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I. Introduction 

We study here fully nonlinear second-order  degenerate  elliptic equations of  the follow- 

ing form 

F(D2u, Du, u,x)=O i n H  (1) 

where H is a separable Hilbert  space,  x denotes  a generic point in H,  u - - t h e  un- 

k n o w n - i s  a function f rom H into R, Du and D2u denote  the first and second Fr6chet  

differentials that we identify respect ively with elements  of  H,  and symmetr ic  bounded 

bilinear forms over H or indifferently bounded symmetr ic  opera tors  on H.  We will 

denote by L'(H) the space  of  all symmet r ic  bounded bilinear forms over H and we will 

always assume at least that 

F is bounded,  uniformly cont inuous on bounded sets of  L'(H)xHxR• (2) 
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By degenerate ellipticity we mean that F satisfies 

F(A,p,t,x)<~F(B,p,t,x), VA>~B, Vp6H, Vts  V x 6 H  (3) 

where A>~B is defined by the partial ordering of the quadratic forms associated with A, 
Bi.e .  

A~>B if and only if (Ax, x)>1(Bx, x) for all x 6 H  (4) 

denoting by (x, y), Ixl respectively the scalar product and the norm of H. 

The main motivation for studying such equations is the study of optimal stochastic 

control problems and their associated Hamilton-Jacobi-Bellman equations (HJB in 

short). We will explain in section III the precise infinite dimensional stochastic control 

problems we consider here. Let us only mention at this stage that it is well-known that 

a powerful approach to optimal stochastic control problems is the so-called dynamic 

programming methodminitially due to R. Bellman--which, in particular, indicates that 

the value function (or minimum cost function) of general control problems should be 

"the solution" of an equation of the form (1) namely the HJB equationmsee for more 

details W. H. Fleming and R. Rishel [12], A. Bensoussan [I], N. V. Krylov [22], P. L. 

Lions [25]. The essential feature of HJB equations in the general context of equations 

(1) is that F is convex with respect to D2u (in fact (D2u,Du, u)) and a typical form is 

sup - a~(x)a~iu- b~(x)Oiu+ca(x)u-fa(x) = 0  in H 
a6A i,j=�91 i=1 

(5) 

with appropriate conditions on the coefficients a~., b~, c a, fa, where A is a fixed set (of 

values of controls), where we identified x with (x~,x2, x3 .... ) 612 choosing an orthonor- 

mal basis (el, e2, e3 .... ) of H and where a0u, aiu denote the partial derivatives of u. 

In section II below, we present a notion of weak solutions of (1) that we call 

viscosity solutions since this notion is clearly adapted from the notion introduced by 

M. G. Crandall and P. L. Lions [4], [5] for finite-dimensional problems or infinite- 

dimensional first-order problems. We also explain how a few "classical" properties of 

viscosity solutions may be carried out in this infinite-dimensional setting and we refer 

to [4], [5], P. L. Lions [26], [27], M. G. Crandall, L. C. Evans and P. L. Lions [7] for 

more detailed properties in the "standard cases".  

Then, in section III, we introduce the class of stochastic control problems in 

infinite dimensions we will be studying. And we will show various properties of the 
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value function such as regularity properties. In some vague sense, these results are the 

infinite-dimensional analogues of those obtained in P. L. Lions [27]. 

Next, in section IV, we check that the value function is the unique viscosity 

solution of the associated HJB equation. This verification theorem will not be obtained 

by a purely PDE argument (even if it is possible to "translate" it into purely PDE 

s teps . . . )  and is more in the spirit of the results obtained by P. L. Lions [27] for finite- 

dimensional problems. 

Since we will be studying in sections III and IV model problems (with severe 

restrictions on the coefficients) we briefly explain in section V how to weaken some of 

the assumptions required in the preceding sections. 

At this stage, we would like to point out that even if the results presented here are 

somewhat analogous to those known in finite dimensions, the methods for proving 

them are quite different and many considerable "technical" difficulties appear. 

Let us also mention that various attempts to use dynamic programming arguments 

for infinite dimensional stochastic control problems have been already made, leading 

essentially to the construction of nonlinear semigroups (equivalent formulations of the 

optimality principle) and we refer, for instance, to A. Bensoussan [2], W. H. Fleming 

[13], Y. Fujita [14], Y. Fujita and M. Nisio [15], M. Kohlmann [21], G. Da Prato [8, 9]. 

Most of these works deal with the particular case of the optimal control of certain 

stochastic partial differential equations: a very important particular case since it 

contains the optimal control of Zakai's equation which is the basic object of interest for 

the classical optimal control of stochastic differential equations with partial observa- 

tions. However, such situations introduce the additional difficulty of unbounded terms 

in the HJB equations, terms that require appropriate modifications of the arguments. 

For deterministic problems, similar difficulties were solved in M. G. Crandall and P. L. 

Lions [6]. Therefore, in order to keep the ideas clear, we will treat such cases in Part II 

([30]). 

We would like to conclude this introduction by a few comments on the structure of 

proofs concerning uniqueness results of viscosity solutions of second-order equations. 

In finite dimensions, except for [27] which is the guide line for our analysis here, 

general uniqueness results for second-order equations have been recently obtained by 

R. Jensen [19]; R. Jensen, P. L. Lions and P. E. Souganidis [20]; P. L. Lions and P. E. 

Souganidis [31]; H. Ishii [16]; H. Ishii and P. L. Lions [17]. All these proofs use in a 

fundamental way the existence of second-order expansions at almost all points for 

convex or concave functions on R N (N<oo): a classical result due to Alexandrov, 

whose counterpart in infinite dimensions is not clear and this seems to prevent a 
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straightforward adaptation of  these arguments to infinite dimensions. However,  some 

of the arguments that we use in the next  sections indicate that a rather weak version of  

this differentiability result is needed. We hope to come back on this point in a future 

publication. 

H. Viscosity solutions for second-order equations in infinite dimensions 

The notion of  viscosity solutions of  (1) will be adapted from the corresponding notions 

in finite dimensions. The main difference will be in the choice of  test functions: we will 

work with the following space of  functions 

X =  {q0 E CI(H;R);  Dq0 is Lipschitz on bounded sets of  H;  

for all h, kEH, limt_,o+(1/t)(Dq~(x+tk)-Dq~(x),h) exists (6) 

and is uniformly continuous on bounded sets of  H}.  

By elementary differential calculus considerations,  one checks easily that if q0 EX then 

we have 

lim 1 (Dcp(x+ tk)-Dq~(x), h) = lim 1 (Dg(x+ tk)-Dg(x), h) 
t-.o+ �9 t--.o t 

t*O 

=(A(x)h,k), Vx, h, kEH 

where A(x)EL'(H), IIA(x)ll is bounded by the Lipschitz constant of  Dq0 on balls of  H 

and A(xn) ~ A(x) pointwise i f x n ~  x in H. Fur thermore ,  the limits above are uniform on 

bounded sets of  H.  

Let  us also remark that one can replace in (6) the condition on directional 

derivatives by the following conditions: ao~o exists and is continuous on bounded sets of  

H for all l~<i,j<oo, or aiDq~(x) exists and is continuous on bounded sets of  H for all 

1 ~<i<oo, where ai denotes  the partial derivation with respect to xi and x~, x2, x3 . . . .  are 

the coordinates of  x with respect  to an arbitrary orthonormal basis (el, e2, e3 . . . .  ) of  H. 

In all that follows, we will denote  by D29(x)=A(x). Denoting by BUCIoc(H)= {u E C(H), 
u is bounded uniformly continuous on balls of H}, we may now give the 

Definition II. 1. Let  u E BUCto~(H). We will say that u is a viscosity subsolution 

(resp. supersolution) of  (1) if the following holds for each q0 EX 

at each local maximum x 0 of u-q0, we have 

(7) 
lim infF(D2q~(y), Dq~(xo), u(xo), xo) <- 0 

y ~ X  0 
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(resp. 

at each local minimum x 0 of u-qg, we have 

(8) 
lim sup F(D2qg(y), Dq~(Xo), u(xo), x o) >! 0). 

y---~X 0 

And we will say that u is a viscosity solution of (1) if u is both a viscosity supersolution 

and subsolution of (I). 

Remarks. (i) If H is finite dimensional, then X=C(H)  and the above definition is 

nothing but the usual one. 

(ii) We may replace local by global, or local strict, or global strict where by strict 

we mean that (u-qJ)(x)<.fu-q~)(xo)-o~(Ix-xol) where w(t)>0 if t>0. 

(iii) Let us remark that in view of (2), the definition of X and BUCIor it is 

possible to replace in (7) (for instance) 

lim inf F(DZcp(y), Dqo(Xo), U(Xo), x o) by lim inf F(DZcp(y), Dq~(y), u(y), y). 
y---,x o y---,x o 

(iv) Let us finally warm the expert reader that this definition is motivated by the 

optimal control problems treated here (and in Part II [30]) but might require some minor 

modification in the case of (very general) stochastic differential games in infinite 

dimensions (unless of course the above notion is equivalent in general to the classical 

one recalled below). 

