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1. Introduction.

The theory of integral equations, broadly outlined, consists, on the one hand,
of developments which could be generally classed as of Fredholm type and which
may be based on Lebesgue integration; in this connection of particular interest
are symmetric kernels, when the characteristic values are real and the char-
acteristic functions form an orthogonal set. On the other hand, there exist de-
velopments relating to kernels for which the theory of Fredholm type does not
apply and which entail results of form essentially distinet from that involved in
the Fredholm theory — prominent in this respect are the names of H. WeyL! and

! H. WEYI, Singuldre Integralgleichungen mit besonderer Beriicksichtigung des Fourierschen
Integraltheorems, Gottingen, 1908; pp. 1—386.
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T. Caruemax?; the equations, involved, which may still be expressed with the
aid of Lebesgue integrals, contain kernels — one may appropriately term them
singular — which are expressible as limits, in one sense or another, of kernels
of Fredholm type. Singular kernels have been also studied in a number of papers
by the present author?.

Now, the demands of Mathematical Physics often necessitate consideration
of functions of sets instead of points; accordingly a theory has been developed by
N. Gonraer? relating to linear equations involving Stieltjes integrals, the integra-
tions being appropriately defined®. The kernels considered by Gunther are suf-
ficiently ‘regular’ so as to secure results resembling those of Fredholm and, in
the case of 'symmetry’ suitably defined, resembling those of Schmidt. It ¢s our
present purpese to conseder kernels more general than those of Gunther and to de-
velop (for the 'symmetric’ case) a theory of equations whose kernels are limits in a
suttable sense of the 'regular’ kernels of (G); moreover, our theory will tnvolve
Lebesgue Stieltjes (Radon) integration, which appears to be an appropriate tool for
such problems. This explains the aim as well as the title of the present work.
The developments given in the following pages will be not of Fredholm type
and, in part, will involve use of spectral theory — with regard to the latter aspect
the background is given by Carleman’s theory.

It is essential to note that in the sequel 'domains’ are closed sets of a cer-
tain description (cf. section 2).

In section 2 the requisite developments of Gunther are stated. In section 3
we extend the integration methods involved in (G) to Lebesgue-Stieltjes integration.
In section 4 the notion of weak convergence is introduced (Definition 4. 1) as a
natural extension of the classical concept of such convergence. Theorems 4. 1,
4. 3 allow passage to the limit under the integral sign when certain conditions
are satisfied. Theorem 4.2 gives a condition for weak convergence and in
Theorem 4. 4 conditions are given under which change of order of integration
for certain integrals is possible. In section § singular kernels (7) (Definition 5. 1)

! T. CARLEMAN, Sur les équations intégrales singuliéres & noyau réel et symétrique, Uppsala,
1923; pp. 1—228; in the sequel referred to as (C).

? W. J. TRIITZINSKY, General theory of singular integral equations with real kernels, Trans.
Amer. Math. Soe. (1939); 202—279.

W. J. TRIITZINSKY, Some problems in the theory of singular integral equations, Anpals of
Math. {1940); 584—619; in the sequel referred fo as (T)

¥ N. GuNTHER, Sur les intégrales de Stieltjes et leurs applications aux problemes de la
Physique Mathématique, Leningrad, 1932; in the sequel referred to as (G).

* The integrals involved in (G) are more general than those of Frechet.
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are introduced and two singular integral equation problems are formulated. A
detailed ’'spectral’ theory along lines of (C) is developed for kernels (7') as well
as for certain kernels (7*) (Definition 6. 1), satisfying some continuity conditions.
One of the applications of the spectral theory is in the representation of solu-
tions of the various integral equations. In section 7 connections are established
in Lemmas 7. 1, 7. 2 between solutions of the two non homogeneous problems (7. 3),
(7. 3a) — in cases when certain conditions are satisfied. In section 8 sets O
in the complex plane of the parameter A (cf. (8. 1 a)) are introduced and problem
(7. 3a) is treated directly; it is established that solutions of the equations (7. 1 a),
approximating to (7. 3 a), satisfy certain conditions of compactness and uniform
absolute continuity (Lemma 8. 1); in Theorem 8. 1 existence of solutions of (7. 3 a) is
established and in Theorem 8. 2 these solutions are represented in terms of spectral
functions. Throughout, existence of solutions of the non homogeneous problems is
asserted for the parameter 1 in O [O contains all the points off the axis of reals
and may contain some points on the axis of reals]. Sets 7'> O are introduced
in section 9; a compactness property is established in Lemma 9. 1 for the solu-
tions of the equations approximating to the non homogeneous problem (7. 3)
(A in T); in Theorem 9.1 spectral representations are given for solutions of
(7. 3); two spectral representations for such solutions, of a different type, are
given in (9. 12) and (9. 19). Properties of uniqueness for the two homogeneous
problems are dealt with in sections 10, 11 (Theorems 10. 1, 10.2, II. I, II.2).
Kernels which are merely measurable with respect to the measure function «*
are considered in section 12; a ’spectral’ theory, analogous to that for similar
kerpels previously studied by Carleman, is outlined for these kernels. Finally,
in section 13 the developments of section 12 are employed to prove existence
of solutions for singular integral equations of the first kind (cf. (13. 2) and
Theorem 13.1). In the italics subsequent to (13. 14b) it is pointed out that
formula (6. 31¢) in (T; p. 618) is not justifiable — the developments of section
13 of the present work, however, enable us to assert that the concluding Theorem
in (T; p. 619) holds true as formulated in (7).

2. Gunther Integration.

We shall briefly describe the mode of integration and the properties of the
integrals, as developed in (G). This will be done in so far as it may be ne-
cessary for subsequent developments as well as in order to assist any reader in

following the present work.
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Intervals are understood to be closed sets of points (square in two dimen-
sions, cube in three, and so on). A set (w) is a domain if it has interior points,
if it contains its frontier and if the measure of the latter is zero; the frontier
of (w) is the set of limiting points of (w) which are not interior points of {w).
Decomposition of (w) into two domains (w,), (w,) is designated by (0)=(w,) + (w,).
The relation for the corresponding measures will be w == w, + w,. Decompositions
into any finite (but not necessarily infinite) number of domains (w,), (»,), ... (w,)
is. possible, yielding the relation (w)=(w,) + (w,) + -+ + (w).

Domains (w) and (v) and points (x) and (y) will be in fixed (bounded) domains
(D2), (D), respectively, (Ds) and (D,) are to be identical except for notation.

A function u(w) of domains (w) is mean additive (m.a.) if

u(w)o =ulw)o, + u(v,) v,

for every decomposition (w)=(w,) + (»,). A m. a. u(w) is of bounded variation (BV)if

suw) = Slu(o) o< B<eo

1

for all finite decompositions of (w);
total variation of u(w) is U(w)w =u.b. s,(w)

(u. b. means least upper bound for finite decompositions of (w)).
It is said that w(w) is absolutely additive (AA) if for all possible infinite
decompositions (w) = (w,) + (w,)} + -

u(w)w = iu (w)) ;.

Designate by (w)[(@)] a domain contained in the interior of (»)(a domain

containing (w) in its interior); the limits
wlw)=lim u(w), i(w)=1im «(w)

(as (@), (@)~ (w)) exist and are unique.
M.a. u(w) is continuous (C) if u(w)=u(w); if u(w)< C, i(lw) = u(w); if
i (w) = u (w) then u(w) < C.

n

When m.a. u{w) = 0 one writes [{w)w=Lb. Z'z_t (wj) w; (1. b. means greatest
1

lower bound for finite decompositions (w) = (w,) + -+ + (wn); [(w) is m.a.
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L(w)w (saltus function) is u.b. ) (u(w) — u(w)) w;.

1

For every non negative m.a. u(w) one has
u({w)=1l(w) + L(w).

Let (@,), ... (wp) (p finite) be possibly non contiguous. It is said that m.a.
u(w) is absolutely continuous AC if, given & (> o), there exists 5 so that

»
|u(w)|w; < & whenever w, + -+ + wp < 1.
j n

1

Let (7,), (%), ., . be a sequence of intervals each containing (z) in the interior
and such that 4, >0 (as »—c). One designates by @ (x) the u.b. of u(w)
for domains (w), contained in (i), such that w/i, = (> 0); furthermore, one lets

e () =lim @ (2), i (2) = lim f, () (as @ = o).

By taking 1 b. and lim in place of u.b. and lim, respectively, one obtains the
numbers
W), 1), w).

Whenever i (z) = u(x) it is said that «(w) has a value

u(z) = @ (2) = u(z)
at the point (x); thus,

ulw)= 1 f fla)dw (fl@) < L, in (Dy)

has the value f(x) almost everywhere in (D.).
If m.a. u(w) < BV, u{w) has a value almost everywhere.
The values of L{w) are zero almost everywhere in (D.).
If m.a. u(w) << BV then

u () = if Flr)dw + w(w) (F@) < L, in (Dy);
()

here the values of w (w) are zero almost everywhere.
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Let f(x) be a function of points (x), < (D), and let m.a. u(w) < BV. With
(Q) < (D.) and (2)=(w,) + (w,) + - + (ws) one forms the sum

n
L= 3 ulw)fE) s

1
where (&) is a point in (w;). Whenever lim I,, as the w;— o uniformly, exists
one writes
(2. 1) ju(w)f(ac)dw=lim I

(@
this limit is designated in (G) as the integral of Stieltjes.
With m.a. u(w) < BV and f(x) continuous in (D) or, more generally, bounded

and Riemann integrable over (D), the integral (2. 1) will exist. Of the various

properties of (2. 1) we shall mention the following:

(2. 1a)

fu(w)f(x)dwléMU(.Q)Q,

(2)

it |flz)]l= M in (Q);

(2. 1b) Jur@do=ui@ary (some (&) in (),

if f(x) is continuous in () and u = o.

(2. 10) |( )f () /(@) I«'(x)dwr = [ u(w)ff(x)d«; )f () I () d ;

(2. 1) | [w@rio|= [v@ireleo.

{2) ()

If the ¢@:(x) are continuous in (£2) and

while |, ()| + | @y (x)] + --- converges uniformly (in (£2)), one has

(2. 2) u(w)f(x)dw=ifu(w)q)i(x)dw.

(& 1)
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A series u,(w) + uy{w) + -+ (the u;(0w) m.a., < BV) is said to be uniformly
convergent if, on writing 1 m (@) = ta(w) + - + Un+m(w) and on letting Ry n(w)w
denote the total variation of ry m(w) one has the following: given &(> o), there
exists », independent of (w) so that R, m(w)w <e for all » = #. and for all
m=ol. If the series u,(w)+ u,(w)+--- converges uniformly in () its sum
u(w) is m.a. and < BV and one has

2.3 [ros@io=3 [wo) e,
12

«)

whenever f(x) is continuous in (£).
When m.a. u(w) < BV and f(x), F(x) are bounded and Riemann integrable
in () one has

(2. 4) fu(m)f(x)zr(x)dw:fv(w)p(x)dw, v(w):i—fu(w)f(x)dw.

(<) () (o)

If f(x) < L, in (2) and we let wu(w)=ff(w)dw, one has
{w)

(2. 4a) fu(w)F(ﬂc)dwr—fF(x)f(ac)dw
(@) (2)
for all bounded Riemann integrable F(x). If u(w) < AC (in (), then f(x) < L,

(in (Q)) can be found so that wu(w)= f Sz} dw and, hence, (2. 4 a) holds.
(w)
If L(z, y)is continuous in (x) and {y), while « (), v (z) are m. a and < BV then

(2. 5) fu(w)(fv(T)L(x,y)dz)dw=fv(r)(fu(w)L(x,y)dw)dz.
€ @) AR

The 'inner’ integrals in both members, here, are continuous functions of points.
Let u(w,y) < BV for every (y) in (D)) and suppose U(D,,,) is bounded as
a function of (y), while

fu(w, yv{dlde

(=)

! This formulation of uniform convergence is different from that given in (@)
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exists (the latter is the case when u(w,y) is continuous in (g} for every (w) < (2,));

then for every g(x) continuous in (2.) one has

(2.6) fq)(m)(fu(w,y)v(z)d'z)dwr:fv('c) (fu(w,y)q)(x)dw) dz.

(%) (%) (%) (%)

Let (@)=(w) + -+ (ws) and let (z;) be a point in (w;); form the sum
Sp=wu(w,,x,) o, + -+ t{wn, 2n) ws. If the limit, as n - «, while the w; >~ 0
uniformly, of S, exists it is called a generalized Stieltjes iuntegral:

(2.7) fu(w,x)dw=lim Shn.

(£)

This limit exists and is unique when m.a. u(w,y) < BV for every (y),
u(w,y)] < V,(w) (with m.a. V,(0) < BV) and

(2. 7 a) 4 (0, y,) — w{w, 4] < e V(o) (m.a. Vy{w) < BYV)

for all (w) and for all (y,), () in the same sphere (o) of radius ¢(= ¢.).
These conditions for existence of (2.7) are satisfied by the function

(2. 7 b) u(w,y)———-i—fu(w)[;(x,y)dw (m. a. u(w) < BY);
(@)

provided L is continuous, | L] < 4 and |L(x,y,) — L(z,y,)] <e for {y,), {9:) in
the same sphere (o).
If w(w,x) satisfies the conditions stated subsequent to (2.7) then

(2. 8) fu(w,x)q)(x)dw=fv(w)(p(x)dw, v(w)=£fu(w,x)dw

w
(42} (%) (w)

for all ¢ (x) continuous in (£2).
We shall assume throughout that all the m. a. functions of domains under con-
stderation have finite values on every domain. In other words, it will be implied

that the m. a. functions, involved, are BYV.

3. Extension of Infegrations.

Let {F} be the class of sets in the 'domain’ (D) such that (1°) if e < {F}
then (D) — e < {F}, (2°) if ¢,, ¢, - < {F} then e, + e, + --- < {F}, (3°) { F} con-
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tains all intervals (closed) and the empty set. Then {F} is a closed class of sets,
according to the usual terminology. In (2°) the number of sets e, ¢, ... may
be infinite. The class {F} may be termed completely additive. It will be said
that the sets {F} are measurable {F}. {F} contains the class {B} (also a closed
class) of Borel measurable sets, which will be designated as measurable {B}.
Domatins, as in section 2, are certain closed sets and, hence, < {B}.

Henceforth intervals will be closed sets of points — intervals in the ordinary
sense in the one dimensional space, rectangles in the two dimensional case and
so on. A figure, as usual, will be a sum of a finite number of intervals. A
figure is a domain (of section 2), if degenerate cases are excluded.

A m.a. function u(w) of domains (w), < (D), gives rise to an additive func-

tion of figures and in particular of intervals,

~

(3. 1) i (0) = o u (w),

where (w), w denote figures and measures of figures, respectively. Since m.a.
u(w) is not necessarily AA, #(w) is not necessarily completely additive (i.e.,
additivity is not extended to an infinity of sets).

We shall translate properties of m.a. functions into those of functions of
figures. Inasmuch as we consider only the m.a. u(w) < BV, our functions & (w)
are finite on every figure << (D), which agrees with the customarily assumed
property of functions of figures. There is a decomposition of #(w) into a dif-
ference of two non negative additive functions of figures:

() = @, (0) — 1, (w),

=

(3. 2)

where #;(w) = wu;(w) (¢ =1, 2), the u;(w) being non negative m. a. functions from

= 44y () — %, (w).
If ma #u(w)=o and < AC, in consequence of the definition we shall

the decomposition u (w)

have in particular

]

(3. 3) " i (wj) < & whenever o, + -+ w, <7, (e > 0),

[

where the (w;) are intervals. Thus, the property 4 C for a m.a. function u(w)
(of domains) implies the property of absolute continuity, in the ordinary sense,

of the corresponding functions #% (w) of figures; that is,

~

(3-32) @ (w) — o,
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as measure of figure (w) tends to zero. The property (3. 3 a) will hold even when
#i(w) is of variable sign, provided that the non negative components u,, u, in
the decomposition # = u, — u; of the corresponding m.a. % belong to 4C.

At this poiut the reader may profitably be referred to a book by C. pE 1.4
Vavuee Poussin®, in the sequel referred to as (P); in particular, to the second
part of (P).

According to a theorem in (P), given an additive absolutely continuous func-
tion of figures, there exists an absolutely continuous completely additive fune-
tion of sets {B} which coincides with the function of figures on the intervals
(and, hence, on the figures). In this connection, p(e) (Borel sets ) is said to
be absolutely continuous of p(e)~»0 with meas. e— continuous, if p(e) — o with
the diameter of e.

The preceding considerations lead to the following result.

Lemma 3.1. Let m.a. u{w) < AC (then according io (G) the two m.a. com-
ponents of u(w) belong to AC). There exists a completely additive and absolutely
continuous function u*(e) of measurable sets e, < {B}, such that

(3. 4) u® =il (of. (3. 1))

on figures; moveover, if u = u; — us(u,, uy = 0) ¢s the decomposition of m.a. u{w)
then w' = uf —uj (ul, u} = o), where u (¢ == 1, 2) is an absolutely continuous func-
tion of sets {B} such that uf = @; on figures; w;, us ave finite for every set {B}.

Throughout the paper all sets are contained in the domain (D) [or (D),
(Dy)..., as the case may be]. We also note that according to (P) ordinary
continuity of u}, u; would suffice for finiteness on sets {B}.

If a function of points, f(z), is measurable {B} and if «*(¢) is an additive
absolutely continuous function of sets {B}, we have decompositions in the usnal

manner:

(3-5) fla)y=f+{x) +f~(2), u*(e)=ulle)—ui(e),
where

f(@) (when f(z) = o),

o (when f(x) < o);

58 SHle) =]

*C. DE LA VALLEE Poussin. Intégrales de Lebesgue. Fonctions d'ensemble. Classes de
Baire. Paris, 1934.
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here u}, u; = o0 and are absolutely continuous functions of sets {B}, while f*,
— f~— = o0 and are functions measurable {B}.
A Rapon integral (usually termed LEBESGUE-STIELTIES)

(3. 6) I=ff(:v)du*(e)=1+»‘—I*"Q——I“’l Iy
E

where

I+,1:ff+(x)duf(e), I+'2=ff+(x)du:(8),

(3. 6a)
I*»lzf—f‘(z)duf(e), I_’2=f—f_(x)d“:(e),

will be said to exist if the four integrals (3. 6a) have finite values. Any of the
integrals (3. 6a) may be defined either as described in a book of 8. Saxs!, in
the sequal referrved to as (S) — see (S; pp. 10, 20) or according to the classical
definition of Lebesgue integrals, except that the Lebesgue measure is replaced
by wu}(e) (or u} (), as the case may be.

For our purposes ¢t will be sufficient to restrict ourselves to Borel measurable
sets and to functions of points which are correspondingly measurable.

It will be said that f(x) #s integrable {u*} over a set E, < {B}, if the
integrals (3. 6a) all exist. Integrability {u*} of f presupposes corresponding
measurability {«}} and {«;} of f.

Moreover, it is to be noted that the above considerations with respect to
Radon integration are applicable even when «}, u; are not necessarily ab-
solutely continuous (in the sense of tending to zero with meas. ¢, e being in the
class | B}).

Now, by (P), an additive absolutely continuous function F of sets {B} has
its derivatives — in the sequel denoted by a prime — finite almost everywhere

and integrable on every set {B}; moreover, I(e)= f F'(zx)dz. Accordingly,

the function u*(e) of Lemma 3.1 has the representation®

! See S. SAKS, Theory of the Integral, Warszawa Lwow, 1937; in particular Chapters I,
11, I

? Derivatives at a point a of a fuunction of sets we always take in reference to families of
sets ‘regular’ (in the sense of Lebesgue; see (P)) with respect to the point .
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(3. 7) u” (e) =fu*' (x)dx (sets e, < {B}, in (D)),
4

where the integral is in the ordinary Lebesgue sense; correspondingly, an inte-
gral (3. 6) may be expressed as

(3. 7 9) ff(x)du* (e) ———fu*'(:r)f(x) dz (all sets E, < {B}, in (D)),
) b
whenever u*(¢) is absolutely continuous. Thus, when m. a. u{w)< A C, we have
(5.9) [w@r@ae= [f@aee- [wws@ao
{w} {w) (w)

on all figures (w), whenever the last integral exists in the sense of Guuther; there
is on hand a natural extension of Gunther's integration, both with respect to
functions f(x) of points and the character of sets.

Suppose now that the m. a. function of domains, u(w), does not necessarily
belong to 4 C.

Let u(w)=o0 and consider the function of figures ii(w) (3. 1). We shall
define #{w) in the whole Euclidean space by the relation

i {w) = | (0) (D)« (w) (D)) (all figures (),

where |(w)(D)| is measure of the domain (w)(D) (i. e. of domain consisting of
points common to figure (w) and to domain (D)). Let F be any set in (I)); we
designate by u*(E) the lower bound of the sums (finite or infinite)
D it(w)
J
for sequences of intervals
(wl)v (w2)7 ..

such that
E < 3 ()5
J

here (w;)° is the interior of (w;). In consequence of (S; p. 64) »* will be an
outer Cartatheodory measure and will accordingly satisfy the conditions (C,), (C,),
(Cy) of (8; p. 43). Corresponding to u* there exists therefore a class {L.} of
sets measurable {in the sense of {S; p. 44)) with respect to u*. The class {Lu-}
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certainly contains the class of sets {B}; this is a consequence of (S; pp. 51, 52).
Confining ourselves again to sets {B}, ¢ntegration may be defined as in connection
with (3, 6), (3, 6a), where e, F are sets {B} and the outer measures u}, w; are
used as measures in the proper sense of the word, inasmuch as sets {B}, only,
are involved (also see (S; p. 65)).

