6 2lelt<1-lol, Zlnlr<1-]ol,
(i) o(F)= é(F(Sw &, m) +0(F), forall FEA®M,.

Proof. The functional FEAQM nn—>9(1;") has norm 1, so the Hahn-Banach theorem
provides a linear functional g, on C(T)® M, of norm 1, such that o, (F) =@(F Yior FEA®M,.
Term-by-term application of the Riesz-Markov theorem yields a matrix (z;;) of measures
on T such that o,(F)=2, , {fi;dt;;, for F=(f,) in C(T)Q M,. Now define new measures
py and oy by u(E)=1,(E~K), 0,(E)=71,(EnK), EST. Then 7,=u,,+0;;, all the
u;’s are singular relative to all the o;;’s, and if we define the corresponding linear functionals
u and o, then we have g, —u+0. The remarks preceding the Lemma, assert that ||u| +
llell = lles]l =1, thus ||¢|| <1. By definition, ¢ lives on K, so property (i) is satisfied.

Tt remains to find the representation (iii) for u. Now since both ¢ and g, annihilate
wAx®M,, so does u, and it follows that fyfdu,;=0 for every f€ Ay, 1<i, j<n. Choose
a bounded sequence f,EA; such that f,—1 on T\ X (3.5.2). Then f,—~1 a.e. (|uy]|), and
by the bounded convergence theorem we have for every g€ 4, {ygdu,;=lim, Jwgfndu,;=0.
It follows from the F. and M. Riesz theorem that there are functions k;,€ Hj (the space
of H! functions % for which [hdm =0, m denoting normalized Lebesgue measure on T)
such that du,,=¢h,dm, 1<i, j<n. Thus, for F=(f,)ECT)®M,, we have u(F)=
> Vot hdm = (pTr (FH)dm, where H =(h,;) and Tr denotes the canonical trace on M.
Making use of a familiar formula, we conclude {Tr (H*H)})dm = ||u||=1-|lo|. By ([22], p.
198), there are n xn matrices X =(%,;}) and Y =(y;,), both of whose entries are functions
in H2, such that H=XY, Y*Y = (H*H)}, and X*X =Y Y*. Note that since the entries of

ZH are also in H!, we can even assume that [y,;,dm =0 (just factor ZH in the above way,
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then multiply through by z so as to absorb it in the factor Y). The preceding formula for u

now becomes

p(F) = f«pTr (FXY) dm= Z‘J(fu Ty YYor)s

the inner product being relative to the Hilbert space L3(T, dm). Now if P is the projection
of I? on §, then it follows exactly as on p. 182 of [22] that

(fuxjn W]ﬂ) = (fqum PW]va) = (flj(S'p) Px,,,, Pi/’!]u)-

We define £, and 7, as follows. Regarding elements of § ®C* as column vectors (of height
n) with coordinates in §, let &, be the »th column of the matrix (Pz) and let %, be the
transpose of the vth row of (Pyg,). The desired representation w(F)Y=2 (F(S,)&,,m,)

follows. As for the norm condition (ii), we have
SIS P < Syl = [T X) dm = [T 7

= fTr( Y*Y)dm= fTr((H*H)*) dm=1-|la-

The argument for 3, [ %,||><1—| o] is similar. That completes the proof.

THEOREM 3.6.6. Let v be an inner function such that Z,,NT =K has Lebesgue measure
zero. Then @: f€EA[(S,) is a maximal representation of A whose kernel is pAr.

Proof. We first identify the kernel of @. It is easy to see that pA, annihilates S,
(indeed, if f€ A, then f(L,) maps H2OyH? into pH?, which is orthogonal to H2OyH?,
and f(8,) =P ym f(L,)|mopm=0 follows). In particular, ker ¢ is a closed nonzero ideal
in A, and thus has the form v, A, where K, is a closed set in T of Lebesgue measure zero
and y, is an inner function for which Z, NT< K,. The preceding also shows that
pAg Sy, Ag,, thus p, divides y and K,< K. Note, next that v divides o, (the conclusion
ker g =ypAy follows, because then y and v, are proportional, and so Z,NT=2Z, NT<
K,=K=Z,NT). To see that, choose a bounded sequence f, € A g, such that f,~1on ™K,
(by 3.5.2). Then (y,},)(S,)=0 for all n (because y, f,E€ker @), and hence L, ;. H:oyH?
is orthogonal to H2QyH?. Since y, f, H2< H?, it follows that y, f,- HHOypH?*<yH? and thus
. fn H2SpH?. Hence, $y, f, must belong to H®, and since f,~1 in the weak*-topology of
L», we obtain ¢y, € H* and therefore y divides y,.

