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1. Introduction 

1.1. Statement ot Theorem 1. Our main result is 

THv.OR~M 1. Let sequences {c$,}, {0~} (1 ~<i<2V~< c~) o/ non-negative numbers be as- 

signed such that 

0 <($~+0~ ~< 1 (1 ~<i<N) ,  

5 {o, + ok} 2, 
t 

together with a sequence {a(} (1 <~ i < N) o/dist inct  complex numbers. Then there exists a mero- 

morphic /unction /(z) having 

~(a~, /) = ($~, O(a~, /) = O~ 

~(a, /) = O(a, /) = 0 

(1 < i < N), (1.1) 

(a q {a,}). (1.2) 

Further, i/  r is a positive increasing/unction with 

r c~ (r-~ oo), (1.3) 

the/unct ion/(z)  may be chosen so that its Nevanlinna characteristic satis/ies 

T ( r , / )  < r r (1.4) 
/or all large r. 

Here we use the standard notations of R. Nevanlinna's theory (cf. Nevanlinna [13], 

[15], A. A. Goldberg and I. V. Ostrovskii [8] and W. K. Hayman [9]); for example 

[ a, l) dt(a, [) = l iminf ] 1 ~ j ,  (1.5) 

. . . .  [ N(r, a,/) -/~(r,  a,/) 1 
O(a, [) = n m  lni~ . �9 (1.6) 

r~oo [ T(r, J) 1 

The function/(z) thus provides a complete solution to the inverse problem of the theory of 

meromorphic functions (for a discussion of this problem see [8], Ch. 7 and H. Wittich [19], 

Ch. 8). 

The problem of constructing a function whose deficiencies and ramifications are ar- 

bitrarily chosen consistent with the first and second fundamental theorems has a long 

history. I t  is proposed in Nevanlinna's first book ([13], p. 90) but solved only in very special 

cases. Nevanlinna achieved a major advance in 1932 [14] when, in introducing the class 

of Riemann surfaces with finitely many logarithmic branch points, he proved that  the 

restricted inverse problem 
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(~(a,,/) = ~ ,  0 < ~t ~< 1 ( i = 1  .. . . .  N < ~ ) ,  

~(a,/) = 0 (a ~{a~}), 

Z ~ = 2, (~ rational, 

with {a 1 ..... aN} any preassigned set of distinct complex numbers, could be solved by choos- 

ing an appropriate surface from this class and taking/(z) to be the meromorphie function 

which maps the plane conformally onto (uniformizes) this surface. A sketch of this proce- 

dure is in [15], Ch. 11, and an excellent exposition with some extensions is given in [7]. 

Later, F. E. Ullrich [17] introduced a more general class of surfaces and conjectured 

that  (1.1), (1.2), (with now all (~, 0~ rational, _hr<~ and Y, a~+0~=2) could be solved by 

uniformizing a suitable surface of this type. This was confirmed by Le-Van Thiem [11] 

for most cases, in a paper also notable for being the first to apply a general principal of 

Teichmfiller [16] to the inverse problem. Teichmfiller had come to these discoveries also 

while studying Ullrich's surfaces, and a modified form is the starting point for this in- 

vestigation (chapter 2). 

More recently, Goldberg applied Teichmiiller's principle to a more general class of 

surfaces to solve the problem ZN(~ < 2 (N < c~) without the (~ being rational, and also gave 

a complete solution to the restricted problem Z 0~<2. A useful account of Goldberg's 

successes appears in chapter 7 of [8]. 

Finally, we recall the well-known example of W. H. J.  Fuchs and Hayman (cf. [9], 

chapter 4) which solves the restricted problem Z (~ ~< 2 for entire functions. 

The solution to the inverse problem cannot in general be of finite order. Indeed, A. 

Weitsman [18] has shown Z 5(at) 1/a < ~ whenever 

T(2r, ]) 
lira inf ~ < oo. (1.7) 

Assertion (1.4) implies that  our solution/(z) may be chosen of as 'small' infinite order as 

desired, and the construction also shows that  T(2r , / ) /T( r , / )  may tend arbitrarily slowly 

to infinity, complementing (1.7). 

I t  is a pleasure to make several acknowledgments. The viewpint of chapter 2, which re- 

places all notions of Riemann surfaces and uniformization by properties of solutions to the 

Beltrami equation, was shown me by my colleague K. V. Rajeswara Rao. This approach 

uses notions now standard in the study of quasi-eonformal mappings, and leads to a more 

transparent and essentially self-contained exposition. I t  was with another colleague, Allen 

Weitsman, that  I discovered the literature on this problem, and in our earlier paper [6] 
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we made a major step in properly adapting Teichmiiller's principle; [6] also showed the 

relevance of the LindelSf functions. Professors W. H. J.  Fuchs and Seppo Rickman 

caught several substantial errors in the first version of this paper. A suggestion from Pro- 

fessor Fuchs has simplified my proof of Theorem 4. 

Finally, I thank Nancy Eberle for the excellent typing she has given to the many 

versions of this manuscript. 

1.2. Principle of construction. Consider the restricted inverse problem • ~ < 2 .  Given a 

positive integer n, choose 2n extended complex numbers b_(~_l) ..... b 0 ..... ba with b j #  

bj+l, b~=#:b-(n-ll. The method of Nevanlinna [14] produces a meromorphic function ]n, of 

order n, such that  

6n(a) ~ 6(a, In) = n-l[eard{?; - (n - 1) ~< ~ ~< n, bj = a}]. (1.8) 

Hence, if {bj} ( - cr < j  < oo) is a sequence chosen so that  the numbers 6n(a) defined by (1.8) 

tend to (~ when a =a ,  and 0 otherwise, it is natural to t ry  to construct the solution to this 

deficiency problem as a limit of the corresponding functions {fn}. We achieve this in the 

following manner: there will be a very rapidly increasing sequence {rn}(1 ~<n< ~ )  with 

the property that  near {Iz I =r ,} / (z)  has the same value-distribution as does/,,(z). Further ,  

the definition of / in the intermediate regions {r~ <[z l  <r,+l} will ensure that  ~(a,/) = 

lim= ~n(a) for all a. 

The solution to the full inverse problem (1.1), (1.2) is made in a similar manner, but  

based on a family modelled after that  introduced in [6]. 

The function/(z) of Theorem 1 is obtained by indirect methods. The inverse problem 

is solved formally by  an expll~t ~unction g(~); although g is not  meromorphie, it  may be 

'factored' as g =/o~p where f is a meromorphic function and ~fl a (quasi-conformal) homeo- 

morphism of the plane. In chapter 2, we derive conditions to ensure that  the Nevanlinna 

data of g transfer to / (i.e. that  g be iVevanlinna admissible) so that  in addition (1.4) holds. 

Much of the material in this chapter is implicit in other sources, but  the importance of 

the parameters in Theorem 2 and Lemma 4 warrants a complete exposition. 

The definition of g(~) is based on a family of auxilliary functions gj(~) ( l i l <  cr and 

g~(~) (j~>0). These functions are introduced in w 3.1, where their important properties are 

listed in Theorem 3. Assuming Theorem 3, the proof of Theorem 1 is completed in w 3.2. 

The proof of Theorem 3 itself depends on Theorem 4. Theorem 4 is stated in w 4.1, 

and additional preliminaries to the proof of Theorem 3 are given in w 4.3-4.5. This makes 

it easy to obtain Theorem 3, in chapter 5. Finally, Theorem 4 is proved in chapter 6. 

The methods of this paper may be used to solve other problems. For example, it is 
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easy to modify the approach to construct a function /(z) order e >0  which solves the 

restricted problem Y, 0~ ~< 2, and only a little harder to show that  ] may be chosen of order 

zero. 

2. Nevanlinna admissibility 

2.1. Nevanlinna theory and quasi-meromorphie |unctions. To keep a distinction between 

meromorphie and not-necessarily-meromorphie functions, we usually reserve the complex 

variable z(=re ~o) to be the domain of a meromorphic function, while functions of the 

complex variables w( =se ~t= u +iv) and ~ = (~e ~ = ~ + i~7) need not be meromorphie. 

Let  g(~) be a continuous map from the finite complex plane C into the extended 

complex plane ~ which has partial derivatives a.e. and such that  each ~0 has a neighbor- 

hood N(~o) in which either 

g~(~), g~(~) ELS(N(~0)) 

o r  

(2.1) 

(2.2) (1/g)~(~), (1/g)~(~) ELS(N(~0)) 

((2.2) is preferred when g(~0) = oo). In terms of the formal derivatives 

g~ = �89 - ig~),  g'c = �89 + ig~) (2.3) 

we introduce the fundamental assumption that  there is a fixed number/Co, 0 ~< ]c o < 1 such 

that  either 

[g~(~) [ < ]co]g~(~)] a.e. in N(~o) (2.4) 
o r  

I(1/g)~(~)l < ]c0[(1/g)c(~) I a.e. in N(~0). (2.5) 

A continuous function g: C - ~  such tha t  either or both (2.1) and (2.4) or (2.2) and (2.5) 

hold in a neighborhood of each ~ E C is called quasi-meromorphic; if D is open and g: D-+ 

satisfies the analogous conditions, then g is quasi-meromorphie on D. Finally, if D is a 

set whose boundary has planar measure zero, a continuous function g: D - ~  is quasi- 

meromorphie in D if g is quasi-meromorphic in the interior of D. 

The measurable function F defined locally by an appropriate choice of the formulae 

I~o(~) = g~(~) /g; (~) ,  (2.6) 

Fg(~) = (1/g)~(~)/(1/g){(~) (2.7) 

gauges the deviation of g from a meromorphic function: ju---O if g is meromorphie, and 

Ilt, olloo-< ]co. 
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Much of the theory of quasi-conformal mappings depends on the fact that  the partial 

differential equation (Beltrami equation) 

has a solution z =~p(~) which is a homeomorphic self-map of the finite plane, and the nor- 

malizations 
v2(0 ) = 0, v2(1 ) = 1 (2.9) 

render v 2 unique (cf. [1], Ch. 5; for history el. [2]). 

The importance of this 'fundamental solution' of (2.8) is that  the function/(z) defined 

by 
/(z) =ffi go~p- l (z )  (2 .10)  

is meromorphic in the complex plane. Indeed the question is purely local, and g and ~) 

are both solutions of the same Beltrami equation in the sense of Bers [4] (this is why re- 

gularity conditions (2.1) and (2.2) are required). Thus the analyticity of / follows from 

[4J, p. 94. 

The faetorization (2.10) permits a natural extension of the standard value-distribu- 

tion functional to g. For example, if FQ is the curve in the z-plane which is the image of 

([~[ =Q} by v 2, then 
n(Q, a, g) (resp. ~(Q, a, g)) 

is the number of solutions inside F o of the equation/(z) ~ a  with (resp. without) due ac- 

count of multiplicity. Further, 

N ( Q , a , g ) =  { n ( u , a , g ) - n ( O , a , g ) } ~  +n(O,a ,g )  logo, (2.11) 

-~(~, a, g) = f f  {~(u, a, g) -- - du _ n(0, a, g)} u + n(0, a, 9) log ~, (2.12) 

_ 1 f2.  
T(~, g) - ~ Jo N(q, e 'e, g) dO, (2.13) 

and, finally, (~(a, g) and O(a, g) are defined by (1.5) and (1.6). When g is meromorphic, 

these reduce to standard (or equivalent) definitions. 

2.2. Nevanl inna admissibi l i ty 

De/inition. Let g be quasi-meromorphic and ~p a homeomorphism of the plane which 

satisfies (2.8) and (2.9). Then g is Nevanlinna admissible if the function/(z) determined in 

(2.10) satisfies 
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a(a, l) = a(a, g); O(a, /)  = O(a, g) (2.14) 

for all a E 0. 

Each set of conditions sufficient for blevanlinna admissibility presents new possibili- 

ties to construct meromorphic functions. The classical criteria are due to Le-Van [11] and 

are based on Teichmiiller's discoveries in [16]: for some ~t, 0 <2  < co, 

all limits 

exist and 

T(e, g) ~ e ~ (e-* ~), (2.15) 

lim e-an(e, a, g), lim e - ~ ( e ,  a, g) (dEC) (2.16) 

Yf~r I~,(r ~l-Ud~d~7 ~ Yflal>~ I~(r I r < ~ .  (2.17) 

Indeed, not only does (2.14) hold, but in addition 

T(r ,  /) ,,~ ~r ~ (r ~ co) (2.18) 

for some a > 0. 

Since our solution/(z) in Theorem 1 will have infinite order, (2.18) cannot hold, and 

our construction will almost always violate (2.17). Thus more flexible conditions are needed: 

in terms of the representation (2.10), they balance the growth of the characteristic of g(~) 

with the rate at which ~0 becomes conformal at  ~ .  In  this section we obtain a substitute 

for (2.17); modifications of (2.15) and (2.I6) will be given in w 2.3. 

Hence, consider the mapping of the plane given by  ~p(~). For r > 0 let F r be the Jordan 

curve which surrounds ~ = 0 and is the image of {Iz I = r} under ~ - ' ,  and define 

e2(r) = sup { [ ~l; ~ EFr} , 
(2.19) 

e,(r) = inf {1~1; ~ EFT}. 

Assumption (2.9) implies tha t  el(r), e2(r) are increasing functions of r which vanish when 

r =0. The deviation of ~ from conformality at  oo is measured by  the 'distortion' 

~o(r) ( = o~(r, v2) ) = log {eg_(r)/el(r) }. (2.20) 

that 

LEMM), 1. I / V  2 is as above wi th  I#~1 ~<k0<l a.e., then there is an  M =M(k0) < r162 such 

e~(2r)/el(r) < M (r > 0). (2.21) 
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let 

Pro@ Given zl, z z with I z, I = r, I zz I = 2r and 

e:(2r) = Iw-'(::)l ,  ei(r) = Iw-'(: l) l ,  

B' = {r o~(r) < Ir < o~(2r)} �9 

Then B =~(B ' )  is a doubly-connected region in the z-plane which separates 0 and z 1 f rom 

z 2 and ~ .  Teiehmtiller 's inequal i ty  (el. [1], Ch. 3; [10], p. 58] for the module of B, M(B) ,  

gives 

where v may  be expressed in terms of elliptic integrals. But  ~ is (1 +ko) (1 -ko )  -1 quasi- 

conformal, so 
02(2r) = M(B')  < 1 + k o log e - ~  ~ M(B),  

which yields 
02(2r) 
QI(r) 

- - - -  < exp {2(1 + k0) (1 - k o ) - l v ( 3 - 1 t 2 ) }  = M. 

C o R 0 L 5A R Y 1. The hypotheses o /Lemma 1 imply 

to(r) < log M (M = M(ko), r > 0), (2.22) 

where to is defined in (2.20) and M is the bound o/(2.21). 

COROLLARY 2. Let 2: =~)(~)  be a homeomorphism o/ the  plane which satisfies (2.8) and 

(2.9). Then there is an ro=ro(ko) such that if M is as in (2.21) and either r ( = l z [ ) > r  o or 

e(= I:l)>ro, then 

]~[=]v,)-l(z)]<~Mr ~l~ ( r > r  o or r (2.23) 
and 

I~l=lw(~)l.<M~'o,- ( r > r  o or e > r o ) .  (2.24) 

Pro@ By symmet ry  it  suffices to  show (2.23). Le t  2n~< [z[ < 2  TM, n > l .  Then  the  

normalizat ion ~(0) = 0  with (2.21) yields 

12J+1' [ log M 1 [1o, M/log2. 
j-  1 01(2 j) 0~(2) exp [ ] 

In  addition, Lemma 1 and the normalizat ion ~(1) = 1 give 
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and hence if [ z ] = r > 2 

Since I~1 = I~(~)[ ~>2 when  
max (2, M). 

I~1 <Mr~~176 ( r - - I ~  I >2) .  (2.26) 

[~] >~Q2(2), (2.23) follows from (2.25) and (2.26) with r0= 

We also need an 'o(1)' form of Corollary 1. The simplest way to do this is to take k 0 

in (2.4) and (2.5) small, or require that/xa(~)-~0 as ~-~r but  this is not adequate here. 

Sufficient flexibility is attained by  studying the dependence of the expressions ~(2r)/Ql(r ) 

and to(r) as functions of 

D(O) = D(Q, y~) = ~ Ig~(~e'*)l de. (2.27) 

LEMMA 2. Let % k0, M ,  r o be the constants o/Lemm~t 1 and Corollary 2. Then given 

> 0 there exist ~ > O, A < ~ such that i / ~ '  > r o and 

D(~, ~p) < ~ (~ > e'), (2.28) 
then 

to(r) < e (r > A(~') 21~ M) (2.29) 
and 

~2(2r) 
2 - - e <  --7:7..~ < 2 A- e (r>A(~')~l~ (2.30) 

~1(r) 

Proo[. Both (2.29) and (2.30) follow from similar considerations, so we consider only 
' >~ (2.29). If (2.29) were false, there would exist sequences Am-~ r162 ~/mo0, qa ~r0 and rm with 

r m>~Am(Qm) 21~ (m = 1, 2 . . . .  ), (2.31) 

and to each m would correspond a normalized solution z =~Pm(~) of the Beltrami equation 

(2.8) with 
D(o, ~m) < ~/m (q > ~ ) ,  (2.32) 

and yet  
to(ra, ~a)  >/~ (m = 1, 2 . . . .  ). (2.33) 

For appropriate real Ore, r let Q2(rm)e~'~=v2~l(rmet~ Then for each m consider the 

homeomorphism g~(~), 

~I)'m(~) V')m(~2(rm)ei~m~) (2.34) 
r m e tom 

Clearly lisa.lib=lisa.lib.<k0, and (2.9) holds for each xF m. In addition, we claim that  

given ~/> 0, 8 > 0, then 

D(Q, XFm) < ~ (~ > 8, m > mo(V 1, 8)). (2.35) 
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For (2.31) implies that  rm>ro for large m, and hence if 0 = [~] >(~, (2.24) and (2.31) yield 

I e2(rm) r > o~(Am(e~) 2 ~~ M) 0 > ~ { M-~Am(e'~) z ~o~ M}~(~ ~og M) = ~(M-~A,,)~(2 ~o~ M)O~" 

But {Am}-~oo and the ~ are bounded below, so this computation implies that  

I~(rm) r Q~ for large m. Thus (2.35) follows from this, (2.32) and the fact that  D(~), ~Fm) = 

D(e2(r,n)e, ~). 