By (S; p. 95) w* = o is absolutely continuous or is not absolutely continuous
at the same time as the function of figures # = o has this property. Now we
note that if m.a. u(w)=o0 is not A C (section 2) then necessarily @ is not
absolutely continuous as a function of figures; we then shall have «* not
absolutely continuous. If m. a. u(w) is of variable sign and u (w) = u, (w) — u, (w)
is the decomposition, where the m.a. u,, 4, are non negative, the following is
observed: if w(w) is not A C then one at least of the functions u,;, u, is not
A C; we denote by u?, u; the corresponding outer Carathéodory measures; one
of the functions #?, ui will be not absolutely continuous as a function of sets
{B}. The function #"*= u] — u;, corresponding to u({w), will be lacking in
absolute continuity in the indicated sense.

With the aid of the outer measures u], u; we define integrals

@(E)= f Flz)du*(e) (0 = u} — ul)

for sets F < {B}. We shall say that a measurable function f(x) is integrable
{B, u*} if on decomposing f(z) into f* + f— (see (3, &), (3, 5 a)) the four integrals
(3, 6a) exist; this presupposes, of course, that f(x) is integrable {B, «?} and
{B, ul}.

In general «? (and u}) will not coincide on all figures (w) with @, (w)=
= wu, () (and %, (v) = o u, (0)).

Let #(w) be a function of figures (w) and let 8 denote the frontier of some
figure (or a hyperplane perpendicular to one of the coordinate axes); we desig-
nate by
(3.9) olit; §)
the oscillation of # at 8 and define this number in agreement with (S; p. 60);
thus the following sequence of relations will define o(i; 8):

O(#; ey =nu. b. |az)] (any fixed set e; intervals (¢) < ¢);
o) (@; B)=1b. OF; W) - g) (any fixed figure (w); open sets g > B);
o(@; B) =u.b. o (i¥; f) (figures ().

14
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Inasmuch as in this paper we restrict ourselves to m. a. u(w) such that
Ju(w)|w = A < o for all 'domains’ (w) (in (D)) it follows that the corresponding

Sunctions of intervals (figures)
(3 IO) YNL((U), ity (w)a il (w) [l~ == 4l ily; Uy, ity = O]

are of bounded variation in the sense of (S; pp. 61, 62).
Returning now to one of the Caratheodory outer measures, say «} (= o),
we conclude that (see (S; p. 68))

(3. 11) i (@) = @ (0) = 0w, (o) = u] (0)

Jor all figures (w) (in (D)); here (w)° is the interior of (w). Moreover, in con-
sequence of (S; p. 63), there exists at most a denumerable infinity of hyperplanes
(perpendicular to the various coordinate axes),

(3‘ 12) hl?h23~~‘s

at which the oscillation of @, may e positive; for every figure (w), at whose fron-
tier the oscillation of @, vs zero, we have

(3.13) i) = i (o) = o u, (0) = u} (o).

The figures (w), at whose frontiers the oscillations of #, and #, are zero,
are found amongst the figures having the faces (planar portions) of their fron-
tiers not lying in the hyperplanes of discontinuity of @, (see (3. 12)) nor of 4,;
for such figures we have

~

(3. 13 a) | u* (0°) = @ (0) = w u (0) = u* (w).

One will have (3.13a) for all figures (in (D)) whenever #,(7), u,(¢) > o with 7
(2 = meas. of interval (¢)).
For uf (¢) = o(e < {B}) we have the Lebesgue decomposition

(3. 14) 0= [ @z + 40 (W' = 0; £, = )

[

where u} (z) is integrable {B; Lebesgue measure} (which we express by the
designation % (z) < L,) and {,(¢) is additive singular {B; Lebesgue measurej.
The latter is to be understood in the sense that there exists a set h, of measure
zero, so that (,(e) =, (h,e) for all ¢ < {B}. Furthermore, if f(x) is integrable

{B, u?}, we have
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(3. 149) f fla)dut () = f uy () f(x)da + ff(x)d&(e)-

€ [

Similarly, if f{x) is integrable {B, u;}

[r@yawie = [wis@as + [reaze,

[4

where [, is additive singular {B; Lebesgue measure} and u} (x)(= o) is integrable
{B; Lebesgue measure}.
Thus, ¢f f(x) ¢s integrable {B, u*} one has

(3. 15) ()= [ fle)dut (0= f W (@)f(z) dz + B(o)

The last integral, here displayed, is an additive absolutely continuous function
{B; Lebesgue meas.}; u* (x) is integrable {B; Lebesgue meas.}; moreover, 8 (e) s
additive (of possibly variable sign) singular {B; Lebesgue meas.}, 7. e.

Ble) = Bles) (all e < {BY}),

where meas. so=0; (3. 15) is the Lebesgue decomposition of ¢ (e) into sum of
an absolutely continuous and singular function.
With the aid of (P; p. 105) the following may be formulated.

Lemma 3. 2. Let m.a. u(w) be such that @(w)= wu(w) zs continuous as a
Sunction of intervals (i.e.. #(5) >0 as the diameter of interval (i) tends to zero).
There exists then a completely additive and continuous function u*(e) of sets {B}
(2. e. u*(e) > 0 with the diameter of e) such that

(3. 157 w* =i

on figures. Let u* = u} — u} (u?, u = o) be the decomposition of w*. Then uj, u,
are additive continuous functions of sets {B}, coinciding with the corresponding
components of @ (w) on figures; moreover, ut, wy are finite for every set {B}.

This presents an extension over Lemma 3.1 inasmuch as continuity of
functions of intervals (as stated in Lemma 3.2) and continuity of functions
of sets {B} are conditions less stringent than those implied by absolute con-
tinuity of such functions.
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The Radon integral (3. 6) may be defined with «* = u} — «} from the above

Lemma.
In consequence of (P) every additive function u*(e) of sets {B} is decom-

posable into a sum
(3. 16) u*(e) = c* (e) + d*(e),

where c* (e} is additive continuous and 0*(e) is additive and of the form
3* () = d* (e &),
where ¢, is a fixed denumerable set; if «*(¢) = 0 we have c¢*(e), 6*(e) = o.

When #(w) = wu(w) is continuous as a function of intervals we form the

function #* = u} — u} of (3. 15) and note that

(3. 17) [r@awo= [ues@aw

(w) (w}

on figures (w), whenever the second integral exists in the sense of Gunther.
Moreover, for functions f integrable {B, w*}, where u* = 0, the set-function

()= f Fla)du(e) (e< (B))

is absolutely continuous {«*}; that is, @(e) >0 as u*(e) > 0. When u* is of
variable sign, ¢@(e¢) > 0o whenever both functions (of sets {B})u} (e}, u;(¢) tend

to zero.

4. Some Limiting Processes.

We shall establish certain 'compactness’ properties and theorems regarding
passage to the limit under the integration signs for the general integrals of
section 3.

Uuntil stated otherwise we shall assume u* (e} to be a non megative completely
additive function of sets of the closed class {B} (section 2); these sets are to be
in the 'domain’ (bounded) (D).

Definition 4. 1. It will be said that a sequence
9, (), g:(x), ...

of functions measurable {B, u*} converges to a function q(x) in the weak sense

provided the integral
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(4. 1) fq2 (z) du* (e) (@ bounded set E < {B})
exists, J

(4. 1a) fq?n(x)du*(e)élt[ (m=1,2,..))
and

(4. 1b) li"rga f m(ac)du*(e)=fq(x)du*(e)=fq+(x)du*(e) + fq—(x)du*(e)
Sfor all {B}-sets e (in E) such that the set-functions

19 90 = [1*@awr ), gl = [~ @dwi

vanish on the frontier of e.

A function ¥(x) will be said to be simple (see (S)) if it assumes a finite
number of values (&= * ) in a number of sets {B}.

It is not difficult to see that if g*(x) is integrable {B, u*} over (D,) and
we assign &¢(> 0), there exists a simple function . (x) such that

(4. 2) [ = v@rawi<e

(Pa)

Explicitly — there is a decomposition of (D) into a finite number of sets {B}
without common points,

(4.28;) (D?J):e1+62+"'+er

so that

We () = 7 (in g; j=1,...7),

the ¢/ being constants. The e¢; may be chosen so that the functions (4. 1¢)
7anish on the frontiers of the e;.
Suppose qm(z) > ¢(x) weakly. One has

Om == f (@@ ~— gn @) Ye (®) du* (&) = Om,1 + -+ Om, s,
@)
where
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Om, = f (0@ — gn @) e () dut (6) = o f (0@ — gn (@) du* (0

’f ¢
By (4. 1b)
lim op, ;= 0.
m
Thus, inasmuch as @, @~ vanish on the frontiers of ¢, ¢, ... es, one has
lim on = o.
m

There is on band a Schwartzian inequality,

(4. 3)

Je@saano

= f ¢ (2) du* (o f 8 (z) du* (o),

valid for sets {B}, whenever the two latter integrals exist.
Accordingly, on writing

m=f@w—%mwwmww=

(D)

[ (@ — g @) (9@ — Y. @) du*(e) + f (@@ — qm @) Ye (x) du* (e),

o
(Dy) (Dg)

with the aid of (4. 2) it is inferred that

Lol = [ f (¢@ — gm @) du* (e)]i [ f (9 @ — P @) du* (e)]§ + lom|
(Dz) @)
<e [f(q(@ — gm @) du* (e)]§+ fom].
(D)
In view of the existence of the integral (4. 1) and in consequence of (4. 1 a) the

integral last displayed does not exceed a number independent of m. Thus
lim s, = 0.
m

Theorem 4. 1. Suppose

qm () = q () (tn (D.); as m - o)
weakly and the integral
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(4. 4) [r@aw
(D)

exists. Then

(4 5) lim f 90)an @ 2 = [g@)al@)dur o)

(Pa) (Dg)

This can be extended as follows. We have

(4. 5 2) lim [ g (@) g (@) d u* (e2) = f 0(2) ¢ () du* (&)

when gm(x) > g(x) (as m — =) and |gn ()| =y (x) where y*(x) is integrable { B, u*},
the conditions for qm(x) being as before.

The above will hold with (D,) replaced by a subset {B} — the same refers
to similar developments in the sequel.

With the aid of Theorem 4.1 and of (4. 3), following familiar lines of

reasoning ¢t ¢s found that
(4. 6 f ¢ (@) dur () < lim f gh (@) du* (o
(D) " (B

whenever qm(x) — q(x) weakly (in sense of Definition 4. 1).
Suppose

qun(x)du*(e)gM m=1 2 )

P
where E is a fixed set {B} (in (D). Consider the functions

o (¢) = f g (%) d u* (e),

2

where ¢, < E, are sets {B}. By (4. 3)

lm@l = | [ @ @] | [aeo].

€

Hence
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(4-7) (@) = 3 fu* (o)) ({B}-sets ¢ < E)
and, in particular,

(4.73) | (e)] = 22* [ (BN = D1 (E)

for m=1, 2, ... and all {B}-sets e < E.

We recall now a result, which could appropriately be termed De la V.
Poussin-Frostman’'s theorem®, according to which, given a uniformly bounded
family {u} of additive functions of sets { B}, there exists a sequence {u,}(»=1,2,...)
of this family and an additive function u, of sets {B}, so that

lim 1, (¢) = p(e)
on every set e, < {B}, on whose frontier u vanishes (frontier of a set e is
closure of ¢ minus the set of interior points of e).
Now the hn(e) are additive functions of sets {B}, satisfying (4. 7 a); thus,

application of the above theorem enables us to assert that there exists a sub-
sequence {hn, (€)} (m, <my <---) and an additive function of sets e, h(e), so that

(4. 7 b) lim A, (¢) = he) (all {B}-sets e < E),

except for those sets ¢ on whose frontiers h(e) does not vanish. In view of (4. 7)

[

(4. 7 ) |h(e)] = B [u* (o)

for all {B}-sets ¢ in E. Hence h(e) > 0, whenever u* (¢) - 0; accordingly h(e)
is absolutely continuous {B, w*}. Such an additive function is expressible as
an ‘indefinite’ integral

u@=qudw@

c

for all sets ¢, < {B}, in F; here g{z) is integrable {B, u*} over E. This follows
by the theorem of Radon-Nikodym (S; p. 36). Together with (4. 6) these
developments enable assertion of the following result.

' C. DE 1A V. PoussiN, Les nouvelles méthodes de la Théorie du Potentiel et le probleme
généralisé de Dirichlet, Actualités scientifiques et industrielles, No 578, Paris, 1937; referred to as
(VP). In particular see p. 9. Also, 0. FROSTMAX, Potentiel déquilibre et capacité des en-
sembles ..., Meddelanden frin Lunds Universitet, 1935, pp. I—115; in particular see pp. 11-—13.
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Theorem 4. 2. Let u*(e)(=0) be an additive function of sets {B}. Let E
be a bounded set {B}. If

(4. 8) fq;(x)du*(e)gM<m (G=1,2,..),

where M is independent of j, there exists a subsequence {ij (@)} (v, < vy <---) con-

verging weakly on E (Definition 4. 1) to a function q(x) for which
(4. 89) [e@aw@sar
E

In the particular case when wu*(¢) is the ordinary Lebesgue measure the
definition of weak convergence is simplified in the sense that gm (x) - ¢(x) weakly
(over E) if (4. 1) exists, (4. 1 a) holds and if the limiting relation (4. 1b) takes
place for all {B}-sets e, < E, which have frontiers of zero Lebesgue measure;
a similar statement may be made when, more generally, additive u*(e) (of sets
{B}) is absolutely continuous (i. e., u*(¢) > 0 with meas. é).

The following is an extension of Carleman’s theorem in (C; p. 20).

Theorem 4.3. Let E be a fixed bounded set < {B}. Suppose that the in-
tegrals

[r@acee. [a@aeo (n=1,2,..)
all exist and the limits
(4. 9) lim fo(x) = f(2), lim gn(x) = g (x) (as n - o)
exist.  Suppose also that

(4. 93) IhEl<i@), [aaeE<es n=1,2..)

E

where h*(x) is integrable {B, u*} over E. Then

(4. 10) tim [ £u(@)ga @) o (0) = [ £l0) g (o) dut o)

By a known theorem (S; p. 17) on converging sequences of measurable
functions, given ¢(> o) and (> o) there is a decomposition of E,
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E=E + E,,

where E,;, E, < {B} and
u* (E2) < 67

so that for some %, (independent of (x))

(4. 11) @) —fal@], lg(@) — galw)| <e (in E))
for all # = n,.
We have

—'f Jol@) gn(x) d w* (e ff x) du* (e ‘“ffn x) gn (x) d u* ()

+fvw~ﬁw)HMﬁ fﬂ )9 @ — gula) dut (o).

5

Designate the four integrals last displayed by ¢y, a,, a3, @,, in succession. Since

fﬂ(x)du*(e) §fh2 () d 1™ (e) [{B}-sets e in E]
application of (4. 9a) and of Theofem 4. 2 will yield
ff”(w)du* (e)éfk’(x)du* (e), fg”(ac)du*(e)gcz.

Henecy by the Schwartzian inequality

b= [ @ awe [fac@se [Rea,

i1

|a,,|2gff:.(x)du*(e)fg;(m)du*(e)<02fh2(x)du*(e);

Y

moreover, in view of (4. 11)

jooft < & [ﬁlg ) d u* e] =& fdu* f z)du*(e) = A% &

(A2 = c®u*(E)) and, similarly,

lo,f < .sz[f|ﬁ,(x)|du*(e)]2ge*u*(E)fhe(x)du*(e):m:.
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Consequently

(4. 12) |a,,|§|a,|+'~~+|a4|<2c[fh’(x)du*(e)]f+el+ell (n = ny).

>
The function @(e) = f R (x)du*(e) of sets {B} (in E) is absolutely continuous
[

{B, w*} and thus vanishes with w*(¢). Hence on taking J suitably small, noting
that w*(E,) < d and choosing & sufficiently small the last member in (4. 12) can
be made arbitrarily small for all n = n, (n, suitably great). Thus lim ¢, =0,
which establishes the theorem. "

We shall need an extension of Carleman’s Theorem I* (C; pp. 8,9). The
extension is as follows.

Theorem 4.4. We have

fdu* (ex) f|c(l) dia(i, z) = fc(l) dxfa(]-, x) d u* (ez),
(wg) i P (o)

provided c(i) ¢s continuous on the finite closed interval (i, 2,),

fa (2, x) d u* (es)

(wo)

exists for Ay <A< A,

Alg)=Via(@, ) < + o (variation with respect to 1)
Jor almost all {u*}(x) in (w,) and the integral

f A(@)du* (o)
(090}
exzsts.
The proof will be omitted as it may be given following the lines of
(C; pp. 8, 9) as well as with the aid of the theorem according to which

lim | gu(x)du*(e;)= f q () d u* (),
" (e (e

whenever ¢, (x) > ¢(x) (as » -~ ), while ¢,(x) is integrable {B, u*} and
|gn(x)| =< s(x), where s(x) is integrable {B, u*}.
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5. Formulation of the Integral Equation Problems.

Throughout we let (D.), (D), (D.) denote bounded domains in the sense of
section 2; (z), (y), () will denote points and {w), (z), ({) domains in (D.), (Dy), (D.),
respectively. Except for the notation of points the domains (D), (D,), ... will
be identical; whenever there is no possibility of confusion the subscript will be
omitted. Throughout, e will denote sets {B} in (D.), or (D,), or ..., as the case
may be.

We consider the Stieltjes integral equations

(5. 1) 9@ =1 [ ke 2 wlo)ds + 1),
(Dy)

(s. 2) Wie)=4 f b, 2) () do + Fz) (m. 2. Fw)
0

to be satisfied in (D, by functions of points ¢ (x) and functions of domains
Y(w). Associated with the problem we have a m. a. (section 2) bounded function
u(w) of domains, which is non negative and for which @ = ww(w) ¢s continuous as
a function of intervals; in accordance with Lemma 3.2 with u(w) one may
assoctate a completely additive and continuous (not necessarily absolutely) function
u* (€) (= o) of sets {B} such that u* = i on figures n (D,). We assume that r F(r)
1s continuous as a function of intervals — thus vanishing with the diameter of
the latter.
We suppose that the Radon integral

(5.3 [r@ae
(z)
exists, while for every finite n the function f.(x), defined by the relations
(5. 3) Ful@)=f(@) (when |7 =),
Jalx)=mn (when f> n), folx)=—mn (when f< —n),

s contvnuous tn (D). This hypothesis implies that the limit

lim f 12 () et e) = f £ (@) du* (e)
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exists and that

[r@aw@=[wosdo
{w) (

w)

for figures (w) in (D,), the latter integral being in the sense of Gunther.

Definition 5. 1. It will be said that k(w, y) (or Lx, v)) satisfies condition (T)
if for all figures (w) (in (D.))

(5. 4) wk(w, y)=fL(w, y)du*(e) (L, y= Ly, x); o= meas. (),
(@)
while the integral

(5. 4) L*(y) = f Iz, ) du )
Pz

exists for all (y) interior (Dy); moreover, when (x) and (y) are in domains lying in
the interiors of (D), (Dy) Lz, y) is continuous in (x) uniformly with respect to (y)
(and continuous in (y) uniformly with respect to (x)).

Kernels (T) do not come under the theory of Gunther. Accordingly such
kernels may justifiably be termed singular.

Since the Radon integral

[ 1 awie)
exists the same is true of
(5. 9) B )= [Lo g dur (e

moreover,
k* (0, y) = 0 k(w, y)

for figures (w) in (D).
We shall establish that if %(w, y) satisfies (') one has

(5. 6) k(w, y) =lim k. (w, y) (for figures (w))

where #kn(w,y)(n=1, 2,...) is a kernel 'symmetric’ and 'regular’ in the sense
that the theory developed in (G) applies to % (w, ¥).
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In fact, let

Lz, y) (when [L(z, y)| < n),
Luylz, y)=1n ( » Lz=n),
—n (» L=-—mn);

L. (z, y) is symmetric and continuous in (D), (D,); moreover,

We write
5.7 ho,9)=oko,9) = [4l) Ll a0 = [ Lue ) dut (e
(w) (w)
The funection
(5. 7a) kn (e, y) = f L (z, y) d u*(es) ({ B}-sets e in (D)

is an extension of w#.({w, y} in the sense that
k; (w> :’/) =uw kn ((l), .7/)

for figures (w). Now |Ln(x, v)| <|L(x, )|, while the integral (5. 5) exists; the
latter fact implies, of course, that the integral

[126 p1awe)
also exists. Thus
lim /Ln (z, y) d u* (ex)=fL(oc, y) d u* (es),

that is,
(5. 7b) Hm &y (e, y) = " (e, 9)

for all sets e, < {B}, in (D.); in particular (5. 6) will hold.

In considering 'symmetric’ kernels h{w,y) to which the theory of (&) is
applicable one is brought to the consideration of conditions (4), (C) (‘symmetry’),
(F) (finiteness’), (D), (D¥) (condition (D) satisfied strictly). These conditions are

as follows.
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(4). (1°) h{w, y) is continuous in (y) for every (w)
(2°) The total bound H(D., y)D. of h(w,y) is a bounded function
of (y).

(C) or symmetry with respect to u(w):

(5. 8) qu(w)h(fr, x)dw————fu('r)h(w, y)dr.

(F). (a). For every (y) one has
RN ERAD (m. a. V,(w) < BYV),

where V,(w) is independent of (y).
(8). For every &(>o0) there exists ¢(> o) so that, with (¢), (") in
the same sphere of radius g, we have

| 2w, ') — ko, ¥')]| < & Vy(w) (m. a. Vy(w) < BV),

where V,(w) is independent of (y'), (y”).

(D). fu(r) B (w, y)dr < O ud(w).
(Py)
(1#). k(w, y) satisfies (F) and 7, (w) < ¢ u(w).

The main part of the developments of (G) for 'symmetric’ kernels h(w, y)
applies when h(w, y) satisfies (4) and (C), while some iterant (i. e. iterated kernel)
satisfies (F') and some iterant satisfies (D); we shall establish that #.(w,y)
(figures () of (5. 7) is such a kernel.