It remains to show that ¢ is maximal. By 3.6.1, ¢,: A® M,~L(H)® M, is contractive,

for every n>1, and thus by definition of the quotient norm, ¢, is also contractive. To see
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that ||@.(#)]| > || F||, choose a function FE€A® M, for which ||F|| =1; we must show that
lgo(F)|| = |l@a(F)]| =1. By the Hahn-Banach theorem, there is a linear functional p on
AR M, [pAr®M, such that ||o]| =|o(F)| =1. Using 3.6.5, we can write

o) = 3 (9u(F) £ m) + o),

where o, £,, and ), are as described there. Note first, that if A€ K, then || F(A)|| <|l@.(F)|-
Indeed, by 3.1.2, there is a character y of 0*(S,) such that x(8,)=A2. Hence the (scalar-
valued) map Z€C*(S,)~>y(Z) is completely contractive, and we have that [|(x(Z,,))| <
[(Z:)|| for every nxn matrix (Z,)€C*S,)®M,. In particular, if F=(f,)€4QM,,
then || FA)|| =||(x-e{u) | < (@(fi)]l = |p-(F)]||, as asserted. It then follows that

lo(®)| <ol sup [ FD)|| <[]l | n(]-

On the other hand, an elementary application of the Schwarz inequality, along with the
conditions Y |[|&,[2<1—[lo|| and 3Z|n.[|2<1-]o|, shows that |2, (@.(F)&,,n,)|<
9 (B0~ [ol). Hence, [ol)] < llga® ol + ol IoulP) - lpu(PY, and 1<
llpn(F)|| follows because |o(#)| =1. That completes the proof.

If Cy, C4, ..., C,, are elements of M, then p(z) =>,C,2’ can be regarded as an n xn
matrix-valued polynomial. If 7€ L(§), then we define

o(T) :; 0,1,

regarded as an operator on C"®$. When we say a statement holds for all matrix-valued
polynomials in 7', we mean it to hold for every M, -valued polynomial, for every n=1, 2, ....
The following corollary provides another characterization of maximal operators with non-
zero order.

COROLLARY 3.6.7. Let T be a contraction on a Hilbert space, and suppose {f€EA:
f(T)=0} has the form Ay, where K=Z,NT. Then T is mazimal if, and only if, |p(T)|| =
|2(S,)|| for every matriz-valued polynomial p.

Proof. Let p be an M -valued polynomial, and define the polynomials p;; to be the
entries of p: i.e., p=(p;). Then [|p(T)| =|[2(8,)] simply means ||(p,;(T))| =||(2:,(S )|,
and thus the condition is equivalent to the requirement that f(S,)+>f(T) (for f€ 4) define

a completely isometric representation of P(S,) onto P(T'). The corollary now follows from
3.6.6.

14 — 692908 Acia mathematica 123. Imprimé le 23 Janvier 1970
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Remark. Note that the inequality ||2(T)| <||»(S,)|| in 3.6.7 is automatic. Indeed, the
representation ¢: f€A4 +>f(T) is completely contractive (3.6.1), and thus for every M-
valued polynomial p we have

oD =llga@)l= inf |lg(@+Pll< inf |p+F|=[pSH,
Fekerp @Mp

Fekerp ® Mn

the last equality by 3.6.6. Therefore, T is maximal iff

@) lo(D)]| =|[2(8,)|| for every scalar-valued p, and
(ii) ||o(D)|| = |lp(S,)|| for every matriz valued p.

It is possible that condition (ii) is redundant; put differently, it may be that every iso-
metric representation of P(S,) is completely isometric. Indeed, 3.2.8 shows that this is in
fact true when y is a finite Blaschke product. We do not know the answer for more general
inner functions y (for which Z,, N T has measure zero), and that is an interesting unsolved
problem in this theory. For example, see section 3.7.

We point out, however, that the above argument has proved:
ProrosiTION 3.6.8. Every contractive representation of P(S,) is completely contractive.

While the above proof only works when Z,,NT has measure zero, 3.6.8 is actually
true for arbitrary inner functions. We omit the proof since the result is not needed in the
sequel. Note, however, that since 3.6.8 is false for the general contraction in place of S,
(see A.3.6), it is possible that the answer to the above question is no.

Suppose pA4 is the order of a contraction 7'. The next three results take care of the
occasionally bothersome case where K is properly larger than Z,NT.

A theorem of W. Rudin [19] implies that if K is a closed set of measure zero in T,
then A /Ay is canonically isometrically isomorphic with C(K). We shall require the following

somewhat more general fact.

LemMMma 3.6.9. Let K, K be closed sets of Lebesgue measure zero in T and let yp be an
inner function such that Z,NT< K, (y may be constant and K, may be empty). Then the
homomorphism @: fEpAg, vf|c€C(K) has kernel pAy, and canonically induces an isomeiric
isomorphism of pAg,[pAy onbo the closed ideal {fEC(K): f(Ky) =0} in C(K).

Proof. ¢ is clearly a norm-depressing algebra homomorphism, it maps into I = {f € C(K):
f(Ko) =0}, and for f€EpA ¢, we have f| ¢ =0 iff f €pA. This identifies ker ¢, and the induced
map is & norm-depressing homomorphism of ypAg,/pAg into I. We will complete the proof
by showing that, for every f€I, there is an f, €pAg, such that ||f,]| =||f|| and f,| <=/
Choose f€ I and define a function g on K by g(4) =9(1) f(1) (g is taken as zero on K,). Since
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v is continuous and of modulus 1 on T"\Z,, and f is continuous and vanisheson K,2Z,NT,
it follows that g €C(K) and |g(4)|= | f(2)| for all A€ K. Since K is of measure zero, a theorem
of Rudin [19] provides a function g, €4 such that ||g,|| = ||g|| =||f|| and ¢,]| x=g. Of course,
¢, vanishes on K so that yg, € pd,. Taking f,=yg,, we have the desired conclusions
)= 9D [#) =1, for 2€K, and [ = ]

Note that the theorem of Rudin mentioned above is the case where =1 and K, is
empty.