That the ~F~ form a normal family is clear from Corollary 2 to Lemma 1 and (2.9) 

for each IF~ (cf. [10], pp. 74-76). By taking subsequences and then relabelling, we obtain a 

limit function xF(~) such that  ~ - ~ ,  ~ I ~ F  -~ with convergence uniform on eompacta, 

and (2.35) shows t h a t / ~ ,  =0  a.e. Thus xF is a sehlicht self-map of the plane which satisfies 

(2.9): ~F($)=$. This with (2.34) contradicts (2.33). 

Remark. Conclusions (2.29) and (2.30) follow when (2.28) is weakened to 

f E(0) -~ u-lD(u, v,0) du < ~ ( r t>0 , ~ > ~'(~)) (2.36) 

for sufficiently small r] >0,  since the normal family argument again implies g2'(~)=~. 

That  conclusions of the nature (2.24) hold when (2.17) is replaced by (2.28) or (2.36) was 

first shown by P. Belinskii, and is discussed in his recent book ([3], p. 53). These ideas 

were also used in [6]. 

2.3. Su|ficient conditions |or Nevanlinna admissibility 

Here we derive alternatives to (2.15) and (2.16). Let b be a complex number tha t  is to 

satisfy 5(b,/) =0  (e.g., in the language of Theorem 1, b is disjoint from the (a~)). Then we 

introduce the hypothesis tha t  all limits 

lim n(~'a'g) lim ~(~' a' g) (aE~) (2.37) 
q_~ n(~, b, g)' ~ n(~, b, g) 

exist. Since (2.10) and (2.19) lead at once to 

n(ql(r), a, g) <~ n(r, a, / )  ~ n(Q~(r), a, g) (a e ~, r > 0), (2.38) 

~(Ql(r), a, g) ~< ~(r, a , / )  ~< ~(~2(r), a, g) (a e r r > 0), (2.39) 

(2.37)-(2.39) and the definitions readily imply 

L ~ M ~ a  3. Let g be quasi-meromorphic and assume all limits in (2.37) exist, where 

~(b, g)=0. Then i/ 



T H E  I N V E R S E  PROBLEM OF T H E  N E V A N L I N N A  T H E O R Y  93 

n(ql(r), b, g) ..~ n(q~(r), b, g) (r ~ oo), (2.40) 

the/unction g(~) is Nevanlinna admissible. More precisely, i / the meromorphic /unction /(z) 

is defined by (2.10), then 

~ ( a , / ) = l - l i m n ( r ' a ' / ) - l - l i m  n(Q'a'g) (aeO), (2.41) 
r.-~ n(r, b,/) Q..~ n(Q, b, g) 

O(a,/)=lim n(r'a'/)-~(r'a'/) lim n(q'a'g)-~(~'a'g) (aEO). (2.42) 
r--~ n(r, b,/) q--~o n(~, b, g) 

Condition (2.40) is the key to our method. Lemma 2 shows that  ~1(r),,~2(r) when 

D(Q, y~)~0 (Q-~ oo) and (2.40) relates this to the growth of g. 

Our function g will be defined in a manner to make it easy to check (2.37) and (2.40). 

We will introduce an increasing function ~t(~) (0 >~0) which is continuously differentiable 

off a discrete set P such that  

~t(~)/> 1 (r >~ 0), 

Let 

Q'[2'(~)I < 1 (e > o, e $P). 

S(~)=exp{ f f~ (u )u  -ldu } 

then we will construct a sequence {~m}-~ cr with 

~m+l > 2 ~  

such that  

n(~, b, 9) ~ m ~ - l S ( ~ )  

(2.43) 

(2.44) 

(Q > 0); (2.45) 

(m/> 1), (2.46) 

(2.47) (~m-x ~<~ ~<~m, m ~ )  

for some, and by (2.37) all, b having 6(b, g)=-0. Assumptions (2.37), (2.45) and (2.47) re- 

place (2.15) and (2.16); (2.45) and (2.47) are analogous to the classic proximate order re- 

presentation but more flexible [5]. 

THEOREM 2. For /ixed ko<l ,  let g be quasi-meromorphic with H/xgll~o<~ko, and let 

M=M(ko),  ro=ro(ko) be the constants determined in (2.21), (2.23) and (2.24). Let {Am}, 
{~m} be sequences with the property that whenever 

D(~) ~< ~/m (Q > ~' > r0) (2.48) 

/or any r > r0, it/oUows that 

w(r) < m -~ (r > AmM(~')21~ (2.49) 
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SulaP ~ {0m} (m>~l) is chosen in accord with (2.46) such that in addition 

and 

Om > ro (m = 1, 2 . . . .  ) 

M l + 2  log M A g l O g  M~(2 log M) I ~-  
"CXm ~ m  "~- ~ m + l  (m>~ 1). 

(2.5o) 

(2.51) 

I /  for some b with O(b, g)=0 all limits in (2.37) exist and n(Q, b, g) may be represented 

as in (2.43)-(2.47) with 

2(0 ) ~< m + 1 (e ~< 0m) (2.52) 

and 

D(0)  ~ ~/~ (0 > ~ ) ,  (2.53) 

then the/unction g(~) ~ Nevanlinna admissible. 

Proof. (The existence of the {Am}, {~?m} is evident from Lemma 2). Since (2.53) shows 

that  D(O, ~)--0 (0-~ r it follows from (2.46) and (2.47) that  (2.40) is equivalent to 

o'r ( r~  oo). (2.54) 
l(r)  

Also, (2.20), (2.22) and (2.44) give the estimate 

f,.~,, f , .c, ,  ~t(u) u - 'du  <~ {g(o1(r)) + log M} u-ldu = co(r) {/~(ox(r)) + log M }. 
d 0*(r) d 01(r) 

(2.55) 

We may suppose that  the A m increase with m. Hence, given sufficiently large r there 

is a unique m with 

AmMe~lo~ U < r ~ A,~+1 . I  ~lo, U mOm+l . (2.56) 

That 

co(r) < m -z (2.57) 

follows at once from the left inequMity of (2.56) with (2.49), (2.50) and (2.53). The right 

inequality of (2.56) with (2.23) and (2.51) shows that  if r (i.e. m) is large, 

~l(r ) .<< Mr 2 log u ,- ~1+2 lo~ MAs lo, M ~̂s log m' < 
-~. ~ z  ~ 'Xm+l ~ ' m + l  ~ m + 2  

and so, f rom (2.52), 

]t(ol(r)) ~< m + 3. (2.58) 

When (2.57) and (2.58) are used to estimate the right side of (2.55), we see that  (2.54) and 

(2.40) are proved. 
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LEMMA 4. Assume in addition to the hypotheses o /Theorem 2 that 

~ ( [ ~ ]  l/(21og M))>3(m + 2)log M (m~> 1), (2.59) 

where r is as in (1.3). Then the Nevanl inna characteristic o / the  meromorphic /unction ] =  

gov2-1 satisfies (1.4). 

Proo[. Choose a with T ( r , / ) ~ N ( r ,  a, ]) ([15], p. 280) and recall the  number  bEC with 

(~(b, g) = 0  (cf. (2.37)). Then  (2.37) and (2.41) imply tha t  N(r, b, [ )N T(r, D. 

Thus,  if r is large with 

Qm-1 < Mrg"l~ M <~ Q,, (m >1 2) (2.60) 

we deduce from (2.47), (2.23), (2.45), (2.52), (2.60), (2.46) and (2.59) tha t  

T(r,  /) < 2N(r,  b, ]) < 4m~-a$(~(r) ) log r <<. 4m~-XS(Mr 2 log M)log r 

<~ 4m~ - 1 (Mr 2 log M) m + 1 log r ~< r 8( m + 1) log u ~< r r  _ a/MJ 1/(2 log M)) < r~r), 

which is (1.4). 

3. Outline of construction 

3.1. Func t ions  gj, gj*. The basic goals of the construct ion are easy to describe, bu t  their  

realization requires much at tent ion.  

To include the possibility tha t  ~ . (Sj+0t )<2 (in par t icular  t ha t  the {a,} be an empty  

set), let  ao, a~ be complex numbers  dis joint  from the  {a~} (1 ~ i < N ) ,  set 

,4 ={al} (0 <~< N), (3.1) 

,4" = {a,} (1 < ~ i < N ) ,  (3.2) 

and assume, with no loss of generality, t ha t  r r 

Nex t  let • = {b j} ( - ~ < i < c~) be a sequence all of whose elements are in ,4, with 

bj = b_j ( - oo < j < ~ ) ,  (3.3) 

b j ~ b j +  1 ( -  o o < j  < oo), (3.4) 

(compare with w 1.2). In  the enumerat ion of B, each element  of .,4 is repeated sufficiently 

of ten to ensure tha t  if 

E(a) = {i; bj = a}, Era(a) = E(a) N [ -  m, m] (a E ,,4, m = 1, 2 . . . .  ), (3.5) 
and 

Am(a ) = m -1 card[Era(a)], (3.6) 



96 D. DRASIN 

then 
Am(a,) --,- A, ~ 8l +Ot (m-~ ~o, 1 <~ i < N), 

Am(ao)-->A o=-1-~ ~ {(~,§ 
I~<~<N 

A,, (aN)~A N = I - ~  ~. { ~ , §  
l~ t .<N 

(3.7) 

(3.S) 

(3.9) 

Thus, 0 ~< A~ ~< 1, ~ A~ = 2. The set B may be constructed, for example, by adjusting the 

procedure of [9], Lemma 4.4. 

Let the {~}, (0~} be as in the statement of Theorem I and the E(a~) as in (3.5). Then 

for - ~ < ?" < ~ choose Aj with 
A 0 = 2, (3.10) 

A _ j = A j  ( - ~ < j < ~ ) ,  (3.11) 

< Aj ~< 2 ( - ~ < i < ~ ) ,  (3.12) 

0~ 
]sinz~Aj[~j~+0 ~ (j--,-~, j6E(a,), l~<i<~N), (3.13) 

]sin zeAj] -~ 1 (j6E(ao) U E(aN)) (3.14) 

(when (~>0, (3.13) may be simplified to IsinztAj[ =O~(~+O~)-I(jEE(a~)), but it is con- 

venient that  ]sin ~Ajl < 1 for all j, as guaranteed by (3.12)). 

Now, once and for all, choose 

k0 = 2 -4 (3.15) 

in (2.4) and (2.5); this choice yields r0, M, (Am}, (Vm} as in Theorem 2. We recall from the 

programme of w 2.3 that  the value-distribution of g(~) is to be compared with a function 

S(9) as evinced by (2.37) and (2.47). The representation (2.45) shows that  $(o) is deter- 

mined in turn by an increasing function 4(9 ) . At that  time, 4(9 ) was to satisfy (2.43) and 

(2.44). 

We now impose more specific conditions on 4: 

4(9 ) = 1 (9 ~< 90 = 1), (3.16) 

4(91) = 2, (3.17) 

4(era)= 1 + 2  ~ (A~- {) (m>~ 2). (3.18) 
0 

Finally, in w 5.2 we will determine a positive sequence {v~} and require that  

(0 ~ )94'(9) < "r: (gin < 9 < 9m+1) (3.19) 
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where ~m-~O (m~ r Note that  (3.16)-(3.19) are compatible if @, and the ratios {~m+~/Qm} 

{m ~> 1) are sufficiently large, and that  (3.16) and (3.18) imply (2.52). 

The precise sequence {~a}, which is to satisfy (2.46), (2.50), (2.51), (2.53) and (2.59) 

as well as to interact with t(~) as required in (2.52) and (3.16)-{3.19), will be constructed 

in w 5.2. 

Next, the ~-plane is divided into disjoint regions Dj ( - ~ <]  < ~) ,  D~(?" >~0) with 

oo oo 

meas ~Dj + ~ meas aD~ = 0 (3.20) 
-oo 0 

((3.20) refers to planar measure), 

Dg ={1 1 < 1}, 

{1 1 e,,,} 
D~c{eJ-,<" ]~'1 <e,} (1 < ]  < ~ ) .  

(3.21) 

(3.22) 

(3.23) 

For appropriate functions aj(Q), flj(Q), we will have 

D e fl {]~] =~}={Qe'*; Q >~lm ~J(q) ~<~ ~< flJ(Q)} ( -  ~ <?" <oo), (3.24) 

DTn{lCl=e}={ee'*;eJ- <e<0. (3.25) 
where 

fl_j(e) = 2:t - aj(e), a_j(e) = 2:t -flJ(e) (] ~> O, e ~> eJ), (3.26) 

~J(~) = flJ+x(Q) ( -  ~176 < ] < ~176 ~ >~ max(Ql,I, QIJ+ll)). (3.27) 

Thus the interiors of these sets are mutually disjoint, and UsDj U UjZ3~' is the full ~-plane 

(see Figure l, p. 98). 

The function g($) which solves the inverse problem for the data {dis}, {0t} is defined 

by 
[ g*(~) = To(e -c) (~ E D~) 
/ 

g(;) =/g,(r  : T, oH~oy~,(r (r (3.28) 

[ g~(;) Tj oH;ov;(r ) (~ED~, ] >~ 1). 

Here the g j, g~ are continuous in the closures of their respective domains, the MSbius 

transformation T 1 is 

Tj(W)- bj W+bl~l+l ( -  oo < ] <  oo) (3.29) 
W + I  

(where the {bj} are determined by (3.3), (3.4), (3.7)-(3.9)) and the H~, VJ, H~, V~ are to be 

specified in w167 4.4 and 4.5. 
7 - 7 7 2 9 0 2  Acta mathemotica 138. I m p r i m 6  1r 5 Mai  1977 
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D~+2 

n-I-l) 

Fig. 1 

W e  summar ize  below, in Theorem 3, the  p roper t ies  of g and  the  g j, g~ which are  needed  

for the  proof  of Theorem 1; the  proof of Theorem 3 is deferred to  chapte rs  4 and  5, al- 

though an  i m p o r t a n t  componen t ,  Theorem 4, is considered sepa ra t e ly  in chap te r  6. 

THEOREM 3. It  is possible to choose the Dj, D~, Hi, H~, v/j, v2~ so that i/g(~) is de/ined 

as in (3.28), then the/ollowing conditions hold: 

g is continuous in the/inite plane, quasi-meromorphic and Nevanlinna admissible; (3.30) 

the meromorphie /unction /(z), de/ined by (2.10), satisfies (1.4) and  (2.48). (3.31) 

Further there is an absolute constant(1) A such that i/ 

n(e, a, g, D) (~(e, a, g, D)) (3.32) 

is the number o/solutions to the equation g(~)=a with (without) account o/multiplicity with 

in D ~ fl {1~1 <e} ( D~176 o/D) ,  then 

(x) Until chapter 6 A will be used to represent constants which depend at most on the choice 
of k 0 in (3.15). The conventions in chapter 6 are discussed on p. 129. 
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n(~,a,g, D j )<AS(~ )  (aeO, ~ >0),  

n(~, a, g, D~) < A $(~) (a E C, Q > 0). 

Moreover, i / a  belongs to 

99 

(3.33) 

(3.34) 

pj(a) (3.35) 

o/the regions 

1 1 
w - bj_~[ w - bj+~ j 

then 
n(Q, a, g, Dj) ~ n(e, a, g, Dj) ~ (2~)-lpj(a) S(e) (3.36) 

in a manner such that/or each e > 0 

In(Q, a, g, Dj) - (2~)-lpj(a) S(e) l 

<.Am-IS(e) (m>~M(a), ]j]~m, em~Q~em+l ) (3.37) 

in each region 
I a - I > > 0.  (3 .3S)  

Finally, let the sets E(a~) be as in (3.5), the (Aj} as in (3.10)-(3.14), and 

{~ jEE(a~ (3.39) 
ar = jE E(a~), 1 ~ i < N,  

Then 

In(o, bj, g, D,) - ~ - l [  sin zrAj[ S(e)[ < [j[-1S(0) ([]g[ < [j[, O >~ 01Jl)' (3.40) 

]~(~,bj, g ,D,)-a~n(e ,b~,g,  Vj)]<lj[-1S(O ) ( [ k ] < l J l , e ~ e l J l ) .  (3.41) 

3.2. Proof of Theorem 1. ~Ve now assume the assertions of Theorem 3. Since (1.4) is con- 

tained in (3.31), and g is Nevanlinna admissible, it suffices to establish those equalities in 

(2.41) and (2.42) which involve g. We recall that  A = {at} 0 ~< i ~< N in (3.1). 

LEMMX 5. Let $(~) be as in (2.45). Then 

n(o, a, g) ,,, m~-IS(Q) (a ~A, Om <- ~ <~ fire+l, m-~ c~) (3.42) 

]or each a r 

Proo/. For the moment, suppose 

g(C)~a (CE{UaD,} U {Uo':'3D~'}); (3.43) 

according to (3.20) and elementary properties of quasi-conformal mappings ([1], p. 33) 

this means that  only a set of a's having measure 0 is excluded. 
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Let e > 0 be given and choose M < ~ so that if 

then 
A,  = {ao, aN, al ..... aM} (~  A), 

A , > 2 - e  ( = ~  A t - e ) ,  
,4 s ,4 

where the {Ai} are described in (3.6)-(3.9). Thus if 

F(~) = {j; bje A J ,  

it follows from (3.45) and (3.46) that  

card [F(e)/3 ( - m ,  m)] > ( 2 - e ) m  (m > too(e)). 

Define D~ and D~ by 

D , =  U D~, D ; = { D , } '  
t e Y(s) 

(where {D,}' is the complement of D,). Then assumption (3.43) yields that  

n(e, a. g) = n( e, a, g, D.) + n(p, a, g, D;) = ~ n(q, a, g, Dj) + n(q, a, g, D;) 
teF(s) 

(Q > 0). 

If ~ ~<~ ~<~m+l, (3.21)-(3.23), (3.33), (3.34) and (3.47) lead to 

n(p,a g, D'~) <~ 
Jigs 

IH~ra 

n(Q, a, g, Dr + ~ n(pj, a, if, D~) + n(Q, a, if, D*+~) 
Ifl~m 

<~ A$(e)(em + 2) + A ~ S(ej) 
IHam 

According to (2.43), (2.45) and (2.46) 

so (3.50) becomes 

$(pj) ~> (~jlpj_l)~(QJ- ~)$(~_1) >I 2$(pj_]) (j >1 1). 

n(~, a, g, D~) <~ A(em + 1) $(~) (a E ~, ~m ~< 9 ~< ~m+l). 

