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i. I n t r o d u c t i o n .  

The theory  of integral  equations,  broadly outlined, consists, on the one hand, 

of developments which could be generally classed as of Fredholm type and which 

may be based on Lebesgue in tegra t ion;  in this connect ion of par t icular  interest  

are symmetr ic  kernels, when the characterist ic  values are real  and the char- 

acteristic funct ions  form an or thogona l  set. On the o ther  hand,  there  exist de- 

velopments relat ing to kernels for  which the theory  of Fredholm type does not  

apply and  which entail  results of form essentially dist inct  f rom tha t  involved in 

the Fredholm Lheory w prominen t  in this respect are the names of I t .  W~,YL 1 and 

I ]~. WEYL, Singul~re Integr~lgleichungen mit  besonderer Beriicksichtigung des Fourierschen 
Integraltheorems, G5ttingen, 19o8; pp. 1--86. 



198 W . J .  Trjitzinsky. 

T. CA~LSMA~I; the equations, involved, which may still be expressed with the 

aid of Lebesgue integrals, contain kernels - -  one may appropriately term them 

singular - -  which are expressible as limits, in one sense or another, of kernels 

of Fredholm type. Singular kernels have been also studied in a number of papers 

by th e present author 2. 

Now, the demands of Mathematical Physics often necessitate consideration 

of functions of sets instead of points; accordingly a theory has been developed by 

N. GUNTHEa s relating to linear equations involving S~ieltjes integrals, the in tegr~ 

tions being appropriately defined 4. The kernels considered by Gunther are suf- 

ficiently 'regular' so as to secure results resembling those of Fredholm and, in 

the case of 'symmetry' suitably defined, resembling those of Schmidt. I t  is our 

present purlgose to consider kernels more general than those of Gunther and to de- 

velop (for the 'symmetric' case) a theory of equations whose kernels are limits in a 

s~titable sense of the 'regular' kernels of  (G); moreover, our theory will involve 

Lebesgue Stieltjes (Radon) integration, which appears to be an appropriate tool for 

such problems. This explains the aim as well as the title of the present work. 

The developments given in the following pages will be not of Fredholm type 

arid, in part, will involve use of spectral theory - -  with regard to the latter aspect 

the background is given by Carleman's theory. 

I t  is essential to note that  in the sequel 'domains' are closed sets of a cer- 

tain description (cf. section 2). 

In section 2 the requisite developments of Gunther are stated. In  section 3 

we extend the integration methods involved in (G) to Lebesgue-Stie!tjes integration. 

In section 4 the notion of weak convergence is introduced (Definition 4-I)  as a 

natural extension of the classical concept of such convergence. Theorems 4. I, 

4 .3  allow passage to the limit under t h e  integral sign when certain conditions 

are s~tisfied. Theorem 4. 2 gives a condition for weak convergence and in 

Theorem 4-4 conditions are given under which change of order of integration 

for certain integrals is possible. In  section 5 singular kernels (T) (Definition 5. I) 

x T. CARLEIKAN, Sur les ~quations int~grales singuli~res k noyau r~el et sym~trique, Uppsala, 
I923; pp. I--2z8; in the sequel referred to as (C). 

W. J. TRJITZINSKY, General theory of singular integral equations with real kernels, Trans. 
Amer. Math. Soe. (I939); 2o2--279. 

W. J. TRJITZf/CSKY, Some problems in the theory of singular integral equations, Annals of 
Math. (194o); 584--619; in the sequel referred to as (T) 

* N. Gtr~TH~r~, Sur les int~grales de Stieltjes et leurs applications aux probl~mes de la 
Physique Math~matique, Leningrad, 1932; in the sequel referred to as (G). 

4 The integrals involved in (8) are more general than those of Frechet. 
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are introduced and two singular integral equation problems are formulated. A 

detailed 'spectral' theory along lines of (C) is developed for kernels (T) as well 

as for certain kernels (T*) (Definition 5. I), satisfying some continuity conditions. 

One of the applications of the spectral theory is in the representation of solu- 

tions of the various integral equations. In  section 7 connections are established 

in Lemmas 7. I, 7. 2 between solutions of the two non homogeneous problems (7.3), 

(7.3 a) - -  in cases when certain conditions are satisfied. In section 8 sets 0 

in the complex plane of the parameter ~ (cf. (8. I a)) are introduced and problem 

(7. 3 a) is treated directly; it is established that  solutions of the equations (7. I a), 

approximating to (7. 3 a), satisfy certain conditions of compactness and uniform 

absolute continuit.y (Lemma 8. I); in Theorem 8. I existence of solutions of (7.3 a) is 

established and in Theorem 8. 2 these solutions are represented in terms of spectral 

functions. Throughout, existence of solutions of the non homogeneous problems is 

asserted for the parameter ~ in 0 [0 contains all the points off the axis of reals 

and may contain some points on the axis of reals]. Sets T ~ 0 are introduced 

in section 9; a compactness property is established in Lemma 9. I for the solu- 

tions of the equations approximating to the non homogeneous problem (7. 3) 

(4 in T); in Theorem 9. I spectral representations are given for solutions of 

(7. 3); two spectral representations for such solutions, of a different type, are 

given in (9- I2) and (9- I9). Properties of uniqueness for the two homogeneous 

problems are dealt with in sections Io, II (Theorems IO. I, IO. 2, II. I, II.  2). 

Kernels which are merely measurable with respect to the measure function ~.~* 

are considered in section I2; a 'spectral' theory, analogous to that  for similar 

kernels previously studied by Carleman, is outlined for these kernels. Finally, 

in section 13 the developments of section I2 are employed to prove existence 

of solutions for singular integral equations of the first kind (cf. (l 3. 2 ) a n d  

Theorem 13. I). In the italics subsequent to (I 3. I4b)  it is pointed out that  

formula (6.3I c) in (T; p. 618) is not justifiable - -  the developments of section 

13 of the present work, however, enable us to assert that the concluding Theorem 

in (T; p. 619) holds true as formulated in (T). 

2. Gunther Integration.  

We shall briefly describe the mode of integration and the properties of the 

integrals, as developed in (G). This will be done in so far as it may be ne- 

cessary for subsequent developments as well as in order to assist any reader in 

following the present work. 
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Tntervals are unders tood to be closed sets of points (square in two dimen- 

sions, cube in three, and so on). A set (to) is a domain if it has interior  points, 

if i t  contains its f ront ier  and if the measure  of the  la t ter  is zero; the frontier 
of (to) is the set of l imit ing points of (to) which are not  inter ior  points of (to). 

Decomposition of ( to) into two domains (to,), (to~)is des ignated by ( to)=(tol)+ (to~)- 

The relat ion for  the  corresponding measures will be to == w 1 + o~. Deeomposition.~ 

into any finite (but not  necessarily infinite) number  of domains  (to1), (to~),--. (top) 

is  possible, yielding the relat ion ( to)= (to,)+ ( to~)+. . .  + (top). 

Domains (to) and (~) and points (x) and (y) will be in fixed (bounded) domains 
(Dr), (ny), respectively, (D~) and (n.q) are to be identical except .for notation. 

A funct ion u(to) of domains  (to) is mean additive (m.d.) if 

(to) to = u (to,) to, + u (to ) 

for every decomposit ion (to) = (to,) + (to~). A m. a. u (to) is of bounded variation (B V) if 

n 

1 

for all finite decompositions of (to); 

total  variat ion of u (to) is U(to)to = u. b. s,, (to) 

(u. b. means least upper bound for finite decomposit ions of (to)). 

I t  is said tha t  u (to) is absolutely additive (AA) if for all possible infinite 

decomposit ions (to)~--(to1) § (to~) §  

u (to) to = (to j) to . 
1 

Designate by (~)[(D)] a domain contained in the interior  of (to)(a domain  

conta in ing (to) in its interior); the  limits 

,~ (co) ----- lim u (~), ~ (to) = lim u (~) 

(as (to), (~)-~ (to)) exist and are unique. 

M.d.  u ( t o ) i s  continuous ( C ) i f  ~!(to)=u(to); if u(to)~C,  ~( to )=u( to ) ;  if 

(to) --~ u (to) then  u (to) < C. 
9~ 

W h e n  m.a .  u (o~)~ o one writes l(to) to -----1. b. ~ '~_~ (toy)to~ (1. b. means greates t  
1 

lower bound for  finite decompositions ( to)~ (tot) + "" + (to~)); l(to) is m .a .  
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? t  

L(~o)co (saltus f u n c t i o n ) i s  u .b .  ~ ( u ( ~ . ) -  ~t(eo~.)) ~ .  
1 

For  every non negative m.a .  u(to) one has 

(~)  = z (~ )  + L (~) .  

Let  (~o,), . . .  (wp) (p finite) be possibly non contiguous. I t  is said tha t  m. a. 

u(w) is absolutely continuous A C  if, given e ( > o ) ,  there exists ~i so tha t  

P 

~ l u ( ~ ) l ~ j  < ~ whenever  % + . . . .  i - t % < ~ .  
1 

L e t  (il) , (i~),. , .  be a sequence of intervals each conta ining (x) in  the inter ior  

and such tha t  i , - ~  o (as ,J-,or One designates by ~(~') (x) the u.b.  of u(w) 

for domains (~o), contained in (i,), such tha t  ~o/i, ~ a ( >  o); fur thermore ,  one lets 

G (x) = lim ~ ) ( x ) ,  ~ (x) ---- lim G (x) (as a .§ o). 

By taking 1. b. 

numbers  

and lim in place of u .b .  and lim, respectively, one obtains the  

t~(: ) (~), ~o(x), ~(x). 

Whenever  R (x)-= ~t (x) it is said tha t  u (co) has a value 

u (~) = ~ (x) = ,: (x) 

at  the point  (x); thus, 

,f u (r = -~ f ( x )  d to 
(o,) 

(f(x) < L 1 in (D~)) 

has the  value f ( x )  almost  everywhere in (D.~). 

I f  m. a. u (~) < B V, u (co) has a value almost everywhere.  

The values of L(~o) are zero almost  everywhere in (D~). 

I f  m.a .  u(co) < B V then 

(F(x) ~ L~ in (D~)); 

here the values of w(w) are zero almost everywhere.  
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Let  f (x)  be a funct ion of points (x), ~ (Dx), and let  m. a. u (co) ~ B V. Wi th  

(t2) < (Dx) and  (~2)--= (co,) + (o~.,) + . . .  + (~,) one forms the  sum 

r 
= u 

1 

is a point  in (oi). Whenever  lira In, as the oJ,-* o uniformly,  exists where  (gi) 

one writes 

I l ' u  (w)f(x) d r = lim In; (2. I )  
t ]  

Ca) 

this l imit  is designated in (G) as the integral of Stieltjes. 
With m.a. u (co) < B V and f (x )  continuous in (D~) or, more generally, bounded 

and lgiemann integrable over (D~), the integral (2. I) will exist. Of the  various 

properties of (2. I) we shall ment ion  the following: 

I f u(oJ)f(x)doJ I < M U ( ~ ) ~ ,  ( 2 .  l 
l a* ! ( ~) 

if [ f (x) l  ~ M in (~2); 

(2 ~ ~) f u (co)f (x) d o) ~ -  u (t~) ~ 2 f ( ~ )  (some (~) in (~)), 
(o.) 

if f (x )  is continuous in (Y2) and u ~ o. 

(2. I e ) I f u ( , o ) f ( x ) F ( x ) d , , , l * < = f u ( . , ) f * ( x ) d , , , f n ( o , ) ~ ( . ) d , , , ;  
(~-') (~(-'/ (-(-~) 

I f  the ~vi(x) are continuous in (~2) and 

f ( x )=~_~r  
1 

while I~0~(x) l + I~0,(x) l + . . .  converges uniformly (in (t2)), one has 

f (z. 2) u (~o)f(x) d ~o : ~.# u (co) 9~, (x) d ,o. 
(.~,) I (,,) 
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A series u 1 (co)+ u~ ( t o )+ - , .  (the ul(to) m.a . ,  < B V) is said to be uniformly 
eonvergent if, on wri t ing r . , , a (w)=  un (w)+  .:.-~ un+~(to) and on le t t ing Rn,,,(to) to 

denote the  total  variat ion of  rn, r,(to) one has the following: given ~ ( >  o), there  

exists m independent  of (to) so tha t  R~,~(to)to < e for  all n >_--n~ and for  all 

m ~ o 1. I f  the  series u l ( to )+  u~(co)+---  converges uniformly in ($2)its sum 

u(to) is m .a .  and < B V and one has 

f (2. 3) u (to)f (z) d to = ~ ,,j (to)f (x) d to, 
{s~) 1 (sz) 

whenever  f(x) is cont inuous in (~2). 

W h e n  m.a .  u (to) < B V and f(x), F (x) are bounded and Riemann integrable  

in ($2) one has 

f f (2.4) u(to) f(x)F(x)dto= v(to)F(x)doJ, v(to)~-~ u(o~)f(x)deo. 
(.~) (~) (o,) 

I f  f(x)< L~ in (s and we let r  f f ( x ) d  to, one has 
(~) 

( 2 . 4 a )  f u(to)F(x)dto= f F(x)f(x)dto 
(o) (s~) 

for  all bounded Riemann integrable  F(x) .  I f  u (to) ~ A C (in ($2)), then f(x) ~ i~ 

can be found so tha t  to u ( to )=  f f ( x ) d w  and, hence, (2 .4  a) (in (a)) holds. 
a ]  

I f  L (x, y) is cont inuous  in (x) and (y), while u (to), v (~) are m. a and < B V then 

(2.5) f ,,(to)(f v(~)L(~,y)d~)dto= f v(~)(f .(to)~(~,y)dto)d~. 
(~) (~) (%) ('~) 

The 'inner' integrals  in both  members ,  here, are cont inuous  funct ions  of points. 

Let  u (to, y ) <  B V for  every (y) in (Du) and suppose U(D~.,j) is bounded as 

a funct ion of (y), while 

f u(to, y)v(z)d~ 
(%) 

1 Th i s  formulat ion of uniform convergence  is  different from that  g i ven  in (G). 
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exists (the la t te r  is the case when u (co, y) is cont inuous in (y) for every (w) < (32v)); 

then for every ~0(x) continuous in (~2,) one has 

(s~,) (.~,) (%) (~,) 

Let ( ~ ) = ( ~ , ) +  . . . +  (~,,) and let (~,.) he a point in (~D; form the sore 
8,  = u (o~, xj)  % + ..- + u (oJ,, x , )  oJ,. I f  the l im i t ,  as n .+ ~o whi le  the <oj -> o 

un i f o rm ly ,  of & exists i t  is cal led a general ized St ie l t jes in tegra l :  

(2.7) f u  (to, x) doJ : lira 8n. 
q ]  (:z) 

This l imit  exists and is unique when m.d.  u(w,y) < B V for  every (y), 

I~(~,,y)l < v , (o )  (with m.a .  Y,(,o) < I7 IT) and 

(~. 7 a) l u (<o, y,) - ,, (<,,, y,)l  < ~ v ,  (.,) (m. a. V, (,,,) < B V) 

for  all (~) and for all (y,), (y.,)in the same sphere (~) of radius Q(= t~). 

These conditions for  existence of (2.7) are satisfied by the funct ion 

(2.7 b) u(eo, y ) = I  f u(oJ)L(x,y}deo (m.a.  u(co)<BV); 

provided L is continuous,  ] L I < A and I L (x, y,) - -  L (x, Y~)I < e for  (Yi), (Y,) in 

the same sphere (e)- 

I f  u(w,x)  satisfies the conditions stated subsequent to (2.7) then 

f f 'f (2.8) u(co, x)9(x)dco= v(co)9(x)dco, v(co) = ~ u(w,x)dco 

fo r  a l l  I (x) con t inuous  in  (~2). 

We shall assume throughout that all the m. a. functions of domains under con- 
sideration have .finite values on every domain. In other words, it will be implied 

tha t  the m. a. fitnetions, involved, are B V. 

3. Extension of Integrations. 

Let  {F} be the class of sets in the  'domain'  (D) such tha t  (I ~ if e < {F} 

then (D) - -  e < {F}, (2 ~ if e , ,e~, . - -  < {F} then e I + e 2 + .-- < {F}, (3 ~ {F} con- 
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rains all intervals (closed) and the empty set. Then {F} is a closed class of sets, 
according to the usual  terminology.  In (2 ~ the number  of sets el, e ~ , . . ,  may 

be infinite. The class {F} may be te rmed completely additive. I t  will be said 

tha t  the sets {F} are measurable {F}. {F} contains the class {B} (also a closed 

class) of Borel ~neasurable sets, which will be designated as measurable  {B}. 

Domains, as in section 2, are certain closed sets and, hence, H {B}. 

Hencefor th  intervals will be closed sets of p o i n t s - - i n t e r v a l s  in the  ordinary 

sense in the one dimensional  space, rectangles in the two dimensional  case and 

so on. A figure, as usual, will be a sum of a finite number  of intervals. A 

figure is a domain (of section 2), if degenerate  cases are excluded. 

A m.a .  funct ion u(co) of domains (w), < (D), gives rise to an addit ive func- 

t ion of figures and in par t icular  of intervals,  

(3.  (to) = to (to), 

where (~o), to denote  figures and measures  of figures, respectively. Since m.a .  

u(to) is no t  necessarily AA, g(to) is not  necessarily completely addit ive (i. e., 

addit ivi ty is not  extended to an infinity of sets). 

W e  shall t ranslate  propert ies of m.a .  funct ions  into those of funct ions of 

figures. Inasmuch  as we consider only the m.a .  u ( t o ) (  B V, our funct ions g (to) 

are finite on every figure H (D), which agrees with the  customari ly assumed 

property of funct ions  of figures. There is a decomposi t ion of g(to) into a dif- 

ference of two non negat ive addit ive funct ions of figures: 

(3- 2) ~ (to) -~/~, (to) --  ~, (to), 

where ~i (r -~ to u~. (to) (i -~ I, 2), the ui (to) being non negative m. a. funct ions  f rom 

the decomposi t ion u (to) --  u, (to) --  ua (to). 

I f  m.a .  u ( t o ) ~ o  and H A C, in consequence of the definition we shall 

have in par t ieular  

P 

(3" 3) ~ ~ (toj) < 8 whenever  to, + . . .  + top < ~, (e > o), 
1 

where the (toj) are intervals. Thus, the property A C for a m.a .  funct ion u(to) 

(of domains) implies the  property of absolute continuity, in the  ordinary sense, 

of the  corresponding funct ions ~(to) of figures; tha t  is, 

(3. 3 a) ~ (to) -~ o, 
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as measure of figure (w) tends to zero. The property (3.3 a) will hold even when 

i~ (w) is of variable sign, provided that the non negative components ul, u~ in 

the decomposition u ~ u I --u~ of the corresponding m.a.  u belong to A C. 

At this point the reader may profitably be referred to a book by C. DE IJA 

VALL~E Poussr~ 1, in the sequel referred to as (P); in particular, to the second 

part  of (P). 

According to a theorem in (P), given an additive absolutely continuous func- 

tion of figures, there exists an absolutely continuous completely additive func- 

tion of sets {B} which coincides with the function of figures on the intervals 

(and, hence, on the figures). In this connection, p(e) (Borel sets e) is said to 

be absolutely continuous of p ( e ) - * o  with meas. e ~ continuous, if p(e)--~ o with 

the diameter of e. 

The preceding considerations lead to the following result. 

Lemma 3. 1. Let  m.a .  u ( o J ) < A C  (then according to (G) the two m.a.  com- 

ponents of  u(w) belong to A C). There exists a completely additive and absolutely 

eont~;nuous funct ion u* (e) o f  measurable sets e, < {B}, such that 

(3.4)  u* = ( r  (3. 

on figures; moreover, i f  u -~ u , -  u~(ua, u~ >~ o) i~ the decomposition o f  m.a.  u(r 

* * > o), where * (i == I, 2) is an absolutely continuous fan,c- then u* ~ u* - -  u~ (u*, u~ = ui 

tion o f  sets {B} such that u~. = ~ on figures; u*, u* are finite for  every set {B}. 

Throughout the paper all sets are contained in the domain  (D)[or  (D~), 

( D u ) . . . ,  as the case may be]. We also note that  according to (P) ordinary 

continuity of u*, u* would suffice for finiteness on sets {B}. 

I f  a function of points, f (x ) ,  is measurable {B} and if u* (e) is an additive 

absolutely continuous function of sets {B}, we have decompositions in the usual 

manner: 

(s. s) 

where 

(3. 5 a) f + ( x ) - ~ { f ~  ) (when f (x)  >--__ o) , 
(when f ( x )  < o); 

f ( x )  = f +  (x) + / - ( x ) ,  u* (e) = u*, (e) --  u: (e), 

f - ( x )  ~_ I f (~ )  (when f ( x )  < ~ 

(when f ( x )  ~ o); 

1 C. DE LA VALLEE POUSSIN. Intdgr,~les de Lebesgue. Fonctions d'ensemble. Classes de 
Baire. Paris, I934. 
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* * > o and are absolutely continuous functions of sets {B}, while f+ ,  here u~, u~ _-- 

- - f - ~  o and are functions measurable {B}. 

A R A D O N  integral (usually termed L E B E S 6 t U E - S T I E L T J E S )  

(s. 6) I=ff(x)a.*(e) = I + , '  -- I +,2 -- 1 -,1 -~ I -,~-, 
E 

where 

(3.6 a) 

I+,l~ f f+(x)du*,(e), I+,2= f f+(x)du*,(e), 
E E 

�9 / I -,~ - - f - ( x ) d u , ( e ) ,  I - , 2 =  - - f - ( x ) d u ~ ( e ) ,  
E E 

will be said to exist if the four integrals (3 .6  a) have finite values. Any of the 

integrals (3.5 a) may be defined either as described in a book of S. SAKS 1, in 

the sequal referred to as (S) - -  see (S; pp. I9, 2o) or according to the classical 

definition of Lebesgue integrals, except that  the Lebesgue measure is replaced 

by u~ (e) (or u~ (e)), as the case may be. 

For our purposes it will be suffieient to restrict ourselves to Borel measurable 

sets and to functions of points which are correspondingly measurable. 

I t  will be said that  f (x )  i8 integrable {u*} over a set E, < {B}, if the 

integrals (3 .6a)  all exist. Integrability {u*} of f presupposes corresponding 

measurability {u*} and {u*} of f .  

Moreover, it is to be noted that the above considerations with respect to 

Radon integration are applicable even when u,, u2 are not necessarily ab- 

solutely continuous (in the sense of tending to zero with meas. e, e being in the 

class {B}). 

lqow, by (P), an additive absolutely continuous function F of sets {B} has 

its derivatives - -  in the sequel denoted by a prime - -  finite almost everywhere 

and integrable on every set {B}; moreover, F ( e ) =  f _ ~ ( x ) d x .  Accordingly, 
/ 

g 

the function u* (e) of  Lemma 3. x has the representatio~ 2 

1 See S. S A K S ,  T h e o r y  of t h e  In t eg ra l ,  Warszawa-Lwow,  1937; in  p a r t i c u l a r  Chap t e r s  I, 
II ,  I I I .  

