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Introduction

In Connes’ fundamental work ‘‘Classification of injective factors’’ [7], it is proved that
injective factors of type III;, A+1 on a separable Hilbert space are completely classified
by their ‘‘smooth flow of weights’’. Since the flow of weights of factors of type III, is
trivial, one would expect that there is only one isomorphism class of injective factors of
type 1II,. During the years 1976-78, Connes spent much effort to prove that there is
only one injective factor of type III,, and found a number of conditions for an injective
factor of type III; to be isomorphic to the Araki-Woods® factor R... One of these
conditions is the following:

Let ¢ be a normal faithful state on a von Neumann algebra M, and let the
bicentralizer of ¢ be the set B, of operators a in M for which

x,a—-ax,—0 (o-strongly)

whenever (x,) is a bounded sequence in M satisfying lim,__, ||x, —@x,J|=0. Connes
proved that if an injective factor of type III; with separable predual has a normal
faithful state ¢ for which B,=C1, then M is isomorphic to the Araki-Woods factor R...
In particular, if M has a normal faithful state ¢, such that M;nM=C1, then M=R...

In this paper we provide the last step in the proof of uniqueness of the injective
factor of type III, by proving that every injective factor of type III, has a normal
faithful state @, such that B,=Cl.

The starting point in our proof is the Connes-Takesaki relative commutant theorem
for dominant weights (cf. [13, Section 2]): For every dominant weight ¥ on a III;-factor

with separable predual
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M, nM=Cl.

If M is an injective factor of type III;, then the centralizer M,, is the hyperfinite
Il.-factor. In particular, M,, has Schwartz’ property P, so in this case M;,NnM=C1
implies that for every x € M:

conv {uxu*|u€UM,)} nC1+Q *

where the closure is taken in the o-weak topology. Let now @ be a normal faithful state
on M, and let J be an infinite dimensional separable Hilbert space. By approximating
the weight 9 ®Tr on M® B (%) with dominant weights, we obtain from (*) that for every
x €M\ {0} with @(x)=0 and for every 6>0, there exists a sequence (a);, of operators
in M such that

@) SP (a)=[-9,0] forall iEN
@) > ara;=1

i=1
(i) D [l x—xa2 = 4lx|2

i=1

(cf. Lemma 2.7). These three conditions imply intuitively that “x¢B¢”, because the
a;’s almost commute with ¢, while some of the a;’s must be far from commuting with x.
However, we have only little control over the operator norm of the a;’s relative to the
size of ||la;x—xaj||,, and it is actually necessary to make a very long detour in order to
prove that x¢Bq,. This detour occupies the main part of Section 2 and it is strongly
inspired by the techniques in Connes’ and Stgrmer’s proof of the homogeneity of the
state space of III;-factors (cf. [12]). Once we know that (¢(x)=0 and x#0) = x ¢ B,, it
follows immediately that B,=C1. The details in Connes’ proof of

[M injective III,-factor and B, = C1] = [M=R.]

has appeared very recently in [10]. We have checked independently that the above
implication can also be proved using the ideas of [16, Sections 3, 4 and 5]. Our proof is
quite long and will be presented elsewhere.

In the last section (Section 3) of this paper we prove that for a general II1;-factor M
with separable predual, the following three conditions are equivalent:

(1) For every (faithful) dominant weight ¥ on M and every x€ M
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conv {uxu*u€ UM)} N C1*+Q

(o-weak closure).

(2) For every normal faithful state ¢ on M, B, =Cl.

(3) The set of normal faithful states ¢ on M, for which M;,nM =C1 is norm dense
in the set of normal states on M.

We have not been able to decide whether these conditions are fulfilled for all II1;-
factors with separable predual.

The rest of the paper is organized in the following way:

§1. Preliminaries of Connes’ bicentralizer problem . . . . ... ... ... ... 97
§2. Uniqueness of the injective factorof type IIT, . . . . ... ... ... ... 103
§3. Characterization of IIl;-factors for which B,=C1 .. ... ......... 130

References . . . . . . . . . . e e e e 147

1. Preliminaries on Connes’ bicentralizer problem

The material presented in this section has been known to Connes since 1976-78. 1
learned about it during a number of conversations with Connes in May 1978 and
November 1978. As mentioned in the introduction, Connes defined the bicentralizer of
a normal faithful state @ on a von Neumann algebra M to be the set of operators a €M
for which

x,a—ax,—0 (o-strongly)

whenever (x,), ¢y is @ bounded sequence in M for which lim,_,., ||x, 9—x,||=0. Connes
proved that if M is a III,-factor, and B,=C1 for one n.f. (normal faithful) state ¢ on M,
then B,,=C1 for all normal faithful states on M. From this it follows that B,=C1 for all
n.f. states on the Araki-Woods factor R.. (cf. Corollary 1.5 and Example 1.6 below).
He conjectured that B,=C1 for some (and hence for every) n.f. state ¢ on any III;-
factor M. Connes’ interest in this problem lies in the fact that he was able to prove:

THEOREM 1.1 (Connes [8], [10]). Let M be an injective 1ll;-factor with separable
predual. If M admits a normal faithful state ¢ for which B,=Cl, then M is isomorphic
to the Araki-Woods factor R.,.

The above theorem was announced in the end of Connes’ survey paper [9] in a
slightly different formulation. A detailed proof appeared very recently in [10]. In the

7—878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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rest of this section we present some basic properties of the bicentralizer B,,, which will
be needed in the following sections.
For any unital C*-algebra we let U(A) denote the unitary group of A.

LEMMA 1.2. Let M be a von Neumann algebra with a normal faithful state @. For
AEM, put

Cq(a, 0) = conv{u*au| u€ UM), ||up—ou|| <45}
where conv { -} is the closure of the convex hull in the o-weak topology. Then

a€B, < N Cya, 0)={a}.
o>o

Proof. For x€M, put ||x||,=@(x*x)'"2. Then || ||, is 2 norm on M and it generates
the o-strong topology on bounded sets of M. Put

st={(x,) €I°(N, M)| lim |}x, p— x| = 0}.

Then o is a unital C*-algebra. Therefore of is spanned by U(s). Note that U()
consists of those sequences (u,),en of unitaries in M for which |ju,p—qu,||—0 for

n—x,

Thus
B,={a€M| lim |lu,a—au,|,= 0 for all («,) € U(s)}.
Equivalently

B,={a€M)| lim|a—u} au,||, =0 for all (u,) € U(s)}. *

The last equality (*) follows, because the g-norm is invariant under multiplication from
left with unitary operators from M. For a € M, and >0 put

&(a, 0) = sup{||u*au—al| Ju € UM), |lup—qul|| < 5}.

Since ||x{|, = sup{@p(y*x)ly EM, |ly|l, <1}, the @-norm is lower semi continuous in the
o-weak topology on M. Therefore

llx—all, < e&(a, 6) for every x€C,la, ).
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By (*) we have

a€B, < lime(a,d)=0
0—0

Hence Ny Cyla, d)={a} for all a€B,,.

Conversely, if a¢B¢,, then we can choose a sequence (u,,) of unitaries in M such
that

lim ||u, p—@u,||=0

while

lim sup ||u} au,—a|,> 0.

n--»>o

By passing to a subsequence, we can even obtain that there exists an £>0, such that
||} au,—all, =€ for all n.

Let b be a cluster point for the sequence {u} au,|n EN} in the o-weak topology. Clearly
b€Ns=o Cyla, 0). We will prove that b+a. Note first that

lim [lu} au,|} = lim (u} a* au,) = p(a*a) = llall2
n—o n—o

because ||u, pu}i—¢||—0 for n—. Using
2Re g(a* u} au,) = ||ally+||u} au, |}~ lla—u} au,|l;
we get in the limit n—
gla*b) < ]|a||é e = gla*a)—1é
Hence b#+a. This completés the proof of Lemma 1.2.

ProroSITION 1.3 [8]. Let M be a von Neumann algebra with a normal faithful
state @. Then

(1) By is a von Neumann subalgebra of M.

(2) The following two conditions are equivalent:
(@) B,=C1
(b) For every a €M and every 6>0
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conv {u* auju € UM), |up—gu|| <0} NC1+QD
(closure in o-weak topology).
Proof. (1) It is clear that By, is a unital subalgebra of M. Moreover, by Lemma 1.2,
a GBq) < 6(:0 Cla, 0)={a} < 6r>10 C,a*, 0)={a*} < a*€B,.

It remains to be proved that B is o-strongly closed. Let aEB“;“, and let u, be a se-

quence of unitaries in M, such that
| ||, p—@un||—0 for n—o.
For every ¢>0, we can choose b€ B, such that ||a—b||,<e. Then
| (@—b)u, || = p(u}(a—b)* (a—b) u)—|la—b||} for n—o
because ||u, put—¢|j—0 for n—x. Using
et aw,~all, < [l (a—b) , |+l bue, bl +{1ball,
we get

lim sup |ju} au,—al|, <2|la—bl|, < 2e.

n—o

Since ¢ was arbitrary, it follows that a € B,,.
(2) (@)= (b): Let a€ M. The set

Cpl@)= N Cyfa, )

is a o-weakly compact convex subset of M, and it is non-empty because it contains a.
Let %, be the completion of M with respect to the g-norm. Then C,, (@) is a norm
closed convex subset of #,,. Since ¥, is a Hilbert space, there exists b€ C,, (a), such
that

IIxllp > |1bll,  for all x€ Cqg(a)\{b}.
We will show that b €B,,. If u, v are two unitary operators in M, then

[lev)p—@uo)]| < |(up—@uw) vl +|lu@e—gu)|
= |lup—gul|+|lvg—gu|.
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From this it follows easily that if a’ € Cgla, 0) then
Cyla',0)=Cyla,20), 0<0.