It will be useful to compare the above notion with more usual ones which involve 

either the class X'= {cp E C2(H, R), qg, Dcp, D2qo E BUCIor or subsuper differentials in 

the following sense 

D2+ u(x o) = I (A,p) E L'(H)xH; 

sup[ {u(y)-U(Xo)-(p, U-Xo)-�89 y-x0) } �9 Ix0-y[ -2] ~< 0} (9) lim 
y---~x 0 

U(Xo) = ( (A,p)EL'(H)xH; D 2_ 

lim inf[(u(y)-u(Xo)-(p, Y-Xo)-�89 Y-X0)} "lx0-y1-2] ~> 0}. (10) 
y---~x 0 

To simplify notations, we will say that u E BUCIoc(H) is a classical viscosity 

subsolution (resp. supersolution) of (1) if (7) (resp. (8)) holds for all cpEX' or equiv- 
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alently (see [27] for the proof of this assertion in finite dimensions which adapts trivially 

to our case) if the following holds 

F(A,p, U(Xo),Xo)<~O, V(A,p)ED2+ u(Xo), VxoEH (I1) 

(resp. 

F(A,p,U(Xo),Xo)~O, V(A,p)EO2_u(Xo), VxoEH). (12) 

The following result gives some condition on F under which both notions are 

equivalent---observe that clearly a viscosity (sub, super) solution is always a classical 

viscosity (sub, super) solution. 

PROPOSITION II.I .  Let u E BUCIoc(H) be a classical viscosity subsolution (resp. 
supersolution) of(I) .  Then, u is a viscosity subsolution (resp. supersolution) of(I )  if F 
satisfies the following condition: there exists an increasing sequence of finite dimen- 
sional subspaces HN of H such that UNHN is dense in H and 

lira liNm F(A,p , t , x ) -F  ~APN+�89 QN, P,t ,x = 0  (13) 
6--*0+ 

( ( ))- lim liNm F(A,p , t , x ) -F  ~4PN+�89 P,t ,x = 0  (14) 
6--*0+ 

for all xEH, tER, pEH, AEL'(H), C>~O, where PN, QN denote respectively the 
orthogonal projections onto HN, H~. 

Remarks. (1) The proof below shows that, in fact, (7) (resp. (8)) holds for all 

q~ E CI(H, R) such that Dq0 is locally Lipschitz, 

1 
lim "--t-(Dcp(x + tk ) -  Dcp(x), h) 

t- ,o+ t 

exists and is continuous on H (Vh, k E H) whenever (13) (resp. (14)) holds. 
(2) The assumptions (13) or (14) are not always satisfied for natural examples of F. 

For instance, if F=suPl~lffil[-(A~,~)]+F(p,t,x), (13) holds while (14) does not hold 

(take A=0 for instance . . . ) .  
(3) Actually, the proof below shows that (13) (resp. (14)) implies that (7) (resp. (8)) 

holds with D2cp(y) replaced by D2q0(x), that is a stronger property holds. It is therefore 

plausible that, in general, both notions coincide but we have been unable to prove it 

(even if it is possible to prove the equivalence between the classical notion and weaker 
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formulations than (7)--(8) involving similar "relaxation" ideas). At this point, it may be 

useful to give an example of a function q0 belonging to X but not to X': take H=l 2, 
(x=(x,),~3 and 

~(x) = E -~ cp(nx.) 
n ~ l  

where (for instance) q0 E C2(R), q0">0 on R, 

lim q0"(t) < qg"(t) < lim qr on R. 
t---~-- oo t---~ + oo 

Then, �9 is convex, belongs to XnCI'~(H) and for all x, h, kEH 

(D2~(x) h, k) = E qg"(nx.) h. k.. 

Clearly, D2~(O)=cp"(O) l 

(D2dp(-~nn en) e., e.) = cp"(Vr-~)~ 9"( +~), 

so D2~(x) is not continuous at 0 (in the L(H) topology). 

In fact, this example provides a convex, C ~' ~ function �9 (belonging to X) which 

has nowhere a second-order expansion (i.e. ~(x+h)=~(x)+(D~(x),h)+�89 h)+ 
O(Ihl 2) for some A EL'(H)). 

Proof of Proposition II.1. We will prove only the subsolution part since the 

supersolution part is proved by the same argument. We thus take q0EX such that u - 9  

has a local maximum at x0, hence there exists 6>0 such that 

u(x) <- U(Xo)+9(x)-9(Xo), if Ix-x01 6. 

Therefore, we have for Ix-x01~ 

1s u(x) ~ U(Xo)+(Dg(xo), x -x  o) +--~ (D2q~(x0 + t(X-Xo)) (X-Xo), x -x  o) dt 

and we denote by A(x)=f~D2rp(Xo+t(X-Xo))dt. We next observe that 

(A (x ) ( X -  Xo) , X -  Xo) <- ( A ( x ) e u ( x -  Xo) , X -  Xo) + Cle u ( x -  Xo)l l a u( x -  xo)l + Cl Q u ( x -  xo)l 2 
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where C denotes various constants independent of x and N. And we deduce from the 

properties of q0 that for IX-Xol<<.6 

(ill(x) ( X -  Xo), x -  x o) <~ (OZg(x0) P N(x- Xo), x -  x o) + eN(lX- Xol)]X-Xo[ 

• 1+61eN(x-x0) l 2+CIQN(x-x012 

where eN(a)---~0 as o---~0+. Next, we observe that (see [27] for more details) there exists 

~PNE C2(R) such that ~0~0)=~p~(0)=~p~(0)=0 and 

t  lx- xol) Ix-  xof le N(x-  xo)l <- e N(IX- xol)lx- xol 2 <- wN(Ix-x01). 

Therefore, we have finally for Ix-xol<~6 

u(x) <. u(x o) + (Dg(xo) , x -  x o) + �89 P lv(x- xo), x -  x o) 

1 C 
+ ~()(PN(X--Xo) , X--Xo) +--~" --~(QN(X--Xo) , X--Xo) + ~])N(Ix-Xol ) . 

We may now apply (11) to deduce, denoting by A=D2qg(Xo), p=Dcp(Xo), t=U(Xo) 

F(~APN+�89 +dPN+-~ QN, p, t, Xo) <~ 0 

and this yields (7), letting N--.oo, 6---*0 and using (13). [] 

We conclude this section with a stability (or consistency) result that we state only 

for subsolutions and we leave to the reader the easy adaptation to supersolutions. 

PROPOSITION I1.2. Let u~ E BUCIor be a viscosity subsolution o f  

Fn(D2un, Du~, un,x) = 0 in H, n I> 1 (15) 

for some F~ bounded, uniformly continuous on bounded sets o f  L ' ( H ) x H x R •  We 

assume that there exist u E BUCIoc(H) F bounded, uniformly continuous on bounded 

sets o f  L ' ( H ) x H x R •  such that 

u~(x)~u(x)  f o ra l l  xEH,  limun(x~)<~u(x) i f  x~-~x  i n H  (16) 
n 

lirn F~(A n, p~, t~, xn) i> l_im F(A~, p, t, x) (17) 
n rl  

if  A~ is bounded in L'(H), p~ ~ p in H, t~ ~ t in R, x~ ~ x in H. 
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Then, u is a viscosity subsolution of( l ) .  

Proof. We just sketch the proof since it is a straightforward adaptation of the 

corresponding argument for first-order problems given in M. G. Crandall and P. L. 

Lions [5]. Indeed, let qDEX, xoEH be such that u-tp has a local maximum at x0; 

replacing if necessary tp by q~+lx-x014 we may assume without loss of generality that 

there exists 6>0 such that 

(u-~)fx)  ~< (u-C) (Xo)-Ix-xol, /f Ix-x01 ~< 6. 

Then, exactly as in [5], we deduce the existence of xnEB(x0,6), p~EH such that 

u~(x)-q~(x)+(p~,x) has a local maximum at x~ for n large enough and x ~ x  o, 

u~(x~) ~ U(Xo), p~ ~ O. (This is an easy consequence of the general perturbed optimisa- 

tion results due to C. Stegall [34], I. Ekeland and G. Lebourg [1 I], J. Bourgain [3].) 

Therefore, applying (7), we see that there exists y, ~ x 0 such that 

Fn(D2q~(yn), Dqg(Xn) + p n, u~(xn), x~) <~ 1 .  
n 

And we conclude easily using (17). [] 

Let us make a few final comments on the arguments introduced in this section: first 

of all, everything we said extends trivially to the case of equations set in an open set Q 

of H instead of H itself. Next, as usual, we consider "Cauchy" problems of the form 

OU+F(D2U, Dxu, U,X,t)=O in H x ( 0 , ~ )  
cot 

as special cases of (1) where the equation takes place now in an open set Q=Hx(0 ,  oo) 

of H = H x R  and where H is replaced by H, x by (x, t) .... 

