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1. Introduction
1.1. Statement of Theorem 1. Our main result is

THEHEOREM 1. Let sequences {6,}, {0,} (1<i<N <o) of non-negative numbers be as-
signed such that
0<4,+0,<1 (1<i<N),

‘Z {0,+0,}<2,
together with a sequence {a} J’I‘fz <N) of distinct complex numbers. Then there exists a mero-
morphic function f(z) having
ey, f) =08, 0(a, ) =6, (1<i<N), (1.1)
0a, f)=6(a,f)=0 (aé{a}). (1.2)
Further, if ¢(r) is a positive increasing function with
$(r)>o  (r—>o), (1.3)
the function f(z) may be chosen so that its Nevanlinna characteristic satisfies

T(r, f) <s¥® (1.4)
for all large r.

Here we use the standard notations of R. Nevanlinna’s theory (cf. Nevanlinna [13],
[15], A. A. Goldberg and 1. V. Ostrovskii [8] and W. K. Hayman [9]); for example

d(a, f) =lim inf{l—Nq(,—r(’ra}Tf)}, (1.5)
0(a, f)=lim inf{N(” % fq),(: JX("’ e ’)}. (1.6)

The function f(z) thus provides a complete solution to the inverse problem of the theory of
meromorphic functions (for a discussion of this problem see [8], Ch. 7 and H. Wittich [19],
Ch. 8).

The problem of constructing a function whose deficiencies and ramifications are ar-
bitrarily chosen consistent with the first and second fundamental theorems has a long
history. It is proposed in Nevanlinna’s first book ([13], p. 90) but solved only in very special
cases. Nevanlinna achieved a major advance in 1932 [14] when, in introducing the class
of Riemann surfaces with finitely many logarithmic branch points, he proved that the
restricted inverse problem
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8 ) =08,0<8,<1 (i=1,.., N <o),

0, f)=0 (a&fa}),

2.6,=2, 0;rational,

with {a,, ..., ay} any preassigned set of distinct complex numbers, could be solved by choos-
ing an appropriate surface from this class and taking f(z) to be the meromorphic function
which maps the plane conformally onto (uniformizes) this surface. A sketch of this proce-
dure is in [15], Ch. 11, and an excellent exposition with some extensions is given in [7].

Later, F. E. Ullrich [17] introduced a more general class of surfaces and conjectured
that (1.1), (1.2), (with now all §,, 0, rational, N <o and X 8,+6,=2) could be solved by
uniformizing a suitable surface of this type. This was confirmed by Le-Van Thiem [11]
for most cases, in a paper also notable for being the first to apply a general principal of
Teichmiiller [16] to the inverse problem. Teichmiiller had come to these discoveries also
while studying Ullrich’s surfaces, and a modified form is the starting point for this in-
vestigation (chapter 2).

More recently, Goldberg applied Teichmiiller’s principle to a more general class of
surfaces to solve the problem I8, <2 (N < o) without the §, being rational, and also gave
a complete solution to the restricted problem X 0,<2. A useful account of Goldberg’s
successes appears in chapter 7 of [8].

Finally, we recall the well-known example of W. H. J. Fuchs and Hayman (cf. [9],
chapter 4) which solves the restricted problem X §;<2 for entire functions.

The solution to the inverse problem cannot in general be of finite order. Indeed, A.

Weitsman [18] has shown I 8(a,)"’® < co whenever

lim inf 2200 o o

m it (L.7)

Assertion (1.4) implies that our solution f(z) may be chosen of as ‘small’ infinite order as
desired, and the construction also shows that T'(2r, f)/T'(r, f) may tend arbitrarily slowly
to infinity, complementing (1.7).

It is a pleasure to make several acknowledgments. The viewpint of chapter 2, which re-
places all notions of Riemann surfaces and uniformization by properties of solutions to the
Beltrami equation, was shown me by my colleague K. V. Rajeswara Rao. This approach
uses notions now standard in the study of quasi-conformal mappings, and leads to a more
transparent and essentially self-contained exposition. It was with another colleague, Allen
Weitsman, that I discovered the literature on this problem, and in our earlier paper [6]
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we made a major step in properly adapting Teichmiller’s principle; [6] also showed the
relevance of the Lindelof functions. Professors W. H. J. Fuchs and Seppo Rickman
caught several substantial errors in the first version of this paper. A suggestion from Pro-
fessor Fuchs has simplified my proof of Theorem 4.

Finally, I thank Nancy Eberle for the excellent typing she has given to the many

versions of this manuscript.

1.2. Principle of constructien. Consider the restricted inverse problem X §,<2. Given a
positive integer n, choose 2# extended complex numbers b_(,_,), ..., by, ..., b, with b,%
b1, bya=b_(;_y). The method of Nevanlinna [14] produces a meromorphie function f,, of

order », such that

dq(a) = 8(a, f,) =n[card{j; —(n—1) <j <mn, b,=a}]. (1.8

Hence, if {b,} (— oo <j <o) is a sequence chosen so that the numbers d,(z) defined by (1.8)
tend to 6, when a =a, and 0 otherwise, it is natural to try to construct the solution to this
deficiency problem as a limit of the corresponding functions {f,}. We achieve this in the
following manner: there will be a very rapidly increasing sequence {r,}(1 <n<cc) with
the property that near {|z| =r,} f(2) has the same value-distribution as does f,(z). Further,
the definition of f in the intermediate regions {r,<|z| <7,,,} will ensure that d(a, f)=
lim,, 8,(a) for all a.

The solution to the full inverse problem (1.1), (1.2) is made in a similar manner, but
based on a family modelled after that introduced in [6].

The function f(z) of Theorem 1 is obtained by indirect methods. The inverse problem
is solved formally by an expleit function g{{); although g is not meromorphic, it may be
‘factored’ as g =foy where f i3 a meromorphic function and y a (quasi-conformal) homeo-
morphism of the plane. In chapter 2, we derive conditions to ensure that the Nevanlinna
data of g transfer to f (i.e. that g be Nevanlinna admissible) so that in addition (1.4) holds.
Much of the material in this chapter is implicit in other sources, but the importance of
the parameters in Theorem 2 and Lemma 4 warrants a complete exposition.

The definition of g({) is based on a family of auxilliary functions g«(¢) (|j] <c°) and
g7(%) (j=0). These functions are introduced in § 3.1, where their important properties are
listed in Theorem 3. Assuming Theorem 3, the proof of Theorem 1 is completed in § 3.2.

The proof of Theorem 3 itself depends on Theorem 4. Theorem 4 is stated in § 4.1,
and additional preliminaries to the proof of Theorem 3 are given in § 4.3—4.5. This makes
it easy to obtain Theorem 3, in chapter 5. Finally, Theorem 4 is proved in chapter 6.

The methods of this paper may be used to solve other problems. For example, it is



THE INVERSE PROBLEM OF THE NEVANLINNA THEORY 87

eagy to modify the approach to construct a function f(z) order £>0 which solves the
restricted problem X 6,<2, and only a little harder to show that f may be chosen of order

Zero.

2. Nevanlinna admissibility

2.1. Nevanlinna theory and quasi-meromorphic functions. To keep a distinetion between
meromorphic and not-necessarily-meromorphic functions, we usually reserve the complex
variable z(=re'?) to be the domain of a meromorphic function, while functions of the
complex variables w(=se' =u+4v) and { = (ge'* =& +in) need not be meromorphic.

Let ¢g() be a continuous map from the finite complex plane C into the extended
complex plane € which has partial derivatives a.e. and such that each £, has a neighbor-
hood N({,) in which either

96(0), 9,(0) ELA(N (L)) (2.1)
or

(1/9)e(), (1/9)4(C) ELAN(L,)) (2.2)
((2.2) is preferred when g({,) = o). In terms of the formal derivatives
9; = ¥ge —ig,), 9t = Mg +ig,) (23)

we introduce the fundamental assumption that there is a fixed number k,, 0<%k, <1 such
that either

|980)| <kolge(Q)]  ae.in N() (2.4)
[0 <ko|(L/@)e(D)]  ace. in N(C,). (2.5)

A continuous function g: C—C such that either or both (2.1) and (2.4) or (2.2) and (2.5)
hold in a neighborhood of each { €C is called quasi-meromorphic; if D is open and g: D—~C

or

satisfies the analogous conditions, then g is quasi-meromorphic on D. Finally, if D is a
set whose boundary has planar measure zero, a continuous function g: D—~C is quasi-
meromorphic in D if g is quasi-meromorphic in the interior of D.

The measurable function y defined locally by an appropriate choice of the formulae

#o(8) = g8(0)/9¢(L), (2.6)
#o(8) = (L/@)E(8)/(1/g)(0) (2.7)

gauges the deviation of g from a meromorphic function: 4 =0 if g is meromorphic, and
lolloo <Ko
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Much of the theory of quasi-conformal mappings depends on the fact that the partial
differential equation (Beltrami equation)

Yi(0) = elOveO) (Jtolloo S o <1) (2.8)

has a solution z=1({) which is a homeomorphic self-map of the finite plane, and the nor-
malizations
p(0)=0, p(1)=1 (2.9)
render g unique (cf. [1], Ch. 5; for history cf. [2]).
The importance of this ‘fundamental solution’ of (2.8) is that the function f(z) defined
by
H(z) =goy~(2) (2.10)
is meromorphic in the complex plane. Indeed the question is purely local, and g and o
are both solutions of the same Beltrami equation in the sense of Bers [4] (this is why re-
gularity conditions (2.1) and (2.2) are required). Thus the analyticity of f follows from
[4], p. 94.
The factorization (2.10) permits a natural extension of the standard value-distribu-
tion functional to g. For example, if I, is the curve in the z-plane which is the image of

{1¢] =0} by v, then
n{o, a, 9) (resp. (g, a, g))

is the number of solutions inside I', of the equation f(z)=a with (resp. without) due ac-

count of multiplicity. Further,

(4
N(g,a,9)= J; {n(u,a, g) —n(0,a,g)} d-: +n(0, a, g) log o, (2.11)
e _ du _
N(Q’ a, g) = J; {n(u’ a, g) - n(O’ a, g)} ; + n(O» a, 9) IOg o, (212)
1 27
T(e.9) =§IL N(g,€", g)db, (2.13)

and, finally, d(a, g) and O(a, g) are defined by (1.5) and (1.6). When g is meromorphic,
these reduce to standard {or equivalent) definitions.

2.2. Nevanlinna admissibility

Definition. Let g be quasi-meromorphic and ¢ a homeomorphism of the plane which
satisfies (2.8) and (2.9). Then g is Nevanlinna admissible if the function f(z) determined in
(2.10) satisfies
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d(a, [y =b(a, 9); O(a,[) =0(a,g) (2.14)

for all a€C.
Bach set of conditions sufficient for Nevanlinna admissibility presents new possibili-
ties to construct meromorphic functions. The classical criteria are due to Le-Van [11] and

are based on Teichmiiller’s discoveries in [16]: for some A, 0 <4 < oo,

T(o,9)~¢" (o> ), (2.15)
all limits
lim o~*n(g, a, g), lim g~*i(g, a, ¢) (a€C) (2.16)
o> >
exist and
Hm ) |0 S| 2dedny = ”m ) L (0) ||| 2dEdn < oo. (2.17)

Indeed, not only does (2.14) hold, but in addition

T, fy~ar*  (r— o) (2.18)
for some «>0.

Since our solution f(z) in Theorem 1 will have infinite order, (2.18) cannot hold, and
our construction will almost always violate (2.17). Thus more flexible conditions are needed:
in terms of the representation (2.10), they balance the growth of the characteristic of ¢g({)
with the rate at which ¢ becomes conformal at co. In this section we obtain a substitute
for (2.17); modifications of (2.15) and (2.16} will be given in § 2.3.

Hence, consider the mapping of the plane given by (£). For r >0 let I', be the Jordan

curve which surrounds { =0 and is the image of {|z| =7} under y~!, and define

92(7‘) =sup{|C|;£€F,},
o1(r) =inf{|Z|; L€T}.

(2.19)

Assumption (2.9) implies that g,(r), g5(r) are increasing functions of » which vanish when

r=0. The deviation of y from conformality at o is measured by the ‘distortion’

o(r) (= w(r, p)) =log{es(r)/o:(r)}. (2.20)

LemMA 1. If y is as above with |u, | <k,<l a.c., then there is an M =M (k) < oo such

that
e2r)foy(ry <M (r>0). (2.21)
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Proof. Given z;, 2, with |z;| =r, |2,| =2r and
0:2r) =y @], eulr) =]y~ '),
B ={L;0,(r) <[] <ea2r)}.

let

Then B=v(B’) is a doubly-connected region in the z-plane which separates 0 and z, from
2, and oo. Teichmiiller’s inequality (cf. [1], Ch. 3; [10], p. 58] for the module of B, M(B),

gives
M(B)< 2v{ (———l 4l )m} =2y(37'%)
T Wal+ |

where » may be expressed in terms of elliptic integrals. But o is (1 +k,)(1 — k)~ quasi-
conformal, so

02(27) _ o1tk
log=*~—=M(B)< —— M(B),
8, 1) (B) 1=%, (B)

which yields
0(2r)

o) <exp{2(1+ ko) (1 — ko) w3713} =M.

CoROLLARY 1. The hypotheses of Lemma 1 imply
o(r) <log M (M = M(ky), r > 0), (2.22)
where w 13 defined in (2.20) and M is the bound of (2.21).
CoROLLARY 2. Let 2=y({) be a homeomorphism of the plane which satisfies (2.8) and

(2.9). Then there is an ry=ry(k,) such that if M is as in (2.21) and either r(=|z|)>r, or
o(=|C|) >r,, then

[] =y =) < MR ™ (r>ry or @>ry), (2.23)
and

|2] = ()| < Mp*' ™ (r>ry or @>rg). (2.24)

Proof. By symmetry it suffices to show (2.23). Let 2*<|z| <2*, n>1. Then the
normalization y(0) =0 with (2.21) yields

log M .
< 04(2) exp { logg ) log |z|} = pq(2) |z ['o5 MiosZ,

m 02"
ll<e@ IT° 5

In addition, Lemma 1 and the normalization ¢(1)=1 give

22(2)
0:(2) < o.(1) <M, (2.25)
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and hence if |z| =r>2

ICI < Mylos Milog 2 (r= Izl > 2). (2.26)

Since |z| =|9(()| >2 when [{|>g,(2), (2.23) follows from (2.25) and (2.26) with r,=
max (2, M).

We also need an ‘o(1)’ form of Corollary 1. The simplest way to do this is to take k&,
in (2.4) and (2.5) small, or require that u,({)—~0 as {— oo, but this is not adequate here.
Sufficient flexibility is attained by studying the dependence of the expressions g,(2r)/o,(r)

and w(r) as functions of
1 27
Dig)=Dlo,y)=35~ L | 1g(ce™)| dg. (2.27)

Lemma 2. Let p, ky, M, ry be the constants of Lemma 1 and Corollary 2. Then given
£>0 there exist 1>0, A < oo such that if o' >r, and

Dig,y)<n  (e>0), (2.28)

then
w(r) <e (r> A(g/)2lox My (2.29)

and
2-¢< %%%)<2+s (r> A28 ). (2.30)

Proof. Both (2.29) and (2.30) follow from similar considerations, so we consider only
(2.29). If (2.29) were false, there would exist sequences A4,,— o0, 7,,—0, 07, =7, and r, with

rnZ Anlgn Y (m=1,2,..), (2.31)

and to each m would correspond a normalized solution z=1y,({) of the Beltrami equation
(2.8) with
Do, ¥m) <ftm (@ >@n), (2.32)

Ty Pu) 2 € (m=1,2,..). (2.33)

and yet

For appropriate real 0,,, ¢, let g,(r,)e"*" =y, (r,e""). Then for each m consider the
homeomorphism ¥,,({),
r,) €'
‘I’,,,(C)=w——'"(@";( ez,,m 9, (2.34)
Clearly ||uy, [lo=||ttw, ]l <%0, 8nd (2.9) holds for each ¥',. In addition, we claim that
given >0, §>0, then
D@, ¥m)<n (2>, m>my(,0)). (2.35)
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For (2.31) implies that r,,>r, for large m, and hence if o= || >4, (2.24) and (2.31) yield
IQZ(Tm) C' >92(Am(9’m)2 log M) 6 -~ 6 {M—lAm(e'm)Zlog M}ll(2log M) 6(M—1Am)1/(2 log M)Q;n«

But {4,}>c and the g, are bounded below, so this computation implies that
log(m) ¢ | >0 for large m. Thus (2.35) follows from this, (2.32) and the fact that D(p, ¥',)=
D(os(rmo. ).