Next, we note from assumption (3.43) and the definition of pj(a) in (3.35) that  

I Y p, Ia)-  2m] < 2, 
IH<m 

and, since 0 ~< pj(a) ~< 2 for all j, this with (3.47) yields that  

I ~, P J ( a ) - 2 m l < A ( l + e m ) .  
IJl~m 
JeF(e) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 
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Thus, if a is chosen so small t ha t  ] a -  bj] > o  (] E F(e)) it  follows from (3.37) tha t  

I ~ n(e,a,g, Dj)-m~-l$(Q)]<A(l+em)$(~) (m>M(a), e m < e < e m + l  ). (3.54) 
teF(6) 

(This is possible since A, in (3.44) is a finite set.) However ,  as e tends to  zero (3.52) and 

(3.54), with (3.49), yield (3.42). 

Finally,  we remove restrict ion (3.43). Given e > 0  and a CA, choose a > 0  so small t ha t  

{[w-al <2~} n A~ =r (3.55) 

To compute  n(~, a, g), we may  suppose tha t  g(Qe t*) # a  (0 < r < 2zr), and choose a' CA 

such tha t  [a-a'[ <a ,  (3.43) holds for a', and 

n(e, a ' ,  9) = n(e,  a, g). (3.56) 

Le t  F(e) be as in (3.46). Then (3.49) and (3.52) show tha t  

[n(e,a',g)- 5 n(e,a',g, Dj)]<~A(l+em)$(e) ( em<e<em+l ) ,  (3.57) 
tcF(s) 

and since (3.55) implies tha t  ]a'-a~] > o  (a~eA~), the argument  which gave (3.54) leads 

to 

] 5 n(o,a',g, Dj)-m~-~$(e)l<A(l+em)S(e) (em<e<e, , ,+ l ) ,  (3.58) 
1r 

at  least when m ~> M(a).  Now (3.42) is an obvious consequence of (3.56)-(3.58). 

The proof of Theorem 1 is completed by  

LEMMA 6. The value-distribution o/g satis/ies 

n(e, a, g) ~ (1 -~t)mzt- lS(e)  (m ~ r162 em ~<e ~< era+l, a = a t e  A*), (3.59) 

n(e , a0, g) ~ n(e , a~, 9) ~ m~t-lS(~) (m ~ ~ ,  em< e <~ era+x), (3.60) 

a(e, at, g) ~ (1 -~ t -0 t )m~-X$(e )  (m..* c~, e,= <~ e <~ era+l, a = a t e J4*), (3.61) 

n(e, a, g) ~ a(e,  a, g) (e -~ 0% a CA*). (3.62) 

Proo/. We suppose a satisfies (3.43) since otherwise the procedure used to eliminate 

this restriction in Lemma 5 may  again be applied. 

First,  consider (3.59) and (3.60). Fiven a c e ,  e > 0 ,  let F(e), E(a) be as in (3.46) and 

(3.5). Le t  F(e) be par t i t ioned into F(a, e) and F'(a, e) where 

F(a, e) = F(e) N E(a), (3.63) 

F'(a, e) = F(~) - F(a, e). (3.64) 
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Then if D~, D'~ are as in (3.48) we recall as in (3.49) and (3.52) that  

[n(q, a, g) - n(q, a, g, D~) I < A(em + 1) S(q) (q~ < q < q~+x), (3.65) 

and since e may be taken arbitrarily small, it suffices to estimate n(0, a, g, D~); this is 

made by an analysis of the identity 

n(~, a, g, De) = ~ n(o, a, g, Dj) + >~ n(~), a, g, Dj). (3.66) 
F(a,e) F'(a,e) 

Now (3.13) shows that 

((~t+0~)[sin ~tAj] ~0~ (j-~ cr jEE(a~), a tEA*),  (3.67) 

and it is easy to see from (3.6)-(3.9), (3.47), (3.63), (3.64) that  

]eard{F(a, e) N [ - m ,  m]}-m(6t+O~)] <<. Aem (a = a~EA*, m > mo(e, a)), (3.68) 

and 

[ card {F'(a, e) n [ - m ,  m]} -m{2  -(6~ +0~)} < Aem 

Hence (3.33), (3.40), (3.67) and (3.68) yield 

[ ~ n(o , a, g, Dj) - O~ mz~-~S(o)[ <.< AemS(o) 
F(a,e)  

(a = atfi A*, m > m0(e, a)). 

(3.69) 

(a=atEA*, ~m ~'~<~.~m+l, m > m o ( e , a )  ). 

(3.70) 

I t  is clear from definition (3.35) that  p j (a )=2  (j E F(a, e)) so (3.53) and (3.68) give 

(a = atE.,4*, m > mo(e, a)). (3.71) [ ~ pj(a) - 2m { 1 - (6, + 0,) }[ < Aem 
F'(a,$) 

Thus (3.7), (3.37) and (3.71) readily yield 

(a = atEz4*,  ~m "~< ~) "~< ~m+l). I ~ n(~, a ,  g, Dj) - m:T/: -1 { 1 - (~t + 0t) } S(e)  l < A e m S ( ~ )  
F'(a,e)  

which with (3.65), (3.66) and (3.70) implies (3.59). The same reasoning with (3.14) in place 

of (3.13) gives (3.60). 

Next, (3.39) and (3.41) yield 

~t(~,a,g, Dj)=o(1){ ~ n(~,a, ff, D~)} 
F(a,$) F(a ,e )  

(aEA*, ~ oo), (3.72) 

~t(Q,a,#,Dj),~ ~ n(~,a,g,D~) (a=ao, a ~ , o ~ o o ) ,  (3.73) 
F(a.  e) F(a. e) 
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and according to (3.33) and (3.37) 

{n (~ ,a ,g ,D~) -~ (~ ,a ,g ,  Ds)}<~AemS(~ ) (~m~ ~ ~< Q~+i, m-~ oo). (3.74) 
F'(a,8) 

Thus (3.61) is an easy consequence of (3.48), (3.65), (3.72) and (3.74), and (3.62) follows 

from (3.48), (3.65), (3.73) and (3.74). 

4. Auxiliary functions 

In this chapter we develop the necessary material to prove Theorem 4. 

4.1. The fundamental  auxiliary function. Let  / l (z)=e z,/,(z) =e -z" and write these for- 

mulae as 
log/1(re ~~ = --re ~(e-~) (r > O, 0 ~ 0 < 2~), (4.1) 

log/~(re ~a) = --r ~ e ~2(~ (r :> O, 0 ~< 0 < 2~). (4.2) 

The functions which generalize (4.1) and (4.2) to arbitrary A, 1 < A < 2 ,  are the classical 

Lindelhf functions of order A (cf. [12], Ch. 1, w 17). Indeed, if ]A is a canonical product 

with positive zeros and zero-counting function n(r, O,/h) ~ g - l [  sin 7~A[ rA, an appropriate 

branch of log/A satisfies 

log/A(re ~e) = --rAe~h(e-m(1 4-It(z)} (r > 0, 0 < 0 < 2~), (4.3) 

where k(z) tends to zero uniformly in any sector { [ 0 - g [  <g-(~} (6 > O) as r-+ ~ .  

We will construct a quasi-meromorphic function H(w) (w=se u) which 'interpolates' 

the family /A(1 ~<A~<2). Thus on each circle {]w[ =s} an equation of the nature (4.1), 

(4.2) or (4.3) will hold for some A, but  A will vary with s. The relevance of H to our con- 

struction is discussed in w 4.2. 

Let  A(s) (s > 0) be a continuous function which has continuous derivatives off some 

discrete set P having no finite accumulation point, with 

1 ~< A(s) ~< 2 (s > 0), (4.4) 

IsA'(8)I <(2~)  -1 (8 > 0 ,  sCP), (4.5) 

and define 
sA'(s) ~ 0 (s ~ o% 8 CP), 

(f } S(s) = exp A(u) u- ldu  (s > 0); 

(4.6) 

(4.7) 

note the similarity between (4.4)-(4.7) and (2.43)-(2.45). We have the obvious (and useful) 

consequences of (4.4) and (4.7): 
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s < S(s) < s~ (s > 1), (4.8) 

S(1) = 1; S(s) (s'[s) <~ S(s') <~ S(s) (s'/s) ~ (s" > s). (4.9) 

The  relat ion be tween A(r) (subject  to (4.6)) and  S(r) is analogous to  t h a t  be tween a proxi-  

m a t e  order ~(r) (subject to rQ'(r) log r-~0) and the  classical compar ison funct ion r q('), bu t  

permi ts  more  flexibil i ty {[5]). 

THEOREM 4. Let (50) -1 >~/>  0 and 0 ~< ~ < 1 be given. Then there exist M ~ < oo, Vo > 0 

such that i /A(s)  is a differentiable function o]/ a discrete set P (where P has no finite accumula. 

tion point) which satisfies (4.4)-(4.6), 

sin :rA(s) = 0 (0 < s < M ~) (4.10) 

(so that A(s)-~l  or - -2 /or  s<~M~176 and 

s[A'(s) [  < z0(<(2u) - l )  (s > 0 ,  sCP), (4.11) 

then a quasi-meromorphic function H(w) may be associated to A(s) with the following proper. 

ties. The dilatation o / H  satisfies 

)]/~,]] o~ < V, (4.12) 

/~.(w) -~ 0 (w -~ ~o) (4.13) 

and, i /S(s)  is as in (4.7), then 

log H(w) = -S ( s )e  *A(~)(t-€ (~) < t < 2~r - ~) (4.14) 

for a proper choice o/branch. Moreover, whenever 

A(s) = m (m = 1, 2), (4.15) 

(4.14) may be improved to 

log H(w) = - S ( s ) e  ~m(t-~ (0 ~< t ~ 2ze). (4.16) 

The value-distribution o / H  satisfies 

n(s, a, H) < AS(s) (aeO,  s > 1), (4.17) 

where A is an absolute constant (independent o/~ and %). Also 

n(s, oo, H) = o(1)S(s) (w-~ oa), (4.18) 

the zeros of H are on the positive axis with 

In(s, 0, H)  +vr -1 sin :rA(s) S(s) I = o(1) S(s) 
and 

] ~(s, o, H) - :,n(s, o, H) l = o(1) S(s) 

(8 -~oo) (4.t9) 

(4.2o) 
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Finally, i / i n  addition A # satis/ies 
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again with A an absolute constant, and 

n(s, a, H ) -  ~(s, a, H) <~o(1)S(s) (0 < [a[ <c~; s-~c~), (4.24) 

where the o(1) o] (4.24) is uni/orm /or a in each region 

[log I a [[ < A 1. (4.25) 

Remarks. With some care, it may be shown that  the asymptotics in (4.18)-(4.20), 

(4.23) and (4.24) are attained at a rate which depends only on v0, A #, s# and the rate 

at which (4.6) is achieved. This, and precise asymptotic computations for n(s, a, H) 

(0 < [ a [ < ~ ) ,  is not needed here. 

If A(8 ) -  A0, 1 < A0 < 2, then Theorem 3 (with no references to (4.20), (4.23) and (4.24)) 

is implicit in [6]. 

4.2. On the role of Theorem 4. Let  us consider a function A(s) as in (4.4)-(4.6), (4.10) 

and (4.11) with 

A ( s )  - -  1 (s < M~), 

A(s) - 2 (s > M'), 

where M' /M r is sufficiently large (to be compatible with (4.11)) and let H be associated 

to A as in Theorem 4. We consider the subsets of the plane 

O~ = {w; ~ < ]t] <zt-z~/2A(s)}, 

~o = {w; I t - =  I <~t/2A(s)} 

(compare with Figure 1, p. 98). I t  is immediate from (4.14) tha t  [H(w)[ < 1 in ]0o. Further, 

while IH(w)l >1 on {Iwl =s} N loft when A(8)<{, we observe that  {[w[ =8} N l)~ con- 

tains two subarcs on which [HI < 1 when A(8) > {. In particular, when s > M', [g(seU)[ < 1 

for It] <~/4, since (4.16) now applies. 

Recall the sequence B of (3.3)-(3.9), let T(w) be the M6bius transformation 

(b 0 W + hi) (W + 1) -x (cf. (3.29)), and consider the behavior of g(w) = To (H(w)) -1 (note the 

< A # ~< 2 (s > 0) (4.21) 

and/or all large s(s > s#) 

A(8) = A # (8 > 8#), (4.22) 
then 
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similarity to (3.28)). Clearly I g(w) - b ol < I g(w) - b 11 on {[w[ = s} n Do- We find also that  

[g(w)-b~l < lg (  w)-bol  on { I w l = s } N ~  when A(s)_+], but  when s > M '  the set on 

~ 0 {[w I =s} on which Ig(w)-bll  < [g(w)-b0[ has divided into two intervals, separated 

by an interval on which [g(w) - b0 [ < ]g(w) - b~ ]. 

In order to introduce b2 we need ] g - b 2 ] < [ g - b 1 ] in this middle interval. However, 

we cannot assume b 0 = b~. 

To achieve adequate flexibility, slight non-analytic changes of variables will be made; 

this requires w167 4.3-4.4. In particular, the functions H~, H~ required in (3.28) will be de- 

fined in w 4.4. Next, the ~pj, v2~, also needed in (3.28), are given in w 4.5. Modulo the proof 

of Theorem 4, the verification of Theorem 3 is performed in chapter 5. Finally Theorem 4 

itself is proved in chapter 6. 

4.3. A quasi-con|ormal homeomorphism. To facilitate computations, we state a Lemma 

to which appeal will frequently be made; the proof is immediate from the definitions 

(2.3), (2.6) and (2.7) (let $=log~,  r/=r 

L E z ~ A  7. Let G(~') (~'=Qe ~) be C 1 in a neighborhood N o/~o:#0 with G($o)~=0. Assume 

there are positive numbers c > 1, r /< (50) -1, such that 

Then 

~ log G(~') I 
c1<2 ~ (~EN), (4.26) 

0log G(~) 
ic[< 2~ (~EN). (4.27) er I 

= ]mog,( )l (4.28) 

L•MMA 8. Given complex numbers y, a(a+O) and 0<r /<(50)  -x, M'~>I, choose M so 

large that 

~? log(M/M') > 4 max( [ r l ,  log ]a] +g) .  (4.29) 

Then there exists a quasi-con/ormal homeomorphism o( W) o] the W-plane ( W = Se iT) with 

Ilmll  37, (4.30) 
such that 

~(W) = y + z W  (IWI <M' ) ,  (4.31) 

= w (I w [  >i M). (4.32) 

Proo/. Let a(S), b(S) be complex valued continuously differentiable functions with 

a(S) = log a (0 ~< S ~ M'} (4.33) 
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(here I Y (log o')[ ~<n), 
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a(S) = 0 (M < S), (4.34) 

la'(S)l <]:~S -~ (0 < S < oo); (4.35) 

b(S) = 0 (0 <. S <. M'), (4.36) 

b(S) = y (M < S), (4.37) 

]b'(S)l <�88 (0 < S <oo). (4.38) 

(That (4.35) and (4.38) are compatible with the other conditions follows from the choice 

of M in (4.29) and the inequality M - M '  >log(M/M')). 

Then if co is defined by  

to(W) =}'§ (S = I Wl) (4.39) 

it is clear from (4.33), (4.34), (4.36) and (4.37) that  (4.31) and (4.32) hold, and 

l/i, ,(W)l=O ( I W I < M ' ,  IWt>~M). (4.40) 

If M ' <  I Wol <M,  we rewrite (4.39) as 

log (~o(W) - ~) = a(S) + log W + log (1 - b(S) W -1) (4.41) 

in a neighborhood of W o. Thus (4.36) and (4.38) yield that  

I b(s) W-ll < �88 (S > 0) (4.42) 

so Lemma 7 may be applied with c=l .  We obtain that  I/~(W)I ~<3~ near W0, and this 

with (4.40) gives (4.30). 

That  w is a homeomorphism depends on the argument principle (that the argument 

principle applies to quasi-meromorphic functions is immediate from (2.10)). Indeed, co 

is a local homeomorphism ([10], p. 250) and the explicit formula (4.32) shows that  for 

fixed co 0 and large S, the image of {IWI = S} winds once about w 0. Thus ~o is a global 

homeomorphism and Lemma 8 is proved. 
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4.4. Functions H*,  H #. This class of functions is an important component of definition 

(3.28). 

Construction o/H*. As starting point, we take ~/>0 and complex numbers 7, a ( a# 0 )  

and a function to(W) as in Lemma 8. Recall also that  numbers M ' >  1 and M > M '  are as- 

signed to to as in (4.29). We use this r to modify the boundary values of the fundamental 

auxilliary function H(w) of Theorem 4. 

Thus, choose Moo, v0>0 such that  to any function A(s) which satisfies (4.4)-(4.6), 

(4.10), (4.11) may be associated a function H(w) in accord with (4.14), (4.16) (when (4.15) 

holds) and (4.17) (the more refined conclusions (4.18)-(4.25) are not required). Let M'  

and M be as in (4.29), (4.31), (4.32) and let M* satisfy 

M* >~ max (4 log M, M~176 (4.43) 

Then let A(s) satisfy the additional constraints 

A(s) = 1 (s <~ M*), (4.44) 

A(s) = 2 (s >~ S*), (4.45) 

where S* is sufficiently large to be compatible with (4.11) and (4.44). 

I t  is easy to see that  as t increases 

-S(s)  cos A(s)( t -z)  (n-:t/A(s) < t < ~  -~/2A(s)) 

decreases from S(s) to 0. According to (4.8), S(s)> log M when s >log M, so (4.4) implies 

that  there is a unique function t=to(s ) such that  

and 
-g /A(s)  ~< to(s ) < ~ -~ /2A( s )  (s > log M) 

-S(s) cos A(s)(to(S) - ~ )  = [S(s)log M] 1/2 (8 > log M). 

(4.46) 

(4.47) 

The definition of to(s ) in (4.46) and (4.47) is augmented by 

t0(s) = 0 (s ~< log M); (4.48) 

according to (4.43) and (4.44), this means that  to is continuous for s >~0. 

Next, let 

lo(s) = ~t - n/2A(s) (s > 0) 
and 

~)* = {w; s > 0, I tl < 10(~)). 

(4.49) 

(4.5O) 
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I t  follows from (4.4) that  g/2 ~< lo(s) <. 3g/4, 

0 < to(s) </o(S) 

and from (4.8) and (4.47) that  

to(S)~/o(S) 

Define H*(w) in D* by 

eo(H(w)) 

H*(w) = I H(w) 
I 
(o~(H(w)) 

(s > 0), 

8 --~ (:x~)~ 

s > o, to(S) << t < lo(8), 

s > log M, [t I <~ to(S), 

s > O, - l o ( s )  < t < -to(S).  