III. Optimal stochastic control in infinite dimensions 

III.1. Notations and assumptions 

We will be considering two examples of optimal control of "diffusion-type" processes 

in infinite dimensions: namely, discounted infinite horizon and finite horizon problems. 

Furthermore, to simplify the presentation and keep the ideas clear we will not try to 

make the most general assumptions on the coefficients and in the case of finite horizon 

problems we will assume that the coefficients are not time-dependent. 
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Let us now introduce the main notations and assumptions. Let  M be a complete 

metric space, let V be a separable Hilbert space and let us denote by (~,  ~2, ~3 . . . .  ) an 

orthonormal basis of V. An admissible (control) system ~wi l l  be the collection of: (i) a 

probability space (f~, F, F z, P) with a right-continuous filtration of  complete sub-a fields 

F t. (ii) a V-valued Brownian motion W, that is Wt is continuous, F~-measurable, and 

((Wt, ~t))n is a sequence of independent one-dimensional Brownian motions, (iii) a 

progressively measurable process at taking values in a compact subset of ~r Let  us 

mention that we could as well fix the probability space and W,. Then, for each 5e and for 

each x E H, the state process Xt will be the continuous, Ft-adapted solution of the 

following stochastic differential equation in H (written in It6's form) 

d X , = o ( X ,  at).dWt+b(X,,at)dt for t>~0, X 0 = x ,  (18) 

where a and b satisfy assumptions listed below which will insure in particular the 

existence and uniqueness of a solution of (18). 

For each system .Se, and for all x E H, t~>0 we consider some cost functions and the 

associated minimal cost functions---the value functions. In the infinite horizon case, we 

consider 

f0 (f0 ) J(x, 5") = E 'f(X. a t) exp - c(X~, a~)ds dt (19) 

u(x) = lim J(x, 6e), Vx E H (20) 

while in the finite horizon case, we introduce 

(21) 

u(x,t) = infJ(x, t, 50, VxCH,  Vt >~0 (22) 
5o 

where the infima are taken over all admissible systems b ~. Here and below, f ,  g are 

given functions which satisfy conditions listed below that insure in particular that 

formula (19)-(22) are meaningful. 

In all that follows (even if some of these assumptions are not necessary for most of 

the results presented in sections III and IV) we will assume that a, b, f ,  c, g satisfy the 

assumptions that we detail now. First of all, for each (x, a)E H x M ,  or(x, a )E  ;~(V, H)  

that we define to be the Hilbert space contained in L(V, H) (bounded linear operators 
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from V into H) composed of those elements o such that Tr(oo*)<oo: Y((V,H) is a 

Hilbert space for the scalar product Tr (o~ ~ ) ,  where Tr denotes the trace. 

Then we assume 

aE BUC(Hx M; ~(V, H)), 

D,a(',a)EC~o't(H;L(H,~t(V,H))), for all aE M; supllDxa(.,a)ll~., < or 
aEM 

(23) 

In less abstract words, (23) means that o is differentiable with respect to x for all x, a, 
its differential (with respect to x) D~ cr which is at each (x, a) • H x  M a bounded linear 

operator from H into ~e(v, H) is bounded (in operator norm) uniformly in (x, a) E H x  M 

and is Lipschitz in x with a uniform (in a) Lipschitz constant. We next turn to the 

assumptions we make on b 

b E BUC(H• M; H) (24) 

D,b(',a)EC~ for all aEM; supllDxb(.,a)ll~.,<~. (25) 
a E d  

Finally, we assume that f, c, g satisfy 

fE  BUC(Hx M; R), g E BUC(H), c E BUC(Hx M; R) (26) 

and in the case of the infinite horizon problem ((19)-(20)) we assume furthermore 

inf[c(x,a); xEH,  a E M ] = c 0 > O .  (27) 

It is then easy to check 

solution X, of (18) and that 

expressions in (19)-(22). 

Next, we denote by 

that the assumptions made upon o,b yield a unique 

those made upon f, c, g give meaningful and finite 

a = ~otT*, V(x, a) E Hx  M. (28) 

Observe that a is a nuclear operator on H (V(x, a )EHxM)  and that in particular: 

sup[Tra(x, a); x ~.H, a E M] < ~. 

In all that follows, we will denote indifferently a a, o ~, b a, fa ,  c a or a(. ,  a), o(. ,  a), 

b(., a), f( . ,  a), c(., c0. 
From the classical dynamic programming considerations, one expects the value 

functions u ((20) or (22)) to solve respectively 
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(Infinite horizon problem) 

(Finite horizon problem) 

Ou 
Ot 

with the initial condition 

P. L. LIONS 

F(D2u, Du, u, x) = 0 in H 

- -  +F(D2u, Du, u, x) = 0 

u ( . , 0 ) - g ( . )  o n H .  

(29) 

in Hx(0 ,  ~) (30) 

Here and below, F is the HJB operator namely 

F(A, p, t, x) = sup{-Tr(a  a . A ) - ( b  a, p)+c'~-f~}. 
a E ,~  

Observe that F does satisfy (2) and (3). 

(31) 

(32) 

III.2. Elementary regularity properties of the value functions 

We will use the following conditions 

and 

for all aEM,  f~,c~EC~b"(H;R); sup{llFIl~.,+llc~ll~.,} < ~ (33) 

g E C-~b' '(H) (34) 

for all aEsr Dxf~,DxcaEC~b"(H;H); sup(llOxf~lt~.,+llO~c~ll~.,) < ~  (35) 
a E M t .  

Dg E cOb' '(H; H). (36) 

Then, exactly as in P. L. Lions [28], one can prove the following results. 

THEOREM III.1. (Infinite horizon problem: (19)-(20).) 

(i) The value function u ~ BUC(H). 

(ii) There exists a constant 201>0 (bounded by a fixed multiple o f  the supremum 

over H•  of llDxotl+llOxbll) such that if(33) holds, then u satisfies 

lu(x) -u(y) l  <<- C lx -y l  a for all x, y E H, for some C >I O, (37) 



SECOND ORDER EQUATIONS IN INFINITE DIMENSIONS. I 255 

where a=l if  co>2 o, a is arbitrary in (0, 1) i f  co=2 o, a=Co/2 o if co<2 o. 

(iii) There exists a constant ,~t~>0 (bounded by a fixed multiple o f  the supremum 

over H x ~  o f  IIDxall+ltO~bll) such that if (33) and (35) hold and c0>~.1 then u is semi- 

concave on H i.e. there exists a constant C~O such that 

u(x+h)+u(x-h)-2u(x)  <~Clhl 2, Vx, h E H. (38) 
[] 

THEOREM 111.2. (Finite horizon problem: (21)-(22).) Let TE (0, oo). 

(i) The value function u E BUC(H• [0, T]) and u(., 0)--g on H. 

(ii) I f  (33)-(34) hold, then u satifies for some C>~O 

lu(x, t ) -u(y ,  t)l ~< CIx-Y[ for all x, yEH,  tE [0, T). (39) 

Furthermore, i f  (36) holds, then u satisfies for some C>~O 

lu(x, t)-u(x,  s)[ ~< clt-sl for all xEH,  t, s E [0, T). (40) 

(iii) I f  (33)-(36) hold, then u satisfies for some C~O 

u(x+h, t)+u(x-h,  t)-2u(x, t) <~ Clhl 2, Vx, h E H, Vt E [0, T]. (41) 
[] 

Remark. If (35) holds and g is "very smooth" (D~ E C~b'I(H) for 0~<a~<3) then 

similar arguments show that u is also semi-concave on Hx[0,  T] in (x, t) i.e. 

u(x+h, t )+u(x-h , s ) -2u(x ,~- )<~C( lh l2+( t - s )2) ,  Vx, hEH,  Vt, sE[O,T]. (42) 

[] 

111.3. Value functions are viscosity solutions of the HJB equation 

In view of  Theorems III. 1 and III.2, we know that the value functions lie in BUC, so 

the following result makes sense. 

THEOREM III.3. (i) (Infinite horizon problem.) The value function u given by (20) is 

a viscosity solution of  the HJB equation (29). 

(ii) (Finite horizon problem.) The value function u given by (22) is a viscosity 

solution of  the HJB equation (30). 

Proof. The strategy of  the proof is basically the same as in P. L. Lions [27], [28], 

except that we have to pay some attention to difficulties associated with infinite 
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dimensions namely that functions in X are not C 2 and that we have to be careful about 

It6's formula. 