2 Der iva t ives  a t  a po i n t  x of a f unc t i on  of se t s  we a l w a y s  t ake  in  reference  to f ami l i e s  of  
se t s  ' r egu la r '  (in t h e  sense  of L e b e s g u e ;  see  (P)) w i t h  r e spec t  to t he  p o i n t  x.  
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g 

(sets e, < {B}, in (D)), 

where the integral is in the ordinary Lebesgue sense; correspondingly, an inte- 

gral (3.6) may be expressed as 

(3. 7 a) f f ( x ) d u * ( e )  ~- f u * ' ( x ) f ( x ) d x  (all sets /~, < {B}, in (D)), 
i ]  
E E 

whenever u* (e) is absolutely continuous. Thus, when m. a. u (r < A C, we t~ave 

(3.8) f u * '  ( x ) f ( x ) d x =  f /(x)du*(e)= f u(o,)f(x) lo, 
(~) I~) (r 

on all figures (w), whenever the last integral exists in the sense of Gu~ther ; there 

is on hand a natural  extension of Gunther's integration, both with respect to 

functions f (x)  of points and the character of sets. 

Suppose now that  the m. a. function of domains, u(w), does not  necessarily 

belong to A C. 

Let u ( c o ) ~ o  and consider the function of figures /i(w)(3. I). We shall 

define /i(w) in the whole Euclidean space by the relation 

(oJ) ---- I(w) (n)l u ((oJ)(D)) (all figures (,o)), 

where I(o)(D)I is measure of the domain ((o)(D) (i. e. of domain consisting of 

points common to figure (o~) and to domain (D)). Let E be any set in (D); we 

designate by u*(E) the lower bound of the sums (finite or infinite) 

J 
for sequences of intervals 

such that  

�9 �9 

J 

here (o~j) ~ is the interior of (~oj). In  consequence of (S; p. 64) u* will be an 

outer Cartaiheodory measure and will accordingly satisfy the conditions (C~), (C~), 

(Ca) of (S; p. 43)- Corresponding to u* there exists therefore a class {L~**} of 

sets measurable (in the sense of (S; p. 44)) with respect to u*. The class {L,*} 
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certainly contains the class of sets {B}; this is a consequence of (S; pp. 5I, 52). 

Confining ourselves again to sets {B}, integration ~nay be defined as in connection 
with (3, 6), (3, 6 a), where  e, E are sets {B} and the ou te r  measures u*, u~* are 

used as measures  in the proper  sense of the word, inasmuch as sets  {B}, only, 

are involved (also see (S; p. 65)). 

By (S; p. 95) u* ~ o is absolutely cont inuous or is not  absolutely cont inuous 

at the  same time as the funct ion of figures ~ ~ o has this property.  Now we 

note tha t  if m . a .  u( r  o is not  A C (section z) then necessari ly ~ is not  

absolutely cont inuous as a funct ion  of figures; we then shall have u* not  

absolutely cont inuous.  I f  m. a. u (w) is of variable sign and u (w) = ul (co)-- u~ (co) 

is the  decomposit ion,  where the  m.a .  ul, u2 are non negative,  the following is 

observed: if u(r is not  A C then one at  least  of the funct ions u~, u~ is not  

* u~ the corresponding outer  Carath~.odory measures;  one A C; we denote  by u,,  

* will be not  absolutely cont inuous  as a funct ion of sets of the  funct ions  u~*, u~ 

{B}. The funct ion  u* * * u , -  u~, corresponding to u(w), will be lacking in 

absolute cont inui ty  in the  indicated sense. 

W i t h  the aid of the  outer  measures  u*~, u~ we define integrals  

E 

for  sets E < {B}. We  shall say tha t  a ~neasurable function f ( x ) i s  integrable 
{B, u*} if on decomposing f(x) into f+  + f -  (see (3, g): (3, S a)) the four  integrals 

(3, 6a)  exist; this presupposes,  of course, tha t  f(x) is integrable {B, u*} and 

{ B ,  

In general  u*~ (and u~) will not  coincide on all figures (co) with ~ (oJ)= 

= ( a n d  - % 

Let  /~(co) be a funct ion  of figures (w) and let fl denote the f ront ier  of some 

figure (or a hyperplane perpendicular  to one of the coordinate  axes); we desig- 

nate  by 

(3.9) o(~; ~) 

the  oscillation of ~ at fl and define this number  in agreement  with (S; p. 6o); 

thus  the fol lowing sequence of relat ions will define o(/~; t~): 

0 (~ ;  e ) =  u. b. ]/~(i)l (any fixed set  e; intervals ( i ) <  e); 

o(~) (~; f l ) =  1. b. 0 (if; (oJ). g) (any fixed figure (co); open sets g >/?);  

o (g; fl) = u. b. 0(~)(/~; fl) (figures (,o)). 
14 
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Inasmuch  as in this paper  we restr ict  ourselves to m. a. u(w)such t ha t  

] u (w)[ oJ ~ A < ~ for all 'domains'  (w) (in (D)) it follows tha t  the corresponding 

functions of intervals (figures) 

(3. io) ~(,~), ~1(~), ~(~o) [~ =~1--~. , ;  ~,, ~_->o] 

are of bounded variatio~ in the sense of (S; pp. 6I, 62). 

Re turn ing  now to one of the Caratheodory outer measures,  say u* ( ~  o), 

we conclude that (see (S; p. 68)) 

(3" I I )  U*t (OJ ~ ~ ~1(O/)= ~Ut(~)  ~ U~(O)) 

for all figures (w) (in (D)); here ((o) ~ is the  interior  of (co). Moreover,  in con- 

sequence of (S; p. 63), there  exists at most a denumerable in.fi~ity of hy2)erplanes 
(perpendicular  to the  various coordinate axes), 

(3- I2) h~, h~ . . . .  , 

at which the oscillation of ,~ may be positive; for every figure (oJ), at whose fi'o~- 

tier the oscillation of i~ is zo'o, we have 

(3. i 3 )  u~ (o,',) = ~ (~) = ,o ,,, (0,) = ,,~* (~). 

The figures (co), at whose front iers  the  oscillations of ul and /~ are zero, 

are found  amongst  the figures having the faces (planar portions) of their  fron- 

tiers not  lying in the  hyperplanes  of discont inui ty  of ~ (see (3. I2)) nor  of ~7~; 

for such figures we have 

(3. 13 a) u* (w ~ = / ~  (r = r u (w) ----- u:": (w). 

One will have (3. I3 a) for all figures (in (D)) whenever  ~1(i), us(i) -+ o with i 

(i---~ meas. of interval  (i)). 

For  u* (e < {B}) we :, (e)~: o have the  Lebesgue decomposition 

(3. I4) u~* (e) : f?{~' (3~,) d,~ -1L ~1 ((?) (~/,~' ~ {:); ~1 ~ o) 
e 

where u*'(x) is integrable {B; Lebesgue measure} (which we express by the 

designation u * ' ( x ) ~ L ~ )  and ~(e) is additive singular {2~; Lebesgue measure}. 

The lat ter  is to be unders tood in the sense tha t  there exists a set h 0 of measure  

zero, so tha t  ~(e)--~ ~(hoe ) for all e < {B}. Fur thermore ,  if f (x )  is integrable  

{B, u*}, we have 
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fr(  " f ' f x) d u, (e) ~ u*, (x)f(x) d x + f (x )  el ~ (e). 
g e g 
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Similarly, if f (x)  is integrable {B, u*} 

ff:x)d :(e) = f u*'(x)f(x)dx § ff:x)  d :,(e), 
e g e 

where ~ is additive singular {B; Lebesgue measure} and u*((x) (~  o) is integrable 

{B; Lebesgue measure}. 

Thus, i f  f ( x )  is integrable {B, u*} o~e has 

(3. ,5) O(e) - f f(x)du*(e)--f u*'(x)f(x)dx + 
8 e 

The last integral, here displayed, is an additive absolutely continuous function 

{B; Lebesgue meas.}; u*'(x) is integrable {B; Lebesgur meas.}; moreover, f l (e)is  

additive (of possibly variable sign) singular {B; Lebesgue meas.}, i. e. 

fl(e) ~-fl(eso) (all e < {B}), 

where meas. s0-~o; (3. I5) is the Lebesgue decomposition of 9(e) into sum of 
an absolutely continuous and singular function. 

Wi~h the aid of (P; p. ~o5) the following may be formulated. 

Lemma 3. 2. Let m.a.  u (~o) be such that ~ (oJ) = o~ u (~) is continuous as a 

function of  intervals (i. e.. ~t (i)-+ o as the diameter of interval (i) tends to zero). 

There exists then a completely additive and continuous function u*(e) of  sets {B} 

(i. e. u* (e)-~ o with the diameter of e) such that 

(3" I51) U* ~ 

on figures. Let u* ~u~* --u~* (u*, u~*>=_ o) be the decomposition of u*. Then u,, u~ 

are additive continuous functions of sets {B}, coinciding with the corresponding 

components of ~(w) on figures; moreover, u*, u* are finite for every set {B}. 
This presents an extension over Lemma 3. I inasmuch as continuity of 

functions of intervals (as stated in Lemma 3.2) and continuity of functions 

of sets {B} are conditions less stringent than those implied by absolute con- 
tinuity of such functions. 
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The R a d o n  integral  (3.6) may be defined with u*-~-u* ~ u~ f rom the  above 

L e m m a .  

In  consequence 

posable into a sum 

(3. i6) u* (e) = c* (e) + ~* (e), 

where  c* (e) is addit ive cont inuous  and d* (e) is addi t ive and of  the form 

~* (e) • $* (e e0), 

where  eo is a fixed denumerable set; if u* ( e ) ~  o we have c* (e), r (e) _>-- o. 

W h e n  ~ (oJ)~ o~ u(oJ) is cont inuous  as a funct ion  of intervals we form the  

funct ion  u* * * --~ u~ - -u~ of (3. 15) and note  tha t  

(3. 17) f f(x)du*(e)= f u(~)f(x)U~ 
(r (~} 

on figures (oJ), whenever  the  second in tegra l  exists in the sense of Gunther .  

Moreover,  for  funct ions f integrable {B, u*}, where u* ~ o, the set-function 

a) (e) = f f ( x )  d u* (e) (e < {B}) 
e 

is absolutely cont inuous  {u*}; tha t  is, . ~ ( e ) ~  o as u*(e)-+ o. W h e n  u* is of 

variable  sign, ~(e) -* o whenever  both funct ions  (of sets {B})u*(e), u*(e) tend 

to zero. 

of (P) every addit ive funct ion u* (e) of sets {B} is decom- 

4. Some Limiting Processes. 

W e  shall establish certain 'compactness '  propert ies  and theorems regarding 

passage to the limit under  the in tegra t ion  signs for  the  general  integrals  of 

section 3. 

Unt i l  s ta ted otherwise we shall assume u* (e) to be a non negative completely 

additive function of sets of the closed class {B} (section z); these sets are to be 

in the  'domain '  (bounded) (D). 

Definition 4. 1. I t  will be said that a sequence 

q l  ( x ) ,  q~ ( x ) ,  . . . 

of functions measurable {B, u*} converges to a fu,ction q(x) in the weak sense 

provided the i~tegral 



(4. ,) 

exists, 

(4. i a )  

and 

(4. ' b) 
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f q~(x) du* (e) (a bounded set E < {B}) 

f q~ (x) du* (e) < M 
E 

( m =  I ,  2, . ..) 

lira fq ,n  (x)d u* ( e )=  f q (x) d u" (e) = f 
e e e 

q+ (x)du*(e) + f q-(x)du*(e) 
e 

for all {B}-sets e (in E) such that the set-ft~,netions 

(4., c) r fq+(~)d.*(~), F(e)= f --q-(x)du*(e) 
E E 

vanish on the fi'ontier of e. 
A function ~V (x) will be said to be simple (see (S)) if it assumes a finite 

number of values ( #  _+ oo) in a number of sets {B}. 

I t  is not difficult to see that  if f ( x )  is integrable {B, u*} over (Dx) and 

we assign r ( >  o), there exists a simple function ~p~(x) such that  

/ ,  
(4. 2) t ( g  (x) -- qh (x)) ~ d u* (e) < 

(Dx) 

Explicitly ~ there 

without common points, 

(4  2 a) 

so that 

is a decomposition of (D~) into a finite number of sets {B} 

( D x ) - - e l + e S + . ' . +  e, 

~v~ (x) = c' ,J (in ej; j = 1 , . . .  r), 

the c ~,j being constants. The ei may be chosen so that  the functions (4. I c) 

tanish on the frontiers of the ej. 

Suppose qm(x)~ q(x) weakly. One has 

F 
= ~ (q (x) - q,. (x)) ~ ,  (x) 

~ v  

d u* (e) = a~, 1 + "" + ~m, ~, 

where 
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1" 1 ,  
=,~,, = I(q<x) - q.~<~)) ~o(~) a u* (e) = e,' ] 

e~ ~j 

By (4. I b) 

lira a,,, j -~ o. 

(q (x) - qm (x)) d u* (e) 

Thus, inasmuch as (P+, q)- vanish on the frontiers of e 1, e2, . , .  en, one has 

lira am ~- o. 

There is on hand  a Schwartz ian inequality, 

(4. 3) I f  a(x)fl(x)du*(e)l~<= f a'(x)du*(e) f ~'(x)du*(e), 
E E E 

valid fo~" sets {B}, whenever the two la t te r  integrals  exist. 

Accordingly,  on wri t ing 

,m = f (q (x) - q~ <~)) ~ ( , )  d u* (e) = 
1 2  

(Dx) 

J J 
(D x) (Dz) 

with the aid of (4. 2) i t  is inferred tha t  

Is,,l  <= [ f  (q<x) - ]if  ] q~ (x))' d u* (e) ~ (g ~ )  - -  ~o. ( . )) '  a , , *  (e) ~ + I ~ -  I 
(D.) 

[f ]' < ~ (q (.) - qm (.))~ d u* (e) ~ + I ~m I. 
(~) 

In  view of the  existence of the integral  (4. I) and in consequence of (4. I a ) t h e  

integral  last displayed does not  exceed a number  independent  of m. Thus 

lira s~ = o. 

Theorem 4. 1. Suppose 

weakly and the integral 

qm (x) -.  q (,) (in (D.) ;  as m -~ ~ ) 
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/ -  
(4. 4) ] g ~ (x) d (e) 

exists. Then 

(4. 5) lira f f g(x)q(x)du* (e). 
m , 2  

This can be extended as follows. We have 

(4. 5 a) lim flg,. (x) qm (x) d u *  (e~.) 
qv' 

[ ,  

= ~ g (x) q (x) 
. 2  

(~) 
d u ,  (e~.) 

when gm (x)-+g (x) (as m--* ~) and [gin (x)]~ 7 (x) where 7" (x) is in te,qrable {B, u*}, 

the conditious for q,~ (x) being as before. 

The above will hold with (D~) replaced by a subset {B} - -  the same refers 
to similar developments in the sequel. 

With the aid of Theorem 4- I  and of (4. 3), following familiar lines o~ 

reasoning it is found that 

( q" (x)el u* (e) ~ lim ; q,~ (x)d u* (e) (4- 6) 
J ~qt J (9~) (z)~.) 

whenever q,~(x)-~ q(x) weakly (in sense of Definition 4. I). 

Suppose 

f 2 q,~ (x) d u (e) = < 3 t  (m = I, 2, ...) 
iV 

where E is a fixed set {B} (in (D)). Consider the functions 

h,,~ (e) -~ f qm (x) d u* (e), 
e 

where e, ~ E, are sets {B}. By (4. 3) 

Hence 

e 

q~,(x)d,,*(~)J~[f du*(e)] ~. 
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(4. 7) 

and, in part icular ,  

(4. 7 a) 
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I h~ (e)] ~ M �89 [u* (e)] ~ 

]h,,, (e) l ~ M ~ [u*(E)] ~ ----- M(E) 

({B}-sets e < E) 

for  m = I, z , . . .  and all {B}-sets e < E.  

W e  recall now a result,  which could appropriately be te rmed De la V. 
Poussin-Frostman's theorem ~, according to which, given a uniformly bounded 

family {/~} of addit ive funct ions of sets {B}, there  exists a sequence {/~,} (~= i, 2, . . . )  

of this family and  an addit ive funct ion ~, of sets {B}, so tha t  

lim = (e) 

on every set e, < {B}, on whose f ront ie r  l* vanishes (frontier of a set e is 

closure of e minus the  set of inter ior  points of e). 

Now the  h,~(e) are additive funct ions of sets {B}, sat isfying (4. 7 a); thus, 

application of the  above theorem enables us to assert  tha t  there  exists a sub- 

sequence {hm,(e)}(m 1 < m~ < . . . )  and an additive funct ion  of sets e, h(e), so tha t  

(4. 7 b) lim h% (e) = h(e) (all {B}-sets e < .E), 

I n  view of (4, 7) 

Hence  h(e)~ o, whenever  u*(e)-+ o; accordingly h(e) 
{B, u*}. Such an additive funct ion is expressible as 

except  for  those sets e on whose f ront iers  h (e) does not  vanish. 

(4. 7 c) I h (e)] _~ M ~ [u* (e)] �89 

for all {B}-sets e in E.  

is absolutely continuous 

an ' indefinite '  in tegra l  

h (e) ----- f q (x) d u* (e) 
e 

This follows 

(4-6) these 

for  all sets e, ~ {B}, in 3~; here  q(x) is integrable {B, u*} over E.  

by the  theorem of Radon-Nikodym (S; p. 36). Together  with 

developments enable assert ion of the following result. 

I C. DE LA V. POUSSI~, Le8 nouve l l e s  m~thodes  de  la Th~or ie  du  Po ten t i e l  et  le p r o b l e m e  

g~n~ralis~ de Dir ich le t ,  Ac tua l i t~s  sc ien t i f iques  e t  indus t r i e l l e s ,  No 578, Par is ,  I937;  referred to as 
(VP). I n  pa r t i cu l a r  see  p. 9- Also,  O. FItOST~IAI~, Po t en t i e l  d '~qui l ibre  e t  capaci t~ des  en- 
s e m b l e s  . . . ,  M eddc l anden  f r~n L a n d s  Unive r s i t e t ,  I935, pp .  I - - I i S ;  in  pa r t i cu l a r  see pp.  I I - - I  3. 
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Theorem 4. 2. Let u*(e)(~ o) be an additive function of sets {B}. Let E 

be a bounded set {B}. I f  

f q~ (x) d u* (e) <= M < ~ (j = ~, 2 . . . .  ), (4. 8) 
2~ 

where M is independent of.], there exists a subsequenee {q,~.(xl}(~l < ~, < ' " )  con- 

verging weakly on E (Definition 4. I) to a function q(x) for which 

(4. 8 a) f q' (x) d u* (e) -< M. 
I J  

.E 

In  the paI4icular case when u* (e) is the ordinary Lebesgue measure the 

definition of weak convergence is simplified in the sense that  q~ (x) -* q (x) weakly 

(over E) if (4. I) exists, (4. I a) holds and if the l imit ing relation (4. I b) takes 

place for all {B}-sets e, < /~ ,  which have ~rontiers of zero Lebesgue measure; 

a similar s tatement  may be made when, more generally, additive u* (e) (of sets 

{B}) is absolutely continuous (i. e., u* (e)-+ o with meas. e). 

The following is an extension of Carleman's theorem in (C; p. 2o). 

Theorem 4. 3. Let JE be a fixed 

tegrals 

all exist and the limits 

(4. 9) 

bounded set < {B}. 

f f:: (x) d f d u* (e) 
E E 

lim fn (x) = f(x) ,  lira gn (x) ---~ g (x) 

Suppose that the in- 

(n  = I ,  2~ . . . )  

a s  n --> ~ )  

exist. Suppose also that 

(4. 9 a) I f~ (x) l < h (.), f y ~  (z) d ~* (e) < ~' (n = i, 2 . . . .  ), 

where h~(x) is integrable {B, u*} over E. Then 

(4  ,o) = 
E E 

By a known theorem (S; p. I7) on converging sequences of measurable 

functions, given t ( >  o) and c~(> o) there is a decomposition of •, 
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where E l, /~, < {B} and 
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~* (E2 < ~, 

so that  for some no (independent of (x)) 

(4. ~)  If(*) - f .  (~)1, Ig (~ ) -  g~(~)l < 
for ~ll n ~ no. 

We have 

~. = f (f(x) 
E 

(in El) 

g (x) -- fn (x) g,, (x)) d u* (e) = f f (x)  y (x) d u* (e) -- f f,~ (x) gn (x) d u* (e) 

+ f (f(x) -- f ,  (x)) g (x) d u* (e) + f f ~  (x)(g(x) -- g,, (x)) d u* (e). 
E~ E, 

Designate the four integrals last displayed by a~, a~, a3, a~, in succession. 

f ~(x)du*(e) <= f h*(x)du*(e) 
e 

application of (4- 9 a) and of Theorem 4. 2 will yield 

e e 

Hency by the Sehwartzian inequMity 

f f(.)...(.l.f.'I.)...(.)<=.' f .(.)...(.l. 

I ~ f f:(x) d'(e) f < " f h'(x)au*(e); 

moreover, in view of (4- 1 I) 

]' f f ]asl*~, g(x)]du*(e) ~ "  du*(e) g~(x)du*(e)<)3,  * 

(Z * = o ~ u* (E)) and, similarly, 

If ]'- f -.,,. 
la.[' <~ ." [f.(x)]du*(e) ~ . ' u * ( E )  h'(x)du*(e) ' ' 

E~ E 

Since 

[{B}-sets e in E] 
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Consequently 

[f 1' (4. ,2) la,,l<~[a,I + . . - + l a ,  l<: 2c h' (x) d u* (e) ~ + ~ Z + e Z ,  (n~no) .  

The function �9 (e) = f h '  (x) d u* (e) of sets {B} (in E) is absolutely continuous 
g 

{B, u*} and thus vanishes with u*(e). Hence on taking d suitably small, not ing 

tha t  u*(E2)< d and choosing e sufficiently small the last member in (4. I2) can 

be made arbitrarily small for all n ~ n o (~o suitably great).  Thus lira a n -  o, 
n 

which establishes the theorem. 

We shall need an extension of Carleman's Theorem I* (C; pp. 8, 9). The 

extension is as follows. 

Theorem 4. 4. We have 

~t 21 

(wo) ~o ~o (,~) 

provided c(2) is continuous on the finite closed interval (~,).~), 

exists for ~o <= ~ ~ ~ ,  

f ~ (~, x) d ~* (~) 

A (x) = V l ; .  (Z, ~) < + (variation with respect to ~) 

for almost all {u*} (x) in (O~o) and the integral 

f A (x) d u* (e.) 
(~,o) 

exists. 
The proof will be omit ted as it may be given following the lines of 

(C; pp. 8, 9) as well as with the aid of the theorem according to which 

lim f q.(x)du*(e.)-f q(x)a.*(e~), 
(OJo) (O~o) 

whenever qn(x)-~q(x)  (as n ~  :r while q n ( x ) i s  integrable {B, u*} and 

Iqn(X)[~ S(X), where s (x ) i s  integrable {B, u*}. 
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5. Formulation of  the Integral Equation Problems. 