Since b€ Nyso Cyla, J) it follows that for all 6>0

C,B)= N C(b,9) N C,(a,28) = C,(@.
If u€ UM), and |jup—@u|| <6, then

llee*bul2 = @(u*b*bu)
= p(b*b)+(upu* @) (b*b)
<61 +lugu*—gl 6]
<|bll5+ollb|P".
Using the lower semi continuity of || ||, in the o-weak topology we get
lIxlZ <|ibll2+6liblf*  for all x€ C,(b, 8)
and consequently
lIxllo <|ibll, for all x€C(b).

Since Co(b)=Cq(a), this inequality implies that x=>b. Hence C,(b)={b} so by Lemma
1.2, bE€B,,. Therefore (a) implies that

bEC,la, ) NCl

for all 6>0. Thus (a)=(b).
(b)=>(a): Assume (b) and let a € M. Since the sets

C,(a,6) nC1

form a decreasing family of non-empty o-weakly compact sets, they have a non-empty
intersection. Hence there exists A €C, such that

ALE N Cfa,d).
>0

If u€ UM), and ||jup—qu|| <o, then
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lp(u*au)—g(a)| < |lupu*~g||||a]|
< d||ql.
Hence |p(x)—¢(a)|<d||a|| for all x € C,(a, ) and all 6>0. Therefore A=g¢(a), i.c.
@(a) 1 Econv {u*auju € UM), |lup—gu|| <}
for all é>’0. Equivalently
a—@(a)1 € conv{a—u*aulu € UM), |lup—qu|| <o}.
Using that the || ||,-norm is lower semi continuous in the o-weak topology, we get
lla—g@(@) 1|, < sup{|la—u*aullylu € UM), |lup—qu|| <d}.

If a €B,, the supremum goes to zero for 6—0. Hence a=g¢(a) 1. This proves (a).

Remark 1.4. By the proof of (b) = (a) it follows that B,=Cl is also equivalent to
(¢ ForallaeM

@(a)1 € N conv {u*aulu € UM), ||up—ou|| <06}
>0

(closure in o-weak topology). Moreover, a simple duality argument shows that this
condition is again equivalent to

(d) For all y € M,,

YD € N conv {uypu*lu€ UM), |lup—qu||<d}
6>0

(closure in norm topology).

CoROLLARY 1.5[8]. Let M be a o-finite factor of type 111,. If B,=C1 for some n.f.
state ¢ on M, then B,=CI1 for all n.f. states w on M.

Proof. Assume that B,=Cl, for some n.f. state ¢ on M. Then, by the Connes-
Stgrmer transitivity theorem [12], the set of n.f. states w on M for which B,=Cl is
norm dense in the set of normal states on M. Let @ be a n.f. state on M, and let §>0.
Choose a normal state ws on M, such that B, =Cl1 and ||o—w;||<d. By Proposition
1.3 (2) we have

Co,(a,0) NCl* @
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for all a€M. However, for u€UM), |uws—wsu||<é implies that |juw—wu||<30.
Therefore C,(a, 36) NC1+=@. Using again Proposition 1.3 (2) we get B,,=Cl1.

Example 1.6 [8). In [2] Araki and Woods proved that there is up to isomorphism
only one ITPFI-factor with asymptotic ratio set r(M) equal to [0, [. This factor is
called the Araki-Woods factor and is denoted R... We shall see that B,=Cl1 for all n.f.
states on M, but that M,=C1 (and hence M, N M=M) for some state w on M.

Note first that R. can be written as the tensor product

R.=R; ®R;,

of two Powers factors R; and R;, where log A/log 2, is irrational, because M=
R;, @)R,l2 is clearly an ITPFI-factor and both 4; and A, are contained in r.(M), so that
ro(M)=[0, o[ (ro(M)NR. is always a closed subgroup of R.). Let ¢, and ¢, be the
usual tensor product states on R;, and R;, (cf. [20]). Then by [5, section 4]

M, 0 R, =Cl, i=1,2.
Therefore p=¢, ® @, satisfies
M,nM=Cl.

In particular B,=C1. Since R.. is of type III, we have B,=Cl for all n.f. states w on
R., by Corollary 1.5.

On the other hand Hermann and Takesaki gave in [17] an example of a n.f. state w
on a factor M, such that M,=C1. The factor in question is of type III;, because if M
was not of type III;, then by [5, Section 3—4] M,, would contain a maximal abelian
subalgebra of M. The factor in [17] comes from the G.N.S.-representation of the CAR-
algebra given by a quasi free state. By [20] quasi free states on the CAR-algebra induce
ITPFI-factor representations, and by [5, Section 3] R.. is the only ITPFI-factor of type
111,;. Therefore the factor M in Hermann and Takesaki’s example is isomorphic to R..

2, Uniqueness of the injective factor of type III,

In [13], Connes and Takesaki introduced the notion of dominant weights on a factor of
type III. The weights considered in [13] are not necessarily faithful, but for simplicity
we shall here only consider faithful weights.

Let M be a von Neumann algebra with separable predual. A normal faithful
semifinite (n.f.s.) weight ¥ on M is called dominant if
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(i) ¥ has infinite multiplicity
and
(ii) Ay~ for all AER,.

The first condition means that the centralizer M,, of y is properly infinite, and Ay~y
means that Ay=y (u-u*) for some unitary operator u € M. Connes and Takesaki proved
that every properly infinite von Neumann algebra has a dominant weight, and that two
dominant weights are unitarily equivalent ([13, pp. 496—497]).

By [24], every properly infinite von Neumann algebra M can be written as a
crossed product

M=NXeR

where N is a von Neumann algebra with a n.f.s. trace 7, and (8,),¢r is a continuous
one parameter group of automorphisms for which

100,=¢"°tr, SER.

By [13, p. 497] the dual weight y of 7 is a dominant weight on M=NXsR, and the
centralizer M,, of y is equal to 74(N) (the usual imbedding of N in the crossed product
NXoR [24]). If M is a factor of type III;, then N is a factor of type 1l [24, Corollary
9.7]. Since dominant weights are unitarily equivalent, it follows that M,, is a Il.-factor
for every dominant weight y on a factor M of type 111, (with separable predual).

By Connes’ and Takesaki’s relative commutant theorem [13, p. 513],

My,nM=2ZM,)
for every integrable (in particular for every dominant) weight on M. Hence

THEOREM 2.1 (Connes, Takesaki [13]). Let M be a factor of type Ill;, with
separable predual, and let y be a dominant weight on M. Then

M, n M=Cl.

COROLLARY 2.2. Let M be an injective factor of type 111, with separable predual,
and let y be a dominant weight on M. Then for every x€EM,

conv {uxu*lu€ UM ,)} NC1+ 2

where the closure is in the o-weak topology on M.
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Proof. Let m be an invariant mean on R. Then

x— | d?(x)dm()

—o0

defines a projection of norm 1 from M to M,,. Hence, when M is injective, so is M. In
particular M,, satisfies property P of Schwartz (cf. [7]). Hence, for all x€M,

conv {uxu*|u € UM,)} n M, +D.

This proves Corollary 2.2 because the above intersection is clearly contained in
MnM,=Cl. ‘
We are now able to state the main results of this section:

THEOREM 2.3. Let M be a factor of type 111, with separable predual. If M satisfies
the property:
(1) For every (faithful) dominant weight ¥ on M and every x€M,

conv {uxu*|u € U(Mw)} NCl+g@

(o-weak closure),

then
(2) For every normal faithful state ¢ on M, B,=Cl.

Particularly, B,=C1 for any normal faithful state @ on an injective factor of type III,
with separable predual.

The above theorem combined with Connes’ result cited in section 1 (Theorem 1.1)
gives immediately:

CoroLLARY 2.4. Every injective factor of type 111, on a separable Hilbert space is
isomorphic to the Araki-Woods factor R.,.

In Section 3 we will prove that the two conditions (1) and (2) in Theorem 2.3 are
actually equivalent (cf. Theorem 3.1). The rest of this section will be used to prove
Theorem 2.3, i.e. to prove that (1) = (2). We shall need some definitions from the
spectral theory of automorphism groups (cf. [1] and [5, Section 3]): Let (a,),er be a o-
weakly continuous one-parameter group of automorphisms on a von Neumann algebra
M. For f€L*(R) and x € M, one puts
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as(x) = f A a(x)dr.

o©

The a-spectrum sp, (x) of an operator x € M is the set of characters yER, for which
Ay)=0 for all f€ L'(R) satisfying ar(x)=0. We will identify R with R in the usual way,
such that

®

fn=1| Ax)er™dx, yER,fEL'(R).

LEMMA 2.5. Let M and a, be as above. Let x€M and let 6>0. If the function
s—a,(x) can be extended to an entire (analytic) M-valued function, such that

llax) | < Ke?™, s€C
for some constant K>0, then sp, (x)=[—6, J].
Proof. For every @ € M., there exists a constant K'>0, such that
lpla ()| <K' ™, s€EC.

Hence, by the Paley-Wiener theorem the function ¢ —¢(a,(x)), t€R is the Fourier
transformed of a tempered distribution with support in the interval [-3, J]. Thus, if fis
any Schwartz function, such that f has support in R\\[-9, 6], then

f p(a,(x)) fix)dx=0.

—®

Hence aq(x)=0 for every Schwartz function f for which supp( FYSR\[-0, J]. This
proves Lemma 2.5.