That the ¥',, form a normal family is clear from Corollary 2 to Lemma 1 and (2.9)
for each ¥, (cf. [10], pp. 74-76). By taking subsequences and then relabelling, we obtain a
limit function ¥'(¢) such that ¥,~>¥, ¥,;'>¥-1 with convergence uniform on compacta,
and (2.35) shows that uy =0 a.e. Thus ¥ is a schlicht self-map of the plane which satisfies
(2.9): ¥(£)=<,. This with (2.34) contradicts (2.33).

Remark. Conclusions (2.29) and (2.30) follow when (2.28) is weakened to

20

BO= [ v Dupdu<n  @>0, o>en) (2.36)
e

for sufficiently small >0, since the normal family argument again implies ¥'({)=C.

That conclusions of the nature (2.24) hold when (2.17) is replaced by (2.28) or (2.36) was

first shown by P. Belinskii, and is discussed in his recent book ([3], p. 53). These ideas

were also used in [6].

2.3. Sufficient conditions for Nevanlinna admissibility

Here we derive alternatives to {2.15) and {2.16). Let b be a complex number that is to
satisfy 8(b, f)=0 (e.g., in the language of Theorem 1, b ia disjoint from the {a,}). Then we
introduce the hypothesis that all limits

11m n(@ia» g) l ﬁ(e$a’ g) (ae 0)

o0 70,0, 9)" o0 1, b, 9) 237)

exist. Since (2.10) and (2.19) lead at once to
nloy(r), a, 9) <n(r, a, f) Smlgyr), @, 9)  (a€0, r>0), (2.38)
woy(r), a, 9) <iilr, a, f) <gyr), @ 9)  (a€0,r>0), (239)

(2.37)-(2.39) and the definitions readily imply

Lremma 3. Let g be quasi-meromorphic and assume all limits in (2.37) exist, where
3(b, g)=0. Then if
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n(0y(r), b, g) ~ n{ga(r), b, 9)  (r—> ), (2.40)

the function ¢(l) is Nevanlinna admissible. More precisely, if the meromorphic function f(z)
18 defined by (2.10), then

L onnaf)_ L n{e,ag)
d(a,f)=1 }Egn(r,b,f) 1 glfin(e,b,g) (a€C), (2.41)

ERT n(r:a’f)_ﬁ(r’a’f)= . n(g, 0079)—75(9,@,9)
6(a, f) _}ffi (5. ) gmo (@ 5.9) (a€C). (2.42)

Condition (2.40) is the key to our method. Lemma 2 shows that g,(r) ~g,(r) when
D(p, p)—>0 (90— o°) and (2.40) relates this to the growth of g.

Our function g will be defined in a manner to make it easy to check (2.37) and (2.40).
We will introduce an increasing function A(g) (¢ =0} which is continuously differentiable
off a discrete set P such that

A)>1  (0>0), (2.43)
el <1  (0>0,0¢P). (2.44)
Let
S{p) =exp {feﬂ(u) u‘ldu} (0> 0); (2.45)
1

then we will construct a sequence {g,,} = o> with

Omir > 20m (M 21), (2.46)
such that
n(@’ ba g) ~ mn‘IS(@) (Qm—l < 0 < Om, M~ oo) (247)

for some, and by (2.37) all, b having 8(b, g) =0. Assumptions (2.37), (2.45) and (2.47) re-
place (2.15) and (2.16); (2.45) and (2.47) are analogous to the classic proximate order re-

presentation but more flexible [5].

THEOREM 2. For fized ko<1, let g be quasi-meromorphic with ||u,l|e <ky, and let
M =M(ky), ro="rko) be the constants determined in (2.21), (2.23) and (2.24). Let {A,},
{nn} be sequences with the property that whenever

D) <nm  (@>0">1)) (2.48)
for any o’ >ry, it follows that

w(r) <m-2 (r> A, M(')?* ™). (2.49)
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Suppose {0,,} (m>1) is chosen in accord with (2.46) such that in addition

om > 1o (m=1,2,..) (2.50)
and

M1+2los MAgnlog MQ(nz; log M) < Omi1 (m > 1)' (2.51)

If for some b with 3(b, g) =0 all limits in (2.37) exist and n(g, b, g) may be represented
as in (2.43)—(2.47) with

A <m+l  (9<gn (2.52)
and

D) <nm (0> em) (2.53)

then the function g({) 18 Nevanlinna admissible.

Proof. (The existence of the {4,}, {n,,} is evident from Lemma 2). Since (2.53) shows
that D(g, p)—>0 (o~ <), it follows from (2.46) and (2.47) that (2.40) is equivalent to
Q0s(r)
AMu)u'du—0 (r—o0). (2.54)

ourn)

Also, (2.20), (2.22) and (2.44) give the estimate
o(r) osr)

Au)udu < {A(o,(r)) +log M} uldu=o(r){Alg,(r)) +log M}. (2.55)

exr) oir)

We may suppose that the 4,, increase with m. Hence, given sufficiently large » there
is & unique m with

A ME M <r < Ay Mgh ™. (2.56)
That
o(r) <m-* (2.57)

follows at once from the left inequality of (2.56) with (2.49), (2.50) and (2.53). The right
inequality of (2.56) with (2.23) and (2.51) shows that if r (i.e. m) is large,

log M 1+21og M 42log M (2 log M)?
01(r) < My?108 M Ppi+2lon M g2log MyElos Ml

and so, from {2.52),
Algy(r)) Sm+3. (2.568)

When (2.57) and (2.58) are used to estimate the right side of (2.55), we see that (2.54) and
(2.40) are proved.
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LEmMmA 4. Assume in addition to the hypotheses of Theorem 2 that
o 1/(2log M)
¢([ﬂ"'] ) >3(m+2)log M (m=>=1), (2.59)

where ¢ is as in (1.3). Then the Nevanlinna characteristic of the meromorphic function f=
goy! satisfies (1.4).

Proof. Choose a with T'(r, /)y~ N(r, a, f} {[15], p. 280) and recall the number b€C with
8(8, g) =0 (cf. (2.37)). Then (2.37) and (2.41) imply that N(r, b, fy~ T(r, f).
Thus, if r is large with

Omoy <M EM <o (m>2) (2.60)
we deduce from (2.47), (2.23), (2.45), (2.52), (2.60), (2.46) and (2.59) that

T(r, f) <2N(r, b, f) < dmn-28(py(r))1og r < 4mm-1§(Mr**°¢ M)log r

_ 1/(2 log M)
<dmn I(Mr2log M)m+1 log r < p¥mtDlog M < (illom -1/ M) ) < r¢(r)’
which is (1.4).

3. Outline of construction

3.1. Functions g, g;'. The basic goals of the construction are easy to describe, but their
realization requires much attention.

To include the possibility that X(d,+6,) <2 (in particular that the {a,} be an empty
set), let a,, @y be complex numbers disjoint from the {a,} (1 <{<AN), set

A={a} (0<i<N), 3.1)
A*={a} (1<i<N), (3.2)
and assume, with no loss of generality, that oo ¢ 4.
Next let B={b,}(— o> <j< o) be a sequence all of whose elements are in 4, with
by=b_, (—o0<j<oo), (3.3)
byFby, (—°<j<oo), (3.4)

(compare with § 1.2). In the enumeration of B, each element of A4 is repeated sufficiently
often to ensure that if
E(a) ={j; b,=a}, En(a) = E(a) N[ —m, m] (a€A4, m=1,2,.)), (3.5)
and
A,(a) = m™? card[ B, (a)], (3.6)
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then
Apfa)—~A,=8,+8, (m—>oo, 1<i<N), (3.7)
An(ag)>Dp=1~ %14%1\1{6’ +0,}, (3.8)
Anfay) > Ay=1~ %1<12<N {0, +6,}. (3.9)

Thus, 0<A,;<1, > ,A;=2. The set B may be constructed, for example, by adjusting the

procedure of [9], Lemma 4.4.
Let the {3,}, {6} be as in the statement of Theorem 1 and the E{a;) as in {3.5). Then

for — oo <j<oo choose A, with

Ay =2, (3.10)
Aj=A; (—oo<j<oo), (3.11)
$<A, <2 (—owo<j<oo), (3.12)

. 6 . . .
]smnA,I»(si—;E (j~> oo, jEB(a,), L<i<N), (3.13)
|sinwA,| -1 (F€ Elay) U Blay)) (3.14)

(when &,>0, (3.13) may be simplified to [sinmA,| =60,8,+0,)"(j€ E(a))), but it is con-
venient that |sinwA,| <1 for all j, as guaranteed by (3.12)).

Now, once and for all, choose
ky, =24 (3.15)

in (2.4) and (2.5); this choice yields o, M, {4,.}, {n.} as in Theorem 2. We recall from the
programme of § 2.3 that the value-distribution of g({) is to be compared with a function
S{p) as evinced by (2.37) and (2.47). The representation (2.45) shows that $(p) is deter-
mined in turn by an increasing function A(p). At that time, A(g) was to satisfy (2.43) and
(2.44).

We now impose more specific conditions on A:

Mo)=1 (g<go=1) (3.16)
Moy) =2, (3.17)
Aom) =1+ 2"%_ (Ax— %) (m = 2). (3.18)

Finally, in § 5.2 we will determine a positive sequence {75} and require that

O<)X () <Tn  (Om <0 <Omi1) (3.19)
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where 75,0 (m— o). Note that (3.16)-(3.19) are compatible if o, and the ratios {0,,;1/0m}
{m >1) are sufficiently large, and that (3.16) and (3.18) imply (2.52).

The precise sequence {o,,}, which is to satisfy (2.46), (2.50), (2.51), (2.53) and (2.59)
as well as to interact with A(g) as required in (2.52) and (3.16)—(3.19), will be constructed
in § 5.2.

Next, the {-plane is divided into disjoint regions D, ( — oo <j<oo), Dj(j>0) with

-] o0
> meas 8D, + > measdD} =0 (3.20)
-0 0

((3.20) refers to planar measure),

Dy ={[¢| <1}, (3.21)
Di={l¢|Zemy  (—oo<j<eo), (3.22)
Dic{o;a<|[ll<e} (A<sj<eo). (3.23)

For appropriate functions o,(p), 8,(0), we will have

D,n{[¢]| =o}={ee";0 = o aslo) <P <Pjo)}  (—oo<j<o0), (3.24)
Din{[¢|=e}={ee* 0,1 <0 <pg; || Sojlo)} (=1), (3.25)

where
B_ilo) =2m— o), a_(0) =2n—PBil0)  (j=0,p>0), (3.26)
a)(0) =Biiule) (=00 <j<oo, 0 >max(gy, 0s1))- (3.27)

Thus the interiors of these sets are mutually disjoint, and U, D, U U, D} is the full {-plane
(see Figure 1, p. 98).
The function g({) which solves the inverse problem for the data {8}, {0,} is defined
by
g*(0) = To(e™) (teDf)
9(¢) =4 9,(8) = TyoHfop,(0) (€D, (3.28)
g3¢) =T oHjoyj(l)  (L€D], j=1).

Here the g,, g7 are continuous in the closures of their respective domains, the Mébius
transformation 7, is

5 WAbiyn

(W) W+1

(— o0 <j< ) (3.29)
(where the {b,} are determined by (3.3), (3.4), (3.7)—(3.9)) and the HY,y,, H, v} are to be
specified in §§ 4.4 and 4.5.

7—1772902 Acta mathematica 138. Imprimé le 5 Mai 1977
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Fig. 1

We summarize below, in Theorem 3, the properties of g and the g,, g7 which are needed
for the proof of Theorem 1; the proof of Theorem 3 is deferred to chapters 4 and 5, al-
though an important component, Theorem 4, is considered separately in chapter 6.

THEOREM 3. It is possible to choose the D,, D}, H,, HY, v, v} so that if g(C) is defined
as in (3.28), then the following conditions hold:

g 18 continuous in the finite plane, quasi-meromorphic and Nevanlinna admissible; (3.30)

the meromorphic function f(z), defined by (2.10), satisfies (1.4) and (2.48). (3.31)
Further there is an absolute constant(*) A such that if

n(g, @, 9, D) (7o, a,9, D)) (3.32)

1s the number of solutions to the equation g({)=a with (without) account of multiplicity with
¢ in D°n {|| <o} (D° =interior of D), then

(}) Until chapter 6 4 will be used to represent constants which depend at most on the choice
of k, in (3.15). The conventions in chapter 6 are discussed on p. 129.
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n(g, a,9, D) <AS()  (a€C, 0>0), (3.33)
(g, a, g, DY) <AS(@)  (a€l,¢>0). (3.34)
Moreover, if a belongs to
py(@) (3.35)
of the regions
{w;0<‘ w—b l<l}, {w;0<l w—b <1}
w—b;_1 w—byy1
then
(o, a, ¢, D)) ~ (g, @, 9, Dy) ~ (27)~'p(a) S(e) (3.36)
in @ manner such that for each £>0
|n(e, @, g, D;)—(27)~'p (@) S(e) |
<Am1S)  (m>M(o), |j| <m, 0n <o <omir) (3.37)
in each region '
|a—b;| >0 >0. (3.38)

Finally, let the sets E(a,) be as in (3.5), the {A,} as in (3.10)—(3.14), and

{1 j€ E(ay) U E(ay)
o« =

_ (3.39)
0 j€E(@,),1<i<N.

Then
|n(e, by, 9, D)) —n|sinwA,| S(@)| <[7]|-1S(@) (k] <|j}, e =) (3.40)

|70, b5, 9. D)) —aymie, by, g, D) | <[j]728(0) (| %] <]il, e = e (3.41)
3.2. Proof of Theorem 1. We now assume the assertions of Theorem 3. Since (1.4) is con-

tained in (3.31), and g is Nevanlinna admissible, it suffices to establish those equalities in
(2.41) and (2.42) which involve g. We recall that 4={a;} 0<i<N in (3.1).

LEMMA 5. Let $(p) be as in (2.45). Then

(g, a, g) ~ma18(p)  (a€A, on <0 < omyr, M) (3.42)
for each a ¢ A.

Proof. For the moment, suppose
gQ+a  (C€{UdD;}u {UaD}}); (3.43)

according to (3.20) and elementary properties of quasi-conformal mappings ({1], p. 33)

this means that only a set of a’s having measure 0 is excluded.
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Let £ >0 be given and choose M < oo go that if
As ={a,, ay, ay, ..., ay} (< A), (3.44)

then
AZA,>2—& (=;A,—s), (3.45)

where the {A,} are described in (3.6)~(3.9). Thus if
Fle) ={j; b€ A}, (3.46)

it follows from (3.45) and (3.46) that
card [F(e) N (—m, m)]>(2—&)m  (m > my(e)). (3.47)

Define D, and D; by
Da= U Dj: De’z_—— {De}, (3.48)

jeF(e)

(where {D,}’ is the complement of D,). Then assumption (3.43) yields that

n(o, @, 9) =nlg, a, g, D:) + n(p, a,9, D;) = 2 nlg,a,g, D))+ nlg,a,g, D) (0>0).

jeF(8)

(3.49)
If 0,, <p <ppmyy (3.21)-(3.23), (3.33), (3.34) and (3.47) lead to
n(g’ag’ D;) < "zp n(g’ a, g’ D}) +|]l§mn(gj’ a, g$ D;) + n(e: a, g’ D‘r'n+l)
|/|<7n

< AS(p)(em +2) + A”ém Slo,) (On<e<@ms1) (3.50)

According to (2.43), (2.46) and (2.46)
S(0) = (oos- )~ VS(0;-1) > 28(0s.1) (7= 1). (3.61)

80 (3.50) becomes

ne, a,9, D) <A@em+1)S@@)  (@€C, pn <o <gmy)- (3.52)

Next, we note from assumption (3.43) and the definition of p,(a) in (3.35) that
lmz py(@)—2m|<2, (3.53)
<m

and, since 0 < p,(a) <2 for all j, this with (3.47) yields that

| 2 pla)—2m|< AL + em).
lilsm
JeF(e)
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Thus, if ¢ is chosen so small that |a —b,| >0 (j€ F(e)) it follows from (3.37) that

| 2 nlo,a,g, D) —ma'$(g)| < A(1+em) S(o) (m>M(0), 0n <@ < Qms1)- (3.54)

JeF(e)

(This is possible since A, in (3.44) is a finite set.) However, as ¢ tends to zero (3.52) and
(3.54), with (3.49), yield (3.42).

Finally, we remove restriction (3.43). Given ¢>0 and « ¢ 4, choose ¢ >0 so small that
{lw—a| <20} N A, =4¢. (3.55)

To compute n(p, a, g), we may suppose that g(e’*)=a (0 <¢<2n), and choose a’ ¢4
such that |a—a'| <o, (3.43) holds for a’, and

n(g, @', g) = nlo, @, 9). (3.56)

Let F(¢) be as in (3.46). Then (3.49) and (3.52) show that

|n(o,a’,9)— 2 nlo,a',q,D)| <AL +em)S(0)  (0n<O<Om+1) (3.57)

jeF(e)
and since (3.55) implies that |a’—a,| >0 (a,€ 4;), the argument which gave (3.54) leads
to
| 2 nlo, @'y, D)) —mn ()| < A(1 +em) $(p) (emn<@<Qm+1)s (3.58)

jeF(e)

at least when m > M (o). Now (3.42) is an obvious consequence of (3.56)-(3.58).