(4.51) 

(4.52) 

(4.53) 

LEMMX 9. H* is continuous and quasi-meromorphic in 7D* with 

I~,.(w)l <87  (we O*). 

Further, f i lM' ,  7 and a are associated to co as in (4.31), then 

H*(s e~~ = r + a e*S(~) (s > 0), 

H*(se- a~ ~ 7 + ae-  ~s(s) (s > 0), 

H*(se ~t) = y + ae s(')e" (s <~ log M',  I t[ ~ lo(s)). 

Finally,  

n(s, a, H*, ~)*) < AS(s)  (s > l,  a e 0) 

/or an absolute constant A.  

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

Remark. Since (4.52) holds, we see from (4.53) that  H * =  H on most of ~)*; however 

the boundary values (4.55)-(4.57) have been modified by co. This, together with Lemma 

10 (cf. (4.81)-(4.84)) resolves the difficulty which we discussed in w 4.2. 

Proo/. I t  is clear from (4.53) that  H* is continuous in ]O* save perhaps on the curves 

8e �9 re(s) (s > 0). When 8 ~<log M this continuity is evident from (4.16), (4.43), (4.44), (4.48) 

and (4.53) since H*(s)=e s(s) =e~ffiH*(se~"i). 

Now let log M <. 8, to(S ) > 0; it is necessary to investigate both curves se ~ ~t,(~). First let 

log M<~s<~M*. Then (4.44) shows that  A(s )=I ,  and it  follows from (4.8), (4.16) and (4.47) 

that  

[ H(se'<s)) I = exp {[S(s) log ~],~2}/> M; (4.59) 

thus property (4.32) of co implies that  the two determinations in (4.53) for H*(se ~t~ 
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agree. When s>M*, we obtain from (4.4), (4.8) and (4 .43) tha t  �89189 
[log M] 1/2 and consequently 

- S(s) cos (7~/8) ~> �89 >~ [S(s) log M] 1/2. 

According to the defining property (4.47) of t0(s), this means that  to(s ) >~/8 and hence, 

from (4.14), 

log H(se u) = - S ( s ) e  ~A(s)(~-=) (to(S) < t < 2~r -to(s)). (4.60) 

Once more, (4.59) holds and so (4.32) implies that  H* is continuous on the full curve se re(s). 

The analysis for se-~t~ is similar, using (4.60). However, to use (4.60) in (4.53), we must 

compute with H(we ~ )  to reconcile the branches of arg w. 

The estimate of/~B* is an immediate consequence of (4.12), (4.30) and the inequality 

l ,oo(C) l <2 I +2 l, (4.61) 

which holds when [[/~/H~o<�89 II/~dl~< �89 (cf. [1], pp. 9, 10). 

The proofs of (4.55)-(4.58) follow at once from (4.14), (4.16), (4.31), (4.43), (4.44), 

(4.47), (4.49) with (4.53). For example since A(s) = 1 (s ~< log M') we have that  I H(se~t) I < M'  

(s <log M'), so (4.57) is a restatement of (4.31) and {4.53). When computing (4.56), (4.14) 

is used with arg w = 2g- /0(s) .  In both (4.55) and (4.56), the bound M' > 1 is needed to 

apply (4.31) in (4.53). Finally, (4.58) follows from (4.53) and (4.17) since co is a homeo- 

morphism. 

Construction o / H  #. Again we use a function w(W) from Lemma 8 to modify one of 

the functions H(w) produced by Theorem 4. 

Choose A # as in (4.21), 0 < a < l  and 

According to Theorem 4, there exist M #, z such that  if 

and 

slA'(s) I < z  (8 >0),  (4.63) 

A(s) = 2 (0 < s < M #) (4.64) 

A # -<< A(s) < 2 (8 > 0), (4.65) 

then there exists a function H which satisfies Theorem 4; in particular (4.14) is to hold 

for ~ =9 #. I t  is consistent with (4.63)-(4.65) to assume M # so large that  
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M # sin 2 (A# - 8) > log M (4.66) 

(where M has  been associated with co in (4.29)), and  t h a t  (4.22) holds for sufficiently large 

s# > M #. 

I t  follows f rom (4.21), (4.62) and  (4.65) t h a t  

7~ 
- 2~ ~< A(s)(~ # - ~) ~< - ~ {3 + (A # - ~-)}. (4.67) 

Thus if s > M # and  

l(s) = ~ - 3~/2A(s), (4.68) 

it  is easy to check tha t  cos A ( s ) ( t - g )  decreases f rom cos A(s) (~/#-z)  to 0 as t increases 

from ~# to l(s). Thus using (4.8), (4.66) and  (4.67) we m a y  const ruct  a unique funct ion t(s) 

such t h a t  

7 # < t(s) < [(s) (s > M #) (4.69) 
and 

S(s) cos A(s) (t(s) - ~ )  = {S(s) log M} 1/2 (S > M#); (4.70) 

fur ther  (compare  with (4.52)) 

t(s) ~ l(s) (s ~ co). (4.71) 

Then wi th  

: {w; s tel t (s)},  (4.72) 

we define H # on DM# by ei ther  of the formulas  

Iw{(1/H)  (w)} s > M #, l(s) >~ t >1 t(s), 

H#(w) = ((1/H)(w) s > M #, - l ( s )  <~ t <~t(s), 
(4.73) 

o r  

( l /H)  (w) s > M #, - t ( s )  <~ t 4 l(s), 
H#(w) (4.74) / 

tco{(1/H)(w)} s > M #, -1(8) < t <-< - t (s) .  

LEMMA 10. Given 0 < ~  < 5 0  -x, 0<~o~<~ 1 and su[]iciently large M #, let H # be de]ined in 

~)M# by (4.73) or (4.74). Then H # is continuous and quasi-meromorphic in TOM# with 

] < 87 (w (4.75) 

f t(s) ]l~#(se~t)[dt=~ ( s ~  ~ ) .  (4.76) 
[(s) 

The value-distribution o/ the poles o / H  is governed by 
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n(~, oo, H#, ~ # )  = {z-1]s in~A#] +o(1)}S(s) (s -~ ~), (4.77) 

~(s, ~ ,  H #, I~M#) = {~+o(1)}n(s,  ~ ,  H #, /)M#) (S-~ ~) .  (4.78) 

Further, q aEC belongs to p(a) of the punctured discs {1< lal <c~}, {l(rl < I s - 7 1  < ~ }  

(where (r and 7 are associated with co by Lemma 8) then 

n(s, a, H #, /)M#) ~ ~(8, a, H #, /)M#) = {(2Z) -1 + o(1)}p(a)S(s) (s ~ r (4.79) 

and the asymptotics in (4.78) are uniform/or a in each region log [a[ <A 1. 

For all a E 0, 

n(s, a, H #, ~M#) < AS(s) (s > 1, a E r (4.80) 

holds for an absolute constant A.  

Finally, i / H  # is given by (4.73) we have 

H#(se~t(s)) = 7 + ae*S(s) 

H#(se - ~.s)) = e- ~s(~) 

(s ~> M#), (4.81) 

(s >/M#), (4.82) 

and if H # is given by (4.74) then 

H#(se ~l(~)) = e fs(s) (s >1 M#), (4.83) 

H#(se -~t(s)) = 7 + a e  -~sCs) (s >~ M#). (4.84) 

Proof. For simplicity, only the case that  H # is defined by (4.73) will be studied. Con- 

clusions (4.75) and (4.80)-(4.82) follow by straightforward modification of the steps used 

to achieve (4.54)-(4.56) and (4.58) in Lemma 9. 

I t  is easy to see that  H # is continuous. Indeed we may use (4.14) when a > M  # and 

r/# ~< t < 2re-7 #, where r/# is defined by (4.62). Since t(s) satisfies (4.69), we have from (4.64) 

and (4.66) that  {S(s) log M} 1/2 >~ log M(s >~ M#). Thus I (I/H) (se it(s))l = exp {S(s) log M} 112 >t 

M(s>tM#); hence (4.32) guarantees that  co{(1/H) (self(s))} = (i/H)(seu(s)). This means H # 

is continuous in /PM#. 

That (4.76) holds is a simple consequence of (4.12), (4.13), (4.30), (4.61) and (4.71), 

since then 

I~,,#(se")ldt = I ( ,  l~,,(se")ldt=o(l) (s~ ~) 

and 

f 
~l(s) 

t(')l/~#(sett)ldt < dr=o(1) (s--, ,,o). 
J t(s) d t(s) 



THE INVERSE PROBLEM OF THE NEVANLINNA THEORY 113 

In addition, the poles of H # arise from the zeros of H, so (4.77) and (4.78) follow from 

(4.19) and (4.20). 

We turn to the proof of (4.79) and use the decomposition Z)M# = ~0 U ~+ O ~)_ where 

~o = ~ M #  n { It l  <~#}, 

V+ = ~ #  n {~# < t < t(~)}, 

O_ =OM#n {-1(8) < t  < -~#}. 

Property (4.23) of H with (4.62) and (4.73) shows that H # ~  ~ as w-~ ~ in ~[~0 and thus 

~(s, a, H #, Z)o) < n(s, a, H #, Z)0) = 0(1) (s > 0, log I a I > - Az), (4.85) 

where the 0(1) in (4.85) depends on A 1 and H #. 

Next, consider the value-distribution of H # in O+. I t  is easy to check from (4.14), 

(4.65) and (4.67) that  the image of O+ N {[w[ <s} under W=log(1/H)=Se 't is contained 

in 

A*(s) - {W; S(M #) ~< S ~< S(s), -2:~ ~< T < - ~ }  (4.86) 

and contains 

A.(s) ={W; S(M #) <~S<~S(s),-213+(A#-~)] ~< T~<-~:~}. (4.87) 

Then (4.86) and the argument principle yield that 

n(s,a, l/H, ~+) <~s) - t -  1 ( s > M  #, 1 < [ a ] <  cr (4.88) 

n(s,a, 1/H,V+)=O (s>M #, [aL< 1), (4.89) 

and the usual properties of the exponential function with (4.8) and (4.87) imply that  to 

each e >0, A 1 >0  corresponds s(e, A1) with the property that  

n(s,a, 1/g,]D+)>~(1-e) S(s)  (s>s(~,A1), 0 <logIa] <A1). 

Thus, since M' ~> 1 in Lemma 8, we achieve from the properties (4.31), (4.32) of eo and (4.73), 

(4.88), (4.89) that 

(l+e)~)>~n(s'a'H#'Z)+)>~(1-~)S(s)2:~ (s>s(e, A1), logla[<log]a-Tl<A,), (4.90) 

n(s,a,H #, TO+) = 0  (s >M#, log la-~'l <log  a). (4,91) 
8-772902 Acta mathematica 138. Imprim6 le 5 Mai 1977 
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Similarly, 

(1 + e) $2~ >~ n(s, a, H #, 70_) >~ (1 - e) 
S(s) 
2~ 

n(s, a, H #, ~_) = 0 

(s < s(e, At), 0 < log lal < At) , 

(8 > M, lal < 1). 

(4.92) 

(4.93) 

I t  is now clear from (4.85) and (4.90)-(4.93) tha t  

n(s, a, H #, OM#) = ((2~r)-lP(a) +o(1))S(s) (s -~ ~ )  (4.94) 

with asymptot ics  as claimed in the s ta tement  of Lemma 10. Moreover, 

~(s, a, H #, ~)+ tJ ]0_) = 0 (s > 0, a E ~), (4.95) 

since, in ~)+ U 0_ ,  H # is the composition of local homeomorphisms.  Thus (4.85) and (4.94) 

show tha t  ~(s, a, H #, ~)M#) = n(s, a, H #, ~)M#) + 0(1), with the 0(1) uniform in each region 

Ilog]a[ I < / r  This with (4.95) completes the proof of (4.79) and Lemma 10. 

4.5. Mappings ~b~, ~j. We describe the remaining ingredients of (3.28). The need for the 

(YJT}, (~fl,) arises from the fact t ha t  the functions H*, H # of w 4.4 are defined in normalized 

regions ~* (in (4.50)) and ]0M# (in (4.72)) of the w-plane. However  an inspection of Figure 

1 p. 98 shows tha t  the annulus {gin< I(I <~)m+l) contains 2 ( r e + l )  regions Dj, DT, whose 

angular measure tends to zero as m-~ oo. Thus z =~PT(~)(~ e DT) or z = ~pj(~)(~ E Dj) is a quasi- 

conformal homeomorphism from a DT to a ~)* or from a Dj to a ]0M# which is " local ly"  

a power of ~. 

De/inition o/vjT (j >~ 1). Assume Q~-I and ~t(r for r are determined and set 

s T = log $(~j. 1) = ~(u) u - l du  (4.96) 

with $ as in (2.45). We shall construct  a funct ion AT(s) of the nature  considered in Theorem 

4. In addit ion to (4.4), we require 

A~(s) = 1 (s < sT) (4.97) 

with s~ defined in (4.96). We also assume s~ so large tha t  if Hj  is associated to A~(s) by  

Theorem 4, we may  achieve 

II ,,,lloo < 2 %-1 14.98) 

by (4.97) and taking To sufficiently small in (4.11); in (4.11) and (4.98) ~TJ is de termined by  

the normalizat ion (3.15) and Theorem 2, p. 93. 
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The definition of A~(s) is balanced with that  of ~t(9 ) on 9j-1 ~< 9 ~< 9J by an increasing 

function s~(9) so that  if 

* ~ - s* e tt~(~) (4.99) ~ (  ) -  J(9) 

(with t~ defined below in (4.105)) then 

fl s~(0) u-ldu=f[~(u)u -ldu 9< (4.100) A~(u) (9J-1 < 9J)" 

To achieve this, construct a continuous increasing function L~(9) with 

L~(9) = 1 (9 ~< 9J-~) 

~'(9) 
(L~) '  (9) = ~(9j)  ~ ~-9 ]_ 1 ) (93_1 < 9 < 9)) (4 .101)  

L~(9) = 2 (O >/9J), 

and then define an increasing function s~(9) subject to 

d log s~(9) _ 2(9 ) 
s~(gj_l) = s~, - d i Q ~ -  ~ ( ~ i  (4.102) 

Then if 9(s) is inverse to s~(9), we complement (4.97) by 

(4.103) 
[2 (s >/s~(oj)), 

and verify that A~ is continuous, and differentiable for all s save perhaps s~ and s*(9/). 

Note from (3.16)-(3.18) and (4.101)-(4.103) that  

9~'(9) /~logo],  
s(A~)'(s)-2(~,)-2(9j_, ) [ d l o g s J  (s =s~(9), 9J~, < 9  < eJ) (4.104) 

and that {d (log 9)/d(log s)} is bounded above and below by positive constants; this means 

then any bounds of the nature (4.11) can be achieved by restricting v'j 1 in (3.19). In addi- 

tion (4.102) and (4.103) yield (4.100). 

Now definition (4.99), with s~(9) given in (4.102), is complemented by 

I t  is easy to check that ~ maps 

I ~ ( 2 A : ( s ) - l ) l  (s=s~(9)) (4.106) 
( J 
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topologically onto 

D' = { w; 8'(~j-1) <~ 8 <~ 8'(~j), 'tl <~ ~ (2A'(s)- l )} (s=sT(e)) (4.107) 

(we show (4.106) compatible with (3.75) on p. 118). 

A straightforward computation using (3.19), (4.100) and (4.105) shows that  

log 87 _ ~(e) _ ~t7 
(8=8~(e)), log ~ A~'(s) ~r 

log 8" J --0, 
er 

I ~t7 ~ I~,l dA~(s) (~D~). 

Thus Lemma 7 and the discussion following (4.104) show that  if T~-I is sufficiently small 

we may assume 

la~(r < 2-%_1 (~ ~D~), (4.108) 

where ~0=2 -4 in (3.15), and the ~j are determined in Theorem 2. 

De/inition o/~j( - oo < j  < o0). This parallels ideas already introduced. 

First, let ~j, aj (a~4:0) be given and eoj(W) as in Lemma 8, subject to 

~ (W)  = aL~(W) ( -  oo < j <oo), (4.109) 

II~,o, ll~< 2-,t .+%,,,  (4.No) 

with the (~j} determined by Theorem 2 and (3.15), and let ~j be chosen in accord with 

(3.39). We then have from Lemma 10 that  if 

s[A;(8)[ <T7 (8 > 0) (4.111) 

for sufficiently small T~ and My(=M#_j) is sufficiently large (el. (4.66)), we may construct 

H~ in accord with (4.73) if j >~ 0 and (4.74) if j ~< - 1 .  Then H~ is quasi-meromorphie in 

0~,r = {8 >! M~, I tl < ~ -  3~/2A,(8)} = Z~_, (4.112) 
with 

II ~',,? Iloo < 2-('"+%,~. (4.113) 

(el. (4.75) and (4.110)). 
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We will construct  an increasing funct ion s =sj(q) and Aj(s) so tha t  

8j(q) = s_j(q), 
Aj(s) = A_~(s) (s > 0), 

and both 

f ['(~)Ar u-l du = f [ ,~(u) u-ldu, 

and (4.10), with M~ in place of M ~176 hold. 

In  general, if qlJl is so large tha t  

S(qJJl) >/(Mj#)~ 
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( ( 2 . 4 3 )  

Ls(q), L_j(q) with 

(4.114) 

(4.115) 

(4.116) 

Then  if Aj(8) is given by  
Aj(s) = Lj(q(s)), (4.122) 

(q(s) the inverse funct ion to s~(q)) it  is easy to check tha t  Aj(8) satisfies (4.64), (4.65) (with 

Aj in place of A ~) and (4.116). Note  also tha t  

Aj(s) = 2 (8 < 8j(qln) ), (4.123) 

Aj(s) = Aj (8 > 8j(qljl+l)). (4.124) 

We can now describe the Dk, D* (cf. p. 97). Le t  

rio(e) = zt + 2t(q~) (q >~ q0 = 1), (4.125) 

(q ~< qtn) 

(qtn < q < qlJt+~) 

(q > qln+~), 

(4.118) 

(4.119) 

(4.120) 

(4.121) 

Lj(q) = L_~(q) ( - ~ < j < ~ ) ,  
by  the formulas 

Lj(q) = 2  

, A~  - 2 , 

Ls(q) =t(01jl+] ) _ t(ql j l ) l  (q) 

L@) = Aj 

where the A s are as in (3.10)-(3.14). 

