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1. Suppose given in the complex w-plane a simply connected domain D, which is not
the whole plane, and let w=f(z) be a function mapping the open unit disc .D in the z-plane
one-to-one and conformally onto D. As is well known, for almost every 0 (0<6<2n), (z)
has a finite angular limit f('®) at €', that is, for any open triangle A contained in D and
having one vertex at €', f(z)—>f(e'%) as z—>e'%, 2€A. An arc at € is a curve A< D such that

AU {'} is a Jordan arc. As a preliminary form of our main result (Theorem 2), we state

THEOREM 1. For almost every 0 either

f(z) — () ’ - . "
T and f'(z) have the same finite, nonzero angular limit at €%, (1.1)
or arg (f(z) — ('), defined and continuous in D, is unbounded above and below

on each arc at €', (1.2)

Note that if (1.1) holds, the mapping is isogonal at €'® in the sense that
arg (f(z) —f(e*)) —arg (z—€),

where both argument functions are defined and continuous in D, has a finite angular limit
at e’

If f(z) has a finite angular limit at €', then the image under f(z) of the radius at '
determines an (ideal) accessible boundary point a, of D whose complex coordinate w(ay) =
f(e"®) is finite. The set of all such a, is denoted by %. On DU we use the relative metric,
the relative distance between two points of DU being defined as the infimum of the
Euclidean diameters of the open Jordan arcs that lie in D and join these two points. Any

limits involving accessible boundary points are taken in this relative metric.

(1) The author gratefully acknowledges the support of the Alfred P. Sloan Foundation and the
National Science Foundation (N.8.F. grant GP-6538).
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We shall see (Lemma 1) that (1.2) is equivalent to

lim inf arg (w —w(a)) = — oo and lim sup arg (w—w(a)) = + oo, (1.3)
w—qa w—>a

where a=0,4 and arg (w—w(a)) is defined and continuous in D. The condition (1.3) says,
roughly speaking, that D and consequently alsoits boundary 6D twist around w(a) infinitely

often in both directions, arbitrarily near a.

2. We proceed to state Theorem 2. We say that the (unique) inner tangent to D exists
at an accessible boundary point a€ provided there exists one and only one number
@y (0<@y<27) with the property that for each positive number &(¢ <z/2) there exists a
positive number & such that the sector

A = {w(a) +€%: 0< <4, |p—qo| <m/2 -5}
is contained in D, and is such that w— a (relative metric) as w—w(a), w € 4 (our terminology

is slightly different from that of Lavrentieff [5]). For convenience we call these sectors the
angles at a. Set

A, = {a: a €Y, the inner tangent to D exists at a};
Ay = {a: a€, (1.3) holds}.

We say that a subset N of U is a D-conformal null-set provided {0: 0, €N} is a set of measure
zero. Note that this definition is independent of f.

Let 2=g(w) be a function mapping D one-to-one and conformally onto D. Then for
each a €Y the limit

lim g(w) = g(a)

w—a

exists. We say that g(w) has a nonzero angular derivative at a point a €, provided there
exists a finite, nonzero complex number g'(a) such that for each angle A4 at a,

m‘%"%iw*‘(’—é)“@g'(a) and lim g'(w) =¢'() (2.1)

TaeEoREM 2. (i) A=W, U A, U N, where N is a D-conformal null-set.

(ii) g(w) has a nonzero angular derivative at each point of Ay, with the possible exception
of those points in a D-conformal null-set.

(iii) A subset of U, is a D-conformal null-set if and only if the set of complex coordinates

of its points has linear measure zero. (1)

(1) A subset of the plane is said to have linear measure zero provided for each £¢>0 it can be
covered by a countable collection of open discs the sum of whose diameters is less than e.
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We are indebted to M. A. Lavrentieff for an earlier theorem [5, Theorem 1], which is
contained in Theorem 2.

3. We return now to the notation of Section 1. It is convenient to use the special

notation Arg (w—f(e'®)) for the continuous branch of arg (w —f(¢'®)) which is defined in D
and satisfies
0 < Arg (f(0) - f(e")) <2

LeMMa 1. (a) If there exists an arc at €' on which Arg (f(z) —f(¢®)) is bounded above,
then

lim sup Arg (w — f('%)) < co.
w->ag

(b) If there exists an arc at €' on which Arg (f(z) —f(€'®)) is bounded below, then
lim inf Arg (w — f(€')) > — oo.

Remark. The reader who is only interested in the proof of Theorem 2 can skip to Sec-
tion 4. For the proof of Theorem 2 we only need to know that for almost every 0, either
(1.1) or (1.3) holds.

Proof of Lemma 1. We give the proof of (a); the proof of (b) is analogous. Suppose
there exists an arc 4% at ¢® on which Arg (f(z) —f(¢'%)) is bounded above. Let z, be the
initial point of A4° (that is, the endpoint of 4% in D), and let g, (=0, 1, ...) be numbers such
that

0<0,<0o<|f(zo) ~f(®)] (n=1,2,..) (3.1)
and such that p,—0. Set

Con={|lw—f(€®)| =0} (n=0,1,..).

By standard theorems, for each n each component of the preimage f~1(C,) is a crosscut of
D neither endpoint of which is €. Let V3 (n=0, 1, ...) be the component of D —f-1(C,)
such that re'€ V7 for all r sufficiently near 1 (r<1), and set y2=DnoV%. Note that for
each n=0,1, ..., 4°n V% +@, for otherwise some component of f~1(C,) would have &'
as an endpoint. Thus 4*Ny5 +@ (n=0, 1, ...), because 20¢VZ% by (3.1) (the bar denotes
closure). Also by (3.1), DN V2 < V3 (n=1,2,...) and in particular y2 < V3 (n=1, 2, ...). Set

I = VinfYC,) (n=1,2,..).