Since the arguments are essentially the same, we will only show that, in the infinite 

horizon case, the value function is a viscosity supersolution. To this end, we take q~ EX 

such that u-q? has a global minimum at some point x0 E H. Without loss of generality 

(replacing if necessary q~ by some modification of it), we may assume that U(Xo)=q~(Xo) 

and that q~, Dq~, D2q~ are bounded over H,  Dq~ is Lipschitz over H, (D2q~(x)h, k) is 

uniformly continuous on H for all h,kEI t .  Recall that we have to prove 

li--m sup{-Tr(a~(x0)'D2q~(y))-(b~(xo), DqJ(xo))+ca(Xo) q~(x0)-fa(x0)} ~> 0. (43) 
y - - * x  0 a 

In order to do so, we will need several ingredients: the first of which is nothing but 

the usual optimality principle of the dynamic programming argument that we will not 

reprove here (see N. V. Krylov [22], M. Nisio [32], [33], K. It6 [18], N. El Karoui [10], 

W. H. Fleming [13] . . . ) .  

LEMMA III. 1. The value function satisfies for  all h>O, x E H  

(44) 

Remark. In fact, u also satisfies the following identity: choose, for each ~, a 

stopping time 0, then for all x E H 

(45) 

The other technical lemma is the justification of It6's formula for q~ EX. We will 

prove this lemma after concluding the proof of Theorem III.3. 

LEMMA III.2. Let q~EX be such that q~, Dq~, D2q~ are bounded over H, then for 

each ~ and for each stopping time 0 we have for all x E H  [o 
q~(x) = - E  {Tr(a~'.D2cp)(X,)+(b%,Drp)(X,)-c q)(X,) } 
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We may now conclude the proof of Theorem III.3. In view of (44), (46) we have for 
all h>0 

hence we deduce dividing by h 

su, ! [ h Jo E(-Tr(aa'(X')"D2cp(X'))-(ba'(X')' Dcp(X'))+c'~'(X') r 

• exp( -  fo'Ca'(X,)ds ) at} >1o. 

Then, by standard arguments, one deduces easily 

~-e(h)--~O as h~O§ 

Next, let 6>0, the above inequality yields 

sup sup~ ? f hE{ - Tr( a~'(Xo).D 2q~(y))-(b~'(xo),Dq~(xo))+ c~'(Xo)qg(x o)-f~'(xo)} dt } 
yEB(Xo,r ) 5r [. n ,Jo 

To conclude, we observe first that the sups{...} is nothing but 

sup { - Tr(a'~(Xo) �9 D2~o(y)) - (ba(xo), Dcp(Xo)) + ca(Xo) qo(x o) -f~(x o) } 
a E ~  

so that we deduce from the above inequality 

limsup { sup{-Tr(aa(Xo) �9 D2qo(y))-(b~(xo), Dcp(x o))+ca(xo) qO(Xo)-F(Xo) } ) 

>I- e(h)- C lim sup P(X, ~i B(xo, 6)) dt . 
6~0+ 5e L rl 

17-888289 Acta Mathematica 161. lmprim~ le 27 d~cembre 1988 
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Therefore, (43) will be proved as soon as we show 

u f i0 / s P(Xt~iB(xo, d))dt --*0 as h--*O+, for each 6 > 0 .  (47) 

The convergence for each ~ is obviously a trivial consequence of the continuity of Xt 

which implies that P(Xt~iB(xo,6))--~O as t--~O+, for each 6>0. To check that the 

convergence is uniform in 3, we just observe that by It6's formula one obtains by 

routine arguments 

EEIX,-xol 2] <.Ct, for all tE[0, I] 

where C is independent of 5e. Hence, 

sups o P(X t ~ B(x o, 6)) <~ ~ t 

and (47) is proved. [] 

Remarks. (1) We gave the proof only for the supersolution part. For the remaining 

part, the proof is actually a bit easier and yields a stronger result than (7) namely 

at each local maximum x 0 of u-q0, we have F(D2cp(xo), Dcp(Xo),U(Xo), x o) <~ 0 (7') 

for all q0 E X. 

(2) Observe also that the usual verification argument also yields that value func- 

tions are classical viscosity solutions, a fact that is also deduced from the above result 

since (section II) viscosity solutions are indeed classical viscosity solutions. 

Proof of  Lemma 111.2. We justify (46) by a finite dimensional approximation. Let 

HN be an increasing sequence of finite dimensional subspaces of H such that UNHN is 

dense in H and let us denote by pN the orthogonai projection onto HN. The system 5e 

and x E H being fixed, we denote by X~ the continuous U-adapted solution of 

dX~ = PNo(PNXNt , at). dWt+PNb(PNXNt , a t) dt, X~ = PNx. (48) 

Observe that X~ E H u for all t~>0 and that q~ln~ is now C 2. Hence, (46) holds if we replace 

x by PNx, X t by X~, ba( �9 ) by PNba(. ) and a~( �9 ) by pNa~(" ) pN. Therefore, observing that 

D2cp(y)--.D2cp(x) pointwise if y - . x ,  (46) is proved as soon as we show 

E[  s u p  ]xN-xtl 2] "~ O, VT<or (49) 
L t E [0. TI / 
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In order to prove (49) we apply It6's formula and we find 

E [ I X ~ - X f ]  = Ix-PNxI%E Tr {(a~'(Xt)-eNa~'(X~)) 

)*PN))+2(b~ ),X,--XN, ) dt 

hence, 

f0 E[IX7-X,I 2]  <lx-eNxl2+C E~Nt-Xtl2dt 

+C E{Tr(oa'(Xt)-PNa~'(Xt)) �9 (o~'(Xt)*--~'(Xt)*PN)} dt 

+C E{Iba'(X,)-eNb~'(X,)l 2} dt 

for some constant C>~0 (independent of s, N).  To conclude, we just observe that the 

last integrals converge to 0 as N goes to +oo by Lebesgue's lemma; therefore, by 

Gr6nvall's lemma we deduce 

sup E[IX -X,I 2] o. 
O<~t~T 

And this yields (49) by standard arguments. [] 

111.4. Further regularity properties of the value functions 

THEOREM 111.4. In the finite horizon case ((21)-(22)) we assume (33)-(36) while in the 

infinite horizon case ((19)-(20)) we assume (33)-(35) and c0>Ai. Then, the following 

regularity properties o f  the value functions u hold (in the finite horizon problem, these 

properties hold uniformly for t E [0, T] for  all T<oo). 

(i) There exists a constant C>~O (independent o f  a E ~ )  such that u is a viscosity 

subsolution, respectively supersolution o f  

-Tr(aa.D2u)<-C in H, resp. -Tr(aa.D2u)>~-C in H. (50) 

(ii) Assume that there exist an open set tocH, a positive constant v>O, and a 

closed subspace H' o f  H such that 

sup(aa(x)~,~)~vl~l z, V~EH',  VxEw. (51) 
a E ~  
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Then, there exists a constant C>~O (depending only on v) such that for all ~ E H', 1~1= I, 

u is a viscosity subsolution, respectively supersolution o f  

-(D2u(x)~,~)<~C in to, -(O2u(x)~,~)~-C in to. (52) 

And this is equivalent to say that if  we write x=(x ' , x " )EH'xH '• then for each 

x"EH '~, u(. ,x") is differentiable, Vx, U is Lipschitz on to and 

IVx, Clx -x l, V x " e H  ' l  (53) 

for all x~, x~EH' such that {O(x~,x")+(1-O)(x~,x"); OE[O, 1]}=to. 

Remarks. (I) (50) and (52) really mean that Tr(aa.D2u), (D2u~,~) are bounded 

(independently of a E ~r ~ E H' respectively) on H, to respectively. 

(2) The above regularity result are the exact infinite dimensional analogues of the 

regularity results obtained in P. L. Lions [28] for finite dimensional problems. 

(3) In view of Proposition II. 1, we see that inequalities (50), (52) in viscosity sense 

or in classical viscosity sense are equivalent. 

Proof o f  Theorem 111.4. To simplify notations, we will say that F(D2u, Du, u, x) is 

bounded in viscosity sense on an open set ~ of H if there exists C~0 such that u is a 

viscosity subsolution, respectively viscosity supersolution of 

F(D2u, Du, u,x)<~C in~?, F(D2u, Du, u , x ) ~ - C  in~.  

Next, we will make the proof of Theorem 1II.4 only in the case of the infinite 

horizon problem since the proof in the other case is very much the same. Recall also 

that by Theorem III. 1 we know that u is Lipschitz and semi-concave on H (i.e. satisfies 

(37) with a = I and (38)). Observe finally that (38) immediately yields that u is a viscosity 

supersolution of 

- ( D 2 u ( x ) ~ , ~ ) ~ - C  in H, for all ~EH, = 1. (38') 

We first prove (i). To this end, we denote by Sa(t) the Markov semigroup corre- 

sponding to a fixed control ctt~ct E ~r i.e. 