Throughout  we let  (D~), (Dr), (Dz) denote bounded domains in the sense of 

section 2; (x), (y), (z) win denote points and (to), (,), (~) domains in (D,), (Dr), (D~), 

respectively. Except for the  notat ion of points the  domains (D~), (Dr ) , . . .  will 

be identical; whenever there is no possibility of confusion the  subscript will be 

omitted. Throughout, e will denote sets {B} in (D~), or (Dr), or . . . ,  as the ease 

may be. 

We consider the Stieltjes integral  equations 

f + /(x), (S. I) 
L t  

(%) 

f 
(5. 2) W(~) = g ] k ( , ,  x)lp(oJ)do + F( , )  (m. a. F(,)) 

(Dx) 

to be satisfied in (D~) by functions of points ~0 (x) and functions of domains 

e2 (oJ). Associated with the problem we have a m .  a. (section 2) bounded function 

u (to) of  domains, which is non negative and for which ~t = oJu(w) is continuous as 

a function of intervals; in accordance with Lemma 3 .2  with u(co) one may 

associate a completely additive and continuous (not necessarily absolutely)function 

u* (e)( > o) of  sets {B} such that u * =  ~ on figures in (Dx). We assume that rF(r)  

is continuous as a function of intervals ~ thus vanishing with the diameter of 
the latter. 

We suppose that the Radon integral 

(s. f f, (x) d u* (e) 
t /  

exists, while for every finite n the function fn (x), defined by the relations 

(5. 3 a) f .  (x) -~f(x)  (when Ifl < n), 

f ,  (x) = n (when f > n), f,, (z) == --  n (when f < -- n), 

is continuous in (D~). This hypothesis implies tha t  the limit 

lim f f P(x)du*(e) 
e e 
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exists and that  

f fn (x) d u* (e) = f u (w)fn (x) d w 
(~) (~) 

for figures (w) in (Da.), the latter integral being in the sense of Gunther. 

Definition 5. I. 
i f  for all figures (~) (in (D~)) 

(5.4) oJ k (w, y) = ; 
e /  (~) 

while the integral 

It  will be said that k (~, y) (or L (z, y)) satisfies condition (T) 

L (x, y) d u* (e~) (L (x, y) = L (y, x); w = meas. (w)), 

moreover, 

exists the same is true of 

(5.5) (e, V) = f L (z, V) d u* 
e 

k* (o, v ) =  o k (~, v) 

for figures (oJ) in (Dx). 
We shall establish that if k(w, y) satisfies (T) one has 

(5.6) k (oJ, y ) =  lim k~ (w, y) (for figures (o~)) 
n 

where k=(oJ, y ) ( n =  I, 2 . . . .  ) is a kernel 'symmetric' and 'regular' in the sense 

that the theory developed in (G) applies to k,,(w, y). 

exists for all (y) interior (Dy); moreover, when (x) and (y) are iu domains lyi~tg in 
the interiors of (D,), (Dr) L (x, y) is continuous in (x) uniformly with respect to (y) 
(and continuous in (y) uniform 0 with respect to (x)). 

Kernels (T) do not come under the theory of Gunther. Accordingly such 

kernels may justifiably be termed singular. 
Since the Radon integral 

f L ~ y) d u* (x, (e,) 

[, 
(5.4 a) L2 (Y) = I L2 (x, y) d u* (e~) 
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In fact, let 

L(x, 
L'(x' Y) = I : ~ 

y) (when I L (x, Y) I < n), 

( '~ L>----~0, 

( ~ L = < - - . ) ;  

Ln(x, y) is symmetric and continuous m (D~), (Dy); moreover, 

lira n~ (x, y) = L (x, y). 
/b  

We write 

(5.7) 

The function 

(5 .7  a) 

(o J) (~,) 

k: (e, y) = f Ln (x, y) d u* (e~) 
e 

L,, (x, y) d u* (e~). 

({B}-sets e in (D~)) 

is an extension of oJ ~.(oJ, y) in the sense that 

for figures (co). Now [L,~(x, y)[ < IL(x, y)l, while the integral (5. 5) exists; the 
latter fact implies, of course, that  the integral 

f l (x, y) l (e~) L d 
e 

also exists. Thus 

that is, 

(5-7b) 

lim~ ~(L" (x, y) ~ ~* (e~)= f L (x, y) d u* (e~), 
e e 

tim k* (e, y) = k* (e, y) 
n 

for all Sets e, < {B}, in (D~); in particular (5.6) will hold. 
In considering 'symmetric kernels h(~, y) to which the theory of (G) is 

applicable one is brought to the consideration of conditions (A), (C) ('symmetry'), 
(F) ('finiteness'), (D), (D ~) (condition (D) satisfied strictly). These conditions are 
as follows. 



Singular Lebesgue-Stieltjes Integral Equations. 223 

(A). (i ~ h(co, y) is cont inuous in (y) for every (~o) 
(2 ~ ) The total  bound H(D~, y)D, of h(oJ, y) 

of (y). 
is a bounded funct ion 

(C) or symmetry with respect  to u(co): 

(5. s) f x) f y) 
(~) (~) 

d~. 

(F). (a). For  every (y) one has 

Ih(~, y)l--< V~(~) (m. a. V x ( ~ o ) < B V ) ,  

where V1 (w) is independent  of (y). 
(fl). For  every ~ ( >  o) there exists ~ ( >  o) so that,  with (y'), (y") in 

the same sphere of radius Q, we have 

[ h (w, y') - -  h (co, Y")I < e V~ (a~) (m. a. V, (~o) < B V), 

where V2(w ) is independent  of (y'), (y"). 

f u (~) E (co, y) d ~ < C ~ ~,~ (~,). (D). 
a /  

(Dy) 

(D'). k (co, y) satisfies (F) and V, (r < a u (co). 

The main par t  of the developments of (G) for 'symmetric '  kernels h(w, y) 

applies when h(eo, y) satisfies (A) and (C), while some i terant  (i. e. i terated kernel) 
satisfies (F) and some i terant  satisfies (D); we shall establish that  k,,(eo, y) 

(figures (co)) of (5.7) is such a kernel.  
By a remark  in (G), any kernel  k,,(co, y) of the form (5. 7) is symmetr ic  

wi th  respect  to u(co) and, thus, satisfies (C). The condit ion (A), (I ~ is satisfied 

by kn(~o, y) in consequence of the s ta tement  subsequent to (2. 5). (A), (2 ~ ) is 

satisfied by k,(r y) with 
K~(D~, ~)D~ <= .,u(n~)D~. 

In  fact, the first member  here is the upper  bound of S•(y), where 

1 

for all finite decompositions (D.~.)~-(r + . . . .  + (eo.~). Now 
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S ,  (y) = u (oJ) L :  (x, y) d co =< u ( ')1 L.  (x, y) l ~ ~ -<-- 
1 p>j) ( 

2f f 
from which the  asserted inequali ty follows at once. 

By (5-7) and (2. I a) 

I ~. (.,, ?kl--<.  u (<~); 

hence ~,<(<,,, y) satisfies (F)> (~<) with 

( 5 . 9 )  L (~ )  = - -  (~). 

In  view of Definit ion (5. i) i t  is deduced tha t  L,~(x, y ) h a s  the  fol lowing 
cont inui ty  properties. Given e ( > o )  there  exists q ( > o ) ,  independent  of (x), 

so tha t  

(5. m) IL,,(x, y ' )-  L,~(x; y")l < 

whenever  tl(y', y") [ =  distance between (y') and (y")] < e, this being t rue for ~11 
pairs of points [(y'), (y")], in (Dy), and for all (x) in (D~.). 

By (5.7) a~d (z. ~d) 

r# I 

(.,1 
u (.,) (L,, Cx, y') - -  L .  (x, y")) d <,, ! 

f r L.(x, y")l z<o. 

Whence,  by virtue of the property (5. 1o) we have 

. . . .  

I k,, (~ ,  y')  - ~,, (~, ~")1  < u (~)  d ~ = ~ u (~), 

for all (r and for all (y'), (y") in (Dy) for which d (y', y") < q -~ en,~. 

it is seen that  k~(r y) satisfies (F), (fl) with 

G (~) = "(~) ,  

r being dependent  on n, of course. 

Accordingly 
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Inasmuch  as )~',~ (w, y) has been shown to satisfy (F) with V~ = n u (o,) it is 

noted tha t  kn(eg, y) also satisfies (D ~) (with any a > n). As observed before, (D ~) 

implies (D). Thus the following has been established. 

Lemma  5 .1 .  Every kernel k(o,  y), satisfying (T) (Definition 5. z), is the 

limit, as stated in (5. I), of approximating kernels k,~(w, y) of  the form (5.7); kn(W, y) 

satisfies (A), (C), ( ~ ,  (D '~) (and, hence, (D)) and may be appropriately termed 'regular' 
in the sense of  Gunther. 

I n  consequence of 

equations 

(5" II)  

(5. i2) 

(G), associated with the pair of homog.eneous integral  

F 
(X) ---- ~./__ ]rn (T, X) 99 (y) d T, 

(1~:,) 

F 

there is a sequence of real characterist ic numbers  and characterist ic funct ions 

(Z,,,~, Z,~,2 . . . ) ,  (~,,,~(x), ~,.~(x) . . . .  ), (~.~(~), ~ , . ~ ( ~ , . . . )  

for which there are on hand the following relations 

(5. ~3) ~,,.~(~)=z,.~fz-~(~,x)~,~,~ (y)d~, ~.~(~)- ~ f,(~)~,~,~(y)d~, 
~ J  (D:/) (~) 

~3 a) ~,~(~) = Z~,~ f x)~.~(~o)d,o. (5. 
(D~) 

The sequence Z,.1, Z,~.2,... contains at least one member,  the ~,.k(k = I, 2 , . . . )  

are all distinct from. zero and ~he set of points represented by the ~ , , k ( k=  I, 2, . . . )  

has no finite l imit ing points. Moreover, the ~,~,~(x) may be arranged to form an 

ortho normal  sequence in the  sense tha t  

f ~o (5. ~ 3 b) u (o) ~,~,~ (x) ~,, j(x) d ~ = / ,  

By (G) there  is on hand a 'Bessel's inequali ty '  

,,,k = , -- u (oJ).f(x) qD,,k (X) d oJ, 
L 

k (Dx) (Dx) 

15 

(for k ~ j ) ,  

(for k = j ) .  
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whenever f(x) is continuous in (D,). However, such au inequality will hold in 

the more  general  case when the  integral 

f f du,(~) (x) 

exists; one then  has 

(5. I4a)  
[ .  [ .  

~_~ '~Cn. ~ =< J f ~  (x) du* (e), cn.~= J r ( x ) ~ , , , ( z ) d u *  (~), 

Of importance in the present investigation will be the approximating non 

homogeneous integral equations 

(5. ~5) ~ ( x ) = i f k ~ ( ~ ,  x )~(y)d~  + f,~(x) (ef. (S- 3 a)), 

(by) 

(5. I5~) 
/ -  

(,) = z ] k,~ (,, x) ~ (~) d ~ + F( , ) .  
a ]  

(~,) 

In 
given in the form 

oo 

(5. I6) 9,~(x)=f~(x)-- 2_Z, ,  ~,,k(x) 
k = l  

f ~ ,~ e~, ~: 

consequence of (G) one may assert that  a solution of (5. I5) may be 

(e,,.~ from (5-t4a)),  

while a solution of (5. 15 a) is expressible as 

f ~o I 

(5. I7 a) 

this is asserted for Z distinct from the 2,,,k (k = I, 2 , . . . ) .  The series involved 

above converge. 
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6. Spectral Theory. 

We shall const ruct  several kinds of spectral  functions associated with k~ (v, x). 

Thus O~ (x, y/,~) is to be defined by the relat ions 

((~. I) On :(X, y/h) = Z ~gn, k (~) ~gn, k (y) (for Z > O), 
O<2n, k<2 

(6. I a) Oh (x, Y]]~I ~ --  Z qgn, k (x) 99,,,~ (y) (for 2 < 0), 
2--<- 2n, k<O 

while 0,,(x, y / o ) =  o. On the  other  hand,  On(x, z/h) is to be a function of points 

(x) and of domains (~), given as follows: 

(6. 2) o,, (x, ~/h) = ~ f , , . ,  (~) ~ . . ,  (.) (for h > o), 
O<2n, k<2 

(6. 2 a) 0~ (x, z/2) ---- - -  ~ ~v.,~.~ (x) ~P~.k (~) ( fo r ) .  < o), 
),~2n, k<0 

the value zero being assigned for ~-----o. In  an analogous way one may define, 

if necessary, a spectrum 0,,(oJ, v/h). 

In  view of ~he second relat ion (5- I3) and of the definitions, jus t  given, 

(6. 3) 

Similarly 

If 0,~ (o~, ~,/Z)= ~. 

o,, (.% q/h) - ~- f .  (~) 0,~ (x, y/h) d,~. 

'// u (~) o. (y, .,) d ~ = -Z~ . (o,) , ,  (~) O. (z ,  y/Z) d ~ d ~. 

Designat ing a summat ion as in (6. I) by a prime and a summat ion  as in 

(6. I a) by a double prime, on using the or thogonal i ty  properties of the ~ , ~  

we obtain 

f . (7) o~ (~, z/h) o. (z, y/z) d ~ = Y,' ~,,. j (x) Cn.k (y) f u (z) ~ . , ;  (z) ~,,.k (z) d ~, 
j,k 

when h > o, and 
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f . .d~j ] t  . . , 

$ 4 

j, k 

for  h < o and,  finally, 

(6. 4) f u o,, z/h) o,, (z, v/h) d ~ = • O,, (x, y/h) (~) (~, 

for  all real  h; here  + ( - - )  is f o r ) ~ > o  ( h < o ) .  
W e  divide the l inear  in terval  (-- l, l) (1 > o) into  a finite n u m b e r  of l inear 

in tervals  z/j (j : -  I , . . .  q) as follows: 

where  

( -  ~, l) = (A,) + . . .  + ( ,~),  

l ~ t o "< 11 < ' " <  lq = 1, 

(&) = (tj_,, ~j), 

In  consequence  of (6. 1) and  (6. I a) 

(6 s) 
q 

v~ = ~ I o~ (~, v&) - e,, (~, ,.,/~J-~)l < ~ ~ q~.~ (x) ~,,.~ (v) l, 
j = l  k 

the  summat ion  last  displayed being over values k for which - -1  =< it,,,~ < 1, 

Le t  ( , ) <  (Dr). For  finite decomposi t ions  (~ )=  (~1)+""  + ($J) we fo rm 

By (5. 7) 

Hence  

J 
s~(.) = Z I k ~ ( * , ,  x)l~, .  

I f f sj  (,~) = ,, (.) L,, (~, ~) d,: < ,, ,, (~) d �9 = ,, ,, (~) d~. 

(6. 6) K.( . ,  ~ ) . - - -  u:b. &(.)  < , , , , ( . ) .  

and, in view of (2. I d), 

(Dr) (D,,) (%) 

By (2. ~ e) 



Singular Lebesgue-Stieltjes Integral Equations. 229 

I f r f  f ,  k~(~,x)~,,,~(y)d~ _-<n ~ u(~)d~ u(~)~..~(y)d~ 
CD~) CDy) CD,) 

and, by virtue of (5. 13 b), 

whence from (5. I3) it follows that 

(6. 7) ]q~.~(x)l-<--: naol;~,,~l 

for au (x) i ,  (D~). 
The boundedness property, just established, enables application of (24), with 

f ~ - L ~  (so that v =  k~) and with F (x ) - -~ .k (X) ;  thus 

(6. 8) 

and, accordingly, in consequence of (5. 13) and (2. ~c) one has 

Iq~,, ~(~)l <= l~,,.,llf ~,,(,o, y)~,,.~(~)d,o I 

[f ]'[f 1' <lz,,kl u(o)L~,(x,y)dto u( )q~,).k(x)dw " 
(1,~) 

thus by (5. I3b) 

[f 1' I~.,k(Y)l----<lX,,,kl , , ( . , )L~(x,  y) d~, ' 
r 

(D~) 

If >]' =]•..kl Ln(x,y)du*(e~ 

Now L~(z, y )< L~(x,y), while the integral (5.4) exists; hence 

(6. 9) I ~0n, k (y)[----< ] it,,,k] L (y). 

I t  is observed that Vn of (6. 5) satisfies 

v,' __< ~ ' )  q<~ (~) F, ~') q,~.~ (y). 
k k 
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I n  consequence of (5. 13) and (6. 8) 

Jf V y(1) ~,~(y) __< l' ~, u (~) L~ (x, y) ~,,,k(x) d 
k k (D~) 

ff ]' - -  ~'- ~ ( ~  L~ (x, y) ~,,,,k(~)d.* (~) . 

Applying the Bessel's inequali ty (S. I4 a) we obtain 

Z(1)~o,,,k(y)<l' = f L,,(' = 
k 

Whence  

(6. io) V,, ~ l~ L (x )  L(y).  

Taking the upper bound of V~ (n fixed)for all possible finite decomposit ions 

of ( - - l ,  l), in consequence of (5. IO) it  is inferred tha t  

(6. ~ )  vL~e~(x, y/z) ___< Z~L(z)~(y) ,  

where V'.- denotes total  variation in ), for ~ on the interval  (-- ~, 1); moreover,  

since (~ (x, y/o) ~-- o, 

(6. ~, a) I o~ (x, y/z) l _-< ~ L  (~) L (y) (Z on (-- ~, ~). 

Let  (x), (x') < (COo) and (y), (y') < (Vo) , where (O~o) < (D~) ~ (~o)< (Dy) ~ Wi th  
summat ion extended over certain values k, one has 

l e .  (x', y'/Z) --  On (x, y/Z) l = I ~'<'> [~"'~ (=') --  ~ " "  (x)] ~,,,, ((y') 
I k 

+ ~ ( " ~ ' ~ ( ~ ) [ ~ ' ~ ( Y ' ) - ~  f"'~(Y)] = l ~  ~,~(x ' ) -~, , ,~(x) i '  ~-[~ ,,,~(y') 

[~k ,(l) ' ] [ Z  (1) ~' ] + ~,,,~(x) -~ I~,,~(y)-~,~(y)l' 
�9 ! _ ~  

with ~VV). For v~lues k, here involved, IZ-,~I----< 141. ~row by (S. '~) (compare 

and (6. 8) 
t "  

qD,,,~(x') -- q~,,,k(x) = ~,.k ] u(~) (Ln(y, x') -- Ln(y, x))q~,~,~(y)d ~ 
(oy) 
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and, by virtue of (5. I4 a), i t  is deduced tha t  

k (D~) 

+ ) -  L,,+, :>)= d +  (e.)_-< [*I: / (L+,  +)-- L(y, x))' d u* (e~l) 
s /  (Dp (D,~) 

for all n > n", where n" may depend on (Wo). W i t h  the  aid of the  inequalit ies 

preceding (6. Io) we finally obtain 

If ]' (6. I2) [O,(x', y'/4) -- On(x, y/Z) l < I~L(y ') (L(x',  y) -- L(x ,  y))' du*(e:j) 
(~:,j) 

l/ >]~ ' + 12 L (x) (L (x, y') --  L (x, y))~ d u* (ez = c (x', y ;  x, y) 

for ] 4 [ ~  l and for all n > , ' ,  where n' may possibly depend on (r (%). 

Definition 6. 1. I t  will be said that k (w, y) is a kernel (T*) i f  it satisfies (T) 
(Definition 5. z) a~d i f  

( (L ~x, y') - -  L (x, y))~ d u* (e~.) = o (as <y') ~ <y)), lira 
(o.~) 

the points (y) be,i~g in (D,s) ~ 
I f  k(to, y) is a kernel  (T*), it follows f rom (6. I2) tha t  for 

(6. ~ 3) (~) < (~0) < (D:) ~ and (u) < (n) < (D,) ~ 

the  continuity of  the 0,, (x, y/E) in, [(x), (y)] is uniform with respect to n; in fact, 

in this case there  is also uni formi ty  of cont inui ty  in [(x), (y)] with respect  to 4, 

provided 4 is on a fixed interval  ( - - l ,  l). 

The second members  in (6. i I)  and  (6. II  a) are independent  of n and are 

defined in (D~) ~ (Dr)~ these inequalities enable u s t o  infer  tha i  for  some sub- 

sequence {nj} of {~} one has for real values 4, w i t h  a possible exception of a 

denumerable  infinity of values ~, 

(6. I4) lira Onj(x, U/4)= O(x, y/),) (as n i - ~ o ) ,  

where the l imit ing funct ion  satisfies the  inequalities 
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V ~ 0 (x, y/;~) < l ~ L (x) L (y), 

(6. 14 b) ] 0 (x, y/X) ] ~= 1 s L (x) L (y) 

for  I X l ~  t and for (x) < (D~) ~ and (y) < (D.~) ~ 

W h e n  (T*) is satisfied, the 'Compactness Theorem'  of (C; 2I, -,2) will secure 

existence of a l imit  (6. I4) for all real ~; moreover,  0 will satisfy the cont inui ty  

condition (6. x2) in (x) and (y) for x < (D~) ~ and ( y ) <  (Dy)~ fur thermore ,  there  

will exist a denumerable  sequence 

(6. I5) ~,, ~L.~, . . . ,  

such tha t  0 (x, y/X) is continuous in ~, for ~ ~ #, (v = I, z, . . . ) ,  for  all (x) < (D.~) ~ 

(y) < (Dy) ~ while, for Z = #~, O(x, y/2) has a discontinuity,  as a funct ion of ~, 

for  some values (x), (y) ( in  ( / )2 ,  (Dy)~ 

Any  function 0 (x, y/2), obtained by the above processes, will be termed spectrum 
(or spectral function) of the kernel k (~, x). 

By (6. 4) and (6. 1I a) 

(6. 16) I Onj (x, x/ >j = f u (% = f o" (x, L ~ (~) 
(o~) (D~) 

(j = I, 2, . . .).  Hence i t  is possible to apply Theorem (4- 2) (with convergence 

in the  ordinary sense - -  in view of (6. 14)) so as to infer  existence of the integral  

and the  inequal i ty  (see (4. 6)) 

(6. i6 a) 

f o ~ (x, z/z) du* (e~) 

f o ~ (x, d u* (e~) <= I o (x, x/x) I < z ~ L ~ (~). 
(1).) 