By a remark in (G), any kernel ku(w,y) of the form (5. 7) is symmetric
with respect to «(w) and, thus, satisfies (C). The condition (4), (1°) is satisfied
by k.(», y) in consequence of the statement subsequent to (2. 5). (4), (2°) is
satisfied by k. (w, y) with

K. (D, y) Dy = nu(Dy) D..

In fact, the first member here is the upper bound of Sp(y), where

m

S (y)= | #n (@), Y} )

1

for all finite decompositions (D,) = (w,) + - + (wn). Now
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5ul)= 3| [wl) Ltz 20| 5 3, [ w1l w0 =
i C) G

=n fu(w)dw——:nfu(w)dw,
L@ (D2}

from which the asserted inequality follows at once.
By (5. 7) and (2. 1a)

[ #a (o, 9)] = nu(w);
hence %.(w, y) satisfies (F), (a) with
(s.9) Vi{w)=nu(w).

In view of Definition (5. 1) it is deduced that L,(z, y) has the following
continuity properties. Given ¢(> o) there exists ¢(> o), independent of (z),
so that

(5 IO) IL"(x: 3/’) - L" (.’,C, ?/N)l <e&

whenever d(y’, ¥’') [= distance between (y') and (y”')] < ¢, this being true for all
pairs of points {(y), (¥")], in (D,), and for all (x) in (D).
~ By (5.7) and (2. 1 d)

| Enleo, o) — kn o, ")} =&l)lfu (@) (Linx, ¥ — Lz, y™) (lwl
(w)

I ’ "
=2 [wo)l Late ) = Lule, )| o,
(o)

Whence, by virtue of the property (5. 10) we have
ka0, ) = T, )] < £ [ wlo)do = cuto)
(w)

for all (w) and for all (¥'), (¥”) in (D,) for which d(y’, ¥’) < @ = gu,.. Accordingly
it is seen that k,(w, y) satisfies (F), (8) with

Vs (0) = u(w),

¢ being dependent on #, of course.
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Inasmuch as %, (w, y) has been shown to satisfy (F) with V;, = nu(w) it is
noted that %, (w, y) also satisfies (D*) (with any a > n). As observed before, (1))
implies (D). Thus the following has been established.

Lemma 5. 1. Every kernel k(w,y), satisfying (T) (Definition 5. 1), is the
limit, as stated in (5. 1), of approximating kernels kn(w, y) of the form (5. 7); kn(w, y)
satisfies (4), (O), (F), (D*) (and, hence, (D)) and may be appropriately termed 'regular’
in the sense of Gunther.

In consequence of (G), associated with the pair of homogeneous integral

equations

(5. 11 p(e) =1 [ bale, 2) g ) dv,
)

(5. 12) w(z)-_:szn(i, 2w () do
5

there is a sequence of real characteristic numbers and characteristic functions
(}-n, 1, }vn,‘), . ~)) (@n,l(x), ¢n,2(x), e -)7 (wn,l('[)y wn,2(7;>; .. )

for which there are on hand the following relations

(5:13) gusle) = e [ Bule ddpns )do sl = [ullgurtar,

(Py) ()
(5 133‘) u)n,k('[): )vn,kfkn('[, x)’lpn_k(w)dw
(D:t)
The sequence A1, Ay, ... contains at least one member, the A, x(k=1, 2, ..))

are all distinct from.zero and the set of points represented by the A, z{(k=1,2,...)
has no finite limiting points. Moreover, the @, i(z) may be arranged to form an
ortho normal sequence in the sense that

o] for & #£ 4,
(3. 13 b) f’tt(w)¢1z,k(x)¢n,j(x)dw3{ (for ])
f (for k =} ).

(Dg)

By (G) there is on hand a 'Bessel’s inequality’
514 Zee= [ulolr@do o= [ /@) do,
A .

(Pa) (Pz)

15
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whenever f{x) is continuous in (D.). However, such an inequality will hold in

the more general case when the integral

[ rwaee
(Pg)

exists; one then has

(5. 14a) Zc;i,kéfﬂ(w)du*(e), cn,k=ffﬂ(gc)g)n,k(m)du*(e).

k (D) (D)

Of importance in the present investigation will be the approximating non

homogeneous integral equations

(5. 15) gl2)=1 f ko, ) g (0) d + fola) (et (5. 32)
(Py)

(5. 15a) w(z)=lf]cn(1,x)w(w)dw+F(T).
oy

In consequence of (G) one may assert that a solution of (5. 15) may be

given in the form

i Ca, k ,
P A ()

6516 gule) =/ile) — 3

. e 2-2 Cn, k
=)+ 2 [l D) e = D P i) (e from (5. 14)

@y k=1

while a solution of (5. 15a) is expressible as

(5 17) Q,U)L(T)ZF(’F)'{‘lfkn(’f, x)F(w)d&I—'melggn,kwn,k(ﬂ,
(Pz) k=1
(5. 17 a) Un,k=f1?<w)¢rl,k(x)dw;

(Pz)

this is asserted for A distinet from the A, ; (A ==1, 2,...). The series involved

above converge.
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6. Spectral Theory.

We shall construct several kinds of spectral functions associated with &y (z, ).
Thus 6, (x, y/A) is to be defined by the relations

6. 1) (e, y/2) = Zgonk @nx(y (for 4 > 0),
0<, <3

(6. 1a) (0, y/8) = — D\ n,u () o, i (for 4 <o),
].<].n £<0

while 6, (¢, y/o)=0. On the other hand, 0.(x, v/1) is to be a function of points

() and of domains (7], given as follows:

(6. 2) O (2, 72) = D\ @, (@) Yo, 1 (2) (for > o),
0<dy, k<4

(6. 2 a) On (z, /) = — D\ pu,1(x) Yu,1{2) (for L < o),
)'\}.n <0

the value zero being assigned for A=o0. In an analogous way one may define,

if necessary, a spectrum 0, (w, 7/4).
In view of the second relation (5. 13) and of the definitions, just given,

6. 3) By (i, 5/2) — [ w(0)0n (2, y/2) d v

Q-

Similarly

O (0, z/).)=£fu(€)0,,(y,w)dr=—wl— f Yu ()0, (2, y/A)dwdr.
@ e

Designating a summation as in (6. 1) by a prime and a summation as in
(6. 1a) by a double prime, on using the orthogonality properties of the g, ;

we obtain

f“(g) (‘K Z/)') n(Z @//2' dg— Z q>n; ¢n k( )f“(2‘>¢n,j(z)@n,k(z)dé‘:

(22) (P2)

when A > o, and
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. -‘II
(By) Pk
for 4 < o and, finally,
(6- 4) “(C) 6, (37; Z/l) o (31 Z’/M)dg =16, (xa y/l)

(I)z)

for all real 2; here + (—) is for A >0 (A < o).
We divide the linear interval (— 1, 1) (I > o) into a finite number of linear

intervals 4; (=1, ... q) as follows:

(—LO=(d)+ -+ (4, ()=, L),
where

In consequence of (6. 1) and (6. 1 a)

g
6.5  Va= Sl 9l — bale, v/ = SV pnr @ gur )],
j k

J=1

the summation last displayed being over values £ for which —1= 4 </,
Let (z) <(D,). For finite decompositions (z) = (z;) +--- + (1) we form

80 = Sk, .

By (5. 7) -

s,(f)zé fu(z)Ln(y, 2 de| = n$ fu('r)d'v=nfu('t)df.
Hence " " :
(6. 6) Ku(z, x)v=ub. S;(r) S nulr)z

and, in view of (2. 1d),

lf]cn(r, ) @nr(y)de éfKn(r, x)lq7n,k(?/)|dr§nfu(z)lqm,k(y)ld"-

(Dy) (Py) (Dy)

By (2. 1¢)
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fkn(z, Y pnry)de 2_S_nzfu(r)dzfu(r)qﬁi,k(y)dt

Py) (Py) (Dy)

and, by virtue of (5. 13 b),

2
= Dyn®u(D,) = aint;

|[7cn(r, 2) puily) ds
@y

whence from (5. 13) it follows that
6. 7) [ @n 1 (@)] = nap] An,)

for all (x) in (D).
The boundedness property, just established, enables application of (24), with
J=Ln (so that v=£k,) and with F(x) = ¢@n (z); thus

6. 9) Eyrrers [ wlo) Zn, 9 gu e ) d@
) @

and, accordingly, in consequence of (5. 13) and (2. 1 ¢) one has

Y qon,wc)dwl

(Pg)
< hnal | [l i a0 [ w0 gt o]

(P=) (Pz)

I@l,k(?/\” = Mn,kl

thus by (5. 13b)

1

|9n )1 = sl | [0 Lo ) do] = inal] [ T paw )]
(Dz) (Pz)
Now L;(x, y) = L¥(x, y), while the integral (5. 4) exists; hence
(6. 9) [@u @)= 20| L(y).

It is observed that V, of (6. 5) satisfies

Vi< g (@) DV gl k().
k

k
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In consequence of (5. 13) and (6. 8)

2

2(1) wz:k(?/) = l2 Z f“ (0)) L” (.27, .1/) q)n,k(x) dw

k (Dy)
3 [ [ 2. dgnstan ]

(D)
Applying the Bessel's inequality (5. 14a) we obtain
SV gia = [ Liw paute) = [ Lo v ) =2 L)

g @) @)

Whence
(6 IO) Vn = lz L (.’E) L (Z/)

Taking the upper bound of ¥V, (» fixed) for all possible finite decompositions
of (—1, 1), in consequence of (6. 10) it is inferred that

(6. 11) V', 0u(x, y/i) = I* L{z) Ly),

where V- denotes total variation in A for 1 on the interval (— {, l); moreover,
since 0n(x, y/0) = o,

(6. 11 a) 6. (x, y/A)| < B L(x)L(y) (X on (—1, D).

Let (2), (@) < (wo) and (y), (4} < (w), where (w,) <(Da)f, (%) < (Dy)". With
summation extended over certain values %, one has

S (pn, 1 &) — @ ()] @ (1)

k

+ 3 gnslellgns) = gt | £ [ ZVgnse) = gra@P [ 200k 0]

k k

+ [Zm @i (x)]% [Zm | @n, 1 (&) — @nx @) I*’]%
k k

[0 (', y'/2) — On(x, y/A)| =

(compare with ((). For values %, here involved, |4, 1| =|4]. Now by (5. 13)
and (6. 8)

@i (@) — @u, 1 (@) = Au, i f w(z) (Laly, @) — La(y, ©) g,k (y)d =

(Dy)
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and, by virtue of (5. 14a), it is deduced that

301gntle) = gar@l S 14 [ @) Tnty, ) = Lutys 2} e

¥ (Dy)

=1 f (Laly, 2) — Laly, ©)*du* (e,) < |4 [* f (Ly, ) — Ly, @) du*(e,)

(Py) (Py)

for all » > #”, where »”’ may depend on (w,). With the aid of the inequalities
preceding (6. 10) we finally obtain

1

2

6. 12) 16u(a’, v'/2) — Ou(, y/1)| = & L) [ f (L&, ) — Liw, ) du (e,,)]

)

+ 1 L{z) [ [ (L, ) — Lz, p) du* <>] — o, ¥, y)
(B)

for [A[ =1 and for all » > »’, where »’ may possibly depend on (w,), (z,).

Definition 6. 1. It will be said that k(w,y) is a kernel (T*) of it satisfies (T)
(Definition 5. 1) and if

lim f(L(x, y) — Lz, )P du*(e) =0 (as &) — (),

(Dz)

the points (y) being in (D).
If %(w, y) is a kernel (T%), it follows from (6. 12) that for

(6. 13) (@) < (wo) < (Da)* and (y) < (z,) < (D)°

the continuity of the 6.(x, y/A) in [(x), (y)] s uniform with respect to n; in fact,
in this case there is also uniformity of continuity in {(x), (¥)] with respect to 2,
provided 4 is on a fixed interval (— I, I).

The second members in (6. 11) and (6. 11 a) are independent of » and are
defined in (D.)°, (D,)°; these inequalities enable us to infer that for some sub-
sequence {n;} of {n} one has for real values A, with a possible exception of a

denumerable infinity of values 4,

(6. 14) lim On, (2, y/2) = 0(, y/2) (as mj— ),

where the limiting function satisfies the inequalities
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(6. 14 a) Ve ,0(x, y/A) = I* L(x) L{y),

(6. 14 b) |6, y/)| = I L(z) L(y)

for |A] =1 and for (x) < (D.) and (y) < (D).

When (T'*) is satisfied, the 'Compactness Theorem’ of (C; 21, 22) will secure
existence of a limit (6. 14) for all real 4; moreover, 6 will satisfy the continuity
condition (6. 12) in (x) and (y) for x < (D,)° and (y) < (D,)°; furthermore, there

will exist a denumerable sequence
(6' IS) Lyy Bay vevy

such that 6(xz, y/A) is continuous in 2, for A 5 u,(v =1, 2, ...), for all (z) < (D),
{(y) <{(Dy)P, while, for A= pu,, O{x, y/A) has a discontinuity, as a function of 2,
for some values (x), (y) (in (D.°, (D,°).

Any function 0(x, y/A), obtained by the above processes, will be termed spectrum
(or spectral function) of the kernel k(z, x).

By (6. 4) and (6. 11 a)

6.16) 10z, 2/)] = f w()6, (@, 2/7) AL = f 6 (@, 2/ dur (e = 3* L (2)
(5 oA

(j=1,2,...). Hence it is possible to apply Theorem (4. 2) (with convergence
in the ordinary sense — in view of (6. 14)) so as to infer existence of the integral

& (x, 2/A) d u* (e.)
P2
and the inequality (see (4. 6))
(6. 162) f 6% (, 2/A) du* (e) = |0z, 2/2) | < 2* I* (x)
(D2
Accordingly one may form the integrals
6.17) Wiz, §)= f h(2) 6o, 2/3) A (e), (@, A) = f h(2) 8 (2, 2/2) d u* (e,
(D2) (P2)

for all functions h(z) such that h%(¢) is integrable {B.w*} over (D.); moreover,
by virtue of (6. 14) and (6. 16) appliction of Theorem 4. 3 will yield
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(6. 17 a) li"m Wa, (2, A) = (2, 4).
j
Using the theorems of section 4 and the results of this section, so far
established, a number of other facts can be given which are closely analogous to
those of Carleman (see Chapler I of (C)). We shall state these results in the
remainder of this section, giving minimum of details in the proofs. Unless
explicitly said that the kernels are (T*) it is to be understood that they are (T);

lim is to be understood as the limit as n = n; > .
n

By (6. 16a) and Theorem 4. 3
(6. 18) lim [y (x, ) — @', 4] =o (), (") in (Dx)]

{a')—(2)
in the case (T*). By (6. 4) and (5. 14 a)

(6. 18 a) f Wa(z, A) du* (e) =1 f h{2) h(v)0n (2, v) du* (e) du* (e)

(Px) (D2) (Dv)

(0z)

= fh” (2) d w* (e),

provided that the latter integral exists. In view of (6. 17a), (6. 18a) and
Theorem 4. 3

(6. 18 b) li;n fg (@) W (o, A) d u* (e5) = fg(x)w(zv, A) d u* (e,)

(Px) (Pz)
when ¢%(x) is integrable {B, u*}; one has
(6. 18 ¢) f g (@) h(2) 0z, 2/2) du* (e2) du* (e)
(D) (D2)

= limf fg () h(2) Or (2, 2/2) d u* (e2) d u* (e2),
(Pz) (D)

the order of integration in the integrals involved being immaterial.
By (6. 9), (5. 14a) we get

619 lunle AL Twle DL V2 ule, ), Ve pie ) S 1L@] [ ave]’
(P2)
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one obtains the same with (D.) replaced by a subset ({,) if this is done in
(6. 17). Also, in view of (5. 14a)

2

6199 | [o@rtonie yiare)awt el =lviwl =
(Pz) (Dy)
[r@ane) [ 10 du o),
(Dz) (Dy)
(6. 19b) Ve, ¢ (2) = last member of (6. 1ga);
the same inequalities are satisfied by
(6. 19 v = [ [o@h)06 ynaw ed o),

(Dz) (Py)

In the case (7*), using (6. 16a) and Theorem 4. 3, as well as (6. 18 a), one
obtains

6.20)  Lim [ 6z, y/A + &)h(y)du* ()= f 8(x, y/i + o) (y) du*(e,),

=0
(Dy) (2y)
(6. 20 a) lim f f&(x, ylh * &) h(x) gly) duw*(e:) d u* (o)
e—0
(Pz) (Dy)

= [ [ 9 £ h@ o) anied dur o).

(Pz) (Dy)

By (6. 14), (6. 11), (6. 17a), (6. 19—(6. 19b) and a theorem of Helly (C; p. 9)

(6. 21) c(A)di0(x, y/2) =Yim | ¢(A)d, 0. (x, y/2),
zof " z‘[
(6. 21 a) f )& ple, ) = lim f e (1) din (z, 1),
A o
(6. 21 b) f cWdiy () =1im [ e()dsya() (ct. (6. 19 ¢)

provided ¢(A) is continuous on the closed finite interval (4, 4,).
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In view of (6. 10} and Theorem 4. 4

f hiy) [ f 0(z, y/l)] du* (e,) — f ) [ f B ()6, y/2) du* (e;,,)]
2 {

(7o) 0 )

for domains (7)) < (D,)° and (z) in (D.)°; by (6 19) and Helly's theorem from
the above we obtain

(6. 22) fh (y) [f Y d1.0(x, y/l)] # (oy) = f [d;fh (x, y/A)du® (e, )]'

Py

In consequence of Theorem 4. 4

4

f fg () (y) [j c(2)d; 0 (x, g//}.)] d u* (es)d u*{e,)

{0) (7o) 4o
__f ) d; [f fg(x)h(y)()(x, y/A) dw* (ez) d u* (ey)]

) (%)

for domains (w,), (z,) in:(D.)°, (D,)°, respectively; by virtue of Helly’'s theorem
one may let (w,) - (Ds), (z5) =(D;); obtaining

(6. 22 a) f fg (x) h (y) [fc (2)d:6(x, y/l)] du* (ex) d u* (ey)

(Dz) (Dy) 4

~f [f f (@) h(y) 0 (x, y/2) duw*(ex) d u* (ey)] .
g (Dz) (Dy)

Multiply the members of (6.22) by g(x)du*(e;) and integrate over (D.);
there results an inequality which, in consequence of (6. 22'a), is of the form
(ef. (6. 19 ¢))

I

(6. 22b) f [ f 2 ds f 8(w, y/a) h(y) du* (e,,)]du* () = f ¢ () duw ().

(Pa) 2 (Py) 4

By virtue of (5. 13) and (6.8)

(6. 23) o £(5) = ho s f L@, 2) n u(e) due* (22):
(Pz)
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hence by definition of 8, we obtain an equality (6. 24, #) which in the limit

yields
)'II

6.2 0 o)~ 0 9¥) = [ L, ] [d0 (g ant e

(Da i
(in (D, (D). To do this we change (by (6. 22)) the order of integration in
(6. 24, n), obtaining

Bu (, y/A") — Ou (z, /1) = f wd, [ f La(, £) 04 (2, y/i) du? (e,)],
y (Da

and then pass to the limit, on making use of (6. 16 a), Theorem 4. 3, (6. 19)
(with h(2) = La(z, 2) and of Helly's theorem; a change of order of integration
in the resulting formula is possible in view of (6. 22), yielding (6. 24).

Consider case (7*). Let u, be a number (6. 15) and write

(6 25) a(x) ylﬂv+0)~9(-’6‘, ?/l.uv"“o)=€v(x1 .7/) (”=11 23'--)-
By definition e, {z, y) 2 0. We have (in (D.°, (D))

fyte

tim [ Lz, z)[ f (= ) Az, y/u)] du*(e)) = o,
e iy

since in consequence of (6. 19) the absolute value of the integral here involved
is <e{lu]| + &) L(y) L(z). Now, by (6. 20),

pyte

lim fL (x, 2) [f”’ d,0(z, y/y)] du* (e) = fL(ac, 2) [uy 64 (2, y)) d u* (e2);
(D) e (2)
thus (6. 24) (with " =u, + &, A’ = u, — ¢ will yield, as ¢ > o,
(6. 26) ez, y) = uva(x, 2)es(z, Ydu*le) (uo+0;,v=1,2,...)
@)

whenever the kernel is (7'*).

Whence, in the case (T*), the functions e,(x, y) () fixed) are solutions of the
homogeneous problem, while the u, are 'characteristic values’, in a sense; the p, may
be everywhere dense in parts or on the whole of the axis of reals.

In the case (T'*) the theorems (C; 40), (C; 43), (C; 50) apply with suitable

changes in formulation.
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7. Connection between the two Problems.

The approximating equations (5. 15), (5. 15a) may be written in the form

(7. 1) ¢<x>=szn(x, o) du*(e) + @),

(Dy)

g1 v = [ | [ Lue ddwrie) Javre) + )

(Pz) &y

In the latter equation F*(e¢,) is an additive function of sets {B} which on
figures coincides with ¢ F(r). Inasmuch as 7 F(7) is continuous as a function
of intervals (i. e. the two non negative components are), F*(e,) may be formed

8o that in the decomposition

(7. 2) F*(e) =Fi(e) — File), File)=o, File=o

the components F7 (e) are eontinuous as functions of sets {B}. We write
(7. 2a) v*(e) == F7%(e) + Fi(e).

As to the unknown set-function *(e,) — this is to be a continuous function
of sets which on figures coincides with 71 (1), where v (z) is the unknown fune-
tion of figures for the problem (5. 15 a). The kernel in (7. 1 a) is justified by
(5. 7b), the relation preceding (5. 7b) and by (5.5). The kernel in (7. 1) is
justified by (5. 7 a).