[Sa(t)cp](x) = Eq~(X,), VxEH,  Vq0EBUC(H) 

where XI is the solution of (I 8) corresponding to at---a. Clearly, Sa(t) is order-preserving 

that is Sa(l)qVl~Sa(t)q)2 if q01~<tp2 on H. Therefore, for all x E H  
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l {u-Sa(t) u}(x) {J(x, 6P)-S~(t)J( �9 , 6e) (x)}. inf 1 I> 
y t 

Then, the proof in P. L. Lions [28] adapts and shows that if c0~>;t ~ then J( . ,  6e) E C~' I(H) 

i.e. J(.,  9~)E C1(H), is bounded, and VxJ(., ~) is bounded, Lipschitz on H. And using 

the same finite dimensional approximation procedure as in Lemma III.2, we deduce 

easily that 

l {j(x, fe)-S~(t)J(.,b~)(x)}[ <<.C forall  tE(0,1), aE•,Ae. 

Finally, we obtain 

1--{u-Sa(t)u} >! -C on H. (54) 
t 

And we deduce as in Theorem 111.3 that u is a viscosity supersolution of 

-Tr (a  ~'D2u) >I - C  on H. 

To complete the proof of (i), we have to show the other inequality. But let us 

remark that, from the definition of viscosity solutions, u is by Theorem Ili.3 a viscosity 

subsolution of 

-Tr (a  ~.D2u)-(b ~, Du) <~ C on H. 

And we conclude using the fact that u is Lipschitz on H: indeed, observe that if u is 

Lipschitz and u-q0 has a maximum at x0 then 

IDq0(x0)l ~< suplu(x)-u(y)[ [x-yl -l 
x ~ y  

(this is proved and used in M. G. Crandall and P. L. Lions [4] for instance). 

We next prove (52). Observe first that in view of (38') we just have to show the first 

inequality of (52). Formally, this is rather easy since by (38') there exists C0~>0 such 

that (D2u-Col)<~O, hence because of (50) 

sup[Tr aa.(Co l-D2u)] ~ C 
ct 

and then (51) yields 

v{Col~[2-(O2u(x) ~, ~)} <~ f i l l  z, v~ ~ n ' ,  Vx C,o 
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and we may conclude. We only have to justify by viscosity considerations the above 

argument. To this end, let 9 E X  and let x0 be a minimum point of u - 9  (global for 

instance). Using Proposition II. 1, we have for each a using (50) 

- T r ( a ~ ( x 0 )  �9 D2tp(x0)) ~ - C. 

Next, we claim that D2qg(Xo)<~CI where C is in fact the constant appearing in (38'). 

Indeed, observe that u-�89 2 is concave and thus x0 is a minimum point of 

(u-�89 2) which implies easily our claim. Hence, we have 

-Tr  a~(Xo).(D2~(Xo)-CI) >~ - C ,  VaE ~ 

or  

supTr a~(Xo) .(C1-D2q~(xo)) ~C,  Va~. 
aEM 

and we deduce, using (51), that for all ~EH ' ,  I~l=l 

v((CI-D2~(Xo)) �9 ~, ~) <. 0 if x 0 E a~ 

hence 

-(D2q~(Xo).~,~)<-C if x0Eto. 

And (52) is proved. 

To conclude the proof of Theorem III.4, we have to show why (52) implies (and 

thus is equivalent to) (53). There are mainly two steps in the proof of this claim: first, 

we show that (52) still holds locally if we write x = ( x ' , x " ) E H ' •  and if we fix x" 

considering u as a function of x' only. Once this is done, it is not difficult to conclude 

observing that if we take any finite dimensional subspace of H'  the above argument 

gives viscosity inequalities (52) in this finite dimensional subspace and we know (from 

P. L. Lions [27]) that (53) then holds with H '  replaced by its subspace. Since all 

constants are independent of the chosen finite dimensional subspace, we then conclude 

easily. 

We now prove the above claim concerning the reduction of (52) to H ' .  This is 

basically the same proof as in M. G. Crandall and P. L. Lions [4]. Indeed, let x~ be fixed 

in H '• and let (x6,x~)E~o be a minimum point of u(.,x~)-q~(.) where q~EX (space of 

functions over H').  We may assume without loss of generality that there exist 6>0, 

y>0 such that 
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B { - " 5 ) ~ c o  and u(x',x~)-cp(x')<-u(x~,x~)-cp(x~)-~/ B(x~, 5) x ,-~0, 

if Ix'-x~[=5. Then, we consider on Q= B(x~, 5) x B(x'~, 5) the function 

--- u(x', x " ) - ~ ( x ' ) - ~  Ix"- x'~t ~. z Ac 

I I I  I We claim that, on aQ, z-.~u(xo, xo)-q~(Xo)-y/2 if e is small enough. Indeed, since 

Ix"-x'~l=b if x" E aB(x'~, 5), this inequality is obvious for e small enough if x" E aB(x~, dt); 

while if x'E aB(x~, 5) 

z <~ u(x', xg)-~o(x')+m(Ix"-x'6l)- 1 Ix"-x~l 2 

-< , , , . . 1 . . 2  
-~ U(Xo, x'g)- cp(Xo)-~,+m(Ix -x01)- ~ x -x0 

where m(t)---~O as t---,0+, and our claim is proved. 

Therefore, using Stegall 's result [34] as in M. G. Crandall and P. L. Lions [5], we 

deduce that there exist p, EB(O,e), x',E(x~,5), ~EB(x'g,5)  such that z(')+(p,, ") has a 

maximum over Q at (x~,x"). Furthermore,  since we may assume without loss of  

generality that u(. ,xg)-qg(.) has a unique strict maximum at x~, we deduce easily that 

I I  II I t x, T x o ,  x, Txo .  

Then, by the definition of  viscosity solutions, we see that for all ~ E H', I~l= I 

-(D~, ~(x')~, ~) ~< C 

and we deduce 

- ( D ~ ,  r  ~,  ~)  ~< C ,  

which concludes the proof  of  our claim. [] 

I V .  U n i q u e n e s s  r e s u l t s  

THEOREM IV. 1. (I) (Infinite horizon problem: (19)-(20).) Let u E BUC(H) be a viscosity 

subsolution (resp. supersolution) o f  the HJB equation (29). Then v<<.u on H (resp. u>>-u 

on H). 

(2) (Finite horizon problem: (21)-(22).) Let vEBUC(H• be a viscosity 
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subsolution (resp. supersolution) o f  the HJB equation (30) such that v(. ,  0)<~g(.) on H 

(resp. v(., O)~g(.) on H).  Then v<~u on H x  [0, T] (resp. v>-u on H x  [0, T]). 

Remarks. (1) Extensions of  this result are given in section V. 

(2) If  the notion of  viscosity supersolution we use differs from the classical one, we 

do not know in general if the above results are valid with classical viscosity supersolu- 

tions. 

Once more,  since the proofs of  (1) and (2) are very similar, we will only prove (1). 

The proof  will be divided into two steps: we first show that any viscosity subsolution 

lies below u, i.e. u is the maximum viscosity subsolution, next we prove that any 

viscosity supersoloution is above u. 

IV.1. Maximum subsolution 

In this section, we consider a viscosity subsolution of (29) that we denote  by v and we 

assume (for instance) that v E BUC(H).  And we want to show that v<~u on H. In view of  

the method introduced in P. L. Lions [27]--which basically uses only the density of  

step cont ro ls - -we only have to show that if a is fixed in M then for all t>0  and for all 

x E H  

(fo ) (fot ) v <~ E fa (x , )  exp - ca(Xo) do ds + v(X t) exp - ca(X,) ds (55) 

where Xt is the Markov process corresponding to the constant control at=a. We then 

denote by w(x, t) the right-hand side which is of  course a viscosity solution (by the 

results of section III) of  

0__ww _ T r ( a  a .D2w)_(b a, Dw)+caw_fa  = 0 in H•  ~)  (56) 
at  

and w( ' ,  0)= v(.) on H. 

In order  to compare  v and w, the strategy we shall adopt is to build a smooth (i.e. 

an element of  X) approximation of  w which will be close to w uniformly on H and 

which will solve (56) up to an arbitrary small constant.  Once this is done,  we will 

conclude easily by a simple application of  the notion of  viscosity solution. Let  us finally 

mention that to simplify notations we will omit the superscript a in the rest of  this 

section. 



SECOND ORDER EQUATIONS IN INFINITE DIMENSIONS. I 265 

We begin by smoothing f, c, v: indeed, see for instance J. M. Lasry and P. L. 