LeMMA 3.6.10. Let K be a closed set of measure zero in T, and let T be a contraction whose
order is Ag. Then T is unitary and sp (T)=K.

Proof. Since the map f€ A > f(7T') has kernel 4 z, we obtain a contractive homomorphism
f €EAJAx—HT) ( f denoting the coset representative of f€ A). By 3.6.9 (or, for that matter,
by Rudin’s theorem above), there is a contractive homomorphism ¢ of C{K) defined by
o(f| ) =f(T), for every f€ A. Note that g(1) is the identity operator. So because C(K) is a
C*-algebra, it follows that ¢ is a representation (i.e., %-preserving), by 1.2.8. Putting
2(A)=A for A€ K, then z€C(K) and is of modulus 1; thus 7' =¢(z) is unitary.

Now sp (z) is the range of the function z, namely K, and so sp (7)< K because repre-
sentations shrink spectra. On the other hand, if f€C(K) and f vanishes on sp (7T'), then
o(f)=f(o(z)) =f(T) =0 by the operational calculus. By Rudin’s theorem (or 3.6.9), there
is an f, €4 such that f,] c=F. Thus, /{{(T)=0(f;| £} =6(f) =0, and so f, €A by definition of
the order of 7. Hence f=f,| ¢ =0 and we conclude that sp (T') =K, completing the proof.

The next result provides the decomposition alluded to in the discussion preceding
3.6.9. In the proof, we shall make use of the following fact about ideals in the disc algebra.
Let K, and K, be closed sets of measure zero in T and let g, and y, be inner functions such
that Z, NT< K;. Then v, Ag, Sy, 4g, if, and only if, y, divides y, and K,= K,. It is
immediate from this that for two arbitrary ideals y, Ar, and y, Az, we have p, Ag N
YA g, =pA g, where K=K, U K, and y is the least common multiple of v, and y, (for the
existence of the latter, see chapter 6 of [11]).

ProrosiTioN 3.6.11. Let T be a contraction on a Hilbert space § which has order
wAg, where K is a closed set of Lebesgue measure zero in T and vy is an tnner function for
which Z,NT< K. Let K4=Z,NT and Jy=yp A, Then we have:

(1) Jo(T) is a closed self-adjoint subalgebra of P(T) N P(TY, Ho=[Jo(T)D] reduces T,
and the projection on 4 belongs to the weak closure of J(T),

(ii) T|g, is @ unitary operator whose spectrum is the closure of K™\ K,,

(iii) Tl@é has order J,.
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Proof. Let I={f€C(K): f(Ko)=0}. Then I is a closed ideal in C(K) and is a com-
mutative C*-algebra (perhaps with no identity). We first define a homomorphism of I
into L(9) in the following way.

The map f€Jy > f(T) is a contractive homomorphism of the Banach algebra J,
having kernel J. Thus it induces canonically a contractive homomorphism of the quotient
Jo/J into L(H). By 3.6.9, the latter may be regarded as a homomorphism of I; more
precisely, o(f| z) =f(T) (f€J,) defines a contractive homomorphism of I. Since I is an
abelian C*-algebra, ¢ is necessarily self-adjoint, hence ¢(I) is closed ([4], p. 18). Now
I=J,|k, and hence the abelian C*-algebra o(I) is none other than Jy(T). It follows that
J(TYsP(T)NP(T)* and $, reduces T; the projection on §, is in the weak closure of
Jo(T) by von Neumann’s density theorem ([5], pp. 43—44).

Let T,="T|g,. To prove (ii), it suffices to show that 7', has order A(x\ -, by 3.6.10.
But for every f€A we have f(T',) =0 iff {(T)J(T)H = {0} iff o< pd, because pA is the
order of T'. Now if f(K™\\ K,) =0 then fJ, vanishes on K so that fJ,Sydg; hence f(T;)=0.
Conversely, if fJ,SyAx then choose 4 in K™\ K, and find g€J, so that g(1) +0 ([11], p.
80). Then fg is in pAg, by the last sentence, and in particular f(1)g(4)=0. Therefore,
f(A)=0 and this proves f=0 on K\ K,.

Consider now T2=T|© b and let J, be the order of T,. Since 7'=T,®T, we have
HT)Y=HT)®HT,) =0 if, and only if, f(T,) =f(T';) =0. So the order of T is the intersection
of the orders of T'; and 7T'; or, if we put B = (K \K,)~, thenypd =J, N Ag. Consider first the
degenerate case J,=A4. Then pAg=Ay and in particular p is constant. Hence K, is empty,
Jo=A4, and we have §,=[A(T)H]=9. This shows that H§=0 so trivially T, has order 4.