The non homogeneous equations for which (7. 1), (7. 1 a) are approximating

equations are as follows:

(7. 3) gl =1 f Lie, ) o ) du* (o) + f (&),
(Dy)
(7. 30) wre) =1 [ | Jr@nawe)|aw e+ 7o)
(Pz) &y

Whenever dealing with (7. 3 a), the following Hypothesis will be assumed
to hold.
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Hypothesis 7. 4. With -condition (T) or (T*) satisfied, as the case may be,
the wntegrals

(7. 49) [r@awe), [L@ire) oG 20 5 a0)
(Dz) (D)
exist.
In this connection it is to be noted that existence of the first integral

(7. 4 a) does not imply existence of

) [ [ 2enaweawe

(D) (Py)

this is an essential fact, since it can be shown that whenever (7. 5) exists we
are brought back to the main features of Gunther’s theory; accordingly, we
avoid integrability {B, u*} of L®(z, y) with respect to [z, ).

We shall now establish a conmection between the equations (7. 3), (7. 3 a)
in the case when Hypothesis (7. 4) holds. Let @ (y), such that ®*(y) is integrable
{B, u*}, be a solution of

7. 6) o) =1 [ Lo, ) @) duwr(ed + aly)
D)
where
(7. 6 a) gl = f L(z, 9)d F* (c,).
Pz)

Existence of the latter integral follows from that of the second one in (7. 4 a).
We have

Jewawe)=z [ [[[r@areparie]arear e

Wy Dr) (B2 Dy

= ULﬂ(x, y) d u* (ey)]i‘.

Py)

'fL(Q;‘, y) Lz, y) du*(e,)

(Dy)

fLZ (2, y) d u* (ey)]% = L(x) L();
(Py)

| ¢ (y)] is integrable {B, u*} and
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U Ydu* (e,) <|1|2f fL( VL (o) dv* (e) d o (e —|/1|2[fL dv*(ex)]z.

(Py) (Dz) (P2) (Pz)

Moreover
qly) = lim g (¥),

where
) =2 [ Lolw, ) dF* o),
(Px)
we have

lanl)| = 121 [ @+ (e = |21no* (D2)

(]).2')

furthermore, ¢,{y) is continuous in (D,) in view of the continuity properties of
L,(z, y) (cf. (5. 10)). In the sequel it will be actually proved, that for certain
values 1, the equation (7. 6) has solutions @ (y), with @%(y) integrable {B, u*}.
Forming the set-function

0.7 wrle) = 1 (e) + [ @l dur ),

the connection sought for is established. To prove this we note that, in con-
sequence of Hypothesis 7. 4 the order of integration in

(7. 8) a'r«*f fL(w, y) d I'* (e;) d u* (ey), a"=f fL (z, y) @ (x) d u* (es) d u*(e,)

ey (D) ey (D)

is immaterial; one has

.80 1I= [|[Zena @i e) = @l [ g@are

(D) ;y (D)

= [u* (e,,)]%fL(x) de*(e), L, (@) fL x, y) du* (e,)

(Pz)

and
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0.3 1'1= [|[ Lo o ] ant @)
ey (Pz)
<f[fL’ (x, y) d u*( ex] [fltD () |* du* ez] du* (ey)
€y (ﬂ: (1)

[fI(D |”du*ez] fL Y d u* (e,).

(Pz)

In consequence of (7. 7) it is inferred that

(7. 8. f [ f Lz, y)dw? (ey)] (@ (@) du* (e2) + d F* (e
(Pz) &y
- [ f Lz, y)du (ey>] dy*(e.).

(V) &
Multiplying both members of (7. 6) by du*(e,) and integrating over e, we obtain
(7. 84) fa) Vdu* e, —zf[ Lz, )@ (ex)du*(ey)+fq(y)du*(ey).
ey (Pa) ey

Now by (7. 6a)

fq(y)du* (ey)=lffL(x, y) A F* (e,) d u* (ey)

ey ey (Pz)
=Ae = lf[fL(x, y)du*(ey)]dF*(ex).
Pa) &y
We add F*(e) to both members of (7. 8d) and changing the order of integra-
tion obtain

vie) =2 [| [ 2 naw @] 0@ aurie)
Px) &y
+2 f [ f Lla, ) du* (e?,)] AT (e) + F*(ey),

Pz) &y

which in consequence of (7. 8 ¢) yields

ve)=i [ | [ L6 nawe]av )+ 7).

(Dz) ¢y
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Lemma 7.1. In the case (T) (Definition 5. 1) and under Hypothesis 7. 4 every
solution @ (y), such that

o* (7/) du* (e.u)
(y)

exists, of the equation (7. 6), (7. 6 a) gives rise to a solution

Y*(e)) = I* (e) + f D (y) d u* (ey)
by
of the integral equation (7. 3 a).

Examining the converse situation, let y* (e,) be a solution of (7. 3 a); offhand
there is mno assurance that y*(e,) will be of the form (7. 7) where @(y) is in-
tegrable {u*} and @(y) satisfies (7.6), (7.6a). In other words there is no
assurance that Lemma 7. 1 supplies all the solutions of (7. 3a) from those of (7. 6),
(7. 6 a) (the latter problem being of form (7. 3)).

Hence it appears necessary to study (7. 3 a) directly.

In the meanwhile, a type of a converse to the Lemma 7. 1 is embodied in
the following result.

Lemma 7. 2. In the case (T) and under Hypothesis 7. 4 let W* (e,) be a solu-
tion of (7.3 a) such that w*({e,) — F*(e,) is absolutely continuous {u*} and such that
the function I'{y) from the resulting relation

(7. 9 wrle) = (o) + [ Il ant(e)
€y
(I"'(y) integrable {u*}) is such that
(7. 9) [r@lr@laee)
(D)

exists. Then I'(y) will be a solution of (7. 6), (7. 6a) almost everywhere {u*}.
In fact, substituting (7. ¢) into (7. 3a) we obtain

fl“ () d w* (e,) = /lf [f Lz, y) dw* (e,u)] d F*(er) + A8y,
where ) o
(7. o1) = [| [ L nawe)] roae e

(Pz) ey
16
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In consequence of the statement with respect to «” of (7. 8) and by (7. 6a)

700 [rwaute)= [[ [z nare|ame) v

“y &y (Do)

»—f Y du*{e,) + A 6.

In view of the existence of (7. 9 a) the order of integration in 8, may be changed;

8= [1r@le el [ 26 naee) | dee

D) €y

we have

1

< [u* (o) [ L@ ()] du* (e).

(Px)

Thus by virtue of (7. 9gc) it is inferred that the Lemma holds as stated. We
note that this result takes place even with the condition regarding (7. 9 a) dropped,
provided that T'{(x) is such that in (7. 9 b) the order of integration can be changed.

8. Direct Treatment of Problem (7. 3 a).

Let O denote the set of points in the complex A-plane consisting of all the
points not on the axis of reals as well as of the points on the axis of reals not
belonging to the closure of the set of points represented by the characteristic

values

(8. 1) duj (m=ny, ny, ...;5=1,2,...;limn;=c0).
i

‘When 4 is in O we have

(8. 1a) |2 —inilzdd) >0 =mny,ny, ..;5=1,2,...),

where d(4) is independent of »; and j.
Let yi(e,) be a solation, for 4 in O, of the problem (7. 1a). By (@) for-
mula (5. 17) is applicable yielding

8.2 wile)=1(e) + 2 [ ([ Inte, paut ) arve)
(Le) €y
i : ) Op, Lwn L( r/)
(/1 - /171 L) ln k

k=1
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where

G)Lk :f¢)1)k(x>dfy* ((’x).

(72)

In fact, if v} (e,) were not expressible by the second member of (8. 2), the dif-
ference between 1} (¢,) and this member would be a function o} (e,) such that

wi (ey) = lf [f Ly, y) d u* (91/)] d o, (ex),
(Pa) ey
which contrary to (8. 1a) would imply that A is a characteristic value.

By virtue of a process involved in (7. 8a) and by (8. 1 a) one has

(8.3 uile)]=v*(e) -+ 12| [u* (e f Loy (@) dv* (o) + ﬁmmm

(I)x>
where
Un, k ®
Sp = s Wn, ey |-
Zk ln, . Yn, k (e./)
Substituting

Pn, k (x> = 'ln, k f Ln ({E, Z) Pn, k (Z) d u* (€T>
(Pz)

into g, r we obtain

(8.3a) s= zk;lwzk(ﬁy)lif [f L, (z, &) n,1(2) du* (ez)] d F* (e,)

(Pz) (P2}

= 21kl f[f

(P2) (Pa)

Ly(x, 2)d I'* (ex)l @1 (2) d u* (ex)

f [ f Lo (x, 2)d I* (er)] on 1 (2) d u* (es)

(D2) (D)

2]!
b3

= [ Stwtetertt [ 2

k

Now

Y,k (ey) = f @,k (y) du* (e,) = f q () @n,x (y) du* (e)),

ey Dy)

where ¢ (y) is unity in e, and zero in (D,) — e,; hence by Bessel's inequality
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(5. 3b) St clet F= [ewante)= [aute) =)
(Dy) ey

On the other hand, the square of the second factor of the last member in (8. 3 a)

is equal or is less than

f[ La(z, y) A F* ea,] du*(ez)gf[ | L (=, Z)Idv*(ex)]?du*(ez)

@) ( (P2) (Do)

[l

fILn (x, 2) La (s, 2)| d v* (e2) d v* (es) d ™ ()

(Pz) (Dz) (D)

_f f[f a(x, 2) Ln(s, 2 Idu*(z)]dv*(ex)dv*(es)

(D) (Ds) (P2)

éfan(x)Ln()db* ex) d v* (es) [fL ) d v ( ea] .
(D) (D)

Whence in counsequence of (8. 3a) and (8. 3b)
= ot (o) [ Liw)dor (e
(P2)
and, finally, (8. 3) yields
8. 4)  |Yr(e)l=v*(e) + Ble) = v*(e)) + [ A]Tu* ().

[rp@are)+ P e [Leavt e,
(Dz) (Dg)

If in (8.2) the term F*(e,) is transposed to the first member and, with this
modification, the subsequent steps are repeated we obtain the following result.

Lemma 8. 1. The approximating solutions Y (e,) satisfy, for A in the set O,

the 'compactness’ inequalities
(8. 42) [vi (&) — I* (e))] = B (ey) (ef. (8. 4))

(for m=mny, ny... and for all {B}-sets e, < (D)), implying that the W} (e,) — I (¢,)
are absolutely continuous {uw*}, uniformly with respect to n.
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The term ’'compactness’, here, is justified in view of the de la V. Poussin-
Frostman's theorem, by virtue of which (8. 4a) implies existence of an infinite
subsequence {m;{e,)} and of an additive set-function *(e,) such that

(8. 5) Y* (ey) = lim Y, (e)) = I™* (e)) + A*(ey),
where
(8. 5 a) [ 4*(e))| = Bley)

and, consequently, A*(e,) is absolutely continuous {u*}. Convergence to the
limit in (8. 5) takes place on all {B}-sets on whose frontiers A*(e,) vanishes —
thus, on all {B}-sets on whose frontiers u*(¢,) vanishes. We also have

(8. 5b) Y (ey) = I* (ey) + An(ey), |A7.t(ey)| = B(ey).
Turning to the equation satisfied by i (e,),
(8. 6) wie) =1 [ | [ Inte nawt @) avie) + 7,
@ 4
in the limit (as » =m; —) one obtains
(8.68)  w*(e) =4 lim f [ f Lnlz, y) du* (ey)] Qi () + F* (o),
(D) ey

where * (e,) is the function (8. 5). It is of importance to find conditions under
which

(8.61b) li;n f[f L, (x, y) du* (ey)] dn (es) = f[ Lz, y) du* (ey)] d* (es) ,
(Da) oy (Da) &y

since the latter relation would imply that y*(e,) of (8. 5) is a solution of the
problem (7. 3a). It is known (cf. De la V. Poussin’s book (VP; p. 11)) that

.7 tim [ guloldinied = [ alo)dute)
(D)

D)

when the u,(e) are additive functions of sets {B}, u. < A4, pn— u, the u, and u
vanish on the frontier of (D), while continuous functions g.(x) converge uni-
formly to ¢(x) (necessarily continuous). As remarked in (VP), continuity of ¢ (x)

in (D) is essential. On writing
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- f Lol g)du*(e), q(@) = f L(z, ) du* (o)
ey €y

it is seen that the conditions of the above theorem do not hold, inasmuch as
¢ (x) is not necessarily continuous in the closed set (D).
We let

(8. 8) raley, €2) = fan (2, y) du* (e} d Wi (ey).

ey €
Substituting the expression obtained from (8. 2)

Ynle)) = F*(ey) + Aan1 — A¥ an, s,

ani= [ | [ Zute, ) aPred | autte),

ey (Da)

=[]

where

it is inferred that
(8‘ 8 ar) Yn (81./, ez) == 71n,1 + l?"n, 2 7 1‘2 Tn,8
with

s = f f Loz, y)dut (e d F*(e,),

oo = j f fL,, (2, ¥) L (2, y) d F* (ex) d u* (e) d w* (e,)

€y € (D)

= [ [ Inte aw @ 35 20 220 s,
& < k n, k n, k

and

Here

(8. 8 D) |7,,1]<f|anz y) d u* (e,)

1
g
dv* (e,) = [u* (e:)) fL Vd v* (ey)

(notation of (7. 8a)) and
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| 7, 2] rlf f(an(z, y) L (z, y) d u* (ey)) d u*(e;) d F* (es)

(l)x) € ey
<f| A dv*(e,) <f flfL 2, y) Ln (x, y) du* (e,) | d u* (e.) d v* ()
(D) D) € oy

Now

= [fL (e, y) du* (ey)];[ i (e, g) dut (ey)]%

€y

= [sz y) du*( ey] [ L (z, y) du*(eJ)]l—L(ey)() Ly (= z).

€y

,an (2, ¥) Lu (2, y) dw* (ey)

Hence

(8. 8¢) |rn, o = f fL(ey) (2) L(e,y) (x) d w* (e.) d v* (e2)

(Pa) ez
=| [ro@are)][ [ e dee]
(D) e

Turning to 74,3 one obtains

sl =| [ [ Bt nawied| 3= [P amv i) aw )
ey € k e ’

X,

~|f de* €x) du*{e;) [Z l—llnk (% ACs )an {2, ¥) pu.rly )du*(ey)]

(D)e-

= [ [ar@awr
(D) €z

For X in O we have (8. 1 a) and, accordingly,

I Pn, k
7ma] = —f [dv*(ex)du*(ez){ I
a(lgbr) 22 ; ln k

f fdv* ez) d u* (e; [kZ

(DI. €z

|
] [Zlan 2, Y) @u, x(y) du* (ey)

an (2, ¥) @n, e (y) d u* (ey)

Q)nk
R-nk

I
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Now

%h(x) — f L, (‘L’, x) W":"(U) d u* (ev)

and consequently by virtue of Bessel's inequality

qJnk

an (v, ) d u* (&) = L? ().
(Pv)
Thus

[7n,3) = o5 300 f fdw (ex) d u* (e;) L(x) L(ey>(z)

(Dm) ey
and, finally
(8.84) |rasl & (T(I).—) [f L{z)dv* (ex)] L, (2) du* (ez)] .
(D) bz

In view of (8.8a)—(8.84d) it is observed that the function of (8. 8) satisfies
the inequality

B9 Il D) =8 len ed = e [ Ly ) do¥ ()

by

+ lll[ Lie,)(x) do* (ex)] [ f L&) du* (ez)] +
(Pz) e
gi[ L{x)dv*( ex][ L, (2) du* (e )]

(Dg)
Now

Liey(y) f L?(z, y)du*(e) = L*(y).

Hence from (8. 9) we obtain the simpler inequality

(8. 9a) .7'71 (91/» '—~ e% 2) = %[L ?/ di/ (91/)

[Ml-&*—] fL(ey) Jdu* (e}, a—fL Y d v* ().

(Pz)
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By virtue of (8. 5 b) and of the relation subsequent to (8. 8)

;(f’y) = dop1— A® Op, 9.

Hence on writing
(8 IO) On (ey, ez) == f f L‘n (Zy Q/) d ’M* (Pf) d A; (ell)
oy €

and repeating the steps subsequent to (8. 8), we now obtain the same result as
before, but with ¢, replaced by zero; thus

(8. 10a) lonley, €] < [MI + !i_lzljg] a'fL(ey) () d u* (e:).
By (8. 5b), (8.6) and (8. 10)
(8. 11) A2 (e) = f [ f Loz, o) du* (e,,)]dF* (e)
(D) &y
+ }.f[ Ln(x, y)du* (e,,)] d An(er) = Arn,1(ey) + Aon(Dy, ).
D) &y
Now

‘[Lunyﬂuﬁ@n—gfLuzmduﬂ@)

a

=Wt | [ 2@, v aw )| = e iz,

ey

nd
|fumwmww
oy

the last member here being integrable {v*}; consequently
lim 7,1 (e,) = f f Lz, o) dut (e,) A F* (es).
(Dz) &

On taking account of (8.3) and letting n==m; in (8. 11)— o, we accordingly
derive
(8. 11 a) A* (e,) — lf fL(x, y) du*(e,) d F* (e;) = lim A 9, (D, e,)

(D) &
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on every {B}-set on whose frontier u* vanishes. We thus know that the limit in
the second member above exists — it remains to find its form.

Let e, be a fixed {B}-set whose closure lies in (D,)° and on whose frontier
w* vanishes. Let w; be a closed domain in (D.)° on whose frontier u* also
vanishes. By (8. 11)

(8. 12) Aﬁ(ey)—~lf[ Ly (x, y) du* (ey)]dF*(ex)

(Dz) ¢

——}.f[anx y) du*( e,,]dA e —X.f [fL,,x y) d u* el,)]dA*(ex)

e ——wx ey

and, in the limit (as 7% = m; — )

(8. 122) A*(ey)—lf fL(x, y) du* (e,) d F* (e2)

Da) &y
— 4 f [fL(oc, y) d u* (ey)] d A* (e;) = lim 4 g, (D) — w2, €y)
0y ey

(cf. (8. 10)), provided

(8. 13) hm [an x, y)du*(ey)]dA (ex) = f[fL z, Y du*(eq,)]dA*(eﬂ)

Wy Oy

To establish (8. 13) we note that, depending on w, and e,, there exists a number
»’ so that

(8. 13 a) La(z, y) = Lw (z, y) = Lz, y)

for all = # when « is in w, and y is in e,. Hence (8. 13) will hold if

(8. 13 b) llmf[ L(x, v) du*(e,,)]dA (ez) -f[ Lz, v) du*(e,)]dA*(ex)

vy ey

By (8. 13a) | Lz, )| = # for z in w, and y in e,; moreover,

f Lz, y) du*(e,)

is continuous in x for x in the closed domain w, On the other hand,
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lim A5 = 4%, |45(e)| =80 (n=my, m,y, .. cf. (8.4):
the set-functions A;, 4* being absolutely continuous {u*}, these functions vanish
on the frontier of w,, together with u*. Accordingly, (8, 13 b) is seen to hold

in view of the satisfied conditions of Theorem (8. 7). This establishes (8. 1za).
By virtue of (8. 10a)

A1E]
I(’n (D2 — ey, ey)l = ['“ + %(TI)] a fL((Dx)—wz) (?/)du* (ey)-
ey

Letting » = m; — o« and taking account of (8. 12 a) one obtains

(8. 14) A% () — 1 f f Lz, ) du* (e)) d F* ()
(Pz) &y
- lf[fL(x, y) d u* (ey)] d A* (e} = | 1] lim @a (D2 — w., )}

Yy &

= [|l|2 + %2'—(1—)] o fL((Dz)_wz) () d w* (ey)

= [I}.F + Ll'(%;] a'f [fL2 (z, v) du* (ex)]%du* (eq).

Py) (Pz—wg)

A sequence of closed domains w.;(j=1,2,...) can be always found so
that wy,; < (D.),

(8. 15) W1 < Wy, 9 < -
and
(8. 15 a) Lm e, j= (D).

J

Definition 8. 1. The set-function w* (e.) will be said to be regular with respect
to the frontier of (D,) if for some sequence of domains ws, ;< (D), satisfying
(8. 15), (8. 15a), w* vanishes on the frontier of each ws ; and if u* vanishes on
the frontier of (Dy) as well.

Assuming «* regular, in accordance with the above, on letting in (8. 14 a)
Wz = wy, j— (Dy)°, we obtain
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A* eq,——lf foydu*(ey)dIf (ex)-1f[foydu*(e,,)]dA*(ex)—o.

Dz} &y Pz) ¢y

Here (D,)° may be replaced by (D,) since A*, as established before, is zero on
the frontier of (D,), if u* is. Whence the function w* of (8. ) satisfies (7. 3 a}.
We have the following Existence Theorem.

Theorem 8. 1. We consider kernels of form (T) (Definition 5. 1) and assume
Hypothesis 7. 4. Let, moreover, u* be reqular with respect to the frontier of (D.)
{(Definition 8. 1). Let & be ¢n the set O, introduced at the beginning of this section.
The additive function

Y* (&) = F*(e) + A*(ey),
obtained by the limiting process of (8. 5), is a solution of the equation
739w =1[] [ e vawee)|ave) - poe)
(D2)

Jor every {B}-set ey, whose closure is in (D,) and on whose frontier u* vanishes.
Furthermore, | A*{e,)] = B(ey) (see (8. 4)).
Inasmuch as

< [w* (o) L (2),

linmen(:c, y)du*(e,,)=fL(x, y) du*(e), Ian(x, y) du* ey

while the second integral (7. 4a) exists, one has

(8. 15) hmf[an (x, y)du*(ev)]dF*(ef f[fL(x ) du*(e@,)]dF* (es).

(Pz) oy P2y ey

Thus by (8. 2)

(8. 157a) lim 3 (e) = F¥(e,) + A f [ Lz, y) du* (e,,)]dF* (e — 22 B*(e,)
(Pz) &

where

(8. 15 D) B*{e,) = lim B (e)), B; (e)) = 2 T—:%l—; Y, (e
n . k=1 . n
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The limit in (8. 1 b) (and hence in (8. 15" a)) will certainly exist when #n = m;—> o,
where the m; are from (8. 5) and when the sets considered are those on whose
frontiers u* vanishes. However, quite apart from these considerations, (8. 15'a)
will hold (for n = n; — ) whenever (8. 15'b) holds, as #n =n; > .