Then y5<TI', and consequently, since 4°Ny5 +D, 4°NI'; +@. Thus for eachn=1, 2, ...,
A? contains a Jordan arc that joins y§ to I';. We note that only finitely many components
of f~1(C,) intersect this Jordan arc. It follows readily that there exist open Jordan arcs
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< A% (n=1,2,...) such that of joins p§ to I'; and does not intersect y§U I';. Since one
endpoint of of is in V3, o V3. »

Let A, V,, po, and a, (n=1,2,...) denote the images under f(z) of 4%, V3, y§, and o,
respectively. Clearly y,< Cy. Also, a, lies in the open annulus U, whose boundary is CoU C,,

and o, joins a point w, €y, to a point of C,. For each n let
Pulw) = arg (w—f(e"))

be defined and continuous on U, —&,. Let ¢; (w) and ¢} (w) (wE&,) be the boundary values
of ¢, from the two sides of &,, defined so that ¢, and ¢} are continuous functions on &,.
Then each of the functions ¢, and ¢; differs from Arg (w—f(e')) (w€&,) by a constant,
and @; (w,) =@, (w,) +2n. Thus

@n () — r () < 2 + sup (Arg (10 — (¢)) — Arg (10, — f(e"))), (3:2)
because it is readily seen that all boundary values of the function on the left are less than
or equal to the number on the right.

We now note that Arg (w—f(e'®)) is bounded on y,. To see this let w’' and w” be any
two points of y,, and let J be an open Jordan arc lying in ¥, and joining w" and w”. Con-
sider the bounded component of the complement of C,UJ that does not contain f(e’®).
We define arg (w— f(¢')) as a continuous function on the closure of this component so
that it agrees with Arg (w—f(¢'®)) on J, and we see that

| Arg (w" — f(e'?)) — Arg (' —f(¢%))| <2n.

Thus Arg (w—f(¢')) is bounded on y,.

Hence by (3.2) the functions ¢, (w)—¢;(w,) are uniformly bounded above, because
Arg (w—f(¢'%)) is bounded above on 4 and w, €y,.

Now consider any point w*€ V,— 4, and let § be an open Jordan arc lying in ¥V, and
joining w* to a point of y,. Choose n sufficiently large so that U {w*}< U,. Then w* isin a
component of VN U, whose boundary contains a component of y,. We readily see that this
component of VN U, contains an open Jordan arc that joins w* to a point w' €y, (W' w,)

and does not intersect o,. Thus
Arg (w* —f(e") — Arg (w' —f(e)) = @ (w*) —@a(w') S@n(w*) —@7 (w,) +271.
Since the functions @,(w) — @, (w,) are uniformly bounded above, and since Arg (w— f(e'%))

is bounded on y,, we see that Arg (w—f(e'%)) is bounded above on ¥~ A4, and thus also on

Vo The proof of Lemma 1 is complete.
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4. Proof of Theorem 1. Part I. The proof of Theorem 1 will be given in the next five
sections.

Let arg f'(z) be defined and continuous in D, and set
log f'(2) =log |f'(2)| +7 arg f'(2).

A routine argument shows that if f'(z) has a finite, nonzero angular limit at €', then the
difference quotient in (1.1) has the same angular limit at ¢’’. Thus (1.1) holds if

log f'(2) has a finite angular limit at ¢°. (4.1)

By Lemma 1 it is sufficient, in order to prove Theorem 1, to prove that for almost every
0 either (4.1) holds or both of the following hold:

lim sup Arg (w — f(¢'%)) = + oo} (4.2)
w—>tg

lim inf Arg (w — f(€'®)) = — oo, (4.3)
w—-)ao

We prove that for almost every 0 either (4.1) or (4.2) holds. A completely analogous argu-
ment (which we omit) shows that for almost every 6 either (4.1) or (4.3) holds; and these
two facts combined yield the desired result.

Suppose contrary to the assertion that there exists a subset B of D of positive outer
measure (that is, {0: ¢'"€ B} has positive outer measure) such that neither (4.1) nor (4.2)
holds if ¢®€ E’. We suppose without loss of generality that f(z) has a finite angular limit
at each point of EP. For each '€ EP, let A, be the open equilateral triangle of side length
1 that is contained in D, has one vertex at ¢'°, and is symmetric with respect to the radius
at ¢'°. '

Suppose for the moment that for almost every ¢®€ B (that is, for almost every
6 in {0: ¢9€ EP)}), arg f'(2) is bounded above in Ay. Then by Plessner’s extension of Fatou’s
theorem [12], log f'(z) has an angular limit at almost every point of E®. By assumption,
log f'(z) does not have a finite angular limit at any point of E®, and consequently it has
the angular limit oo at almost every point of E{. It is easy to see that the set of points
¢'® at which a continuous function in D has the angular limit co is an F,s-set (for the type
of argument involved, see [4, p. 308]), and is therefore measurable. Hence log f'(z) has the
angular limit co at each point of a set of positive measure, and by a theorem of Lusin and
Priwalow [8], we have a contradiction. We conclude that E{’ contains a set E® of
positive outer measure such that for each e?€ E®, arg f'(z) is unbounded above in A.

Consider a fixed ¢'°€ E®, and let C be a rational circle (that is, C is a circumference
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whose radius is rational and whose center has rational real and imaginary parts) which
satisfies the following conditions:

f(e®)€int C, (4.4)
where int € denotes the disc of interior points of C;

=) ¢int ¢ (j=1,2), (4.5)

where 23 and 2§’ are the vertices of Ay in D; and finally, if D, = Dc(e'’) denotes the compo-

nent of PNint C such that
f(2) €D, if z€ A5 —{€'®} and z is sufficiently near ¢ (4.6)
(the bar denotes closure), then
Arg (w—f(¢'%) is bounded above in Dp. (4.7)

The existence of C satisfying (4.7) is assured, because (4.2) fails to hold at ¢*.

Note that DN oD, is a relatively open subset of C, each component of which is a free
boundary arc of D,. We prove (as in the proof of Lemma 1) that all values of Arg (w —f(¢%))
on DN 2D, lie in an interval of length 2z. To this end let w’ and w” be any two points of
DN 8D, and let J be an open Jordan arc lying in D, and joining w’ and w”. Consider the
bounded component of the complement of CUJ that does not contain f(e'®). We define
arg (w—f(¢'®)) on the closure of this component so that it agrees with Arg (w —f('®)) on J,

and we see that

| Arg (0" —f(¢%)) — Arg (w' —f(¢))| <2n. (4.8)

Thus all values of Arg (w—f(e'®)) on DN D, lie in an interval of length 2.
Hence (4.7) is equivalent to the existence of a positive integer M such that

Arg (w—f(e'%)) — Arg (wy— () <M if wED,; and wy€DNOD;. 4.9

Here M is independent of w and w,,.