Accordingly one may form the  integrals 

(6. 17) ~p,~ (x, X) = ( h (z) 0n (x, z/;t) d u* (e~), 
a ]  

/ -  
(x, X) = ] h (z) 0 (x, z/X) d u* (ez) ~p 

f r l  

for all funct ions h(z) such tha t  h~(z) is integrable {B. u*} over (D~); moreover,  

by virtue of (6. I4) and  (5. 16) appliction of Theorem 4. 3 will yield 
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lim ~0,; (x, Z) = ~fl (x, Z). 
n~ 
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Using the theorems of section 4 and the results of this section, so far 

established, a number of other facts can be given which are closely analogous to 

those of  Carleman (see Chapter I of  (C)). We shall state these results in the 
remainder of this section, giving minimum of details in the proofs. Unless 

explicitly said that the kernels are (T*) it  is to be understood that they are (T); 
lira is to be understood as the limit as n = n j  ~ ~ .  

n 

By (6. 16 a) and Theorem 4. 3 

(6. 18) lira [~p (x, Z)--~p (X', Z)] = O [(x), (X') in (Dr) ~ 

in the ease (r*).  By (6. 4) and (5. I4a) 

(6. I8 a) 
(D,) (D~) (D,,) 

d ,.* (e~) d .* (e,,) 

<= ( h' (z) d u* (e.), 

provided that the latter integral exists. In view of (6. 17 a), 

Theorem 4. 3 

(6. I8b) 

(6. I8a) and 

when g~(x) is integrable {B, u*}; one has 

h (z)0 (x, z/k) d u* (e,) d u* (e~) 

9)~) (D.) 

d u* (e~), 

the order of integration in the integrals involved being immaterial. 

By (6. 9), (5. I4 a) we get 

(6. ,9) ,~,.(x, Z)[, ]g,(x, z)], VZ_~%(x, Z), z _- [ f  ] '  VL~ ~p (x, Z) < 1L (x) h~(z) du*(ez) ~'; 

C~,) 
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one ob ta ins  the  same wi th  (Dz) replaced by a subset  ( to ) i f  this  is done in 

(6. 17). Also, in view of (5. I4 a) 

I f f  I (6. 19 a) g (x) h (y) 0,, (x, y/;r u* (ev) d u* (e.) = ] ~p~ (Z) I ~ 
(D~) (by) 

f g~ (x) d u* (ex) f h' (y) d u* (ey) , 
(Dx) (Dr) 

(6. 39 b) VLt~Vn(~) < last  m e m b e r  of (6. 19 a); 

the same inequal i t ies  are satisfied by 

(6. 19e) ~(z)= f fg(x)h(y)e(~, y/Z)~u*(~)d~*(~y), 

In  the  case (T*), us ing  (6. I6 a) and  Theorem 4. 3, as well as (6. 18 a), one 

obtains  

(6. 2o) ,-olim f o(x'Y/z + ,)h(v)du*(,,~)= f o(~,v/z _+ o) h(v) ~* (,~), 
(Dr) (Dr) 

(6. 20 a) l im f f O(x, y/~ +__ ~)h(x)g(y)du*(e~)du*(eu) 
(D~) (Dr) 

= f f o(~,y/z +__ o)h(~)g(y)e~*(~) d~*(~:,,). 
(D~) (vu) 

By (6. 14), (6. 11), (6. 17 a), (6. I9)--(6. 19 b) and  a theorem of / te l ly  (C; p. 9) 

(6. 2i) 
)~1 )'t 

f ~(z)a,O(x, Cz)= limf ~(Z)a~Oo(~, V/k), 

(6. 21 a) 

(6. 2 I b )  

f c(Z) d~(x ,  Z)-----lim f c(Z)d~ ~p.(x, ~), 
~o ~o 

)*t )'1 

~o ~o 

(cf. (6. I9 e)) 

provided c(Z) is con t inuous  on the  closed finite in te rva l  (4 0, Z~). 
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In  view of (6. t o ) a n d  Theoreal 4-4 

(*o) )-o C*o) 

for domains (%)<(Dr) ~ and (x) in  (D~)~ by (6 19)and Reny's  theorem from 
the above we obf~in 

(6. 2 2 ) f ~ ( y , [ f c ( * ) ~ O ( * , ~ / * ) ] ~ u * ( e , , ) - - : f ~ ( * ) [ ~ , f ~ ( , ) O ( x , , , / * ) ~ u * ( ~ ) ] .  
(Dr) ao ao (by) 

In  consequence of Theorem 4. 4 

at 

f fg(x)h(y)[f c(Z)&O(x, y/Z)]du*(ea.)du*(ev) 
(oJo) (*o) ).o 

2t 

= I f  
ao ~COo) (~o) 

o (x, v/z) d u* (e,) d u* (e~)] 

for domains (~Oo) , (To) in (D,) ~ (D:/) ~ respectively; by virtue of Helly's theorem 
one may let (%) -~ (D~),: (%) ~ (D,))~: obtaining 

(O 2a, f /,(x, 
~t 

20 
z, 

).o (Dx) (Dy) 

Multiply the members of (6. 22) by g(x)du*(ex) a n d  integrate over (Dx); 
there results an  inequality which, in consequence of (6:~22 a), is of the form 
(cf. (6. 19 c)) 

By virtue of (5. I 3 ) a n d  (6.8) 

(6. 23) 
/ .  

(Dz) 
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hence  by defini t ion of  0,~ we obta in  an equali ty (6.24,  n) which in the  l imi t  
yields 

- m  

(D,) a' 

(in (D,) ~ (Du)~ To do th is  we change (by (6. 22)) the  order  of in tegra t ion  in 

(6. 24, n), ob ta in ing  

- i i  

~ L ~  ..JI 

and  then  pass to  the  l imit,  on mak ing  use of (6. 16 a), Theo rem 4. 3, (6. I9) 

(with h(z )~L~(x ,  ~)) and  of Helly 's  t heorem;  a change of order  of in tegra t ion  

in the  resu l t ing  fo rmula  is possible in view of (6. 22), y ie lding .(6. 24). 

Consider  case (T*). Le t  /~ be a n u m b e r  (6. x S) and  write 

(6. 2s) 0(x, u l~ ,  + o ) - O ( x ,  y l~ ,  - o) = e, (x, u) (~= ~, 2, ...). 

By definit ion e,(x, y ) ~  o. W e  have  (in (D~) ~ (Du) ~ 

/z , .+  6 

lim f 
E ~ O  

since in consequence of (6. I9) the absolute value of the  in tegral  here  involved 

is __< ~ (If,~ I + ~) L (u) L (x). Now, by (6. 2o), 

l im .)[f,,.+o(.,,/,,)] f z)[l~,e,(z, y)] du*(e,); 

t hus  (6. 24) (with X" ----/~, + e, X' ---- ke, -- e) will yield, as e -~ o, 

(6. 26) e, (x, y) ~- #~, f L (x, z) e, (z, y)du* (ez) (l~,, ~= o; v ---- I, 2 , . . . )  
(D,) 

whenever  the  kernel  is (T*). 

Whence, in the ccue (T*), the functions e, (x, y) ((y) fixed) are solutions of the 
homogeneous problem, while the tL, are 'characteristic values', in a sense; the t~,. may 

be everywhere  dense in parts  or  on the  whole of the  axis of reals. 

I n  the  case (T*) the  theorems  (C; 4o), (C; 43), (C; 5o) apply wi th  suitable 

changes  in formula t ion .  
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7- Connection between the two Problems.  

The approximating equations (5. I5), (5. I5 a) may be written in the form 

(x) = X fL ,~  (x, Y) q~ (Y) d u* (eu) + f ,  (x), (7. I) 
o ]  

(7. I a) V,*(eu)=xf[f F*(e,,). 

In  the latter equation F*  (eu) is an additive function of sets {B} which on 

figures coincides with ~F(~). Inasmuch as ~F(~) is continuous as a function 

of intervals (i. e. the two non negative components are), F*  (eu) may be formed 

so that  in the decomposition 

(7. 2) F* (ey) = F* (ey) - -  F~ (ey), .F* (e) >= o, F* (e) :> o 

the components F~(e) are continuous as functions of sets {B}. We write 

(7- 2 a) v* (e) = F *  (e) + F *  (e). 

As to the unknown set-function ~*(eu) - -  this is to be a continuous function 

of sets which on figures coincides with , ~ ( , ) ,  where ~( , )  is the unknown func- 

tion of figures for the problem (5. 15 a). The kernel in (7- I a) is justified by 

(5.7b), the relation preceding (5- 7b) and by (5. 5). The kernel in (7. x) is 

justified by (5.7 a). 

The non homogeneous equations for which (7- I), (7. I a) are approximating 

equations are as follows: 

(7.3) 9 ~ (x) = ~ f L (x, y) q~ (U) du* (e.) + f(x), 
9 ]  

(nv) 

(7- 3 a) 
('~) ~y 

Whenever dealing with (7, 3 a), the followi.g Hypothesis will be assumed 
to hold. 
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Hypothesis ~. 4. 
the integrals 

(7 .4  a) 
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With .condition (T) or (T*) satisfied, as the case may be, 

f L (~c) d u* (e,), I L (x) d,v* @~.) 
i.. 
a ]  (D~) (D~) 

exist. 
In  tMs connection it is :to be noted 

(7.4 a) does not imply existence .af 

(7 5) f fL*(x,* 
(D~) (D,j) 

(el. (7. z a), (5- 4 a)) 

that  existence of the first integral 

d ~* (e~) d ~*(~); 

this is an essential fact, since it  can be shown that  whenever (7. 5) exists we 
are brought back to the main features of Gunther 's  theory; accordingly, we 

:avoid integrability {B, u*} of L~(x, y) with respect to Ix, ~l- 

We shall now establish a connection between the equations (7- 3), (7. 3 a) 

in the case when Hypothesis  (7.4) holds. Let q) (y), such that  q): (y) is iutegrable 

{B, u*}, be a solution of 

(7.6) a,(y) = z f L (x, y) a) (x) <l ~* (e~) * q @, 
a ]  

(~) 

where 
/, 

(7.6 a) q (Y) -- ;~ / L (x, y) d F *  (e,). 
r  

Existence of the latter integral follows from that  of the second one in (7-4 a). 
We have 

f q~ (y) du* (e,j)= ~2 f  . (  [ f L ( x ,  y) L(z, y) du* (e.,j)]dF* (ez) dF* (ez), 

I f  L(x, y)L(z, y)du*(ey)l ~ [ /  L~ 
(by) if)y) 

I q "~ l is integrable {B, u*} and 

)]' , y) d u *  (ey ~. 

�9 [fL  +, y) (~)y) 
d ~,* (e@ = L (x) L (z); 
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] f  q'(y) d.* (ey)I <" ])~ f f Ltx)L (z)d v* (ez) dv*(ez)~ 13. I s I f  L (x) dv* (e~)] 3. 

Moreover 

where 

we have 

q (y) --~ lim qn (y), 

F 
q~ (y) = t ] L .  (x, y) d F*  (e~:); 

l 

(Dx) 

1 "  

I (.~) I --< I z I -  ] d ,~,* (+) = I z I - ,~* (D=) qn 
I t /  

furthermore, q,~(y) is continuous in (D.v) in view of the continuity properties of 
L,~ (x, y) (cf. (5- Io)). In  the sequel it will be actually proved, that  for certain 
values 2, the equation (7.6) has solutions q)(y), with q)~(y) integrable {B, u*}. 
Forming the set-function 

(7. 7) ~* (e,j) = / " *  (e,,) + f r (y) d u* (e,~), 
e y  

the connection sought for is established. To prove this we note that, in con- 
sequence of Hypothesis 7 .4  the order of integration in 

/ -  / ,  F F 
(7. 8) a ' - - ]  ~ L ( x ,  y) d F* (ex)d u* (e~j), a " =  ~ ~ L  (x, y) q)(x, du* (e:~)d u* (e,j) 

LI a] 

ey (~) e, I (D~) 

is immaterial; one has 

(7. s a) : I l l  I : �9 I - ' l  < L (~, y) ~ u* (~:,) +l ~,* (~:) < [.  (+)]: L+,~ (~) d,'* (+:) 
t 

and 
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(7. 8 b) I,"l < f l f  z(x, U)O(x)du*(e,)ldu*(ev) 

f I f  LS(x, y)du* (e~)] ] [ f  i * (x )"  du* (e,)] ~ du* (ev) 

< [ f  la)(x)l'du*(e,)l' f L(v)du*(ev). 

In consequence of (7.7) it is inferred that 

(7. 8c) f [ f  L(x, y) du*(ev)][~(x) d u* (ez) + d F* (ez)] 

= f [f  L(x, v)du*(e,,)ld~*(e~). 
(D.) e v 

Multiplying both members of (7.6) by du*(ev) and integrating over e v we obtain 

(7. 8d) f q)(y)du*(ey)=z f [ f  L(x,y)q)(x)du*(ez)du*(ey)+ f q(y)du*(ev). 
ey ey (Dx) ey 

Now by (7.6a) 

f q(v)du* (~) 
ey 

=z f f L(x.y)dtr*(e~)d,,*(e,,) 
e, a (D~) 

d F* (ez). 

We add F* (ev) to both members of (7.8 d) and changing the order of integra- 
tion obtain 

** (e.) = z f  [ f  L(x, y) du*(ev) ] q) (x) d u* (ez) 

+  f[f L(x,y) du*(e~s)] 
P~) "u 

dF*(ex) + F*(ev), 

which in consequence of (7. 8 c) yields 
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Lamina 7 .1 .  In the case (T) (Dcfi~,ition 5. I) and under Hypothesis 7 . 4  every 

solution q} (y), such that 

f a~ ~ (y) (e:,) d U.r 

(x,.) 

exists, of the equation (7.6), (7.6 a) gives rise to a solutiou 

go* (e,) = F* (c,,) + ( a~ (y) d ,* (e,,) 
ey 

of the i~tegral equation (7. 3 a). 

Examining the converse situation, let ~* (ev) be a solution of (7. 3 u); offhand 

there is no assurance that g0*(ev) will be of the form (7.7) where q}2(y) is in- 

tegrable {u*} and O(y) satisfies (716), (7.6a). In other words there is ,,o 

assurance that Lamina 7. I supplies all the solutions of (7. 3 a) fi'om those of (7.6), 
(7.6 a) (the latter problem being of form (7. 3)). 

Hence it appears necessary to study (7. 3 a) directly. 

In the meanwhile, a type of a converse to the Lemma 7. I is embodied in 
the following result. 

Lamina 7.2.  In the case (T) and u~der Hypothesis 7 .4  let ~p* (co) be a solu- 

tion of (7.3 a) such that ~p* (eu) -- F* (%) is absolutely conti~uous {u*} and such that 

the function F(y) fi'om the resulting relation 

(7.9) go* (e,,) = F* (e,,) + f r (y) ~l u* (e,,) 
e!] 

(I'(y) i~tcgrable {u*}) is s~cl~ that 
/ ,  

(7.9 a) ] L (x) l r (x) I ~l u* (e,~) 
Q t ]  (1~,) 

exists. 

In fact, substituting (7.9) into (7. 3 a) we obtain 

f11(y) d u* (e.) = f [ f L (x, y) d u* (e,,)] d F* (ex) 
e,j (P~) e:i 

where 

(7.9 b) 

16 

Then F(y) will be a solution of (7.6), (7. 6 a) almost everywhere {u*}. 

fll= f [f L(x, y)du*(e,~)] r(x)du*(ez). 
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In consequence of the statement with respect to a' of (7. 8) and by (7.6 a) 

(,.,o) 
"~.1 0 (D.) 

O) 
ey 

d ~ * ( e g )  + Z f l l .  

In view of the existence of (7.9 a) the order of integration in fit may be changed; 

we have 

ff).O OI 

)]'f" __< [.* (e. L (~)1 r (~) I d . *  (~.). 
(z)~) 

Thus by virtue of (7-9c) it is inferred that the Lemma holds as stated. We 

note that  this result takes place even with the eondih'on regardi~g (7.9 a) dropped, 

provided that F(x) is such that in (7.9 b) the order of i~tegration can be changed. 

8. Direct  Trea tment  of  P rob lem (7. 3 a). 

Let 0 denote the set of poi~ts in the complex Lplane consisting of all the 

points not on the axis of reals as well as of the points on the axis of reals not 

belonging to the closure of the set of points represented by the characteristic 

values 

(8. I) Z,,~. (n = ~,, .,~, 

When 2 is in 0 we have 

(8. ~ a) tz - z~,jl->_ ~(z) > o 

where d(Z) is independent of )~i and j .  

Let ip*(ev) be a solution, for Z in O, of the problem (7. I a), 

mula (5, t7) is applicable yielding" 

(8 2) ~v,*~(e,,)=~'*(c:,)+zf(fL,~(x,y) 
(V,) ~,j 

�9 . ; j =  I, 2 , . . . ; l i m ~ = m ) .  
i 

( n = ~ l ,  n~ , . . . ;  j =  I, 2 , . . . ) ,  

By (G) for- 

u* (e~)) d ~"* (e.,) 

(7 * 

k=l  
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where 
/ -  

~,,,,~ = ] ~,, , ,  (x) d ~'* (~.~.). 
L /  

(-%) 

In  fact, if ~p~(e,j) were not  expressible by the second member  of (8. 2), the  dif- 

ference between ~p*~(ev) and this member  would be a funct ion w*(e,j) such tha t  

�9 f [ f  ] ~,, (~) = z L,,(.,, y) (~ u* (~,,) d ~,, (.~), 
(-%) ~y 

which contrary  to (8. I a) would imply tha t  ;~ is a character is t ic  value. 

By virtue of a process involved in (7. 8 a) and by (8. I a) one has 

(s. 3) 

where 

Subs t i tu t ing  

,f * ~ = Iz L(~,>(x)av*(~.~.) + ~ ( ~ l Z l ~ n  

lan, k , e I ~,,= E k,, ~ , , , k ( , / )  �9 
k 

/ .  
(~z) 

a /  

(1,~) 

into a, k we obtain 

( 8 . 3  a) 

Now 

k (W,) (D~) 
d F* (e~.) ] 

= ~ I w:,k (e.)l ] f If L~(x, ~)d~'* (ex)] 
(Pz) (Dx) 

~= [~'~k I~p'*'k(ey)~l]�89 [~l f [ f  L~(x, z)d F* (ex)] T,~,t~(z)du*Ie~)12] ~ �9 
(D~) (Dx) 

% (~,) 

where q (y) is uni ty  in % and zero in (29:,/)- e.G hence by Bessel's inequali ty 
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k (L'v) eu 

On the  o ther  hand ,  the  square of the  second factor  of the last  member  in (8. 3 a) 
is equal or is less t han  

(J)=) (D.~,) (D=) (v~) 

= f f f 
(D,) (D,) (D,) 

('x) (D~) (D~) 

f f [f L ,  (x) L ,  (s) d v* (ez) d v* (e,) = L (x) d v* (e~.) . 

(D~) (o~) CD~) 

Whence  in consequence of (8.3 a) and  (8. 3 b) 

s ,  _-< [u* (e,,)] ~ L (x) d v* (e~.) 

and, finally, (8. 3) yields 

(s. 4) 
f 

I o z (e~)l --< v* (ey) + #(e,3 = ~* (e~) + I Z I [u* (e,,)] ~ . 

f .f �9 L(e~)(x) d ~* (e~) ~ ~(2) [u* (ey) ~ L (x) d ~* (eJ. 

I f  in (8. 2) the  t e rm F*(eu) is t ransposed to the  first member  and, with  this  

modification,  the  subsequent  steps are repea ted  we obtain the  fol lowing result .  

L e m m a  8 . 1 .  The approximating solutions ap* (eu) satisfy, for  Z in the set O, 

the 'compactness' inequalities 

( 8 . 4  a) I g'* (ev) - F *  (ev) l ~ #(ev)  (cf. (8 .4))  

(for n =  nl,  n~ . . . and for all {B}-sets e u < (Du)), implying that the ~p*(ev)--F*(ev) 

are absolutely continuous {u*}, uniformly wi th  respect to ~. 
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The term 'compactness', here, is justified in view of the de la V. Poussin- 
Frostman's theorem, by virtue of which (8.4 a) implies existence of an infinite 
subsequence [~*j(e~)} and of an additive set-function ~*(ey) such that 

~* (~) = lira ~*~ (~) = ~* (e~) + A*  (e~), ( 8 . 5 )  

where 

(8. 5a) 

and, consequently, 

I A* (ey) I ~ fl(ey) 

A*(ey) is absolutely continuous {u*}. Convergence to the 

limit in (8. 5) takes place on all {B}-sets on whose frontiers A* (ey) vanishes w 
thus, on all {B}-sets on whose frontiers u*(ey) vanishes. We also have 

(8. 5 b) ~:(e~) = ~'* (,~) + A* (,,), I A* (ey)] ~ fl(ev). 

Turning to the equation satisfied by ~ (e~), 

(8.6) ~p* (e~) -- ). f [ ;  Ln (x, y) d u* (e,J)l d ~p* (e~)+/~* (e~), 
I _ . /  J 

in the limit (as n ~-mj -~r162 one obtains 

(8.6 a) ~* (")=' 'V f [/~" (x, .,'.* ('.)1' e: ('.)§ "* ('.), 
(e,) ,y 

where ~0" (ey) is the function (8. 5). I t  is of importance to find conditions under 

f[f ]" f[f )] lim L,  (x, y) d u* (e,j) d ~p,, (e~) ~- L (x, y) d u* (ey d ~p* (e~), 

since the latter relation would imply that ~* (e~) of (8. 5) is a solution of the 

problem (7. 3 a). I t  is known (cf. De la u Poussin's book (VP; p. II)) that 

(s. 7) lira f q.(x)a,..(,.)= f q(.)~.(..) 
(D) (D) 

when the t~(e) are additive functions of sets {B}, tt~ ~ A, /tn--*tt, the #n and tt 
vanish on the frontier of (D), while continuous functions q~(x) converge uni- 

formly to q(x) (necessarily continuous). As remarked in (VP), continuity of q(x) 
in (D) is essential On writing 

which 

(8.6 b) 
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q~ (x) = f L~ (x, y) d u* (e~.l), q (x) ---- f (x, v) ~ u ,  (%) 
ey ey 

it is seen that  the conditions of the above theorem do not hold, inasmuch as 

q (x) is not necessarily continuous in the closed set (D~). 