By the relation subsequent to (8. 2) and with (6. 2), (6. 2a) in view, we may
rewrite Bj(e,) as follows

Ble)= By [ B vl artie)
)

(P
Now
(p':lkk an% 2) pn,1(2) d u* (e.)
D)
and hence
B* 91/ 21 l Lf fL1z x, & q’nk( )wn k(&,)du*(e.)dl"*(ex)
(Pz) (D2)

Designating by 6} (x, e,/1) the additive function of sets {B} which on figures (z)
coincides with 70y (x, 7z/A) of (6. 3), one deduces that

0y (x, e,/2) = 2 @, 1 () Y, 1 (ey) (for 4 > o),
0<iy <4
(8. 16)
n(w e'l/}v =_"Zq)nk wn k(eJ) (for )v<0)
Z<7.n £<0

and 0, (z, e,/0) = 0. Accordingly, rewriting B (e,) in terms of a Stieltjes integral

we obtain

(8. 17) Bile) = f e o)

on (ey/p) = f f Ly (z, 2) 07 (2, ey/u) d u* (e;) d F*{e)

(Pz) (P2)
when 4 is distinct from the 4,;. Finally we put (8. 17) in the form

(8.174a) B (e)) = Bn, l(ey) + Bn,2("y)7
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Ba1(e) f T dudhl), Buale) = f T dudile)

(8. 17 b) G ey/i) = f f Liz, 2)03(z, e/u) du* (e) d F* (es),

(Pz) (D)

(8.17¢) anlefu)= f f[Ln (x, 2) — Lz, 2)] On (2, e,/ ) du* (e;) d F*(ex).

(Dz) (D)
The following Lemma will be helpful.

Lemma 8. 2. Let v* be from (7. 2a). Suppose that H{(x, z) is such that the
integrals

(8. 18) H:(x) = fH’ (x, 2) d u* (e;), fH(x) d v* (e,)

(D2) (Pz)

exist. On writing

(8. 18a) i (ey/u) :f fﬂ,‘, (2, ey/u) H (z, 2) du* (e:) d F*(e,)
Pr) (P2)
we shall have
(8. 18 1) Lin /i) |, Vit (e/) = [* (o) [ f Hig)do* (ex)] ,
(Pz)

where Vi refers to variation, in u, on any finite interval (4, 4,).
Let the I; be such that
WELh<<  <Iln=i
We form the sum

m

Vom =3 | [ 636, et = 036e, el B, 2t (ed (e

V=1 (Dy) (Dy)

H

= Z /‘(ZM P, £(2) 'Pi’?,k(e.«/)) H (z, 2) du* (e) d F'* (es) ;
»=1(D) (D) F
here the summation symbol with a superscript is over values % such that

lom1 = dp,x<1l,. One has
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S PAON T ECRESCIEC B

k (Dz) (D2)

[ H(x, 2 dF*(ez)] @n, ke (2) d u* (e:)

(Dz) (D)
[Zkllwz,k(ey)lg] [ f[fo 2) dF*(ex)] @n i (2) du* ()
e Wex)

By (8. 3b) and in view of Bessel’s inequality

Va,m = [u*(e))] [f[fIHx z) | dv* f’a:] du*(ez)]l~

(D2) (D)

éz wnkey
k

IA

T

For the double integral last displayed we have
j f—:f fIH(ac, £) H(s, 2)| dv* (ex) dv* (ex) d u* (e
(P2} (D) (Pz) (Pz) (Dg)

= [ f | H(x, 2) H (s, )| du* (ez)] dv* (ez) dv* (e:)

(Pz) (Ps) (D2)

<f f[fH2 x, 2) du* ( ez] [fIP s, 2)d u* ez)] d v* (e) d v* (es)

(Pz) (Ds) (D2)

— [ [E@HG* e)av ).

(D) (Ds)

Toom = [u* (ey i[fH dv* ex].

(Px)

Thus

This inequality, together with the fact that 0* (z, e,/0) = o, implies (8. 18 b), which
establishes the Lemma.
In view of this Lemma from (8. 17 ¢) we obtain

(8. 19) V20, (ey/u) < [u* (o)} o,

On = f [f (Ln(z, 2) — Lz, 2))* d u* (eg)]§ dv*(e,).

(P2} (P2)
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Now

lim f [La(z, 2) — Lz, 2)]*du* (e)) = o

because | Lu(x, 2) — Lz, 2)|* < 4| L?(x, 2)|, where 4| L*(z, 2)| is integrable, in 2,
{B, w*}; moreover,

%
[ f (L (s, ) — L (z, 2)]* due* (ez)] <2 L{2)
(P2)
where the last member is integrable {B, v*}. Hence

(8. 19 a) lim ¢, = 0.
Let A be real in O; then (8. 1a) holds and, in consequence of (8. 16)
dy 6 (ey/p) =0 (l‘—génél+g).

Take ! sufficiently great so that — [ <1 — g— <A+ g < {. Then

T teonledn) = (f f)

In the path of integration displayed in the last member (A — u)~! is continuous

as a function of u and

IA
EAN

| 1
A—u
Thus by (8. 19)

IA

lfl d 0 (ey/1e) 5—(27{“* (ey)f—’(’;{

and, accordingly, on letting I — + % we obtain

2 13 I
IBﬂ, 2 (C’y” = [“* (ey)]‘ On.

3 (4)

In view of (8. 19a) this implies that
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(8. 20) lim B, a{e,) = 0;

the same result is obtained for A non real.

Lemma 8. 3. If q(x, 2) ¢s such that the integrals

o) = [ ¢, 2)dur e, f ¢ () dv* (e,
(Dz) (Pg)

exist, then

lizn f[f 0r (2, e,/u) q (x, 2) d u* (ez)] d F* (e;)
(Dz) (D)
= f [f@* (2, e/u) q(x, 2) d w* (ez)] d F* (e,)
(Dz) (D)

as n=mn; >®, the n; berng from (6. 14).
On writing

6% (es, €y/1s) = f 02 (2, /) du* (e,),

o

by (8. 3b) it is inferred that

Ioz* (€x, ey/w) |2 = Zl |1Pn k (€ |2 2 lwn k ey =< w* (e u* (ey).

S‘ wn L(e::, 'l,Un k 61
/\.

On the other haund, (6. 4) gives us

f 6 (2, e/ut) 0% (2, eyfu) duc* (e = + f f Bu (0, ylpe) d o (o) d u* (e,) = + 03" (ex, e,/1)

D2) ex ¢y

and, in particular,

(8. 21) j 022 (2, e/u) d u* () = | 07" (e, e/u)| < u* (e)
Pz)
for {B}-sets e.
We have
(8. 21 a) Lim 05, (2, es/u) = 60* (2, es/u) = f@(z, slu) d u* (e

€s

17
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inasmuch as

02 (2, ey/ut) = f 0. (2, s/u) dn* (e,

while (6. 14) holds and |6,] = |x|? L(z) L(s) (see (6. 11 a)), where the last member
is integrable, in s, {B, u*}.
By Theorem 4. 3 the relations (8. 21). (8. 21 a) imply that

g (2 f@n (2, e,//u) g (z, 2) du* (&) — fﬁ* (z, es/) g (2, 2) d u* (e) = g ()
(P2)
as n = n; —; moreover, by virtue of (8. 21)

()1 = o) | [ 0226, el dus (ea]‘} < g(@) (o]

{
(P2)

where the last member is integrable (in z) {B, v*}, by hypothesis. Whence the
conclusion of the Lemma follows at once.
Under Hypothesis 7. 4 one may take ¢(x, z) = L(x, 2), obtaining from this

Lemma the following result for the functions (8. 17 b):
(8.22) lim G;,j (e/u) = & (e)/1e) :f fL(x, £) 0% (2, ey/u) d w* (e:) d I™* {e,)
Pe) (D,

for all {B}-sets e, < (D,). Fuarthermore, by Lemma 8. 2 (with H(z, 2)= Lz, 2))

(8. 22a) Vi, e, lu) = [n* (({,,)]é / L(&L) dr¥{e)=a,.

Dy)
Let 4 be real in O; then, for [ sufficiently great,

;..-

oo = ([ 4 f )

inasmuch as d, 0, (e,/it) =0 in ().. — g, A+ j) By (8. 22), (8. 22a) Helly's theorem

is applicable yielding
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1

(8. 23) hm f,l d,ta,l (e,/p) = fl — dd (e,/u);

the same will hold, for similar reasons, for A non real.

Consider now, for 4 in O, the functions

’)n 1 "“f ‘u,U'n ey/‘ll, 7n - = f}, d G,l e_//ﬂ)
[

where we take ! so that

—Il<RI1<

Then [ + RA > o and, by (8. 22 a),

0
|77‘l|——l R I“l ”‘ll—l J1

LA

Thus, given ¢ (> 0) we can choose [ ==I, so that

l(f f) d#cr,, ey/u|<e

for all n. Together with (8. 23) this implies that

hm f - d o (ey/p) = f T dud (e)/u).

Accordingly, on taking account of (8. 17 a), (8. 20) we obtain the relation
lim B3 (e)) = fﬂ. d o (e,/u)

for all {B}-sets ¢, <(D,); in consequence of (8. 15a) and (8. 15 b) the following
result is established.

Theorem 8. 2. Let L be in the set O (see beginning of this section). Every
solution, referred to tn Theorem 8. 1, has a spectral representation
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(8. 24) *(e)=TF*(e) + 1 f [ f Lz, y)du* (ey)] d I* (e,)

(Dz) oy

— f ,T_Iﬂu du f f L(x, 2)0% (2, ey/u) d u* (ez) d I™* (e2).

(Dz) (D)

The function y*(e,) will satisfy the integral equation (7. 3a) for every {B}-set ¢,
whose closure 7s in (D,)°, even if w* does not vanish on the frontier of ey.

The truth of the statement subsequent to (8. 24) follows from the fact that
for the solution 1*, referred to in the Theorem, validity of the limiting relation
(8. 5) (with m;==1n;) can be asserted not only for {B}sets e, on whose frontiers
#* vanishes — as has been done previously — but, more generally, for sets ¢, on
whose frontiers w* is not required to vanish. With this in mind we repeat all
the developments from (8. 5) up to Theorem 8. 1, arriving at the result as stated

in Theorem 8. 2.

9. The non Homogeneous Problem (7. 3).

Let f(x) be any function as described in connection with (5. 3), (5. 3 a).
The cn, 1 of (5. 16) are expressible in the form

0. 1) o5 = f Fol) ol du* (er).
Dy)

Definition 9. 1. Let T be the set of points in the complex A-plane such that

(9. 1a) 2

k

2
On, =A< 4+ (n=mny, ny,...)
l—ln,k

where im n; = and A(A) 4s independent of n.
In the set O by virtue of (8. 1a) one has

(9.2) 2

k

Cn,k_
A=A

éa%@uen,krérﬁ@@f)vﬂ@nw@y)

I

2 () flf(y) [* d u* (ey).

(Dy)

=

Hence the set T contains the set O; T may possibly depend on f, while O is
independent of f. Both sets contain all non real 4.
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With . in T let @.(z) be a solution, such that ¢;(x) is integrable {B, w*},
of the approximating non homogeneous problem (7. 1); thus

(0.3 onl@) =1 [ Lnle, 1) pu ) dut () + £ o).

Dy)
Since 4 is taken distinct from the A, it follows that ¢,(x) is essentially unique
and is expressible in the form (5. 16). Multiplying the two members of the letter
relation by @.(x)du* (e;) and integrating we obtain

. Cn, k —
[1o@rrawe) = [A@g@are) =132 [F@gnau
(D) @) - @)
in consequence of a permissible interchange of order of summation and integra-

tion. Hence
[1e@rawey=| [1n@rae ]| [k ae e
(Pg) o Pg)

+ 2] [Z 2]% [%lf%(x)%,k(x)du*(ex)
(Px)

k

vcn, k

l — }vn’ k

2]1
2

and, in consequence of (9. 1 a) and of Bessel's inequality,

f lq)h () |2 du*(e;) < [f ‘f(x) [ d w* (ex)]% [fl @n () [2 d o (ex)]%
(Pl (Dz) (Dg)
+1114@] [1g@rau e
(Ds)

Accordingly we have the following result.

Lemma 9.1. Let A be ¢n the set T (Definition 9. 1). For the solutions gn(x)
of the approximating problems (9. 3) one has

(0. 4) f Lgn (@) du* (e2) = BF (1),
(Dg)

B() = [ [1rlaee] +1n40 (e (0. 14)
Pa)

Jor n=my,my, ...
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By (9. 4) Theorem 4. 2 is applicable enabling us to assert that there exists
a fanction @(x) to which a subsequence {gm, (%)} of {g,;(x)} converges weakly,
in the sense of Definition 4. 1, while

(9. 5) f [ @) [ du* () = B2(1).
(Pz)
‘We have
(9. 5a) Lim f(pmj () d w* (ey) = fq)(w)du* (x) = @ (ez)

for all {B}-sets e. on whose frontiers u* is zero; here @ (e;) is absolutely con-
tinuous {w*}.
In consequence of the second part of Theorem 4. 1, applicable by virtue of
the fact that
| L (22, 9) | < | L, )],

where L?(x, y) is integrable {B, u*} (in y), we have
tim [ Ly, 9) gy ) e) = [ Ll ) ) 4 )
(Dy) (Dy)
Hence the limit,
(9-5b) lim @m, (@) = ¢’ (2),
exists in the ordinary sense and

(6. 6) 70 =2 [ Ll g ante) + 1)

(Dy)
Now

[gm @t (e) = B0,

whence by (9. 5 b) and in view of Theorem 4. 3

(9. 6a) lim fq)mj () d u* (e,) = fg;’ (x)dx = @ (e);

therefore, in consequence of (9. 5a), @ = @ and
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except on a set e, such that u* () = o.

Thus ¢(x) is a solution of (7. 3) almost everywhere {u*}. We shall now
show that at least one of these functions ¢ (x) admits of a 'spectral’ representa-
tion. For this purpose we envisage the representation of ¢@.(x) by the third
member in (5. 16). One has

(9. 7) @ (x) = flx) + 4 f Lz, y) f(y) d u* (e,) — 2* g, ()
(Dy)

where

(9. 7a) @ () = li;n (@), An(x) = Zz' ; —I/l,,' k o, & (P;: ix) ,

k=1

whenever 2 - o through a sequence of values such that the limit in {(g. 17 a)
exists; the values n=m; of (9. 5a), for instance, will suffice. By (9. 1) and

since

:fL" (2, x) @n, 1 (2) du* (e2)

(D2)
it follows that

)= 7= [ [ RO sl )t ) 0% ),

(Py) (D2)

Thus, in view of (6. 1), (6. 1 a).

@

(9. 71b) Ao () = fﬁdﬂ on (z/p),

—0

On (x/u) = [ [071 (?/7 2/u) fu () Ln (2, z) du* (e:) d u* (ey).

@) (B2
We shall write

(9.7 ¢) onl@lu) = o (w/p) + o (w/u) + oi(x/n),

o folu) = [ f 0uly, /) f(0) Lz, ) d o (e doc* (ey),

(Dy) (P2)
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0 (a/p) = f f 6 (y, 2/u) fo () (Ln 2, @ — Lz, ) du* (e,) d w* (e2),

(Dy) (P2)

o (@/p) = f fﬁn (y, 2/u) (fn ) — fly) L (37 x) d w* (e,,) du* (32)-

(Dy) (P2)
By (6. 18 ¢)
0.8 timoilol) = [ [0 clulr ) Lo, )dut (e dut (o) = o ),
(Dy) (D)

as n=1n; (n; from (6. 14)) > ©. In view of (6. 19b) (with ¥, (1) from (6. 19 a))

we have

(9.8 a) Viean (z/u) é[ffgy(lu*e,,] [fLZZxZu* )],

(D)

(0.8b)  Vhll x/@t)<[ffn awr )| | [12a 0 — L, e ansie,
Dy (Dz)

(9. 8 ¢) Vieo) (x/u) = [/‘ (/o ~ f)? du* (ey)]% [fL2 (2, ) d u* (Cz)];.

(Dy) (P2)
On writing
(9. 9) A () = R () + Au () + A0 (%),
7 I 4 //
Mulz) = f l—:_jduan(:c/‘u), f T du 0 @/p),

”r f} /L 0_;{/ .’L'/[.t)

it is observed that, for 1 in O,
(9. 9a) lim 4, (z) = lim 4, (x) = o;
this is established by following a procedure analogous to that from (8. 19) to

(8. 20} and by making use of the fact that the second members in (9. 8 b}, (5. 8 ¢)

are independent of 4,, 4, and tend to zero as » — oo,
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It is to be noted that the second member in (9. 8a) is independent of
n, Ay, A, With the aid of (9. 8) and (9. 8 a) and following steps similar to those
in the text from (8. 22 a) to Theorem 8. 2, it is inferred that

lim 2.,, f—dua (/u)

for A in 0. On taking note of (9. 9), (9. 9a), (9. 7¢), (9. 7a) and (9. 7) we sum
the above developments as follows.

Theorem 9.1. Let A be in the set T (Definition 9.1). Let the ()
(g, ng, . ..) be approximating solutions satisfying (9. 3) (Lemma 9.4 will hold).
For some subsequences {@m;(x)} we have lim @m;(x) = @ (z) (én the ordinary sense);

every such function @ (z) will be a solution of the equation

p@) =2 [ Liz, 1) g ) aw (o) + 1@
(Py)
almost everywhere {u*}; @ (x) satisfies the inequality (9. s5).
When i is in the subset O of T any such solution admits a spectral repre-

sentation

(0. 10) ¢ (x)=f(z) + 4 f Liz, )/ () du* ()

Py)

— lgf_l— duf fe(:% Z/FL)f(?/)L(Z’ x) du* (eZ) d w* (ey)»

where 0 is a suitable spectrum; in fact, 6 is the limit of an appropriate subsequence
of the sequence {0}, where the m; are from (9. 5b). On the other hand, (9. 10)

will still represent a solution when 0 is any spectrum [0 =lim ij], provided that

the set O s defined for the sequence ki, ks, . . ..
In view of (5. 16)

(o) =fale xfl fﬂ()d%wmdw@d

Hence it is natural to inquire whether it is possible to replace (9. 10) by the
simpler representation
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(0. 11) —lfl_” dy ff (z, y/u) d u* (ey).

When the kernel is (7*) (Definition 6. 1) an analogue of the theorem in
(C; p. 43) will hold, enabling transformation of the second member in {g. 10}
into the expression (9. 11). Offhand as much cannot be said for the more
general kernels (7).

We shall prove that the solutions, referred to <n Theorem 9. 1, admit of a

representation

(9. 12) ——lf . (I,Lff )0 (z, y/u) du* (e,)

Py)

Jor & in O; here and in the sequel ~ s to denote convergence in the mean square.

To prove this we introduce the motation

/) = f Io ) On (2, ylu) du*(e), o (a/u) = f Sf )0 (x, y/u)du* (e)
@y) )
and proceed to establish that, for I(> o) finite,

l l

. 1 1
(9. 13) hmfm dy v (2/u) = fm d, v (x/u),
1 ~1

when 1 is in O. Let us take A real, first. With d(1) from (8. 1 a) one has
du Tn (Iﬂ/[i) = o for

IA
=
A

A+

N

9
2

and (with [ suitably great)

(9. 14) f————d o (/) = (f—vf-

Now

m%\N
v

(9. 14 a) 7o (/) = 70 (/1) + 7 (2/n),
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%, (/) = f ) 0n e, /i) doe® (ey),
(Dy)

Alel) = [ () = 1) ale, 9/ 00 ),

(Dy)

By (6. 19) see (6. 17))

(Dy)
Hence
J
=y
(0. 15) lfl — dy oy ( x/u)lzlf+f-~~ é%Vlle(x/;t)églan(x).
SN
2
Since lim e, (z) = o it follows that
(9. 15 a) hmf P du'[n (@/u) == o.

The same is established by analogous methods and using (9. 14b), when 2 is
non real. By (6. 21 a)

K| Qy

[4

(9. 15 b) e fl e T"(x/”)_hm [j J

—1
A+

Qs

e

! i+

YN

—

.
) A—_Iizd”'z(x/u) :lfk—ITL Ay 7 (/)

wQ,

for 1 real, in O; this will hold for 2 non real, as well. In the derivation of

(9. 15 b) use was made of the fact that d,z(x/u)= o in (}L———g, l+%),

inasmuch as @ has this property. Now
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! l

1
fz':_—‘u d‘,,, Tn (x/ﬂz) == fl——:— (I,L ’En -Z'/ﬂ /-}' (IM T'l (x/‘u)

— —

accordingly, the relations (9. 15 a), (9. 15 b) are seen to imply (9. 13).

On writing

(9. 16) Pn@)=gnlz, ) + ralz, 1), gulz, )=/fulx f d‘u 7 (/1e),

a

wle, 1) = ~).(f f)_fdﬂfnxy)

it is observed that the limits

(9. 16a) lim @ () = @(x), lim gz, ) =g (2, |} = flz) — 2 [/'L v (/)
exist — the first in consequence of earlier developments, the second in view of

(9. 13); hence the limit
(9. 16 b) lim 7, (2, 1) = r(z, 1) (A in 0)

-y
'nj

exists, as well. In accordance with this one may write

(9. 16 ¢) @) =g 1) +rxl)

and

(9. 17) f|¢(a:) — @z, D|* du*(e) :fh'(x, D du® ().
(Dz) )

Now, taking 7> |R 1] and noting that

— A
(@, 1) = me ffn () @ 1 (@) n, 1 () d w* (),
¥ )

where summation is with respect to %, corresponding to the intervals (— oo, —1),
(I, + ), we have

' I 1 v
B S = I L LS
g ’ @) (D)

cPn,k (x) ®Pn, j (%) Pn, k (y) Pn,j (S) du* (eZ/) d u* (es) .