Define C(e!) to be the collection of all triples (C, D¢, M) satisfying the above condi-
tions, that is, satisfying (4.4), (4.5) and (4.9), where C is a rational circle, D, is the compo-
nent of PNint C satisfying (4.6), and M is a positive integer. Since for each C there are
at most countably many components of DN int C, the union |J C(e'?), taken over all e’ € E®,
is a countable set. Thus there exists in this union a particular triple (C, D¢, M), which is
fized throughout the rest of the proof of Theorem 1, such that the set

EQ = (" € EP, (C, Dc, M)EC(e')}

has positive outer measure.
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Fig. 1.

Before proceeding to prove some lemmas, we summarize the pertinent facts that will
yield the desired contradiction.

(2) E® has positive outer measure.

(b) (4.5) and (4.6) hold for each e'?€ EP.

(¢) arg f'(z) is unbounded above in A, for each e'?€ B,
(d) The upper bound (4.9) holds uniformly for ¢'°€ E®.

Our method of proof will be to use (b), (c), and (d) to prove that ES is a set of measure
zero, and thereby contradict (a).

An example for which (b), (c), and (d) can hold is suggested by Fig. 1. In this figure
D isrepresented by the shaded area, except that the portion of D inside the smaller dotted
squares is not shown. In each of these smaller squares [, twists around some point in the
positive direction a certain number of times and then twists back, as it does in the largest
dotted square; and this number of times tends to oo as the diameter of the square tends to
zero. The Cantor set on the vertical segment represents {f(¢’®): €€ E®}. The heavily
drawn arcs on C represent DN dD.. In this example there is at least some doubt whether
E® is a set of measure zero or not.

4 — 692907 Acta mathematica. 123. Imprimé le 10 Septembre 1969,
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5. The main result of this section is Lemma 3, the proof of which uses the following

lemma.
LEMMA 2. f'(2) and log f'(z) are normal holomorphic functions.

Proof. Clearly

rel
L+ @P

Q)
f &)
(k is independent of 2), the second inequality being well known [3, p. 395], and it follows
that f'(z) is a normal holomorphic function (see {6] or [11]). Similarly, if we set h(z) =logf'(2),
then

__k
Tl

k -
1—|z|’

@)

L - |

1+ |hz)[?

<

and we see that log f'(z) is a normal holomorphic function. The proof of Lemma 2 is com-
plete.

LEMMA 3. There exists a countable subset N of D such that for each €'® ¢ N the following
holds: If arg f'(z) s unbounded above in Ay, then there exists a sequence {4,} such that

each A, is an arc at some point of N, and A, intersects the closure 5,, of Ay in
exactly one point z,, which is the initial point of A, (that is, the endpoint of A, in D), (5.1)

arg f'(2,) = + oo, (62)
and

f(4,) is contained in some closed half-plane whose boundary contains f(z,). (5.3)

Proof. Set h(z)=log f'(z). Let {A,} be a sequence of real numbers that is dense on the
real line, and is such that if we let L, denote the horizontal line through i1, then k(z) ¢ L,
if B'(z)=0 (v=1, 2, ...). Then for each v each component of the set

{z: arg f'(2) =4,} = {z: h(z) EL,}

is a simple level curve (that is, a level curve without multiple points) of arg f'(z), and there
are at most countably many such components. Note that h(z) maps each such component
one-to-one onto an open connected subset of L,. We shall need the following two facts

concerning these level curves:
for each v each component of {z: arg f'(z) =4,} tends at each end to a point of 8D; (5.4)

if {4,,} is a subsequence of {4,} such that 4, > +co (or —eo), and if for each =,
A, is a component of {z: arg f'(z) =4, _}, then diam A,—0, where diam A,
denotes the Euclidean diameter of A,. (5.5)
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Since by Lemma 2, k(z) is a normal holomorphic function, (5.4) and (5.5) follow from a
theorem of Bagemihl and Seidel [2], which says, roughly speaking, that a nonconstant
normal meromorphic funetion in D cannot tend to a limit along a sequence of Jordan arcs
that tend to an arc of 8D. We define a countable subset N of 8D as follows: ¢ €N if and
only if there exists a » such that ¢ is an endpoint of a component of {z: arg f'(z) =4,}.

Consider a fixed ¢'® such that ¢'°¢N and arg f'(z) is unbounded above in A,. Let {4, }
be a subsequence of {,} such that 4, —> +-co and such that for each n some component
A, of {z:argf(z)=A4, } intersects Ay. By (5.5), diam A,—0, and consequently we can
suppose without loss of generality that

A= {|z=€?| <1} =12, ..). (5.6)

For each =, since e ¢ N, € is not an endpoint of A,. Thus since k(z) is one-to-one on A,,
there exists 4,< A, satisfying (5.1) and

h(A,) < {h(z,) +1: £ <O} (5.7)

We note that since the side length of Ay is 1, (5.6) implies that 4, is contained in a closed
half-plane H, whose boundary contains e and z,.

Let A4, be parametrized by a continuously differentiable function z,(t), 0 <t <1, with
2,(0) =2,. By (5.7), log |f'(2,(t))| is a decreasing function of ¢ (0<¢<1). Thus arg f'(z,(t)) is
constant and |f'(z,(¢))| is decreasing for 0 <¢<1. It is now intuitively obvious that (5.3)
follows from the inclusion 4,< H,. We prove this fact as follows.

Fix n. Let {=az+b (|a| =1) be a linear transformation taking H, to the upper half-
plane and z, to 0. Set

FO=1(22), =0 + it a0+

Then arg F'({(t)) has a constant value A’ and | F’({(t))| is decreasing for 0 <¢<1. Clearly
t ¢
F((t) - F(0)=e* (fo |F (&) da(e) + ifo | F'(¢®)] dT(t)) .