We let 

(8. 8) rn(ev, e~)=flfl L~(~, y) a .*  (~,) a , : ( ~ )  
e y e  z 

Substituting the expression obtained from (8.2) 

where 

~)$n (ey) = . ~ *  (ey) + ). Ofn, 1 - -  ),'it {$n. 2, 

,...i=f[f L,,(., u) a F* (..)] a,,* (..), 
'v (D.) 

it is inferred that  

(z - z~, ~) Zn5 (v) 
6r 2 

ey 

d u* (e~), 

(8. 8 a) r,~(e,j, ez) = r,,,~ + ).r..~ - -  Z~r,,.~ 

w i t h  

,.,- f f L~(z, y)du*(e , )dF*(ev) ,  
e y e  z 

and 

Here 

(8. 8b) 

e v ez (Dx) 

e y e  z 

_ ~ ,~  ~-~; j (e~). 

f[f ] I rn, 11 <---- Ln (z, y) d u* (e~) d v* (ey) ~ [u* (e~)] ~ L(e~) (y) d v* (eu) 
ey e z ey 

(notation of (7- 8 a)) and 
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I,.~,=l=lf f (f Ln(z,y)L~(x, y)du*(%))du*(e~)dF*(e~) I 
(Dx) e z ey 

~l"'" dv* (e~)<=--f f i r  L~ (z, ,)Ln (x, y) du* (ev),[d u* (e~)dv* (e~) 

N o w  

I f  Ln(z, y)L~(x, y ) d u *  (ey)l ~ [f  L~(z, v)du* (ey)] ~ [f/azn (X, y)dU* (ey)] ~ 
ey ey ey 

l 
_ .  g ,  "2 

ey ey 

Hence 

(8.8 ~) Ir~,=l ~ f f L(ey)(Z)L(ey)(X)du*(ez)  d v $  (e:~) 
,a 

=[f L,)(x, dv*(e~,][f L(~)(.) du*(ez,]. 
(Dx) ez 

Turning to  r,,a one obtains 

I,'~,~! = Z~(~, v) d, ,*(e,)  Z - -  X,,,~ Z,,,~ 
% ~z (D.) 

=If f dF*(e*)du*(e~)[~ )'--I)'n,~ ( ~ )  f Ln(z,y)q~,,,k(y)du*(e~)]] 
(Dx) e z ey 

<= f f  v*ie l u*le l,I I, 

For 2 in 0 we have (8. I a) and, accordingly, 

,,.o.~,= ~f ,fldv*(e,)du*(ez) . ~ - I  If ~'(', ~)'",~(.~)~"*(".~)1} 
(n~) e, % 

ez ell 



248 W. J. Trjitzinsky. 

Now 

(x) / -  
== / L~ (v, x) ~ , k  (v) d u* (e,,) 

~n ,  k ~ 
(D,,) 

and consequently by virtue of Bessel's inequali ty 

I n, k I ( --Dv ) 

Thus 

and, finally 

(8. 8 d) 

f f a,,* (e,~)d u* (e,)L(x)L(%)(z) I,-,,,~1--< ~(z) 

'[(. ]If ] I,,,,~1 --< ~-~ L (x) a ~* (e,) S(~) (z) du* (e,) . 

(Dx) ez 

In  view of (8.8 a)--(8 .8  d) i~ is observed tha t  the  funct ion of (8. 8) satisfies 

the  inequali ty 

(8. 9) It,, (ev, e~)l <= fl' (ev, e~) : [u* (ez)] ~ f L(e~) (v) d (e,,) 
ey 

(Dx) ez 

+ 

:Now 

+ 

L.- f (~z) (Y) = L ' (z, y) d u*  (e..) ~ L '  (y). 
~z 

Hence  f rom (8.9) we obtain the simpler inequal i ty  

(8 .9  a) It,, (e,,, <-)1 --< ~ (e,,, e~) = [u* (e,)]~ f L (y) d v* (e,,) 
ey 

+ [I z l + ,~(z)j 
e Z 

" f ( )  ( 
a = L x  dz~*e~). 
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By virtue of (8. 5 b) and of the relation subsequent to (8.8) 

Hence on writing 

(8. io) e,~(~,,e~)= f f Ln(z,U)du*(e~) 
by e z 

d A* (ey) 

and repeating the steps subsequent to (8. 8), we now obtain the same result as 

before, but with rn, 1 replaced by zero; thus 

i l,l,f L(ev)(z)du*(ez). (s. Io ~) I e,, (ey, e,)l ~ I Z l § e (Z)] 
e z 

By (8. 5 b), (8.6) and (8. lO) 

(8. II) ~ = ( * , , ) = * f [ f  i n ( x ,  , t ) d u * ( e y ) ] d F * ( e x )  

~ow 

and 

= r.,1 (ey) 21- ~t, Q,z (Dx, ey). 

f L,,(x,  V)du*(e~) -,fL(x, V)au*(ev) 
by ey 

If [= * ' [ / -  ' Ln(x, y) du*(ev) < [u (ev)] ~- (x, y) du*(ev) <= [u*(ev)]~L(x ), 
ey by 

the last member here being integrable {v*}; consequently 

(Dx) ey 

On taking account of (8. 5) and letting n ~ m  a. in (8. 1 I)-+ ~ ,  we accordingly 

derive 

(8. , ~ )  A*(e~)-z f f L(x,y)du*(e~)dF*(e~)=limZe~(D~,~,,) 
(D,~) by 
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on every {B}-set on whose frontier u* vanishes. W e  thus  know tha t  the l imit  in 

the second member above exists - -  i t  remains to find its form. 

Le t  ey be a fixed {B}-set whose closure ties in (Dr) ~ and on whose f ront ier  

u* vanishes. Le t  w. be a closed domain in (D~) ~ on whose f ront ier  u* also 

vanishes. 

(8. ~2) 

By (8. ~ )  

-- A* = ~ f  
to x ey  (Dx) - - r  x e u 

and, in the l imit  (as n =ra j - -*  oo) 

(8. I2 a) 

A* L,, (x, Y) d u* (<~) d n (e,) 

A*(e,,)--zf f L (x, y) a u* (e,,) a F* (e~) 
CD~) ~v 

- z f [ f  L(., v) a . .  (e,,,] gA* (e~) = Hm *,~,(<~ - ~,~, e , . ) .  
oa x ey  

(cf. (8. Io)), provided 

(8. x3) lira f I f  ~.(., .)~u. (~,.)1 ~ ~: (~.)= f I f  ~(., ~)~.. (~,,,1 ~.** (~=,). 

To establish (8. 13) we note that ,  depending on ~Ox and ev, there exists a number  

n' so t ha t  

(8. i3 a) Ln (x, y) = Ln' (*, ~) = L (x, y) 

for all n : > n '  when x is in to~ and y is in eu.. Hence  (8. 13) will hold if 

(8. I 3 b) lim f [ f  L(x, y)du* (e:j)]dA* (e,).--= f IlL(x, y)du* (ev)]d A* (e~). 

By (8, I3a)IL(x,y)l<=n" f o r  x in  ~ and y in ev; moreover, 

f L(x, y) u* d (e,) 
"v 

is continuous in x for  x in the closed domain cox. On the other hand,  
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l i m A , = A * ,  IA~(e)l <=~(e) (n-~mi, m2,...; ef.(8.4)); 

the  set-funct ions A~, A* being absolutely  cont inuous  {u*}, these  funct ions  vanish  

on the  f ron t ie r  of co~, toge the r  wi th  u*. Accordingly,  (8, 13 b) is seen to hold  

in  view of the  satisfied condi t ions  of T h e o r e m  (8. 7). This  establishes (8. I2 ~). 
By vi r tue  of (8. Io a) 

[ / . I'~PI L<<.=)_~=) (y) d u (ey). I e,, ( (D:~)  - ~.~, e~) I =< I ~.1 + ~ (2.)j" 
ey 

Let t ing  n-~-mj ~ ~ and  t ak ing  accoun t  of (8. 12 u) one obtains  

(8. '4) I A* (e,). zf f L(x, y) du* (ey) d F* (e.) 

- ~  f [ f L ( x ,  y) du* (ey)]dA* (e~)l = lit I Il im Q,, ( (Dz) -  r e.v)[ 
o~y ey 

I [l , 
ey 

--< [I~P 

A sequence of closed domains  
t h a t  oJ~.~ < (D~) ~ 

(8. ~5) 
and  

(8. ~5 ~) 

I l'l (e,)] ' du* +0 (~)j " ' f  [ f  L~ (x, y)du* (e~). 

tox,~' (j  = I, 2 , . . . )  can be always found  so 

cox, 1 ~ {0~,~ ~ " "  

lira 
J 

Defini t ion 8. 1. The set-function u* (e~) will be said to be regular with respect 
to the frontier of (D~) i f  for some sequence of domains ~o~,,~ (Dx) ~ satisfying 
(8. I5), (8. I5 a), u* vanishes on the frontier of each co~, ~ and i f  u* vanishes on 
the frontier of (D~) as well. 

Assuming  u* regular ,  in accordance wi th  the  above, on le t t ing  in (8. I4 a) 
w~ = oJ~, ~ ~ (D~) ~ we obta in  
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~ O .  

Here (D,) ~ may be replaced by (D~) since A*, as established before, is zero on 

the frontier of (D,), if u* is. Whence the function ~0" of (8. 5)s~tisfies (7- 3 ~). 

We have the following Existence Theorem. 

Theorem 8. 1. We consider kernels of form (T) (Definition 5. I) and assume 
Hypothesis 7.4. Let, moreover, u* be regular with respect to the fi'ontier of (D~.) 
(Definition 8. I). Let ~ be in the set O, introduced at the beginning of this section. 
The additive function 

v,* (e,,) = F *  (e~) + A* (e,~), 

obtained by the limiting process of (8. 5), is a solution of the equation 

(7. 3 a) ~p* (ey)= )~ f [ f  L(x,  y)du*(ey)] d~p*(ey) + F*(ey) 

for every {B}-set % whose closure is in (D.~) ~ and on whose frontier u* vanishes. 
Furthermore, I A* (ev)l = < fl(e~) (see (8.4)). 

Inasmuch as 

ey ~y ~y 

while the second integral (7-4 a) exists, one has 

(8. I51) 

Thus by (8.2) 

n J t J  A (D~) ,y 

where 

(8. ~5 t b) B*  (ev) = lira B*~ (e:,z), 
n 

~ '  ~ ~*~, ~(e,). 
k =  1 
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The l imit  in (8. I b) (and hence in (8. I5 t a)) will cer tainly exist when n --=- m~-~ oo, 

where the mi are f rom (8. 5) and when the  sets considered are those on whose 

front iers  u* vanishes. However ,  quite apar t  f rom these considerations,  (8. 15 ~ a) 

wilt hold (for n:=-~i---*~) whenever  (8. I5~b) holds, as ~ = nr oo. 

By the  re la t ion subsequent  to (8. 2) and with (6. 2), (6. 2 a) in view, we may 

rewri te  B* (e,i) as follows 

I~ow 

I f q~,,,~(x) B~ (e,) = ~.j Z--;tn,, Z,.k ~P~.k (ev) d F* (e~). 
k (D~) 

(x) / -  
-= ] Ln (x, ~) ~.,,(~) d u* (eD 

~n, k 
(DD 

and hence 

' f f L,,(x, z) q~,,,~(z)~p*,k(e~j)du* (e~)dF* (e~). B* (e..) = ~ z -  z,,,~ 
i ]  , , ]  

Designat ing by O,*~(x, %1),) the  additive funct ion  of sets {B} which on figures (~) 

coincides with ~On(x, ~riZ) of (6.3), one deduces tha t  

(s. ,6) 

0* (x, ~./z) = ~ ~,,.,(x) ~*~ (~.,,) 
0<~n, k<~ 

)~'~n, k <0 

and 0~ (x, eJo) = o. 

we obtain 

(8. I7) 

(for ;~ > o), 

(for Z < o) 

Accordingly,  rewri t ing  B~ (%) in terms of a Stieltjes integral  

--ao 

when ~ is dist inct  f rom the ~,,~. Final ly  we put (8. I7) in the  form 

(8. ~ 7 a) B,*, (~y) = B,,,, (e~) + B~,~(e~), 
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oo 

f F - - z  ' f~--=-z ~ " 
Bn ,  x (ey) = I dlt ~ff,, (eyl~t), ~ n , 2  (ey) = I Oa (ey/~t), 

(8. I7b )  
t "  

a~ (eu//~) ~-~ / t L (x, z)O* (z, eu/lt)d u* (e,)d/7'* (e,), 
a , '  e J  

(8. 17 c) 
/1  / .  

(eJ/~) = / / [L,~ (x, z) -- L (x, z)] O* (z, e Jg )  d u* (e~) d F *  (e~). 
e 2  

The  fol lowing L e m m a  will be helpful.  

Lemrna 8. 2. 

integrals 

(s. ~s) 

exist. On writing 

(s. ~8 ~) 

we'shall have 

(s. ~8 b) 

Let  v* be fi 'om (7. 2 a). Suppose that H(x ,  z) is such that the 

H'(x)= fH'(x,z)du*(ez), f H(x)dv*(e2 
(D~) (D.) 

g,  F" 
i ,  (eu/l~) -~- I I O* (z, ev/#) H (x, z) d u* (e~) d F*  (e~) 

t ]  

[in (e,a/tt)!, V~-~ in (ev/#) < [u* (ev)] ~ If H(x)dr, (~)] 
(D.) 

where V~.: refers to variation, in tt, on any finite interval (~t, E~). 

Le t  the lj be such t h a t  

Z~ < 1 o < 11 < " "  < l~ ~ ~.  

We form the  sum 

.,,..,=Sx If o. I - -  ~ (z, ev/l.-~)] H (x, z) d u* (e.) d F *  (e.) 
•=1 (D.) (Y?Z) 

= ~ If , ((~(")q~,,k(z)~' ,k(e~. ,))H(x,  z) du*(e~)dl:'*(e~)[; 
�9 =1 (D~) (D~) " 

here the  s ummat ion  symbol  wi th  a superscrip~ is over values k such t ha t  

l ~ - l ~ ; ~ , ~ < l v .  One has 
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V,,,~ = - i f  
�9 =1 ~. (.r,-) (1)~) 

~ , , , ~  (~) d ~* (~)]  d 17" (~r,) 

< ~ "~., (ey), If [ f "  (~' ")~ ~'* (e.)] ~,.., (~),, u. (e.)I 
(D b (Dr,) 

<= [~l,p:,,(e~)l~ ]i [~[ f [f H(x, z) d F*(e~)] q~,~,k(z)du* (e,)l* ] ~. 
(Dz) (Dx) 

By (8. 3 b) and in view of Bessel's inequali ty 

'[f[f V,,, m < [u (ey)] I H(* ,  ~)1 
t 

d v* (ex)]* d u* (ez)] ~. 

For  the double integral  last displayed we have 

j f .... f f f ,H(x,z)H(s,z)]dv*(e~)dv*(e,)du*(e~) 

(Dr,) (Ds) (Dz) 

f f [ f  H~(x,z)du*(e~)]'~[f H'(s, z)du*(ez)] ~ 
(Dr,) (D,) (D~) (D~) 

Thus 

d ~* (~) d ~* (~) 

-- f f H(x)H(s)d 
(Dx) (Ds) 

'If ] V < [u (ey)]  H(x)dv*(e~) 
(D~) 

~* (~x) d v* (~,). 

This inequality, together  with the fact tha t  0* (z, e.v/o ) = o, implies (8. 18 b), which 
establishes the Lemma. 

In  view of this Lemma from (8. 17 c) we obtain 

(8. I9) • f f ) •2  f p  t i ~ 1 pt 
~, .n tey/m < [u* (e.)? ~n, 

" f ] f  an -~- (Ln (x, z) -- L (x, z)) ~ du*  (e~)] �89 d v ,  (e~). 



256 W . J .  Trjitzinsky. 

Now 

lily 
(Dz) 

[L. (x, .) --  L (x, .)] '  d, ,* (e=) = o 

because I L ,  (x, z) --  L (x, z)[-" =< 41 L '  (x, ~)1, where 4 1 L '  (x, *)1 is integrable,  in z, 

{B, u*}; moreover,  

[f ]' [L,, (x, ~ ) -  L (x, ~)1' d, ,  (~=) =< 2 L (~) 
(DD 

where the  last member  is integrable {B, v*}. Hence 

## 

(8. 19 a) lim a,~ = o. 

Let  2 be real in O; then  (8. x a) holds and, in consequence of (8. I6) 

4 ,  o,, (e, , /#)  = o Z - -  d < t~ < Z + 
2 

a 
Take 1 sufficiently great  so tha t  - - l < s  Then 

2 2 

~t 

1 2 l 

# t O ' n  C y  t - - -  . . . .  

- - /  - - I  

2 

In  the path of in tegrat ion displayed in the last member  (4 - - i t )  -1  is cont inuous 

as a funct ion of /~ and 

_ o  = d  

Thus by (8. I9) 
1 

1/" ~ d " [ 2 ~,, 
- -  / t O n  = I J z - ~, (e"l#) < [u* (,,)] o,, 

- - I  

and, accordingly, on le t t ing 1-+ + oo we obtain 

2 1 = ( ~ [ ,  - - . , , ,  

In  view of (8. s 9 a) this implies tha t  
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(8.20) lim B~,2(ev) = o; 
n 

the same result is obtained for ~ non real. 

Lemma 8. 3. I f  q (x, z) is such that the integrals 
[ .  

I "  

q~ ( x ) ~  ~ q~ (x, z) du* (ez), I q ( x ) d v *  (e~) 
a]  , ]  

9)~) (D~) 
exist, then 

l i m f [ f  ( ~ 
(D.) (oz) 

q (x, ~) d u* (e.)] d F *  (e~) 

= f [f (I).) (D~) 

as n = n j - - ) ~ ,  the nj being fi'om (6. I4). 
On writ ing 

e z 

by (8. 3 b) it is inferred that  

o~ (., e / . )  d ~* (e~), 

'o**' e:,/.)l s * e = * I s I n (ea., = (ex) ~p,,,k (~) < Z I ~Pn, k (ez) Z I~)*, k (ey)I s <= u* (ex)u* (ey). 
" k k 

On the other hand, (6.4) gives us 

; O* (z, e.~./#)0,* (z, e,.j~t) du* ( e~) :+  f f 0,~ (x, y/~)d u* (e~)du* (e~.,)= + 0"* (e~, %/#) 
t . t  * ]  

and, in particular, 

(S. 2I) f (~, e/~) (ez) = I (e, eh,) l  ~< u* (e) d u* 0"* 
(D;) 

for {B}-sets e. 

We have 

( 8 . 2 I  a) 

17 

lira O*,j (z, ejtt) -- 0* (z, ejtt) = f 0 (z, s/tt) d u*: (e~) 
e8 
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inasmuch as 

= f 
e 8 

while (6. I4) holds and I O,,I <= IFtI~L(z)L(.,.)(see (6: I I a)), where the last member 

is integrable, in s, {B, u*}. 

By Theorem 4. 3 the relations (8. 21). (8. 2Ia)  imply that 

t "  l "  
~,~(x) = Io:(~,  , ; # ) ~  (.% ..) a . *  (~,) -~ lo*(~,  e!//,tt) q (ag, 

I /  

as ~ = ~.~-+m; moreover, by virtue of (8.2I) 

If ,1' 
z 

\ Z /  

where the last member is integrable (in x) {B, v*}, by hypothesis. Whence the 

conclusion of the Lemma follows at once. 

Under Hypothesis 7 .4  one may take q(x, z ) =  L(x,  z), obtaining from this 

Lemma the following result for the functions (8. 17 b): 

for all {B}-sets e:, < (D,r). Furthermore, by Lemma 8.2 (with H(x, z) = L@, z)) 

(8. 22 a) v'_~ o;(e,/,,). =< [,,*(<,,)]~ ['L(~')d,'*(<,,) = ~o. 
t 

iD.) 

Let ~ be real in O; then, for l sufficiently great, 

3 
t 2 t 

= ( f ,  f )  
- - I  - - I  3 

2 + - -  
2 

i n a s m u c ~  ~ s 4 ~ ; ( e , A , ) = o i n  ). ~ ~ +  . B y ( S . - ' 2 ) , ( S .  
2 '  

is applicable yielding 

22 a) Helly's theorem 
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(8. z3) 

l l 

/ ,  / ,  , lim ~ d,~ a,~ (ev/te) = ~ - _ ~  d,, a (e u tt); 

the same will hold, for similar reasons, for ~ Iron real. 

Consider now, for  ~ in O, the  funct ions 

r n ,  1 

q- ~ --Z 

f I , ' i" - -  d .  , , ,  (e,A*), 

where we take  1 so tha~ 

- - I < { R Z  < I .  

Then 1 + ~ Z  > 0 and, by (8. 22 a), 

]Fn, l[ -~ a o - -  ao 1 - ~ Z '  [r,,,-z[ < = = / + 9 ~ z  

Thus, given e ( >  o) we can choose 1 = 1~ so tha t  

for all n. Together  with (8. 23) this implies tha t  

lim I d, a,, (ev/iz) = I d~ a' (ev/#). 

Accordingly,  on taking account  of (8. x 7 a), (8. 20) we obtain the relation 

lim B:j (~) = f z-z I_-~,,, d~" (e,/I*) 
--m 

for  all {B}-sets e:j < (D,j); in consequence of (8. 15 a) and (8. I5 b) the fol lowing 

result  is established. 

Theorem 8 . 2 .  Let ~ be in the set 0 (see beginning of  this sectiou). Every 

solution, referred to in Theorem 8. I, has a spectral represe~tation 
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(e~) 
I ]  . J  

(D,) ~u 
ar  

- z  t'- ' d. f f 
Jk - t~ 

-- . (..) iDa) 

The function ~p* (ev) will satLgy the integral equation (7. 3 a) for every {B}-set eu, 

,whose closure is iu (D,./) ~ even i f  u* does not vanish on the fro.tier of ev, 
The t ru th  of the s ta tement  subsequent  to (8.24) follows from the fact  tha t  

for  the solution ~p*, referred to in the Theorem, validity of the l imiting relation 

(8. 5) (with mj- -n j )  can be asserted not  only for  {B}-sets ev on whose front iers  

u* vanishes ~ as has been done previously - -  but,  more generally, for  sets eu on 

whose front iers  u* is not  required to vanish. Wi th  this in mind we repeat  all 

the developments  f rom (8. 5) up to Theorem 8. I, arriving at the  result  as s ta ted 

in Theorem 8 .2 .  

9. The  non ] t o m o g e n e o u s  P r o b l e m  (7.3).  

Let  f ( x )  be any funct ion as described in connect ion with (5.3), (5. 3 a). 

The c,,k of (5- 16) are expressible in the form 

[ .  
(9. I) e,,,k = C f ~  (y) q~,,,k (y) d u* (ev). 

* ]  

(Du) 

Definition 9. 1. 

(9. ~ a) 

Let T be the set of  points in the complex k-plaJte such that 

l ~ 7 ~ l  < ( z ) < + ~  = . .  

where lim nj = ~ and A (k) is independent of n. 