Thus, we can assume J,=+A; hence J, is of the usual form y,Ag,. By the remarks
preceding this theorem we conclude from the equation pAgz=J,0 4 that v, and ¢ are
proportional and K, U E =K (note that the least common multiple of i, and 1 is y,). This
shows in particular that J, is contained in A g, =J,. To see, conversely, that J, annihilates
T,, note that, by definition of §,, i is the intersection of the nullspaces of all operators
f(TY*, fed,. So if fe€J, then because i reduces T we have f(T,)*=HT)* |b$ which is
zero by the preceding comment. Hence, f(T';) =0 and the proof is now complete.

The next theorem, which is the principal result of this section, allows us to give a
complete classification (to unitary equivalence) of all almost simple maximal contractions
which have nonzero order. It is significant that, while the conclusion of the theorem
implies that such operators generate type I C*-algebras, no such condition is imposed

a priori. In the proof, we shall make use of results from sections 2.1, 3.3, 3.4, and 3.5.
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THEOREM 3.6.12. Let T be a nonscalar contraction with nonzero order, say {f€A:
HT) =0} =pAyg, where K is a closed set of Lebesque measure zero in T and v is an inner func-
tion for which Z,NT< K.

Then T is mazximal and almost simple if, and only if, ¢t is equivalent to one of the following
I®8, or U®(I®S,), where I is the identity operator on some Hilbert space and U is a
unitary operator for which sp (U)cZ,N'T. Moreover, under these conditions we necessarily
have Z,NT=K, and vy cannot be constant.

Remark. Note that the unitary operator U is quite different from the unitary summand
of Proposition 3.6.11; indeed, the last sentence shows that the summand of 3.6.11 cannot

appear.

Proof. Suppose first that 7' has the form U@ (I®S,,) as above. Define a representation
w of CX(8,) by u(8,)=Ua(I®8,) (3.4.5). Then u has the form p=0c®(I®id), where id
is the identity representation and ¢ is the representation defined by o(S,)=U, and hence
w is faithful. Since u(S,)=T we have u(C*(8,))=C*(T), so that u is a x-isomorphism of
C*(8,) on C*(T). Since C*(8,) is almost simple, so is C*(T), and therefore T'. Moreover,
a x-isomorphism is completely isometric, so by 3.6.7 we conclude that 7' is maximal.

If T has the form I®S,, then X€C*S,)>I®X defines a x-isomorphism between
C*(8,) and C*(T) which carries S, to 7', and we can repeat the above argument to arrive
at the same conclusions.

Turning now to the more interesting implication, let 7' be an almost simple contraction
satisfying the stated conditions. First, we claim that K =Z,NT. Assume not. We will
produce a nonzero ideal J in O*(T) such that J 0 Comm (7') =0, contradicting almost
simplicity. Let £,D s be the decomposition of the underlying space described in 3.6.11,
and put T,=T|s, and T2=T|©(l). Then T=T,®T, and T, is unitary having (K\Z,)"
as its spectrum. In particular, §), 0. Since 7', is normal we have Comm (7') < 0® Comm (T',).
Now the map X€C*(T)—X |®$ is a representation, and its kernel J is an ideal in C*(T).
Clearly J< L($),)@©0, so the desired conclusion will follow if we show that J 4 0. But the
projection E on §,@®0 is nonzero, and is a weak limit of operators X in P(T)NP(T)*
satisfying EX =X, by 3.6.11 (i). In particular, there exists X € P(7’) such that X = EX=-0.
Since B commutes with 7' we have X=EX =XUF, hence X€J, and the claim is now
established.

We may now apply 3.6.7 to conclude that the map p(T')+>p(S,,). (p ranging over all
scalar polynomials) extends to a completely isometric representation of P(T) on P(S,).
3.5.3 shows that the identity representation of C*(8,) is a boundary representation for
P(S,), and so by 2.1.2 there is a representation w of C*(T') such that o(T') =1 (8,)=S,.
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We claim: o is faithful. For if not, then ker w is a nonzero ideal in C*(T') which, by
almost simplicity, must contain Comm (7). In particular, S3 S, — 8,8y =w(T*T — T'T*) =0,
and so S, is normal. Since §,, is also irreducible we can only infer that H2OyH? is one-
dimensional, and therefore v is a single simple Blaschke factor y(z) =(z —a) (1 —&2)~! for
some &, || <1. This implies K=Z,NT is empty, and so the order of 7' is simply y4.
In particular, y(7T') =0, which implies 7 =al, contradicting an original hypothesis.

Hence, z=w™! is a well-defined representation of C*(S,), for which =(5,)=7. By
3.4.5, T must have the form I®S8,, U®(I®S,), or U, where U and I are as described.
The third contingency cannot occur because an almost simple unitary operator must
clearly be a scalar, which has been ruled out by hypothesis.

It only remains to show that if 7" is almost simple (and nonscalar), then ¢ is not a
constant. But if y =1, then the order of 7' is A;. If K is empty then 7'=0 is a scalar; and
otherwise, by 3.6.10, T is unitary, and again, almost simplicity implies 7' is a scalar. That
completes the proof.