Singular Lebesgue-Stieltjes Integral Equations. 269

Multiplying by dwu*(e.), recalling the orthonormal character of the ¢a, (x) one

obtains

|7a (2, DI d o (er)

@ .
2 M_I_AJ;TIJ ffn (W) Fo (5) @, & () @u, 1 (5) d u* (e) d u* (eg).
Dy) (Ds)

Thus

f|7‘n(x, M2 du* (e, f f) |2d '« wn (10),

(Dz)

) = [ [ 8uly, ) /o) Tl o) aur ).

(Dy) (Dg)

By (6. 19b)

V'{zwn n) = flfn )Izd“* (&) = f|f(y)|2du* (ey).
(Dy) (Dy)

Now, with — ] <R < [, it is observed that

1 1 1 I
- <X —
(9. 18) 2 ISZ R (_LLZZ), I ISZ R (u_ l).

Whence
j|rn(x,l)|2du*(ex)§[(Z—SU) 0+ R |2V ()
(Dz)
= (0= Wi+ 0 RUE [ 1 durle) =)
(Dy)

where () >0, as 1 > + o, and r(l) is independent of n. For the limit (9. 16 b)
we accordingly obtain the inequality

J1rt orawe)=ro.
(D)
Therefore, on letting ! in (9. 17) approach infinity, it is deduced that
g )~ ) (in (Do));

@ (x, l) being defined in (9. 16a), the truth of (9. 12) is now made evident.
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A still different representation holds. In fact, we shall establish that, for
A in O, the solutions, referred to in Theorem 9. 1, are representable in the form

=21

019 g =6 -in| [ ;1o [ 100 e v aw e
Dy)

—®

almost everywhere {u*}; here Dy is the symbol of a ‘regular’ (in the sense of
(8; 152—156) for instance) set-derivative with u* used as the measure function.
We have fu.(y) = f(y) and, by (8. 21a) 0, > 6. On the other hand,

1] =17, where | f(y)]? is integrable {B, «u*} and

0r2 (ex, y/u} du* () = u* {ex)

(Dy)

in view of (8. 21). Hence by virtue of Theorem 4. 3, on writing

Guleai) = [ fol0)03 e, wla) 2 )
(Dy)

one obtains

(9. 20) tim 8y (o) = Eeli) = [ £10) 0% ey /o) 2% ().
Py)

Form the sum

Viym = % |f.f;l (.’/) (0: (s, ?//lw) — 05 (e, f//l,v—])) du* (ey)]

»=1(Dy)
A=l <l<---<ln=1). Then
Vom= 3 |3 [ A0t 100 prst) ()|
v=1" K D
@y
= 2 fn, k(e
k

[ AW gttt

(Dy)

L
5

=[Stwecer[[3] [ Ao ]
£ k (Dy)

Hence by Bessel's inequality and in view of (8. 3 b)
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L,
(9. 20a) Lo le/u) & [u* (e)]? [f|f ) du* m,]' =,
(Py)

where {(< + =) is independent of » and 4,, 4,.
By {9. 20), (9. 20a) and Helly’s theorem for 4 real in O, we have

e ([ )

/+—

and, for 1 non real,

4
(9 20 b) hm ] u Cn eT/M) _f i—_{"‘u d# C((’q/‘u) .

Inasmuch as Cu{e./u) is constant, as a function of u, interior the interval
(A—4d, A + ) the same will be true for [(e./u) cf. (9. 20)); consequently (9. 20b)
will hold for all 2 in O. Now, with I >|RA]| one has (9. 18) and, by virtue
of (9. 20a),

I( f+ j ) e Sl | S = A+ RO T L)

S=RN)T+{I+RVYE (r=1,2,...).

The last member here is independent of » and approaches zero, as [—®;
together with (9. 20b), this fact implies that

(9. 21) lim / duCn (ex/pt) = fl ~d,, [ (e./1t)
11] o/
for 2 in O.
Taking the indefinite integral of the two members in the formula preceding
(9. 11) and observing that certain changes in the order of integration are
permissible, we obtain

j. Pn (:’It) d u* ((’.r) = ff;1 (ﬁ) du* ((’;r) e }.f j.il—;; d,c gn (6’,1-/#) .

‘r £y -
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It had been previously established that (9. 5 b) implies (9. 6 a); thus

liqu)nj(x)du* (ex)::fq)(x)du* (ex).

ey

On the other hand, |f.(x)| =< |f(z)|, where | f{(x)] is integrable {B, u*}. Hence
in view of (9. 21)

f«p(x)du* (ex)=ff(x)du* (ex)~—lfl—_~l_~“d,£(ex/ﬂ)

ez

(see (9. 20)), from which the conclusion (9. 19) follows as stated.
Using (9. 3) and Lemma 9. 1 we obtain

(9.22) |ga(@| = |2 L) B() + |f@)], |pulz) —fale)] = 12| L) B{1).

One also has

L

Hgpn () — fla) — (g @) — f@)| = 2] [ f (L (s, §)—Ln (2, y))* d u* (8.«/)]2 B(3).

Py)
When the kernel is (7*) from the above it is inferred that
(9. 223) |{gn@y) — flzy) — (@a@ — f@)]

<12] [ f (L@, ) —L @, ) du* (eg)]%B(l)

(Py)

for x;, = in any closed set w,, < (D.)°, and for all » = »’, where »n" depends
on w,.

In view of (9. 22a) the solutions @ (x) referred to in Theorem 9. 1 are con-
tinuous tn x for x in (Dy)°, provided L(z, y) ¢s a kernel (T*).

In the case of (T*) the approximating sequences can be so selected (using
Vitali's theorem) that limits ¢ (z), satisfying equations (7. 3), are continuous in
x (in (D.)°) for every 2 in the set T and are analytic in A at all the interior
points of T (for every x in (D.)°); such results are analogous to those obtained

for certain kernels in (()).
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10. Operators O and their Applieations.

We shall first consider equations (7. 3 a) for kernels (7), when the integrals
of Hypothesis 7.4 exist and when w* is 'regular’ (Definition 8. 1) with respect
to the frontier of (D).

On writing
(10. 1) Y*(e,) — F*(e,) = A(e)), Ynley) — F*(e)) = Auley)

in place of (7. 1a) and (7. 3a) we have

(10. 2) Anle) = f [ f L (2, ) d u* (c,,,)] d Ay () + 4gn(F*/ey),

D) ey

(x0. 2 a) Ale) — ) f [ f Liw, 4) du* (e,,)]dA(ea.) + 2.9 (F*/e,)
B %,

where

(10. 2 b) n (F*/e,) = f [f Ly, (x, y) d u* (e,,)] d IF*(e,),

Pa) oy
(10. 2 ¢) g (F*/0,) — f [ f Lz, y) tlu*(e_,,)]dF* (e,
Do) &y
Consider now two equations (10. 2):
(0.3 sule) = [ | [ Zutos ) du(0)] @ duted + 2u (%00,
Do) &y

Anle) =1 [ [ [ e awe (€] duduled + LgulT o)

Pz) &y

the decompositions of the additive functions of {B}-sets J* being

(IO. 3 a) 1‘F* (e,r) - z'Zpi1= (e;r) - IF; (e.(‘)7 lI{‘ik (e.‘l') = o, 1141; (eiL') g o,
we write
(IO. 3 b) vi (ea') =,Ff (6’»() + I3 (QT) (L =1, 2)

and we consider only such functions F* ,F* (as the case may be) for which

the integrals
18
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(10. 3¢ fL(x)dv* (ex), fL(x)dv? (ex)
(Dg) (Pz)

exist (in agreement with Hypothesis 7. 4); such functions will be termed admissible

with respect to L(x, y).
Set-functions ;4.(e,) (¢ = 1, 2) satisfying (10. 3) exist, for 4 in O; moreover,

by (8. 4a)
Il’An(C’y)l = Bley) (n=ny, ng, . ..)

for z=1,2 and for A in O, the function §(e,) being defined in (8. 4). The
following identity is satisfied:
(10. 4) f Lole, 2)d % () d oy () — f j Lnlw, 2)d, 1% (e) 4, An (e2).
(Pz) (Pz) (D) (Pz)
To establish this we note (see (7. 9)) that
A (o)) = f o (y) du*(ey) (=1, 2);
y
here ;I (y) is integrable {u*}. The integrals
f Ln (@) :Tn (@) | d2¢* (e0)
(Dz)
({=1,2; n=1,2,...), where
Li) = [ Lile, nhdut (o),
(Dy)

exist. Accordingly, by virtue of Lemma 7. 2 (applied to I, {(y)), one has

(10. 3) o (y) =4 f L (e, y) il () dw* (e) + agn(y),
(D)
o (y) = lan (2, ) d 2™ (e.) (cf. (7. 6), (7. 62)).
{Py)

From these integral equations it is deduced that
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osa)  [amlelndute) = [ o) Lle)du @)

D) (22)
which is.an identity precisely analogouns to a result in the classical theory. In
view of the relation connecting :4, and I from {10. 5 a) it is inferred that

[ @tz = [ L@ i),

(D) (Dy)

Finally, replacement of the ;. (x) by their expressions (10. 5) will yield the identity
(10. 4) (for A2 Ap 55 j=1,2,...).

Let 2 be in O. In this set we have (8. 1a) for n=1,, n,, ... (B~ + o,
as s—). In the sequence {n,} there exist subsequences {m,} such that

(10. 6) lim Oy, (xz, y/2) = 0 (=, y/2).

Of course there may be more than one spectral function §. For a fixed set O
the sequences {ms}, for which a relation (10.6) holds, depend on the kernel
L(x, y) only. We observe now that the result of Theorem 8. 2 amounts to the
following.

Let Am{e:) be the solution (4 in O) of the equation (0. 2) (with (10. 2 b)

and »=m;). The limit
(10. %) lim Aw(ex) = Ale:) = p* (e;) — F*(e)

exists for {B}-sets e;, whose closure is in (Dy)°, provided w* s reqular with respect
to the frontier of (D.) and provided that F*(e.) <s admissible with respect to L (x, y);
moreover, under these conditions A(e:) satisfies (10.2a) and, in view of the re-

presentation (8. 24),

(10.72)  Ale) = O, e,/ F¥) =2 f [ f L, y) du* (ey)] 4 T*(c)

Pz) ¢y

— )2 [—*«‘; d{,, f fL(Z‘, 5) g% (g, ey//,t) d u* (82) d F* (?.L)

— Pz) (Dz)

Jor & in the set O (Hypothesis (7. 4) assumed).
The operator Ok, ¢,/...) depends on L, 6*. Now 6* (rather, 6) has been
defined by (10. 6); the sequence {m,} therein involved being independent of any
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possible choice of F*, it follows that the choice of 6* in O(4, ¢,/...) is in-
dependent of F*. Hence, the operator O(A,e,/...), defined by the last member in
(10. 7a), 4s independent of I™; this is a linear operator which is defined for all
additive functions F*, admissible with respect to L(z, y) (u* being regular with
respect to the frontier of (D.)). ,

On letting in (10. 3) # =m; and on taking account of (10.7), (10. 7 a), in
the limit we obtain

lim ;A (ex) = 4 (ex) = O (4, eul i 1) (=1, 2),

m]

where ;4 (e,) is a solution of (10. 2a) for F* = ;F*. Moreover, one will have,

whenever (F*, ;F* are admissible with respect to L(x, y),

(10. 8) [ Lz, 2)d ¥ (e) d O (L, e, %) = f f Lz, 2)d,F* () d O (4, edf,F¥).

(D2) () (B2) (B2)

To establish this identity, we put in (10. 4) # ==m; and pass to the limit. We
shall now proceed to justify the latter step.
With the first member of (10. 4) in view, let us form

(e, ) ffo 2 d B (e) d yAu es).

Repeating the reasoning subsequent to (8.8), replacing du*(e.) by d,I*(e.)
(eventually, by dvi(e) and ¥ by ,4n = ns — o™, in place of (8. g a) one obtains
(for 4 in 0)

lon(es, €] = [lll + ] fL(ex) d vt (e:) = Bles, €)
(r0. 9)

—fL Yd 3 (es), L(ex) fL x, &) du* (e).

The first member in (10. 4) is of the form
(IO. 9 a) On (Dm, Dz)

We assume that the set-function v?(e:), corresponding to ,F*(e;) vanishes on the

frontier of (1):). There exists a sequence of closed domains

L S Len <.
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each lying in the interior of (D), such that

lim L., = (D).

With wu*(e;) regular with respect to the frontier of (D.), we designate by w.,r
(r=r1, 2, ...) a sequence of closed domains, each in (D), such that lim w., ,= (D),
while «* =0 on their frontiers (also, u* =0 on the frontier of (D.)). Now,
by (r0. 9)

Lom;(Ds, DJ)| = 8(Dx, Do) < + 0 (j=1,2,...),

the m; being the subscripts involved in the definition of O(4, e,/...) (cf. (10.7),
(10. 7a)). Hence the sequence {m;} contains an infinite subsequence {%;} for
which the ’limit

(10. 10) hjm o (Ds, Do) =0

exists. Clearly, if in (r0. 7) m; is replaced by %; the resulting operator O (i, ¢,/. . .)
will be unchanged.
One has

([0, 10 a,) ok (Dx, Dz) = Qk(D:t, Cz, p) + Qk(Dx, D, — Cz, v) = 0k (CUx,r, Cz,v) + R;:"’r
where

Y = oy (Dy — W, ry o) + 0k (wz,r, Do —520) + 06(Di — war, Dz — G2 ).
In consequence of (10.9)
| Ry *| < 8(Ds — wi,r, Loys) + Blws,r, D= L) + B(De — 02,0, Dz — §s,).
Accordingly, introducing the expression for 8, after some simplifications we obtain

(0. 10b) | B| = [131+ %] a1 [;){L(px_wr’r)(z)dvf @+ [DEane),

Dz — bz, )

where

Lip, — g ) (2) = f L2 (x, 2) du* (ex).

(Da:“*“’:c, r)
Since wy,»— (D.)°, while u* vanishes on the frontier of (D) one has

lim L(sz -y ) (Z) == 0.
r
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Now the integral

fL@dﬁ@
(Pz)
exists, while
Lp, —w, y(&) = Liz);

hence the first integral displayed in (10. 10b) approaches zero as r —o. On
the other hand, &., — (D.)° (as v —>»), while ¥} is zero on the frontier of (D.);
whence

lm.fL@mﬂ@:a

W(Dz—,cz, rv)‘
Accordingly, an implication of (10. 10b), essential for our purposes, is that
(10. 10 ¢) [Ry| < o,

where o"* ¢s tndependent of k and

(10. 10d) lim ¢"* =o;

r,v

the order of the limiting processes in (10. 10d) is immaterial.
We have L.(x, 2) = L(x, z), for  in w, , and 2z in £, ., when » = %', where
7’ may depend on r and ». Thus

on(we, r, Gz, ») = f [ f Lz, ) d F (e.)] d; An (ex) (n = ).

. :
Y, Sz, w

The function of z

hfL(x, 2)d F,(e)

is continuous in the closed domain w. .. It is also observed that the sequence
of functions {;4.(e;)} is bounded, uniformly with respect to », and that the
s Ai;(ez), as well as the limit

lim ,4y (ex) = 14 (ew),

ky

vanishes on the frontier of w, , inasmuch as w«* does so (we note that, in
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accordance with section 8, the 2Akj(egc) and ,A4 (e,) are absolutely continuous {u*}.

Hence by the theorem referred to in connection with (8. 7)

mwﬂmmggzdwmggzj fL@deﬂ@@Mm.
ks

J

Hence by (10. 10a) and (10. 10)
hlm R;;v =00 (w.r, 7y C:, v)
i

exists. In view of (10. 10¢)
lo—olwsyr, & W) = o

and, by virtue of (10. 10 d),

6= lim (wsr, Lo o) = fLmdeﬂQ@A@y
' (Dg)® (D)0

In the last member, here, (D,)° and (D.)° may be replaced by (D.) and (D.),
respectively, since +7 and " (hence, ,4) vanish on the frontiers of these domains.
Thus, on making use of (10. 10), we obtain

(10. 11) Iimf kaj(x, z)le*(ez)d2Akj(ea,)=f fL(x, 2)d [ F*(e:) d 4 A (es);

(Dz) (De) (Dg) (Pz)

in view of the remark subsequent to (10. 10) one may replace ,4(e;) by

O (%, ex/yF'*). By a similar procedure it can be shown that for some subsequence
{si} of {;}

lim f fsz (0, 2) d o F* (e} d 1 Ay (e0) = f fL(x, 2)d F* (e.) d A (ez),
Da) (Pz) Pz} (Dz)
where

Aler) = O, e, F¥)

The s are introduced at the step corresponding to (10. 10). It is observed that
(10. 11) will hold when the %; are replaced by the s, We are ready to formulate
the following result.

Theorem 10. 1. Let A be in a set O and let u* (e,) be regular (Definition 8. 1)
with respect to the frontier of (Dy). Corresponding to every spectrum (10. 6) there
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exists an operator O, e,/ ...) of the form (10. 7). Whenever F* s admissible
with respect to L(x,y) (en accordance with the text in connection with (10. 3 ¢)),

the set-function
A(e.) = O(4, e/ F'¥)

will constitute a solution, for L in O, of the non homogeneous problem (10. 2 a) (¢f.
(10. 2¢)). This operator satisfies the identity

(10. 12) f fL(x, 2)d  F*(e))d O (4, e./yF)
Dz) (D2)
— f Lz, 2)d ,F*(e) d 0, e F*),
(Dz) (D2)
Jor A in O, whenever set-functions vi(e:), v} (ex), corresponding to I'*, ,F* (cf.
(10. 3b), (10. 3 a)), are admissible with respect to L(x,y) and vanish on the frontier

of (Dy).
When F* is admissible with respect to L(x, v),

W* (e,) = O* (1, e/ F¥) = F* (o)) + O(A, e/F'¥)

is a solution of (7.1a) (for A in Q). Whenever, in addition to the previously

stated conditions, F'*, ;J'* are such that the order of entegration in

Lz, 2)d ,F*(e.) d ,I'* (e,)

(Pz) (D2)

is tmmaterial, one has (for i in O)

(10. 122) ffL(x, 2)d F* (o) d 0% (A, e/ JF*)
(Dz) (D2)
=f fL(x, 2)d yF* (o) d O% (A, e/ (I'¥).
D) (Dz)
With the aid of the above identities we shall establish the following

uniqueness theorem.

Theorem 10. 2. ILet 2 be in a set O and uw* be regular with respect to the
frontier of (D.). Assume, moreover, that L(x,vy) is a kernel of the form (T),
defintte tn the sense that the integral
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(0. 13) W)= [ [ Ll Aarte)azie)

(Pz) (D)

s distinct from zero for all additive fonctions y (possibly complex valued) of {3}-sets,
not identically zero, and such that this integral maintains the same sign for all
such functions. This assertion is made for functions y for which conditions of the
Jorm (10. 16), (10. 16 &) hold and for which, of course, Q(y) exists.

(1°). If for a non real A* the equation

(10. 14) W* (ey)=lf fL(oc, y) du*(ey) dy* (ez)

(Dz) ¢y

has Y* (e)) = 0 as the only solution the same is true for all non real A.

(2°). The number of distinct solutions of the equation (10. 14) is the same for
all non real A.

(3°). If for A=A, fixzed in O, the problem (10. 14) has no solutions (distinct
Sfrom zero) the same is true for all non real A.

(40). The number m of solutions of (10. 14) for any real A in O is equal to
or 25 greater than the number n of distinct solutions for non real values of A.

If (1°) does not hold there exists a function ¥* (e,) ¥ o, satisfying (10. 14)
for some non real A, distinct from A*. One has

e =i [ L gawie)av e = e = (1= 5 ) v

(Dg) &y

Since the solution of the homogeneous problem, for A*, is uniquely zero by
the hypothesis of (1°), one may rewrite the above in the form

(10. 15) O* (1%, e/ F'*) = *(ey).
Now

) =1 [ [ Ly auie)agrie) =0,

Pz) &y

P =1 [ [ L nare)apte)= e =(1-L) )

(Dz) ey
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Thus, in view of the remark leading to (10. 15), we have
(10. 15 a) O* (A*, e,/ F'*) = y* (e,).

In consequence of the identity (10. 12 a)

(I «—%*)f fL(x,z)dlp*(ez)d@*(ew)
D) (D)
:(1 —)%—*)f fL(x, 2) dy* (e) d Y* (ea)

(D) (P2)
and, with the aid of the notation (10. 13), it is deduced that

(10. 15 b) (+ %) ews— (> - %) et

Now, inasmuch as ¥* # 0 and Lz, y) has been assumed definite, we have
Q(*) # 0. On the other hand, by virtue of the symmetry of L(z, y} and of
the possible interchange of fthe order of integration in the repeated integral
defining @ (1*), we have

{(10. 15 ¢) Q(y*) = Q(y*).

Thus, from (10. 15b) it is inferred that A =1, which implies a contradiction.
Accordingly (1°) has been established.

Here and tn the sequel ot will be understood that only those solutions W* of
the homogeneous problem (10. 14) are considered for whick the order of integration
in @*) (¢f. (10. 13) is emmaterial, the integral

(10. 16) fL(x)dw*(er)

(D)

exists, while for the functions Y (= 0), Yi(=0), from the decomposition W* =} — 3,
we have

(10. 16 a) Yi=o0, Y=o (on frontier of (D).

Incidentally, the latter condition is certainly satisfied when 1* is absolutely
continuous {w*}, inasmuch as u*(e,) being regular with respect to the froumtier
of (D), Y* will vanish on the frontier of (I),) together with u*.