In  the  set 0 by virtue of (8. i a) one has 

(9. 2) ~ [ ~ - - ~ - ~  ~ 6~ (~ . [ e,~,k = 6~ (k) [f~ (y) [~ el u* (ev) 
(Du) 

=< 0 ~ (z) I / (y)  1~ d u *  (e~). 
(Dy) 

Hence  the set T contains the set O; T may possibly depend on f ,  while 0 is 

independent  of f .  Both  sets contain all non real k. 
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With ). in T let 9~,~(x) be a solution, such that q~(x) is integrable {B, u*}, 
of the approximating non homogeneous problem (7. I); thus 

(9. 3) q~,~ (x) = ~ f Ln (x, y) 9'~ (Y) d u* + f~ (x). 
t /  (gv) 

Since R is taken distinct from the Z,~, k it follows that ~ (x) is essentially unique 
and is expressible in the form (5. 16). Multiplying t3ae two members of the letter 
relation by ~ ( x ) d u *  (e,) and integrating we obta.in 

00 

f f ~ "" f I ~ (x) l' a u* (e.) --  f~ (x) ~,, (x) d u* (e.) --  Z k_~ X : ~ .k  ~n (X) ~.,k (X) d u (e.) 
(D.) (D~) (V~) 

in consequence of a permissible interchange of order of summation and integra- 
tion. Hence 

f ,~ .  (.),.~u. (e.)_-< [f , , .  (x).'~u* (e.)] ~ jf, . (..)]' 
(D.) (Dr) (D.) 

, , , ,  ~ 

CD.) 

and, in consequenee of (9. I a) and of Bessel's inequality, 

f If(x) ['~ du* (e~)] ~ [ f  I9~ (x)I s du* (e~)] } 
(Dac) (Dx)  

If 1' § I z I A (x) I ~,, (x) p d u* (e,) ~. 
(Dr) 

Accordingly we have the following result. 

(Dr) 

Lemma 9.1.  Let Z be in the set T (Defi~,ition 9. 1). For the solutio~2s 9p,~(x) 

of  the approxin~ating problen,s (9. 3) o~,e has 

(9.4) 

f o r  n ~ ~ 1 ,  ~75~ . . . 

f l~ (~ ) l '  =< (z), d (e.) B ~ 

IL_*v" J 

CD.) 
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By (9. 4) Theorem 4. 2 is applicable enabling us to assert that there exists 
a function 90(x) to which a subsequenee {9~mj(x)} of {90,,:(x)} converges weakly, 

in the sense of Definition 4. I, while 

(9. 5) 

We have 

(9. s ~) 

f l d~* <= B'-(Z). (~) 90 

e x e x 

lira f Lmj (x, y) 
(Du) 

Hence the limit, 

(9. 5 b) 

{.  
(y) d u* (e:,) = ] 5 (x, U) 90 (:/) d u* (:::). 90mj 

(Du) 

lim 90.,,i (x) = 90' (x), 

exists in the ordinary sense and 

/ .  
(9.6) 90' (x) = )~ / L (x, y) 90 (y) d u* (eu) + f(x). 

Now 

f 190mj (x) [" d u* (ex) _-< B 2 (Z); 
ez 

whence by (9. 5 b) and in view of Theorem 4. 3 

(9.6 a) lira f 90mj (x)d u* (e,) = f 90' (x)d x 
~X ~X 

O'(e )' 

therefore, in consequence of (9. 5 a), � 9  O' and 

where L~(x, y) is integrable {B, u*} (in y), we have 

for all {B}-sets e~ on whose frontiers u* is zero; here @(ex) is absolutely con- 

tinuous {u*}. 

In consequence of the second part of Theorem 4. I, applicable by virtue of 
the fact that  

J L,~.(x, Y)] < ]L( x, Y)], 
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(z) = ~,  (~) 

except on a set eo such tha t  u* (eo)---~ o. 

Thus 9(x)  is a solution of (7. 3) almost  everywhere {u*}. We shall now 

show tha t  a t  least one of these funct ions ~(x) admits  of ~ 'spectral'  representa-  

tion. For  this purpose we envisage the  representat ion of !p~(x) by the third  

member  in (5. 16). One has 

(9. 7) 

where 

(9. 7 a) 

P 
(x) = f (x )  -§ z ~ L (x, v) f(v) d u* (,~) - -  Z ~0 (*) 

(Dy) 

1 9~, ~ (x) 

n k = l  

whenever  n -~ 

exists; 

since 

th rough  ~ sequence of values such tha t  the l imit  in (9. I7 a) 

the values n =~n.~. of (9. 5 a), for instance, will suffice. By (9. I) and 

(Dz) 

it follows that  

(x) Y, ff. n 

k (Dr) (D~) 

Thus, in view of (6. I), (5. I a). 
o o  

(9. 7 b) )~n (x) = ~ ~ an (x/t,), 
- - a o  

/ ,  / -  

.,~ (x/.) = .1_ .1_ On (v, <u) fn (:,) ~,, (~, x)~,** (e~) ~ ~* (e:,). 

We shall write 

(9. 7 c) 
P t  l l r  

~,~ (x/t ,)  = ,r;~ (x /#)  + a,~ ( x & )  * a,, (x/~),  

[ ,  i "  
a~ (x/t~) = ] ] 0,~ (y, z/tt)f(y) L(z,  x) d u* (<)d u* (e,), 

t l  ,t] 

(Dr) (D~) 
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o:: (< , )  = f f o. (., ~/.)f~ (.)(L. (~, x> - L (~, x)),, u. (~) d u. (e~), 
, )  

(by) (v~) 

I "  1" 
a;" (x/tt) := I I O~ (y, z / t t ) ( f~  (y) - -  f(y)) L (z, x ) d  u* (e~,i)d u* (e~). 

. /  

if)v) (D~) 

By (6. ,8 c) 

(9.8) lim .;  (./,) ---- f fo(,,~/.)x(v)~(**) 
(by) (D~) 

d u ,  (~=) ~l,,* (~,,) = ~' ( . / , ) ,  

as n - ~ n j  (nd f rom (6. '4))"+ m.  In  view of (6. I9b)  (with ~,~(k) f rom (6. I9a)) 
we have 

[f ]'If ]' (9" 8 a) ;" ' ~ V~; a, (x/~) G f (y) d u* (e,,) L ~ (z, x) d u* (e~) ~, 
Q)~) (o~) 

(9. 8b) " (x/#)< '-"|]f;," (v)d,** (~v)|~ [ I l L ,  ( ~ , 1 ' - " -  . )  -- L ( . ,  ~)? d u* (~)]~ , '  
L , J  - l t / o  

(D~) (D,) 

[l ]~[f'  ]~. (9. 8 c) v ~-'~*~ a,,"' (x/F,) = < ( A  (Y) --  f (Y)) '  d u* (ev) L (z, x) d u* (e~) 

(Dr) (D,) 

On wr i t ing  

(9. 9) ~,, ( x ) =  *;~ (x) + X; (x) + ~;;' (x), 

, f I , z,, (~) = - - - -  d,, a,, (./~), 
dk - -  t~ 

c~ 

f ' d " ~;; (x) = j ~ .. ~,~ (x/.), 

ao 

f Y z - d  "' X~' ( . )  = ' G o,, ( x / . )  

i t  is observed that ,  for  ~ in 0, 

(9. 9 a )  lira z; (.) = tim z;;' (x) = o; 

th i s  is establ ished by fo l lowing a procedure  ana logous  to t ha t  from (8. I9) to 

(8.20) and by m a k i n g  use of ~he fac~ tha t  the second members  in (9- 8 b), (9.8 e) 

are independen t  of k 1, k~ and tend  to zero as n - +  r 
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I t  is to be noted tha t  the  second member  in (9. 8 a ) i s  independent  of 
n, ;lj, Z~. Wi th  the aid of (9. 8) and (9. 8 a) and following steps similar to those 

in the text  from (8. 22 a) to Theorem 8.2 ,  it  is inferred tha t  

lira Z;j (x) = d.  o (~/~) 

for ). in 0. On taking note of (9. 9), (9 .9a) ,  (9 .7c) ,  (9 .7a)  and (9. 7) we sum 
the above developments  as follows. 

Theorem 9 .1 .  Let ~ be in the set T (Definition 9. I). Let the 9o,~(x) 

(n~, n2 , . . . )  be approximating solutions satisfying (9. 3 ) (Lemma 9. 4 will hold). 

For some subsequences {9~,~j (x)} we have lira ~0~j (x) - -  q~ (x) (in the ordinary sense); 

every such function 9~ (x) will be a solution of  the equation 

(x) = ). f L (x, y) 9D (y) d u* (eu) + f (x)  9v 
(by) 

almost everywhere {u*}; q~ (x) satisfies the inequality (9. 5)- 
When ). is in the subset 0 of T any such solution admits a spectral repre- 

sentation 

(9" IO) 
f 

(~) = f ( x )  + z ] L  (~, y)f(y)  du* (e~) 
Q ]  

(Du) 

' f '  f f  -- Z - -  d, 0 (y, z/~)f(y) L (z, x) d u* (e~) d u* (eu), 
2 ~  tt 

- *  (Du) CD~) 

where 0 is a suitable spectrum; in fact, 0 is the limit of an appropriate subsequence 

of  the sequence {0,:j}, where the m~ are from (9. 5 b). On the other hand, (% 1o) 

will still represent a solution when 0 is any spectrum [0 = lim 0k~], provided that 

the set 0 is defined for the sequence kl, Ice, . . . .  

In  view of (5. I6) 

~. (x) = f,, (x) - z 

Hence it is na tura l  

simpler representat ion 

i f d. f,, (y) O. (x, y/.) d u* (e,,) 
(Du) 

to inquire whether  it  is possible to replace (9. Io) by the 
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(9. ::) t I <(x>- f f h)o(.,./.>.,,*(.,,>. 
- - ( b y )  

W h e n  the kernel  is (T*) (Definition 6. I) an analogue of the  theorem in 

(C; p. 43) wilt hold, enabling t ransformat ion  of the  second member  in (9- ;o) 

into the expression (9. I1). Offhand as much cannot  be said for the  more 

general  kernels (T). 

We shall 

representation 

(9. ~2) 

prove tha t  the solutions, referred to i ,  Theorem 9. I, admit of  a 

f '  f 9~(x)- f (x)  --,~ ~__t`  d,, f(y)O(x, y/#)du*(@) 
- ~ Q ) v )  

for ~ in O; here and in the sequel ~ is to denote convergence in the mean square. 

To prove this we introduce the nota t ion 

[ .  

�9 ~ (x/t`) = I A  (y) o~ (x, y/t`) d u* (e~), 
] 

(Dy) 

P 
( x / t , )  : I f ( y  ) 0 (x, Ylt*)d u* (ey) T 

a] 

(by) 

and proceed to establish that ,  for  l(.~ o) finite, 

l l 

(9. I3) lira ~ - ~  ~ d, ~(x/t`), 
~J - t  - t  

when i is in O. 

d~, ~,~ (x/t`) : o for 

Let  us take Z real, first. W i t h  r f rom (8. I a) one has 

l d ~#<~.+  8 

2 2 

and (with 1 suitably great) 

(9 .  I 4 )  

~OW 

(9. I4 a) 

l 2 1 

f ( f  + f) .... 
2 + -  

2 
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[ "  

. ;  (x/F) = ~ f(v) o. (x, v/F) a,,* (~), 
i t )  

(Du) 

/ ,  
( x / F )  = 

i t /  

(Dr) 

By (6. I9) see (6. I7) ) 

(f,,(v) - f ( v ) )o .  (x, y/F) d u* (e,,). 

(9. I4b) 

Hence 

(9. I 5) 

(DU) 

8 

l '2 l 

- - I  - -g  d 
~ +  

'2 

2 1 t t  / I "~ 2 

Since lim a~(x )= o it follows that 

(9. 15 a) 

l 

f I  
- - l  

- - -  O *  

267 

The same 
non real. 

(9. 15 b) 

is established by 
By (6. 21 a) 

analogous methods and using (9. I4 b), when Z is 

l 

lira f i , 
- - I  

o' 

2 l 

[f+f]... n j  - - l  8 
) . + - -  

'2 

2 l l 

- - l  8 - - l  
2 + -  

2 

for )~ real, in O; this will hold for ~ non real, as well. In the derivation of 

(9~ I s b ) u s e  was made of the fact that d~(x/F)~-o in (~ d_,2 ~ + 6 2 ) '  

inasmuch as 0 has this property. Now 
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l l l 

f ~ _ . ~  , ( I ,, 

--I --I --t 

accordingly, the relations (9. I5 a), (9. I5 b) are seen to imply (9. 13). 

On writ ing 
l 

I 
(9. ~ 6) ~ .  (x) = ~,,  (x, l) + ~,, (x. z), ~,, (x, z) = 5, (~) - z _ ~ f  - - -  & ~:,, (x#, ) ,  

Ft 
--I  

it is observed the t  the limits 
1 

(9. 16 a) lim f,~j (x) ~ ~v (x), lira f , j  (x, Z/~-- 7) (x, l) ~- f ( x )  - -  ~ d~ �9 (x/l~) 
nj nj --*l 

exist - -  the first in consequence of earlier developments,  the  sedond in view of 

(9. I3); hence the  l imit  

(9. 16 b) lim r,,j(x, l) = r (x ,  l) (~ in 0) 

exists, as well. 

(9" I 6  e) 

and 

(9. I7) 

In  accordance with this one may write 

(x) = ~ (~, ~) + r (~, l) 

f ] ~  (x) - ~ (x, ~)I ~ = ] 1 ,  
[ .  

d (e~) (x, I)[~ du*  (~). 

Now, taking 1 > I ~ Z ]  and not ing that 

k (D~) 

where summat ion is with respect  to k, corresponding to the intervals (-- ~ ,  -- l), 

(l, + c~), we have 

k 3 (ou) (os) 

�9 ~ . .k  (x) q~,,,j (x) q~..k (y) ~,,,j  (8) d u* (e~) d,** (e.). 
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Mul t ip ly ing  by 

obtains  

f l,-~(x 
(Dx) 

Thus  

d u*(e,), recal l ing the  o r thonorma l  charac ter  of the  q~,,k(x) one 

, /)[~ du*(e,)  

= ,,f f I X -  Z,,,~ ' 
(by) (D,) 

-' S) f ,rolx (/ . _ .  i ~ d. w. (~), 
( v . )  - -  ~ l 

By (6. I9 b) 

;f w,~(t,) = O,,(y, s/~)fn(y) f i ,(s)du*(ev)du*(e,) .  
. a  

(Dy) (Ds) 

V~:w,, (#)=< f F~ (v) l' d ~* (~,) <= f W(v) l" d u* (e,,). 
(1)y) (by) 

Now, wi th  --  1 < ~ < l, i t  is observed t h a t  

(9.  ~8) ~ < 1 - {l~---z = 1 + ~ z (*' < - -  l) .  

Whence  

j '[ ,'. (x, 1)l ~ (e~) < [ (Z-  m Z)-" + (Z + mZ) -~] ]Z] ~ V,v,,( ,)  du*  
(D,) 

_--< [(1 - -  ~ Z) - ~  + (l + ~/~ Z)-~] [ )~ I ~ f I f ( Y ) 1 "  d u *  (ey) = r (1), 
] 

(Dr) 

where r (1 )~  o, as 1-+ + o~ and r(1) is independent of  n. For  the l imit  (9. I6b)  
we accordingly obtain the  inequal i ty  

f I," ~)] ~ (ex) <= ,.(1) (x, d U* 

(Dx) 

Therefore,  on le t t ing  l in (9. I7) approach  infinity, it  is deduced t ha t  

( . ,  ~) ~ ~ (x) (in (D.)); 

~0(x, l) being defined in (9. I6a),  the t r u th  of (9. I2) is now made evident.  
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A still different representa t ion holds. In  fact, we shall establish that ,  for 
in O, the solutions, referred to in Theorem 9. I, are r~resentable in the form 

o~ 

[ f '  f ] (9 I9) 9~(x) = f ( x )  -- ~.Dx )~--~d:, f(y)O*(e., yl#)du*(ev) 
- ~ ( D u )  

almost everywhere {u*}; here D~ is the symbol of a 'regular' (iu the se~se of 
(S; I 5 2 - - i 5 6 ) f o r  i~stance) set.derivative with u* used as the measure function. 

We h~ve j~ (y) ---, f (y) and, by (8. 21 a) 0~j-> 0". On the other  hand,  

If.(y)l <= If(y)l, where If(y)l' is integrable {B, u*} and 

f o~'(e., y/#) (~u* (e,) _-< ~,* (e~) 
(ou) 

in view of (8.21). Hence  by virtue of Theorem 4. 3, on wri t ing 

one obtains 

(9. 2o) 

O* ~. (e=/,) = f~ (y) ,, (ex, y / , )  d~,* (e,,) 

{. 

lim ~,,j (eJt~) = ~ (eJ#) - - / f ( y  ) O* (ex, y/:e) d u* (e.u). 
(Dr) 

Form the sum 

0* V,,,,m = %, l f f t  (Y) ( ,, (ex, "~/1.) -- O,* (ex, ff/l,,-J)) d u* (ev) ] 
= l  ( D u )  

(41 = lo < 11<""  < l~ - -  ~).  Then 

~ f I r..,,, = ~.~ (") f .  (y)~p,,,* k(ex) q~.. k(y) d u* (ev) 
,,=l k (ou) 

I ;  I 
< + e 

k (D~) 

< . [z f,.+ ,.. , . 

Hence by Bessel's inequali ty and in view of (8. 3 b) 
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~. ~o .~ ~ ;-,~ ~e,,,,~ ~ ~. ~'.-, ~'n . , ~  ,~ ,~ .  (~.~.,~i 
(Dy) 

where ~ ( <  + ~ )  is independent  of n and Zt, Z~. 

By (9- 2o), (9- 20 a) and Helly 's  theorem for Z real, in 0, we have 

2 1 2 1 

, ,~([+f) ' (f f) ' 
�9 - - I  d - - 1  

2,.+ ) . + -  2 2 

and, for Z non real, 

(9. 20  b) 

l 1 

lim [" I d I 

inasmuch  a s  ~n@.r/!t) is constant ,  as a funct ion of re, inter ior  the  interval  

(Z--  d, Z + d) the same will be true for ~(eJtt) cf. (9- 20)); consequently (9. 2ob) 

will hold for all Z in 0.  Now, with l>[9~Z[ one has (9. ~8) and, by virtue 

of (9- 2o a), 

i(f § J)~:~'~'#~l  ~ e 

< [(1, - ~ z ) - ,  + (t + ~ z) - , ]  (9~ ~ I ,  2 ,  . . . ) .  

The last member  here is independent  of n and approaches zero, as 1 - ~ ;  

together  with (9. 2ob), this fact  implies that  

a e  

(9. 2 I) lira ' I d~, ~ (e J# )  = d n ~ (eJ#) 

for Z in 0. 

Taking the indefinite integral  Of the  two members in the formula preceding 

(9- Ix) and observing tha t  eertMn changes in the  order  of in tegrat ion are 

permissible, we obtain 

J" l f ~,~ (:2;) d . *  (,,,) = ~ f~, (x) d . *  (r - -  i - -2 -~  d,, ~,~ (~#n).  



272 W . J .  Trjitzinsky. 

I t  had been previously established tha t  (9. 5 b) implies (9. 6 a); thus 

~ gX 

0 n  the other  hand, < I f (x)[ ,  where If(x)[ is integrable {B, u*}. 

in view of (9-2~) 

e x ~gg - -  

Hence 

(see (9- 20)), f rom which the conclusion (9. I9) follows as stated. 

Using (9. 3) and Lemma 9. I we obtain 

(9. ~2) ] ~ ( x ) l < ] Z [ L ( x ) B ( Z )  + If(x)[, [~ , , ( x ) - - f , , ( x ) l<]ZlL(x )B(Z) .  

One also has 

/l l 
y) --L~ (x, y))~ d u* (e:i 

W h e n  the kernel  is (T*) from the above it is inferred that  

(9. 22 a) [ (qgn (x,) - -  f ( x l )  ) - -  ((~n (x) - - -  f ( x ) )  I 

y))~ 
~ 4 t ]  

(Dy/ 

,] d u* (e, B (Z) 

for xl, x in any closed set co o, <(D~)  ~ and for all n ~ n ' ,  where n' depends 

o n  (D O . 

In  view of (9. 22 a) the solutions qv (x) referred to in Theorem 9. I are corn 

tinuous in x for  x in (D~) ~ provided L (x ,  y) i.~ a kernel (T*). 

In  the  case of (T*) the approximating sequences can be so selected (using 

Vitali 's theorem) tha t  limits ~(x), sat isfying equations (7. 3), are continuous in 

x (in (Dx) ~ for every 2 in the set T and are analyt ic  in Z at  ~ll the  inter ior  

points of T (for every x in (Dx)~ such results ~re analogous to those obtained 

for certain kernels in (C). 
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IO. Operators O and their Applications. 

We shall first consider equations (7. 3 a) for kernels (T), when the integrals 

of Hypothesis 7 .4  exist and when u* is 'regular' (Definition 8. I) with respect 

to the frontier of (D). 
On writing 

(IO. I) ~)*(eq)-- ~'*(ey) = A ( e y ) ,  ~)*(ey) - -  1 ?*(ey) = A n ( e y )  

in place of (7. I a) and (7. 3 a) we have 

2) An (e,)=2, f [ f L,, (x, y)du* (e:,)]dA,, (io. (~..) + 2`y. (1,'*/~.), 
. J  I A ,  I J (l)~) "v 

A(e,)---- 2̀  f l f  L(.~, y) du*(e.)ldA(e.,) + 2`g(F*/e:.) IO. 2 ~) 

where 

( io .  2 b) g,, (F*/e:,) = .~f [ f L,, (x, y)du* (e,t)] d/"* (e,,), 

(,o. , c )  g(Z'*/e,,)= f [ f  L(x, y)du*(e:,)] d F*(e,.). 
(Dx) "u 

Consider now two equations (IO. 2): 

(IO. 3) 
(Dx) ey 

...(.,,)=.f[f (:.., ,,).. (.,,)].,.. (..) 
(Dx) 'u 

+ 2̀  g,~ (~F*/e:l); 

the decompositions of the additive functions of {B}-sets ~./"* being 

(Io. 3a)  ,F*(e,.) ,l"~;(e,.)--iF~(e..),i l ( e , . )>o ,  i l 2 ( e ~ ) > o ,  

we write 

(Io. 3 b) 

only and we consider 

the integrals 
18 

v* (e.) = ~F~ (e.) + d ,~  (e.) (i = i ,  2) 

such functions F*, iF* (as the ease may be) for which 
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(~) 
(Dz) (D~) 

exist (in agreement  with Hypothes is  7 .4) ;  such function,s will be termed admissible 
with respect to L (x, y). 

Set-functions ~A,(e:/) (i = I, 2) sat isfying (Io. 3) exist, for  ~ in O; moreover,  

by (8. 4a) 

for i = I , 2  and for ~ in O, 

fol lowing identi ty is satisfied: 

the funct ion fl(e:,~) being defined in (8.4).  The 

(I o. 4) t'f ['~ L~ (x, z)d 1F* (e~)d~A,~ (e.,,)~_ t'] t]* L,~ (x, 
f ,]  

(.~:) (D~) (.~) (Dz) 

To establish this we note (see (7.9)) tha t  

;A,~ (~:,,) = f ~c,, (7)d ~,* (~,,) 
. J  

ey 

here ~F,~(y) is integrable {u*}. The integrals 

f L, (~)I ,n~ (x) ld,,* (~,,.) 