LEMMA 2.6. Let M be a factor of type 111, with separable predual, and let y be a
weight on M of infinite multiplicity (i.e. My, is properly infinite). If M satisfies (1) in
Theorem 2.3, then for all x€EM and all 6>0,

conv {uxu*|u€ UM), sp_,(w)s[-9,0]1}nCl=* @

(0-weak closure).

Proof. Let 6>0 and put a=4/2. By [13, Chapter II, Theorem 4.7 and Corollary
3.2], there exists a dominant weight ' on M, such that
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ey sy<e™y («). ™

By definition of the ordering ‘‘< (%)’ (*) is equivalent to that the cocycle Radon
Nikodym derivative t—(D,:D,’), ¢an be extended to an entire M-valued function
satisfying

|(D,: D)l se’™l, s€cC,

(cf. [13, pp. 508-509]). If x€M,,, then for tER,

o?(x)=(D,:D,), 0¥ (x)(D,:D,)}
=D,:D,),x(D,:D,)}.

Hence r— 0¥(x) can be extended to an entire M-valued function, namely
s—>(Dw: Dw,)sx((Dw: Dw,)f*, s€EC
and
lo¥@)l| < e, s€ecC.
Thus, by Lemma 2.5
Spgw (X) €[ —2a, 2a] =[-4, d).
Therefore,
UM,) < {u€UM)|[spov(u) = [-06, 01}
This, together with the assumption (1) in Theorem 2.3, proves Lemma 2.6.

LemMa 2.7. Assume that M satisfies (1) in Theorem 2.3. Let ¢ be a normal
JSaithful state on M, and let x be an operator in M for which @(x)=0. Then for every 6>0
there exists a sequence (a;);en of operators in M, such that

(i) spoe(a) S [—9,0] for all iEN
i) &2, a¥ a;=1

(iii) Zi=1”xax""1ix”§; = l||x||;,

where as usual ||x||,=p(x*x)"2.
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Proof. We can assume that M acts on a Hilbert space #, such that g is the vector
state given by a vector £, € #.
Let ¥ be an infinite dimensional Hilbert space with orthonormal basis (e);,, and

let ¢ be the weight on M & B(¥) given by y=¢®Tr, where Tr is the trace on B(¥%).
Then v has infinite multiplicity. Since M®B() is isomorphic to M we get by Lemma
2.6 that there exists 1 €C1, such that

A(1 ® 1) € conv {u(x ® Du*|u € UM & B(X)), sp,(u) £[—6,6])}.
Hence,
(x—A1) ® 1€conv {x ® 1-u(x® )u*|u € UM & B(X)), sp,, (1) € [—6, 61}

Since convex sets in M®B(¥) has the same closure in o-weak and o-strong topology,
we have for every £ € H® X, that

l((x=21) ® 1) ]| < sup{[|(x ® 1—u(x ® 1) u*) || |u € UM & B(3)), spov (u) (-0, 01}
= sup{[|(u*(x ® 1)~ (x ® 1) u*)Z|| | u € UM & B(¥X)), spe(u) <[, O1}.

By applying the above inequality to the vector {={,® e;, we find that there exists
uEUMBB(3)), such that spy. (u)<[—0, J] and

[Gc—AD & < V2 [[(t*(x @ )—(x ® D u*) (5, ® e))l. *)

The operator u* can be represented. as an infinite matrix (ay);,.; With
P i,

elements in M where a; is characterized by
W*E,m)=(a;E@e,n®e), &EnEX.
Since spyv (W)S[—0, 6] also spyw (u*¥)<[—3, d], and since of =0f ® idp,, we have
spev(ay) €[—6,0] for all i,jEN.

The inequality (*) can now be expressed as

Ix=AD) £GP <2 D [I(@yx—xay) &P

i=1
because the set of vectors (a; x—xa;;) (£, ® e,) are pairwise orthogonal. Since

(x&o, A£0) = Ag(x) =0



THE INJECTIVE FACTOR OF TYPE HI; 109

we have
||(x~A1) ‘50”2 = ||x§0||2+|l|2 = “x&)”z-

Hence also

IxElP <2, Ity x—xa,) &
i=1

Since u* is unitary, we have L, ajja;,=1.

This proves Lemma 2.7.

The remaining part of the proof of Theorem 2.3 is strongly inspired by the techniques
from Connes’ and Stgrmer’s paper [12]. As in [12] we shall consider M in its standard
representation (cf. [1], [6], [15]). Following the notation of [15], we can to every von
Neumann algebra M associate a unique quadruple (M, %, J, P), where #'is a Hilbert
space on which M acts, J is an isometric involution in 4, such that

() JMJI=M',
(i) JeJ =c*, c€EZ(M),

and PY is a selfdual cone in ¥, such that

(iii) JE= &, EEPY,
(iv) xJxJ(P¥) S P%, xEM.

We put
Hs.a = {Ee %|J§=§}

Moreover, we will consider 9 as a two-sided M-module, where the right multiplication
is given by

nx=Jx*Jy, x€EM, n€X.

Recall that every positive normal functional ¢ on M is implemented by a unique vector
§¢,€P“. By Araki’s generalization of the Powers-Stgrmer inequality, one has for g,
YEML:

1€, &I < llo—wll < 1€, &, lHIE,+E,
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(cf. [1, Theorem 4(8)], [15, Lemma 2.9], [21]). Note that in the above notation the
quantity (g, x) used in [12] is simply given by

L@, x)=YIxE,~E x|, xEM, pEM;.
For later reference we prove:

LemMmaA 2.8. Let M be a von Neumann algebra with standard form (M, %, J, P9
and let @ be a normal faithful state on M. Then:

(a) For every unitary operator u in M
1€ —Eguall” < [lup—~qul| <2||uy—Equll.

(b) For every bounded sequence (x,),en in M,
lim|lx, p—@x,||=0 < lim|x,&,~&; x| =0.
n—® n—w

Proof. (a) It is elementary to check that u&, u* € P%, and that the vector functional
on M given by u&, u* is equal to ugu*. Hence by the Araki-Powers-Stgrmer unequality
cited above

gy u*—§, I < ||ugu*—g|| < 20ubqpu*—&,|

which is equivalent to the stated inequality.

(b) Let <f (resp. ) denote the set of bounded sequences in M for which lim,_,
lix, p—@x,||=0 (resp. lim,_, |x,&,~&, x,||=0). Then & and % are unital C*-subalgebras
of I” (N, M). Moreover, by (a) their unitary groups U(sf) and U(%) coincide. Since any
unital C*-algebra is the linear span of its unitaries, we have s/=2.

Throughout the rest of this section, M is a III,-factor with separable predual, and
with standard form (M, ¥, J, P%).

LEMMA 2.9. Assume that M satisfies (1) in Theorem 2.3. Let EEP¥ be a cyclic
and separating unit vector, and let n€ ¥, (i.e. Jn=n) be a unit vector orthogonal to
&. For every 0>0, there exists a €M, a=+0, such that '

lla&ll*+llanll* < 8llan—nalf?
and

lla&—&all* < éllan—nall*.
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Proof. We may assume that 0<d<1. Define normal states @, ¥ on M by ¢=(-§, &)
and p=(-7, ). We treat first the case where y is dominated by some scalar multiple of
@; i.e. y<Kg for some K ER, . Then the operator x—x7, x € M extends by continuity
to a bounded operator x' € M’, such that ||x'||<K"? and n=x'E. Put x=Jx'J € M. Since
JE=§& and Jn=n7, we have n=x&. Note that ¢(x)=0 because n.L&. Put

12
6, =min {(%) ,2'K)"V3,
By Lemma 2.8 we can choose (aj)]i“’=1 in M, such that

Spo"’(ai)g[——alj 61]: ieN,

-

% —_
Zai a,=1,

i=1

> li(a;x—xa) &|P= 4 |Ix&lf?
i=1

=4 llnlP*.

Let A, be the modular operator associated with £ via Tomita-Takesaki theory [22]. For
every f€ L'(R) for which the Fourier transformed f vanishes on [—8,, 8;] we have for
every JEN

flog A)ae= | f(t)AlaEdt

=| fMof(a)édt

-

=0

because sp,. (a)=[—0d;, 6,]. Hence a;& is contained in the spectral subspace of log A,
corresponding to the interval [—4d,, d4].

Since £€ PY, the isometry J in the quadruple (M, %, J, P% coincides with the
isometry J, obtained in the polar decomposition of the modular conjugation Se
associated with &, i.e.

S,=J, AV =JAY,
(cf. [6], [15, Lemma 2.9]). Since S (xE)=x*E, xEM, we have

Sa,=JafJE=JarE= A;/z a;§.
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Clearly

sup {[1-¢*?||s €[5, 6,]} = "~ 1.

Therefore,

lla,E—&a,ll = ||(1-A;7) 4]l
<(e"-1) a8
<9, “‘155”-

For the last inequality we have used that 6,<(6/8)"?<1. Using I, af a,=1, we have
2. lla;é—8a,|< 03 2, lla&IF = o} < 018
i=1 i=1

Clearly,
an—na,= (ax—xa;) §+x(a;§—&a)).

Using the triangle inequality in the Hilbert space ®7; ¥ we get

© 172 ® 12 © 1
(Zna.-n—na.w) a(Zu(apc—xa,.)aV) !}l (Z na,-»s—sa.-w)
i=1 i=1 i=1

2

= __2—7/2

1
V2
-1

8V2

Hence 8 X7, ||a;n—na]|*=49/16>3, while
>, (la; &P +lla;l[*+807"la;E-Eafy < 1+1+1=3.
i=1
Hence, for at least one iEN,
8lla;n—naj > |a; &P+ lla;n|*+80"lla; 6 &ajlf’.