We remark that this theorem allows one to classify all such T to equivalence. The
details are, briefly, as follows. Suppose 7'=1®8,,, where I is the identity on an n-dimen-
sional Hilbert space & (n being an arbitrary cardinal >1). Then note that 7' determines n
(the commutant of C¥*(T) is L(®)® I, which is a factor of type I,). If T=UdD(I®S,),
then 7 determines U, or equivalently, 7 determines the projection 0@ (I®I) on the
second coordinate space (Comm (7")=0® (I ®Comm (S,)), hence 09 (I ® I) is the projec-
tion on the range of Comm (7')). Thus, these operators 7' are completely classified to equiva-
lence by triples consisting of (a) a cardinal #n>1, (b) an inner function y for which Z,n T
has Lebesgue measure zero (proportional functions being identified), and (¢) a (unitary)
equivalence class of unitary operators U for which sp (U)=Z,n'T. It is understood that
the third component (c¢) may be absent.

The following consequence of theorem 3.6.12 is noteworthy.

CoROLLARY 3.6.13. Let T, and T, be irreducible operators, each acting on a Hilbert
space of dimension greater than one, such that both commutators TF T,— T, T{ are compact.
Suppose T, and T, are mazimal, and have nonzero orders. Then T, and T, are equivalent if,

and only if, their minimum functions are proportional.

Proof. First, consider T', €L($),). The order of T, is nonzero, and therefore has the usual
form ¢; Ag,; in particular, 7', has a minimum function. By 3.3.7, T, is almost simple. So
theorem 3.6.12, together with irreducibility, shows that 7', is equivalent to either a one-
dimensional unitary operator U or to S,,. The former cannot occur by hypothesis, hence

T, is equivalent to S,,. Similarly, T, is equivalent to S,,, where y, is the minimum function

(7Y
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of T,. But S,, and S, are equivalent if, and only if, ¢, and y, are proportional (the less
trivial implication follows after comparing their respective orders), and the proof is com-
plete.

We remark that 3.6.13 remains valid when the hypothesis 77 T',— T, T} compact is
replaced with the weaker condition: the commutator ideal in C*(T,) is a minimal ideal
(cf. 3.3.6).

One might ask if 3.6.13 holds for maximal operators having order O (i.e., operators
T, for which f€ A+ f(T,) is a completely isometric representation of 4). The answer is no.
For example, choose y, and yp, to be (nonproportional) inner functions such that Z,,
contains T, for 1=1, 2, and let 7, =8y, Then 7T'; and 7', satisfy the conditions of the first
sentence of 3.6.13, both are maximal (3.6.3), yet they are not unitarily equivalent. One
way to see this is to extend the mappings f€A—f(T,) to H® in the canonical way (for
example, see [22], p. 179). Then note that y(7';) =0 for an inner function y iff y; divides .
Since y; and v, are not proportional, we must have either y,(7T',) +0 or w,(T,) #+0; because
P (T4) =py(T,) =0, it then follows that 7', cannot be equivalent to T',. The details are left
to the reader. The reason the proof of 3.6.13 does not work for these operators is explained
by the second statement of 3.6.3.

3.7. A characterization of the Volterra operator. We shall indicate how the results of
the preceding section can be applied to give a characterization of the Volterra operator V,
defined on the Hilbert space L2(0, 1) by

Viz)= J‘I fiydt, =x€(0,1), feL?O,1).
0

V is known to be an irreducible, compact, quasinilpotent operator for which Re V=0
and ||[V|| <1 [9]. Recall that if » is a positive integer, p(2)=Cy+Cyz+...+ @ is an
M, -valued polynomial, and 7T is a Hilbert space operator, then p(7T) is defined as C,® I +
C,®T+...+C,@T% We shall prove the following:

THEOREM 3.7.1. Let T be an trreducible operator on a Hilbert space § such that
T*T —TT* is compact and ||p(T)|| =||p(V)| for every matriz-valued polynomial p. Then T
is unitarily equivalent to V.

First, we recall some facts about certain transforms of Hilbert space operators. Let X
be an operator on a Hilbert space for which —1¢sp (X), and put ¥ =(I -X)(I+X)™
If Re X >0, then || Y|| <1 (for example, see [18], p. 442). A calculation shows that Re ¥ =
(I +X* (I -X*X)(I+X)™1, so that ||X]| <1 implies Re ¥ >0. Hence, if | X| <1 and
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Re X >0, then the same is true of ¥. Now f(z) =(1 —z)(1 +2)~! never takes on the value
—1 in the (finite) complex plane, and it follows from the spectral mapping theorem that
—1¢sp (Y); since (1 —f(2)) (1 +f(z))"1=2, we see that (I —Y)(I+Y)1=X. According to
3.1.1, if Re X >0 then Y €P(X), and by the above remarks, if || X|| <1 then X €P(Y) by
the same lemma. We conclude: ¢f X s a contraction for which Re X >0, then the same s
true of Y and moreover, P(X)=P(Y).

We now take up the proof of 3.7.1. Note first that the space § on which 7' acts is of
dimension R®y; indeed 7' satisfies no nontrivial polynomial equation p(7")=0 because V
does not, so that dim § >&,, and dim § <R, follows because C*(T) is a separable subalgebra
of L(H) which has a eyclic vector.