The above conditions enable rigorous justification of the steps involved in
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the proof of (1°). Thus, it is noted that F'*, ;F* are zero on the frontier of
(D;) in so far as (10. 16a) holds — this enables application of the identity
(10. 12a). On the other hand, the inversions (10. 15), (10. 15 a) are possible, in
accordance with Theorem 10. 1, in view of (10. 16).

To prove (2°), suppose that for non real A* 1, on the same side of the axis
of reals, the homogeneous problem has % and m(> n) distinct solutions,

respectively:
Yoo h (for A%); Wy, ... U (for A).

'Distinet’, here and throughout, means of course 'linearly independent’. We

form solutions for 4 by writing
Y= Z AN
1

where the ¢ are constants (not. all zero). One has

v = [ [ Ll awrte)dvied = (1= 2 )p o) = 77 )

(D2) ¢y

vl = [ [Tl par@ape) = (1=5) vl = )

(Pz) ey

Together with the 1; the function vy satisfies (10. 16), (10. 16a). Hence, on one
hand,
O (1%, eof | J™*) =y (ex) + @, (),

0* (},*, 6¢/2F*) = w (6@) + (D-_) (ex)v

where @,, @, are certain solutions for i*; on the other hand, in consequence
of identity (10. 12a), applicable since the real and imaginary parts of F*, ;F*
satisfy (10. 16), (10. 16 a),

(1——)'—:) f fL(x, 2ydy(e) [dP(e) + d Dy (e.)]
(Dz) (D2)

- (I _%k)f fL(x, 2)d(e) [dy(e) + d @, (e)].

(D) (Pz)
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Since m > »n one may choose the ¢; so that

(10. 17) fL(x, 2)dP(e)d D(es) =0

(Dz) (D2)

for all solutions @ (for A*) of the homogeneous problem. We then obtain

(%) [ [reaaveaoe v (s-5) ew = (1 5) ew),

(Pz) (P2)

inasmuch as Q () = Q(y) {cf. {10. 15¢c)). Accordingly

(10. 18) (-;—* —%L[(D{L(x, 2)dy(e)d @, (e,) = (11_ 17) Q ().

Now, @, being a solution of the homogeneous problem for A*, one obtains

0,0e) =7 [ [ Ll )dut(e)ad,(ed—o
(Pz) &
and
A¥

B, (e,) — a* f f Lz, y) du* (e)d B, () — ( - [*”) By e) = F* (e).

(Dz) ¢y

Since v (e.) and O* (A*, e/, F'*) satisfy conditions of the form (10. 16), (10. 16 a),
the functions @,(e,), ;F*(e,) also satisfy these conditions. Hence Theorem 10.1

is applicable to the above relation, yielding
O* (A%, )/, F) = @, (e,) + D, (ey),
where @, is a solution of the homogeneous problem for 1*,
0% (A*, e,/s F) = 1 (ey) + Dy (ey)

(from the preceding) and

(1 *g) f f Lz, 2)d0(e) [ D, (e) + d Oy ex)
(Pz) (D)

:(I—E)f [L(a:, 2)d @, (e.) [d Y (ez) + d Dy (e2)).

A* .
(Pz) (D2)
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On making use of (10. 17) it is inferred that

(1 _%’i)f fL(x,z)dfu(ez)ddfz(ex)
Dz) (D2)
= (1 *%;) f fL(m, 2)d Dy (e) AP (e + (I —%) Q(@,).
(Dz) (D)

The two double integrals here displayed are identical in view of the symmetry
of L{x, z) and of the possible change of order of integration. Hence

(F-1) [ [reaipean, e = (5—%) e

Pz (Dz)

and, by virtue of (10. 18)
(10. 19) (F—1)ew = (k- 7) e

L(z, y) is definite and Q(y) < 0. If @, o, then Q(®,) will have the sign
of Q). Accordingly, (10. 19) presents a contradiction, inasmuch as the numbers

1 I 1

1
LA ax g
are of opposite sign. The case when A, ¥ are on opposite sides of the axis of
reals is covered by a remark analogous to that used for a similar occasion in
(C). Thus, part (2°) of the theorem has been established.

The above proofs of (1°), (2°) are partly analogous to certain developments
in (C; Chapter II).

As we turn to the demonstration of (3°), (4°), lines of procedure are
suggested to us by (T; pp. 604—607). Thus, to prove (3°) we first make the
observation that if A, is non real the conclusion of (3°) is a consequence of (1°).
Hence, if (3°) were not true there would be on hand a real A,, in O, for which
(10. 14) has no solutions (54 0), while for some non real A there exists a function

W*, distinet from zero, satisfying (10. 14) (for this value of 1). Accordingly

ve) =4 [ [T paeeawe)=(i=L)yr )= 1)

(Pz) ey
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The equation obtained by replacing, here, ;F'* by zero has no solutions distinct

from zero. Hence in view of Theorem 10. 1
W* (9y) = O* ()‘n‘ ey/1F*)-

We also have

vl =n [ [ Ll paee)azre) = (=) 7 ) = p o)
(Dz) &y
and
P* (o)) = O* (A, 91//2F*)-

By virtue of identity (10. 12 a)

(IJ%)f fL(x,z)dw*(ez)dw*(ex):(l—%)ffL(x,z)d«:u*(ez)dw*»(em);

(Dz) (D) (Pz) (D2)

that is,
(=) o= s = () oo

Here Qi*) 0. We arrive at a contradiction, which establishes (3°).
To demonstrate (4°) (compare with (T; pp. 606—607)) suppose that (4°) does
not hold. Then there exists a real value 4, in O, for which there are m distinct

solutions; for these one has

(o) = 1 f f L(z, y) du* (o) d s (o) G=1,...m),

Dz) ¢

while for a non real 1* there are n, n > m, distinct solutions for which

W () = f f Lie, g)du* () d ' (e) —

Dz) oy

The 1, may be considered to be real-valued. We construct a solution {for i*)
wrle) = N eyt le)
]

where the ¢, are constants, not all zero, chosen so that



Singular Lebesgue-Stieltjes Integral Equations. 287

(10. 20) f fL(x, z)dy*(e;) dW* (ex) = 0

(D) (D)
for all solutions ¥ of the homogeneous problem for the value 4. In fact,
Plex) = D) di s (ea)
1

so that (10. 20) is seen to hold if
S 3ed [ [Lledaveane) o
I=LEh (D) (D)

for all constants dj, that is provided

icvffL(x,z)dwf(ez)dm,_uj(ex)—:o (j=1,...m);

YEL (D) (D)

the latter relations can be secured in so far as it has been assumed that »>m.

We have
o) =2 [ [ Lo nawe)av e =o
(Dz) ¢
@* (ell) — i¥ f f L (.Z', Z/) du* (g_y) d 17}* (ez) =0;
(Dz> ey
thus

viie) =1 [ [ L paeeawrie) = (1= k) vrto) = 1),

D) &y
P* (3.1/) - lf fL(x, y) duw* (ey) dy* (91) = (I - Zi*) 0z *(e_,,) = F(f’y)
(Dz) &y

and, by virtue of Theorem 10. 1,
Y (o) = O* (A, e)/F) + y,(e),

'Q;[;* (81/) - ()H: (}‘y e!//j;’) + 72 ((’)‘.7/)‘
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where y,, 7, are certain solutions of (10. 14) for A, satisfying conditions of the
form (r10. 16), (10. 16 a) (since Y*, O* (A, ¢,/F) do). Inasmuch as

0% (A, e,/ F)= 0* (A, e,/ F),

one has 7,(e,) =7,(e,). In consequence of the identity (10. 12 a)

f[LoczdFede*lel/F ffL 2)d F(e)d O* (2, es/ F)

Dy) (Dy) (D (D
and
(‘ - il‘)f f L(x, 2) dw* (e) d [P* (ex) — 7, (es)]
D) B2

~(r=5) [ [ 2@ aaperamwre) —nie.

(Pa) (P2)

Whence, in view of the remark in connection with (10. 20),
A A
(r=2) ewn) = (1= ) 0w

here ¥* 54 0 and hence @ (y*) > 0; consequently A* must be real contrary to the
previously made supposition. This completes the proof of (4°) and of the theorem.

11. Operators O (continued).

It will be said that L(x, y) is of class I in a subset O of a set O if
for every 4 in O' the homogeneous problem (10. 14) has no solutions distinct
from zero.

A class of additive functions (possibly complex-valued) of {B}-sets will be
said to form a class E if (1°) every F(e;) of the class vanishes on the frontier
of (D), (2°) every Fe;) of the class is ’'admissible’ with respect to L (x, y)
(ef. {10.3¢)) and (3°) for every pair of functions, I';, F,, of the class the order

of integration in the repeated integral

(11 1) [ [t arear,e)

(D) (D)

is immaterial. The above is implied to refer to the non negative components
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in the decompositions (into differences) of the real and imaginary parts of the
fanctions involved.

Theorem 11.1. Let w*(e.) be regular (Definition 8. 1) with respect to the
Srontier of (D). In order that a kernel L(x,y) should be of class I in a subset
O of a set O it is necessary that

(11.2) f fL(:c, 2)d [ff L(s, 2)du*(e))d F, (('s)] d F, (e.)

(Dz) (D2) (Ds) €
:_/ fL(x, 2)d [ffL(s, Z)du*(e;)d F, (e,,-)] d I, (ex)
(D) (D2) (Ds) ez

Jor all F,, F, of class E such that the functions

(11. 2a) ffL(.Z, y) du* (e,) d Iy (ez), ffL(ac, y) du* (e,) d Iy (e.)

(Dz) ey (D) &y

are also of class E. Conversely, if (11. 2) holds for all Fy, Fy < E such that the func-
tions (11.2a) < E and if Lix,y) is definite (Theorem 10. 2), the kernel L (z, y)
will be of class I for all non real values 1.

To prove‘ the first part of the theorem let I', F, be a pair of functions as
described subsequent to (11.2). Then the functions @,, G,, defined by the

relations
Fie) =2 [ [ Lo i dwre)a by e) = 6, (e,
(D) ey
(11.3)
Fyle,) — 7[[ L, y) d* (e,) d Iy (ex) = G, (ey)
D) &y

(A in O'), will belong to a class E, inasmuch as the G; are differences of func-
tions of class E. Under the supposition that L (z, ) is of class I in O, inversion
of (11.3) with the aid of Theorem 10. 1 is possible, yielding

File))= 0%, e,/ G,), F,les) = O0*%(A, e/ Gy).

Henee, the requisite conditions of this ‘theorem being satisfied, the identity

(10. 12 a) takes the form (when applied to G, G,)

f fL(x, z)dGl(ez)ng(ex):f fL(x, 2d G, (e) d Fy (er).
(Dy) (D2) (Dg) (D)
19
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Sabstituting, here, the expressions for the G; from (11. 3), we obtain

{11. 3a) f{r (, Z)[lF (ez) -—la’ffL 2) du*{e )dF,(es)]}dFQ{eﬁ‘)

D) (D2)

—fIfoz[dI' —~).dffLszclu* )(l]'(')]}dF(eJ)

(Dyg) (D) (Dg) €,

Now

f f Lia, 2)d T () d yfes) = f fL‘(x, 2)d Fy(e) A F,le));

(Dy) (D7) (D) (Dy)

this is established by interchanging z, z in the first member (for instance), by
noting that L{z, x) == L{(z, z) and by changing the order of integration, the latter
operation being permissible since ¥, I, are of class £. From (i1. 3a) one then
derives the relation (11. 2).

Suppose now that (11.2) holds for all F\, Iy of E for which the functions
(11.2a) belong to E. If the conclusion of the latter part of the theorem is not
true then there exists a non real value 2 and a solution @f{e,), 7 0, of the
homogeneous problem (10. 14) for this 4. In this connection, it is to be recalled
that a solution of (10. 14) is always implied to satisfy conditions of the form
stated in conjunction with (10. 16), (10. 16a). One has

(11. ) tD(eg/)—lffL(x, y) du* () d @ () = 0,
(Da) ey

(11. 42) De,)— 1 L{x,y)du*(e,)d @ (e,) = 0.
o

Using notation (10. 13) we have
trs) @)= [ [Lenieeave~[ [Lenide)aoe)
(Ds) (Dy} (Ps) (Py)

Substitution of (11. 4) in the second member and of (11. 4 a) in the third member

of (11.5) will yield

(11. 5a) ,,IIQ((D) ff (s, v) [ffoudu* e, d @ e, )]}d ) (e,

(Ds) (Dy) D7) oy
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—Q fjfL (s, ) ;[ffL(m Y du*(eJ)d(D(ex)}}dd)(eg)

(Ds) (Dy) (Dz) ey

Now @, @ are members of E; in view of (11. 4), (11. 4 a) the functions (11. 2 a),
formed with B

F,=®, F,=®
will also be members of E. In consequence of the previous hypothesis (11. 2)
this would imply that the second members in (11. §5a) are equal; hence

(1) e@—o

aud, necessarily, @(@)=o0. With L{x, y) definite, from the latter equality it
is inferred that @ = o, contrary to a provious supposition. The contradiction
establishes the theorem.

Theorem 1I. 1 is of the type of a result given in (C; pp. 75—77); however,
essential features of difference are to be noted.

We observe that (11. 2) is a condition allowing interchange of certain limit-
ing processes.

We turn now to equations (7. 3), for kernels (T). An equation (7. 3) is ap-
proximated by (7. 1). With 4 in a set O we have (8. 1 a) satisfied for an infinite
sequence {i.}; for a subsequence {m} of {n a spectrum 6 is defined in (10. 6).
Correspondingly, let g, () be the solution (A in O) of (7. 1); thus

P, (77) =4 f Lms (x) .7/) Pm, (y) du* (e_,,) + fms (»C) ,
(Dy)
where f () is a function approximating (for s >« ) to f(z) in the sense specified

before. The representation (9. 10) of a solution ¢ (x) of (7. 3), formed with the
spectrum 6 mentioned above, yields an operator Ok, z/...),

(15.6) lim g o) = 9.s) = O(& 217) = 2) + 1 [ Do 9)lg) 0w )
Py)

oo

— l__L_ dhy f fa(?/, 2/u) f(y) Lz, @) d u* (e2) duw* (ey).
- (Py) (Pz)

The sequeuce {m,} and, hence, @ is independent of f. Thus the operator O (4, z/...)
v8 independent of f.
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For A in the set O the operator O(4, 2/...) yields particular solutions of
non homogeneous problems; in fact, for every function f, such that | f|® és integrable
{B, u*}, a solution almost everywhere {u*{ of

90 =1 [ L, gl du(e) +.7( (Ain 0)
(Dy)
vs furnished by
(11. 6a) @ x)= 0, z/f).

Here and throughout functions f(z), or corresponding functions differently
designated, in non homogeneous problems (7. 3) will be understood to be such that
the functions f(x) (cf. (5. 3 a)), approximating to f(x), are continuous in (D).

Consider now a pair of equations (7. 3)

(1. 7) 9@ =1 [ L@ )o@ autte) + @) (i=1,2)
(Dy)
where the |;f|® are integrable {B, «*}. For the solutions ., of the corresponding

approximating equations,

(11.7 a) iPn () = l.flin(x, Y ipaly) du*(e) + ifulx) (=1, 2;4in O),
(Dy)

we obtain witho 1t difficulty the relation

(1. 7%) [ nta @)= [ g int)an e,
Py Dy)
In (11:7b) we let n==m;—>o0; on taking account of (11.6) one obtains the
Sollowing identity, satisfied by operators O(d, x/...),

(.8) [0 N )= [0 s dnt )
(Py) (Dy)
(A in O); this s valid whenever ,f2, of* are integrable {B, u*}.
Passage to the limit under the integral signs in (11. 7 b) is justified in view
of the inequality
f | g, [F d u* (e2) < B2 (1) (L in 0),

(Pz)
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taking place in accordance with Lemma 9. 1, and in consequence of the relations

lm i, (y) = O (2, y/if). | ifu, ) = :if W), lim\ifm,,(y)=if(.ﬂ/),

where the |:f(y)|® are integrable {B, u*}; in fact, under these conditions Theo-
rem 4. 3 is applicable.

Theorem 11. 2. With L(x, y) of type (T) consider the problem

(11.9) 9@ =1 [ L, 9)p 0 dur ).

(Pz)

(1°). If for a non real A* (11. 8) has @ (x) = o (almost everywhere {u*}) as the
only solution the same is true for all non real A.

(2°]. The number of distinct solutions of (11. 8) s the same for all non real .

(3°). If for A=A, fixed in a set O, the problem (11. 8) has no solutions (distinct
Jrom zero almost everywhere {u*}) the same will hold for all non real A.

(4°). The number of solutions of (11. 8) for any real A in O is equal or is greater
than the number of distinct solutions for non real values of A.

Note. Only those solutions ¢ (x) are envisaged for which | (x)]* is in-
tegrable {B, u*}.

The proofs of (1°), (2°) may be effected with the aid of the identity (11. 8’),
following closely the lines of the corresponding proofs in (C; Chapter II).

Parts (3°), (4°) of the above Theorem may be demonstrated on the basis of
(11. 8"), following the lines of reasoning given in (T; pp. 604—607). We shall
omit any further details of proof.

The analogue to Theorem 11. 1 for the problem (i1.8) is as follows.

In order that Lix, y) be of class I in a subset O of a set O (i. e.-that (11. 8)
should for every 4 in O have no solutions distinct from zero almost everywhere
{u*}), it s necessary that the order of integration in

(11. 9) f fL(x, 2) f, (x).f2 (2) d w* (e2) d u* (e2)
(Do) (D2)

should be immaterial for all f,, f, such that the functions

(198 LAl AR [ 26 dnwan @) |fL’<x, DAl dut )|
Dy) (Py)

are integrable {B, u*}.
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1f the condition stated in connection with (11. 9), (11. 9 a) holds, the kernel L(z, ¥)
will be of elass I for all non real A.

The above result is analogous to and constitutes an extension of the theorem
in (C; pp. 75—77). To prove the first part of the theorem let fi(x) (¢ =1, 2)
be two functions satisfying the statement in commection with (11.ga). Then
the g¢:(x),

(11. 10) qi(x)=fz-(x)—lfL(w,‘?ﬁ)ﬁ(y)du*(ey) @ in 0 i=1,2),

(Dy)

are such that the |g:(2)|® are integrable {B, »*}. With L(x, ) < I (in O'),
(r1. 6a) will yield
filz) = O, »/q))

(in. 0') and, accordingly, by virtue of {11. 8)

f 0:(9) O, y/q,) du*(e)) = f 0: () O (4, y/qs) du* (e,).

(Dy) Dy

Substituting, here, (11. 10} one obtains the necessary condition.
The sufficient condition is established precisely as in (C; pp. 75—76).

12. Seme mere Gemera! Kernels.

If we restrict ourselves to equations (7. 3), where L{z, %) is such that the
integral L%(y) (cf. (5. 4a)) exists, while the continuity conditions imposed sub-
sequent to (5. 4a) on kernels of type (7) are deleted, we can still obtain the
greater part of the results established above for the problem (7. 3) (homogeneous
or non homogeneous). The approximating kernels L,(z, y), as defined subsequent
to (5. 6), will not necessarily be continuous; however, L. (z, y) will be measurable
{B, u*} and will be uniformly bounded with respect to (z, y) (x in (D.), y in (D).
At the same time one may drop the continuity condition on f(x), in (7. 3), and
require only that |f]* be integrable {B, u*}. If one then considers the ap-

proximating equation

(12. I) Pn (x) = lan (x, y) Pn (?/) du* (ey) + f(x),

(Dy)

it is observed that the essential features of the Gunther theory will continue to
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hold for (12. 1); that is, a theory of Fredholm type will be applicable to (12. 1).
To demonstrate this fact one mneeds only to justify the limiting processes (in-
volving, in this case, determinants whose elements are repeated Lebesgue-Stieltjes
integrals) involved in the usual development of the Fredholm theory. We shall
not go into the details of this. On the basis of the theory, relating to (12. 1),
the main part of the previously established developments for (7. 3) is extended
to the present somewhat more general problem.

Suppose now that the integral L*(y) (5. 4 a) does not exist, while the symmetric
kernel L(x,y) is wmerely measurable {B, u*} for (x,y) in [(D.), (D,)]. Then the
problem

(12. 2) @ () =14 f Lz, y) @ (y) duw*(e,) + f(x)

(y)

(with f{z) zero or not; |f|* integrable {B, u*}) could not be said to be solluble,
unless some indirect additional conditions were introduced. Aeccordingly, let us
assume that corresponding to L(x, y) there is a linear operator T.(§/h@) (£ a
parameter), analogous to an operator introduced by Carleman in (C; p. 138),
for which the following five conditions hold:

(12. 3) [z, o) de )
@)

exists;

(12‘ 33’) IT7(§/L"(x, ?/>)l<7(§7 y)v

where 7 (£, y) is independent of = and |y (& »)|® is integrable (in y) {B, u*};

(12. 3b) lim T (/L @, 4) = T (§/ Lz, v);
{12. 3 ¢) lim T (E/fn @) = T (Elf @),

whenever f, — f weakly (Definition 4. 1);

(12. 3d) f To(§/ Lo, ) g (y) doe* e,) = T (§ / f L, y) @ (y) du* (ey))
{Dy) (Dy)
for all @ (y) with |@|* integrable {B, u*}.

The conditions (12.3) —(12. 3d) are of the form of those in (T; p. 586)
given for kernels therein designated as of Type 1. C.
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Corresponding to (12. 1) and (12. 2) we shall have the equations

(12. 4) T (§/pa (@) = l] T (§/La (e, y) puly) du* (ey) + T (§/f(x)),
Py)
(12. 5) T: (&g @) = lf To(§/Liz, ) @ (y) d w*(e)) + Te(Elf @)
Py)

In view of the condition (12. 3) one may envisage solutions ¢ (y), with [¢[*
integrable {8, «*}, of the problem (12. 5), as well as of the homogeneous problem

(12. 5a) T.(&p @)= lfTa» (5/L(x, y)) @ (y) d u* (ey).