Since 7(t)>0, and since |F'({(t))| is a decreasing function, integration by parts yields

t t
fo | F' ()| det) = | F'(C#)| =(t) — fo T(t) | F'(C#)[>0.

Thus (5.3) holds.

The proof of Lemma 3 is complete.
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6. In this section we prove a lemma which is stated in terms of the triple (C, D, M),
defined in Section 4. Let N be the countable subset of 8D whose existence is asserted by
Lemma 3, and set

EP=E® N, G¥={ay:e?€EP}.
LEMMA 4. Let 2, and z* be points of D satisfying
arg f'(z*) —arg f'(zo) > M + 237, (6.1)
and set 2(2) =zy(1 —£) +2*t (0<t<1) and w(t) =f(z(t)). Suppose
w(0)EDN D, wt)ED, (0<t<1).

Let A* be an arc at some point of N such that z* is the initial point of A*and 2(t) ¢ A* (0<t<1);
and suppose that f(A*)'is contained in some closed halj-plane whose boundary contains f(z*).
Then k

dist,(f(A4*), E?®) > diam f(4*),

where diam f(4*) and disty(f(4*), EP) denote, respectively, the Buclidean diameter of f(A*)
and the relative distance between f(A*) and E®.

Proof. Set wy=f(z,), w*=f(z*), and

g = {w(t): 0<t<1}.

‘We first obtain a lower bound in terms of arg f'(2*) —arg f'(z;) for the twisting of o around
w*. It is possible to do this because ¢ does not twist around w,.

On the set T'={(z, {): 0<¢<1, 0<r <t} the function w(f) —w(r) is continuous and no-
where zero. Thus by applying the monodromy theorem in the w-plane, we can define
log (w(t) —w(7)) as a continuous function of (t, t)€ 7. The imaginary part of this function
is denoted by

@(r, t) = arg (w(t) —w(7)).

Since w(0) €C and w(t) €D, (0 <t < 1), all values of w(t) —w(0) lie on the same side of a certain

straight line through the origin, and consequently we can require that
~nw <@(0,2) <3n (0<t<1). (6.2)

Since w'(t) is continuous and w'(f) +0 (0<¢t<1), we easily see that for each ¢, (0<4,<1)
the limit

@lty) =lim g(z, #) 6.3)
e )
@ DeT
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exists. It follows that ¢(f) (0<t<1) is continuous. Thus since ¢(t) is the angle (mod 27)
from the positive horizontal direction to the direction of the forward pointing tangent to
o at w(t), p(t) —arg f'(z(¢)) is constant; and in particular

@(1) —@(0) = arg f'(2*) —arg ['(z)- (6.4)
By (6.2), —w<¢(0, 1)<3x; and by (6.2) and (6.3), — <g(0) <37. Thus by (6.4)
@(1) —@(0, 1) >arg f'(z*) —arg f'(z,) — 4. (6.5)

Note that by (6.3), ¢(1) =lim ¢(z, 1); and consequently ¢(1) —¢(0, 1) is the change in g(z, 1)

71—
as 7 increases from O to 1.

Suppose now that the conclusion of Lemma 4 is false. Set o* =f(A4*). Then there exists
an open Jordan arc y< D such that y joins a point of «* to a point ag€E® and diam y <
diam o*. Since A* is an arc at a point of N, 4* and the preimage f~*(y) have different end-
points on 8D, and consequently y contains an open subarc that joins a point of a* to ap
and does not intersect «*. By replacing y by this subare, we can suppose without loss of
generality that y N «* =@. The endpoint of y on o* is denoted by w,,. Since diam y <diam a*,,
there exists an open half-plane H satisfying o* N H ~@ and o* N 9H +@ such that 7N H =Q.
By hypothesis there exists an open half-line L* such that w* is the finite endpoint of L*
and L*N o* =@. Let L be an open half-line such that L < H — L* and the finite endpoint
of L® is a point w™® €a* N 2H. We note that w® +w, (N H=0) and that

(@UP)NLP =2, (6.6)

Concerning Figure 2, we note that «* may or may not tend at one end to a point of .

We wish to establish the existence of a point wg € D N 9D, and a point w; € D such that
Arg (w1 —f(¢"®)) — Arg (wg—f(¢"®)) > M,

and thereby contradict (4.9).

We must now make a trivial observation, namely, that «* < D,. Suppose contrary to this
assertion that «* ¢ D.. Then since w*€ D, a*N O+, and «* contains a Jordan arc ¢’ that
joins w* to a point of € and intersects C only at this one point. We can define arg (w*—w)
as a continuous function in (int €) —a'; and since o' N L* =, all values of this function lie
in some interval of length 4. Thus since o N o’ =@, all values of ¢(r, 1) (0 <7<1) lie in
some interval of length 47, contrary to (6.1) and (6.5). Thus a*< Dp.

We do not prove that y < D, although this is true.

Since o* N L*=(, it is rather obvious that ¢ twists around w™ almost as much as it
twists around w*. We now make this statement precise. Since o a* =0, we can easily
define



54

Fig. 2.

P, w') = arg (w’ —w)

as a continuous function of two variables for w€o and w' €x*. Then y(w(z), w*) differs
from g(z, 1) (0<7<1) by a constant, and we can suppose without loss of generality that

this constant is zero:
p(w(r), w*) =g, 1) (0<r<I1). (6.7)

Consider a particular 7 satisfying w(z)¢L*UL® (0<7r<1). The union «*UL*ULPUC
contains a unique Jordan curve whose interior domain does not contain w(z). By considering
this Jordan curve we readily see that

[p(w(z), w*) —pw(r), wP)| <4 (6.8)

Thus by continuity (6.8) holds for each 7 (0 <r<1). Upon setting v=0 in (6.8) and using
(6.7), we obtain
|9(0, 1) —gp(wy, wP)| <4z (6.9)
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Again using (6.7) and (6.8), we obtain by taking the limit as v—1 of the left-hand side of
(6.8),
| p(1) — lim p(w(z), w®)| < 47. (6.10)

—>1"