Now let sj(q) ( -  oo < I?'1 < c~) satisfy (4.114), 

sj - sj(@l ) = {$(qpl)}l/'2( > Mj#), 

dlogsj(q) l(q) 
d l o g e  Ls(q) (qltl ~ q ~ OIJl ~ ])" 

and (2.45) show this is certainly possible if qlJl > (M~#) ~) we introduce functions 

(4.117) 
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,1 } 
f l , ( o ) = n - ~  - � 8 9  ~0 ( 5 ~ ( s ) -  ~) (e~>e,, i~> 1), (~.126) 

27~ 
fi,(Q)- ~,(e)=~{558)- U (8=~A~), e~>ej, i~>0), 0.127) 

and define the ~ j(Q),/3 j(~)(j <0) by (3.26), (3.27). Note that  if Dj, D~ are given by (3.21)- 

(3.25), then (3.20) holds, the Dj, D~ are disjoint, and U/)jUD~' is the full ~-plane. 

We remark that  the representations of D~ in (3.25) and (4.106) agree. For example, 

if j >~ 1 it is easy to obtain from (4.126), (4.127) that  

~J- l (~)  = / ~ l - l ( e )  --  ~ ( ~ J - l ( 8 )  --  ~) = y~ -- X ~  - -  ~ + 2 ~0 (J~k -- ~) --  ~ {51-1(8) --  ~} 

(s=ss_l(O)). (4.128) 

We then see from (4.96), (4.97) and (4.123) that  Aj_l(Ss_l(t)j_l) ) =2, A~(s~(0j_l) ) = 1 and so 

(4.128) and (3.18) yield 

_ 3 l :  , 

aj_l(,o) - 2~0)(2Aj (s) - 1) (4.129) 

when 0 =9J-1. Also both sides of (4.129) have the same derivative with respect to ~ for 

~J-1 ~<0 <0J (consider the derivative of 2~-l~t(t))~j_a(~) with respect to log Q; according to 

(4.128), (4.119), (4.121), (4.122) and (3.18) this is 2().(9j) -).(Qj_I))-lq).'(Q), so (4.129) follows 

from (4.104)). Hence (3.25) agrees with (4.106). 

I t  is easy to check using (4.127) that  the function 

~oj(~) = sj(~) e"J (:), (4.130) 

where s~(~) is determined in (4.120), (4.121) and 

tj(~) = Aj(s) ~ - ~,(e)} - (~ - 3~/2Aj(s)) (s = sj(9)), (4.131) 

maps D s (cf. (3.24)) topologically onto 

l)j = {s >/s,, It[ < z -  3~/2Aj(s)} = t)_j; (4.132) 

note from (4.120) and (4.117) that  ]Dj is a subset of t)M~# (CI. (4.112)). I t  is easy to compute 

from Lemma 7, (4.130), (4.131), (4.121), and (4.116) that  if T'j in (3.19) and T~ in (4.11I) 

are sufficiently small we may arrange 



THE INVERSE PROBLEM OF THE NEVANLINNA THEORY 

[~,(~)[ ~<2 (IJl+~)~lj I (~eDj); 

I/~vj(~)l-~0 (~-~ o~, ~ e D~). 
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(4.133) 

(4.134) 

Finally, as in the analysis of (4.104), we note that  such restrictions on T~ are guaranteed 

by sufficiently restricting v'j in (3.19). 

5. Proof of Theorem 3 

Recall that  Theorem 3 is stated in w 3.1. We continue to assume Theorem 4 (w 4.1); 

Theorem 4 is proved in chapter 6. 

5.1. Sequences (Tj}, {aj}. We now determine the {TJ}, aj} used to construct coj(W)in (4.109), 

(4.110). Let the {bj} be the fundamental sequence associated in (3.3)-(3.9) to the given 

data {aj}(1 ~<i<N), {~,}, {0,) which appear in the statement of Theorem 1, and let the 

M6bius transformations {Tj} be as in (3.29). Let 

V0 = 0, ao = 1 (5.1) 

and for ]j [ >~ 1 determine 7J, aj by 

Tt-IoTuI_I(W) =~l+fftW -1 (q) =[= 0); (5.2) 

that  this is possible depends on {3.4) and the assumption that  oor {bj}. Thus 

T [ l o  TIjI_I(~) = T[l(bljl_l)=~o o (for T[l(bj) = oo and bj ~= blsl_l ). Consequently there are 

(finite) complex numbers ~j, aj, pj with aj=#O such that  

~j 
T[  1 o TI~I_I(W ) =Vj+ W - p /  

However, pj = (Tf 1 o TlJl_l)-l(oo) = T ~ _ l o  Tj(or = T~_l(bj)  =0, and this yields (5.2). 

5.2. Determination of the {Qm} and ),(Q). In (3.15) we set the apriori  bound II~uglloo < 2- ' .  

which, according to w 2.3 (cf. Theorem 2)induced constants M, r0, {Am}, (~m}" These 

constants and the need to ensure (1.4) (cf. (2.59)) already yield lower bounds for the num- 

bers {era} and {era/era-i} (el. (2.46), (2.50), (2.51)). of  course, any restrictions on ~ in 

(3.19) also increase the ratios Qm+l/~m, as in clear from (3.16)-{3.18). 

Note from (3.16) that  t(~) has been defined for ~<~0=1, and that  in (3.28) g is de- 

fined for {[~[ ~<e0}. 

In general, suppose 2(~) has been defined appropriately for 0 <0m" Explicitly, this 

means we have selected functions eo0(W ), (o• ... co• as in Lemma 8 with data 
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O'=~j, 7----7~ from (5.2) so that  (4.109), (4.110) hold for [j[ ~m, and have associated 1 

M ~ M j  to c%, o~ j(l~" I ~m) as in (4.29). Then if Aj is as in (3.10)-(3.14) and M~ satisfies 

M~sm~(A , -~ )>IogM,  (I]l<~m) (5.3) 

(ef. (4.66)), we require Qm be so large that  

S(e~) i> (M~) ~. (5.4) 

:Note that  (5.4) may be achieved when m = 0 since, according to (5.1), we may take COo(W) = 

W and Me # =~0 = 1. 

We now determine T~, in (3.18); then 2(e) is defined arbitrarily for t)m ~<9 ~<t)m+l to be 

compatible with (3.18) and (3.19) and (5.5), (5.8)-(5.13) below. All the definitions below 

are in turn based on ~(~) for ~m ~<r ~<~m+l. 

Since (5.4) holds, we are in the situation (4.117), and so may define Y)m(~), Y~-~(C) 

according to (4.130), (4.131) and (4.116). Using the choices of M#~, ~om(W ), and A~(s) we 

construct a function H#~ of the class (4.73) when m~>0 and (4.74) otherwise. Note that  if 

v:, in (3.19) is sufficiently small (cf. discussion of (4.104) and (4.108), (4.133)) we have from 

(3.28), (4.61), (4.113) and (4.133) that  

I~,~,.(~) = I/,,,~ ~ ~:  ~(~)[ < 2 t~ , ,~J~  ~(C))I + 21F,~,,,,(~)] < 2 - ~  (CcD~ ~). (5.5) 

Thus g: and g_, have been introduced for {1r >~e,,}, and it remains to describe 

gm+I.* With am+i and 7m+1 as determined by (5.2), let M~+I( =M'_<~ j)) satisfy 

log M '+ I  = $(e~) (5.6) 

and choose Mm+l(=M_(m§ with 

M,,§ ~ = M_(,,+ I) > e M;'~ I (5.7) 

so large that  w=+1(W)(=w_(~+l)(W)) may be introduced from Lemma 8 with data ~,~+1, 

~%+1 so that  (4.109) and (4.110) hold for ] = m + 1. Now that  (5.6) implies that  (4.96) holds 

with i = m +  1, we construct A*+l(S) in accord with (4.100) and Hm+l(w) as in Theorem 4 

and (4.98). With the data w~+l(W), H~+~(w), let H~+~(w) be obtained according to (4.53), 

and next  determine y~*+~(~-) as in (4.99), (4.100), (4.105) and (4.108) in terms of A*+l(s). 

Then the estimates (4.54), (4.98), (4.108) and (4.110) with (3.28) and (4.61) yield 

again, these estimates can be assured if v~, is small enough. 



T H E  I N V E R S E  P R O B L E M  O F  T H E  N E V A N L I N N A  T H E O R Y  121 

In  order to achieve (5.5) and (5.8), we have given lower bounds on T~ or, what  is the 

same, lower bounds on em+z/e,~. I f  necessary em+1 is increased so tha t  in addi t ion 

In(s~(e), ~ ,  H~, Z)~7)-=-'Jsin =A~IS(Q)I < (m+ 1)-iS(Q) 

fi(sj(Q), 0% HI,  I)M?) -- ~jn(sj(e), ~ ,  S#J, OM,)I ~< (m + 1) -1S(e) 

and 

[ n(sj(e), a, H~, ~M?) -- (2~)-~PS(a) S(e) l < (m + 1)-z 5(e) 

(log lal < (m + 1), I11 m, e 

(5.9) 

(IJl<m,Q>~Qm+~), (5.10) 

(5.11) 

(5.12) 

recall t ha t  ~j is defined in (3.39) and, f rom (3.29) and (5.2), t ha t  pj(a) of (3.35) is the  num- 

ber of punctured  discs {1 < ]a] < ~ }  and {lajl  < la-rs] < ~ }  to which a belongs. This is 

all possible from the corresponding s ta tements  in Lemma 10. 

Finally, we introduce one more constraint  on Qm+l. Recall from (4.103) tha t  
$ $ Am+l(Sm+i(~m+l)) =2.  Then Qm+l is taken  so large tha t  lo(s*(~,,))-to(S*(Qm) ) <7e/8, where t o 

and 10 are defined in (4.46), (4.47) and (4.49) with A =A*+l(S); such Q~+I exist according to 

(4.52). When this holds, we see from (4.53), (4.16), (4.100) and (2.45) t ha t  

log H*,, 1(8,*,,~,(e, ~1) e") = - S ( e , , 1 ) e  TM (Itl <~/2). (5.13) 

5.3. s  of g. We have seen in w 5.2 how to construct  ~t(e ) and the {~m} so tha t  the 

programme suggested by (3.28) may  be carried out.  We now begin the proof of Theorem 3. 

I t  is obvious tha t  the g j, g~ are continuous at  each interior ~0 E D j, D~, bu t  it  is more 

troublesome to check cont inui ty  at  points ~o common to more than  one of these regions. 

There are eight cases to consider: 

~oEDjNDj_I ( -  ~o < ?" < ~ ) ,  (5.14) 

$oED~ N Dj_ 1 (j >~ 1), (5.15) 

~0eD~ n D_(~_I) (j >~ 2), (5.16) 

~oEDj N D~ (j >~ 1), (5.17) 

~0ED_j N D~ (j >~ 1), (5.18) 

~,'0E D~_I N 9 7 (j >~ 1), (5.19) 
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;0eD7 n {l;I =co = ~}, (5.20) 

;0eD0 n {I;I = e0 = 1}. (5.21) 

The techniques needed to verify continuity in these cases will be apparent from 

studying (5.14), (5.17) and (5.19); the remaining situations are left to the reader. 

In analysing (5.14), suppose for concreteness that  ~ ~> 1. According to (4.123), As(s ) =2 

for s ~<sj(e~); thus (2.45), (4.120) and (5.4) imply that  sj(Q)t> $(Qj)II2 >~Mj#(e>tej). Further, 

it is easy to see from (4.127), (4.130) and (4.131) that  v?j(eet~t (q)) =seU(~)(s =sj(e)), where [(s) 
is defined in (4.68) with A(s)=Aj(s). We thus obtain from (3.28) and (4.81) that  

g(ee~P, ̀ ~)) = T ,  o H~(se~' ,  (~'p'`~,,) = T~ o H~( se  ''(~, ) = Ts {r~ + as e '~(~) } (s = s,(e) ,  e >1 es), 

where S(s)=exp .~ As(u)u-Xdu. An application of (4.116) and (2.45) shows that  S(s)= 

$(e), and thus 

g{ee'e~ :~ = T~ {7~ + a~ exp iS(e)} (O ~> ~)~). (5.22) 

Next, let s =8j_l(e);  then it is easy to see from (4.131) and (4.68) that  

tj-l(~e%-l(q))=se -~t(~) (s = sj-l(e), e ~ ej-1), 

and hence (2.45), (4.82), (4.116) and (4.130) show that  

H~_l(~Ol_l(e etaI-l(q))) = exp - iS(e) (e >~ e J-a). (5.23) 

We apply the defining property (5.2) of )~j, a s and see from (3.28), (5.22) and (5.23) that  g 

is continuous at points to which satisfy (5.14). 

Suppose next that  t0 satisfies (5.17). We readily see using (3.18), (3.24), (4.123), 

(4.126) and (4.127) that  

Ds n {1~1 =e,}  = { e , ~ ' ~ ; - - %  ~-<  --a# /, 2a(@ 2a(ej) } 

and (4.123) and (4.131) yield that  

ts(Q,e'~ ) = �89 ~ - :~] 

thus substitution in (3.28) shows 

gj(O, d ~) = Tj o H~(s,(o,) r &,) (5.24)  
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On the other hand, (4.103) asserts that  A~(s~(0,))=2, so (3.28), (4.99), (4.105) and (4.106) 

yield 

g~(0, eta) = T, o H~(s~(o,)e'ff('~%) = T, o H~(s~(o,)e (I'2,'~('')~) ( , r  ~ ) .  (5.25) 

In order to reconcile (5.24) with (5.25), we consider the definitions (4.53) and (4.73) 

of the H~', H~. The same to =w,(W) is used in these definitions, but we have H(w) =H(j)(w) 

in (4.53) and H(w)=H,(w)  in (4.73), since these are different functions. Thus it must be 

shown that 

According to (4.123), A,(s,(0,))=2, so we may apply (4.16) to all t. A now-standard com- 

putation with (4.16) yields 

{S(o])e 2t[(1]2)(t-~)-z~]} ~ e x p  { - -S(01)e  it} (2~. t~ ~ ) .  (1/Hj)(sj(oj) e(ll2)~(t-')) = exp 

Since AT(sT(0j))=2, (4.16) may also be applied to H(,) and we obtain in a similar manner 

that  

H(,)(s:(o,)e(~2)'t)=exp( - S(0j)e2'((I/~)t-')} = exp ( - S(Q,)e 't} (I t ,< ~ ) ;  (5.27) 

thus (5.26) is proved. 

Finally we study the possibility (5.19). Then D~ 17 * - Dt-1-{~; 0 =01, I~1 <:~/(2~t(0J))} 

and AT(sT(0j))=2, AT+~(sT+l(0,))= 1. In particular, (3.28), (4.105), (5.13) and the steps used 

to obtain (5.27) imply that 

< - - -  . ( 5 . 2 8 )  g~(0,e '~) = Tj(exp[-- $(0j)e'~(',)~]) I~l 22(0,) 

Also, (4.31) and assumption (5.6) imply that  wj+l(W)=Tj+l+aj+lW if I WI ~<exp $(0J), 

and this and (4.57) yield 

(.O]+l(H(j+l)(Si+l(01) eit)) ]<= H j § 2 4 7  ) = t . 

Since A~§247 1, we see from (3.28), (4.99), (4.109) and (4.105) that  

g* [ .  et~bl T,+ 10 (.0,+ 1 {exp [$(0,) et~(oPr 

= T,+I {7,+a + a,+l exp [$(0,)e'a(oP*]} Ir ~ , 

a final appeal to (5.2) shows this expression agrees with (5.28). 
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5.4. Completion of proof. The remaining properties of Theorem 3 are less obnoxious to 

verify. Note, from (3.18), tha t  2(Q) already satisfies (2.52). Thus to check that  g is Nevan- 

linna admissible, it must be checked that  the dilatation of g is so small tha t  (2.53) holes, 

where D(~) is defined in (2.27). According to (3.28), #~--0 for [~[ <e0= I. In general, we 

see from (3.28), (5.5), (5.8) and (5.9) tha t  

m - 1  

- ( m - l )  J 

which is (2.53). 

Also, since the {Qm) are chosen in accord with (2.59) we have (1.4). 

Next ,  since the ~pj, ~p~ and Tj are homeomorphisms, we readily obtain (3.33) and 

(3.34) from (3.28) and the corresponding properties (4.80) and (4.58) of the H~, H~. 

Similar reasoning yields (3.37) from (4.79) and (5.12), (3.40) from (5.10) and (4.77) 

and (3.41) from (5.11) and (4.78). 

6. Proof of Theorem 4 

Theorem 4 is stated in w 4.1. 

6,1. A class of functions of genus one. Our goal in this section is to construct an entire 

function F(z) for which the conclusions of Theorem 4 almost hold, and then to use quasi- 

eonformal methods to satisfy (4.14) and (4.16) exactly. This function F(z) is a slight ge- 

neralization of the LindelSf functions. 

L~.MMA 11. Let h > 0  and 0 < h i < ( 1 0 )  -1 be given. Then there exist 0<% 0 < v < � 8 9  and 

K > 2 l~ in accord with the ]ollowing assertions. Let A(r) be a di]]erentiable ]unction with 

1 + 3h ~< A(r) ~< 2 - 3 h  (r > 0, 

r I A'(r) I < ( 4g)-1 sin 3~h (r > 0), 

let S(r) be defined according to (4.7), let 

n*(r) = ~ - l l s i n  ~A(r) lS(r ) (r > O) 

(6.1) 

(6,2) 

and let F(z) be a canonical product with positive zeros whose zero-counting/unction n(r)= 

n(r, 0, F) is bounded by 
n(r) < 2n*(r) (r > 0). (6.4) 

(6.3) 
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Suppose ]or some r 0 > 10r-2h~ 5 we also have 

r]A'(r) l < ~ (r > ro), (6.5) 

In(r) -n*(r) l <v2n*(r) (r > r0). (6.6) 

Then in the plane slit along the positive axis, that branch o/log F(z) having log F(0) = 0  

satis/ies 
[log F(z) + S(r)e~A(r~(~ I < h~ S(r) (r > Kro, h 1 < 0  < 2 ~ - h l ) .  (6.7) 

Remarks. I t  will be seen in w 6.4 t h a t  such an n(r) m a y  be constructed.  