In particular, g;#0 and
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lla: &P +la;n|f? < |lam—naill
lla; E~Eailf* < dllam—naill*.

This proves the lemma in the case y<Kg for some K.
Assume next that y is not dominated by a multiple of ¢. In this case we can choose
a non zero projection p € M, such that

wm>{§wm.

Moreover, since the reduced algebra pMp has no minimal projections, we can choose a
projection g € M, 0<g=<p such that

=L
Ylg) = 16 (p).

Note that g=0 and p—q=+0. Since M is of type III, any two non zero projections in M
are equivalent, so we can choose v €M, such that

viv=p—q and wv*=q.

Then
lonlP = w(p-) = ¥(p)
and
ol = W mIf = lo*nf = wi@) = < wip).
Hence,
fom=oll> o~ > Y=L ) > gy
Therefore,

[v&|[>+llvnl[* < @(p)+y(p)
= (1164_ 1) y(p)

<2y(p) <8|juy—nu|f

8—878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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and by the parallelogram identity
[lvg—&ull” < 2(|jvél*+{lEv])
= 2((jv&|*+]|v*El1)
<49(p)
1
<3 oy(p)

< d|lon—nvl*.
This finishes the proof of Lemma 2.9.

LEmMMA 2.10. Let M, &, n be as in Lemma 2.9, and let >0. There exists bEM , ,
b=+0 such that

IbE|>+|1bn||* < 32i|by—nb|?
||lbE—EbI* < 8|bn—nb||*.

Proof. It is sufficient to consider 0<d<1. By Lemma 2.9 we can choose a€EM,
such that

laglP+ lani <8llan ~nall
0
lag—galP <-lan—al".

Put by=(a+a*)/2 and b,=(a—a*)/2i. We will show that either b, or b, satisfies the

conditions of the lemma. If b;=0 then b,=—ia clearly satisfies the conditions. Also if

b,=0 then b,=a satisfies the conditions. Hence we can assume that b,+0 and b,+0.
First, note that

lla*&|| = (Ea)|| = ||&al| < ||a&l|+||las—&all
1”2 6 1/2
< (7+(%)") har—na
<4||lan—nad|
and
lla*nl| = |lnal| < |lanl|+|lan—nal|
<(8"*+1) llan—nal|
<4|lan—na||.
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Moreover, since JE=E,

lla*é—&a*|| = |/(Ea—al)|| = llat—&all

and similarly

la*n—na*||=|lan—nal|.

Hence,
lla*&|P+lla*n|+326"||la*E—Ea*|P< (2-16+-32)|lan—nall
= 40||an—nalf*.
Clearly,
- 1
lalf-+larif+320 " ag—EalP< (8+--32) lan—nal?
< 24|lan—nalP.

Hence,

(laglP+lla*E")+(lan|*+lla*n|?)+320 ™" (lag—&al[*+]|a*E—~Ea*|])?
<64)|an—nalp
= 32(lan—nal +lla*n—na*|?).
Using a=b,+ib, and a*=b,—ib, we get now by the parallelogram identity that
[1B1 EIP+116, £+ 11, nlP+ (1B, 7{[*+3207'([1b, £~ &b, [ +]1b, §—Eb4II%)
<32(|lb, n=nb|I*+lb,n—1b,f).
Hence, for either b=b, or b=b, we have
IEIP+lbm]*+326~"||bE—Eb]* < 32l|by—7b]*.
Thus, b satisfies the conditions of the lemma.

The following lemma is very similar to.[7, Proposition 1.1].

LLEmMMA 2.11. Let L€ ¥, and let bEM be selfadjoint. Then there exists a positive
bounded measure v on R? with support in sp(b)xsp(b), such that for any two bounded
Borel functions f,g on R

1f(B)E-2g®)|* = f |f()~g() fdv(s, 1)
RZ
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Proof. Since left and right multiplication with b on # commute, there exists a
representation 7z of the abelian C*-algebra C(sp (b)Xsp (b)) on  such that

n(f ® g) & = f(b)Eg(b)
for £€ ¥ and f, g € C(sp (b)). Let v be the positive measure v on sp (b) X sp (b) defined by
(v, h) =(@(h) £, 5), hEC(sp(b)xsp(b)).
For f, g€ C(sp (b)),

(f(6) g (), D) = (n(f @ ) L, D)

f f f(s) gy dv(s, 1).
sp{b)xsp(b)

By standard arguments the above equality can be extended to all bounded Borel
functions f,g on sp (b). Hence, for any pair of bounded Borel functions f,g on sp (b)

lf(B) §~Le®) I = ||f(B) &|)*+]15e(B) P —2 Re (f(b) £,52(h))
= (f(B) &, D) +(&|gl*(B), -2 Re (f(b) £&(b), §)
= f f (%) +gl(1)~2Re (f(s) g() ) dv(s, 1)
sp(b)xsp(b)

= f f If()—g@® dv(s, 1).
sp(b)xsp(b)

We can extend v to a measure on R? by putting

R\ sp (b)Xsp (b)) =0.

This finishes the proof of Lemma 2.11.

LEMMA 2.12. Let LE #, and let b€ M be selfadjoint. If

b=J‘ lde;.

is the spectral resolution of b (i.e. e;=)1—»,1; (b)), then

@

@] llest~2e;|PiaidA <||bg]| ||t~ bl
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and

©) | fles b= e Pbfdr >-- 165~ LI

-

Proof. Let v be as in Lemma 2.11. Put

1 ssi<tortsi<s
0 otherwise.

h(s,t,A)= {

Then
lle;e—&e,ll’= jj IX]-w,;u(5)“X}—w,11(t)|2dv(s» )
R2

= ff h(s, t,A)dv(s, 1).
R2
By Fubini’s theorem,

f ||e1§—§e1||2|l|dl=ff <f h(s, t,ﬂ.)|l|d/1> dv(s, D).
-0 R2 -0

o t
f h(s, t, A)|AldA = f |A|dA = L(¢* sign t—s*sign 5).

—®

If s<t,

Using h(s,t,A)=h(t,s,A), we get for all 5,ER,

f h(s, t, ) |A|dA = }|¢* sign t—ssign .

—

A simple computation shows that for s-£=0
| sign t—s?sign s| = |s—|(|s|+]¢)
and for s-1<0
| sign t—s? sign s| = s2+ 2 < |s—t]| (|s]+]1)

so in all cases

f h(s, t, ) |AldA < Lt—s|(|s|+]e)).

—o
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Therefore,

f lle; §—Ze, IPAIdA = j f |t=s|(|s|+]¢)) dv(s, 1)
RZ

—co

172 "
s%(f f lt_stv(s’t)) (J' f (|s|+|t|)2dv(s,t)> )
R? ”

ff |t—s2dv(s, £) = ||bS— b
RZ

By Lemma 2.11,

Since (|s|+]¢])><2|s[>+2|¢*, we get by Lemma 2.11
f f (Is|+|e)?dw(s, D < 2(|bEI+][ZBIP).
RZ

But since JZ=¢,
li5bl| = bE]| = |16
Hence

f f (][t 2dw(s, ) < 4|bE)>
RZ

This proves (a). To prove (b), observe that for s- =0,
|2 sign 1—s% sign s| = (t—5)%.
Moreover, for s-t<0
| sign —s? sign s| = £+5* =1 (t—9).
Hence,

f h(s,t,A)|AldA =4 (t—s)%.

—

Therefore,

J. ||81§—Cel||2|l|dl>%f"'2|t—s|2dv(s, )
R

—®

= }|lbZ—&b].
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LemMA 2.13. Let M, &, n be as in Lemma 2.9. For any 6>0 there exists a
projection p*0 in M, such that

&I +llpnlf* < 2"llpn —nplf
\lp&—EplI*<d|lon—npll*.

Proof. Let 6>0, and put 6,=(277-8)>. Assume that b€ M, , satisfies the condi-
tions of Lemma 2.10 with respect to d,. Let

b= f Ade;
be the spectral resolution of ». Put

e, —*©<i<0
fi= l1—e, 0sAi<c,

Using that ;=0 for A<—||b||, and e;=1 for A>>||b|| we get by partial integration

0 0 2
[ inaraei--| weod(%)

0
12
= f—w 7 d(e), E: E)

and
f I1f; £IPIAldA= f (1-(¢; &, E))d(—)
0 0 2
=J(; 7d(e}.§1 ‘5)
Thus
f £, €IPAldA = 4 j A’d(e, £, &) = §||bE|*.
Similarly

f IfunlPIAldA = §lbm]”.

-
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Since for all € 5, , we have
f18—Cfi=%(esl—Cey)

we get from Lemma 2.12, that

f fym=af 1Al = [y b

and

| j ) \I£, E—&f, IPIAldA < [|bE]) ||bE—£b]-

—00

Using, ||b&||*<32||bn—nb|]? and ||b&—EbJ|*<d,||bn—nb||*, we have

j 1, =5, [P VIdA < (323, lbn—b|

< 60,” ||by—7b|[.

Hence

WL EP+IfmlP+07 P A E- A1) ldA

<1(|IBE|P+|1bmD)+6llbn—nb|
32

<= llbn—nb|[P+6||br—nbl*

<32ljbr—nb|?

<2 f ILfin—nfill"iAldA.