The proof of Theorem 1 is completed by

LemMaA 6. The value-distribution of g satisfies

g, @, g) ~ (1=8)mn=18(p)  (M—>°, 0, <@ <Ppy1, @ =a,€A"), (3.59)
n(g, @, 9) ~ 1o, @y, 9) ~ ma18(Q) (M0, 0, SO S@mua)s (3.60)

o, @y, g) ~ (1 —6,—0)mn-18(0)  (m—>0,0,<p<pn,, a=a,€EA4"), (3.61)
n(o, a, 9) ~ (o, @, 9)  (0—>°, a¢A"). (3.62)

Proof. We suppose a satisfies (3.43) since otherwise the procedure used to eliminate
this restriction in Lemma 5 may again be applied.
First, consider (3.59) and (3.60). Fiven a€C, ¢>0, let F(¢), E(a) be as in (3.46) and
(3.5). Let F(c) be partitioned into F(a, ¢) and F’(a, ¢) where
Fla, &) = F(e) N E(a), (3.63)

F'(a,¢) = F(e) — F(a, ¢). (3.64)
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Then if D,, D, are as in (3.48) we recall as in (3.49) and (3.52) that
|n(e, @, 9) —nlo, @, g, De)| < A(em+1)S(@)  (0m <0 <Qmur); (3.65)

and since ¢ may be taken arbitrarily small, it suffices to estimate n(g, @, g, D,); this is

made by an analysis of the identity

n(e:a:gyDb‘)= Z n(g:a:g"D/)+ z "(Q:a>g>Dj)- (3'66)

Fla,e) Fia.e)
Now (3.13) shows that
(6;+6,)|sin wA,| -0, (j > oo, jEE(a)), a;€ A, (3.67)
and it is easy to see from (3.6)—(3.9), (3.47), (3.63), (3.64) that
|card {F(a, &) 0 [—m, m]} —m(d,+0,)| < dem (a2 =a,€ A*, m > mye, a)), (3.68)

and
|card {F'(a, &) N [ —m, m]} —m{2—(8;+0,)} < dem (@ = a,€ A%, m > myle, a)).

(3.69)
Hence (3.33), (3.40), (3.67) and (3.68) yield

| 2 nlo,a,9, D)~ 0,mn'S()| < AemS(9)  (a=a,€A4%, 0n<Q<@ms1, M>myfe, a)).
F(a,&)

(3.70)
It is clear from definition (3.35) that p,(a) =2 (j € F(a, ¢)) so (3.53) and (3.68) give

| 2 pla)—2m{l—(6,+0,)} < Adem (@ =a,€EA*, m > mgle, a)). (3.71)
)

F'(a,&
Thus (3.7), (3.37) and (3.71) readily yield

|F Z )'"f(@a a, g, D/) —mn ! { 1- (61 + 01) } S(Q)l < AGmS(Q) (a= a,EA*, Om S OS Ome1)
‘(a,e
which with (3.65), (3.66) and (3.70) implies (3.59). The same reasoning with (3.14) in place
of (3.13) gives (3.60).

Next, (3.39) and (3.41) yield

FZ 7o, a, ¢, D)) =0(1){FZ n(g, @, 9, D))} (a€A*, o~ 0), (3.712)
(a,s) (a,8)
i > )ﬁ(g, a,9, D))~ F(Z )n(g, a,g,D,) (@ =ag, ay, 0 ), (3.73)
((l.e a, &
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and aceording to (3.33) and (3.37)
> {nlo,a.9,D) 7o, a,9, D)} <AemS(9)  (en <O Q@m+1, M~ 0). (3.74)

F(a,8)

Thus (3.61) is an easy consequence of (3.48), (3.65), (3.72) and (3.74), and (3.62) follows
from (3.48), (3.65), (3.73) and (3.74).

4. Auxiliary functions

In this chapter we develop the necessary material to prove Theorem 4.

4.1. The fundamental auxiliary function. Let f,(z)=¢°, f,(z)=e % and write these for-

mulae as
log fy(re¥) = —re!®™  (r>0,0<6<2n), (4.1)

log fy(re't) = —r2e2C~" (>0, 0<0 < 2n). 4.2)

The functions which generalize (4.1) and (4.2) to arbitrary A, 1 <A <2, are the classical
Lindelof functions of order A (cf. [12], Ch. 1, § 17). Indeed, if f, is a canonical product
with positive zeros and zero-counting function n(r, 0, fo) ~z~|sin zA |r*, an appropriate

branch of log f, satisfies
log fa(re') = —rPeA0-P] 1 k(z)} (r>0,0<6<2nm), (4.3)

where k(z) tends to zero uniformly in any sector {|0 ~z| <z —8}(6>0) as r—co.

We will construct a quasi-meromorphic function H(w) (w=se'’) which ‘interpolates’
the family f,(1<A<2). Thus on each circle {|w| =3} an equation of the nature (4.1),
(4.2) or (4.3) will hold for some A, but A will vary with s. The relevance of H to our con-
struction is discussed in § 4.2,

Let A(s) (s>0) be a continuous function which has eontinuous derivatives off some

discrete set P having no finite accumulation point, with

1<A() <2 (s>0), (4.4)
[sA'(s)] <@m)* (>0, s¢P), (4.5)
sA'(s)=>0  (s—>oo, s¢P), (4.6)
and define
8(s) =exp {f: A(u) u’ldu} (s>0); 4.7)

note the similarity between (4.4)-(4.7) and {2.43)—-(2.45). We have the obvious (and useful)
consequences of (4.4) and (4.7):
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s<8(s)<s? (s >1), 4.8)
S(1)=1; 8(s)(s'/s) < 8(s’) < S(s)(s"[s)? (8 > s). (4.9)

The relation between A(r) (subject to (4.6)) and S(r) is analogous to that between a proxi-
mate order g(r) (subject to ro’(r) log r—0) and the classical comparison function 74", but
permits more flexibility ([5]).

THEOREM 4. Let (50)21>0>0 and 0<a<1 be given. Then there exist M® < oo, 7,>0
such that if A(s) i a differentiable function off a discrete set P (where P has no finite accumula-
tion point) which satisfies (4.4)-(4.6),

sin wA(s) =0 (0 <8< M™) (4.10)
(so that A(s)=1 or =2 for s< M), and
s|A(8)| <To(<(@m)™Y)  (s>0, s¢P), (4.11)

then a quasi-meromorphic function H(w) may be associated to A(s) with the following proper-
ties. The dilatation of H satisfies

fiealloo <. (4.12)
ua(w) >0 (w—>o0) (4.13)

and, if S(s) is as in (4.7), then
log H(w) = —8(s)eA=™  (n <t <2x—7p) (4.14)

for a proper choice of branch. Moreover, whenever

Als)=m (m=1,2), (4.15)
{4.14) may be improved to

log Hw) = —8(s)e'™ ™ (0 <t< 2m). (4.16)

The value-distribution of H satisfies

n(s, a, Hy < AS8(s)  (a€C,s>1), (4.17)

where A is an absolute constant (independent of v and ty). Also
n(s, o0, H) =o(1)8(s)  (w—o°), (4.18)

the zeros of H are on the positive axis with

|n(s, 0, H) +7~1 sin zA(3) S(s)] = 0(1) 8(s) (8~ o0) (4.19)
and
|#(s, 0, H)—an{s, 0, H)| = o(1)S(s) {8 > o0). (4.20)
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Finally, if in addition A¥ satisfies

§<A*<2  (s>0) (4.21)
and for all large s(s>sy)
Ay =A*  (s>sy), (4.22)
then
log| H(w)| < — A sin (A% — 3) 8(s), (8>8(8#,A#), |arg w|<g(1-—£—#)) (4.23)

again with A an absolute constant, and

n(s, a, H)— #(s, a, H) <0(1)8(8) (0 <|a| <oo; 8->0), (4.24)

where the o(1) of (4.24) is uniform for a in each region

|log |a]| < 4,. (4.25)

Remarks. With some care, it may be shown that the asymptotics in (4.18)-(4.20),
(4.23) and (4.24) are attained at a rate which depends only on 7, A¥, s, and the rate
at which (4.6) is achieved. This, and precise asymptotic computations for n(s, a, H)
(0<|a| <o), is not needed here.

If A(s)=A,, 1<A,<2, then Theorem 3 (with no references to (4.20), (4.23) and (4.24))
is implicit in [6].

4.2. On the role of Theorem 4. Let us consider a function A(s) as in (4.4)-(4.6), (4.10)
and (4.11) with
A =1 (s<M=),

A@)=2  (s>M),

where M’/ M= is sufficiently large (to be compatible with (4.11)) and let H be associated
to A as in Theorem 4. We consider the subsets of the plane

D — {wi 1 <[] <7—nf2A0),
Dy = {w; |t —z| <m[2A(s)}

(compare with Figure 1, p. 98). It is immediate from (4.14) that | H(w)| <1 in D,. Further,
while |H(w)|>1 on {|w|=s}n D5 when A(s)<%, we observe that {jw|=s}n D§ con-
tains two subarcs on which | H| <1 when A(s)>$. In particular, when s> M’, | H(se')| <1
for |¢| <m/4, since (4.16) now applies.

Recall the sequence B of (3.3)-(3.9), let T(w) be the Mobius transformation
(bo W b)) (W+1)1 (cf. (3.29)), and consider the behavior of g(w)=T"o(H(w))"! (note the
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similarity to (3.28)). Clearly |g(w)— by| < |g(w) —b,] on {|w|=s} N D,. We find also that
|g(w) = b, | < |g(w) —b,| on {Jw]=s}N D5 when A(s)+ 3% but when s>M' the set on
D5 0 {|w|=s} on which |g(w)—b,]| <|g(w) —b,| has divided into two intervals, separated
by an interval on which |g(w) —b,| <|g(w)—b,].

In order to introduce b, we need |g—b,| <|g— b,| in this middle interval. However,
we cannot assume by, =b,.

To achieve adequate flexibility, slight non-analytic changes of variables will be made;
this requires §§ 4.3—4.4. In particular, the functions H}, H} required in (3.28) will be de-
fined in § 4.4. Next, the p,, y7, also needed in (3.28), are given in § 4.5. Modulo the proof
of Theorem 4, the verification of Theorem 3 is performed in chapter 5. Finally Theorem 4
itself is proved in chapter 6.

4.3. A quasi-conformal homeomorphism. To facilitate computations, we state a Lemma
to which appeal will frequently be made; the proof is immediate from the definitions
(2.8), (2.6) and (2.7) (let &=log g, n=4¢).

LeMma 7. Let G()(E =pe™) be O in a neighborhood N of =0 with G(Ly)+0. Assume
there are positive numbers ¢>1, n <(50)~1, such that

dlog G({)
“ologo 0’< 27 (CEN), (4.26)
glo_ggc_)_ ic|<2y  (CEN). (4.27)
Then
[#a(O)] = |mosa(@)| <37 (LEN). (4.28)

LEMMA 8. Given complex numbers y, o(6=0) and 0 <n<(50)"1, M'>1, choose M so
large that
n log(M[M’) > 4 max(|y], log |e| +x). (4.29)

Then there exists a quasi-conformal homeomorphism w(W) of the W-plane (W = Se'T) with

ltalleo < 3, (4.30)

such that
o(W)y=y+eW  (|W|< M), (4.31)
oW)y=w  (|W|>=M). (4.32)

Proof. Let a(S), b(S) be complex valued continuously differentiable functions with

a(8)=loga (O<S<M) (4.33)
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(here | J (log 0)| <),

alS)=0 (M<S), (4.34)
[@/(8)] <IpS-t (0 <8 <o) (4.35)
BS)=0 (0<S<M), (4.36)
bS)=y (M<S), (4.37)
[6'(S)| <4 (0<8<o0) (4.38)

(That (4.35) and (4.38) are compatible with the other conditions follows from the choice
of M in (4.29) and the inequality M — M’ >log(M|M")).
Then if @ is defined by
w(W) =y +e* (W —b(S)) (S=|w| (4.39)
it is clear from (4.33), (4.34), (4.36) and (4.37) that (4.31) and (4.32) hold, and
lu W) =0  (|W|<M', |W]|>M). (4.40)
If M'<|Wy| <M, we rewrite (4.39) as
log (w(W) —v) = a(8) +log W +log(1 —b(S) W-1) (4.41)
in a neighborhood of W,. Thus (4.36) and (4.38) yield that
|6y W= <}y (S>0) (4.42)
so Lemma 7 may be applied with c=1. We obtain that |u,(W)| <35 near W, and this
with (4.40) gives (4.30).
That o is a homeomorphism depends on the argument principle (that the argument
principle applies to quasi-meromorphic functions is immediate from (2.10)). Indeed, w
is a local homeomorphism ([10], p. 250) and the explicit formula (4.32) shows that for

fixed w, and large S, the image of {|W| =8} winds once about w,. Thus w is a global

homeomorphism and Lemma 8 is proved.
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4.4. Functions H*, H*, This class of functions is an important component of definition
(3.28).

Construction of H*. As starting point, we take #>0 and complex numbers y, o(o==0)
and a function w(W) as in Lemma 8. Recall also that numbers M'>1 and M > M’ are as-
signed to w as in (4.29). We use this w to modify the boundary values of the fundamental
auxilliary function H(w) of Theorem 4.

Thus, choose M®, 7,>0 such that to any function A(s) which satisfies (4.4)-(4.6),
(4.10), (4.11) may be associated a function H(w) in accord with (4.14), (4.16) (when (4.15)
holds) and (4.17) {the more refined conclusions (4.18)-(4.25) are not required). Let M’
and M be as in (4.29), (4.31), (4.32) and let M* satisfy

M* > max (4 log M, M), (4.43)

Then let A(s) satisfy the additional constraints
A@s) =1 (s < M*), (4.44)
As)=2 (8= 8", (4.45)

where 8* is sufficiently large to be compatible with (4.11) and (4.44).
It is easy to see that as ¢ increases

—8(s) cos A{s)(t—x) (m—m/As) St <m—m[2A(s))

decreases from S(s) to 0. According to (4.8), 8(s)>log M when s>log M, so (4.4) implies
that there is a unique function ¢=1¢y(s) such that

w—~m/A(8) < ty(s) Sm—m/2A(8) (s > log M) (4.46)
and
— S(s) cos A(s) (to(8) —7) = [S(s)log M2 (s > log M). (4.47)

The definition of f4(s) in (4.46) and (4.47) is augmented by
ta(8) =0 (s <log M); (4.48)

according to (4.43) and (4.44), this means that {; is continuous for $>0.
Next, let
ly(s) = —=[2A(8)  (s>0) (4.49)
and
D* ={w; s >0, |t] <1lys)}. (4.50)
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It follows from (4.4) that n/2 <[,(s) <3n/4,

0<ty(s) Slfs)  (s>0), (4.51)
and from (4.8) and (4.47) that
to(s) > lo(s)  (s—><). (4.52)
Define H*(w) in D* by
w(Hw) 8> 0, to(s) <t <Ilys),
H*(w) ={ H(w) 8 >log M, [t] <tys), (4.53)
w(Hw)  s>0, —ls) St < —t,(s).

LemMa 9. H* is continuous and quasi-meromorphic in D* with
[as(w)] <8n  (w€D*). (4.54)

Further, iff]M', y and o are associated to w as in (4.31), then

H*(3e™ ) =y + e  (3>0), (4.55)
H*(se "®) =y + ge 15 (8>0), (4.56)
H*(set) =y +0e57"  (s<log M’, |t| <lys)). (4.57)
Finally,
n(s, a, H* D*) <AS(s) (s>1, a€l) (4.58)

for an absolute constant A.

Remark. Since (4.52) holds, we see from (4.53) that H*=H on most of D*; however
the boundary values (4.55)—(4.57) have been modified by w. This, together with Lemma
10 (cf. (4.81)-(4.84)) resolves the difficulty which we discussed in § 4.2.

Proof. 1t is clear from (4.53) that H* is continuous in D* save perhaps on the curves
se* 9 (6>0). When s <log M this continuity is evident from (4.16), (4.43), (4.44), (4.48)
and (4.53) since H*(s) =¢%® =g = H*(se®™).

Now let log M <s, t,(s) >0; it is necessary to investigate both curves se* ‘%> First let
log M <s<M*. Then (4.44) shows that A(s)=1, and it follows from (4.8), (4.16) and (4.47)
that

| H{(se"" V)| = exp {[S(s) log M]"*} > M; (4.59)

thus property (4.32) of w implies that the two determinations in (4.53) for H*(se'®")
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agree. When s>M* we obtain from (4.4), (4.8) and (4.43) that }{S(s)}'?=3(M*)'?>
[log M}"* and consequently

—8(s) cos (7/8) = 3S(s) = [S(s) log M.