We  require (6.1) in place of (4.4) unti l  w 

Proo/. Take  K > 2 l~ so t h a t  

fo~ l y - l+hdy<l  h~, f ; y - i - ~ d y < l  h~, (6.8) 

224h-lK -h ~< 1, (6.9) 

and  then  find a = a ( K ,  hi) < �89 with  

f K 1 

J K -  

We now es t imate  the oscillation of A(r) and  n*(r). I t  follows with  little effort  f rom 

(6.5) and  (4.7) t ha t  

IA(u) -  A(r)l < ~: y-~dy ~< T l o g K  (ro<K-lr<u<Kr) (6.11) 

and  

thus  

( r]A(r)S(u) 

( r]A(r)S(u) 

- - - 1  = exp{ f ru  [A(y) - A(r)]y-~dy} - 1; 

- - -  -- 11 <~ e~(l~ K), _ 1 (r o < K -lr < u < K r ) .  (6.12) 

Now the definit ion (4.7) of S(u) with (6.1)-(6.3) shows t h a t  

d log n*(u) 
d~oog u A(u) = < 

which implies t ha t  n* is an increasing function. We then  obta in  f rom (6.5), (6.12) and  

(6.13) t h a t  

I dl~ A ( r ) l < ~ l d ~ u )  A ( u ) + [ A ( u ) - A ( r )  I 

T(g cot 3~h + log K) (r 0 < K-lr < u < Kr). 
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Thus, given v > 0, z is chosen in (6.5) sufficiently small to ensure that  

= exp [d log n*(y) 
u] n*(r) 1[ { f :  [ diog-y A ( r ) ] - ~ } - I  

<<.lexp{vlogK(=cot3=h+logK)}-- l l<v 4 ( ro<K- i r<u<Kr) .  (6.14) 

With (6.14) in mind, we take v and then ~ in (6.6) and (6.5) so that  (6.14), 

n(u) [u~ A(r) n*(u) [uX A(r) . - ~ r )  n*(r)l<~ln(u)-n*(u)l+ - ~ r )  n*(r) I 

[u\ a(r) 
E, 'n*(u)+u'(u)a(r)n*(r)E(2+,i ) ,~(r)  n*(r) 

[ulA(" 
<<" (~(r ) n*(r) (r > Kr,, K- ' r  < u < Kr) (6.15) 

and 

In(u)-/u\ 
A(" [uX A(" I [u~ A(~). . 

(r}  n(r) <~ln(u)- (r)  n*(r)l+ (r )  ]n (r)-n(r)] 

2~ ~ n*(r) <~ a(r  ~ n*(r) (r > Kro) , K-lr  < u < Kr) (6.16) 

hold, where a has been chosen in (6.10). 

For further reference, we observe from (6.10) that  a=O(h~), so we further require of 

v and T in (6.14)-(6.16) that  

v < 2 ~ l o g K < A h l ,  v<Ah~ (6.17) 

where A is an absolute constant. 

0nly a weaker form of (6.15) is needed when O < u < K - l r  or Kr<u. Restriction (6.1) 

implies that  

(8~ T M  (8~ T M  

-~] S(s') <~ S(s) < \s'] S(s') (1 < 8' < s), (6.18) 

which is a sharpening of (4.9). I t  is then routine to obtain from (6.3), (6.4), (6.9) and (6.18) 

that  

lui 

and 

n(u) < n*(r) (r > Kro, Kr < u). (6.20) 
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That  branch of log F(z) in 0 < a r g z < 2 ~  for which log F (0 )=0  may be represented 

by Valiron's formula: 

2 ~ n(u, F) 
logF(z)=z Jo u2(-~-z) du (z=re ~~ 0 < 0 < 2 ~ ) .  (6.21) 

Since 

;o o e 2t~ yA-2(y--e~~ -- ~cscxtAe ~A(~ (0<0<2xe,  1 < A < 2 ) ,  (6.22) 

it follows that  

[log .F(z) + S(r) e'A(r)(O-~)[ = r 2 f o  
n ( u )  n*(r)(u/r) A(r). I �9 a u [  

r 2 U - 2 ( U  - -  Z) -1 { n ( U )  --  n*(r)(u/r) A(r)} du 
K - l r  

+r tY; 
+S(r)lJ ~ (u/r)A(r'-2]U--Z[-ldu+ K (u/r)A(r)-21U--Z[-ldu 

(r > Kro, 0 < 0 < 27e). (6.23) 

However ] u - z  [-1 ~<3(u +r) -1 when [z I = r  and u < �89 or u > 2r and, in particular, when 

I log (u/r)[ > log K. Thus after (6.1), (6.15), (6.19) and (6.20) are applied to (6.23), elementary 

manipulations yield 

[logF(z)+S(r)etA(r)(O_,)[<S(r)((TfKKlyA(r)_2[y_etOl_ldy+4fo K Xy l+2adY 

f; fo" } + 4  y 1-2hdy+4 y l+'~hdy+4 Ky 1 3hd?/ 

so this, (6.8) and (6.10) prove (6.7). 

6.2. A modification. Estimate (6.7) degenerates when z is near the positive axis, and this 

is to be expected since the zeros of F are located there. However, when A(r) is close to 1 

or 2, (6.3) and (6.4) show that  n(r) is small when compared to S(r). Since (6.7) establishes 

S(r) as the natural comparison function for log F, this suggests that  for such r the influence 

of the zeros whose modulus is "close to"  r is small. 

To exploit this principle, let T/be a set of positive numbers which satisfies the separa- 

tion conditions 
r* E 7l ~ (r*, 21~ ;) ~ = 0 ,  (6.24) 

71N {0, 1 )=O.  (6.25) 
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Then 71 may  be wri t ten  

We introduce the intervals  
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~ ={r~'), r* <r%,  i>~l. 

J ,  = { 2- ' r*  < r < 2'r*, r* e ~ }, 

I 0 = (0 < r < 2-4r~} 

and, if ~ /has  n < oo elements, 

{i > 0), 

(6.26) 

(6.27) 

(6.28) 

(6.20) 

i n _  -4 - { 2  rn<r}.  (6.30) 

Le t  F(z) be a canonical product  which satisfies the conditions of Lemma  11. Then  

construct  a canonical product  FI(z ) with 

n(r, 0, F1) = n(2-4r *, 0, $'i) (r e J~), (6.31) 

n(r,O, F1)=n(r,O,F)+ ~ n(2-4r*,F) (r~UJt) (6.32) 
r * < r  
~*EB 

and next  a canonical product  F~(z) such tha t  

0 (rEIo) 
n(r, O, F~) = n(2-4rT, 0, F1) (r E I l, i > I), (6.33) 

and consider the meromorphie  funct ion 

Fl(Z) 
F*(z) = ~ ) .  (6.34) 

I t  is clear from the construct ion (6.31)-(6.34) tha t  

n(r, O, 1~*) = n(r, c~, F*) (rE UJ , ) ,  (6.35) 

so tha t  single-valued branches of log F*(z) may  be defined in each annulus {2-4r * < Izl ~< 

24r *, r*eT/}. 

LEMMA 12. Let h, h i > 0  with 

(10 -1 > )h 1 = h 1/4 (6.36) 

and let F(z), r o, T, v and K be as in Lemma 11. I /  ~ is a set o/positive numbers such that 

(6.24), (6.25) 
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N (0, 2eKr0) = 0 ,  (6.37) 
and, [or all r* E 

(r*, 2nK~r *) fi 7 /=  O (r* e ~), (6.38) 

[sin ~A(r*) ] ~< 10~h (r* e ~) (6.39) 

hold, then the/unction F*(z) associated to F(z) by (6.31)-(6.34) satis/ies 

[log F*(z) +S(r)e~A(r)(~ l < Ah~S(r) (z = re ~a, r > Kro, h i < 0 <~ 27e -hi) ,  (6.40) 

I log F*(z) +S(r)e~A(r)(~ < Ah2S(r) (2-ar * ~< r ~< 2st *, 0 ~< 0 ~< 2~, r* G 7~) (6.41) 

/or an absolute constant A. 

Remarks. Here and in the future, an absolute constant refers to one which does not 

depend on A(r), ~,  h or h i so long as (6.1), (6.2.), (6.24), (6.25), (6.36)-(6.39) hold. 

The value of Lemma 12 over Lemma 11 is that  the error term of (6.41) is small for 

all 0; thus (6.39) is the key assumption. 

Proo/. Formula (6.35) will be crucial in the proof of Lemma 17. For now, the useful 

properties of (6.31)-(6.34) are 

0 < n(r, 0, F)-[n(r ,O,  F*)-n(r,c% F*)] <Ah~S(r) <An*(r) ( r>0 )  (6.42) 

(where n* is defined in (6.3)) and 

n(r, O, F*) - n(r, ~ ,  F*) = n(r, 0, F) (r r U J~). (6.43) 

The left inequality of (6.42) follows at once from (6.31)-(6.33). Next, let rE It( i  >~ 1). 

Then (6.19), (6.37) and (6.38) yield 

n(2-4r~, O, F) < K-2n*(2-4r~+l) (6.44) 

where K>21~ so if rEIt  (i~>1), iteration of (6.44) with (4.9), (6.28), (6.36) and (6.39) 

shows 

n(2-'r~,O,F)<~An*(r~)<~Ah~S(r~)<,Ah~S(r) (rEI,). 
t<~f 

According to (6.32), this gives 

In(r, 0, F ) -  n(r, O, F1) I < Ah~ S(r) (r > 0) (6.45) 

and the proof of 
n(r, O, F~) <~ Ah~S(r) (r > 0) (6.46) 

is similar. This proves (6.42), and (6.43) follows from (6.32) and (6.33). 
9 -  772902,4cta mathematica 138. lmprim~ le 5 Mai 1977 
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The computation of log F*(z) will be based on the Valiron-type formula (compare 

log F*(z)  = z ~ ( ~  n~ du 
20 ~(~-z)  

with (6.21)) 

(0 < arg z < 2~r), (6.47) 

with 

no(r ) = n(r, O, F*)-n(r ,  0% F*). (6.48) 

According to (6.19), (6.20), (6.42) and (6.46) 

/u\l+~h 
n(u,O,F*)+n(u, oo,F*)<~A(r ) n(r,O,F) (r>Kro, O< u< K- l r ) ,  

n(u, O, F*) + n(u, ~ , F*) ~ A n(r, O, F) (r > Kr o, u > Kr), 

so it is easy to see from (6.21) and (6.47) (compare with the manipulations in (6.23)) that  

I log F*(z) - log F(z)l 

Kr n U [ 
<~r 2] ( o( . . . .  ) - n ( u ' O ' F ) d u  +Ah~S(r) (r>Kro, 0 < 0 < 2 ~ ) ,  (6.49) 

IJ~-', u~(u- z) ] 

logF*(z) -  rxr no(U) . I z~jK_~rU2(u_~aul<Ah~S(r ) (r>gro,  0 < 0 < 2~r). (6.50) 

First, suppose z =re ~a where 

r > Kro, [K-lr, Kr] N {U J,} = 4, hi < 0 ~< 2~r-h r (6.51) 

Then a glance at (6.7), (6.43) and (6.49) leads at once to 

]log F*(z) + S(r) eta(r)(~ I 

< [log F*(z)-log Y(z) I + Ilog $'(z)+S(r)e'i(')(~ I <<. Ah~S(r). (6.52) 

We next consider the situation 

r > Kro, h 1 ~ 0 <~ 2~r-hl, Jt O [K-lr, Kr) ~ (6.53) 

for some (and, by (6.38), only one) r~ E ~.  Since J'h t-ldt < A, the bound 1 < A(r)~< 2 shows 

, ] r ~ . ~ r ~ i o ) ] a u < A h r  I (h,<O<2~-hx); 

thus when (6.53) holds we obtain from (4.9), (6.15), (6.35), (6.43) and (6.48) that  
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r21~ Kride_ar n~ _ ] 

<.~u (r) j~,rA(,-:~_z) du<~Ah~n*(r) (6.54) 

(a more refined analysis can replace h~ -1 by log hi  s in (6.54)). 

Since ]log(r]r~)] < 2 log K, (6.11), (6.17) and the method used to obtain (6.11) yield 

IA(r) -A(r~') [ < 2v log K ~ < Ah~ (6.55) 

when r satisfies (6.53). Hence the fundamental assumption (6.39) with t h e  convention 

(6.36) yields that  

so we obtain from (6.3) that  

n*(r) < Ah~ S(r) 

IsinnA(r)] <~Ah, 

(r > Kro, Tl N [K-lr, Kr] =~r (6.56) 

]Now (6.7), (6.54) and (6.56) are used in (6.49), leading to 

[log F*(z) + S(r)e'i(r)(~ < ]log F*(z) - log F(z)[ + [log F(z) + S(r)e ~A`r)(~ 

<~ AS(r){2h~ +h~h; ~} = Ah~S(r), 

when (6.53) holds; this and (6.52)complete the proof of (6.40). 

The more delicate inequality is (6.41). In this range, log F(z) is not a good comparison 

to log F*(z), so (6.50) is preferred to (6.49). We write the principal term of (6.50) as 

2 [Kr no(U ) , 
I 2 ~ . . - -  au 

j K - ' r  u (U--Z) 

/'~: yA(r)-~ [~:r no(u)_(u/r)A(r)n(r,O, 
=n(r'O'F)e~OJK-lffz-~dY+z~ JK-lr U2(U--Z) F)du (0<0<2~z).  (6.57) 

The first term on the right side of (6.57) provides the main contribution; it may be esti- 

mated from (6.22) and the bounds (6.1) on A(r) and (6.8) of K (el. (6.23)): 

n(r, O, F) r I ,:  yA(r)-~ I 
JK_ly_e~O yT-~,j~ - ~Ah~S(r) (r> Kro, 0<0<2~r) .  (6.58) e2i0 _ _ _ _ d  ~ . r .tA(r)(0 ~)[ 

In order to estimate the second integral on the right side of (6.57), the range is divided 

into [K-Xr, 2-grJ, [2-9r, 2-tr], [2-Xr, 2r], [2r, 2~r], [29r, Kr]. 

Suppose K-ar <~u <~2-9r or 29r<~u <.Kr. Since it is assumed that  2-ar * ~<r ~ 2at*, we 

see from (6.38), (6.43) and (6.48) that no(u ) =n(u, O, F). Thus (6.10), (6.16) and (6.56) give 
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p ndu) - (u/r)A(')n(r, O, F)du 
J K-', u2(u - z) 

/*2 -9 JtA(r)-2l 

in the same way, 

r ~ ~Kr no(u ) _ ~ A ( ~ ( r ,  O, F )du[  <~ Ah: S(r) 
j~9r u ( u -  z) I 

When 2-~r<u<2- i r ,  (6.15), (6.42), (6.48) and (6.56) show 

PIf2-"n~ J~- . ,  u - -~  "- "~ 

* / ' g - i t  I 1 I 

An (r) J2_9 r I-~_zldu <~Ah~ S(r) 

and similarly 

29r n U) 
r'lf~, r ~ ~'~(",O,~')d,~l<AhtS(r ) 

(2-4r * < r < 24r *, O < 0 < 2~, r* E ~);  (6.59) 

(2-4r* <r<24r  *, 0 < 0 < 2 ~ ,  r * E ~ ) .  

(6.60) 

(2-4r * < r  <2~r *, 0 < 0 <2]r,  r*E 7~) (6.61) 

Finally, since (6.35) and (6.48) show tha t  no(u )--0 ( � 89  2 - s r * < r < 2 8 r  * 

for some r* E 7'/, it follows tha t  

r ~ ~2r n~ d u -  0 (2-3r * < r < 2ar *, 0 < 0 < 2~, r* e ~) ,  (6.63) 
J(1/2,, u' (u-  z) 

and (6.56) gives 

~[ r [u~h(r)n(r,O,F).xu[ 
r - ~ - - t ,  IL,,,,,t4 I 

-- n(r, 0, F)  1/2), u ~-z 

(6.64) 
Thus when 2-*r* < [z I < 2at * with 0 < arg z < 2z,  the expression 

f ~:" no(u) du z - , ,u2(u-z)  ' 

which appears in (6.50), is wri t ten as in (6.57) and es t imated by  (6.58)-(6.64) and (6.41) is 

proved. 

(2-~r * < r < 2*r*, 0 < 0 < 2~r, r* E 7'/). 

(6.62) 
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To apply quasi-conformal methods, it  is necessary to differentiate estimates (6.40) 

and (6.41). Thus, the following lemma, though now elementary to obtain, will also be of 

central importance. 

LEMMA 13. The/unction F*(z) de/ined by (6.31)-(6.34) satisfies 

]d {log F*(z)} + z-'A(r)S(r)e'h(r)(~ Ar-lh, S(r ) 

i/either 

o r  

] z ] > 2Kr o, 3h 1 <~ arg z ~< 2zt - 3h 1 

2-2r*<]z] <22r*, O<~argz<<.2~, r*E~. 

(6.66) 

(6.67) 

(6.68) 

Proo[. Let Zo satisfy (6.67) or (6.68), and let h' =h'(zo)=h t when (6.67) holds and h ' =  �89 

when z o satisfies (6.68). We claim that  if 

D(zo) = {z; [Z-Zo[ ~< h'ro) (ro = ]zo]), 

then 
[ r \ A(r')(0-~)l 

log S(ro)(7.) I.<  h S(ro) (6.69) 

Once (6.69) is established, (6.66) follows from Cauchy's formula: 

d F * I {log (z)L-z. + z~'Ao(ro) S(ro) e 'A('')(~ 

Ah~ S(ro) fa D(z,) I z - z~ [-2[dz [ < Ar-lhl S(r). 

We now prove (6.69). When (6.67) holds, (6.69) is a simple consequence of (6.11), 

(6.12), (6.17) and (6.40) as 

S ( r  r A(ro)e,A(ro)(O_~ ) 

xro/ , + S(ro) l:o ) 11~< Ah~S(ro). 

In the range (6.68) we must be careful since D(zo) may cross the positive axis. However 

according to (6.34) and (6.35) 

log F*(re -'8) = log F*(re'(2~-~ 



134 D. I)RASI:N 

and, if rEJ~, we obtain rout inely from (6.39) and (6.34) tha t  

IS(r) e ~ h ( r ) ( - ~  - S(r) e ~ h ( r ) ( ( 2 n - ~  I = S(r) I 1 - e ~n~A(T)] ~< AS(r) hl (r E g~, - ~ <~ 0 <~ 0), 

so (6.69) follows as before. 

6.3. Yalue-dis t r lbut ion o |  F * .  Inequal i ty  (6.70) below can be made  more exact ,  bu t  this 

is no t  necessary here. 