Lions [24], there exist 

f" ,  c", v" fi C~' I(H) = {q~ E C'(H), cf E C~b' '(H; R), Oqo E C~o' '(H; H)} 

such that for n~>l 

f < f , < f + l ,  c,<<c<<c,+l, v<~v"<-v+ 1 o n g .  
n n n 

Then, we consider for all x E H, t>-O 

w"(x,t)=Efo'f~(Xs)exp(-foSCn(Xo)dt~)ds+v~(Xt)exp(-fotC~(Xs)ds) 

and we observe that w<~w"<.w+C/n, for some C~>0, while w" is now a viscosity 

solution of 

0w-----~ -Tr(a .  D2w n)-(b, Dw")+c"w"-f" = 0 in H•  (0, oo) (56') 
Ot 

and w"(. ,0)=o"(.)>1o(.) on H. 

But obviouslyf"-c"w">~f-cw"-Cr/n on H x  [0, T] for some Cr~O, (VT<oo) there- 

fore w" is a viscosity supersolution of 

aw-----~-"-Tr(a.DZw")-(b, D w " ) + c w " - f =  CT in Hx(0,  T) (VT< oo). (57) 
Ot n 

It is then easy to check that w ~ is Lipschitz in (x, t )EHx(0,  T) (VT<~), bounded 

on Hx[0,  T] (VT<oo) and W"(',t) ECIb'~(H) (VtE[0,~)) with Lipschitz bounds on 

Dxw"(.,t) uniform in tE [0, T] (VT<oo): this is readily seen from the explicit formula 

defining w ". 

But we still need to regularize w" in order to have a smooth function. This is done 

with the help of the following lemma that we will also need for "stationary equations" 

in the next section. In the result which follows, 

oEBUC(H;~g~(V,H)), bEBUC(H;H), cEBUC(H;R),  fEBUC(H;R)  

and we denote by a=�89 

LEMMA IV. 1. (1) (Infinite horizon problem.) Let z E CIb ' l(H) be a viscosity subsolu- 

tion (resp. supersolution) of  
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-Tr(a .D2z)- (b ,  Dz)+cz = f  in H. (58) 

Then, for each e>0, there exists z~EX such that Iz~-zl<.e on H and z~ is a viscosity 

subsolution (resp. supersolution) o f  

-Tr(  a" DEz~)-(b,DzE)+cze= f +Ce (resp. f - C e )  in H (58') 

for some C>~O (depending only on the bounds on z and its derivatives and the moduli o f  

continuity o f  the coefficients o, b, c, f ) .  

(2) (Finite horizon problem.) Let T<oo, let z E C~b' l(HX [0, T]), Z(', t) E C 1' I(H) for 

all t E [0, T] with Lipschitz bounds on Dz(',  t) uniform in t E [0, T], be a viscosity 

subsolution (resp. supersolution) o f  

Oz -Tr (a .  O2z)- (b, Dz) + cz = f  in H x  (0, T). (59) 
Ot 

Then, for each e>O, there exists z, EX  such that Iz,-zl<-e on H• T-e] and z~ is a 

viscosity subsolution (resp. supersolution) o f  

aze -Tr(a.DEzc)-(b,  Dze)+czE =f+Ce (resp. f - C e )  in H• T-e)  (59') 
Ot 

for some C>~O (depending only on the bounds on z and its derivatives and the moduli of  

continuity of  the coefficients o, b, c, f ) .  

Remark. As we will see from the proof, this result can be "localized" in any open 

set of H or H• T). 

We postpone the proof of Lemma IV.I until we conclude the proof of our claim 

concerning v and w. By the preceding lemma, we deduce the existence of w~ EX which 

is a viscosity supersolution of 

Ow---~ -Tr( a. O2w~)-(b, Dw~)+cw~ = f - C - c e  in t tx(e ,  T-e)  
Ot n 

and [w~-w"l<.e on H x  [e, T-e]. Observe that the definition of viscosity solution imme- 

diately implies that we have in fact at each (x, t )EHx(e ,  T-e)  

aw~" 
~- (x, t)-Tr(a(x).  D2wT(x, t))- ( b(x), DwT(x, t) ) + c(x) wT(x, t) >~ f l x ) -  Cn - Ce. 

It is now easy to conclude by maximizing over Hx[e ,  T-e] 
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-Co t -  n e (v(x)-w~(x, t))-b 

where Co, 8 are positive constants to be determined later on. 

To keep the ideas clear, let us assume that a maximum point (:~, t-) exists. Then, we 

first observe that O=e-C~ is a viscosity subsolution of  

a._~0 - T r ( a . D 2 0 ) - ( b ,  DO)+(c+C o) 0 =re -c~ in H•  ~)  (60) 
at 

and that "" -Cot n l.~)n=e-Cotwn w,=e W,+6, satisfy [ ~ - ~ " [ ~ < e + 6  on Hx[e, T-t]  and at each 

point (x, t) E H• (e, T-e)  

O~b:-Tr(a'D2tb:)-(b'D~b~)+(c+C~ w~-  f - C - c e )  e-C~ (61) 

Then, we choose Co=supnc-+ 1, 6=C/n+Ce+e, so that (61) yields 

atb'/_Tr(a.D2tb~)_(b,Dtb~)+(c+Co)~>~fe_Cot+e on H• T-e]. (62) 
at 

Next,  if t-=e, we just  deduce that on Hx[e, T-e]  

(v-w:) (x, t) <~ (SeC~ + V(YC, e)--W~(2, e) 

<~ 6eC~ +Ce +v(2)-w"(~, e)+e 

<~ 6eC~ +Ce +e +v($)-w(X, e) 

and since w E BUC(H•  [0, T]), we deduce from this 

(v-w)(x, t) <~C +ce+m(e)+v($)-w($, O) = C +ce+m(e) on Hx[e, T-e] 
n n 

where m(o)~O as o ~ 0 + .  And we conclude letting e--->0, n~oo .  

On the other hand if [>e, we may apply the definition of  viscosity subsolutions (we 

can even do that if {=T-e by the usual argument for viscosity solutions of  Cauchy type 

problems, see [4], [7] . . . )  and deduce 

c~tb~ (X, t -)-Tr(a.  DZth~)(~, {)-(b, Dtb~)(~, {)+(Co+c) O(Y,, [) <~flYc) e -c~ 
at 

And comparing with (62) yields the following inequality 
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0(:~, t - ) -  a;7(x, t-) ~< - e ~< 0 

hence 0 - t ~ < 0  on Hx[e ,  T-e]  and we conclude again letting e go to 0, n go to oo. 

We now have to deal with the question of  the existence of  a maximum point of  

0-tb~. This is easily solved by perturbation arguments (as in [5]): indeed, let us 

introduce ~=W~+a(l+lxl2) I/2 where a > 0 .  Obviously, 0-tb---~-oo as Ixl--,~ uniformly 

for tE [e, T-e] ,  while tb satisfies 

>_ 1" -Cot  O--~-w-Tr(a.D2z~)-(b, Dz~)+(c+Co) ~ ~-ye + e - C a  in H •  T -e ] .  
at  

Now, by Stegall's result [34], we deduce the existence of  p v E H  for all v>0  such that 

levl--<v<a and O(x, t)-dJ(x, t)+(Ov, x) has a (global) maximum over H x  [e, T - e l  at some 

($, t-). If [=e, we argue as before,  letting v go to 0, then a go to 0 and then e go to 0, n go 

to + oo. If  t>e,  we deduce at ($, t-) 

-Cot  8___@_~ - T r ( a .  D2tb)-(b,  Dd3)+(c+C o) 0 <~fe +Cv. 
at 

And this yields as before 

o(~, i)-a;(~, i)<. C(v+a)-e 

and we conclude easily letting v ~ 0 ,  then a ~ 0 ,  then e ~ 0 ,  n ~o o .  

This concludes the proof  of  our claim concerning the comparison of  v and w. [] 

Proof  o f  Lemma IV. 1. As usual we will only make the proof  in the infinite horizon 

case when z is a viscosity subsolution of  (58), the other  cases being treated similarly. 