Combining (6.5), (6.9) and (6.10), we obtain

Lim p(w(t), w®) — p(wy, w®) > arg f'(2*) — arg f (z,) — 127 (6.11)

T—>1"
Define W (w) =arg (w” —w) as a continuous function on the simply connected domain

D*=D—a* By (6.11)

Lim Y(w(t)) — ¥ (w,) > arg ' (z*) — arg f (2,) — 127. (6.12)

7>

Since o* N L® =@, we readily see that

| lim ¥'(w(7)) — lim ¥(w)| < 4. (6.13)
1" w—w,
weyy
Combining (6.12) and (6.13), we obtain
lim W'(w) — ¥ (w,) > arg f'(*) —arg ' (z,) — 162 (6.14)

4
wey

The curve ¢ will be of no further use. Note that y is a erosscut of D*, which divides D* into
two domains. One of these domains intersects ¢ and consequently contains an open Jordan
arc # such that 80 C'=@, B joins a point wg€ DN C to w,, and such that § and y determine
the same accessible boundary point of D* having the complex coordinate w,. This last
property of # implies that

lim ¥'(w) = lim ¥'(w). (6.15)
w—>w,, w—w,
wey wep

Since w, € D, B< D¢ and wo€ DN D Since also wy€ D N ID., we can join wy to w, by an
open Jordan are lying in the domain D, —a*, and consequently we see as we saw (4.8) that

|'¥ (wo) — V' (wy) | < 2. (6.16)

The restriction of ¥'(w) to § has a continuous extension, which we denote by ¥ 4(w), to the
closure § of B. With this notation we obtain using (6.14), (6.15) and (6.16),

W g(w,) - y(wg) > arg f'(z*) —arg f'(z,) —187. (6.17)

Note that (6.1) and (6.17) imply in particular that § N L) +@. Let w; be the point of 0 LV
such that the open subarc of § joining w, and w; does not intersect L1, Then

|'¥ 5, ~W y(w) | < 2,
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and by combining this inequality and (6.17), we obtain
W 5(wy) — W g(wg) > arg f'(z*) —arg f'(zo) — 207 (6.18)

Let 8’ be the open subarc of 8 joining wg and w;, and let yV be the union of y and the
Jordan arc on o* joining w, and w. Since f' N 7V =@, we can define

D', w) = arg (w—w')
as a continuous function of two variables for w’ €8’ and w€5. By (6.18).
D(wq, w) —O(wq, w') > arg f'(2*) —arg f'(z,) —20. (6.19)
We have y'n LMW =@ by (6.6), and consequently
| ® (st wiv) — Do, f(e)] < 2. » (6.20)
Since p‘ is contained in a half-plane whose boundary contains Wo,
| @ (25, w0) — D(wg, f(€))| <. (6.21)
Combining (6.19), (6.20) and (6.21), we obtain
O}, f(e) —D(w, f(e') >arg f'(z*) —arg f () —23. (6.22)
Thus by (6.1) and (6.22), we have
Arg (w1 —f(€'%)) — Arg (wo —f(e'%)) > M. (6.23)

Since wg€ DN 8D, and w; € D, (6.23) contradicts (4.9). The proof of Lemma 4 is complete.

7. This section depends only on the notation of Section 1. Its main result is Lemma 6,
which is of independent interest. The proof of Lemma 6 is based on extremal length, and
uses the following simple lemma.

LeMMA 5. Let B be a subset of the open interval (0, 8) (0 >0), and let m*(R) denote the

outer measure of R. For any r>0, set
y, ={2:y>0, |z| =r} (z=x+1y),

and set I'={y,: r€ R}. Then the extremal length A(T) of the family I" satisfies

A< —= —,  where x=}sm*(R).
log

1—x

Proof. Let p(z) be any measurable function defined in the whole plane such that g(z) >0
and the integral
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Afe)= ”9” dedy,

taken over the whole plane, is finite and nonzero. Set

L(g)=inf | o|dz],

yel'Jy

where the integral is taken to be infinite if p is not measurable on y and may be infinite in
any case. Then by definition [1]

L(g)®
AD) = .
TS

For almost every r € R both of the following integrals are finite, and by Schwarz’s inequality

2
L{g)*< (J; o|dz [) <m‘ﬁ o?|dz|.

2
Hence the inequality %)' < fy 0| dz|

holds for each r in a measurable subset R, of (0, §) that contains R, and we have

2
L(Q) f dr f (f Qldz)dr<A(g)
f j Jd ﬂ=lo —1
By T 8—m(Ro) r s-memy T L P

where m(R,) denotes the measure of R,. Thus

We readily see that

L(@)2 7
A(@) log ii—

and the proof of Lemma 5 is complete.

Lrmma 6. Let E, be a subset of 0.D (which is not assumed to be measurable) at each point
of which f(z) has a finite angular limit, and set

€ = {ay: €€ E,}.
Suppose that for each ¢° € B, there exists a sequence {A,} with the following properties:

for each n, A, is an arc at some point of 8D whose endpoint in D is denoted by z,; (7.1)
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z,—~€", and some open triangle contained in D contains all z,; (7.2)

and dism &, o, where o, = f(4,), (1.3)

" disty (2, €) »
and where diam e, and dist, («,, €) denote, respectively, the Euclidean diameter of o, and the
relative distance between «, and €. Then E, is a set of measure zero.