(i = I, 2; n = ~, 2 . . . .  ), where 

exist. 

F 
L~, (z) = t L:, (x, .v),t.* (e:,), 

/ 

(by) 

d J,~* (~) d, A,, (~). 

(io. 5) 

Accordingly,  by virtue of Lemma 7. 2 (applied to d:,,(y)), one has 

t "  
i['u (7) f L,~ (x, y) ~F~ (x) d u* (e,.) + ~q,, (y), 

12 

(Dx) 

(i = I, 2); 

f . J$ 

From these integral  equat ions it is deduced that  

(cf. (7-6), (7.6 ~)). 
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(,o. s a) lqn(*)'r'lx)du*(e*)= .(~q'c(X) lFn(x)du*(%)' 
(D~) (D,) 

which is an  iden$it~ precisely ~nMogous to a result in the classical theory. In  

view of "the relation connecting ~A, and ,.I~ from (Io. 5 a) it is inferred that  

Finally, replacement of the iq,~ (x) by their expressions (I o. 5) will yield the identity 

(Io. 4) (for X ~  X..j; j = I, 2, . . . ) .  

Let s be in O. In  this set we have (8. la)  for n-----nl, n ~ , . . .  (ns--~ +~r 

as s - ~ ) .  In  the sequence {ns} there exist subsequences {m~} such that  

'(I o. 6) l im O~ (x, y/X) =- 0 (x, y/,~). 

Of course there may be more than one spectral function 0. For a fixed set 0 

the sequences {m~}, for which a relation (Io. 6) holds, depend on the kernel 

L(x, y) only. We observe now that the result of Theorem 8. 2 amounts to the 

following. 

Let A,ni(e, ) be the solution (E in O) of the equation (IO. 2) (with (Io. 2 b) 

and n = m j).  The limit 

(Io. 7) lira Amj(ex) = A (%) = ~* (e,) -- F*  (%) 

exists for {B}-sets e~, whose closure is in (D,) ~ provided u* is regular with respect 

to the frontier of (D~.) and provided that F* (e~) is admissible with respect to L (x, y); 

moreover, under these conditions A(e~) satisfies (IO. 2a) and, in view of the re- 

presentation (8.24) , 

d F* (%) 
s t / I - a ]  . 1  (Dz) % 

-| (D,) (1),) 

for Z in the set 0 (Hypothesis (7.4) assumed). 

The operator 0()~, ev/...) depends on L, 0". Now 0* (rather, 0) has been 

defined by (m. 6); the sequence {m~} therein involved being independent of any 
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possible choice of F*, it follows that the choice of O* in 0(~, ey / . . . ) i s  in- 

dependent of F*. Hence, the operator 0 (~, e~/...), defiued by the last ~nember in 

(Io. 7 a), is i~depe~dent of F*; this is a linear operator which is d@,ed for all 

additive fitnetions F*, admissible with respect to L(x,  y) (u* being regular with 

respect to the frontier of (D.~,)). 

On letting in (IO. 3) n = mj and on taking account of (m. 7), (IO. 7 a), in 

the limit we obtain 

lira ~A,,,j (ex) = ~A (e,.) = 0 (J,, eJ ,F*)  

where iA(e~.) is a 

whenever ~F*, ~F* are admissible with respect to L(x ,  y), 

( i= x, 2), 

solution of (Io. 2 a) for F*-~  r Moreover, o~2e will hat:e, 

(Io. 8) f f L(x,z)diF*(e~)dO(Z, eJ~F*)= f f L(x,z)d~F*(e~) 
(D~) (~) (D~) (~) 

d 0 (;t, eJ, F*). 

To establish this identity, we put in (to. 4) n-~ mj and pass to the limit. 

shall now proceed to justify the latter step. 

With the first member of (lo. 4) in view, let us form 

e.(ex, e~)--- f f L~(x, z)d,~'*(ez)d~An(e~). 
~X 87, 

We 

Repeating the reasoning subsequent to (8. 8), replacing d u*(e~) by d l~'*(e~ ) 
I$ $ (eventually, by dr1 (e~)) and ~* by 2A,~ ---- 2~,~ --  2 F*, in place of (8.9 a) one obtains 

le,,(e~, ~z)l =< [Izl 
(for 2 in O) 

(io. 9) 

+ 
(z)l ~1 

e z 

/ .  / .  

a ]  
(1)~.) ez 

The first member in (Io. 4) is of the form 

(io. 9a) e,~(Dx, Dz). 

We assume that the set-function v~ (ez), corresponding to 1~'* (e.~) vanishes on the 

frontier of (Dz). There exists a sequence of closed domains 

~z, 1 ~ ~z ,~  ~ �9 �9 .~ 
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each lying in the interior  of (Dz), such tha t  

lim ~.~, ,, -= (Dz) ~ 

With  u* (e~) regular  with respect  to the f ront ier  of (D~), we designate by w~,~ 

(r == ,, 2, . . . )  a sequence of closed domains, each in (D~) ~ such tha t  lira os.,. ~-~ (D~) ~ 

while u * - = o  on their  f ront iers  (also, u * - = o  on the  f ront ier  of (D~)). Now, 

by (ro. 9) 
] O,~j (Dx, D~)I A fl (D~., D~) < + oo (j = l, z , . . . ) ,  

the mj being the subscripts involved in the definition of 0(Z, e,s/...) (cf. (Io. 7), 

(IO. 7a)).  Hence  the  sequence {mj} contains an infinite subsequence {ks'} for 

which the  limit 

lira eej (D~, D~) -~ a 
(~o. ,o) s' 

exists. Clearly, if in (Io. 7) mj is replaced by Icy the  resul t ing operator  0(Z, ey/. . .)  

will be unchanged.  

One has 

where  

R~,"  ~- r (D~ - -  w~, ~, ~ ,  ,) + Ok (~o~, ~, D~ - -  ~ ,  ,) + Qk (D~ - -  co~,r, D~ - -  ~ ,  ,).  

In  consequence of (Io. 9) 

(Io. Iob)  

where 

Accordingly,  in t roducing the expression for fl, a f ter  some simplifications we obtain 

[ �9 f ] I n~. .  I =<- I z l  + a (z)_i ~'' 2 L<~,._ ~,~, ~)(~) d v, (ez) -2- L (z) d v*z (ez) , 

f 
L ( ~ _  ~ ,  ~) (z) = ~ L ~ (x, z) d u* (e~). 

* J  

( ~  - ~ ,  r) 

Since os~. r .-o (D,) ~ while u* vanishes on the  f ront ier  of (D~,) one has 

lira L(~,__ o,x. ,) (z) ~- o. 
r 
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Now the, integral  

exists, while 

(Dz) 

L( .~_  ~:~. ~ (z) =< L (~); 

hence the first integral  displayed in  (Io, ~ob) approaches zero as r---~m. On 

the other hand,  ~,,---*(Dz) ~ (as v--*:r while v~ is zero on the f r o n t i e r  of (D,); 

whence 

lira ; L (z) d v~ (e~) --  o. 
. ]  

(Dz - ~z, ,) 

Accordingly, an implication of (IO. Iob), essential for our purposes, is tha t  

(I0. IOe) 1/~' '1 ~ O '''~, 

where ~r,v i8 independent of  k and 

(Io. Iod)  lira r 

the order of the l imiting processes in (Io. rod)  is immaterial .  

We have .L,)(.~:, z ) =  L (x, z), for x in w~. r and z in ~ ,  ,,, w h e n ,  ~ n', where 
P n may depend on r and v. Thus 

f L(., ~) d (e:) 

The funct ion of x 

(n >-_ u'/, 

is continuous in the closed domain ~o~. r. I t  is also observed tha t  the sequence 

of funct ions {~A,~(e~)} is bounded, uniformly with respect to n, and tha t  the 

~Akj(e~), as well as the l imit  

lira ~A~j (eJ = .~A (eJ, 

vanishes on the f ront ier  of W.,.,r, inasmuch as u* does so (we note tha t ,  in 
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accordance with section 8, the 2A~j(ez) and ~A (e~.) are absolutely continuous {u*}. 

Hence by the theorem referred to in connection with (8. 7) 

lira 
~3 d 

Hence by (IO. IOa) and (IO. IO) 

lim Bkj 

exists. In view of (IO. IOC) 

and, by virtue of (IO. IO d), 

f n (x, z) (t 1 ~z* (ez)(~ o d (ex). 
r176 r .:z. qr 

= o - e (~,,.,., ;., .) 

(Dx)~ (Dz)~ 

d,v* (,.),~.A (e~.). 

In  the last member, here, (D,) ~ and (Dz) ~ may be replaced by (D,) and (D~), 

respectively, since v~ and u* (hence, ~A) vanish on the frontiers of these domains. 

Thus, on making use of (IO. IO), we obtain 

IO. I I)  

in view of 

0 (z, e , / #  ). 
{sA of {kA 

where 

(D,) (Dz) (D,) (Dz) 

the remark subsequent to (io. IO) one may replace eA(e~) by 

By a similar procedure it can be shown that for some subsequence 

1" F t "  [ .  
lira 

(Dx) (Dz) (Dx) (DZ) 

1A (ez) = 0 (J. ez/1F*). 

The sj are introduced at the step corresponding to (IO. IO). I t  is observed that  

(Io. II) will hold when the kj are replaced by the sj. We are ready to formulate 

the following result. 

Theorem 10. 1. Let ~ be in a set 0 and let u* (e.~) be regular (Definition 8. I) 

u'ith respect to the fi'on/ier of (D~). Correspo,di~g to every spectrum (IO. 6) there 
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exists an operator 0(~, ey / . . . )  of the form (IO. 7 ~). Whenever F*  is admissible 

with respect to L(x ,  y) (in accorda,ce with the text in connection with (Io. 3 c)), 
the set function 

A (e~) = 0 (~, e~/F*) 

will constitute a solution, for ~ in O, of the non homogeneous problem (Io. 2 ~) (el 

This operator satisfies the identity (~o. 2 ~)). 

(m. I:) f f (~, ~F* (e~) (z, e;~F) L g) d d 0 

(D~) (D.) 

With the aid of the 
uniqueness theorem. 

Theorem 10.2. Let 

(,o. i ~ ) f f L ( x , z )  
(D~) (~) 

is immaterial, one has (for ~ in O) 

d 1F* (e~) d 0* (Z, e; . ,F*)  

=ff 
above identities 

frontier of (D~). Assume, moreo~:er, that L(x ,  y) 

definite in the sense that the i,tegral 

i (x, 2')(~ 2~ ':~ (Pz) d 0 :~ (~, ex/1F*). 

we sh~ll establish the following 

be in a set 0 and u* be regular with respect to the 

is a kernel of  the form (T), 

for ~ in O, whenever set-fu~wtions v*(e~), v*(e~), corresponding to 1F*, ~F* (cf. 

(Io. 3 b), (Io. 3a)), are admissible with respect to L(x ,  y) and vanish on the frontier 

of  (D~). 
When F*  is admissible with respect to L (x, y), 

ga* (e~.) : O* (~, eJF*) -~ F*  (e~.) + 0 (Z, e~/F*) 

is a solution of (7. I ~) (for 2~ in 0). Whenever, in addition to the previously 

stated conditions, 1F*, 2F* are such that the order of integration i~, 

f f L(x,z)d~F*(e:)d~F*(ex) 
(D,) (D~) 
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(,o. ,3) q(z)--- f fL( , 
(0,) (D~) 

is distinct fi'om zero for all additive fonetions y (possibly complex valued)of {fl}.sets, 
not identically zero, and such that this integral maintains the same sign for all 
such functions. This assertion is made for functions ~ for which condition, s of the 
form (Io. I6), (Io. I6a) hold and for which, of course, Q(7)exists. 

(I~ I f  for a non real Z* the equation 

~* (e,)= ~ f f L ( x ,  y)du*(ey)d ~* (e~) (io. I4) 

has ~* (ey)-~ o as the only solution the same is true for all non real ~. 

(2~ The number of distinct solutions of the equation (Io. I4) is the same for 
all non real ~. 

(3~ I f  for ~ = ~, fixed in O, the problem (Io. I4) has no soluhons (distinct 
fi'om zero) the same is true for all non real ~. 

(4o). The number m of solutions of (IO. I4)for any real ~ in 0 is equal to 
or is greater than the number n of distinct solutions for non real values of ;t. 

If  (i ~ does not hold there exists a function ~* (ey)~ o, satisfying (Io. I4) 
for some non real ~, distinct from ~*. One has 

~* (ey)--;t* f fL( , y)du*(ey)d~p*(e~)~-lF*(ey)-~ ( i - -  ~*-) ~* (ey). 

Since the solution of the homogeneous problem, for ~*, is uniquely zero by 
the hypothesis of (I~ one may rewrite the above in the form 

(io. I5) 

Now 

O* (~*, ey/1F* ) : ~* (ey). 

~*(e,.i)-- ~ f f L(x,y)du*(ey)d~*(e~)~O, 

~*(ey)--x* f f L(x, y )du*(ey)d~*(e~)~F*(ey)~- ( I - -  ~)~*(e.,i). 
(D~) ey 
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Thus, in view of the remark leading to (IO. I5) , we have 

(10. I5 a) 0 "  (),*, ey/2]?* ) = ~):v (ey). 

In consequence of the identity (IO I2 a) 

L (x, z) el ~p* (ez) d ~p* (e:~) 

d ~p* (e~) d *p* (e,) 

and, with the aid of the notation (Io. I3), it is deduced that 

(IO. ISb ) ( I - - ~ )  Q ( ~ * ) ~  (1--~-~) Q(~*). 

:Now, inasmuch as ~p*~ o and L(x,  y) has been assumed definite, we have 
Q(~p*) # o. On the other hand, by virtue of the symmetry of L(x,  y) and of 
the possible interchange of the order of integration in the repeated integral 
defining Q(~p*), we have 

(IO. I s e) Q(g)*) = Q(~)*). 

Thus, from (Io. 15 b) it is inferred that ~ = Z ,  which implies a contradiction. 
Accordingly (x ~ has been established. 

Here and in the sequel it will be understood that only those solutions ~p* of 

the homogeneous problem (IO. I4) are considered for which the order of integration 

in Q(~p*) (cf. (Io. 13) is immaterial, the integral 

(IO. I6) ( L  (x) el ~*(e~) 
a ]  

exists, while for the functions 4" (~  o), ~p~ (=  o), from the decomposition ~p* = ~p*-- ~p~, 
we have 

(Io. I6 a) ~p* -= o, ~p~ ~ o (on fi'ontier of (D~)). 

Incidentally, the latter condition is certainly satisfied when ~p* is absolutely 
continuous {u*}, inasmuch as u*(ex) being regular with respect to the frontier 
of (D~), gJ* will vanish on the frontier of (D~) together with u*. 

The above conditions enable rigorous justification of the steps involved in 
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the proof of (I~ Thus~ it  is noted that  1F*, ~F* are zero on the frontier of 

(D~) in so far as (m. ~5~) h o l d s -  t h i s  enables  application of the identity 

(io. 12 a). On the other hand,  ~he inversions (Io. 15) , (m. 15 a) are possible, in 

accordance with Theorem m. I, in view of (IO. I6). 

To prove (2~ suppose tha t  for non real. ~*, ~, on the same side of the axis 

of reals, the homogeneous problem h a s  n and m ( >  n) distinct solutions, 

respectively: 

g,';, . . .  V,,~ ( f o r  Z*); ~, . . . .  g,,, (for Z). 

'Distinct' ,  here and throughout ,  means  of course 'linearly independent ' .  

form solutions for ~ by writing 

1 

We 

where the cj are constants (uota all zero). One has 

~(e~)--,~* f f L(x, y)du*(e~j)dg:(e~)= ( I - - ~ ) ~ ( e y ) ~ - l F * ( e y  ), 

_ _  ) ~ *  r ~)(ey)- ,~* f f L (x, y)du* (ey) d~)(ey)-~- (I ~)~(ey) ~- ~i~:'* (ey). 

Together with the ~pj t he  function tp satisfies (Io~ I6), (Io. I6 a). 

hand, 

o* (~*, e A F * )  = ~ (~.) + ,~  (e~), 

Hence, on one 

o* (z*, e&F*)  = ~ (eJ + ~.~ (~x), 

where q)~, q), are certain solutions for ;~*; on the other hand, in consequence 

of identity (Io. I2 a), applicable since the real and imaginary parts of ~:F*, 2F* 
satisfy (IO. I6), (Io. I6a),  

f (Dx) (D~) 
d ~ (e~)[d ~ (e~,) + d ~ (e~)] 

= (i - - ~ ; ) f  f L(x,z)dg,%)[d~p(e:)+dO~(ex)]. 
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Since m > n one may choose the cj so that  

(IO. I7) f f L(x,z)d~O(e=)dO(e.)=o 
(Dx) (Dz) 

for all solutions O (for Z*) of the homogeneou s problem. 

(I- ~)f f ~(x, .). ~ (..). ~.(..)+ (,- ~)Q(~) 
(Dx) (D,) 

We then obtain 

inasmuch as Q(Cp)~- Q(~) (cf. (m. I5 c)). Accordingly 

(m. J8) (~-~) f f ~,x..),~(e~)~ ~. (..)= (~-~)Q,~) 
(D.) (D,) 

Now, O-a being a solution of the homogeneous problem for Z*, one obtains 

and 

l "  [ .  
~.. (ey) - ~* I ] L (x, y) d u* (ey) d ~ (e.) ~---- 0 

t /  r  (~*) *u 

f f (")  ~2 (%) --  )~* L (x, y) d u* (%) d oe (ez) : I - - ~  ~ , (%)~aF*(%) .  

Since ~p(ex)and O*(Z*, eJ, F*) satisfy conditions of the form (Io. I6), (,o. I6a), 

the functions ~e (%), BE* (%) also satisfy these conditions. Hence Theorem Io.I 
is applicable to the above relation, yielding 

O* (]~*, %/aF) = O~ (%) + Oa (%), 

where q}a is a solution of the homogeneous problem for Z*, 

O* (Z*, ey/2F) = Cp (%) + ~ (%) 

(from the preceding) and 

(,-~) f f + dq)3(e.)] 
(D~) (D~) 

Z* = f f L(x, z)d ~,(e~)[dUp(e,)+d O, (e,)]. 
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On making use of (IO. i7) it is inferred that  

f L (x, z) d ~ (e~) d ~., (ex) 

= f fL( , z) d~2(e:)d~(e:)+ ( I - - ~ ; )  Q(~,). 
(Dx) (D~) 

The two double integrals here displayed are identical in view of the symmetry 

of L(x, z) and of the possible change of order of integration. Hence 

(D,) (D~) 

and, by virtue of (IO. I8) 

L (x, y) is definite and Q (~) # o. I f  ~ ~ o, then Q ( ~ )  will have the sign 

of Q(~). Accordingly, (IO. 19) presents a contradiction, inasmuch as the numbers 

I I I I 

are of opposite sign. The case when 4, 4" are on opposite sides of the axis of 

reals is covered by  a remark analogous to that  used for a similar occasion in 

(C). Thus, part (2 ~ of the theorem has been established. 

The above proofs of (I~ (2 ~ are partly analogous to certain developments 

in (C; Chapter II). 

As we turn to the demonstration of (3o), (4o), lines of procedure are 

suggested to us by (T; pp. 604--5o7). Thus, to prove (3 ~ ) we first make the 

observation that  if ~1 is non real the conclusion of (3 ~ is a consequence of (x~ 

Hence, if (3 ~ ) were not true there would be on hand a real ~,  in O, for which 

(IO. 14) has no solutions ( #  o), while for some non real ~ there exists a function 

~p*, distinct from zero, satisfying (IO. I4) (for this value of 4). Accordingly 

,,*(ey)-- zl f f L(x,y)du*(e:,)d~*(ex)==(I--~)~*(ey)~lF*(ev). 
(Dx) e~ 
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The  equat ion obta ined by replacing,  here,  ~F* by zero has no s o h t i o n s  dis t inct  

f rom zero. Hence  in view of Theorem Io. I 

4 "  (~) = o* (&, e,Aze*). 

We also halve 

and 

(Dx) ey 

By virtue o f  iden t i ty  (Io. I2 a) 

t ha t  is, 

~tere Q(~p*)~ o. W e  arr ive at  a contradict ion,  which establishes (3~ 

To demons t ra te  {4 ~ (compare with {T; pp. 6o6--607) ) suppose that  (4 ~ does 

~o t  hold. Then  there  exists a real  value s in O, for  whieh there  are m dis t inct  

solut ions;  for  these one has 

(D,) ev 
(j  = I, . . . , , ) ,  

while :for a non real  4" there  are ~, n > m, dis t inct  solutions for  which 

(D,) ~v 

The ~Oj may be considered to be real-valued. W e  cons t ruc t  a solution (for 2*) 

n 

2 ,  * 
] 

where  the c, are constants ,  not  all zero, chosen so tha t  
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IO. 20) f f L (x, z) d (e~) d (e~) = g,, 0 

(Dx) (Dz) 

for all solutions ~ of the homogeneous problem for the value ~. In  fact,  

~p (e~) = ~ dj ~. (~,) 
1 

so t ha t  (IO. 20) is seen to hold if 

j : l  ~':1 (Dr) (Dz) 

for all constants dj, t h a t  is provided 

c, L (x, ~) d 9: (e~) d rpj (e~) 
,,=l (Dr)(g~) 

= o ( j =  I , . . .  m); 

the lat ter  relat ions can be secured in so far  as it  has been assumed tha t  n > m .  

We  have 

thus  

~,* (e:,,)- Z f fL(x ,y)~lu*(e~)d'~*(e~)=(I--~)~,*(e~i)  
CDr) ~u 

= ; / ( e ~ ) ,  

O)*(e:,)--x f f L(x,y)du*(ey)d~*(ex)=(I--~)~*(e:~)=~'(e~.,) 
(Dx) ey 

and, by virtue of Theorem Io. I, 

~* (~:,) = o* (~, ~,/F) + ~ (~,~), 
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where 7~, Y~ are certain solutions of (Io. I4) for 4, satisfying conditions of the 

form (Io. I6), (io. I6a) (since ~p*, 0*(4, ey/F) do). Inasmuch as 

o* (4, e / ~ ' ) =  O* (4, elF), 

one has 72(%)= 71(ey). In  consequence of the identity (Io. 12 a) 

(D,) (D~) (D~) (Dz) 

and 

f f (1),) (1)~) 

d ~* (e~) ~ [4* (e.~) -- r, (e~)]. 

Whence, in view of the remark in connection with (Io. 2o), 

here 4"  r o and hence Q(~*) r 0; consequently 4" must be real contrary to the 

previously made supposition. This completes the proof of (4 ~ and of the theorem. 

I t  will be 

for every 4 in 

from zero. 