Since the proof  is rather  technical,  it might be worth explaining first the idea: let O~0, 

pE fi~(R), fr tOdx=l,  S u p p o c [ - l ,  +1] and let e>0,  we introduce 

f. z~(x)= limz)(x), z~(x) = z(Yi . . . . .  yk, x') OEi(xi-yi) dy (63) 
k ~ 

where el= e/2 i§ i, Oh(" ) = (1/h) p('/h) for all h>0,  x= (xl . . . . .  xk, x') = (x j, x2 . . . .  ) corresponds 

to various decomposit ions or identifications of H: more precisely, we fix an orthonor- 

real basis of H say (e~, e 2, e 3 . . . .  ) and we indifferently identify H with 12 or with Rkx H~- 

where Hk=vect(e  ~ . . . . .  ek). In fact, we have to show that zE is defined by (63) i.e. we have 

~ converges to ze. to show that z~ 

We claim that z~EX, z~ satisfies (58') and Iz~-zl<-.Ce on H (where C is in fact the 



S E C O N D  O R D E R  E Q U A T I O N S  IN INFINITE D I M E N S I O N S ,  I 269 

Lipschitz constant of z). We begin by proving that z, makes sense, belongs to X and is 

close to z. There will only remain to show that z. is a viscosity subsolution of  (58'): a 

fact which would be an immediate exercise on convolution if H were finite dimensional 

since in that case z would be an " a . e . "  subsolution of (58) (see [27])! Now, we first 

observe that z~E C~' I(H) for all k~>l, e>0 and that 

suplDz~l ~< C0-- sup{Ozl, 

H u (64) 

suplDz~(x)-Dz~(y)llx- yl-I <~ C~ --- suplDz(x)- Oz(y)Nx- y1-1. 
x # y  x~y  

Next, we remark that we have 

suplz-z~l~foez, suplz~+~-z~l<~Coek+~ for all k~>l (65) 
H H 

suplDz-Oz~l<.C~e,, suplDz~+l-Dz~]<~C,e,+, fora l l  k~>l (66) 
H H 

suplauz~+~ -, k ~< C C 
- - ~  e-~. ek+'' suplOvzk'l~<--n e iej if l<~i,j<~k (67) 

C if 1 ~<i,j<-k (68) suplDauz~lH ~< e, ejC, suplOao.Z~+, <~ eief k+~ 

for some C>~0. 
k From (64)-(68) and the fact that Ekek=e we deduce easily that zE converges in 

C~(H) to some zEECI"I(H) such that [z-z,l<~Coe on H and 0oz, EC~d~(H) (in fact 

C~' I(H) and this is also valid for any partial derivative of any o r d e r . . . )  for all 1 <~i,j< oo. 
We only have to check that for each h, k E H, 

lira l (Dz(x + tk )-Dz(x), h) 
t-*O+ t 

exists and is uniformly continuous on H. To do so, we denote by k~=(kl . . . . .  k N, 0 . . . .  ), 

hN=(hl . . . . .  hN, 0, ...) and we observe that 

1 1 N t(Oz(x+tk)-Dz(x), h)---~(Dz(x+tkN)-Dz(x), h )t ~ Cllh-hSllkl+C'lk-~llht 
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while 

(Dz(x + tldv)-Oz(x), hlV) - <~ CNIkllhlt; 
i,j=l 

and this concludes the proof  of our claim concerning the regularity of z. 

We now show that z, is a viscosity subsolution of  (58"). Now, in view of  the 

stability of  subsolutions (Proposition II.2), we only have to show that z~ is a viscosity 

subsolution of  (58') for each k. Therefore,  we fix k~>l and for all N>.k we consider  

HN=vect(el  . . . . .  eN) and we will write indifferently 

X = ( X i ,  X2, X 3 . . . .  ) = (X I . . . . .  X N, y) = (X N, y) = xN+y where y E H~v. 

Let Yo E H~v. We first want to show that z(. ,  Yo) is a viscosity subsolution in HN-~R N of  a 

certain equation. To do so, let q0 E C2(HN) and let x~0 be a maximum point of  

z(',yo)-Cp('). Since zEC~'I(H) we have for all xN~_HN, yEH~v 

z(xN, Y)-cP(xN) <~ Z(XN, Y) - z(xtv, Y0)-- (Dy Z( xN, Y0), Y-Yo) 

+ Z( xN, Yo)- cP(xN) + (Dr Z( xN, Yo), Y -  Yo) 

~< C~ ly_y0l 2 +(By Z(X~o , Yo), Y-Yo)+CI IxN-x~llY-Yol + z(x~, Yo)-cp(x~) 

<~ z(x~o , yo)-qg(x~)+(D r z(x~,Yo), y-yo)+  -IxN- l 2 

+-~-- ( I  + 6 )  ly-yol2 

for all 6>0.  

In particular, z(x)-q~(xN)-(Or z(x~, Yo), Y-Yo)-(d/2)lxN-x~[2-�89 1 + 1/d)IY-Yo[ 2 has 

a maximum at xo=(x~Vo, Yo) and we may apply the definition of  viscosity solutions to find 

-Tr(a(xo).  O2qg(X~o )) - (b(xo) , Dcp(xg)) + c(x o) z(x o) 

<~J~xo)+(b(xo),Oyz(xo))+d Tr( aN(Xo))+Ct( l +-~) Tr( a~,(x0)) 

where aN=P N aPN, a'N= QN aQN and PN, QN are respectively the orthogonal projections 

onto HN and H}.  But this means that, for each y EH~, zr=z(.,y) is a viscosity 

subsolution of  
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-Tr( a(.  , y) .  D2zy ) -  (b(. , y),  Dzy) + c(.  , y) Zy 

<~ f( .  , y)+ ColQ1 v b(. , y),+ 6 Tr( aN(', y))+ C, (1 + 1 ~  Tr( o's(., y)). 
\ O /  

(69) 

And we observe that zy E C I' J(HN). Hence,  for each y E H~v, (69) holds a.e. in HN (see 

P. L. Lions [27]). We will denote by fN the right-hand side of  (69). 

Next ,  we fix y fi H~v and consider  z~(x N, y) as a function of  x N only. Obviously,  we 

k this function have, denoting by Z,.y 

-Tr (  a(x iv, y). D2z~. y(xN)) -- (b(x N , y)" DZ~, y(xtV)) + c(x N , y) z~. y(X N) 

<~ [ f ~ ~ ,  -x~k + l . . . . .  x~, y) O k ( X k -.fk) d.fk + m ( e ) , a. e . x N E H lv, 
(70) 

Vy E H~v 

2 k  k where m(h)----~O as h---~0+ (m depends only on the bounds on D z,, Dz,, and the moduli 

of  continuity of  o, b, c), and 0k(Xk)=l-l~=t 0~(x~), X/v=(Xk, X~k+l . . . . .  X~). 

TO conclude, we have to pass to the limit as N goes to + ~ :  observe first that (79) 

k E C L ~(HN) (see [27]). Then, if x~ ,y~) E HN• is holds in viscosity sense since Z~,y 

a maximum point of  zk,,y-~ (over H )  where q~ EX then in particular afr o is a maximum 

point of  z~.y0~-~(., y0 N) and (70) implies 

2 ~(xO))_(b(xO),Dx~(xO))+c(xO)z~(xO)<~m(e)+Cd+j~xO ) -Tr(  a(x ~ .D u 

+f,,{ColQNb(Y& ~ ...)l+C,(l++) Tr ~ } au(x , Xk+l ...) Ok(Xk--.~ k) dx k Xk+ I , 

k 

where x~ k, 0 0 Xk+~,Xk+ 2 . . . .  ). By Lebesgue ' s  iemma, the integral goes to 0 as N---~+~, 

hence letting N go to oo we deduce 

- Tr(a(x~ �9 O2@(x~ - (b(x~ D~(x~ + c(x ~ zk~(xo) <~ f(x  ~ + re(e) + Cd 

and we may conclude letting d go to 0. [] 

Remark. We were unable to show that the lemma is still valid if one replaces X by 

X '  and this is the main reason why we weakened the class of  test functions in our 

definition of  viscosity solutions. If the lemma were true for X '  then our uniqueness 

results would still be valid for classical viscosity solutions. 
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IV.2. Minimum supersolution 

In this section, we consider a viscosity supersolution of (29) that we denote by v and we 

assume (for instance) that v E BUC(H). And we want to show that v>~u on H. Exactly 

as in P. L. Lions [27], the method of  proof relies on building a " s m o o t h "  subsolution of  

(29), close to u, for which the comparison with v will be a simple application of  the 

definition of viscosity supersolutions. In fact, all the difficulty lies in the construction of 

the approximation since we cannot use any "el l ipt ic" regularization as we did in [27] in 

infinite dimensions. Instead, we will use a highly nonlinear regularization. 

But, first we observe that u is also the value function of the control problem where 

f ( . ,  a), c(. ,  a) are replaced by f ( . ,  a )+2u( . ) ,  c(. ,  a )+2  for all 2>0. This can be shown 

using Lemma III. 1 as in N. V. Krylov [23], or by using the characterization of u we 

obtained in the preceding section in terms of maximum viscosity subsolution. Next,  we 

choose 2 so that c0+2>21. Then, we regularize f ( . , a ) ,  c ( . , a ) ,  u as follows: by the 

results of [24], we see that there exist for all n>~l, f ' ( . ,  a), c ' ( . ,  r ti m E C~' I ( H )  (and all 

bounds are uniform in a for each n) such that 

f ' ( . ,a)<~f( . ,a)<~f ' ( . ,a)+ l ,  c(.,a)<~c'(.,a)<~c(.,a)+ l ,  
n n 

f4,<~u<~,+ 1 o n H .  
n 

Next, we consider the value function u ~ of the control problem where we replace 

f(. , a)+ 2u(. ), c(.,a)+2 by f " ( . , a )+2•" ( . ) ,  c " ( . , a )+2 .  