Proof. Consider any fixed '€ E,, and let {4,} be a sequence satisfying (7.1), (7.2)
and (7.3). Set w,=f(z,), and note that by (7.2), w,—a, Thus dist,(«x,, €)—~0, and (7.3)

implies that
diam o, = 0. (7.4)

For any curve f< D, we define a family I'(8) as follows: y €['(f) if and only if y is an
open Jordan arc lying in D, each compact subarc of which is rectifiable, and y joins a point

of B to a point of €. We define another notion of distance from § to € as follows:
0B, €) = sup {6: 6>0, y & {w: dist (w, f) <4} if y€T'(B)},

where dist (w, §) denotes the Euclidean distance from w to f. If no such § exists, set 6(8,€) =0.
We construct a sequence of open Jordan arcs §,< D such that f, joins w, to a point

of U, diam B,~0, and
inf A(’(8,)) > 0. (7.5)

Actually, we construct the sequence {f,} so that

diam g,
"2 5(B., €)

< oo, (7.6)
and then prove that (7.6) implies (7.5).
By (7.3) there exists an k (0 <k <1) independent of » such that
disty, (e, ) > 48,,, where d,=h diam c,. (7.7)
Let o, be parametrized by w,(t), 0<<¢ <1, with w,(0) =w,. Set
t,=sup {r: 0<7<1, w€D if 0<i<t and |w—w,(t)| <d,}. (7.8)

If no such 7 exists, set t,=0. Clearly ¢, <1, because otherwise «, would be relatively com-
pact in D. Let s, be an open rectilinear segment whose length is at most §, such that s,
lies in D and joins w,(t,) to a point of A. We readily see that w,(f) ¢s, if 0 <¢<t,. Thus the

set
Bn = {w,(t): 0<t<t,}Us,
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Fig. 3.

is an open Jordan arc that lies in D and joins w, to a point of . Note that since h <1,
diam g8, <2 diam «,,. (7.9)

Concerning Fig. 3, wenote that «, may or may not tend at one end to an accessible boundary
point of D.

We now establish (7.6). To this end we prove that §(8,, €) >4, for each ». Suppose
to the contrary that for some =, §(8,, €) <d,. Then there exists a ¢ €I'(5,) such that

pU {w(a)} < {w: dist (w, B,) <6,}, (7.10)
where a is the endpoint of y in €. Set
V, = {w: dist (w, s,) <d,},

and note that diam V,<36,. By (7.8) and (7.10), w(a)€V,. If y< V,, then by considering
the two cases yNs,=0 and yNs,+D separately, we readily see that yUs, contains an
open Jordan arc that joins a to some w,(f) (0<¢<t,) and lies in V,, contrary to (7.7).
On the other hand, if y £ ¥V, then an open subarc 9’ of y lies in ¥, and joins a to a point
w, €0V, (w, €y). By (7.10), |w},, —w,(t)| <8, for some ¢ (0 <¢<t,); and (7.8) implies that the
closed rectilinear segment joining this w,(f) and w;, lies in D. Since the union of 9’ and this
rectilinear segment is in diameter at most 46,, and since this union contains an open Jordan
are joining this w,(t) to a, we again have a contradiction of (7.7). We conclude that 6(8,, €) =
d, for each n. Combining this inequality, (7.7) and (7.9) we obtain

diam £, L 2diama,

2
88,6 9, h

n=1,2,...).
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This proves (7.6).
We now prove that (7.6) implies (7.5). By (7.6) there exists a positive integer % inde-
pendent of » such that

1
(B @)>E diam g8, (r=12,...). (7.11)
Consider on the square
Q. = {w: |Re w—Re w,| <2 diam B, |Im w—Im w,| <2 diam g,}

a mesh of horizontal and vertical line segments that subdivides @, into (16 k)2 nonoverlap-
ping closed squares @,.,,, each of side length (1/4k) diam §,. Let K, be the union of all @,,
that intersect the closure of f,, and let G, be the interior of the union of all @,,, that inter-
sect K,. Then K,<@,. For each n define a family I',, as follows: y €T",, if and only if y is an
open Jordan arc, each compact subarc of which is rectifiable, that lies in G,, — K, and joins
a point of K, to a point of G,. We note that

G, < {w: dist (w, §,) <2 diam @Q,,, <(1/k) diam 8,}.

Thus (7.11) implies that y ¢ @, if y€I'(8,). It follows that each y€I'(8,) contains some
p"€T',, and we conclude that A(I'(8,)) =A(I",) (see [1]). We observe that for each n there
are only finitely many possible values of A(T',), and each of these values is positive. More-
over, since k is independent of » and the extremal length is invariant under translation
and change of scale, the set of possible values of A(I',)) is independent of . This proves (7.5).

Let z=T({) be a linear transformation taking the open upper half-plane H onto D
and oo to 1. We continue to consider the same e, although we suppose €'%+1. Define &
and E, by requiring

T =€’ T(Ey)=E,-{1}.

Set F(C)=f(T()) (C€EH), and define £, (n=1, 2, ...) by requiring F(8%) =8,. By (7.4) and
(7.9), diam f,—0; and consequently, since &=oo, it follows readily from Koebe’slemma
that diam g% —0. Also using Koebe’s lemma, we see that each 8, has an endpoint &,€0H,
and since diam p%—0, we can suppose without loss of generality that £, +c (n=1,2, ...).
Also, &,~&. By (7.6), £, ¢ E¢ (0(B,, €)=01if £, € Ey), and in particular £, +£. Infinitely many
&, lie on the same side of £, and by replacing {£,} by a certain subsequence, we can suppose
without loss of generality that all &, lie on the same side of £. We consider the case where
£.>§& (n=1, 2, ...); the other case is completely analogous.

Define g, ¢'% (0 <@, <m) by T'(g,€'?) =z,. By (7.2) there exists a number 5 independent
of # such that 0 <9 <zn/4 and n<@,<m—7 (n=1,2, ...). Set

Ty = (Sn—é) sinn (n=l’ 2,..),
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Pn eitn

Fig. 4.

and let I', be the family of all semicircles HN {|—&,| =r}, where 0<r<r,and &,—r€E;
(see Fig. 4). We readily see that each y” €I';, contains some curve ¢’ in the family
I.={:y'<H, F(y')eT'(B,)}
Thus AT = MT). (7.12)
Since extremal length is a conformal invariant [1], (7.5) implies
inf A(T;) > 0. (7.13)
By Lemma 5

MR < —T, where sy 1 m* (e 0 (a1 &)

log "

11—,

Thus by (7.12) and (7.13), sup, », <1; and since the ratio r,/(£, — &) =siny is independent
of n, we see that

sup B0 G 6 g

This implies that no point of E, is a point of outer density for E,, and we conclude that
E; is a set of measure zero [14, p. 129]. Thus %, is a set of measure zero, and the proof of

Lemma 6 is complete.