According to the defining property (4.47) of fy(s), this means that fy(s) >n/8 and hence,
from (4.14),
log H(se') = —8(s)e 2™ (t,(s) <t < 2 —ty(s)). (4.60)

Once more, (4.59) holds and so (4.32) implies that H* is continuous on the full curve se'*®,

(%) jg similar, using (4.60). However, to use (4.60) in (4.53), we must

The analysis for se”
compute with H{we*"*) to reconcile the branches of arg w.

The estimate of y 4. is an immediate consequence of {4.12), {4.30) and the inequality

00 Q)| <2|0erlg(O)] +2]ue(0)], (4.61)

which holds when [[uf|| <%, ||#o]lco < % (cf. [1], pp. 9, 10).

The proofs of (4.55)-(4.58) follow at once from (4.14), (4.16), (4.31), (4.43), (4.44),
(4.47), (4.49) with (4.53). For example since A(s) =1 (s <log M’) we have that | H(se')| <M’
(s<log M’), so (4.57) is a restatement of (4.31) and (4.53). When computing (4.56), (4.14)
is used with arg w=2n—[(s). In both (4.55) and (4.56), the bound M’ > 1 is needed to
apply (4.31) in (4.53). Finally, (4.58) follows from (4.53) and (4.17) since w is a homeo-

morphism.

Construction of H¥. Again we use a function w(W) from Lemma 8 to modify one of
the functions H(w) produced by Theorem 4.
Choose A* asin (4.21), 0<« <1 and

#7138 n
0<) =3 (1 2A#) (< 8). (4.62)
According to Theorem 4, there exist M¥, 7 such that if
s|A'(s)| <7 (s >0), (4.63)
AE)=2 (0<s< M) (4.64)
and
AF<A()<2 (s >0), (4.65)

then there exists a function H which satisfies Theorem 4; in particular (4.14) is to hold
for p=n*. It is consistent with (4.63)—(4.65) to assume M* so large that
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./
M#sin é(A#——§)>logM (4.66)

(where M has been associated with o in (4.29}), and that (4.22) holds for sufficiently large
s> M#,
It follows from (4.21), (4.62) and (4.65) that

— < A(s)p* — 7)< — 3{3 +(A* =)} (4.67)

Thus if s> M* and
l(s) =7 — 3x/2A(s), (4.68)

it is easy to check that cos A(s)(t—n) decreases from cos A(s)(n* —z) to O astincreases
from 5" to [(s). Thus using (4.8), (4.66) and (4.67) we may construct a unique function #(s)
such that
g <Hs) <ls)y (s>M#) (4.69)
and
8(s) cos A(s)(¢(s) —m) = {S(s) log M}'"* (s > M*); (4.70)

further (compare with (4.52))
Hs)>1ls)  (s—>oo). (4.71)
Then with
Dt = {w; s = M*, |t| <U(s)}, (4.72)

we define H? on Dy# by either of the formulas

frop) — {w{(l/H)(w)} 8> M* l(s) =t = H(s), (73)
(1/H) (w) s> M*, —[(s) <t <is),
or
M#, - =t = N
HYw) = {(llH) (w) s> Hs) <t <(s) (474)
o{(/H)(w)}  s>M* —l(s) <t < —Hs).

LeMMa 10. Given 0<9<50-1, 0<a<1 and sufficiently large M*, let H” be defined in
Dyt by (4.73) or (4.74). Then H* is continuous and quasi-meromorphic in Dyt with

|uab(w)| <87 (w€Dy), (4.75)

fm |us#(se™)|dt=0(1) (s o). (4.76)

~I(s)

The value-distribution of the poles of H is governed by
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n(s, o0, H¥, Dy#) = {wt|sin zA*| +0o(1)}S(s) (s >o0), (4.77)
7i(s, oo, HY, Dytt) = {a+o(1)}n(s, oo, H¥, Dy#) (s —o0). (4.78)

Further, if a€C belongs to p(a) of the punctured discs {1<|a| <o}, {|o]| <|a—yp| <o}
(where o and y are associated with w by Lemma 8) then

n(s, a, HY, Dyt) ~ ii(s, a, H¥, D) = {27) 7 +o(1)}p(@)8(s)  (s—>0),  (4.79)

and the asymptotics in (4.78) are uniform for a in each region log |a| <4,.
For all a€C,
n(s, a, H¥, Dy#) < AS(s) (s> 1, a€l) (4.80)

holds for an absolute constant A.
Finally, if H* is given by (4.73) we have

H#(3e™®) =y +0e'® (s = MH), (4.81)
HH(se™H9) = 15 (3= M¥), (4.82)
and if H* is given by (4.74) then
Ht(se™®) = !5 (5> MM, (4.83)
HY(se ") =y +0e "% (s = M¥). (4.84)

Proof. For simplicity, only the case that H* is defined by (4.73) will be studied. Con-
clugions (4.75) and (4.80)-(4.82) follow by straightforward modification of the steps used
to achieve (4.54)—(4.56) and (4.58) in Lemma 9.

It is easy to see that H¥ is continuous. Indeed we may use (4.14) when s>M* and
n# <t <2x—n*, where 5" is defined by (4.62). Since #(s) satisfies (4.69), we have from (4.64)
and (4.66) that {S(s) log M} >log M(s>M*). Thus |(1/H)(se'“”)| =exp{S(s) log M} >
M(s>M*); hence (4.32) guarantees that w{(1/H)(se’)}=(1/H)(se'*®). This means H*
is continuous in Dy#.

That (4.76) holds is a simple consequence of (4.12), (4.13), (4.30), (4.61) and (4.71),
since then

s €3
[ asserstat= [ jtselat =0ty 5=0)
1€))

—1(3)

and

1«s) 1(s)
f IMH#(se“)|dt<f dt=o0(1) (8 o0).
)

¢ Hs)
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In addition, the poles of H¥ arise from the zeros of H, so (4.77) and (4.78) follow from
(4.19) and (4.20).
We turn to the proof of (4.79) and use the decomposition Dy#="DyU D, U D_ where

Do = Du# N {|t] <7},
D, =Dur N {* <t <l(s)},
D_=Du#t N {—lls) <t <—n*}.
Property (4.23) of H with (4.62) and (4.73) shows that H¥ »occ as w— o0 in 50 and thus
(s, a, H?, Dg) <n(s, a, H?, Dy) =0(1)  (s>0,log|a|> — 4,), (4.85)

where the O(1) in (4.85) depends on 4, and H¥.

Next, consider the value-distribution of H# in D,. It is easy to check from (4.14),
(4.65) and (4.67) that the image of D, N {|w| <s} under W =log(1/H)=8e" is contained
in

A*(s) = {W; S(M*) < S <8(s), ~2n < T < —3§n} (4.86)

and contains

As(s) ={W; S(M*) €8 < 8(s), —3[3 +AF-PI<T < —gn}. (4.87)

Then (4.86) and the argument principle yield that

n(s,a, 1/H, D+)<%:;)+l (s> M* 1<|a]< o), (4.88)

n(s,a,1/H,D,)=0 (s> M*#, |a|<1), (4.89)

and the usual properties of the exponential function with (4.8) and (4.87) imply that to
each £>0, 4,>0 corresponds s(e, 4,) with the property that

S(s)

n(s,a,1/H, D)= (1 —s)%

(s>s(¢g, 4,;), 0<log|a|<4,).

Thus, since M’ >1 in Lemma 8, we achieve from the properties (4.31), (4.32) of w and (4.73),
(4.88), (4.89) that

(1+£)‘—S2(—:>n(s, a, H#,D+)>(1—a)82'L;) (s>s(¢e, 4y), log|o|<logla—y|<4,), (4.90)
n(s, a, H¥, D,) =0 (s> M* log |a—y| <log o). (4.91)

8 — 772902 Acta mathematica 138. Imprimé le 5 Mai 1977



114 D. DRASIN

Similarly,
(1+a)S2L;)>n(s, a, H#,D_)>(1—e)%%) (s<s(e, 4y), O0<loglal<4,), (4.92)
n(s,a, H, D.)=0 (s> M, |a| <1). (4.93)

It is now clear from (4.85) and (4.90)-(4.93) that
n(s, a, H¥, Dy#) = {2n)'p(a) +o(1)}8(s) (s~ o) (4.94)
with asymptotics as claimed in the statement of Lemma 10. Moreover,
i(s,a, H, D, UD.)=0 (s>0,a€(), (4.95)

since, in D, U D_, H is the composition of local homeomorphisms. Thus (4.85) and (4.94)
show that #(s,a, H*, Dy#) =n(s, a, H¥, Dy#)+0(1), with the O(1) uniform in each region
[log|a||<A,. This with (4.95) completes the proof of (4.79) and Lemma 10.

4.5. Mappings v/, ;. We describe the remaining ingredients of (3.28). The need for the
{7}, {v,} arises from the fact that the functions H* H" of § 4.4 are defined in normalized
regions D* (in (4.50)) and Dy# (in (4.72)) of the w-plane. However an inspection of Figure
1 p. 98 shows that the annulus {p,,<|{| <g@n;} contains 2(m +1) regions D,, D}, whose
angular measure tends to zero as m— . Thus z =y} ({) (L € D}) or z=y,({) (€ D,) is a quasi-
conformal homeomorphism from a D} to a D* or from a D, to a D,# which is “locally”

a power of {.

Definition of v} (j>1). Assume p,_, and A(g) for p <p,_, are determined and set

Q1

sy =log S(g;.1) = f Alw)w du (4.96)

1
with § as in (2.45). We shall construct a function Aj}(s) of the nature considered in Theorem
4. In addition to (4.4), we require
Afs) =1 (s <s}) (4.97)

with s} defined in (4.96). We also assume s} so large that if H, is associated to Af(s) by

Theorem 4, we may achieve
lletmylloo < 27 %5y (4.98)

by (4.97) and taking 7, sufficiently small in (4.11); in (4.11) and (4.98) 7, is determined by
the normalization (3.15) and Theorem 2, p. 93.
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The definition of Aj(s) is balanced with that of A(¢) on g, , < < g, by an increasing
function s}(p) so that if
¥i(C) =s3(e) e i® (4.99)
(with tf defined below in (4.105)) then
sj@ e
A)uldu= f Alw)udu (ei-1< o< gy). (4.100)
1

1

To achieve this, construct a continuous increasing function L (p) with

Li(e)=1 (e<@s-1)

PN V(o)
(L7) (9)_/1(9,) TP (01-1<0<gy) (4.101)
Lije)=2 (0>,

and then define an increasing function }(p) subject to

xo yogr dlogsile)  Ae)
sj(0s-1) =7, dlogo Lis)" (4.102)

Then if p(s) is inverse to s7(o), we complement (4.97) by

{L}'(e(s)) (s7 <8<57(gy) (£103)

Aj(8)=
A" (= 53(05),

and verify that A} is continuous, and differentiable for all s save perhaps s} and s*(g,).
Note from (3.16)-(3.18) and (4.101)-(4.103) that

A (o) {dloge}
s(AY)(s)= 208 2 s=s%0), 0s.1<0<0) 4.104
(A3)(s) Ao = Ao, ) | dlog s ( 1(0), 01-1<0<g ( )
and that {d (log p)/d(log )} is bounded above and below by positive constants; this means
then any bounds of the nature (4.11) can be achieved by restricting 7; ; in (3.19). In addi-
tion (4.102) and (4.103) yield (4.100).

Now definition (4.99), with sf(p) given in (4.102), is complemented by

A
t?(C)=K§%¢ (s=55(0), |$[ <m). (4.105)

It is easy to check that ¢} maps
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topologically onto

‘D}‘={w; s1(es-1) <s<sj(oy), |t|<2—1:——y(8)(2A7(s)— 1)} (s=s57(0)) (4.107)

(we show (4.106) compatible with (3.75) on p. 118).
A straightforward computation using (3.19), (4.100) and (4.105) shows that

ologsy  Me) _ ot

3logg Aﬂé’) 3¢ (3=8’;(Q)),

dlogs;

o O
-—ag— __ML * ’ dA?(s) *
alOg@ <(A7(8))2{A} (3)71—1+'l(0)|d10g9} (cGD/).

Thus Lemma 7 and the discussion following (4.104) show that if 7;_, is sufficiently small

we may assume
lps(E <270 (LE€D)), (4.108)

where 77,=2-%in (3.15), and the #, are determined in Theorem 2.

Definition of w,( — oo <j < oo). This parallels ideas already introduced.
First, let y,, o, (o;£0) be given and w,W) as in Lemma 8, subject to

w(W)=w_ W) (—oo<j<o), (4.109)
ll e lloo < 27411480y, (4.110)

with the {r,} determined by Theorem 2 and (3.15), and let «, be chosen in accord with
(3.39). We then have from Lemma 10 that if

s|AY8)| <7§ (s>0) (4.111)

for sufficiently small 7 and M¥(=M* ) is sufficiently large (cf. (4.66)), we may construct
HY in accord with (4.73) if />0 and (4.74) if j < —1. Then HY is quasi-meromorphic in

Dy ={8> MY, |t|<m—3n/2A,(3)} = Dy, (4.112)
with
[l ot floo < 274710y, (4.113)

(ef. (4.75) and (4.110)).
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We will construct an increasing function s=s,(g) and A,(s) so that

s,(0) = s_(e), (4.114)
A =A_s) (s>0), (4.115)

and both
" Ay u-tdu = f * Aw) u-du, (4.116)

and (4.10), with M% in place of M, hold.
In general, if g|; is so large that

Soin) = (M ) (4.117)

((2.43) and (2.45) show this is certainly possible if gy > (M #)?) we introduce functions
Ly(e), L_(g) with

Lyjg) =L_jo) (—co<j<o), (4.118)
by the formulas
Ly(g)=2 (e<em)
L;(Q):_i_*z—“”(e) (o1 <@ <oi+1) (4.119)
AMoys+1) — Aoy
L) = A, (0= ein+1)s

where the A, are as in (3.10)-(3.14).
Now let s,(p) (— o0 <|j| <o) satisfy (4.114),

s;=sio) = {Sle} (> M ), (4.120)

d log s,(0) _ A(0) -
dlogs,o) _ Ae) <o<om.d). 4.121
dloge  Lyo) (on<e<egi) ( )

Then if A(s) is given by
Ay(s) = Lye(s)), (4.122)

(o(s) the inverse function to s,(g)) it is easy to check that A,(s) satisfies (4.64), (4.65) (with
A, in place of A#) and (4.116). Note also that

A,(S) =2 (s <s(01))s (4.123)
Ays) = A, (s > 84(0151+1))- (4.124)

We can now describe the Dy, D} (cf. p. 97). Let

Bole) = @>go=1), (4.125)

T
" 270)
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-1
ﬁ;(e)=n—~n—{—é+2 > (Ak(S)—%)} (0>e,i=1), (4.126)
o) 0

27

A(g){A’(s)— 3} (s=s(0) >0, j>0) (4.127)

Bi@) — x(0) =
and define the a_,(p), B_,(0) (j <0) by (3.26), (3.27). Note that if D,, D} are given by (3.21)-
(3.25), then (3.20) holds, the D,, D} are disjoint, and UD,U D7 is the full {-plane.
We remark that the representations of D} in (3.25) and (4.106) agree. For example,
if 51 it is easy to obtain from (4.126), (4.127) that

2

a;_1(0) = Bi-1(0) —1(0)

7 12 2
ot R EED I B TAWNRE )
6=sal0).  (£128)

We then see from (4.96), (4.97) and (4.123) that A,_;(s,_4(0;1)) =2, AT(s](0,_1)) =1 and so
(4.128) and (3.18) yield

% 1(0) = 27’%-) QAXS) 1) (s=5%(0), 0s-1 <0 <0)) (4.129)

when g =g, ;. Also both sides of (4.129) have the same derivative with respect to o for
0;-1<0<p, (consider the derivative of 2n-1A(0) e, (@) with respect to log g; according to
(4.128), (4.119), (4.121), (4.122) and (3.18) this is 2(A(g;) ~A(0,_1)) 104’ (), so (4.129) follows
from (4.104)). Hence (3.25) agrees with (4.106).

It is easy to check using (4.127) that the function

vi(8) = s,(0) "1, (4.130)
where s,(g) iy determined in (4.120), (4.121) and

A
t;(CFﬁ% {6 - o)} — (—3m[2A/8)  (s=8l0)), (4.131)

maps D, (cf. (3.24)) topologically onto
D;={s=3,|t]| <n—3n/2A,8)} =D_; (4.132)

note from (4.120) and (4.117) that D, is a subset of DM;# (cf. (4.112)). It is easy to compute
from Lemma 7, (4.130), (4.131), (4.121), and (4.116) that if 7} in (3.19) and 7} in (4.111)
are sufficiently small we may arrange
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| O <27y (CEDy); (4.133)
|t D] >0 (oo, LED)). (4.134)

Finally, as in the analysis of (4.104), we note that such restrictions on 7] are gnaranteed

by sufficiently restricting 7 in (3.19).