—

Thus for some A ER, one has

N EIP+HIA P+ 2N E-EAIF <2 n—nfll.
In particular, for this A, ;%0 and
15 EP+IA N < 2N n—nfill

M E-EfIF < 27611 fin—nfilf
= 0|l fin—nfill.
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This proves Lemma 2.13.

LEMMA 2.14. Assume that M satisfies (1) in Theorem 2.3, and let EEP" be a
cyclic and separating unit vector. Let 5 € ¥, be a unit vector, n*§, and n+—§, and
let 6 be the angle between £ and 1, i.e.

0 =arc cos (&, 7).

Then for every 8>0 there exists a projection p*0 in M, such that

210
sin’ 6

P&l +lipnlf* < llpn—npl®

lp&—Epl| < ollpn—npl>.

Proof. Note first that the angle 6 is well defined because ¥, , ={ € X|JE=C} is a
real Hilbertspace. Moreover, 0<6<um. It is sufficient to consider the case 6<1. The
vector n can be written in the form

7 =cos 8&+sin 6y’

where 7' € %, , is a unit vector orthogonal to £. Put §,=10 sin’0. By Lemma 2.13 there

exists a non-zero projection p EM, such that

&I +llpn’ I < 27llpn’' —9'plI?
lp&—EplI* < b4llpn’ ~n'pIf*.

Since
sinfy’ =n—cos 6§
we have
sin 8|lpn’ —7'pl| < |lpn—npll+|lp5—&pll
<llpn—npll+0;" llpn’—n'p|.
Thus

llon—npl| = (sin 0-6;7) lpn’~n'p||
= sin6(1-46") |lpn’ —n'p|

=}sin 0oy’ —n'p||
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which implies that

IpE~EIF <~ pn -
sin“ @
= |lpn—npl|P.
Moreover,
llonl| < cos Ollpé&||+sin 6||p’||
<(|Ip&IP+llpm' ).
Thus

&I+ |lp|* < 2||p&|*+2llpn'I?
<2%lpn’—n'p|?

=

2 \on-nplf
sin’ @ lon=npli-

This proves Lemma 2.14.

LEMMA 2.15. Assume that M satisfies (1) in Theorem 2.3. Let EEP" be a cyclic
and separating unit vector, and let n€ ¥, , be a unit vector such that §1n. Then for
every 0>0 there exists a family (e;); ¢ ; of orthogonal projections in M with sum 1, such
that

€= e;te|F <0

i€r

=", enelf=27".
i€l

Proof. Let F be the collection of all sets of projections {p;};es in M for which

(1) p#+0 for all i and p; L p; for i+j.

) Withp=1-> p,,

i€l
IE~p&pI[2+|ln—pnp|P < 2"|lp—prp— >, PPl
i€l

and

HE—IJEP—Z p:épif < 5|ln-m7p—2 pinpil.

i€l i€l
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The collection & is a partially ordered set with respect to inclusion. & is non empty,
because @ € Z. Moreover, it is easy to check that % is inductively ordered, i.e. every
totally ordered subset of ¥ has a least upper bound in %. Hence by Zorn’s lemma # has
a maximal element {g;};e;. Put g=1-3;e;q;. We will show that the family of
projections:

{@:}ier U{q}

satisfies the inequalities stated in the lemma. Since {g;};¢,U{q} is a family of pairwise

orthogonal projections, the family
{9:7q;J} iV (qJqT}

consists also of orthogonal projections. Therefore

In—ana—>. a;na= II<1—quJ—E q.-Jq.-J> 1l

i€l i€l
</lnlp.

Thus since {q;};e;€ %, we have

lE~qa—, q;q < 8|ln|2 =0

i€l

s0 to complete the proof of Lemma 2.15 we have to show that

ln—ana—>, amajf=2"".
i€l

Assume that |[p—gnqg—L;e qmqi[*<2™'®. Then by the definition of %,
IE~a&all+|In—gnal? <2'-27"% = .
Put §'=g&q and n'=gnq. Then
E-€ll<} and |lp—7'l|<}.
In particular g+0, ||&’|[=} and ||n’||=3. Moreover,

&,n") = (akq, anq) = (984, m)
=(&,n—(E—qkq,n).



124 UFFE HAAGERUP

Thus
G, n")| < O+||E—&'l|Inll < -

Let 0 be the angle between & and #’. Since

(/) <i(_4_)2<i
oSO = e <4\3) <2

we have sin?6>3.

Let J, denote the restriction of J to g#q.

By [15, Lemma 2.6}, (gMq, q#q, J,, qP%q) is a standard form of the reduced
algebra. It is clear that & € gP%q and n’ €(q¥#q)s.a.

Since £ is cyclic and separating for M, the face in PY generated by £ is dense in
P. Hence the face in gP% generated by &'=g&q is dense in gP%g, which by [6,
Lemma 4.3] implies that &' is cyclic and separating for gMq. Since M is of type III and
g+0, gMgq is isomorphic to M. Therefore we can apply Lemma 2.14 to gMgq and the
vectors

g'=¢N¢g|l and n"=n'lly’ll.
Hence, there exists a projection r € M, r<gq, r+0, such that

210
e+ ol

<32 =
and
Ir& =& < S|
Hence, using 3<||&’|| <1 and }<|jp’||<1, we get
&P+ < () 2

<2Y||rm’ —y'r|?

and
! 7 4 26 ’ 1
Ire=&iP< (%) Sl =P

<6llrm’—n'r|P.
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We will show next that {g;};e,;U{r} is contained in %, i.e. we will check that

IE—(@—n) E@—nIP+In~ (@@= ng=P|P <2™ln—(g—rm@—n—rmr— > gmalt  *)

i€l

and that

lE—(g—n) Eq—r)~r&r—, q,£q)l* < Slln—(g—mig—n—ryr— Y, q,Eq . (**)

i€l i€l

To prove (**), observe that

1—(q—r)](q—r)J—rJrJ—Eq,-Jq,.J= (l—quJ—z q;Jq; N+ri(q—r)J+(q—r)Jr]),
i€l i€l

where the right side of the equality is the sum of three orthogonal projections.
Therefore

IE—(g—n) Eq—n—rEr=". q,Eqll = |E-ata— D, q:Eqil+|IrE@—n)IP+Ii(g—r) &rlP.

Since

r&§' —&'r=rEq—qér=ré(q—r)—(q—nr) ér
and since

rJ(g—nJ L(g—r)Jr]

we have

lIrE' = &'r[2 = lIr&@—n)|P+1l(g—n) &rll>.
Thus

e .s<q—r>—rsr—§q,-5q,~||2= ue—qsq—%q,-sq,-||2+urs'—§'r||2.

Similarly,

ln—(a—r nta—n~mr— > anail’ = lln—ana— >, ana+lim'—n'rl.
i€l i€l
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Since {q;};es€F and since ||[r§’—&'r|[><d||rp’—n'r||> we have proved (**). To prove
(*), we use that

1—(g—rJ(g—nJ =(—qglgD+qJrJ+ri(g—nJ
where the right side is a sum of three orthogonal projections. Hence
IE—(g—r) &@gq—n)I* = |5~ q&ql*+|lq&r|*+|IrE(@—n)I?
<||E-q&qlP+|lgér|*+liréall®.

Since JE=£ we have ||g&r|*=|lJ(rEq)|*=]IrEal*-
Moreover, réqg=r&'. Therefore

1E—(g—n E(g—nIP < |IE—q&ql*+2|r&'|*.
Similarly

ln—(g—r n(g—DIP < |ln—anqll*+2lirm’|I*.

Since {g;}iecrisin F

IE=g&qlP+ln—anqlP < 2“ln—ang— >, amail.
i€l

Moreover we have proved that
(I7&’ | +llr’ 1P < 2{lr" — '

Hence

1€ (g—1) E@- DI +lln—g—n n@—nIF< 2"(ln—ana— D, anal+lim'—n'rlP)
i€l

= 2¥y—(q—r) nig—n)—rpr— Y, amaj-
i€l

This proves (*). Hence we have proved that {g;};e U {r} is contained in &, which
contradicts the maximality of {g;};e;. Therefore

lIn—ana—>, amalt=2"",
i€l
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while

lE—qta— >, afqif <.

i€l

Since {q:}:e;U{q} is a set of pairwise orthogonal projections with sum 1 we have
proved Lemma 2.15.

LEMMA 2.16. Assume that M satisfies (1) in Theorem 2.3. Let EEP® be a cyclic
and separating unit vector, and let 1€ ¥ be a vector orthogonal to &. For every 6>0,
there exists a projection p €M, such that

lpE—&p|* <o
lpn—npll? =272 n|*.

Proof. Assume first that € ¥, ,. By Lemma 2.15 there exists a set of pairwise
orthogonal non-zero projections {e;};e; with sum 1, such that

€= e;Eelf <6

i€l

and

In—=", enelf =2 8|l
i€l

Since M is o-finite, the index set I is countable. Let G be the cdmpact abelian group
G={-1,1}\,

For g€G, g=(g)ies we put

u,= 2 gie;

i€l
Clearly u, is a selfadjoint unitary operator for all g. Moreover
g uUg
is a strongly continuous representation of G on #. Therefore

g—ugdugJ
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is also a strongly continuous unitary representation of G. Let dg be the normalized
Haar measure on G. Then

] uJu D) dg= ", | g:gfleJe;J)dg.
G

ij JG

Since dg=II;¢;dg;, where dg; has mass }at both 1 and —1, it is clear that

1 i=j
g.-g-dg={ i
fc 4 0 i

Hence
fug(JugJ) dg= 2 eJeJ.
G i
Therefore,
(n_ugnug) dg = ”_2 elﬂel'
G i€l
In particular

J’ ln—u,nu,||dg= IIn—E e;nell
G

i€l
= 27Inl,
so for at least one g€ G,
|l — g gl = 272Iml.
Equivalently
g 1 —n2ag|* = 27 "%|Im].
Put &'=%;¢;e;Ee;. Then u, &' =&'u,, for all h€ G. Therefore
Il &—Eue,||< 211E-E'l|
<26

Let now p be the projection p=4(1+u,).
Then clearly
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lpE~&pl> <o and |jpn—np|?=2"2y|

Let finally n € € be a general vector orthogonal to £. Put
. 1
m=o+In), = —n—Jn).