By hypothesis, the map p(¥V) > p(T), defined for all polynomials p, extends uniquely
to a completely isometric isomorphism ¢ of P(V) on P(T). We have | T| =||V| <1, and
Re T=Re ¢(V)>0 because Re ¥>0, by 1.2.8. Define Vi=(I—-V)(I+V)?* and T,=
(I-T)(I+T)t By the preceding remarks, P(V,)=P(V), P(T,)=P(T), and of course
@(V,)=T,. Note also that 7T, is irreducible (C*(T,)=C*(T)) and T7T,— T, T} is compact
(Comm (T,)=Comm (T)=LC(H), by 3.3.7).

Now as it is pointed out in [21], V, is unitarily equivalent to S, where y is the inner
function y(z) =exp (z+1)(z—1)~%, |z| <1 (note that we have slightly restated the result of
[21]). Therefore V, and 7', have the same minimum function y, both are maximal (because
8, is by 3.6.6), and hence 3.6.13 shows that V, and T, are equivalent. It follows that V
and T are equivalent, and that completes the proof.

It is not known if 3.7.1 is valid when the norm condition ||p(7T)|| =||p(V)| is assumed
to hold only for scalar-valued polynomials p. By the above proof and 3.6.8, the scalar
condition implies ||p(T)]| <||p(V)| for all matrix-valued p, but the opposite inequality
is in doubt.

Note that 3.7.1 is valid when V is replaced with S,, where y is an inner function for
which Z, N T has measure zero: that is what the last few lines of the proof showed. But
the theorem becomes false with other substitutions. For example, if 7', and 7', are irreduc-
ible contractions each of whose spectrum contains the unit circle, such that each commuta-
tor TY T, ~T,Tf is compact, then p(T,)+> p(T,) (p running over the polynomials) is com-
pletely isometric (3.6.3), but 7', and T, surely do not have to be equivalent (cf. the discus-
sion following 3.6.13). The second sentence of 3.6.3 points to where the proof of 3.7.1
breaks down: the identity representation of C*(7;) is not a boundary representation for
P(T), i=1,2,
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Appendix

A.l. Semi-invariant subspaces. Let 4 be an algebra of operators on a Hilbert space &,
which contains the identity, and let 9, <IN, be a nested pair of A-invariant subspaces
in & Then =M, ©M, is a semi-invariant subspace for A4 (cf. the discussion preceding
1.3.3). While I, and i, are not uniquely determined by $) (as obvious examples will show),
there is a canonical nested pair of A-invariant subspaces N, =N, such that H=N,ON,,
namely N, =[4H] and N, =[AHIOH (see [20]). In applications, one needs to know when a
given pair I, I, is canonical; equivalently, when is )i, the smallest /4-invariant subspace
containing $? The present section is devoted to a discussion of this point, for a special
class of algebras A.

In the following, 4 will be a subalgebra of L{({), which contains the identity of &,
R will denote the von Neumann algebra generated by 4, and I, and IR, will be a nested

pair of A4-invariant subspaces, as above.

TaroreM A.l.l. Assume that A+ A* is weakly dense in R, [RMs] =R, and let H=
M, OMM,. Then the following are equivalent:

i [AD]1=,,
(i) [RO]1=K,
(iii) the only projection E€ R’ for which EN,=M, is E=0.

Proof. That (i) implies (ii) is clear from the hypothesis [ RIR,] = &.

We claim that (ii) implies (iii). Indeed, if E is a projection in R’ such that EM,<=M,,
then in particular we have EH< I, <= HY, or ES LY. Because E is a projection, it follows
that EH =0, or DS (ERK)*. Using (ii) we have & =[ RPIS [R(ERK)*]< (ER)', and therefore
ER =0, as required.

Assume, now, that (ili) is satisfied; we must show that [A4H]=IR,. Note first that
[ADI=M,. Consider the restriction Alm, of A4 to the invariant subspace I, and let
E,€L(M,) be the projection of M, on M,O[AD]. We claim that E, commutes with A4 |m,
or, what is the same, I, ©[49] is invariant under both 4 ls_m, and (A4 |sm,)*. It is clear that
(A|m)* leaves MyO[AP] invariant, since the latter is the complement of an A4 |m,-in-
variant subspace. The other assertion is simply A4(IM,O[4H])=MO[AD], and this will
follow if we prove that I, O[AD]1=MM, N [RHI* (for the right side is an intersection of
A-invariant subspaces). Now IMM;=HDIM,; and [AD] =D ([(ADIOH), so that we have
M o[AD] =M, S ([ADIOH) =MWy N ([AD]O H)*. Because M, is an A-invariant subspace
orthogonal to §, we have I, L[ A4*H]; it follows that the right side of the above equation
is unchanged if we intersect it with [A4*$]*, i.e., MO [AH]=M, N ((ADISH)* N [A*H].
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But since 4+ 4* is dense in R we have [A4*H]®D ([AD]OH) =[RH] (see the proof of 1.3.3),
hence ([ADIOH)L N [A*D]-=[RH]*, and the required formula IM,O[A4H] =M, N [RH]*
follows.

One makes use of the commuting projection E, as follows. Letting P be the projec-
tion of & on IN,, then because 4 -+ 4* is dense in R we see that E, commutes with P R |,
Since [ RIM;] =K, one can apply 1.3.1 (taking the ¥ of 1.3.1 as the inclusion map of IR, in
R) to infer the existence of a projection E € R’ such that E |;, = Ey. Thus, EM, = E N, =
M,O[AD] =M, N[RHI*<M,. By (iii) we conclude E=0, hence IM,O[A4H]=0. This
means that I, =[AH), and the proof is complete.