5. Proof of Theorem 3
Recall that Theorem 3 is stated in § 3.1. We continue to assume Theorem 4 (§ 4.1);

Theorem 4 is proved in chapter 6.

5.1. Sequences {y;}, {0;}. We now determine the {y,},0,} used to construct w,(W)in (4.109),
(4.110). Let the {b;} be the fundamental sequence associated in (3.3)-(3.9) to the given
data {a,}(1<¢<AN), {6,}, {6,} which appear in the statement of Theorem 1, and let the
Mobius transformations {T';} be as in (3.29). Let

Y0=0, 6o =1 (5.1)
and for |j| >1 determine y,, o, by
T o Ty a(W) =y, +0, W (0,40); (65.2)

that this is possible depends on (3.4) and the assumption that oo¢ {b,}. Thus
Ti'oT\y-1(0)=T5' (by-1)%oc (for T;'(b,)=o and b,;=b;_1). Consequently there are

(finite) complex numbers y,, ¢, p; with 0,40 such that

-1 — 9
Ty oT\ya(W)=y,+ W—p,

However, p,=(T; 0 Ty-1)"}(o0)=Tj 10 T)(oc) = Tj;}_1(b,) =0, and this yields (5.2).

5.2. Determination of the {g,} and i(g). In (3.15) we set the a priori bound |||, < 2%
which, according to §2.3 (cf. Theorem 2) induced constants M, ry, {4}, {#n}. These
constants and the need to ensure (1.4) (cf. (2.59)) already yield lower bounds for the num-
bers {0} and {om/om_,} (cf. (2.48), (2.50), (2.51)). Of course, any restrictions on 7, in
(3.19) also increase the ratios g,, /0., a8 in clear from (3.16)-(3.18).

Note from (3.16) that A(p) has been defined for ¢ <g,=1, and that in (3.28) g is de-
fined for {|¢| <g,}-

In general, suppose A(g) has been defined appropriately for g <g,. Explicitly, this
means we have selected functions wy(W), w (W) ... w (W) as in Lemma 8 with data
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a=a,, y=1y,; from (5.2) so that (4.109), (4¢.110) hold for |j| <m, and have associated 1<
M;< M, to w,, w_y|j| <m) as in (4.29). Then if A, is as in (3.10)~(3.14) and M} satisfies

MisinZ(A—~>logH,  (jl<m) (5.3)

(cf. (4.66)), we require p,, be so large that
S(on) = (MH)2. (5.4)

Note that (5.4) may be achieved when m =0 since, according to (5.1), we may take wy(W)=
W and M§=g,=1.

We now determine 1, in (3.18); then A(g) is defined arbitrarily for g, <p <gn,, to be
compatible with (3.18) and (3.19) and (5.5), (5.8)-(5.13) below. All the definitions below
are in turn based on A(p) for g, <9 <gpy-

Since (5.4) holds, we are in the situation (4.117), and so may define y,({), Y_n(0)
according to (4.130), (4.131) and (4.116). Using the choices of M#, w, (W), and A,(s) we
construct a function H% of the class (4.73) when m >0 and (4.74) otherwise. Note that if
T, in (3.19) is sufficiently small (cf. discussion of (4.104) and (4.108), (4.133)) we have from
(3.28), (4.61), (4.113) and (4.133) that

|, (0) =l 09, (D) < 21t (WamlN|+ 2|y, (O|<27%0n  ((ED, W) (5.5)

Thus g,, and g_, have been introduced for {|(]|>¢,}, and it remains to describe
gh+1- With o,,,, and y,,,, as determined by (5.2), let M, 1(=M_ ;) satisfy

log M1 = S(on) (5.6)
and choose M, (=M _(,,1)) With

M,,,+,=M_(m+1)>eM;"“ (57)

so large that @, (W) (=w_m+1(W)}) may be introduced from Lemma 8 with data o,..,,
Ymi1 S0 that (4.109) and (4.110) hold for j=m+1. Now that (5.6) implies that (4.96) holds
with j=m+1, we construct A}, (s) in accord with (4.100) and H,,,,(w) as in Theorem 4
and (4.98). With the data wy, (W), Hy (), let Hy,1(w) be obtained according to (4.53),
and next determine yh1{{) as in (4.99), (4.100), (4.105) and (4.108) in terms of A¥a(s).
Then the estimates (4.54), (4.98), (4.108) and (4.110) with (3.28) and (4.61) yield

[ s, (O =y, @ ¥ (E)]
<2lps, Wna )+ 2|y, (O <270+ 279, <27%,  (LED); (5.8)

again, these estimates can be assured if Tt 18 small enough.
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In order to achieve (5.5) and (5.8), we have given lower bounds on 7, or, what is the

same, lower bounds on g,,,,/¢,. If necessary g, is increased so that in addition

@n)™ Nuofoe)dg <2 Pnps (0> 0mn, lil<m), (5.9)

D;{({l=¢

|n(s,(@), oo, HY, Dyp) — 2 *|sin 7| S(0)| < (m+1)7'S(0)  (|jl<m, 0= 0ms), (5.10)

| 7(s5(0), o0, HY, DM;*) —on(s;(e), s HY, Du)| < (m+1)728(0)  (|7] <m, 0 >0p)
(5.11)
and
(s /(@) @, HY, D)~ (27) " p,(a) S(e)] < (m+1)7 S(e)
(log|a|<(m+l),|j| KM, 0 2 0pnp); (5.12)

recall that o, is defined in (3.39) and, from (3.29) and (5.2), that p,(a) of (3.35) is the num-
ber of punctured dises {1 <|a| <co} and {|o,| <|a—y,| <co} to which a belongs. This is
all possible from the corresponding statements in Lemma 10.

Finally, we introduce one more constraint on g,.,. Recall from (4.103) that
Ari1(8mi1(0ms1)) =2. Then g,,,, is taken so large that lo(sm(om)) —to(Shlom)) <7/8, Where £,
and [, are defined in (4.46), (4.47) and (4.49) with A =A%, ,,(s); such p,,,, exist according to
{4.52). When this holds, we see from (4.53), (4.16), (4.100) and (2.45) that

log HY 1(has(@m 1) €)= = Slom) € (1] <mf2). (5.13)

5.3. Continuity of g. We have seen in §5.2 how to construct A(g) and the {p,,} so that the
programme suggested by (3.28) may be carried out. We now begin the proof of Theorem 3.

It is obvious that the g,, g} are continuous at each interior {,€ D,, D}, but it is more
troublesome to check continuity at points {, common to more than one of these regions.

There are eight cases to consider:

Lo€D,N Dy, (—oo<j <o), (5.14)
LEDFN D, (G3=1), (5.15)
L€DIND_ ;4 (§=2), (5.16)
t,€D,n D} G=1), (5.17)
Le€D_,n D} G=1), (5.18)

{o€Dj 1 N D} (G=1), (5.19)
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Lo€DTN{|¢]| =g, =1}, (5.20)
COEDOH{ICI=QO=1}» (5.21)

The techniques needed to verify continuity in these cases will be apparent from
studying (5.14), (5.17) and (5.19); the remaining situations are left to the reader.

In analysing (5.14), suppose for concreteness that j>1. According to (4.123), A(s)=2
for s<s,(g,); thus (2.45), (4.120) and (5.4) imply that s,(0) > $(0,)'* > M} (0 =p,). Further,
it is easy to see from (4.127), (4.130) and (4.131) that y,(0e" @) =3s¢"*(s =s,(0)), where [(s)
is defined in (4.68) with A{s)=A,(s). We thus obtain from (3.28) and (4.81) that

g(oe®r®)=1T,o0 H?(-S’C”’(Qem’(g))) = Ty0 Hf(se"®) = T} {y, + 0,¢'%"} (s=s40), 0= 0))

where S(s)=exp [} A,(w)u-1du. An application of (4.116) and (2.45) shows that S(s)=
S(e), and thus

9(0e"1®) =T, {y,+ 0, exp i§(0)} (0=>0)). (5.22)
Next, let s =s,;_;(p); then it is easy to see from (4.131) and (4.68) that
ta(ee® @) =50 (s=5,.1(0), 02> 051),
and hence (2.45), (4.82), (4.116) and (4.130) show that
HY \(y;-1(0e™r-1®)) —exp—iS(e)  (e>e;-1)- (5.23)

We apply the defining property (5.2) of y,, o, and see from (3.28), (5.22) and (5.23) that ¢
is continuous at points {, which satisfy (5.14).

Suppose next that {, satisfies (5.17). We readily see using (3.18), (3.24), (4.123),
(4.126) and (4.127) that

PR B 37
Dyn{|¢|=0}= {Qfe ” 2A(p,) Sé< 24(g)) }’

and (4.123) and (4.131) yield that
3
te,e®) = HA(e) ¢ ] (é%eﬁﬁ 27(%));

thus substitution in (3.28) shows

gi(e,e™) = Tyo Hi(s(g,) e/ Here="1) ( L. ) (5.24)
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On the other hand, (4.103) asserts that A}"(s}"(g,)) =2, 80 (3.28), (4.99), (4.105) and (4.106)
yield

*eo el 2 3n
G0 = T, H(s5@)e 7o) = T o i e) ™) (igl<zom). (620
9
In order to reconcile (5.24) with (5.25), we consider the definitions (4.53) and (4.73)
of the H}, Hf. The same w =w,(W) is used in these definitions, but we have H(w)=H(w)

in (4.53) and H(w)=H,(w) in (4.73), since these are different functions. Thus it must be
shown that

3
(1/H,)(s,(0,) €™~ ™) = Hey (s} (05) €M®") (g <t< —233) . (5.26)
According to (4.123), A(s,(0,)) =2, so we may apply (4.16) to all £. A now-standard com-

putation with (4.16) yields

3

(1/H,)(s(0;) €¥/2=™) = exp {S(g)) e/~ m-} = exp { — §(g) "'} (’2’ <t< 3) :

Since AJ(s}(0,)) =2, (4.16) may also be applied to H(;, and we obtain in a similar manner
that

Holo}e) €™ =exp (- Sy ) —exp (=S} (i<%);  2m

thus (5.26) is proved.

Finally we study the possibility (5.19). Then D} D}.,={{;0=0p, |¢| <n/(2A(¢,))}
and Af(s{(g;) =2, AT.1(s11(0,)) =1. In particular, (3.28), (4.105), (5.13) and the steps used
to obtain (5.27) imply that

¥(0,') =T (exp[ - S(g,) e*@? ( <—£—). 5.28
gi(ese) = Tfexpl - Slene™)  (I8l<g5 (5.28)

Also, (4.31) and assumption (5.6) imply that w;,(W)=y,,+0o, W if |W]|<exp $(o,),
and this and (4.57) yield

7
H7.1(87.1(0) ety = o 1(H g 1)(8711(0;) e*)) (ltl < 5) .
Since A7 1(s711(p;)) =1, we see from (3.28), (4.99), (4.109) and (4.105) that
9?+1(9;ew) =Tj10w54 {eXP [S(Q;) emo’w]}

=T,1{yss1+ 051 6xp [S(g)) eX¥?]} (| ¢ < 277(%:));

a final appeal to (5.2) shows this expression agrees with (5.28).
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5.4. Completion of proof. The remaining properties of Theorem 3 are less obnoxious to
verify. Note, from (3.18), that A(p) already satisfies (2.52). Thus to check that g is Nevan-
linna admissible, it must be checked that the dilatation of g is so small that (2.53) holes,
where D(p) is defined in (2.27). According to (3.28), u,=0 for || <gy=1. In general, we
see from (3.28), (5.5), (5.8) and (5.9) that

27
[ mseenias

- [lsteeas +{ flunieelas+ la, feerlas)+ 5 [lugieelas

m—1

<2n{2‘3+2‘2+2‘3 2 2“'”}nm<2nnm (On<e<Pmn),

—(m-1)
which is (2.53).
Also, since the {g,,} are chosen in accord with (2.59) we have (1.4).
Next, since the y,, v and T, are homeomorphisms, we readily obtain (3.33) and
(3.34) from (3.28) and the corresponding properties (4.80) and (4.58) of the HY, H}.
Similar reasoning yields (3.37) from (4.79) and (5.12), (3.40) from (5.10) and (4.77)
and (3.41) from (5.11) and (4.78).

6. Proof of Theorem 4
Theorem 4 is stated in § 4.1.

6.1. A class of functions of genus one. Our goal in this section is to construct an entire
function F(z) for which the conclusions of Theorem 4 almost hold, and then to use quasi-
conformal methods to satisfy (4.14) and (4.16) exactly. This function F(z) is a slight ge-

neralization of the Lindelsf functions.
LEMMA 11. Let >0 and 0<h;<(10)"! be given. Then there exist 0 <7, 0 <y <} and
K >2' in accord with the following assertions. Let A(r) be a differentiable function with
1+3h < A(r) <2-3h (r>0, (6.1)
r|A’(r)| <(4m)~!sin 3k (r > 0), (6.2)
let S(r) be defined according to (4.7), let
n*(r) =z|sin wA(r)| S(r) (r>0) {6.3)

and let F(z) be a canonical product with positive zeros whose zero-counting function n(r)=
n(r, 0, F) is bounded by
n(r) <2n%r)  (r>0). (6.4)
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Suppose for some r,>10v-2h;® we also have
r|A')] <t (r>71y), (6.5)
[ n(r) —n*(r)| <vin*(r) (r > 1g)- (6.6)

Then in the plane slit along the positive axis, that branch of log F(z) having log F(0)=0

satisfies
log F(z) + 8(r)e'sC™( <hiS(r)  (r>Kry, by <0 <2m—hy). (6.7)

Remarks. It will be seen in § 6.4 that such an n(r) may be constructed.
We require (6.1) in place of (4.4) until §6.6.

Proof. Take K > 210 50 that
K 1 °° 1
fo y Tty < f y iy < M (6.8)
K

9Mp-IK-R <], (6.9)
and then find ¢ =0(K, h;) < } with

K
1
af Yly—e?Tdy< B (-2<p<2 h<O<2n—Ty) (6.10)
o

We now estimate the oscillation of A(r) and n*(r). It follows with little effort from
(6.5) and (4.7) that

|A(w)— A(r)| <=t fry"ldy <7tlog K (ro< K 'r<u<Kr) (6.11)
and A
T)S u
(i) ;g%)— =e><p{J‘T [A(y)—A(r)]y"‘dy}—l;
thus

A
(Z) §@_li<ez(xogx>'_1 (ro< K 'r<u<Kr). (6.12)
u S(r)

Now the definition (4.7) of S(u) with (6.1)-(6.3) shows that

d log n*(u) _
dlogu

21og|sin A

dlogu <aul'(u) cot h (< }) (»>0) (6.13)

A(u)} -

which implies that »* is an increasing function. We then obtain from (6.5), (6.12) and

(6.13) that

dlogn*(u) _
dlogu

dlog n*(u)
dlogu

A<r>‘< —A(u)\+|A<u)—A<r)|

< 7(7 cot 3nh + log K) (ro< K~ 'r <u < Kr).



126 D. DRASIN

Thus, given » >0, 7 is chosen in (6.5) sufficiently small to ensure that

r\AOn*w) | * [dlog n*(y) _ ]d_?/ _
(u) n*(r) 1’ leXPUr[ dlogy A y} 1‘

<|exp {7 log K(m cot 3mh+1og K)} — 1| <»* (ro< K 'r<u< Kr). (6.14)

With (6.14) in mind, we take » and then 7 in (6.6) and (6.5) so that (6'.14),
A A
n(w) - (“) n¥(r) n*(w) - (*f) n*(r)
r r .
A

<vn*(u)+ vt (:—L) e n*(r) < (2+ %) ? (’—;—L) n*(r)

< | m(w) — n*(w)| +

% A(r)
< 0(;) n*(r) (> Krg, K™'r <u<Kr) (6.15)
and

Ay
n(w) - (f) n(r)

<

r Alr
a= (2)"wn|+ (2) vt - o)

. ) A w A . 4
< 2y ;) n¥*(r)y<o - n*(r) (r>Kry), K'r<u<Kr) (6.16)

hold, where ¢ has been chosen in (6.10).
For further reference, we observe from (6.10) that o =O(h?), so we further require of
v and 7 in (6.14)—(6.16) that

T<2tlog K < Ah}, v< Ah} (6.17)
where A4 is an absolute constant.