Then n,, n,€ %, ,, 1, L&, i=1, 2, p=n,+in, and ||n|?=|n,|+|In,|*. Therefore we can
choose j€{1,2} such that [ly|=}|ly|. By the above arguments, there exists a projec-
tion p € M, such that

lp§—Epl*<o and ||pm—n;p|P =272|njP.

Clearly

pn—np = (pm—n p)+i(pn—n2p).

Moreover, one checks easily that

pm—mpEi¥;.a.
i(pn2—nm2p) € Hs.a..

Therefore

llon—npl|* = |lpn,—n, pI*+|pn,—n, pI
=279 n |
= 27 |p| 2.

This proves Lemma 2.16.

End of proof of Theorem 2.3. Assume that M satisfies (1) in Theorem 2.3, and let ¢
be a normal faithful state on M. We shall show that B,=Cl. Let a€B,, and put
a'=a—ga)l.

Let £, € P" be the unique vector in P* that implements ¢. Then &, is a cyclic and
separating unit vector. The vector n=a', is orthogonal to &,, because g(a’)=0. Thus
by Lemma 2.16 we can choose a sequence (p,),en of projections in M, such that for
all nEN,

IPaE,~Eopl <~ and llp,n-mp1 =27l

81878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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By Lemma 2.8 (b) the first inequélity implies that lim, . ||p, @—@p,||=0 and since
a€B,, it now follows that

lim ||p,a~ap,||,=0.

n— o

On the other hand

lp,a—ap,lly=ll(p,a’~a'p) &l
= “pn algqi_alsqppn“—-”a'Eq;pn—a,pn g(p”

= |lp,n—npll-lla'llp, 5, ~ 5, Pll-
Thus

lim inf|lp, a—ap,l, = |P,n—np.l =2l

n—

Therefore =0, which implies that a’=0. This proves that B,=C].

3. Characterization of III,-factors for which B,=C1

In this section we will prove the following extension of Theorem 2.3:

THEOREM 3.1. Let M be a factor of type 111, with separable predual. Then the
Sfollowing three conditions are equivalent:

(1) For every (faithful) dominant weight v on M and every x€EM

conv {uxu*u € UM )} N C1+QD

(o-weak closure).

(2) For every normal faithful state ¢ on M, B,=C1.

(3) The set of normal faithful states on M for which M, N\M=C1 is norm dense in
the set of all normal states on M.

It is very likely that all III,-factors on a separable Hilbert space satisfy the above
conditions (see Remark 3.9). The implication (1)=>(2) was proved in Section 2. It
remains to be proved that (2)=>(3) and (3)=>(1). The first three lemmas of this section is
used to come from B,,=C1 back to the situation we had in Lemma 2.16. The rest of the
proof of (2)=>(3) is inspired by Popa’s techniques from [19].

Throughout this section M is a factor of type III; with separable predual and with
standard form (M, %, J, P%). As usual we define right multiplication of M on ¥ by
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na=Ja*Jn, a€EM, n€EX.

LeEMMA 3.2. Assume that B,=C1 for all nf. states on M. Let EEPY be a cyclic
and separating unit vector and let n € ¥ be orthogonal to &. For every >0, there exists
a unitary operator u€M, such that

|lwé~Eul* <6 and |lug—nulP = Yin|P.
Proof. Let ¢ be the vector state on M given by £. By Lemma 2.8
Wut—Eull® < |lup—qull, u€UM. *

It is sufficient to consider the case ##0. Assume first that # can be written in the form
n=aé for some a€M. Since n L& we have ¢(a)=0. Let >0 and put

61 = min {4, (|[nl|/8|lal})?}-
By Proposition 1.3(2), (a)=>(b), there exists AEC, such that
a—AI€Econv {a—u*au| u€ UM), |up—oqu||<4d,}.
Since the norm ||||,, is o-weakly lower semi-continuous, we get
lla—All| < sup {|la—u*au||,| u € UM), |jup—qu|| < d,}

and since @(a)=0, |la—All[;=|lal>+IAP=||all%.

Hence we can choose a unitary operator u € M, such that |lup—eu||<6, and

lla—w*aull, = Hlall,
or equivalently

llua—aull, =all,-
Thus

llun—nul| = |luaé—aku|
= |\(ua—au) & —lal| ||u&—&ull
={llall,~llall {ju&—Eu||-

By the inequality (*) we get

”ug(p—glp u” = 6:/2'
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Since ||al|,=]|n|| it follows that
Nl —ned|= lll| -6 lall
= §linll.
Hence
lluéy—Equlf* <o
and
(leen—null* = GYllnll* > il

Finally, let # € # be an arbitrary vector orthogonal to £. For every £>0, there exists
n’ € ME, such that |jy—n’||<e. Moreover, 7’ can be chosen orthogonal to £, because the
projection of #’ onto the orthogonal complement of C£ also belongs to ME. It is clear
that the distance between the two numbers,

sup {|lun—nul|| u€ UM), |lu—&ulf* < 6}

and
sup {[lun’—n'ull| u € UM), |lué—Eull* < 6}

is at most 2¢. Hence, by letting £¢—0, we get by the first part of the proof that
sup {|jun—nul|| u€ UM, ||u&—&ul* <o} = ||

Since G)2>% we have proved Lemma 3.2.

LeMMA 3.3 Let u€M be a unitary operator, and let for 0<0<2n, pg denote the
spectral projection of u corresponding to the semi circle {e"|6<t<0+mx}. For every
LeEH

2
(i) f lIpo E—Epell*d0 < |5l |15 —u
0
and

27
(i) j 1o t—Epofd0 = ut~Lulf.
0
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Proof. Let T be the unit circle in C. Arguing as in the proof of Lemma 2.11, one
can find a positive measure u on T2 such that

LRw) - Eg)F = Jf |As)— g dus, )
TZ

for all bounded Borel functions f, g on T. (See also [11, proof of Lemma 3.3].) Define a
function 4 on TXTX]0,27) by

1 ifg<args<@+mand 6—-nr<sargt<0
h(s,1,0)=11 f—z<args<fand 0<argt<8+=n *)
0 otherwise.

Then it follows that for all 0<6<2x
”P(;C‘CP()HZ = jf h(s, t, 0) du(s, t).
T2

Hence, by Fubini’s theorem

2n 2
f lpo&—EpolfPda = f f < f h(s, t,G)dO) du(s, t).
0 T2\ JO

Let €[0,n]. Then

. 1 6€10,81U]x, B+n]
# g):=
h(l, €%, 6) {0 otherwise.
Similarly, for § €[, 0],

1 6€la+B,alu]2a+8,2n]

# gy =
h(l, €%, 6) {0 otherwise.

Hence,

2
f h(1,e?,0)d0=2|8| for —n<B=n.
0

Assume now that h(s, ¢, 6) is extended to a function on TXTXR periodic in 6 with
period 27. Then, for a, ER

h(e'®, e, 0) = h(1, &¢~?, 8—a).
Therefore, if |a—pf|<n, we get

9—878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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2n 27 )
f h(e®, e®,0)do = f h(Q, %2, 0)do
0

0

=2la—p.
It is elementary to check that for |a—g|<x one has

2 jo—p| <le-e"| < |apl.

Since, for every pair (s, ) ET?, one can choose a, BER, such that ¢“*=s, =t and
|a—B|<=, it follows that

2
2|s—t|sf h(s, t, 8) d6 < m|s—1|
0

for all (s, 1) €T?. Hence,

px 4
j llpoE—2poll*d6 < nj |s—t| du(s, )
0 °

1”2 ”
< n(f |s—t|2d,u(s,t)> (j d,u>
T T2

= arfjud— | 1€,

and
27
f lpo&—Cpoll?d6= 2 f |s—1| dus, 1)
0 2 ,

= f |s—tfPducs, 1)
T2
= [lug—Zull".
This completes the proof of Lemma 3.3

LEMMA 3.4. Assume that M satisifes (2) in Theorem 3.1. Let & € P be a cyclic and
separating unit vector and let 5 € ¥, nLE. Then, for every 6>0, there exists a projec-
tion p €M such that

lipE—Ep|PP <o
llon—np|l* =4 In|*-



THE INJECTIVE FACTOR OF TYPE III; 135

Proof. We can assume that [jp|j=1. By Lemma 3.2 there exists u € U(M), such that
||luE—Eul|® < (6/16)*

and
llun—nul? = 1.
Let pg, 0<0<27 be as in Lemma 3.3. Then
P 4
J llpo &~ Ep4ll*do < 6/16
)
and

27
f T—_ S
0

Therefore,
) 2n
1 16 2)
SEE Ty do<2
L (ool
2%
<4 J llpe 1 =Pl db.
0

Hence, for some 6 € ]0, 277] we must have

1 16
o+ Iy ~epdf <4 lpan-npdf:

. In particular, for this 6,

‘ o}
“Pe §_§Po“2 ST “Po’?'"’?Po“z

s%(lmuﬂlnpouf

=)
and

1 1
—pp = > .