Remark. An immediate consequence of Lemma 6 is the following result: Let € be a
subset of 9, and suppose that for each a €€ there exists a sequence {c,} of crosscuts of D,
each of which separates a from a fixed point w, €D, such that diam ¢,-0 and

su diam ¢, <
np diStD (cm @) o

Then € is a D-conformal null-set. (The condition that ¢, have endpoints in 9 can be relaxed

to require that c, tend at each end to a prime end of D.) This result is applied in [9] to prove
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the following theorem: If for each a €Y and each sufficiently small >0, L(a, r) denotes the
length of the component of DN {|w—~w(a)| =r} nearest a that separates a from w,, and if

A(a, )= er(a, r)dr
(]

(which exists as a Lebesgue integral), then

lim sup é—(a—’;—) >l (WhiCh implies lim sup
r—>0 r >0

2r ~ 2

L(a, r) S l)
2 2

with the possible exception of those ¢ in a D-conformal null-set.

8. Proof of Theorem 1. Conclusion. The sets E® and €4 are defined in Section 6.
Consider a fixed e’ € ¥, We recall from Section 4 that since ¢'°€ E®, arg f'(z) is unbounded
above in Ay. Thus since ¢’ ¢ N, Lemma 3 states the existence of a sequence {4,} satisfying
(5.1), (5.2) and (5.3). Since for each n the initial point z, of 4, is on 8A,, and since z,—> ¢
by (5.2), one side of A, contains a subsequence of {z,}, which of course converges to ¢*.
By using (4.5) and (4.6), we see that this side of A, contains an open rectilinear segment S
joining a point z, to €' such that f(z,) €D N D and f(S)< D.. By replacing the sequence
{4,} by a certain subsequence, we can suppose without loss of generality that S contains
all z,; and since arg f'(z,)— + oo by (5.2), we can also suppose without loss of generality

that
arg f'(z,) —arg f'(zg) > M +23n (n=1,2,..),

where M is the number defined in Section 4. We now fix » and apply Lemma 4 with
#*=z, and A*=A4,. Note that by (5.1), 4,N 8={z,}. Thus using (5.3), we see that all
hypotheses of Lemma 4 are fulfilled, and we conclude that

dist, (f(4,), €¥) =diam f(4,).

Since such a sequence {4,} exists for each €€ E{®, Lemma 6 implies that E" is a set of
measure zero. Thus since N is countable, E® is a set of measure zero, and this is the desired

contradiction. The proof of Theorem 1 is complete.
9. In this section we prove Theorem 2. The proof uses the following simple lemma.

Lemma 7. If f(z) is isogonal at e, then ag€¥,.

Proof. Suppose to the contrary that for some e, f(z) is isogonal at ¢ and a,¢%,.
Then there exists a Jordan domain U, (that is, 8U,, is a single Jordan curve) contained in

D and having the following three properties:
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(@) He*)eU,=DU {f(e")};

(b) for any open triangle A contained in D and having one vertex at €, f(z)€U,
if z€A and z is sufficiently near e’%; and

(¢) for some « satisfying 0 <a <1, the function (w — f(¢’®))* which is defined and con-
tinuous in D, maps U, onto a Jordan domain whose boundary has a tangent at the origin.

By (a) and (b) the preimage U,={"*U,) under f(z) is a Jordan domain satisfying

e?eU,c DU {e;

and oU, is tangent to 8D at €. By (c) the function (f(z) —f(¢!®))* maps U, onto a Jordan
domain whose boundary has a tangent at the origin. Thus a well-known theorem of Lindelof
implies that (f(z) —f(e’®))* is isogonal at €', contrary to the assumption that f(z) is isogonal
at €. The proof of Lemma 7 is complete.

Proof of Theorem 2. Part (i) is an immediate consequence of Theorem 1 and Lemma 7.

It follows from a routine argument that g(w) has a nonzero angular derivative at a
point a €%, if there exists a finite, norizero complex number g’(a) such that for each angle

Aata,
lim ¢'(w) =g () (9.1)

w—a
WEA

that is, the first equality of (2.1) is a consequence of the second. If we let w = f(z) denote the
inverse function of z =g(w), then we see that if {'(z) has a finite, nonzero angular limit /(')
at €', then (9.1), where a=q, and g’(a) =1/f'(¢'), holds for each angle 4 at a,. Thus (ii)
is an immediate consequence of Theorem 1.

We now prove (iii). Let € be a subset of 9, and take w=f(z) to be the inverse function

of z=g(w). Set
E,={e" 0y€C}, E,={f(e"): e€E,}.
Then E,, is the set of complex coordinates of the points of §.

We first suppose that £, has measure zero and that E, does not have linear measure
zero, and we derive a contradiction. We shall define subsets B (j=1, 2, 3) of E,, and for
each § it shall be understood that

ED ={f(e"): €€ EP}.

Associate with each a3 €€ rational numbers ¢(f) and «(f) (0<x(f) <m/2) such that for
some angle A at ay, all points of the set

A(0) = {{(e") +0e'”: >0, |p—p(0)| <ax(6)}

that are sufficiently near f(®) are in 4. There exist ¢, «y and a subset E of E, such that

E does not have linear measure zero, and such that @(0) =g, and «(f)=«, for each
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e?€ EP. Associate with each ¢?€ B’ a straight line L(6) in the w-plane with the following
properties:

L(0) intersects the half-line {f(¢'®) +pe'?: p >0} at right angles; (9.2)
the Euclidean distance from the origin to L{f) is a rational number; (9.3)
N'(6)< D, where A’(0) is the bounded component of A(6)—L(6). 9.4)

By (9.2) and (9.3), the family {L(f): € EP} is at most countable. Thus there exist L,
and a subset EP of EP such that E2 does not have linear measure zero, and such that
L) =L, for each e®€ E®. There are at most countably many components of UA’(6),
where the union is taken over all ¢’ € EP. Thus one of these components, which we denote
by G, is of the form
G= U A'6),
emeEf”

where EP< E® and E® does not have linear measure zero. Note that G<= D by (9.4).
It is readily seen that @G is a rectifiable Jordan curve and that E$ has positive outer
measure with respect to length on 8G. Thus under one-to-one conformal mapping w=w({)
of {|{{] <1} onto @, EY corresponds to a set B on {|{| =1} of positive outer measure
[13, p. 127]. Set F({) =g(w()), and let E; be a G;-set on {|z| =1} of measure zero such that
E®c E?. Since the angular-limit function F(e') is a function of the first Baire class defined
onan F_s-set [4, p. 311], the set

E} = {e" F(e®)€E}}

is a Borel set [4, p. 303]. Since EP < E;, Ef has positive measure, and we have a contradic-
tion of an extension of Léwner’s lemma [11, p. 34]. We conclude that E,, has linear measure
zero if E, has measure zero.