Only a weaker form of (6.15) is needed when 0 < <K-1r or Kr <u. Restriction (6.1)

implies that

8!

s 1+3h 8 2-3h
(,,) S(s") < S(s) < (—) Ss") (1<s'<s), (6.18)
3

which is a sharpening of (4.9). It is then routine to obtain from (6.3), (6.4), (6.9) and (6.18)
that

u 1+3h © 14-2h
n(u) < 2n*(u) < cse 37tk<;) n*r) < (;) n*(r) (r>Krg, 0<u<K'r) (6.19)

and

2-2h
nw) < (’f) w*r)  (r>Kry, Kr<u). (6.20)
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That branch of log F(2) in 0 <arg z <2z for which log F(0)=0 may be represented

by Valiron’s formula:

_ © n(u, F)
log F(z) = 2* fo =7

(z=re® 0<6<2n). (6.21)
Since

[e2)
emf YA 3y —e®) ldy= —mesc AN (0<O<2m, 1<A<2), (6.22)
0

it follows that

| () = n*(r)(ufr)A”

u¥(u - 2)

|log F(z)+ S(r) e A0 | = 42 f

0

du’

2

-
SN

fm w3 (u—2) " {n(u) — n*(r)(ufr)2 "} du

K~ 1r

K71y ©
+r2{f n(u)u‘zlu—zl‘ldu-i-f n(u)u‘2|u—-z|‘1du}
0 Kr
-1

K~ 'r o]
+S(r){f0 (u/r)A""2|u—z|‘1du+jK (u/r)A(”‘2|u—z|‘1du}

(r> Kry, 0<0 < 27). (6.23)

However |u—z|-1<3(x+7)-! when |z| =r and w<}r or >2r and, in particular, when
|log (u/r)| >log K. Thus after (6.1), (6.15), (6.19) and (6.20) are applied to (6.23), elementary

manipulations yield
k-1

K
|log F(z)+ S(r)emm(e—m| < S(r){afK_lyA<r)»2|y_ elﬂl—ldy+ 4f0 y’”“dy

-1

[° ] K [s o}
+4J‘ yml»2hdy+4f yiil’%hd?]’k‘l‘f ‘1/-1 ‘ihdy}
K 0 K
so this, (6.8) and (6.10) prove (6.7).

6.2. A modification. Estimate (6.7) degenerates when z is near the positive axis, and this
is to be expected since the zeros of F are located there. However, when A(r) is close to 1
or 2, (6.3) and (6.4) show that n(r) is small when compared to 8(r). Since (6.7) establishes
S(r) as the natural comparison function for log F, this suggests that for such r the influence
of the zeros whose modulus is “close to”’ r is small.
To exploit this principle, let N be a set of positive numbers which satisfies the separa-
tion conditions
r"EN=(* 219N N=02, (6.24)

nno,1H=0. (6.25)
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Then ‘H may be written

N={s33, ri<riy, iz1. (6.26)
We introduce the intervals
J={2 % <r<2%¥, rren), (6.27)
IL={2%I<r<2 %%, rTEN} (¢>0), (6.28)
I,={0<r<27%}} (6.29)
and, if N has n < oo elements,
I={2"*}<r}. (6.30)

Let F(z) be a canonical product which satisfies the conditions of Lemma 11. Then

construct a canonical product F,(z) with
n(r, 0, F1)=n(27%7,0, Fy) (r&J,), (6.31)

n(r,0, F,)=n(r,0,F)+ 2 n(2 4, F) (r¢Ud) (6.32)
reen

and next a canonical product Fy(z) such that

0 (rely)
n(r, 0, Fy)= (6.33)
n(2%7%,0, F,) (rel,i=1),

and consider the meromorphic function

* =~_1(i)
F*(z) ¥ (6.34)

It is clear from the construction (6.31)-(6.34) that
n(r, 0, F'*) = n(r, o0, F*) (relUdy), {6.35)

so that single-valued branches of log F*(z) may be defined in each annulus {2-%7*<|z| <
24r*, r* €N}
LEmMma 12, Let b, by >0 with
(1013 )k, = k4 (6.36)

and let F(z), ry, T, v and K be as in Lemma 11. If N is a set of positive numbers such that
(6.24), (6.25)
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NN, 2°Kry) =0, (6.37)

and, for all €N
(r*, 2K\ NN =0 (reN), (6.38)
|sin ZA(r*)| < 10zh (r*en) (6.39)

hold, then the function F*(z) associated to F(z) by (6.31)-(6.34) satisfies
llog F*(z)+8(r)e'NPO™) < ARIS(r)  (z=re",r>Kro, by <O<2m—1,), (6.40)
|log F*(z) +8(r)e' A" | < AR28(r) (23r*<r<2%*0<0<2n,r*€EN) (6.4])
for an absolute constant A.

Remarks. Here and in the future, an absolute constant refers to one which does not
depend on A(r), H, h or k, so long as (6.1), (6.2), (6.24), (6.25), (6.36)~(6.39) hold.

The value of Lemma 12 over Lemma 11 is that the error term of (6.41) is small for
all 6; thus (6.39) is the key assumption.

Proof. Formula (6.35) will be crucial in the proof of Lemma 17. For now, the useful
properties of (6.31)~(6.34) are

0 <n(r, 0, F)—[n{r, 0, F*) —n(r, o, F*)] < AR1S(r) < An*(r) (r>0) (642)
(where n* is defined in (6.3)) and
n(r, 0, F*)—n(r, 00, F*)=n(r, 0, F) (réeUJ,. (6.43)
The left inequality of (6.42) follows at once from (6.31)-(6.33). Next, let r€I,(¢>1).
Then (6.19), (6.37) and (6.38) yield
n(2 %}, 0, F) < K *n*(27%7,1) (6.44)
where K >210 g0 if r€I, (i=1), iteration of (6.44) with (4.9), (6.28), (6.36) and (6.39)

shows
S n(27Y7,0, F)< An*(rT) < ARE S(rT) < AR S(r) (r€IL).

i<t
According to (6.32), this gives
|n(r, 0, F)—n(r, 0, F1)| < 4R1S(r)  (r>0) (6.45)

and the proof of
n(r, 0, Fp,) < Ah}S(r) (r>0) (6.46)

is similar. This proves (6.42), and (6.43) follows from (6.32) and (6.33).
9 — 772902 Acta mathematica 138, Imprimé le 5 Mai 1977
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The computation of log F*(2) will be based on the Valiron-type formula (compare
with (6.21))

log F*(z) = 2* J;‘ z—‘%—qj—)z—)du» (0 < arg z < 2n), (6.47)
with
ny(r) = n(r, 0, F*) —n(r, oo, F*). (6.48)

According to (6.19), (6.20), (6.42) and (6.46)

1+2h
n(u, 0, F*) + n(u, oo,F*)<A(?) n(r, 0, F) (r>Kry, 0<u< K™7),

2-2h
n(, 0, F*) + n(u, oo, F*) < A (":) n(r,0,F)  (r>Kry, u>Kr),

80 it is easy to see from (6.21) and (6.47) (compare with the manipulations in (6.23)) that

|log F*(z) ~log F(2)|

Kr
2 ng(u) ~ n(u, 0, F) | 2
<r fl{_lr - — du]+Ah1 S(r) {r>Kry, 0<0<27), (6.49)
KT mg(w)
log F*(z)—zzf ———du| < AR} S(r) (r> Kry, 0<6<2n). (6.50)
g~ u(u—=z
First, suppose z=re*? where
r> Krg, [Kr, Krin{UJ} =¢, by <O <2m—h,. (6.51)

Then a glance at (6.7), (6.43) and (6.49) leads at once to

[log F*(z) +8(r)e* A @]
< |log F*(2) —log F(2)| + |log F(z) +8(r)e'AVO"| < AR} S(r).  (6.52)

We next consider the situation
r>Krg, by <O<2m~hy, J,N[Kr, Kr) ¢ (6.563)

for some (and, by (6.38), only one) 7} € 1. Since j',‘t-ldt<A, the bound 1 <A(r) <2 shows

)

thus when (6.53) holds we obtain from (4.9), (6.15), (6.35), (6.43) and (6.48) that

uA(r)—2

Wrem) du < Ahy? (b <O< 27— hy);




THE INVERSE PROBLEM OF THE NEVANLINNA THEORY 131

J'n(u, 0, F)dul
Ji

s ut(u—2)

7.2

Kr ”o(“) - n(u7 O’ F) dul| = r2
-1y wi(u—2)

A w2
< dAn*(r V7 S PR
= ( )J;‘ ,A(r)—z(u ~2)

(a more refined analysis can replace ki' by log Ar! in (6.54)).
Since |log(r/r})| < 2log K, (6.11), (6.17) and the method used to obtain (6.11) yield

du < Ahiin*(r) (6.54)

|A(r)— A(r¥)| <27 log K* < ARt (6.55)

when r satisfies (6.53). Hence the fundamental assumption (6.39) with the convention
(6.36) yields that
|sin wA(r)| < Ab,

80 we obtain from (6.3) that
n*(r) < ARIS(r) (r > Kry, UN[K-1r, K] == ¢). (6.56)
Now (6.7), (6.54) and (6.56) are used in (6.49), leading to

|log F*(z) +8(r) 2P| < |log F*(z) —log F(z)| + |log F(z) + S(r)e A" @™
< AS(r) {2h2 + R4k} = ARZS(r),
when (6.53) holds; this and (6.52) complete the proof of (6.40).

The more delicate inequality is (6.41). In this range, log F(z) is not a good comparison
to log F*{z), so (6.50) is preferred to (6.49). We write the principal term of (6.50) as

Kr
2 ne(%)
¢ fK_lruz(u—z)du

K L A(N-2 Kr A
— 216 Y 2 ”o('”') - (u/r) n(r, O: F)
n(r,0, F)e fx—ly—e‘o dy+z fK‘lr P —2) du (0<0<2m). (6.57)

The first term on the right side of (6.57) provides the main contribution; it may be esti-
mated from (6.22) and the bounds (6.1) on A(r) and (6.8) of K (cf. (6.23)):

A(r)—2

K
n(r, 0, F) ez"’f 1; dy + S(r) e MO < ARE S(r) (r> Kr,, 0< 0<2n). (6.58)
-

_ etﬂ

In order to estimate the second integral on the right side of (6.57), the range is divided
into [K-1r, 2-%], [2-%, 2-Y7], [27Yr, 27], [2r, 2%], [2°, K¥).

Suppose K-r <u<2-% or 2% <u < Kr. Since it is assumed that 2-4r* <r<24r* we
gee from (6.38), (6.43) and (6.48) that ny(u)=n(u, 0, F). Thus (6.10), (6.16) and (6.56) give
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P f 2 mofat) = (ufry*n(r, 0, F) d”l

K-l uZ(u —z)
278 (A2

< on*(r) f iz dt < AR S(r) 2 4%* <r<2%*, 0<0<2n, r*€N); (6.59)
Y o

in the same way,

J‘Kr no(u) - (u/r)A(T)n(r’ O: F) du

2
T
2% uu—2)

l<Ah§S(¢) (274 <r<2%* 0<0<2m, r*€N).

(6.60)
When 2-% <y <21, (6.15), (6.42), (6.48) and (6.56) show

rz} f n(u) ~ (w/rY"n(r, 0, F) du‘
29

r u2(u - z)

1

Py du < Aht S(r) @7 4*<r<2%*, 0<0<2n, r*€N) (6.61)

27l
< An*(r) f
2%
and similarly

f” no(®) — (ufr)>n(r, 0, F)

2
r
2r uﬂ(u - Z)

du(éAhi‘S(r) @4 <r<2%*, 0<0<2n, r*€EN).
(6.62)

Finally, since (6.35) and (6.48) show that ny(u) =0 (37 <u <2r) when 2-3¢* <r<23,*
for some r* € H, it follows that

2r
rzj 2n.,(u) du=0  (27%*<r<2%*, 0<0<27, r*€N), (6.63)
sy Wlw—2)

and (6.56) gives

2r Aln) 0
Jom B) 05

e \T u*(u—2)

2r u A(r)-2 du
Jluz» (;) u—z
Thus when 2-37* < |2| <23* with 0 <arg z <2, the expression

Kr
(%)
‘ fK‘lr u(u— Z)du’

which appears in (6.50), is written as in (6.57) and estimated by (8.58)-(6.64) and (8.41) is
proved.

,'.2

< AW S(r) (2 % <r<2%*, 0<0<2n, r*€N).
(6.64)

=n(r,0, F)
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To apply quasi-conformal methods, it is necessary to differentiate estimates (6.40)
and (6.41). Thus, the following lemma, though now elementary to obtain, will also be of

central importance.

LemMA 13. The function F*(z) defined by (6.31)~(6.34) satisfies

diz {log F*(z)} + 27 A(r) 8(r) 27| < 4r~'h, S(r) (6.66)
if either
|2] > 2Kry, 3k, <argz <2m—3k, (6.67)
or
22 <|z| <22r%, 0<argz<2m, €N (6.68)

Proof. Let z, satisfy (6.67) or (6.68), and let A’ =h'(zy) =k, when (6.67) holds and 2" =4}
when z, satisfies (6.68). We claim that if

D(zy) = {z; |z—zo| < h'ro} (ro= Izol)’
then

r Alro)(0-m)
log F*(2) + S(ry) (7)
o

<SARES(ry)  (2€D(z)). (6.69)

Once (6.69) is established, (6.66) follows from Cauchy’s formula:

lé {log F*(Z)}z—z,, + 20— le(ro) S(To) eiA(rg)(G—n)

<Ah¥S(ro)f |2 — 2| 2|dz| < Ar~'h, S(r).
8 D(20)

We now prove (6.69). When (6.67) holds, (6.69) is a simple consequence of (6.11),
(6.12), (6.17) and (6.40) as

S(r) e Arre-m _ S(,.o)(ﬁ)mmem(roxo-m
To

r Alre)
S(r)~ S(r) (7.,)

In the range (6.68) we must be careful since D(z,) may cross the positive axis. However
according to (6.34) and (6.35)

<

Alre)
+ S(,-o) (;) |e1{A(r)—A(ro))(0—n) — ll < Ahi S(f’o).
[

log F*(re='0) =log F*(re'®*~9),
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and, if r€J,;, we obtain routinely from (6.39) and (6.34) that
[ 8(r) e ADCO= — G(r) e AET-O-T2 | = Y(r) |1 — 2MAD| < AS( AT (r€J, —a<0<0),

50 (6.69) follows as before.

6.3. Value-distribution of F*. Inequality (6.70) below can be made more exact, but this

i8 not necessary here.

LEMMA 14, Let F* be constructed in accord with (6.31)-(6.34). Then there is an absolute
constant A such that
n(r,a, F*) < AS(r)  (a€C, r> Kry). (6.70)

Estimate (6.70) complements the bounds in (6.4), (6.6), (6.45), (6.46) for n(r, 0, F*),
n(r, o, F*), since F* is defined by (6.34).

Proof. As starting point, we show that
T(r, F*) < T(r, Fy)+ T(r, F) <AS8(r)  (r> Kr,) (6.71)
(the left inequality of (6.71) is a consequence of Jensen’s formula and the normalization

F,(0)=1 (cf. (6.75) below)). Since the F(+=1, 2) are canonical products, the characteristies
are estimated by the standard inequality (cf. Theorem 1.11 of {9]):

4 =]
T(r,F)<logM(r,F,)<12 {rf 71(%1'—) du + rzj ﬂ%@ du}

i 4

for i=1, 2. The integrals may be estimated as follows: according to (6.45), (6.46), (6.4),
(6.8), (6.19) and (6.20)

K-l ©
rf ﬂ@%%i:) du+ rzf n___(u,q%ﬂ du < An*(r)< AS(r),

0 Kr

and (6.45), (6.46), (6.4) and (6.15) yield that

(" n(u,0,F) zf K n(w, 0, F;) n*(r) n*{(r) )
1fx_l'———u2 du+r T e du < A(:r)——1+A2—A(r)<AS(T)’
thus
Mr, F)<AS(r) (i=1,2,r>Kr,) (6.72)

and (6.71) is proved.
According to the first fundamental theorem,



THE INVERSE PROBLEM OF THE NEVANLINNA THEORY 135

N(r,a, F*)< T(r, If—'*_lw—d) =T(r, F* — a)—log| F*(0) — al;

since
| T(r, F*—a)—log* |a||< T(r, F*)+log 2,
(6.71) implies that
N(r, a, F*) < AS(r) (r=Kry, |a—1| > }).

We use the standard relation between N and n (cf. (2.11)) and deduce by a simple tau-
berian argument that (6.70) holds if

Ia_-1| >}, (6.73)
since F*(0)=1.