L~.MM), 14. Let 1~'* be constructed in accord with (6.31)-(6.34). Then there is an absolute 

constant A such that 

n(r, a, F*) <~ AS(r) (aE~, r > Kro). (6.70) 

Es t imate  (6.70) complements  the bounds in (6.4), (6.6), (6.45), (6.46) for n(r, O, F*), 

n(r, co, F*), since F* is defined by  (6.34). 

Proo/. As star t ing point,  we show tha t  

T(r, F*) <. T(r, F1) + T(r, F~) <~ AS(r) (r > Kro) (6.71) 

(the left inequal i ty  of (6.71) is a consequence of Jensen 's  formula and the normalizat ion 

F~(0) = 1 (cf. (6.75) below)). Since the Ft(i = 1, 2) are canonical products,  the characterist ics 

are est imated by  the s tandard  inequal i ty  (el. Theorem 1.11 of [9]): 

T(r ,F,)KlogM(r,F,)<~ 121rr 9"(~n(u'O'F')  du} 
t Jo u j r  u s 

for  i = 1, 2. The integrals may  be est imated as follows: according to (6.45), (6.46), (6.4), 

(6.8), (6.19) and (6.20) 

~ :  -lr du + du < An*(r) < AS(r), 
n(u, O, n(u, O, F~) 

r uS r2 JKr U] 

and (6.45), (6.46), (6.4) and (6.15) yield tha t  

, n(u, O, F,) F n(u, O, n*(r) n*(r) 
�9 u- ~ du + r 2 Ft) du <~ A 1 + A - -  < AS(r); 

u 3 Ai r  ) L 2 -- A(r) 
- - I  r 

thus 

M(r, F~) <~ AS(r) (i = l,  2, r > Kro) 

and (6.71) is proved.  

According to the first fundamenta l  theorem, 

(6.72) 
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since 

(6.71) implies tha t  

(1 )  
N(r, a, F*) ~< T r, ~ = T(r, F* - a) - log IF*(0) - a[; 

IT(r, F* -a ) - log+  ]a][< T(r, F*) +log 2, 

N(r,a,F*)<~AS(r)  (r>~Kro, ] a - l ]  > �88 

We use the s tandard  relation between N and n (cf. (2.11)) and deduce by  a simple tau- 

berian argument  tha t  (6.70) holds if 

[ a -  1 [/> �88 (6.73) 
since F*(0) = 1. 

To remove the restriction (6.73), we argue as follows: in L emma  l l  it  was required 

t ha t  r o > lOv-2h~ 5 so i t  is easy to  see from (6.36), the definitions (6.1), (6.3) of n*(r) and the 

growth proper ty  (4.8) of S t h a t  •*(8h15) > 2. Thus  if (6.6) holds with v <�89 F must  vanish 

at  some 71, 0<71<r0 ,  and since ~ satisfies (6.37), (6.32) shows tha t  F*(7I )=0 .  Choose 

~o, 0 <~o <~1 with [ F*(V0) [ = �89 and consider 

Fo(z) = F*(z-~o)- 
We claim tha t  

T(r, Fo) < AS(r) (r > to). (6.74) 

Indeed,  Fo(z ) = (FI(Z-70))  (F2(z--~0)) -1' SO Jensen's  formula, (4.9) and (6.72) give 

1 
T(r, Fo) <<. T(r, F l (Z -  ~o)) + T(r ,  F2(z- 7o)) 

-~ T(r, Fl(Z - ~o) ) + T(r, F2(z - )'0)) - log ] F20'o) I 

< log M(r, .Fx(z t - 70)) + log M(r, F2(z - 7o)) - log I F=(7o) I 
<AS(r+ro)-log]F.,(ro)]<AS(r)-loglF~(~,o) I (r> ro). (6.75) 

Since ~ satisfies (6.37), (6.33) shows t h a t  F2(z ) does not  vanish for {Izl <2yo}. Bu t  since 

1]F~ is holomorphie in {]z ] ~< 27o } the  s tandard  est imate  

([9], p. 18), the normalizat ion F~(0)= 1 and (6.71) imply tha t  

= AT(2~o, F2) < AS(~o) <~ AS(r) (r > ro); 
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this and (6.75) yield (6.74). The usual tauberian argument based on (2.11) now gives 

n(r,a,  Fo)<.AS(r) (r>Kro,  la-Fo(O)l>1�88 
o r  

n(r,a, Fo)<---n(r+ro, a, Fo)<...AS(r) (r>Kro,[a-Fo(O)[>~�88 

since I F0(0) I = �89 this proves (6.70) for those a not included in (6.73). 

6.4. On the hypotheses of Lemmas 11 and 12. We now show that  the hypotheses of 

Lemmas 11 and 12 are realistic. 

Lv.M~A 15. Let 0~<a~<l, h, h i > 0  and A(r) be given where A(r) satisfies (6.1), (6.2) 

and (6.5) and h, h i satis/y (6.36). Recall that h 1 determines 0 < v < � 8 9  in accord with (6.6), 

(6.14)-(6.16). 

and such that 

with 

Then/unctions F(z), F*(z) may be constructed in accord with Lemmas 11-14 

[~(r, 0, F*) -~n(r ,  O, F*) I <.AhlS(r ) (r > h~lro) (6.76) 

r 0 ~< 10v-2h~ 5. (6.77) 

Further, given (2-3h~>)A#>~, suppose (4.21) and (4.22) hold, and that the set ~ o/ 

(6.24)-(6.26) and (6.37)-(6.39) has finitely many elements. Then i/ 

there exists r 1 such that 

log I F*(z)] ~< - A  sin(A # - ])S(r) (A > 0, ze D(A0), ]z] > rl) , (6.79) 

so that 
n(r, a, F*) -fi(r,  a, F*) ~ 0(1); (6.80) 

the 0(1) in (6.80) is uni/orm in each region 

log ]a[ >~ - A  r (6.81) 

Remark. That ~/be bounded is essential for (6.79) since (6.79) fails at the poles of F*. 

Proo/. Once h, h 1 are given, Lemma 11 associates 3, K, v as in (6.5), (6.6), (6.8), (6.9) 

and (6.17). According to (6.14), (6.1), (6.3), (6.36) and the bound v < �89 we have that  

n*((1 + v2)r)-n*(r) >~ {(1 +v~) (1 -va))n*(r)-n*(r)  

>~ �89 >1 (4~) -x 6v2h~ r. (6.82) 

Thus, we may construct a canonical product F(z) of genus 1 with positive zeros and 
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n(r, O, F) <~ n*(r) 

such tha t  each zero a~ of F with 

a n ~> 8~-9-hi -6 

occurs with multiplici ty Pn where 

(r > 0) (6.83) 

(6.84) 

IP~ 1 - g l < hi; (6.85) 

for example,  if :r ~< h 1, let Pn/> h~ 1. Inequali t ies (6.82) and (6.84) show this may  be arranged 

so tha t  

n((1 +~2)r, O, F) >I n*(r) (r >1 8~-~h~ 5) 

and this and (6.14) lead to  

1 - v 4 
n(r, O, F) >1 n*((1 + ~2}-1r)/> (1 + v~) h(r)n*(r) >~ (1 - ~ )  n*(r) (r >~ 10~-2h~5). (6.86) 

Thus  (6.83) and (6.86) yield (6.6) with ro=  10v-~h~5( >8v-~h~ 5) as required in the s ta tement  

of Lemma 11 and the proof of (6.70). 

I t  readily follows from (4.9) and the bound (6.85) tha t  the {pT~ 1} may  be chosen 

bounded or tend to inf ini ty so slowly tha t  

I~(r, O, F) -:on(r, O, F) I ~<n*(10v-~h~ ~) + 2hxn*(r) +Pn <~ AhlS(r) (r/> 10v-~h? a) 

holds. Thus if F* is obtained from F in accord with (6.31)-(6.34), we obtain from this and 

(6.45) tha t  

I~(r, O, F*) - an(r, O, F*)] 

< ]~(r, 0, F * ) - f i ( r ,  0, F)[  § ]h(r, O, F)-o~n(r, O, F)] § O, F*)-n(r ,  O, F)I 

<~ AhlS(r ) +n*(10v-2h~ 5) ~< AhlS(r ) (r > ro), 

which is (6.76) and (6.77). 

Now suppose (4.21) and (4.22) hold. Thus rA'(r)-~0,  so v in (6.5) may  be chosen as 

small as desired if r 0 is increased. In  particular,  it  m a y  be supposed t ha t  

n(r, O, F*) = n*(r)+o(1)S(r) (r-~oo) (6.87) 

and 

~(r, O, F*) = on(r, O, F*) +o(1)S(r) (r-+c~). (6.88) 

Le t  A be the largest of the constants  in t roduced in (6.40), (6 .41)and  (6.66), and take 

h x < 10 -1 so small tha t  

Ahx < �89 sin (A # - 9). (6.89) 

1 0 -  772902 Acta mathematica 138. Imprim6 1r 5 Mai 1977 
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Then if h satisfies (6.36) and T, K and ~ are chosen in accord with Lemma 11, we see that  

(6.5) and (6.6) hold for sufficiently large r o, and hence so do the conclusions of Lemma 11. 

Now the discussion which introduced t(s) in (4.70) (el. (4.62) and (4.67)) shows that  

and since the choice of h t in (6.89) shows that  (6.7) and (6.40) hold for large r when 

it follows from (6.40) that  with D(A #) as in (6.78), 

log [F*(z)] <~ - �89  (sin(A#-~))S(r) < 0 (Izl :>R1, zE~D(A#)) (6.90) 

if R 1 is sufficiently large. We may suppose R 1 so large that  F* is holomorphic outsice 

{[z[ ~R1} (possible since Tl is bounded). Estimates (6.71) and (6.18) show that  F* has 

order ~< 2-3h, so (6.90) and Phragmen-LindelSf yield that  [ F* I < 1 in D(A #) n {]z ] > rl/8 } 

for some r 1 >7 R 1. 

Now let Zo([Zo] =r0)ED(A #) with Iz0] >r i  and let 

D o = D(A #) fl {tro <]z  ] < 8to). 

Partition eD o into ~ U fl where c~c {Izl  =hro} u (l l =8to)  and largz[ =:r(1-3/(2A#)) on fl- 

Then (6.36) and standard estimates on harmonic measure (cf. [15], p. 79, Satz 4) show 

~o(z0, ~, D0) ~< 2 exp { 3log 16 e x p { -  24 log 21 
:t~(A# _ ]) } ~< 2 ~i l < �89 

Since I <1 on it follows from (4.9), (6.90) and the two-constants theorem that  

log iF*(%)l < �89 I I <- - 4 -1 sin (A # - ]) S(~r0 ) 

< - A s i n ( A # - ] ) S ( r o )  (zED(A#), [z[>rl) 

with A > 0; this is (6.79). 

I t  follows from (6.66) and (6.89) that  all points of ramification of F* in ( [ z [>  r0} 

must occur in D(A#), so (4.8) and (6.79) yield that  if log [a[ >~ -A1, then 

n(r, a, F*) -~(r,  a, F*) <. n(~(A1), a, F*) (6.91) 

where ~(A1) is so large that  A sin(A # -  ])S(r)> A i if r>~ ~(A1) (cf. (4.79), (4.80)). Thus 

(6.80) is a simple consequence of (6.70) and (6.91). 



T H E  I N V E R S E  PROBLEM OF T H E  N E V A N L I N N A  T H E O R Y  139 

6.5. A preliminary form of Theorem 4. Recall  the  cons tant  (50) -1 > ~  > 0 f rom the  state-  

m e n t  of Theorem 4, and choose h, h i according to  (6.36). This pair  h, h I in t u rn  deter-  

mines K,  r0, ~ > 0  as in L e m m a  11. Also, let ~ be as in (6.24)-(6.26) and  (6.37)-(6.39). 

Now consider a funct ion A(r) which satisfies (6.1) and (6.5). 

Reca l l  t h a t  the  funct ion F*(z) of L e m m a  12 a lmost  fulfills (4.14) and  (4.16) (cf. (6.40) 

and (6.41)) and  is defined in the  full plane. Here  we int roduce a funct ion a(w) which, while 

not  defined in the  full plane, satisfies (4.14) precisely and the  values alr*e~t~lr * ~ j~ ~ E ~ )  are 

explicit ly determined.  Our major  goal is L e m m a  17, where F* and  ~ are "we lded"  to- 

gether.  

To keep control  of error terms,  we now recall t h a t  ~ > 0 and  h, h I are known,  and  then  

introduce a /c  > 0 with 
h = h~ < h l < k ~  ~, (6.92) 

and let A(k) denote  a generic posit ive funct ion such t h a t  

A(k) -~ 0 (k -+ 0). (6.93) 

Also, let  ~ be  par t i t ioned into ~1 U ~2, character ized b y  

IA(r*) - m  I < �89 (r*E ~m, m = 1, 2); 

i t  follows f rom (6.36) and (6.39) t ha t  TI1 U Tl2 = ~ ,  ~1 ~ ~2 = r  

(6.94) 

Definition o/a. The funct ion a is defined in 

{DoU n {Iwl 

where rl* is the  smallest  e lement  of ~ and  

O0 = {s > r~, �89 < t ~< 2~ -�89 (6.95) 

01 = {seJ, ,  I t ] < �89 r~' e ~1}, (6.96) 

02 = {seg, ,  ]t I < �89 r~" e ~ } ;  (6.97) 

recall t h a t  the  J~ are defined in (6.27). 

The definit ion of a is 

a(w) = exp ( - S(s) e ~A(s)(t-m} (w e ~0o), (6.98) 

a(w) = exp { - S(s) e ~i(s)( t-n)-2n~'-l[A(s)-l](t-(1/2)~)} (W E •1)' (6.99) 

a(w) = exp { - S(s) e ~A(s)(t-:z)+2n~'-l[2-A(s)](t-(1/2)')} (W E 02). (6.100) 

The reader  should verify t h a t  a is well-defined and continuous: t ha t  (6.98) (for w =Be  (112):', 
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se ~(~'-(11~)~)) agrees with (6.99) (with w = s e  ~(1/2)~') when sEJt for some r~ E T/l; tha t  (6.98) 

(for w = s e  (m)~', se ~(~-(1/2m)) agrees with (6.100) (with w=se • when sEJ~ for some 

r* e ?~. 

LEMMA 16. The /unction a(w) is quasi-meromorphic in {Iwl > rr}n {00u  ~1 u 9 ,}  

with 
]go(w)[ <A(k)  (we ~Oo U OlU ]02), (6.101) 

where (6.93) holds. 

Proo[. We compute locally, using a branch of log {log a(w)}. Then 

~l~176 (wEDo) 
log s 

log { log a } _ iA(s) (w fi ~00) 
~t 

(6.102) 

and (6.101) follows from Lemma 7 since A(s)>~ 1 and (using (6.5), (6.17), (6.36) and (6.92)) 

IsA'(8) l < A(k). 
The computat ion is more subtle in ]01 0 ~)~. For example, if r~ E ~/1, 

Olog{log a} 
log s 

log { log a} 
~t 

A(s) + i { sA'(s)[(t- :r)- 2n-q-l( t-  �89 

iA(s) - 2zdO-l[A(s)- 1] 

(Iwle J,, w~Oa). 

(IwleJ,, we01). 
(6.103) 

Thus 

8 log{log a} ~-]-og s- A(s)]<<.A(k) 

181~ -~ iA( ) 

since such bounds are satisfied by sA'(s) and [ A ( s ) - l ]  (cf. (6.5), (6.17), (6.36), (6.39) 

and (6.92)). When wG]0~ the argument is similar; it now depends on the estimate 

]A(s)-21 <A(k)(]w I fiJ,, we~)2). 

Definition o/the welding/unction ~ (see Figure 2). Let ]~ be as in (6.24)-(6.26), (6.37)- 

(6.39), and let 
Y = (J {8; 2-2r * • 8 < 22r*}. 

We define 7o(S) (s >~r*) as follows: 
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Iwl=2-~r~ J 
/ 

I wl = 2 -lr* 

[W] ~ r  r 

Iwl :=2r* 

Fig. 2 

I wl = 22r * 

and 
t 

v (s~> r~, serf),  

~*o(s) = llog (r*/s)] (2--2r* ~< s ~< 2~r *, r* e ~) ,  
log(2~) 

(6.1o4) 

~o = {w; s ~> r~, ~o(s) ~< t ~< 2~ -Fo(S)}. (6.105) 

where r~ is the smallest element of ]l. Next,  let ~l(S) be defined with domain (s>~r*} as 

follows: 
i~ 

log (r*/2s) 
�89 log 2 

•1(8) = 

and let 

1og(s/2r*) 

(~>r*, ~r 

(2-2r * ~<a~ �89 r*E ~) ,  

(2r* <~ s ~< 2zr *, r* e ~) ,  

(6.106) 

0 (�89 < s < 2r*, r* E }l) 

(6.1o7) 
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({) '  =complement). Note from (6.107) that ~ fl {�89 < <2r*} = r  if r*e TI. 

We define ~(w) for {JwJ ~>r~} so that  ~ is continuous, 

0 ~< E~(w) ~< 1 (JwJ ~>r*), 

~ ( w ) = { :  (wE~~ 
(wC~); 

it is easy to see this is possible with 

a 1--~og s < A~/-1 , 

~ ' ~  " 1 

(6.1o8) 

(6.109) 

(6.110) 

(6.111) 

LE~MA 17. Let A(s) be as in (6.1), (6.95), let F* be as in (6.31)-(6.35), let ~ in (6.24)- 

(6.26) and (6.37)-(6.39) be nonempty, and let a, ~ be as lust described. De/ine K(w) /or 

{lwl by 
K(w) = exp {~(w) log F*(w) + [1 - ~(w)] log a(w)}. (6.112) 

Then K is continuous and, i/ h and h 1 in (6.36) are su//iciently small, quasi-meromorphic 

in the plane with 

J/~(w) J < A(k). 

We also have 

log K(se") = - S(s) e ~A(s)(t-m = log a(se ~t) 

K (r.e ~t) = a(r.e ~t) 

where a(r*e it) is described in (6.98)-(6.100). 

Finally, 
n(s, a, K) < AS(s) 

/or an absolute constant A.  

(6.113) 

(s~r*, ~ ~ t ~  2ze-- ~), (6.114) 

(r*e "~, 0 < t ~< 2g), (6.115) 

(s > r~) (6.116) 

Remarks. 1. In ~1, we may write (6.112) more simply as K(w)=F*(w).  Outside ~1, 

the choice of branch of log F*(w) is crucial. We take this branch, so that  (6.40) holds. 