This completes the proof.
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For any von Neumann subalgebra N of M we put
Hy={n€¥| an=na, a€EN},

and we let O be the projection of % onto . It is clear that )y is invariant under J.
We let Ju denote the restriction of J to .

LEMMA 3.5. Let N be a finite dimensional subfactor of M. Then
(a) #y is invariant under N' N M, and

(N’nM: %NJJN;Ph n %N)

is a standard form for N'NM.

(b) If EEPY then QaE)EP N HN. If, moreover, & is cyclic and separating for M,
then QN(E) is cyclic and separating for N'NM on .

Proof. (a) It is clear that ¥, is N’ n M-invariant. Let (e;); ., be a set of matrix units
for N, and put e=e,,. By [15, Lemma 2.6}

(eMe, eXte, J,, ePte)

is a standard form for eNe. (J, is the restriction of J to e¥e.) We will establish an
explicit isomorphism between this quadruple and (N'NM, #n, Jn, PN ).

Since N is a finite factor, M can be identified with (N'NM)®N. From this it
follows that the map

x—xe, xEN'NM

is a *-isomorphism of N’ N M onto eMe.
It is easy to check that the orthogonal projection Qn of # into Hy is given by

1
On= 7 2 e‘-,-JeUJ.

n
J=

Put

1 n
w=——) e,Je;J.
\/7; e

Then w*w=eleJ and ww*=Qy. Thus w is an isometry of e¥e onto ¥y. Since w
commutes with every x€ N' N M, we have for xEN'NM and E€edHe,
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w¥xwé = xw*wk=x& = (xe) &.

Hence w implements a spatial isomorphism of (eMe, ede) onto (N'NM, ¥y). Since
aJaJ(PY)<P* for all aEM,

w(eP%) € w(P*) S P* n ¥
and
w*(P%N ¥n) S w (PP S ePle.

Since also wJ/=Jw, one gets that w implements an isomorphism between (eNe,
e¥te,Je, eP%) and (N' N M, ¥, Jn, P*N ¥y). This proves (a).
(b) 1t is clear from the computations above that

ONMPH S P 0 Ky,

Let £€ P* be cyclic and separating. Put

t= w§=v—‘_n_—21 e, ket

Then & EedHe and w(E)=QnE). By [6, Lemma 4.3], eke € ePP is cyclic and separating
for eMe acting on ee. Since

C?—l—eée
n

in ordering on e¥e given by the cone ePf, { is also cyclic and separating for eMe.
Therefore Qn(&)=w¢ is cyclic and separating for N'NM on #y.

LEMMA 3.6. Assume that M satisfies (2) in Theorem 3.1, and let £ € P® be a cyclic
and separating unit vector. Let n€ ¥, nL&. For every 0>0 there exists a finite
dimensional subfactor N of M, such that

I6-OnEIP <o
and

IO < 3 il

Proof. We may assume that <1. By Lemma 3.4 there exists a projection pEM,
such that
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Ip&—&plf* < /36
and
llpn—npIP = % Inll".
Clearly p+0 and (1-p)#+0. Choose a rational number g €10, 1, such that
0—0/6 < ||p&||* < o+9/6.

Write o=k/d, where dEN, and k is an integer, 0<k<d. Put ¢=w; on M and put
@' =ppp+(1—p) ¢(1—p). Let u=2p—1. Then u is a selfadjoint unitary, and

¢’ =} (@+upu®).

The state ugu* is implemented by the vector uéu* € P*. A simple computation shows
that any two vector states w, and ¢, one has ||w,—w¢||<|ly—&}||ln+Z||. Hence

lle'—g@ll =} llo—ugpu||
< J||E—ubu*|| |6+ ubu||

< {[ué—&ul
=2||p&—&p||
<4/3.

Choose next a normal faithful state 9 on M, such that the centralizer M,, of ¥ contains
a subfactor F isomorphic to the dx d-matrices M. This is possible because M=M®M,
and because the centralizer of p®tr contains 1®M,, (tr is here the normalized trace on
M,). Let g € F be a projection of dimension % (relative to F). Then y(g)=k/d. Since M is
of type III, we have p~q and (1—p)~(1—g) as projections in M, so we can choose a
unitary operator v € M, such that vqu*=p. Now, put

Y =uvyv* and F' =vFv*.
Then y' is a faithful normal state on M, and
PEF'SM,.
Note that by the definition of ¢’ also p € M,,. Moreover,

?'(p) = 9(p) = ||pE|.
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Put
L .7

P

’ 1 ' i
=——p¢, P=—
(pl (p(p) (p 2 (p(p_]_)

r— 1 ’ - 1 i r.
1’4 ———w,(p)pw, ¥ w,(pl)l’w

Then @}, ¥} are faithful states on pMp and @5, ¥} are faithful states on p*Mp™. Since
pMp=p*Mp*=M and since M is of type III;, we can by the Connes-Stgrmer transitiv-
ity theorem [12] find unitaries w, € pMp and w, €p*Mp~, such that
@i —wpl wH| <63, i=1,2.
Then w=w,+w, is a unitary in M.
Since y'(p)=1y(q)=k/d we have
' k ' d—k '
Y= Pl Y+ a4 Y-

Therefore
k ’ d—k, ’
“<7¢1+T¢2>_ww w* $6/3
Using
¢ =9'(P)g;+9'(P) @,
and that
k o k 6
———<g'(p)s—+—,
IR AR
we have
d_k 6 rea L d_k 6
— == S——+—=
4 6 YISty
Thus

Since ||¢p—@'||</3 we have altogether

llp—wy'w*||<o.
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Put o=wy'w*. Then w is a faithful state and M,, contains the finite dimensional factor
N=wF'w*. Moreover, p €N because wpw*=p. Let &, be the unique vector in P" that
implements w. Then, by Araki’s generalization of the Powe'rs-St¢rmer inequality [1,
Theorem 4(8)],

16— EulP? <llp—wl| <.
Since uwu*=w for all u € UN), we have ué,u*=E, for all u € U(N). Hence,
£,€ Hn={LE H| al={a, aEN}.
Therefore,

|IE—ONMEI? = dist (£, #n)? < [|E-EL*<6.

H={n€¥| pn=np}.

Then ¥ is a closed subspace of %, and the orthogonal projection Q of # onto His given
by

Q%) =ptp+(1-p)&(1—p).

Since pép, (1-p) &(1-p), pt(1—p), (1-p) &p are orthogonal vectors in 3 with sum &, we
have for all { € 7,

IEIR = Q@I +lpt1—p)—(1—p) &pIP
= |0+t —EplIP

Using that %,=%, and that |[pn—np|=4|in|l?, we get
QNP <ll@@|*= |inl*~llon—npll

<31l

This completes the proof of Lemma 3.6.

LEMMA 3.7. Assume that M satisfies (2) in Theorem 3.1. Let § € P" be a cyclic and
separating unit vector and let 1€ ¥. For every 0>0 and ¢>0 there exists a finite
dimensional subfactor N of M such that
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IE—On )| <o
dist (Qn(1), CONE)) <.

Proof. We prove by induction that for every r EN there exists a finite dimensional
subfactor N, of M, such that

IE—On Bl <(1-27)0 *
and
dist(Q (1), CQy (£)) < 3P dist (n, C&). (**)
First, let r=1. Put c=(y, &. Then

n=ck+n'

where #’ LE, and dist (, C&)=|l»’|.
By Lemma 3.6 there exists a finite dimensional subfactor N; of M, such that

lE-0y @Il <or
and
1Ox, I < 1’|
Hence,
dist (@, (), COMEN= dist (Qu(n’), COMEN
<@l
= @) dist (7, C).

This proves (*) and (**) for r=1. Assume next that we have found N, satisfying (*) and
(**). We proceed to construct N, ;. Put

&= QN,(E) and #'= QN,(”)-
By Lemma 3.5,

(N, O M, 3y, dy, P' 0 %y)
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is a standard form for N'nM and N’ M is isomorphic to M. Moreover, &' is cyclic and

separating for N'NM on ¥,,. Using the above argument for r=1 to the two vectors

&'=£'/||€'|| and 5’ we can find a finite dimensional subfactor F of N;nM, such that
1§ —QHEN <2710
and
dist (Qp(n'), CQHE) < G dist (', C&")
where Qr is the projection of %N, onto
{n€ %’NJ an=na, a€F}.

Put N,.,=span{ab|la€N,, bEF}. Since N, and F are commuting finite dimensional
factors, N,.; is also a finite dimensional factor. Moreover,

¥y, ={n€H an=na, a€N,,}
= {n€Hy| bn=nb, bEF}.

Therefore Oy =QrQy . Hence,

16— Q.. Ol IE-Qn ON+IE ~ QHEN

<(1-2"""YH¢

r+1

and
dist(Qy_ (1), CQy _(E)< @)™ dist(y', CE)

< @Y dist (n, CE),

whiéh proves (*) and (**) for r+1. Thus we can find N, satisfying (*) and (**) for all r.
Choose now r such that

Gy dist(n,Cé) <¢,
then Lemma 3.7 holds with N=N,.

LEMMA 3.8. Assume that M satisfies (2) in Theorem 3.1, and let § € PY be a cyclic
and separating unit vector. Let 0<0<1. There exists an increasing sequence of finite
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dimensional subfactors (N,),cx of M, such that when N is the von Neumann algebra
generated by U,_,N,, then

lE—On®)| <6
On(3) = CONME).