To remove the restriction (6.73), we argue as follows: in Lemma 11 it was required
that r,>10v"2k1® s0 it is easy to see from (6.36), the definitions (6.1), (6.3) of #*(r) and the
growth property (4.8) of § that n*(8%,%)>2. Thus if (6.6) holds with v <}, F must vanish
at some yy, 0<y, <r,, and since Y satisfies (6.37), (6.32) shows that F*(y,)=0. Choose
Yo, 0<ypo <y, with | F*(y,)| =% and consider

Fo(z) = F*(z—p,).
We claim that
T(r, Fo) < AS(r)  (r>r1y). (6.74)

Indeed, Fy(z)=(F1(z — 7o) (Fa(z —y,)) L, 80 Jensen’s formula, (4.9) and (6.72) give

1
T, £ <0 Fie =) + 212 )
=T(r, Fyz = yo)) + T(r, Falz — ¥,)) — log| Fa(y)|
<log M(r, F\(z - 7o) +1og M(r, Fy(z— y,)) — log| Fa(yo)|
< A8(r +rg) —log| Fz('}’o)l < A8(r)—log | Fa(yo) | (r>ry). (6.75)
Since H satisfies (6.37), (6.33) shows that F,(z) does not vanish for {|z] <2y,}. But since
1/F, is holomorphic in {|z]| <2y,} the standard estimate

log +M(yo, Il—,—z) < 3T(2y0, Flz)

([9], p. 18), the normalization Fy(0)=1 and (6.71) imply that

1 1
~log| Fy(yo)| <log *M (70, E) sAT(%, 17,2)

= AT (2yo, Fa) <AS8(yo) < AS(r)  (r>rp);
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this and (6.75) yield (6.74). The usual tauberian argument based on (2.11) now gives

n(r, a, Fo) < AS(r) (r > Kro, |a—Fy(0)| > }),
or
n(r, @, Fo) <nlr+ry, a, Fo) < AS(r) (r> Kry, |a—Fo(0)| = 1);

since | Fo(0)] =3, this proves (6.70) for those a not included in (6.73).

6.4. On the hypotheses of Lemmas 11 and 12. We now show that the hypotheses of

Lemmas 11 and 12 are realistic.

LEMMA 15. Let 0<a<l, h, h; >0 and A(r) be given where A(r) satisfies (6.1), (6.2)
and (6.5) and h, h, satisfy (6.36). Recall that h, determines 0 <v<<} in accord with (6.6),
(6.14)-(6.16). Then functions F(z), F*(z) may be constructed in accord with Lemmas 11-14
and such that

|#(r, 0, F*)— an(r, 0, F*)| < Ak, 8(r)  (r>hi'ry) (6.76)
with
ro < 109 2h{5. (6.77)

Further, given (2-8h>)A*>3, suppose (4.21) and (4.22) hold, and that the set N of

(6.24)-(6.26) and (6.37)—(6.39) has finitely many elements. Then if

#y =, nf,_3
D(AY) {z, |a,rgz|<2 (l 2A#)}’ (6.78)
there exists r, such that
log | F*(z)| < — A sin(A*—3)8(r) (4 >0,2€D(A,), 2| > 1), (6.79)
so that
n(r, a, F*)—#(r, a, F*) < 0O(1); (6.80)

the O(1) in (6.80) ts untform in each region

log |a| > —4,. (6.81)
Remark. That H be bounded is essential for (6.79) since (6.79) fails at the poles of F*.

Proof. Once h, h, are given, Lemma 11 associates 7, K, » as in (6.5), (6.6), (6.8), (6.9)
and (6.17). According to (6.14), (6.1), (6.3), (6.36) and the bound » < }, we have that

n*((1+22)r) —n*(r) = {(1 +22) (1 —14)}n*(r) —n*(r)
> 3v2n*(r) = (47r)~ 169217, (6.82)

Thus, we may construct a canonical product F(z) of genus 1 with positive zeros and
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n(r, 0, Fy<n*r)  (r>0) (6.83)

such that each zero a, of F with
a,> 8y % ® (6.84)

oceurs with multiplicity p, where
|pat = o] <hy; (6.85)

for example, if a <h,, let p, >hi'. Inequalities (6.82) and (6.84) show this may be arranged
80 that
n((L+2)r, 0, F)Z2n*@r)  (r=8v-2h®)

and this and (6.14) lead to
D 1
n(r, 0, F)Zn*({1 ++}" ) = (l_iv“%\—mn*(r) = (1 =) n*(r) (r=10v"%R1®). (6.86)
Thus (6.83) and (6.86) yield (6.6) with r,=10v"%h;%(>8»"2h1®) as required in the statement
of Lemma 11 and the proof of (6.70).
It readily follows from (4.9) and the bound (6.85) that the {p;'} may be chosen
bounded or tend to infinity so slowly that

|#(r, 0, F)—on(r, 0, F)| <n*(10v ™%k ®) + 2k, n*(r) + p, < Ay S(r) (r =10v"2h7%)

holds. Thus if F* is obtained from F in accord with (6.31)-(6.34), we obtain from this and
(6.45) that
|#(r, 0, F*)—an(r, 0, F*)]
<|#(r, 0, F*)—a(r, 0, F)| + |a(r, 0, F)—an(r, 0, F)| +o|n(r, 0, F*)—n(r, 0, F)|
< Ah, S(r) +n*(A0v~2h%) < 4B, S(r)  (r > 1),

which is (6.76) and (6.77).
Now suppose (4.21) and (4.22) hold. Thus rA’(r)~0, so 7 in (6.5) may be chosen as
small as desired if 7, is increased. In particular, it may be supposed that

n(r, 0, F*) = n*(r) + o(1)S(r) (r —> o0) (6.87)
and
@(r, 0, F*) = on(r, 0, F*)+o(1)8(r) (r—o0). (6.88)

Let A be the largest of the constants introduced in (6.40), (6.41) and (6.66), and take
hy <1071 80 small that

Ahy < } sin(A*—3). (6.89)
10 — 772902 Acta mathematica 138. Imprimé le 5 Mai 1977
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Then if & satisfies (6.36) and 7, K and v are chosen in accord with Lemma 11, we see that
(6.5) and (6.6) hold for sufficiently large r,, and hence so do the conclusions of Lemma 11.
Now the discussion which introduced ¢(s) in (4.70) (cf. (4.62) and (4.67)) shows that

3 3
os in=mnat=g)  (0=3(1-55), 0-22-3(1- 7))

and since the choice of &, in (6.89) shows that (6.7) and (6.40) hold for large r when

4 3 1 3
it follows from (6.40) that with D(A¥) as in (6.78),
log | F*(z)| < — 3} (sin(A¥*—$))S(r) < 0 (|z| > Ry, z€8D(A¥)) (6.90)

if R, is sufficiently large. We may suppose R, so large that F* is holomorphic outsice
{|2| <Ry} (possible since ¥ is bounded). Estimates (6.71) and (6.18) show that F* has
order <2 3k, so (6.90) and Phragmen-Lindelf yield that | F*| <1 in D(A*) 0 {|z] >r,/8}
for some r; > R,.

Now let zy( | 29| =7o) € D(A¥) with |2,] >r; and let

Dy = D(A#*) 0 {3r, <|z| < 8r}.

Partition 8D, into a U 8 where a< {|z| =4ro} U {|z| =8r,} and |argz| =n(1-3/(2A%)) on 8.
Then (6.36) and standard estimates on harmonic measure (cf. [15], p. 79, Satz 4) show

3log 16 —24log 2
(2q, o, D) < 2exp{—;271~\—§—_-%—)} < 2exp{_._7_t2_gv_}< 1.

Since | F*| <1 on a, it follows from (4.9), (6.90) and the two-constants theorem that
log| F*(ze)| < 3 scu;) | F¥2)| < — 47" sin (A* — 3) S(37,)
< — Asin{A*— 3) S{ry) (€ D(A%), |z|> 1)

with 4 >0; this is (6.79).
It follows from (6.66) and (6.89) that all points of ramification of F* in {|z| >ry}
must occur in D(A*), so (4.8) and (6.79) yield that if log |a| = — 4,, then

n(r, a, F*)—a(r, a, F*) <n(R(4,), a, F*) (6.91)

where R(A4,) is so large that A sin(A*—3)8(r)> A4, if r>R(4,) (cf. (4.79), (4.80)). Thus
(6.80) is a simple consequence of (6.70) and (6.91).
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6.5. A preliminary form of Theorem 4. Recall the constant (50)~1>%>0 from the state-
ment of Theorem 4, and choose k, h, according to (6.36). This pair &, A, in turn deter-
mines K, ry, >0 as in Lemma 11. Also, let 1 be as in (6.24)~(6.26) and (6.37)—(6.39).

Now consider a function A(r) which satisfies (6.1) and (6.5).

Reecall that the function F*(z) of Lemma 12 almost fulfills (4¢.14) and (4.16) (cf. (6.40)
and (6.41)) and is defined in the full plane. Here we introduce a function ¢(w) which, while
not defined in the full plane, satisfies (4.14) precisely and the values o(rf e)(rf € M) are
explicitly determined. Our major goal is Lemma 17, where F* and ¢ are “welded” to-
gether.

To keep control of error terms, we now recall that >0 and &, A, are known, and then

introduce a k>0 with
h=ht < h,<k<n, (6.92)

and let 4(k) denote a generic positive function such that
A(k)—=0 (k—0). (6.93)
Also, let ‘¥ be partitioned into Y, U N,, ghara,cterized by
|A(r*)—m| <} .(r‘e Ny m =1, 2); (6.94)
it follows from (6.36) and (6.39) that N, U N,=MN, N, N Ny=¢.
Definition of 0. The function ¢ is defined in
{DyVU D, U Dy} N {|w] =11}

where 7} is the smallest element of ¥ and

Do ={s >, I <t <2m—ix}, (6.95)
D, ={s€J, |t| <in ri€N,}, (6.96)
D, ={s€J, |t| <3y, rTEN}; (6.97)

recall that the J, are defined in (6.27).
The definition of ¢ is

a(w) =exp { — 8(s) M7} (we D), (6.98)
o(w) = exp { — 8(s) em(sxt—m—2nm-—1[A(s)—l)(t—(uzm)} (weD,), (6.99)
o(w) = exp{ — 8(s) eiA(s)(t—n)+2ntrl-l[Z—A(s)](t—(IIZ)n)} (wE D,). (6.100)

The reader should verify that ¢ is well-defined and continuous: that (6.98) (for w =se™/®™,
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5!~ IBM) gorees with (6.99) (with w=se*?®) when s€J, for some 7} € Y,; that (6.98)
(for w=se¥@" 5¢!®*-A2My gorees with (6.100) (with w=se*¥®) when s€J, for some

r €N,

LemMA 16. The function o(w) is quasi-meromorphic in {|w| =i} N {DyU D, U Dy}
with
|po(w)] <A(k)  (WED,U DU Dy), (6.101)
where (6.93) holds.

Proof. We compute locally, using a branch of log {log o(w)}. Then

B8} Aoy +ish@e=7)  (wEDy
(6.102)
Hogtlogd}_ ipe (w€ Dy)
and (6.101) follows from Lemma 7 since A(s)>1 and (using (6.5), (6.17), (6.36) and (6.92))
[sA'(s)| < A(k).
The computation is more subtle in D, U D,. For example, if r} € 1,

a__._l°gl{ot’§ o} A@)+i{sA @)t~ m) — 2 Yt —3p)]}  (w|€J, wEDy).
(6.103)

610g{alt°y_} = iA(s) ~ 27 [A(s) — 1] (lw|€J,, weDy).

Thus

dlog{loga}
“olozs log s A(s)| < A(k)

2log{log 0}—iA(a)

p < A(k)

since such bounds are satisfied by sA’(s) and [A(s)—1] (cf. (6.5), (6.17), (6.36), (6.39)
and (6.92)). When w€D, the argument is similar; it now depends on the estimate
|A(s)—2| <A(k)(|w| €], wE Dy).

Definition of the welding function Q (see Figure 2). Let N be as in (6.24)~(6.26), (6.37)—

(6.39), and let

J= U{s 27%* <s<2%*}.
r*en

We define y,(s) (s=>77) as follows:
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|w] = 22r*
Fig. 2
U] (s=>11, 5¢J),
Yol8) =1 llog(r*/s)| - (6.104)
2N A - <8< 2,k % ,
fog @) (275 <s<2%*, r*€N)
and
Qo = {w; 8 =11, 7(8) <t <2nm—py(s)}. (6.105)
where 77 is the smallest element of }. Next, let p,(s) be defined with domain {s>7}} as
follows:
in (=11, s¢7),
*
Y l“—‘oﬁgg 2 e casye, mem)
Y1(8) =1 log(s/2r*) (6.106)
log(s/2r*) ooty
Y log 2 (2r* <8< 2%*, r*€N),
10 (3r*<s<2r*, *€N)
and let
Q = {s =rf, inf log; >log?2, |t} < yl(s)}, (6.107)
reen
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Q, ={Q U} N {|w| =} (6.108)

({ } =complement). Note from (6.107) that , N {}r* <|z| <2r*} =4 if 7*€N.
We define Q(w) for {|w| >r1} so that Q is continuous,

0<Qw) <1 (|w] =1), (6.109)
0 (w€L2)
Qw) = (6.110)
1 (wey);
it is easy to see this is possible with
o) <dn,
ologs
(6.111)
o0
—<An~'.
at ="

Lemma 17. Let A(s) be as in (6.1), (6.95), let F* be as in (6.31)-(6.35), let N in (6.24)-
(6.26) and (6.37)-(6.39) be nonempty, and let o, Q) be as just described. Define K(w) for
{[w] =11} by

K(w) = exp {Q(w) log F*(w)-+[1 —Q(w)] log a(w)}. (6.112)

Then K is continuous and, if b and h, in (6.36) are sufficiently small, quasi-meromorphic
tn the plane with

|ux(ow)| < A(k). (6.113)

We also have
log K(se') = — 8(s) e"A!=™ < ]og g(se'’) (s=rf, n<t<2n—1), (6.114)
K(r*e't) = g(r*e't) (€N, 0 <t < 2m), (6.115)

where o(r*e'’) is described in (6.98)—(6.100).
Finally,
n(s, a, K) < AS(s) (s>17) (6.116)

for an absolute constant A.

Remarks. 1. In Q,, we may write (6.112) more simply as K(w)= F*(w). Outside Q,,
the choice of branch of log F*(w) is crucial. We take this branch, so that (6.40) holds.
This defines a branch of log F*(z) in 0 <arg z <2z, but according to (6.35), this branch
is also single-valued in each annulus {2-4r*<|z| <2¢r*, r*€ Y}

2. Since K is defined only in {|w| >r1}, n(s, a, K), @(s, a, K) refer to value-distribu-
tion in {r] <|w] <s}.
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Proof. Equations (6.114) and (6.115) are obvious since (6.110) and (6.112) assert that
K(w)=0(w) on the relevant domains.

To prove (6.113), observe that K =¢ in (,, so that (6.113) in Q, follows from (6.101).
In Q,, K(w)= F*w), so uz=0in Q,.

Next, suppose w=se''€Q,. Then it is easy to see from (6.40), (6.41), (6.66), (6.98)-
(6.100), (6.92) and the computations of Lemma 16 that

|log F*(w) —log a| < A(k)S(s),
I {log F*}loz s {log O'}103 sl < A(k) S(s),
| {log F*},—{log o};| < A(k)S(s)

and from the Cauchy-Riemann conditions that

{log F*}10g s= —1 {log F*},.
Thus if w€Q,,
|log K (set) + S(s) e < A(k) 8(s),
[{log K(w) hog s + 1 {log K(w) },| < A (k) S(s), (6.117)

| {log K(w) }loz s~ A(s)log K(w)| < A(k) S(s);

and so (6.109), (6.111), (6.112), (6.117), (6.9) with the definitions (2.3) and (2.6) complete
the proof of (6.113). (Remark: the bounds (6.111) show that ¥ must be small in comparison
to 7, but this is guaranteed by (6.92)). It is obvious that the partials of K satisfy the weak
regularity requirements (2.1).

Note from the conventions (6.92) and (6.93) that A(k) <1 in (6.113) if k is sufficiently
small.

Now consider (6.116). Since K = F* in Q,, (6.70) implies that

nls, a, K, Q) < AS(s) (s =7]), (6.118)
a8 Q, < {|w| =7} and r{ satisfies (6.37). Next let s,>r{ and let
Q(se) = {Qo UQ,} N {se¥; 35, < 8 <5, p4(8) <t <2m~9py(8)}.