CorOLLARY A.1.2. Let A be a subalgebra of L(R), containing the identity, such that
A+ A* is weakly dense in a von Neumann algebra R, let WM be an A-invariant subspace such
that [RM]1=R, and let D be the von Neumann algebra {T€ R': TIM< M, T*M<I}.

Then for every unitary operator UER', UIR is an A-invariant subspace. If UM< M
and § is the semi-invariant subspace MO UIR, then [ADH =N if, and only if, the only projec-
tion E€D for which UEED is E=0.

Proof. It is obvious that U is an A4-invariant subspace.

Assume U< M. Note that [ 4] =T iff [A4De] = UM where H, = U-1H =U-MoM.
Now since [RU-MR]=U-{RM]=U-18 =K, we can apply A.1.1 to the 4-invariant sub-
spaces I, =IN and My, = UM to conclude that [A4H] =M iff the only projection E€ R’
such that EU-YR <IN is B =0. Note, however, that this condition is equivalent to E€D
and UE€D. Indeed, EM< IR follows from EU-IN=IM because UM is larger than
IR (thus E€D), and along with EU-YIR< IR we have UEM< UMM (thus UEED).
The converse is apparent. That completes the proof.

We are now ready to give an application to shifts of arbitrary multiplicity. Let € be
a separable Hilbert space and let U be an inner function with values in L(€) (see the
discussion preceding 1.3.4 for definitions and notation). We will say U is completely non-
constant if the only £€€ for which the vector-valued function z+— U(2)£ is constant (inside
the unit disc) is £ =0. Taking & = LT, o; €), M = Hz, and A4 as the algebra of all multiplica-
tions by scalar-valued polynomials in ¢ in the notation of A.1.2, we see that D is the von
Neumann algebra of all multiplications by constant L(€)-valued functions on T, thus we
conclude from A.1.2:

Cororrary A.13. [A(HE© UH)=Hj if, and only if, U is completely nonconstant.
We remark that A.1.3 seems closely related to a result on p. 43 of [26], and may be a

consequence of the latter.
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A2. A positive linear map with no positive extension. Let T be the unit circle, and
define z€C(T) by 2(e®) =e®, 0<0 <2x. Let S be the three-dimensional self-adjoint subspace
of C(T) spanned by 1, 2z, and z. We will give an example of a positive linear map of §
into L($) which has no positive linear extension to (the commutative C*-algebra) C(T).

Regard the C*-algebra M, of all complex 2 x 2 matrices as the ring of all bounded

operators on a two-dimensional Hilbert space. Define a linear map ¢: S—M, by:

a 2b
(p(al—l—bz—{—cé):( ),
2¢ a

@, b, c€C. Clearly p is well-defined linear, and takes 1 to the identity.
Now the self-adjoint elements of S can be put in the form ¢1 + }(bz +bZ) =t1 + Re (bz),
with ¢ real and b arbitrary, and such an element is positive iff > |b|. ¢ takes t1 +Re (bz)

(5 4

which, in turn, is positive iff ¢ > |b| (a self-adjoint 2 x 2 matrix is positive iff its trace and

to the matrix

determinant are both nonnegative). Thus, ¢ is an order isomorphism and in particular, it is
positive.

Now since a positive linear map of a commutative C*-algebra is necessarily completely
positive (see [23]) and the norm of a completely positive map is achieved at the identity

(1.2.10), it follows that if ¢ were positively extendable then ||p] =|@(1)|| =[|Z|| =1. But z
is of norm 1, while
(o o)
00

and that proves ¢ has no positive linear extension to C(T).

o) =

l=2’

A.3. A contractive representation need not be completely contractive. In this appendix
we show by example that a contractive representation of a subalgebra of a C*-algebra
need not be completely contractive, even when the subalgebra is commutative. Indeed,
we shall give examples of (finite-dimensional) operators X and Y such that ||p(X)f =
|o(Y)|| for every (scalar-valued) polynomial p, but p(X)+ p(Y) is not completely con-
tractive.

We remark that it does not seem easy to come by such examples, even with respect to
the strongest statement of the first sentence. Qur own experience with the examples we
tried initially was that when it was possible to make a decision at all, contractive repre-
sentations turned out to be completely contractive. The problem was finally solved by

making use of a general result (Theorem A.3.5) which allowed us to sidestep the more



222 WILLIAM B. ARVESON

involved calculations. Though A.3.6 is a negative result, it is an important one for the
theory, and it would be interesting to have a simpler class of counter-examples. Along these
lines, it is not known if a contractive representation of a function algebra must be com-
pletely contractive; we conjecture no (the answer is yes, however, for Dirichlet algebras,
by 3.6.1).