Dy)
Consider the function

(12. 6) Q, (ex, €4/A) ——=f [Bn (x, y/2) d u* (ex) d u* (ey),

Y

where 8.(x, y/2} is the function so denoted in section 6. The function {12. 6)
is identical with 6, introduced subsequent to Lemma 8. 3 (in this connection
see (8. 16)). The symbol in the first member of (12. 6) has been brought in, in
in place of 6;*, because the function in question plays a role analogous to that
of a function designated as 2 in  (C; Chapter IV). A number of essential
features of difference is to be noted. For instance, our £, (e, e,/4) (and, eventu-
ally, limits Q/(es, ¢,/4)) is a function of {f}-sets e, e,, while in case of (C) the
corresponding functions depend on points x, y, instead.

In consequence of some of the developments subsequent to Lemma 8.3

one has
1

(12. 7) | Qulew, e,/1)] = [ ()2 [u* (e,))

(all Teal A).

In consequence of (12. 6), (6. 1), (6. 1 a) and since

W () = f o1 (9) d* (0,)
ey

we have
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Qll (()-737 ()'!//}") = Z w:, k (e(l) Il,/}:‘;, k ("_u) (for l = O),
0<2, p<i
{12. 8)
Qulew, ey/2) = — D Wi, (ea) i (o) (for A < o)
/‘é/’.n, <0

and £, =o0 for A=o0.
Subdividing the interval (— [, [){{ > o), as described subsequent to (6. 4),
we obtain

q
Vo= 2| Qules, e/l — Quler, e/l = XU |0k (e wh x (e,

j=t k

where the summation in the last member is over values & for which — 1 <4, < L
Hence, in consequence of (8.3 b),

Vi= Z [wh, e le:) Z [n, k() I = u* () u* (e)
k 3
and

(12. 9) Ve Q0 (en, ey0) = [ (0]} lu* (o))}

Let V,({es, ¢,/A) be the variation, on (—1, A), for 4 in (— 1, I} of the function
2. (ez, ,/1). On writing
(12. 9a) Oulen, 1) = Qus(eay ey/1) — Qo o, e4/),
2 Q1 (ex, e/A) = Viles, e,/) + R, (ex, e,/4),

2 Qn, 2 (e.'lf, 6”/}4) == Ifn (eg:, ey/l) - Qn (81, ey/)\.) Y

it is observed that the functions £, ;(e., e,/A) (

i=1, 2) are monotone mnon
decreasing in A {on (—{, 1)); moreover, in view of (12.7), (12. 9),

(12. o b) | 20 sler, eA)] < u* (e} l* (e,

(¢=1,2; 4 on (—11). Using a suitable adaptation of the De la V. Poussin-
Frostman theorem and of (12; 9b) we infer existence of a subsequence (#;) and
of functions Q.;, Q.5 so that

Hm Q,;.i(er, €,/8) = 1o, €,/1) (X on (—1,0)

ﬂj
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for all {B}-sets e. e, (in (D.), (D,) on whose frontiers u* vanishes. We shall

have

(12. 10) lim L, (e, e)/2) = 2 (e, ey =0 1— Q.,

Jor sets eq, ey on whose frontiers w* vanishes; furthermore,
(12. 104a) VEQ er, e,/2) = [10* (e [ (e)))
(for any real interval (— 1, 1)) and
(12. 10b) | 2 (er, e,/ | =< [* ()] [u* (o))
Convergence in (12.10) is first established for any interval (—I[, /) and then
extended to (— o, + o); (12. 10b) implies that 2, together with Q,, is absolutely
continnous {u*} in e, and in e,
Using the developments of section 4, with the aid of the above function

Q the following results (up to (12. 13 b)) will be stated without details of proof.
One has

(12. 11) li:;a . k(y) [ f 6, (s, y/2) d w* (es)] du*(e,)

hm [fﬁ,, s, ylh) du* (e ,,)] du* (e;) [h y) D, Qle., /) du*(ey),
y (Py)

whenever |h|* is integrable {B, u*}; here D, is symbol of sel-derivation (regular
in the sense of Lebesgue (8; 152—156), «* being the measure function) and yields
a function of y. When, in addition, ¢* is integrable {B, «*}, one has

(12. 11 a) Hm f oy (e, y/R) g () B () o (e2) d u* (ey)
0y by

= f g (@) [DR. f Dy Q(er, e/ b y) d u*(ey)] du* {e),

(D) (Dy)

{(12. 11 b) VE f (e )[D f D, Qles, e,/2) hly)du (e?,)] du*(e,)

(De) (Dy)
é[fhg( Vel w* e«] [ g (x) d u*( (’a]i,

(Dz) (D)
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; :
(1z.11¢)  lim f o () d; j f 6, /1) (@) b (y) d ¥ (e2) A (e,)

j
@ (Dz) (Dy)

»

= [«wa: [ g De] (D000 it aut )] e,

@ (D) (Py)

whenever (1) is continuous on the closed finite interval (¢, §). Moreover,

(12. 12) f:‘af(x) & f ¢(2) D, [ f Dy (e, e/2) h{y) du* (e,,)] du* (e)
(Do) By
= jzg (x) D [ ji a()d; . / . D, Qex, e,/2) h{y) du* (e_,,)] d u* (ey)

/
* )

/

(Py)

B,
‘.‘}(95"')‘ D, [ f Dy { fﬁ a(A) d; 2 e, ey/).)} h{y) du* (ey)] d u* (e,).
(Py)

o

The generalized Bessel’s ¢nequality is of the form

(12. 13) fd; fh (z) D [[Dy Qle, e,/2) h(y) du* (e,,)] du* (e,

= (D) @)

éfhz () d u* (ca).
(Dz)

In agreement with Carleman’s terminology (C; p. 136), if (12. 13) holds with
the equality sign for all h(z), for which h®(x) is integrable {B, u*}, then 2 is
termed closed; the inequality (12. 13) then could appropriately be called generalized
Perceval’s identity, in which case

(12. 13 a) f(l,—,f g(x) D, [nyQ(ex, eyl 2) b (y) d u* (ey)] du* (e,
—= (D) (Dy)
- f 0(2) hlz) du* (e),
(Da)
whenever ¢® h*® are integrable {B, u*}. This yields the generalized Fourier
expansion
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(12. 13 b) 7@ =D [ [ Dy 2en )t ()

—*  (Dy)

almost everywhere {u*}, for all f for which f* is integrable {B, u*}.
Let @u(x) be the solution, for A in a set O (cf. (8. 1a)), of the equation
(12.1). The inequality (9. 4) of Lemma 9. 1 will hold; thus

(12. 14) f| Pu(@) P due* (e) = B2 () (in 0 ne—ny, ny ),

Dz)

where (cf. (9. 4), (9. 1 a) and statement subsequent to (9. 1 a))

(12. 14 2) B) — [I + %] [ @) | dut (ew)]%.
z)

(D

By Theorem 4.2 the sequence {n;} contains a subsequence {m;} so that the

sequence {@n(z)} converges in the weak sense (Definition 4. 1) to a function

@ (x) for which

(12. 14 1) Jle@tawie) = B,

(Pz)

A having a value fixed in 0. If in (12.4) we let n = m;-> o0, letting ¢, denote
the solution of (12.1) in consequence of the conditions (12. 3)—(12. 3d) and
of some of the theorem of section 4, it is inferred that ¢ (x) satisfies the equa-
tion (12. 3).

The above solution @ (x) can be represented in the form

L]

(12. 15)  @@)=f(x) + A D, fy—iﬁ dﬂff(y)Dy.Q(ex, ey/u)dw* (e )= 0(, x/f)

- Dy)

almost everywhere {«*} in (D,) (A in 0). This result is an extension of a for-
mula in (C; p. 139), for 4 non real, and of a result in (T; p. 600), for A possibly
real in 0. The operator O(, 2/ ...) can be chosen independent of f.

With O(A,«/...) from (12.15) in place of the operator so designated in
(11.6), one obtains an analogue of the identity (11.8'), as well as uniqueness
Dbroperties, relating to the homogeneous problem (12. 5a) (A in 0), closely similar to
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those given in Theorem 11.2 — the latter under the supposition that T%(5/h @)
is real whenever h(x) (with h* integrable {B, u*}) is real, while

Ty (E/h @) = Ta (8l )

(ef. (T; pp. 607, 608)). There is also an analogue of the result [(11.9), (11. 9a).
For the problem now under consideration one may obtain extensions of all
those results in (C; Chapter IV) which are not based on continuity properties

of the kernels involved.

13. Integral Equations of the first Kind.

In this section use is made of the notions and results of section 12. The
problem now under consideration is similar to the one considered by TryrTzINSEY
in (T; pp. 611—619).

With L(z, y) a kernel of the type specified in section 12 and T,(§/...)
denoting a corresponding operator, subject to {12. 3)—(12. 3d), we consider the

equation

(13. 1) fL(x, W) dut (e) = f (),

(Dy)
where f* is integrable {B, uw*}, and the corresponding problem
3.2l [z, pware) = 1.,
(Dy)

All solutions in question (of (13, 2) or (13. 3)) are implied to have squares in-
tegrable {B, u*}.

Theorem 13. 1. (1°). Suppose the equation

(13. 3) [ 1z e i) = o
Pw)
is closed in the sense that it has no solution ¢ (y) for which

f @ (y) du* (e,) # o.

Py
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(2°).  Suppose, moreover, that for an infinite subsequence (n;) of (1) one has

(13. 4) = Ydifar=A4 < (n = ny, ng, . ..),
&

where A s independent of n; (j=1,2,...) and

(13. 49) For= [ 16 Psl6) ).

(D)
The equation (13. 2) will have a unique solution @ (x) with @® integrable {B, w*}. If

(13.4b) Z/’Lf’ﬁgﬂfn’fk =B< o (n=mnyn,... somen>o0),
k

this solution will be representable in the form

(13.5) @)= sz}-dx [ff(S)Ds-Q(ex, es/A) d u* (es)]

- Ds)

almost everywhere {u*}.

Uniqueness of solution of (13. 2) follows from the fact that a difference of
two distinet solutions, that is of solutions differing on a set of points of positive
{u*} measure, would be a solution of (13.3), contrary to hypothesis.

Adapting the developments of (C), leading to a result in (C; p. 142), to our
problem we infer without difficulty that condition (1°) of the Theorem implies
that (e, e,/1) is 'closed’; accordingly, (12. 13) will hold with the equality sign,
as well as (12. 13b) — for all A(x), f(x), whose squares are integrable {B, u*}.
This fact does not necessarily imply that £, (e, ¢,/A), that is the sequence
Pn.1{), Pn,2(@), ..., is closed.

We define ¢a{z) by the relation

(13.6) P (em)zfg)n () d u* (el.)zfml d [ff(s) Dy 2, (ex, e5/4) d u* (eq)]

ex (Ds)

In view of (12. 6), (6. 1) and (6. 1a)

(13, 6 a) Pn (ea) == 2 An, kfn, k fmn, k(x) du* (ear) (n = nj)'
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The series, here involved, and the integral of the last member in (13. 6) con-
verge because @n,1(x), pn,2(x), ... is an orthonormal sequence, while the series
in (13.4) is implied to be convergent by hypothesis. It will be essential for
our purposes to consider the situation in greater detail.

As remarked before, the integral

[onr@awic)

is the 'Fourier' coefficient (with respect to gn @) of ge (), the latter function

being defined as unity in e and as zero in {I);) — ¢,. Hence by Bessel's inequality

2 [ f @, 1 (@) d u* (ex)]2§ [ G (@) A (e2) = w* (o).

k
e Dg)

Thus on taking aceount of (13. 4) from (13. 6a) it is inferred that
2
(1360 Igaledl = St sis 3| [onctaiel| = du el
k s

(n =mny, ny, ...). Consequently, in view of the De la V. Poussin-Frostman

theorem, for an infinite subsequence (m;) of (n;) one has
(13.7) lim @y (ex) = @ (ea), | @ (e P = A 0* (e2)

for all {B}-sets (in D,)) on whose frontiers »* vanishes, the limiting additive
function of {B}-sets ¢ (e.) being defined for all {B}-sets e, in (D.); by the second

relation (13. 7) ¢ {e.) ¢s absolutely continuous {w*}. Hence
(13.7a) ¢ (%) = De g (ex)

is a function defined almost everywhere {u*}, measurable { B, «*} over (D«); further-

more,

(13. 7 b) o (e :fgp(x)du* (e0).

ey

We shall prove the following Lemma.
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Lemma 13. 1. Let v, (), ¢,(z), ... be a sequence ortho normal in (D.) (the
measure function being w*). Let ¢ +c + = < w, The function (x)=

== D (&), where

wie) = Ne [v@ (e,

has the properties

(r°) fw(ﬂc) W, () d u* (e,) = e v=r1,2,...),

(D)
(2°) yix) ~ e Y, (x) (¢ (D.); also see (8), below).

Note. It is to be recalled that ~ denotes convergence in the mean square,
The series representing ' (e.) converges in consequence of previous remarks;
since

(e = ol (el

existence of ¥ (x) is likewise assured. For the function

wij, @) = e (a)

1

we have

YE(J, d)dur(e) =&+ + ¢f =5

(Pz)

moreover, in consequence of the definition of ¥ (e,)
J
f‘lj (77 '7') du* (P-") = 2 Cy f u'v (x) da il'* (e.r) - w (P',.) == [w ((E) du* (e.c)
g oy

{as j— o). Henece
W (s, @)= (e) (as j — oo)

in the weak sense; in view of (4. 6)

(Q) ['/12(3?) du*(e,) = ¢*.

(D2)
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Accordingly, on noting that

fw (77 92’) U (1) du* (().’r) = Cm (} = ’H?)

B

and on letting j — %, we observe that passage to the limit under the integral

sign is permissible, yielding

W (@) Wi () d u* (e2) = e,

(D)
that is, the relation (1°) of the Lemma. We form
R = f ) — WL, @) du (o).
Dy

In consequence of (1°)

v

J
R(j)= [w(ﬂ dau* (o)) — Z("f‘ o.
1

Dy
Hence, in the limit (as j - %), one obtains
W) du* (o) = ¢
Dy
together with (), this implies
®) [@Ug (@) du*(e) =cl + &+ -
(D)

and, accordingly, lim R {j) = o, which yields (2°); the Lemma is thus established.

The above result picks out a particular function (of interest for our pur-
poses) amongst the functions whose existence is asserted in the Riesz-Fisher
theorem.

In accordance with Lemma 13. 1 for the function g, (x) of (13.6) we have

@n () ~ D hat ok @ xl) (n = ny);
-

(13.7¢)

IA

/ grlx)du*(e)=TI,=< 4 (ef. (13. 4)).

());E>
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The latter inequalities, together with (13. 7) imply that
(13. 8) lim @n, (€) = @ (2)

in the weak semse. The m; here are the subscripts from (13. 7) and may be

chosen so that
lim Oy, (z, y/h) = 0(x, y/A)

exists — this is merely a matter of chosing a suitable subsequence, if necessary,
of the original sequence.
We define f(n, ) by the relation

(13 9) Fln @) = [ Lnla, ) gnls) o e,
(D)
In view of (13. 7¢)
(13. 9a) @n(s) ~ gn(U/s) (as 1 — );

and
@ (1/s) = Dt 1 fo, 1 P, 8),
k

where the summation is with respect to % over values of % for which
— = da <l
On writing

(13. 9b) Fll, 0, @) — f Lo (@, 8) gu (U/s) du* (&)
By

and on taking note of (13, 9a), passage to the limit under the integral sign
being justifiable, we obtain the relation

(13.9¢) 1ilm Sl n x)= an (x, 5) @ (s) du* (e)) = f(n, x)

(Ds)

(as I > 4+ o). On the other hand,

S m @)= 2" 0,1 far f Lu(@, 8) gu,i(s) du* () = D fu, ko, 1 (@)

E
Ps)

8o that in consequence of (13. 9c¢) one has
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(13.94) D n ki (@) = fn, 2),
k
convergence of the series to f(», x) being in the ordinary sense; in particular,
(13. 10) ff (n, x)du*(e) Z fax =»f () d u* (e,)
D) (D)

for n=mny, n,, ..
We have

[ ron @) dur e = 3 fur f Pui(2) du* (e,

ey

—fo [fgpnk S) @n, i (% du*(?x)]du*(es)
¥ (Dy)

o0

= f dion(e/h), on(edd) = f F(s) Dy 2, (5, €./2) d u* (e,).

— (Ds)
Thus, for { > o,
(13. 11) ff n, x) d u* (e, —-fdmn (ex/4) + (f f) dz 0w (es/2).
—t 7

Now, in (13. 11),

(f fw ) = fu f on k(%) du* (e),

where the summation is over values of £ corresponding to the intervals (— o, —1),
(I, + o); for these values of k

l An, kl =1
accordingly

(;Z-# j) l:lZ' (Z,,,kf,.,k)lTI’k../ @, & () du* (o)

I
fqonk ) d w* (e.) é—l;
I 9
é_l'[Z-Iln,kf;L,kI ]
k

ZZ Illn Lfn kl

Wim

[3] o]
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and, by virtue of (13.4) and of the inequality preceding (13. 6b),

(13. 112) I(f f)dm,m/zlzl ()t

We now turn to the first term in the second member of (13. 11). In

consequence of (12. 11 ¢)

(13. 11 b) hm] dh Oy (€a/h) = ]d; o(es/1),

o (e/2) — f F18) Ds 2 es, ex/A) due* ().

(Ds)

In fact, to demonstrate this one needs only to replace ¢, 8, «(4), g(z)in (12. 11 ¢}
by —1, 1, 1, f(x), respectively; and to let h(y)=1 in e, and h{y)=o0 in
(Dy) — ey (e, being a fixed {B}-set).

By (3. 11)—(3. 11 b)

lim | flmy, ) du* (e,) = f(l;ff YDy Q (e, e,/A) d u* (es).

m ]
&y —» (DS>

As noted before, 2 is closed; thus (12. 13 b) holds and one has

(13. 12) limffmj Y d u* (e ff Y d u*{ey).

’IIZJ

In consequence of (13. 1o) and (13. 12)
(13 13) f(mj, x) = f(x) (as m; - o)

weakly in the sense of Definition 4. 1.
By (12. 3d) from (13. 9) one obtains

Tu(§/ Lo, $) gn(s) d o (0) = T E1f0n, ).
Ds)
In view of (13. 13) the propérty (12. 3¢) will yield
im T, (&/f my, ) = To(E/f ).

"
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On the other hand, by virtue of (12. 3b), (12. 3a), (13. 8) Theorem 4. 1 (the
second part) is applicable so as to give the limiting relation
T/ Lix, s) ¢ (s)du*{e).

11m /T SC/TJm (@, £) P (s) da* (eo) =
Ds)

( s)
Accordingly, the function ¢(x) of (13. 8) ¢s a solution (the solution, in fact) of owr

problem (13. 2); @*(x) &s integrable | B, w*}.

By (13.6)
@nles) f/'td, o, (es/A) + (f f) AdioaledR),

(13. 14)
By virtue of (12. 11¢)

where g, (e./2) is from the relation preceding (13. 11)

(13. 14 a) lnn [Zd; o (e./2) —f/ldw(m,//l)
—I

(cf. (13. 11 b)).

Oun the other hand, by (13. 6 a)

i.[_l—‘_ j) - Akz', A, c o,k f‘]’n,k(x) du* (es)

ex

(summation corresponding to (— oo, —1I), {I, + =) and, under (13. 4 b), one has

. w

’ , I .
([ [)1=13 e ) [gorioitu e
—0 14 k n"e:(:

1
TZ ", ﬁﬁ),kll[lpn,k(fﬁ)du* (ex)

k

é%[ZIlﬁﬁf’ﬁ, zl] [Z'fq)nk ) du*(e.)
k

F

so that

(13. 14 D) I(]l+ f)ld,—;an(ex//l)

—®

ST [u* (o))}
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We note (13. 7); the relations (13. 14)—(13. 14 b) therefore imply
q)(ex)zfldgo(ex/l).

On taking account of (13. 7a) we finally obtain the representation (13. 5), thus
completing the proof of the theorem.

The developments of this section supersede those of section 6 in (T; 611—
619). It is to be noted that the passage to the limit under the integral sign in
formula (6. 31 ¢) of (T; p. 618) s not necessarily justifiable; accordingly, the stalics
preceding Theorem 6.2 in (T; p. 619) cannot be considered as established (even
though closure of 8 will take place as stated). However, the concluding Theorem
6. 2 of (T) is correct as formulated; this may be inferred in view of our present
Theorem 13. 1.

We shall conclude this work with a few general remarks. The integral
problem (7. 3a), where the unknown is a function of sets {B}, is singular in
the sense that the kernel behaves in a manner irregular. according to various
hypotheses involved, in the neighborhood of the frontier of the domain (D.);
for this problem the frontier of (D) is, so to say, a 'singular set’. It is possible
to formulate the problem so that the ’'singular set’ is any measurable subset of
(D) (with some points possibly in the interior of (D.)), while the essential
features of the theory of (7. 3 a) (and of the corresponding homogeneous problem),
as developed in these pages, continue to hold (with appropriate modifications).
For instance, those of the results which make use of the hypothesis of 'regularity’
of «* with respect to the frontier of (D,) (Definition 8. 1) would have to be
restated under the supposition of 'regularity’ of «* with respect to the 'singular
set’. We shall not go into the details of formulating such an extension of the
notion of 'regularity’. In order to make use of the results of Gunther we did
assame in these pages that «* (also F*) is continuous as a function of sets
{B} (i. e. w*(¢) > o with the diameter of ¢) — this enabled application of Lemma
3. 2, leading to the desired connection. This condition on «* (and F*) may be
weakened by taking account of the text from (3. 11) to (3. 15). As previously
observed, for a part of our developments continuity conditions of kernels L (z, )
may be deleted — we need merely to secure discreteness of the characteristic
values and orthogonality of the characteristic functions of the approxzimating
kernels.