Note that if 4r*<s,<2r* for some r*€ H, then &Q(s,) includes a segment of the positive
s-axis, and as w circuits 9(2(s,) this segment is traversed once in each direction. We apply
the first formula of (6.117) on 8Q(s,) and deduce from (6.46) and the argument principle
that

(8o, @, K, Q(30)) < AS(8y) +1(8g, o0, Qsy)) < AS(8y) (86 > 71)- (6.119)

In general, given s,>r7,
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N 8
{rt<|w|<s}< U (Q(—“))
n=0 2"

where N is so large that s,<2"r{. Then (4.9) and (6.119) give

N N
n(Sp, @, QU Q)< 3 n(s, a, K, Q(%’)) <A S (_s_o) < As(sy), (6.120)
n=0

n=0 2”
and (6.118) and (6.120) yield (6.116).
COROLLARY. Let 0<a<1 be assigned and suppose the hypotheses of Lemma 17 are

augmented by
sA'(s)—=0 (8> 0) (6.121)

and the set N of (6.24)-(6.26) and (6.37)~(6.39) is nonempty and bounded. Then K(w) in
Lemma 17 may be constructed so that in addition

px@) >0 (w->oo), (6.122)

[n(s, 0, K)—n*(s)| < A(k)S(s) (s >7rY), (6.123)
|n(s, 0, K)—n*(s)| =o(1)S(s) (s —eo), (6.124)
|3(s, 0, K)—an(s, 0, K)| < A(k)S(s) (s =>77), (6.125)
|7i(s, 0, K) —an(s, 0, K)| =o0(1)8(s)  (s~>o0), (6.126)
n(s, 0, K) < A(k)S(s) (s =>77), (6.127)

n(s, o, K) =o(1)8(s)  (s—o). (6.128)

If (4.21) and (4.22) also hold with (on account of (6.1)) A¥ <2-3h, then there exist A >0,
8" >0 (depending on A(s) and K) so that
. , 4 3
log| K (w)| < — 4 sin (A* — §) S(s) (s>.s, |tl<§(1—2_A#))’ (6.129)
(s, a, K)—i(s, a, K) =O(1) (6.130)
with the O(1) uniform tn each region (6.81).

Proof. The function A(s) is still assumed to satisfy (6.1) and (6.5).

To compute ux(w) we use the assumption that N is bounded to see that if M is large,
then K(w)=F*(w) in {s>M, |t| <3n} (cf. (6.106), (6.107), (6.110) and (6.112)). Thus
pl(se®)=0 for s>M, |t]| <}y For {s>M, n<t<2zx—4n}, formulas (6.98)-(6.100),
(6.111) and (6.121) with the computations of (6.102) give (6.122) at once.



THE INVERSE PROBLEM OF THE NEVANLINNA THEORY 145

The proofs of (6.123)~(6.128) are even easier. In general, n(8, 0, K) =n(s, 0, F*, Q,),
and hence (6.123)-(6.126) follow easily from (6.6), (6.32), (6.34), (6.45), (6.76), (6.87),
(6.88) and (6.92). Also, n(s, oo, K)=n(s, o, F* Q,) and ¥ is bounded, so (6.127) and
(6.128) are consequences of (6.34), (6.46) and (6.92).

Now let A(s) satisfy (4.21) and (4.22) with A# <2-3h. It is clear from (6.98)-(6.100)
that (6.129) holds in {0 <arg w<2xa} N {Q,UQ,} with ¢ in place of K, so (6.129) follows
from (6.78), (6.79) and definition (6.112). All points of ramification of K are in ,, and so
we achieve (6.130) from (6.80) and (6.112).

6.6. Proof of Theorem 4. Let h(1), to be more precisely determined in a moment, satisfy
0 < 200 (1) <72, (6.131)

where #<(50)! is given in the statement of Theorem 4, and then introduce sequences
hy(n), h(n) with
0 < h(n) = 2-"h(1), hy(n) = h(n)*", (6.132)

{compare with (6.36)). We take A(1) so small that
A(k) <7, (6.133)

which is possible from the conventions (6.92), (6.93). In particular, this means that any

function K(w) chosen in accord with Lemma 17 will have
lux@)| <n  (Jw]>77). (6.134)

According to Lemma 11, constants z(z)( <(2r)™1), »(n), (<3}) and K(n)(>2!%) may be
associated to each pair {k(n}), hy(n)} so that (6.7) follows from (8.1)-(6.6). The constants
M> and 7, required in the statement of Theorem 4 are then given by

M = 10-28K (1) p(1)-2h(1)-8( > 240) (6.135)

and 1,=1,(1) <7(l) 80 small that
B(1)73! > 2 log M. (6.136)

In addition choose 74(n) <t(n)(n>2) so that
h(n)To(n)~! = 4 log {26K(n)} {6.137)
and finally 7y(n)(n>1) so large that we have

[rA ()| <7To(n)  (r>ry(n)) (6.138)
and
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ro(n) = [10v(n)~2hy(n) P2,
where it is assumed that
K(n)re(n) < K(n+1)rgn-+1) (n=2).

Now let £(s) be a decreasing function with
Oh(1) Zels) = 1), (0 <s<2RK(2)7,(2)?),
2h(n) = &(s) = h(n) (s = 222K (n)?ry(n)?, n = 2)
(consistent on account of (6.132) and (6.140)) and let
£ = {s; sin wA(s) = Bme(9) };

note from (4.10) that L< {s> M=}. Let

M

10: U (OC,,OC;) (a;<“l+ly OC,,(X;GE,MgOO)
i=1

(6.139)

(6.140)

(6.141)

(6.142)

(6.143)

(6.144)

be a disjoint union of intervals maximal with respect to the property that in each full

interval (e, o))
1+4e(s) S A(s) <2—4e(s) (o, <s<ay),

while for each ¢ there exists a, such that

1+6¢(s) < Afa,) < 2—6e(s) (o, <@, < o).
The complementary intervals («i, «,,,) are assigned to I, or I, by the rule
(i, oty yy) €1, if | A(s) —m| < Be(s) (i <s<ayy), (m=1,2,7=1,2, ..).

We allow the possibility that some «, or a;=0; i.e. M < oo in (6.144).
It is casy to define H for those w having |w| €1, U I,

log H(se") = — 8(s) e!AD¢=™ (In<t<2m—3n, s€I,UI,)
log H(set) = _S(s)etA(s)(t—n)-Zﬂiﬂ_llA(s) -1t~ 1 /2)m) (ltl <1, s€L),

log H(se') = — S(s)eiA(S)(t~n)+2nm“’[2—A(3)](t4(1/2)n) (|t| < 37, s€ L),

(6.145)

(6.146)

(6.147)

(6.148)
(6.149)

(6.150)

(as in (6.98)—(6.100) it must be checked that H is well-defined). We observe that H satis-

fies (2.1) at each interior point of I, U I,.

That
|ua(w)| <n (|w| €1,V 1),

|ua(@)| >0 (w—oo, |w| €L UL,

(6.151)

(6.152)
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follows from (4.6), (6.147)—(6.150) and computations of the nature used in (6.102),
(6.103); that A(s) —m—>0 as s—>oo in I,, is crucial here as we saw in (6.103).
To define H in the rest of the plane requires Lemmas 15 and 17. Let {N(n)} (n=

1, 2, ...) be an increasing sequence such that
oy = 212 K(n)?ry(n)? (2 = N(n)). (6.153)
Then for each n(>1) we introduce a differentiable function A,(s)(s>0) having
1-+3h(n) < Ay(s) < 2—3h(n), (6.154)
s| An(s)]| <7o(m) (s>0) (6.155)
and sequences {8}, {81} (N(n)<i<N(n+1)) with

o B <Bi<Bra<-. (N(n) <i <N(n+1)). (6.156)
We first require that
Bilfi=aifa;  (N(n)<i<N(n+1)) (6.157)

and we define A,(s) on B, <s<p/ by

AL(8) =A(%’s) (B, <s< B, N(n)<i<Nn+1)). (6.158)
i

The choice of the {8,} and the definition of A, for the remaining s is made so that (6.154),
(6.155) and (6.157) hold and in addition

8 A (w)u 'du= fa‘A(u)u"ldu (Nn)<i<N(n+1)). (6.159)
1 1

Note from (6.154) and the bound 1<A(s)<2 in (4.4) that (6.153) and (6.159) give as a
lower bound
By = odiNiny = 2° K (n) ro(n). (6.160)

It is easy to construct such differentiable functions A,(s), and (6.156) follows from
(6.157), (6.158) and the analogous properties of the {a,}, {o} in (6.144). It is important
to note that (6.155) follows from (6.160), (6.153) and (6.138). In the spirit of (4.7), let

8,(s) =exp {fsA,,(u)u'ldu} (s >0) (6.161)

and let
Nn) = {,, B N(n) <i < N(n+1)}. (6.162)

We want to apply Lemma 17 to each pair A,(s), H(n), so it must be be checked that the
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relevant hypotheses are satisfied. Property (6.154) of A,(s) is the exact analogue of (6.1),
and (6.155) is (6.5). Clearly (6.2) also follows from (6.155).

Next we check that N(n), defined in (6.162), satisfies (6.24), (6.25) and (6.37)-(6.39).
Of course, (6.24) and (6.25) are now consequences of (6.37)-(6.39), and in obtaining (6.160)
we have already checked (6.37).

The construction of I, (cf. (6.141)-(6.144)) produces a, with a,<a,<ajand

|Afa) —Ax))| = 3h(n)  (N(n) <i<N(n+1)). (6.163)

We obtain from (6.163) with (6.155), (6.157)—(6.159) that
abiley ,
f As(u)duj< 1,
B

< 7y(n)log f;i: (N(n)<i<N@n+1))

n)< fa‘A'(u)du =

a.
log =
(n)log %,

and these reasons with (6.137) and (6.157) show that

g‘ Z‘> elDRmnmT S ol (e (N(n)<i< N(n+ 1)), (6.164)
i i

which shows that f;/8, satisfies (6.39).
We next consider 8;,,/fi. According to (6.157)—(6.159),

i1 +
‘ An(u)u‘ldu=faf‘ lA(u)u"’du, (Nn)<i< Nn+1))

Bi

8o reasoning as in (6.160), we deduce that

However, the maximality of the (x, o)) in (6.143)-(6.146) shows there must exist b,€
(i, 00y4q) With A(B,) >2-4e(b,) or A(d;)<1+4e(b,); thus (6.141) and (6.142) show that
[A(a})— A(b)| = 4 h(n). As in (6.164) we obtain

Binlfi > 21K () (N(n) << N(r+1)) (6.165)

and (6.38) follows from (6.164) and (6.165). Finally, since «;, ;€L (cf. (6.141), (6.142)),
(6.158) shows that

|sin A, (B,)] < 107h(n); |sin wA,(81)] < 107h(n) (Nm) <i<N(n+1)),

which gives (6.39).
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Now (6.135) and (6.153) allow Lemma 15 to be applied. We get F*(z) = F(z) in accord
with (6.70), (6.76), (6.77), (6.83) and (6.86), and then, with 1= H(n), of (6.162), Lemma
17 constructs K.(w) for {|w| > fBnn}. Since &(s)—0, (6.143) and (6.154) show that each
H(n) is bounded. Further, #(1) has been chosen to ensure (6.133) and A(n) satisfies (6.132),
go it is clear from (6.113) and (6.122) that

lexw)[ <0 (|w] >y, n>1), (6.166)
max I,“Kn(w)|=0(l) (n— o). (6.167)
191285

We then complement (6.148)—(6.150) by
H(w)= K,,(g’w) (|w|€ I, &, <|w|<ai, N(n)<i<N(n+1)). (6.168)
1

It is clear that H satisfies (2.1), but it must be checked that H is continuous. The
definitions (4.7) and (6.161) with (6.157) and (6.159) give

8a(8) =8, (B,) exp {fsAn(u) wldu }
B;

- S(a,)exp{ f b A(u)u“du} = S(%:s) Bi<s< B, n(N)<i<N(n+1)).
N (6.169)

Since H(n) satisfies (6.24), (6.25) and (6.37)-(6.39), it readily follows from (6.158), (6.169)
and a comparison of (6.115) and (6.98)—(6.100) with (6.148)-(6.150) that

log K,(x€e't) = log H(B,e'") (0<t<2a, N(n) <i<N(n+1))
log K,(xie'y=log H(fie") (0 <t<2m, N(n) <i<N(n+1)).

Thus H is quasi-meromorphic in the plane and (6.151), (6.166) and (6.168) yield (4.12).

It is also clear from the explicit formulas (6.98)-(6.100) and (6.112) (when |w| €1I,)
and (6.148) (when |w| €I, U I,) that (4.14) holds. Similarly, whenever A(s)=m (m=1, 2)
in (4.15), our construction ensures that s€I, U I,, and (4.16) is a direct consequence of
(6.148)—(6.150).

Next, we prove (4.13). The explicit formulas (6.148)—(6.150) show that py(w)—>0 as
|w] oo in I, U I,. If I is unbounded there are two cases to consider in terms of the de-
composition (6.144): M =oc0 or M <oo, If M =co, then (4.13) follows from (6.167) and
(6.168); if M < oo, then H is given by (6.168) for all large w with some fixed %, and so then
(6.122) gives (4.13).
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The proof of (4.17) follows from the argument principle by elementary modifications
of the argument used in the proof of (6.116) in Lemma 17.

It is clear that (4.18) holds. Indeed (6.127) and (6.128) apply to each K,, and (6.148)-
(6.150) show that all poles of H(w) occur when |w| € I,. Thus if M <o in (6.144), (6.128)
implies (4.18), and if M =oo, (4.18) follows from (6.127). The proofs of (4.19) and (4.20)
are of the same nature, since the zeros of H(w) only arise with |w| €I,. Thus if s->c0 in
I, U I,, (6.147) gives (4.19), (4.20). When s->c< in I, the same conclusions follow from
(6.124) and (6.126) (when M < oo in (6.144)) and (6.123) and (6.125) otherwise.

Now suppose (4.21) and (4.22) hold. If A¥ =2, then K is given by (6.148)-(6.150)
for all large w, and (4.23) is immediate from these explicit formulas. If A¥ <2, the condi-
tions (6.132), (6.142) show that £ in (6.143) is a finite set. Thus I, contains all large s,
80 M < oo in (6.144). In this case, (4.23) is a direct consequence of (6.129), (6.168) and (6.169).

The proof of (4.24) subject to (4.25) is similar. If A* =2, then H has only a finite num-
ber of multiple values. Otherwise, M < oo in (6.144), and (6.130) subject to (6.81) provides
the needed information.

References

[1]. Anrrors, L. V., Lectures on quasiconformal mappings. Van Nostrand, Princeton, 1966.
[2]. Arrrors, L. V. & BErs, L., Riemann’s mapping theorem for variable motrics. Ann. of
Math., 72 (1960), 385-404.
[3). Berinskil, P. P., General properties of quasi-conformal mappings (Russian). Novosibirsk,
1974.
[4]. BErs, L., Quasiconformal mappings and Teichmiiller’s theoremn in Analytic Functions
(Ahlfors, et al. editors) Princeton, 1960.
[5]). Drasix, D., A flexible proximate order. Bull. London Math. Soc., 6 (1974), 129-135.
[6]. DrasiN, D. & WEIrsmMaN, A., Meromorphic functions with large sums of deficiencies.
Advances in Math., 15 (1974), 93-126.
[7]. EvrviNg, G., Uber eine Klasse von Riemannschen Flichen und ihre Uniformisierung.
Acta Soc. Sci. Fenn., N.S., 2 No. 3 (1934), 1-60.
{8]). GOLDBERG, A. A. & Ostrovskil, 1. V., The distribution of values of meromorphic functions
(Russian). Nauka, Moscow 1970.
[9]. Havyman, W, K., Meromorphic functions. Oxford, 1964.
{10]. LenTo, O. & VIrRTANEN, K. L., Quasikonforme Abbildungen. Springer, Berlin, 1966.
{11]. Le-Van THiem, Uber das Umkehrproblem der Wertverteilungslehre. Comment. Math.
Helv., 23 (1949), 26-49.
[12]. LEvIin, B. Ja., Distribution of zeros of entire functions (Amer. Math. Soc. Translation,
vol. 5). Providence, 1964.
[13). NEvANLINNA, R., Le théoréme de Picard-Borel et la théorie des fonctions méromorphes.
Paris, 1929.
[14]. —— Uber Riemannschen Flachen mit endlich vielen Windungspunkten. Acte Math.,
58 (1932), 295-373.
[15). -~—— Eindeutige analytische Funktionen (second cdition). Springer, Berlin, 1953.



[16].
[17].

[18].
[19].

THE INVERSE PROBLEM OF THE NEVANLINNA THEORY 151

TeicHMULLER, O., Untersuchungen tuber konforme und quasikonforme Abbildung.
Deutsche Math., 3 (1938), 621-678.

UriricH, F. E., Zum Umkehrproblem der Wertverteilungslehre. Nachr. Fes. Wiss.
Géttingen Math.-Phys. Kl., No. 9 (1936).

WEITSMAN, A., A theorem on Nevanlinnsa deficiencies. Acta Math., 128 (1972), 41-52.

WirrticH, H., Neuere Untersuchungen dber eindeutige analytische Funktionen. Springer,
Berlin, 1955.

Received November 17, 1974

Recetved in revised form April 5, 1976