The example is described as follows. Let §) be a three-dimensional Hilbert space, and
realize L($)) as the algebra M, of all 3 x 3 matrices over C, relative to a fixed orthonormal
base for §. Let 1 and w be any two complex numbers such that A is not real and |w| =
(1+ |A|%*. Define S, T€L(H) by

0 41 0 0 o
S=(O 0 0), T=(0 1 0>,
000 0 -4 0

and let 4 be the three-dimensional subspace of L({)) spanned by 8, T, and the identity
(it follows from A.3.1 that A is a singly-generated subalgebra of L($))). Let X* denote the
transpose of a matrix X €L(H). Thus, the map g: X € 4+> X*€L($) defines an identity
preserving homomorphism of 4 into L($); since || X!||=||X|| for every matrix X (a self-
adjoint anti-automorphism of M is necessarily isometric), it follows that ¢ is an isometric
representation of 4 in L(§)). We will show that ¢ is not completely contractive.

The first four lemmas represent computations, and we shall merely outline their proof.
LeMmaA A3.1. A4 is a singly-generated subalgebra of L(5).

Proof. Note first that ST =TS8 =582=0and 7?2=7T —wS. Then if X =8 + T, for example,
it follows that 4 =P(X).

Lemma A3.2. C*(A)=L(9).

Proof. By the double commutant theorem, one need only prove that the only self-
adjoint matrices that commute with both S and 7T are scalars. This calculation shows, in

fact, that {8, T'} is irreducible provided merely that both w and 4 are nonzero.

Lemma A3.3. A+ A* is linearly spanned by its unitary elements.

Proof. First, show that aS8*+bT is unitary when |a|=|b} =(1+ |1|?)-t. Thus, the
span of the unitaries contains (1 +|1[*)~¥ (S*+ 7T) and (1 + |1|2)~#S* — T'), and therefore it
contains §* and T. Since the span of the unitaries in A4+ A4* is a self-adjoint subspace
which contains the identity, the lemma follows.

Lremma A3.4. There is no unitary matriz U such that US=8'U and UT =T*U.

Proof. This is a laborious calculation. Assuming the existence of such a U, one uses
the fact that the row vectors of U form an orthonormal set to arrive at the conclusion
|w] =]1+A42|(1+]4|2)-*. Now by the choice of w we have |w]|=(1+|1|?)? hence the
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above implies |1+42| =1+ |4|2, from which we conclude A2=]4|2 (i.e., 4 is real), contra-
dicting the choice of A.

Note that the preceding lemma, together with the proof of A.3.1, shows that S+ T
is not unitarily equivalent to its transpose.

We now state a general result.

TueEorREM A.3.5. Let S be a self-adjoint linear subspace of a C*-algebra B, containing
the identity of B, such that B=C*(S). Let §) be a Hilbert space and let ¢ be an identity-pre-
serving completely positive linear map of S into L(§)) such that the closed linear span of {a € 8:
llell =1, g(a) is unitary} is all of S. Then ¢ is implemented by a representation of B.

Proof. Making use of 1.2.3 and 1.1.1, we see that there is a representation z of B on
a Hilbert space § and a bounded linear map V: =& such that ¢(a)=V*n(a)V, a€S,
and [7(B) VH] =K. Since p(e) =1, it follows that V*V =1, ie., V is an isometry.

We claim: V=8 (the theorem follows, for then ¥ is unitary and the representation
V-1V implements @). Since [72(B) VO] =K, it suffices to show that V§ is invariant under
7(S) (for then V§ is invariant under the norm-closed algebra generated by z(S), namely
7t(B)). Let M ={a€S: ||a|| =1, p(a) is unitary}. Then for a € M and €S we have

(@) V&~ Vo(a)E|]2 = ||n(a) VE[2—2Re (n(a) VE, Vo(a)E) + || Vp(@)&||®
= lle(@) VE[* ~ ll(@)]]* = flna) V&[] — [I5]]* < [|€]1* —[E]1* = O,

because ((a) V&, Vp(a)é)=(V*n(a) VE, p(a)€) =|lp(@) &> = || Ve(a)&[? and @(a) is unitary.
Thus, ni(a) V = Ve(a) for every a € M, and since M spans S this equation persists for a €S.
In particular, Z(S) VH=Ve(S)H=VH, and the proof is complete.

We now state the main result, for the isometric representation ¢ of .4 defined above.
THEOREM A.3.6. ¢ is not a completely contractive representation of A.

Proof. Consider the self-adjoint linear map ¢, X € 4+ A4*+—> X'€M,. Note that ¢, is
the unique self-adjoint linear extension of ¢ to A4+ A4*

Assume, now, that ¢ is completely contractive. By 1.2.8, @, is a completely positive
linear map of 4+ 4*. Now by A.3.3, 4+ A4* is linearly spanned by its unitary elements;
and since the transpose of a unitary matrix is unitary, it follows that {X € 4+ 4*: || X]| =1,
@1(X) unitary} spans 4+ 4*. By A.3.2, we have C*(4) = M,. Hence Theorem A.3.5 applies,
so there is a x-homomorphism 7: M3~ M, such that #(X)=¢(X) for X € 4.

Because M, is simple = must be faithful, and an obvious dimension argument shows
that n(M;) = M; thus 7z is a x-automorphism of M,. It is well-known that a s-automorphism
of L(§) is unitarily implemented, and we conclude that there is a unitary matrix U €M,
such that p(X)=UXU- for all X € 4. But we now have an absurdity, by A.3.4, and thus

@ could not have been completely contractive.
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