We now suppose that E, has linear measure zero and that E, has positive outer
meagure, and we again derive a contradiction. We define G' as above, except that for
each j=1, 2, 3, we replace the requirement “E¢) does not have linear measure zero” by
the requirement “E{ has positive outer measure”. By part (ii) of Theorem 2 we can sup-
pose without loss of generality that g(w) has a nonzero angular derivative at each point of
€. Thus g(w) is “isogonal” at each point of €, and consequently we can associate with each
e'€ EP rational numbers p(6) and B(0) (0 <B(8) <n/2) such that all points of the set

{eio_i_o.ef’ﬂ: o>0. |1p-—1p(0)| <ﬁ(0)}

that are sufficiently near e are in g(A’(8)). For each ¢ € E® let by denote the accessible

boundary point of g((¥) that is determined by the segment
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{e® +ge™D: 0 <o <0y},

where g, is sufficiently small to make this segment lie in g(G). Let z=2z({) be a function
mapping {|{| <1} one-to-one and conformally onto g(@), and let E be the subset of
{|¢| =1} that corresponds under this mapping to {B,: € EP}. Since EP has positive
outer measure, it does not have linear measure zero; and we see, by using the argument in
the first part of this proof of part (iii), that E has positive outer measure. On the other
hand, f(2()) maps {|¢] <1} onto G with Ef® corresponding to EY; and it follows easily
from the special nature of 0@ that EY has measure zero with respect to length on 9G. This

is the desired contradiction. We conclude that £, has measure zero if £, has linear measure
zero.

The proof of Theorem 2 is complete.

Remark. Let a€, and suppose there exists a curve 4,< D such that 4,U {a} is a
Jordan arc in the metric space DU, and such that ¢g'(w) has a finite, nonzero limit g’(a)
on A, at a. Then a€9; and g(w) has a nonzero angular derivative at a. We see this as
follows. Take w=f(z) to be the inverse function of z=g(w), and let § be such that a=aqa,.
Then the curve A,=g(4,) is an arc at ¢, and f'(z) has the limit 1/g’(a) on 4, at €. By
Lemma 2, f'(2) is a normal holomorphic function, and consequently the theorem of Lehto
and Virtanen [6] implies that f(z) has the angular limit 1/g'(a) at €. Thus by Lemma 7,

a€;; and as we saw in the proof of part (ii) of Theorem 2, g(w) has a nonzero angular
derivative at a, (whose value is g'(a)).

10. In this section we give two counterexamples.

Exam?pLE 1. There exists a Jordan domain D such that A =%, U N for some D-con-
formal null-set N. By Theorem 2, parts (i) and (iii), D will have this property provided
9, has linear measure zero (for a Jordan domain we make no distinction between a and
w(a)). We easily construct a D with this property, as follows.

By the middle third of a closed rectilinear segment § we mean the closed segment on
S whose length is one third that of § and which is equidistant from the endpoints of S.
Let A, be a closed equilateral triangle of side length 1. Let A; ; (k=1, 2, 3) be closed equi-

lateral triangles of side length 1 such that AN A, (k=1, 2, 3) are the middle thirds of the
sides of A;. Set
A, = AU UAI,k)‘

Let Ay (B=1, ..., 12) be closed equilateral triangles of side length (1)2 such that AN Ay,

(k=1, ..., 12) are the middle thirds of the rectilinear segments (whose endpoints are corners
of 0A,) on dA,. Set
Ag=A,U(U AZ.k)'

5 — 692907 Acta mathematica. 123. Imprimé le 11 Septembre 1969,
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Continuing in this way, we define A, (n =1, 2, ...). Let D be the interior of JA,. Then oD
is a Jordan curve, since it could have been defined by means of Knopp’s triangle construc-
tion [4, p. 233]. It is easy to see that ¥, is contained in a countable union of “middle-
third” Cantor sets, and consequently that U, has linear measure zero.

It was previously known that there exists a Jordan domain D such that for almost
every 0, f(e) is not an endpoint of an open rectilinear segment lying in D (see Lavrentieff
[5] and Lohwater and Piranian [7]).

Remark. Theorem 2 has the following geometrical consequence: If I, is at most count-
able, then the set of complex coordinates of points of A, does not have linear measure zero
(this set is a Borel set, and is therefore linearly measurable; but we do not prove this).

Also the local analogue in terms of intervals of prime ends is true.

ExampLE 2. The set of points ¢’ at which neither (1.1) nor (1.2) holds can be a com-
pact set of positive logarithmic capacity.
Let {v,} be a sequence of distinct real numbers, and let {u,} be a sequence of positive

numbers having the limit zero such that if we set
D={w:Rew>0}— U {u+iv,: 0<u<u,),
n=1

then the inner tangent to @D does not exist at any point of the imaginary axis. Let w=f(z2)
be a function mapping D one-to-one and conformally onto D, and let f(z) also denote the
continuous extension of this function to D. Define E, to be the set of all ¢’ satisfying one
of the following conditions: f(e'®) = oo, Re f(¢'®) =0, or f(e®)=u, +iv, for some n. Clearly
(1.2) does not hold for any €%; and since az €Y, if (1.1) holds at €’, we see that (1.1) holds
if and only if ¢ E,. Also, E, is a compact, totally disconnected set, and each component
of (0D)— E, is mapped by /(z) onto a horizontal segment. By reflection the real part of
f(2) is extended to a single-valued (nonconstant) positive harmonic function in the comple-

ment of E,, and consequently E, has positive logarithmic capacity [10, p. 140].
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