One readily checks from the explicit formulas that we have 

lu"-ul c on H. 
n 

Furthermore, the regularity results Theorems III.1 and II1.4 apply and we see that for 

each n, u" is Lipschitz, semi-concave on H and Tr(a ~'D2u ") is bounded (in viscosity 

sense) on H uniformly in a. Finally, by Theorem 1II.3, u" is a viscosity solution of 

sup{-Tr (a  ~.D2un)-b a, Du')+c'(a) u'-fn(a)} + 2 ( u ' - t i ' )  = 0 in H (71) 
aEM 

and thus in particular u" is a viscosity subsolution of 

sup{ - T r ( a  a' D2u")-(b a, Du")+cau"-f ~ } <~ C 
ae~ n 

in H. (72) 
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The next step is to regularize u ~ into C~' I(H) function which will still be (essential- 

ly) a viscosity subsolution of  (72). In order to do so, we enlarge our original control 

problem: let ~ denote the closed unit ball of  H,  we replace ~ by M ' = M x  ~ and we set 

V' = V x H  

a(x, a,/3) = (a(x, a), 0/3), 

c(x, a,~)  = c"(x, a)+,~, 

b(x, a, fl) = (b(x, a), O) 

f(x, a,/3) =f"(x, a)+2a"(x) 

VxEH, VaEA,  VflE,~ 

where 6>0 is fixed. And we denote by u] the corresponding value function. One checks 

easily that u,~ satisfies 

[u~-un[<~C,6 on H. (73) 

Furthermore, by the regularity results Theorems III.1 and III.4, we see that the 

following holds 

n n I%(x)-%(y)[ ~ C.Ix-y[ (74) 

V~EH, Ir (D2ug.~,~)>~-C. o n H  (75) 

-Tr(a~.D2u])<.C. on H, -Tr(a~.D2u"~)>~-C. on H (76) 

where C. denotes various constants independent of 6, a,/3, where 

a'C=a( �9 , a,/3)+�89174 

and where (75), (76) hold in viscosity sense. Finally, observing that for all ~E H, we 

may choose/3=~1~1 -I so that 

(a~(x) ~j, ~) >I �89 ~)2 = ~621~12 

and thus (5 I) holds with v = ~  2, H '  =H=w. Then, Theorem III.4 implies that u~ E C~' I(H). 

And, by Theorem III.3, u] is a viscosity solution of 

62 
Ct 2 ,'1 a tl n /1 n ,'1 - -  sup -(D2u~ "/3, fl)+ sup{-Tr (a  .D ua)-(b , Dua)+(c (a)+2) ua-( f (a)+2t i )}  = 0 

in H. Since we may take/3=0 in (77), we deduce immediately from (74) and (77) that u~ 
is a viscosity subsolution of 

1 8 - 8 8 8 2 8 9  Acta Mathematica 161. I m p r i m ~  le  27 d ~ c e m b r e  1988 
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sun~_TrCa a. 2 . . . . . .  D %)-(b  ,Du~)+c ue,- f } ~ C + c . 5  in H. , I t - L - -  ~ 

a E M  n 
(78) 

We may now turn to our final approximation based upon Lemma IV. 1 (and its 

proof). Indeed, (78) clearly shows that u~ is a viscosity subsolution of 

2 n a n tt n a C -T r ( a  .D u~)-(b ,Duo)+c % - f  <~ +Cn6 in H. (78') 
t l  

for each a E M and " l u~ E C b' l(H). Therefore, applying Lemma IV. 1 for each a E~ M and 

observing that the construction of the regularization is independent of a, we deduce 

that there exists, for all e>0, u~,, EX such that 

n n I%.~-u~l ~<e on H (79) 

and u],, is a subsolution (in viscosity sense and thus pointwise since u"6, ~ EX) of 

a 2 n a n a n  a _~ C sup{-Tr(a  D u6.,)-(b ,D%.,)+c u,~,,-f } ~--+C,,6+C(n, 6)e in H. (80) 
aE.~ n 

Finally, by (73) and (75), we deduce 

I.-.;  c +c. 
n 

on H. (81) 

This tedious approximation being done, we may now conclude easily: indeed, 

assume first that v-u'~., has a global minimum point $ over H. Then, since u'~.,EX, we 

deduce from the definition of viscosity supersolution 

1-~ sup{-Tr(aa($)  �9 DZu"~, ~(y))-(b"(2), Du~, ~(.r + ca(2) v(2)-f '%r >I 0 
y---,x ct E ~ 

or equivalently 

lim sup sup{-Tr(aa(y).D2u;,~(y))-(ba(y), Du;.,(y))+ca(y) v(y)-fa(y)} >I O. 
6 ~, O+ ]y-xl<~6 a 6 s~ 

And comparing this with (80), we deduce 

c o inf(v-u~, ~)- = Co(V-U"~, ~)-(~) <~ C + C .  6+C(n ,  6) e. 
H n 

Therefore, by (81), 
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C v ~ u - - - - C ~ - C ( n ,  6)e on H 
n 

and we conclude letting e go to 0, then 6 go to 0 and finally n go to 0. If v-u~,, does not 

have a global minimum over H, we just modify the above argument using the same 

perturbation technique as in the preceding section. [] 

V. Extensions 

As we already mentioned before, it is possible to extend the preceding results in various 

directions: we may weaken the regularity assumptions on o, b and in particular we may 

require the continuity in a of the coefficients only on compact subsets of ~d, next, we 

may treat finite horizon problems with time-dependent coefficients. 

Let us also mention that everything we did easily adapts to various other control 

problems like for instance optimal switching, optimal stopping or optimal impulse 

control problems and combinations of the various possibilities . . . .  We skip these easy 

variants. 

We just want to mention a class of results which can be obtained using the method 

presented in the preceding sections (and combining it with the ideas used in P. L. Lions 

[27], [29]). To this end, we consider an open set (7 in H and we now assume that all the 

assumptions made in section III hold only for xEBR (for all R<oo). With these 

assumptions, we have now the 

THEOREM V. 1. (1) (Infinite horizon problem.) Let o E BUC((76 NB R) (for all 6>0, 

R<oo) be a viscosity subsolution (resp. supersolution) of the HJB equation (29) in (7, 

where (Ta= {x E (7, dist(x, 6(7)>6 }. Then, for all 6>0, R< oo and x E (76 N B R, denoting for 

each admissible system by ~ the first exit time of  Xt from (76NB R, we have the 

following relation:for each admissible system 6P, choosing a stopping time O, then we 
have 

v(x)<~inf{EL~^~ 

{ 
(~ (resp. >I). 

(82) 

• 

(2) (Finite horizon problem.) Let v E BUC((76 N B R) x [0, T]) (for all 6>0, R< oo) be a 

viscosity subsolution (resp. supersolution) of  the HJB equation (30) in (Tx (0, T). Then, 
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for all c~>0, R<oo, xE~7~NBR, t e l0 ,  T] and for each admissible system 6f, let 0 be a 
stopping time, we haoe 

f f,^~^o 
o(x,t)<<-i~EJo fa'(Xs)exp ( - f 0  ca'(X~)dr)ds 

/ r,^g^o \ 
+o(X^~^o,t- t^r~^O)exp~-Jo c~'(Xs)ds)) 

(83) 
(resp. >>-). 

[] 

In particular, one can use the preceding result if ~7=H, with 0=rR: this is useful 

when one wants to relax the boundedness assumptions made upon the coefficients. Let 

us give one example in that direction, concerning finite horizon problems (in fact all the 

general results along this line given in [27] adapt to the situation here). To the 

assumptions made above, we add that c - 0  (to simplify notations) and 

IIo(x,a)ll2~f§ 2, VxEH, VaEM (84) 

2(x,b(x,a))<<.C+Clxl 2, VxEH, VaE,d  (85) 

I~x,a)l~f-~flxl, Ig(x)l~f~-flxl, Vx~H, V a ~  (86) 

where C~>0. Furthen'nore, we make the same assumptions on Dx or, Dx b as in section III 

and we assume (33)-(36). Then, the value function is Lipschitz in (x, t )EHx[0 ,  T] 

(VT<oo), semi-concave in x uniformly in tE [0, T] (VT<oo) and Theorem Ill.4 is still 

valid in this case. Now, if v E BUCIoc(Hx [0, T]) is a viscosity subsolution (resp. super- 

solution) of (30) in H• T) such that v[,=0~<g on H (resp. vlt=o>>-g) then we still have 

v<~u in Hx[0,  T] (resp. v>>-u) provided v satisfies the following growth condition (for 

instance) 

u(x)~C(l+[x[ m) ( resp.~-C(l+lxlm)) ,  for some C..->0, mE(0, oo). (87) 
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