Proof. Since M has separable predual, the Hilbert space # in the standard form of
M is also separable. Let (1,),., be a dense sequence in #. We will construct an

increasing sequence (N,), ¢ of finite dimensional subfactors of M, such that
-0y @l <(1-270 *)
dist(Qy (7,), CQy (E) <27 (**)

for all n€EN. Lemma 3.7 shows that we can choose N;, such that (*) and (**) are
fulfilled for n=1. Assume next that we have found

NigN,c...eN,
satisfying the conditions up to n=r, and let us proceed to construct N,,:
Put §’=QN,(§) and n'=Qy ®,.,)- By applying Lemma 3.7 to the standard form
N, N M, %y, Jy, P' N 3Hy)

and the two vectors £"=&'/||&’|| and #’, one can find a finite dimensional subfactor F of
N;nM, such that

IE~0u @ <275
dist (Q)n"), COHE) <2

where Q. is the projection of %, onto the elements in ¥, , that commutes with F.

As in the proof of Lemma 3.6, one sees that
N,+1=span{ab| aEN,, bEF}
is a finite dimensional subfactor of M, and that

IE-0y, Oll<1-27"H4

dist(Qy,_ (7,,),COy_(E)<27".
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Moreover, NN,

.- Hence N,c ... €N,EN,,, satisfy the conditions (*) and (**) up to

n=r+1. By induction we get an increasing sequence (N,), y of subfactors satisfying (*)
and (**). Put now N=U,_|N,.

Since ¥, is a decreasing sequence of Hilbert spaces, and since
n

we have Qy=lim,_,,, Qy_(strongly).

Therefore ||E—QnM&)||<d. For each n€N we can choose c, € C such that
1Qx, (1), Oy BNl <27".
Since Oy Oy =Qy it follows that
Q) —ca QMBI <27, nEN.
Hence
dist (Qn(17,), COMEN) <277,
For each n€N, the sequence (1,,)m=, is also dense in #. Therefore
dist (OM#), CONME) <277
Hence
OM%) S COME) = CO&.
This proves Lemma 3.8.

End of proof of (2)=>(3). Assume that M satisfies condition (2) in Theorem 3.1, and
let EE P* be a cyclic and separating unit vector. Let N, and N be as in Lemma 3.8 with

0=}, and put &'=0,(&). Then &'#+0 and
%N= CE'

Since &'=lim,_,, Q, (§), it follows from Lemma 3.5 that E'EPY. Let ¢eEM be the
projection of the vector functional ¢’ on M given by &'. Then e&'=&’, and since J§'=¢&'
also &'e=§&’. Hence &' €EeHe. By [15, Lemma 2.6]

(eMe, ete, J,, ePe)
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is a standard form for eMe. (Here J, is the restriction of J to ee.) Moreover, &' is
cyclic and separating for eMe acting on e¥e. Since &' € Qa(3), we have

ut'u*=§&', u€U(N).
Hence also

up'u*=¢', u€UN)
and

ueu*=e¢, u€U(N).

Thus e € N’ M. Let y be the restriction of ¢'/||@'|| to eMe. Then v is a normal faithful
state on eMe, and

eNcSM,.
We will show that (eN)'neMe=ClI,, where I,=e is the identity in eMe. Let
x€E(eN)' neMe
regarded as an operator on ¥ and
n=xE€EX.
Since e €N’ we have for all a € N that ax=xa. Thus, for a€N,
an = ax&' = xa&' =x&'a=rna.

Hence 1 € #y=C&’. Since &' is separating for eMe, it follows that x=1,. Thus

(eN)' neMe=Cl,
and since eNcM,, we have also

M, neMe=CI,.

Since eMe=M, we have proved that M has at least one normal faithful state w, such
that M,,NnM=CI. The density of such states in the set of normal states follows now
from the Connes-Stgrmer transitivity theorem [12].

Proof of (3)=(1) in Theorem 3.1. Assume that M is a type II;-factor with
separable predual, and that ¢ is a n.f. state on M, such that M, nM=Cl. By ({4] or
[23]) there exists a normal faithful conditional expectation of M onto M,,. Since M, is a
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finite factor, we get by Popa’s result [19, Theorem 3.2] that M,, contains a maximal
abelian *-subalgebra A of M. Let w be the n.f.s. weight on B(L*(R)) for which
(Dw: D(T1)), = u,

where
W f)(s)=fs—1), s, tER,fFELXR).

By [13, p. 4971 y=¢®uw is a dominant weight on M®B(L*R)). It is clear that M,
contains a maximal abelian subalgebra of B(L*(R)), namely the von Neumann algebra B
generated by {u/|tER}. Thus C=A®B is a maximal abelian von Neumann subalgebra
of M@B(LZ(R)). Moreover, C is contained in M,,. Since M®B(L*R))=M it follows
that M has a dominant weight v, such that M,, contains a maximal abelian x-sub-
algebra C of M.

Since the unitary group U(C) of C is abelian, it has an invariant mean m. For every
x€EM, the integral

y= f uxu*dm(u)
uo)

defines an element in C' N M=CgM,,. Moreover,
y€conv {uxu*ju € U(Mw)} , (o-weak closure). *)

Since M, is a factor, we get by ‘‘the Diximier averaging process’’ (cf. [14, Part III,
Chapter 5, Lemma 4], that

conv {uyu*|u € UM,)} N C1+@.
By (*) it now follows that
conv {uwxu*u € UM)} N Cl*Q.

Since any two dominant weights on M are unitary equivalent, we have proved (1).

Remark 3.9. The problem whether the conditions (1), (2) and (3) in Theorem 3.1
holds in all III,-factors with separable predual is related to the following problem of
Kadison (cf. [18], [19]): Let N be a subfactor of a factor M, such that N'nM=C1. Does
N contain a maximal abelian *-subalgebra which is also maximal abelian in M? Indeed,
if Kadison’s problem has an affirmative solution for factors on a separable Hilbert
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space, then for any dominant weight v on a IIl,-factor M with separable predual, M,
contains a maximal abelian %-subalgebra C of M, and hence by the above proof of
(3)=(1) it follows that condition (1) in Theorem 3.1 holds.

References

1] Araki, H., Some properties of modular conjugation operator of von Neumann algebras and
a noncommutative Radon-Nikodym theorem with a chain rule. Pacific J. Math., 50
(1974), 309-354.
(2] Araxi, H. & Woobs, E. J., A classification of factors. Publ. Res. Inst. Math. Sci. Ser. A, 4
(1968), 51-130.
[3] Arveson, W., On groups of automorphisms of operator algebras. J. Funct. Anal., 15 (1974),
217-243.
[4] CowmsEs, F., Poids et espérance conditionelles dans les algébres de von Neumann. Bull. Soc.
Math. France, 99 (1971), 73-112.
[5] Conngs, A., Une classification des facteurs de type IIl. Ann. Sci. Ecole Norm. Sup., 6
(1973), 133-252.
[6] — Characterisation des espaces vectoriels ordonnés sous-jacent aux algébres de von Neu-
mann. Ann. Inst. Fourier, 24 (1974), 121-155.
[71 — Classification of injective factors. Ann. of Math., 104 (1976), 73-115.
[8] — Personal communication (1978).
[9] — Classification des facteurs, in Operator algebras and applications, Proceedings of
symposia in Pure Math. 38:2, pp. 43-109, AMS 1982.
[10] — Type IlI;-factors, property L} and closure of inner automorphisms. J. Operator Theory,
14 (1985), 189-211.
[11] Connes, A., HaaGerup, U. & STgrRMER, E., Diameters of state spaces of type IlI-factors, in
Operator algebras and their connection with topology and ergodic theory. Lecture
Notes in Mathematics 1132, pp. 91-116, Springer-Verlag 198S5.
[12] ConnEs, A. & STerMER, E., Homogeneity of the state space of factors of type HI;. J. Funct.
Anal., 28 (1978), 187-196.
[13] Connes, A. & TAKESAK1, M., The flow of weights on factors of type III. Téhoku Math. J., 29
(1977), 473-575.
{14] DisMigRr, I., Von Neumann algebras. North Holland Math. Library 27, North Holland Publ.
Co. 1981.
[15] Haacerup, U., The standard form of von Neumann algebras. Math. Scand., 37 (1975),
271-283.
[16] — A new proof of the equivalence of injectivity and hyperfiniteness for factors on a
separable Hilbert space. J. Funct. Anal., 62 (1985), 160-201.
[17]) HErMANN, R. & TAKESaki, M., States and automorphism groups of operator algebras.
Comm. Math. Phys., 19 (1970), 142-160.
[18] KapisoN, R. V., Problems on von Neumann aigebras. Baton Rouge Conference 1967
(unpublished).
{19] Pora, S., On a problem of R. V. Kadison on maximal abelian subalgebras in factors. Invent.
Math., 65 (1981), 269-281.
[20] Powers, R. T., Representations of uniformly hyperfinite algebras and their associated von
Neumann Rings. Ann. of Math., 86 (1967), 138-171.
[21] Powers, R. T. & STorRMER, E., Free states of the canonical anticommunication relations.
Comm. Math. Phys., 16 (1970), 1-33.



148 UFFE HAAGERUP

[22] TakEesaki, M., Tomita’s theory of modular Hilbert algebras and its applications. Lecture
notes in Mathematics 128, Springer Verlag 1970.

[23] — Conditional expectations in von Neumann algebras. J. Funct. Anal., 9 (1972), 306-321.

[24] — Duality for crossed products and the structure of von Neumann algebras of type III.
Acta Math., 131 (1974), 249-310.

Received January 21, 1985