This defines a branch of log F*(z) in 0 < a r g z < 2 x ,  but  according to (6.35), this branch 

is also single-valued in each annulus {2-4r*~ < JzJ ~<2/r *, r*eH}. 

2. Since g is defined only in {JwJ >r~}, n(s, a, g ) ,  ~(s, a, K) refer to value-distribu- 

tion in {r~ < J wl < s}. 
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Proo/. Equations (6.114) and (6.115) are obvious since (6.110) and (6.112) assert that  

K(w) = a(w) on the relevant domains. 

To prove (6.113), observe that  K = a  in ~0, so that (6.113) in ~o follows from (6.101). 

In ~1, K(w) = F*(w), so #K~0 in ~i .  

Next, suppose w = s e u E ~ .  Then it is easy to see from (6.40), (6.41), (6.66), (6.98)- 

(6.100), (6.92) and the computations of Lemma 16 that 

[log F*(w) - log a [ < A(]c) S(s), 

]{log F*)xo, ~-{log a),o, ~] < A(k)S(s), 

I{log F * ) , - { l o g  ~), [ < A(k)S(s) 

and from the Cauchy-Riemann conditions that  

{log F*}Ior s= - i  (log F ' i t .  

Thus if w E ~ ,  
Ilog g(se ~t) + S(s) e~A(s)(t-') I ~< A(k) S(s), 

I(l~ g(w) }log~ + i (log g(w) }t I <~ A (k) S(s), 

](log K(w)}~o~ - A(s)log K(w)] ~< A(k) S(s); 

(6.117) 

and so (6.109), (6.111), (6.112), (6.117), (6.9) with the definitions (2.3) and (2.6) complete 

the proof of (6.113). (Remark: the bounds (6.111) show that k must be small in comparison 

to ~, but this is guaranteed by (6.92)). I t  is obvious that the partials of K satisfy the weak 

regularity requirements (2.1). 

Note from the conventions (6.92) and (6.93) that  A(k)< 1 in (6.113) if h is sufficiently 

small. 

Now consider (6.116). Since K =  F* in ~l ,  (6.70) implies that  

n(s, a, K, ~1) < AS(s) (s >~ r~), (6.118) 

as ~ l c { I w l  >Jr*} and r* satisfies (6.37). Next let So>r ~ and let 

~(80) = {no u ~ }  n {s~"; is0 < s < So, rl(S) < t < 2~-~1(s)} .  

Note that if �89 <So~<2r* for some r*e H, then ~(So) includes a segment of the positive 

s-axis, and as w circuits ~(So) this segment is traversed once in each direction. We apply 

the first formula of (6.117) on ~(s0)  and deduce from (6.46) and the argument principle 

that  
n(s0, a, K, ~(So) ) < AS(so)+n(So, c~, ~(so)) ~< AS(so) (s o > r~). (6.119) 

In general, given s o > r~, 
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where N is so large that Se<-..2Nr~. Then (4.9) and (6.119) give 

• ( (s~176 (6.120) n(So, a, ~o U ~2) ~ n~o n s, a, K, ~ ~ ~-~ 

and (6.118) and (6.120) yield (6.116). 

COROLLARY. Let 0~<a~l  be assigned and suppose the hypotheses o/Lemma 17 are 

augmented by 

sA'(s)-~ 0 (s-~ c~) (6.121) 

and the set ~ o/ (6.24)-(6.26) and (6.37)-(6.39) is nonempty and bounded. Then K(w) in 

Lemma 17 may be constructed so that in addition 

/~(w) ~ 0 (w-~ c~), (6.122) 

in(s, O, K)-n*(s)J <~ A(k)S(s) (s ~ r*), (6.123) 

In(s, O, K)-n*(s)[ =o(1)S(s) (s~oo), (6.124) 

[~(s, O, K)-an(a,  O, K)J ~A(k.)S(s) (s >1 r~), (6.125) 

J~(s, O, K)-an(a,  O, K)J = o(1)S(s) ( s~  oo), (6.126) 

n(s, c~, K) <. A(k)S(s) (s >i r~), (6.127) 

n(s, ~ ,  K) = o(1)S(s) (s~oo). (6.128) 

I/(4.21) and (4.22) also hold with (on account o/(6.1)) A# ~<2-3h, then there exist A >0, 

s '>0  (depending on A(s) and K) so that 

( logJK(w)l< -Asin(A#-J)S(s) s>s',  Itl< 1-~--~ , (6.129) 

n(s, a, K)-~(s ,  a, K) =O(1) (6.130) 

with the O(1) uni/orm in each region (6.81). 

Proof. The function A(s) is still assumed to satisfy (6.1) and (6.5). 
To compute/~K(w) we use the assumption that Tl is bounded to see that if M is large, 

then K(w)=F*(w) in {s>M, it[ <�89 (of. (6.106), (6.107), (6.110) and (6.112)). Thus 

I~K(se")=O for s>M,  Itl<�89 For {s>M, �89189 formulas (6.98)-(6.100), 

(6.111) and (6.121) with the computations of (6.102) give (6.122) at once. 
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The proofs of (6.123)-(6.128) are even easier. In general, n(8, O, K) =n(s, O, F*, ~1), 

and hence (6.123)-(6.126) follow easily from (6.6), (6.32), (6.34), (6.45), (6.76), (6.87), 

(6.88) and (6.92). Also, n(s, oo, K)---n(8, oo, F* ,~I )  and T/ is bounded, so (6.127) and 

(6.128) are consequences of (6.34), (6.46) and (6.92). 

Now let A(s) satisfy (4.21) and (4.22) with A # ~<2-3h. I t  is clear from (6.98)-(6.100) 

that  (6.129) holds in {O < arg w < 2g} fl {~0 U ~z} with a in place of K, so (6.129) follows 

from (6.78), (6.79) and definition (6.112). All points of ramification of K are in ~1, and so 

we achieve (6.130) from (6.80) and (6.112). 

6.6. Proo[ of Theorem 4. Let  h(1), to be more precisely determined in a moment, satisfy 

0 < 200 h(1) < 72, (6.131) 

where ~/< (50) -1 is given in the statement of Theorem 4, and then introduce sequences 

hl(n ), h(n) with 

0 < h(n) = 2-nh(1), hl(n ) = h(n) 114, (6.132) 

(compare with (6.36)). We take h(1) so small that  

A(k) <7 ,  (6.133) 

which is possible from the conventions (6.92), (6.93). In particular, this means that  any 

function K(w) chosen in accord with Lemma 17 will have 

I/~x(w)l <r/  (]w I >r~). (6.134) 

According to Lemma 11, constants T(n) ( < (2g)-1), v(n), ( < �89 and K(n) ( > 2 l~ may be 

associated to each pair {h(n), hx(n)} so that  (6.7) follows from (6.1)-(6.6). The constants 

M ~ and T O required in the statement of Theorem 4 are then given by 

Moo = 10.24K(1)r(1)-2h(1)-e( > 2 '~ (6.135) 

and T0=T0(1) ---<T(1) so small that  

h(1)To I > 2 log Moo. (6.136) 

In addition choose T0(n)~<T(n)(n ~>2) so that  

h(n)To(n) -1 >/4 log(2eK(n)} 

and finally ro(n ) (n>~ 1) so large that  we have 

IrA'(r)] < T0(n ) (r > re(n)) 
and 

(6.137) 

(6.138) 
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ro(n ) >~ [lOv(n)-2hl(n)-5] 2, 

where it is assumed tha t  

K(n)ro(n  ) < K ( n §  1)r0(n § 1) (n >~ 2). 

Now let e(s) be a decreasing funct ion with 

2h(1) >~ e(s) >/h(1), (0 < s <22~g(2)r0(2)2), 

2h(n)/> e(s) ~> h(n) (s >~ 222K(n)2ro(n)2, n >~ 2) 

(consistent on account  of (6.132) and (6.140)) and let 

s = (s; sin ~A(s) = 57~e(s)}; 

note  from (4 .10) tha t  I :~  {s>~M~176 Let  

M 

(6.139) 

(6.140) 

(6.141) 

(6.142) 

(6.143) 

(6.144) 

be a disjoint union of intervals maximal  with respect to the p roper ty  tha t  in each full 

interval  (~ ,  g'~) 
1 +4e(s) ~< A(s) ~ 2 -4~(s)  ( ~  ~ s ~< ~) ,  (6.145) 

while for each i there exists a~ such tha t  

1 +6e(s) ~ A(a~) ~ 2 -6e(s )  (a, < a, < ~'~). (6.146) 

The complementary  intervals (a'l, a~+l) are assigned to I 1 or 12 by  the rule 

(~ i ,~+l )EIm if [ A ( s ) - m [ < 6 e ( s )  ( a i < ~ s < ~ t + l ) , ( m = l , 2 ,  i = l , 2  . . . .  ). (6.147) 

We allow the possibility tha t  some r or ac'~ = c~; i.e. M < c~ in (6.144). 

I t  is easy to define H for those w having I w[ E 11 U 12: 

log H ( s d  t) = - S(s)  s (�89 < t < 2zc - �89 s E I 1 U I2) (6.148) 

log H ( s d  t) = - S(s)  ~ tA(s)(t-~)-2nt~9-1[A(s) -1](t-(1/2)•) (I t l < �89 S E I1), (6.149) 

log H(se *t) = - S(s )8  iA(s)(t-n)+2ntn-'[2-A(s)l(t-(1/2)n) (l$l < �89 sE I2), (6.150) 

(as in (6.98)-(6.100) it  mus t  be checked tha t  H is well-defined). We observe tha t  H satis- 

fies (2.1) a t  each interior point  of 11 O 12. 

Tha t  
I,,,(w)l <n (Iwl eI1U I2), (6.151) 

I .(w)l o IwleXlUI2), (6.152) 
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follows from (4.6), (6.147)-(6.150) and computat ions  of the nature  used in (6.102), 

(6.103); t ha t  A ( 8 ) - m - ~ 0  as s o o o  in I m is crucial here as we saw in (6.103). 

To define H in the rest of the plane requires Lemmas  15 and 17. Le t  {N(n)}  (n = 

1, 2 . . . .  ) be an increasing sequence such tha t  

~ >1 21~K(n)2ro(n) ~ (i >~ N(n)).  (6.153) 

Then for each n( ~> 1) we introduce a differentiable funct ion A~(8)(8 >0)  having 

1 +3h(n)  ~< An(s) ~< 2 -3h(n ) ,  (6.154) 

81A'~(s) I < v0(n) (8 >0)  (6.155) 

and sequences {fl~}, {fl'~} (N(n) <~i < N ( n  + 1)) with 

�9 .. fl, < fl'~ < fl,+l < ... (N(n) ~ i < _N(n + 1)). (6.156) 

We first require tha t  
fl~/fl, = ~'t/~ (N(n) <~ i < N(n  + 1)) (6.157) 

and we define A,(s) on fl~ ~< s < fl[ by  

(;,) < A n ( s ) = A  s (fl,<s.~fl~, N(n)<<. i<N(n+ 1)). (6.158) 

The choice of the {fl~} and the definit ion of An for the remaining s is made so tha t  (6.154), 

(6.155) and (6.157) hold and in addit ion 

;' f; An(u) u- ldu  = A(u) u - l d u  (N(n) <~ i < N(n  + 1)). (6.159) 

Note from (6.154) and the bound 1 ~<A(s)~<2 in (4.4) t ha t  (6.153) and (6.159) give as a 

lower bound 
fl >~ ~1/2 >i 28K(n) r0(n). (6.160) N ( n )  ~ ~ N ( n )  

I t  is easy to construct  such differentiable functions An(s), and (6.156)follows from 

(6.157), (6.158) and the analogous properties of the {~}, {a;} in (6.144). I t  is impor tan t  

to note  tha t  (6.155) follows from (6.160), (6.153) and (6.138). In  the spirit of (4.7), let 

S~( s )=exp{ f18An(u )u -1du}  (8>0)  (6.161) 

and let 
7/(n) = {fit, fl'~; N(n) ~< i < _N(n + 1)}. (6.162) 

We want  to apply Lemma 17 to each pair  A~(s), 7/(n), so it  must  be be checked t ha t  the 
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relevant hypotheses are satisfied. Property (6.154) of A.(8) is the exact analogue of (6.1), 

and (6.155) is (6.5). Clearly (6.2) also follows from (6.155). 

Next we check that ~/(n), defined in (6.162), satisfies (6.24), (6.25) and (6.37)-(6.39). 

Of course, (6.24) and (6.25) are now consequences of (6.37)-(6.39), and in obtaining (6.160) 

we have already checked (6.37). 

The construction of I 0 (el. (6.141)-(6.144)) produces a t with r162 and 

]A(a , ) -A(a , ) ]  >~�89 (N(n) <i  < N(n+  1)). (6.163) 

We obtain from (6.163) with (6.155), (6.157)-(6.159) that  

t 

~ "G(n) log ~ 

and these reasons with (6.137) and (6.157) show that  

fl'l _ ~'~ > eaf~)h(~)To(~-1 ) 2UK(n)~ (N(n) < i < N(n + 1)), 
~t 0CI 

which shows that  ill/fit satisfies (6.39). 

We next consider fl~+l/fl[. According to (6.157)-(6.159), 

1)) 

(N(n) ~< i < N(n + 1)) 

(6.164) 

so reasoning as in (6.160), we deduce that 

og -fl~- > �89 log ~,; . 

However, the maximality of the (:r ~)  in (6.143)-(6.146) shows there must exist big 

(~r with A(b~)>2-4e(bi) or A ( b 0 < l  +4e(b~); thus (6.141) and (6.142) show that 

IA(~;)-A(b,)[ >~ �89 As in (6.164) we obtain 

fl,+l/fl~ > 2nK(n) 9 (N(n) < i  < N(n +1)) (6.165) 

and (6.38) follows from (6.164) and (6.165). Finally, since ~ ,  a'te~: (of. (6.141), (6.142)), 

(6.158) shows that 

Isin nA,(fl,)] ~< 10~h(n); Isin ~A,(fl;)] ~< 10~h(n) (N(n) <~ i < N ( n +  1)), 

which gives (6.39). 
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Now (6.135) and (6.153) allow Lemma 15 to be applied. We get F*(z) = F*(z) in accord 

with (6.70), (6.76), (6.77), (6.83) and (6.86), and then, with ~ =  7~(n), of (6.162), Lemma 

17 constructs Kn(w) for {Iwl ~>~n(n)}- Since e(s)--,0, (6.143) and (6.154) show that  each 

7~(n) is bounded. Further, h(1) has been chosen to ensure (6.133) and h(n) satisfies (6.132), 

so it is clear from (6.113) and (6.122) that  

I.,,.(w)l <7 (Iwl ~/Tm, o, n ~ 1), (6.166) 

max I~,<.(w)l = o(1) ( , +  oo). (6.167) 
I wl~>#,v(.) 

We then complement (6.148)-(6.150) by 

\oq l 
(Iwle zo, ~ ,< Iwl <~',, N(n)<i<N(n+l)). (6.168) 

I t  is clear that  H satisfies (2.1), but it must be checked that  H is continuous. The 

definitions (4.7) and (6.161) with (6.157) and (6.159) give 

&(s) = &(fl3exp {fo: A.(u)u-'du } 

f f':<"t~'h(u)u-'du} = S ~s ]  =s(")exp/J ~ (,,! (fl~ <<. s< fl~, n(N) <~ i < N(n + 1)). 

(6.169) 

Since ~(n) satisfies (6.24), (6.25) and (6.37)-(6.39), it readily follows from (6.158), (6.169) 

and a comparison of (6.115) and (6.98)-(6.100) with (6.148)-(6.150) that  

log Kn(~te") = log H(flte ~t) (0 <<. t <~ 2~, N(n) <~ i < N(n + 1)) 

log K,(a'le ~) = log H(fl',e ~') (0 <~ t <~ 2~, N(n) <~ i < N(n + 1)). 

Thus H is quasi-meromorphic in the plane and (6.151), (6.166) and (6.168) yield (4.12). 

I t  is also clear from the explicit formulas (6.98)-(6.100) and (6.112) (when [w[ E/0) 

and (6.148) (when Iw] EI1U Is) that  (4.14)holds. Similarly, whenever A(s)=m ( m = l ,  2) 

in (4.15), our construction ensures that  s E I  1 U Is, and (4.16) is a direct consequence of 

(6.148)-(6.150). 

Next, we prove (4.13). The explicit formulas (6.148)-(6.150) show that  ~n(w)-+0 as 

] w ] -~ cr in 11 U Is. If I 0 is unbounded there are two cases to consider in terms of the de- 

composition (6.144): M = c ~  or M < ~ .  If M = ~ ,  then (4.13) follows from (6.167) and 

(6.168); if M < co, then H is given by (6.168) for all large w with some fixed n, and so then 

(6.122) gives (4.13). 
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The proof of (4.17) follows from the a rgument  principle by  elementary modificat ions 

of the a rgument  used in the proof of (6.116) in L e m m a  17. 

I t  is clear t ha t  (4.18) holds. Indeed  (6.127) and  (6.128) apply  to each Kn, and  (6.148)- 

(6.150) show tha t  all poles of H(w) occur when [w[ E I  0. Thus  if M <  ~ in (6.144), (6.128) 

implies (4.18), and if M =  ~ ,  (4.18) follows f rom (6.127). The proofs of (4.19) and  (4.20) 

are of the same nature,  since the zeros of H(w) only arise with Iwl E I  0. Thus if s - ~  in 

I 1 (J 12, (6.147) gives (4.19), (4.20). When  s - + ~  in _To, the same conclusions follow from 

(6.124) and (6.126) (when M < c~ in (6.144)) and (6.123) and (6.125) otherwise. 

Now suppose (4.21) and (4.22) hold. I f  A # =2 ,  then K is given by  (6.148)-(6.150) 

for all large w, and (4.23) is immediate  f rom these explicit formulas. If  A # <2 ,  the condi- 

t ions (6.132), (6.142) show tha t  E in (6.143) is a finite set. Thus I 0 contains all large s, 

so M <  ~ in (6.144). I n  this case, (4.23) is a direct  consequence of (6.129), (6.168) and (6.169). 

The proof of (4.24) subject to (4.25) is similar. I f  A # =2 ,  then H has only a finite num- 

ber of multiple values. Otherwise, M < oo in (6.144), and (6.130) subject to (6.81) provides 

the needed information.  
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