A class of 

I I. Operators 0 (eontinueil) .  

said that  L (x ,y )  is of class I in a subset O' of a set 0 if 

O' the homogeneous problem (Io. I4) has no solutions distinct 

additive functions (possibly complex-valued) of {B}-sets will be 

said to form a class E if (I ~ every F(e~) of the class vanishes on the frontier 

of (D.), (2 ~ every F(ex) of the class is 'admissible' with respect to L(x, y) 
(cf. (~o. 3 c)) and (3 ~ for every pair of functions, /~ ,  F2, of the class the order 

of integration in the repeated integral 

(I I. ,) ; f L(x, z) d F  1 (e~.)d F2 (e~) 
i t /  ~d 

(Dx) (Dz) 

is immaterial. The above is implied to refer to the non negative components 
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in the decompositions (into differences) of the real and imaginary parts of th e 

functions involved. 

Theorem 11.1. Let u*(e~,) be regular (Defi~dtion 8. x) with respect to the 
frontier of (D~.). In order that a ~'er~wl L (x, y) should be of class I in a m~bset 
O' of a set 0 it is necessary that 

(I[. 2) f f L(x,z)d 
(Dx) (Dz) 

] f  f L(s'z) du*(e )dF1(e )] dF2(e ') 
(l~s) ez 

= f f L (x, z) d l f f L (s, z) d u* (e:) d F~ (e~)] d F~ (c~) 
(Dx) (Dz) (Ds) ez 

for all F1, �9 �89 of class E such that the ~t~ctions 

f f L(.~, y)el u* (e,.,)d F 1 (e~.~), f f L(.% y) du* (e:~)dF 2 (ex) 

are also of class E. Conversely, i f  (I I. 2) holds for all Fx, te~_ < E such that the func- 
tions (II. 2 u) ~ E and i f  L(x, y) is definite (Theorem IO. 2), the kernel L(x, y) 
will be of class I for all no~ real values )~. 

To prove the first part of the theorem let F:,  F~ be u pair of functions as 

described subsequent to (lI.  2). Then the functions G~, G2, defined by the 

relations 

1'1 
q ]  

(D~) ~u 
(~:. 3) 

F~ (~,,) - z L (x, y) d u* (~) d 1, (e~) -- G.~ (e,,) 

(Z in 0'), will belong to a class E,  inasmuch as the Gi are differences of func- 
t o ' ~ 

lions of class E.  Under the supposition that L(x, y) is of class I in 0 ,  :nverslon 

of (I I. 3) with the aid of Theorem 1o. : is possible, yielding 

F:(e.~,:) = 0"()., eJG~), F~(e~): O*(Z, e.~/G2) 

Hence, the requisite conditions of this theorem being satisfied, the identity 

(xo. :2 a) takes the form (when applied to GI, G~) 

f f L(x, z) d el (e~)dFe (ex)~ / f L(x, z) d G~. (ez) d F 1 (ex). 
(Dx) (Dz) (Dx) (Dz) 

19 
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Substi tuting,  here, the expressions for  the Gi f rom (i :. 3), we obtain 

{:: .  3 ~ ) f { f L ( x , z ) [ d F , ( e ~ ) - - z d f f L ( s , e ) d u * ( e : ) d F , ( e . ~ ) l } d F ~ ( e ~ . )  

= f{f L(x, z) ldl '~(e. . ) --; td f f L(s, z) du* (e.:)dI,'~(e,)l}dF, (e~.). 
(D,) ',<D~. (D,) ~z 

Now 

(D~) (D~) (D,) (D~) 

this is established by in terchanging x, z in the  first member  (for instance), by 

not ing  tha t  L (z, x) - -  L (x, z) and by changing the order  of integrat ion,  the  la t te r  

operat ion being permissible since F , , / ;~  are of class E.  From (I I. 3 a) one then 

derives the  relat ion (i i. 2). 

Suppose now that (II .  2) holds for all F1, F2 of E for which the.functions 
( i I .  2 a) belong to E. I f  the  conclusion of the lat ter  par t  of the theorem is not  

t rue  then there  exists a non real value ~ and a solution ~(e.v), # o, of the 

homogeneous problem (IO. I4) for this s In  this connection,  it is to be recalled 

tha t  a solution of (IO. I4) is always implied to satisfy conditions of the form 

stated in conjunct ion with (IO. I6), (m. I6 a). One has 

(:'. 4) 

(:,. 4a) 

/. /" 

a /  t /  

/ - f  
g~ (e.~.) = 0. 

(D.? e v 

Using notat ion (Io. 13) we have 

(D,) (Dr) (1),) (~v) 

L (s, y )d  �9 (e,,) d �9 (e,). 

Subst i tut ion of (I i. 4) in the second member  and of (I I. 4 a) in the third  member  

of (I I. 5) will yield 

i f { f  [ f f  l} (II .  5 a) i Q ( @ ) =  L(s, y)d L(x,  y)du*(e:,)d@(e:~) dO(e, ) ,  
(Ds) (~v) D ' ( X? Vy 
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Now q~, ~ are members of E;  in 

formed with 
F1 

will also be members of E. In 

this would imply that  the second 

and, necessarily, 

is inferred that  

291 

view of ( i i .  4), ( i i .  4a)  the functions (II.  2 a), 

= a ) ,  F , = a )  

consequence of the previous hypothesis (I I. 2) 

members in (I I. 5 a) are equal; hence 

Q (q))= o. Wi th  L(x, y} definite, from the latter equality it 

q) = o, contrary to a provious supposition. The  contradiction 

establishes the theorem. 

Theorem 1 I. I is of the type of a result given in (C; pp. 75--77); however, 

essential features of difference are to be noted. 

We observe that  (t I. z) is a condition allowing interchange of certain limit- 
ing processes. 

We turn now to equations (7.3),.for kernels (T). An equation (7. 3) is ap- 
proximated by (7. I). With ~ in a set 0 we have (8. I a) satisfied for an infinite 

sequence {u,}; for a subsequence {m.~} of {n~} a spectrum 0 is defined in (Io. 6). 

Correspondingly, let ~,,~(x) be the solution (4 in 0) of (7. I); thus  

q~,,,~ (x) = Z ; L,,,~ (x, y) ~ (y) d u* (e,,) + f, , ,  (x), 

where f%(x) is a function approximating (for s-~ar to f (x) in  the sense specified 

before. The representation (9. Io) of a~solution ~0(x) of (7. 3), formed with the 

spectrum 0 mentioned above, yields an operator 0(~, x/...),  

(II.  6) lim 9~,,~(x)--9~(x)-~ 0(;~, x/f)---- f(x) + Z ( L ( x ,  y)f(y)du*(%) 
8 d (1)u) 

cm 

-" f f f -~ (by) (D~) 

The sequence {m~} and, hence, 0 is independent  o f f .  Thus the operator O(~,x/...) 
is indepe.~Ment of f .  
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For ~ in the set 0 the operator 0(),, x / , . . )  yields particular solutions of 
non homogeneous problems; ili fact, for every function f, such that If[ ~ i8 integrable 
{B, u*}, a solution almost everywhere {u*{ of 

(x) -~ Z f L (x, y) ~ (y) d u* (e:z) + f (x )  q~ 
a /  

i; furnished by 

6a) 

Here aud 

(), in o)  

o z/f) .  

throughout functions f(x),, or corresponding functions differently 

(), in 0); this is valid whenever jf~, ~f" are integrable {B, u*}. 
Passage to the limit under the integral signs in (;I I. 7 b) is justified in view 

of the inequality 

f l d u* B ~ ()̀  in 0), ()`) 
(D,) 

(~I. 8') l'] 2f(Y) O (~, y/~f) du* (e,j)~ l'] if(y) O()`, y/~f) du* (e,) 
* /  

(by) (Dy) 

designated, in non homogeneous problems (7.3) will be understood to be such that 
the functions f~(x) (cf. (5. 3 a)), approximating to f(x), are continuous in (Dr). 

Consider now a pair of eq~ations (7, 3) 

([ I. 7) ~ (x) = ~ f L (x, y) ~ (y) el u* (e,) + if(x) (i = I, 2), 
t ]  

(by) 

where the [,.f[" are integrable {B, u*}. For the solutions ir of the corresponding 
approximating equations, 

(If 7a) iq~n (x) = )~ ; Ln (x, ,y) iqD,~ (y) d u* (e:,l) + ~fn (x) (i-~ !, 2; ),in 0), 

we obtain witho ~t difficulty the relation, 

( , ,  z b) f (y) (y) e .* (e,,) -- 
(by) (by) 

In  ( t i : 7 b )  we  let n--~ms--*oo;~on taking account of ( I I .6)  one obtains the 
following identiO, satisfied by operators 0(),, x/. . .),  
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taking place ifi accordance with  Lemma 9. I, and in consequence of the relations 

lim ~'~r~. (y) =- 0 (;~, y/ , f ) ,  I ~f". (Y) I <---- I;f(y) l, lira ,f.,. (y) = ,f(y),  
8 $ 

where the I,f(Y)l are integrable {B, u ' i ;  in fact,  under these conditions Theo- 

rem 4. 3 is applicable. 

Theorem 11.2.  With L(x ,  y) of  type (T) consider the problem 

(I ,. 8) ~0 (x) == ~ f L (x, y)~ (y) d u* (e~). 

(i~ I f  for a ,on real ~* (II. 8) has ~0(x)=o  (almost everywhere {u*}) as the 

only solution the same is true for all non real )~. 

(2~ The number of distinct solutions of (I I. 8) is the same for all ,on real ~. 

(3~ I f  for X = ~ ,  fixed in a set 0 the problem (II. 8) has no solutions (distinct 

fi'om zero almost everywhere {u*}) the same will hold for all non real ~. 

(4~ The number of solutions of  (I I. 8) for  any real X in 0 is equal or is greater 

than the number of distinct solutions for non real values of  ~. 

Note. Only t h o s e  solutions '~0 (x) a r e  envisaged for which I ~ (x)12 is in- 

tegrable {B, u*}. 
The proofs of (I~ (2 ~ may be effected with the aid of the identi~y (I i. 8'), 

following closely the lines of the c9rresponding prgofs in (C; Chapter lI). 

Parts (3~ (4 ~ ) of the above Theorem may be demonstrated on the basis of 
(~I. 8'), following the lines of reasoning given in (T; pp. 5o4~6o7) .  We shall 
Omit any further details of proof. 

The analogue to Theorem I I. I for the problem (iI  8) is as follows. 

In order that L (x, y) be of  class I in a subset O' of a set 0 (i. e.-tha~ (ri .  8) 
should for every. ~ in O'  have no solutions distinct from zero almost everywhere 

{u*}), it is necessary that  the order of integration in 

(D~) (D D 

should be immaterial for all f~, f~ such that the fuuctions 

(,,. ha) IS, P, IS l',lfL(x,y)S,(y)du*(e.) I , 
(by) (Dy) 

are integrable {B, u*}. 
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I f  the condition stated in connection with ( I L 9), (I I. 9 a) hdds, the kernel L (x, y) 

will be of class I for all non real ~. 

The above result  is analogous to and consti tutes an extension of the theorem 

in (C; pp. 75--77). To prove the first part of the  theorem let 9~(x) ( i ~  i, 2) 

be two functions satisfying the s tatement  in connection with ( I1 .9a) .  Then 

the ~ ( x ) ,  

(~ ~. io) q, (~) =.f ,  (x) - ;t f L (~, ~)~ (~)d u* (e:,,) (Z in 0';  i = ~, 2), 
t f  

(~) 

are such that  the I q,(x)l -~ 
(l I. 6 a) will yield 

are integTable {B, u*}. 

f ,  (x) = o (z, x/q,) 

With  L (x, y) < I (in 0"), 

( in  0') and, accordingly, by virtue of (I I. 8') 

f 
0 d u* 0 (z, d (e.). 

(D~) (%) 

Substituting, here, (II.  Io) one obtains the necessary, condition. 

The sufficient condition is established precisely as in (C; pp. 75--75). 

I2. SOllte m o r e  General  Kernels .  

I f  we restrict ourselves to equations (7- 3), where L (x, y) is such tha t  the 

integral  L2(y) (cf. (5.4 a)) exists, while the continuity conditions imposed sub- 

sequent to (5 .4a)  on kernels of type (T) are deleted, we can still obtMn the 

~oTeater par~ of the results established above for the problem (7- 3)(homogeneous 

or non homogeneous). The approximating kmmels L,~(x, y), as defined subsequent 

to (5- 6), will not  necessa.rily be continuous; however, L ,  (x, y) will be measurable 

{B, u*} and will be uniformly bounded with respect to (x, y) (x in (D~.), y in (by)). 

At the same time one may drop the continuity condition on f(x),  in (7. 3), and 
require only that  If l  ~ be integrable {B, u*}. I f  one then considers the ap- 

proximating equation 

(I 2. ,) ~n (x) = Z f Ln (x, y)~,, (y) d u* (e~) + f (x) ,  
(by) 

it is observed that  the essential features of the Gunther  theory will continue to 
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hold for (I2. ~); that  is, a theory of Fredholm type will be applicable to (Ix. r). 

To demonstrate this fact one needs only to justify the limiting processes (in- 

volving, i~ this ease, determinants  whose elements are repeut e(t Lebesgue-Stielt.~es 

integrals) involved in the usual development of the Fredholm theory. We  shall 

not go into the de.tails of this. On the basis of the theory, relating to (~2. I), 

the main part of the previously established developments for (7- 3) is extended 

to the present some.what more general problem. 

Suppose ~ow that the i~legral L ~ (y) (5.4 a) does ~ot exist, while the symmetric 
kernel L(x ,  y) is merely measurable {B, u*} for (x, y) in [(I):~,), (Du)!. Then the 

problem 

2.2) = z ( L  (x, y) d,,* (e:,) + 
t ]  

(by) 

(with f ( x ) z e r o  or not; If[ ~ integrable {B, u*}) could not be said to be sonuble, 
unless some indirect additional conditions were introduced. Accordingly, let us 

assume that  corresponding to L(x ,  y) there is a linear operator T~.,.(~/h(x)) (~ a 
parameter), analogous to an operator introduced by Carleman in (C; p. I38), 

for which the following five conditions hold: 

; I  T~ ( i /L (x, yl)I ~ d u* 3) (ey) 2 .  
. 2  

exists; 

(, z. 3 a) ] T~. (~/L,~ (x, y)) I < 7 (~, Y), 

where 7(~, Y)is independent  of ~ and ]7(~, y) l ~ is integrable (in y) {B, u*}; 

(, z. 3 b) lim I':~. (~/Ln (x, y)) = l~. (~/L (x, y)); 

(I 2.  3 C) lim T~ (~/f~ (x)) = T~,~ (~/f(x)), 
~l  

whenever f , , - , f  weakly (Definition 4. t); 

(lz. 3d  ) fT~(~/L,:x,y))~(~/)d~,*(e:,)=T..~(~/fL,~(x,y)~(y)~l~,*(e:,j)) 
(by) (,y) 

for all 9~(y) with J~]~ integrable {B, u*}. 

The conditions (~z. 3)--(~e.  3 d) are of the form of those in (T; p. 586) 
given for kernels therein designated as of Type ~. C. 
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Corresponding to (z2. I) and (~2. 2) we shall have the equations 

(::2. 4) j i 

I ~, (~/qD,, (x j) -= Z T.~. (~/L, ,  (x, y)) ~n (Y) d ?~:t, (ey) -{- .T (~/f(X)), 

(~. 5) T~: (~"q~ (x)) = Z f T.~ ( : /L  (x, y)) q9 (y) d u* (c:/) + T:,. (~,~r(x)). 
* J  

(Dy) 

In  view of the condition (I2. 3) one may  envisage solutions 90(y), with I~P 
integrable {fl, u*}, of the problem (I2. 5), as well as of the homogeneous problem 

('z. S a) T,. (~/qD (x)) = ). T~. ( J L  ,x, y)) qD (y) d u* (e~j). 
(1) ~) 

Consider the function 

(I2.6) /2, (e.~., e y / ~ ) ~ - /  
ex 

f o,, (x, ,v/z) d ~* (~.~) d u*. (e,,), 
ey 

where O,~(x, y/J) is the fanction so denoted in section 6. The function (I2.6) 

is identical with 0"*.,~ , introduced subsequent to Lemma 8. 3 (in this connection 

see (8. I6)). The symbol in the first member of (~2.6) has been brought in, in 

in place of 0"*, because the function in question plays a role analogous to that 

of a function designated as ~2 in (C; Chapter IV). A number of essential 

features of difference is to be noted. For instance, our ~2~(e~, %/Z) (and, eventu-  

ally, limits ~ (e~, eJZ)) is a function of /fl/-sets e.~, ey, while in case of (C) the 

corresponding functions depend on points x, y, instead. 

In consequence of some of the developments subsequent to Lemma 8. 3 

one has 

(~z. 7) I n,,,(.., .,,/z)l =< [,,* (.:,,/]: [,** (,~..)J~ 

(all real Z). 

In  consequence of (12. 6), (6. I), (6. : a) and since 

we have 

~,*,.k (e,.,) =- f q~,.~(y) d u* (~:,) 
ey 



Singular Lebesgue.Stiel~tjes Integral  Equations. I~97 

(t2. S) 
O<).~G k<). 

.o,, (~.~. ~,/z) = - ~ ,  ~ . .~  (~,,) ~ . ,~  ( ,2  
9"~ ~n, k <0 

and  zQ,, = o for  Z = o. 

Subd iv id ing  the  in te rva l  ( ' .  l, 1)(l > o), as descr ibed  

we ob ta in  
q 

v,~ = ~ 1  ~ (~.~, e,/1,.) - n,,  (~.,~, ~,~/t;_ 1) 1 < ~,(~)I~,1, ~ (~) ~:,~ (~)I, 
j = l  k 

(for Z > o), 

(for ;~ < o) 

subsequen t  to  (6.4),  

whe re  t he  s u m m a t i o n  in the  las t  m e m b e r  is over  values  k for  which  --  1 < ~,, k < t. 

Hence ,  in consequence  of (8 .3  b), 

and  

(i~. 9) 

= * ~ ~,  I w,,,~(@ ~ ~* (ex),,*(,~) v~ < ~ ,  I~,,,~(;~) I ~ * I ~ 
k k 

( I 2 . 9  a) 

Le t  V,,(ex, e,//Z) be the  var ia t ion,  on (--  l, ~), fo r  Z in (--  I, l) of  the  func t i on  

Y2,~ (ex, e:/~). On  wr i t ing  

o,,  (~,~., ~.. /z)= o. ,1 (~x, e , , lZ)-  o . .~  (~., ~,,lZ), 

2 ~ , . 1  (e~., e,/Z) = V,, (e~, e,,/z) + t ~  (e.~., e,,/Z), 

2 t~,,2 (ez, e,/Z) = lq, (e~:, effZ) -- ~,, (e~, e://~), 

i t  is observed  t h a t  the  func t ions  Dn, i(e:,., %/Z) ( i =  I '  2) are  m o n o t o n e  non  

dec reas ing  in ~ (on (--  l, l)); moreover ,  in view of (I2. 7), ( I2 .9 ) ,  

( I 2 .  9 b) i ~,,,,: (~.~., e,,/z) I =< [u, (e~,)]~ [,,, (~,,)]t 

( i =  I, 2; 2 on (--  l, 1)). Us ing  a sui tuble a d a p t a t i o n  of t he  De la V. Poussin-  

F r o s t m a n  t h e o r e m  and  of (I2; 9 b) we in fe r  ex is tence  of  a Subsequence (n.j) and  

of f u n c t i o n s  f2: I ,  ~r~: 2 SO t h a t  

l im ~,,j :~. (e:~., e q/)~) : t~:i(ez, eJ),) (s on (--  l, l)) 
s j  
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for all {B}-sets <,., e v (in (D,,), (D:,)) on whose frontiers u* vanishes,. 

have 

(I2. IO) lim a,,j(e.~., ev/Z ) -~ ~Q (ea., evil)~--s ~2:2 
b" 

l~e , shall' 

for set.~' e,, % on whose fi'ontiers u* ranishes; furthermore, 

(i 2. io  ~) v~ /2  (ex, e:,/Z) < [,,* (e~.)]':' [,,* (e:,)]~ 

(for any real interval (--l, 1)) a,,d 

(i.~. io  b) I .Q (<, e,/i) l ~ [,,* (ex))"-' I"* (e,,)]~. 

Convergence in (I2. I0) is first established for any interval (--l, l ) a n d  then 

ex~ended to (--o~, + ~);  (I2. IO b) implies tha t /2 ,  together  with/2 , ,  is absolutely 

continuous {u*} in e,~ and in e,,/, 

Using the developments of section 4, wittr the aid of the above function 

/2 the following results (up to (I2. 13 b)) will be stated without details of proof. 

One has 

(I2. II) lim (h(?l)[fO,:i(.~,~#Z)d,,*(e.~)]du*(e,,) 
n j  . 

( D y )  e x 

-~lim f [ f o,,j(,,., y/Z) d,,*(e:~)]d,* (e.;)= f h(,])D.it?(e.,., e:jZ) du*(e:,), 
*v (Du) (Dr) 

whenever ]h[ ~ is integrable {B, u*}; here D:~ is symbol of set-derivation (regular 

in the  sense of Lebesgue (S; I52-- i  56), u* being the  measure function) a~d yields 
a fio,etion ofy.  When, in addition, g'~ is integrable {B, u*}, one h~s 

(, 2,,  *!m f f (., ,.7'1, (,,),',,* , ' , ,* 
(D,) (Du) 

(10.) (1)v) 

[" F f" 
(I2. II b)' V~lg(x)]Dz]Du/2(e:,. ,  

t ]  L t ]  (zb) (b,,) 
e,,/~.) J, (.,.t),t,,* (,:,)] d , *  (,~.,.) 

g [ f  h~(x)d,,*(e~.,.)]~ [ f  (a~(x)d,*(e~.)] ~, 
(D,) ID~) 
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(i2. I i c) lira ; 
nj d 

fl 

= fa(Z)dxf g(x)D~[fD.jt~(c,., eff).)h(!l)du*(ev) l 
a <Dx) (Dy) 

whenever a:(Z) is continuous on the closed finite interval (a, fl). 

( I 2 .  12') ~ 

Moreover, 

f:~(z).~ f .(~) D. If D.~(..., 

= j'g (x) 
r162 

~:,/z) h (y) d u* (,,,)] d ,,* (e.) 

.x[f , .  (z) d,~ f D,, (e., e,,/Z) h (y) d,,* (e,,)jl ~ u* (e.) 
(D,,) 

fl 

(%) (Dr) , 
d ~,* (~.). 

The genera.lized Bessel's i~equah:ty is of the form 

ao 

- -  (D,) (l),) 

[ h ~ (x) d u* (e.). 
a ?  

In  agreement with CarIeman's terminology (C; p. I36), if (I2. 13) holds with 

the equality sign for all h (x), for which h ~ (x) is integrable {B, u*}, then ~ is 

termed closed; the inequality (I 2. 13) then could appropriately be called generalized 

Perceval's identity, in which case 

c~ 

- -  ~ (DX) (Dy) 

9,~ a (e., ey/z) h b) d u* (e~)] d ~* (e.) 

= f .  (x) h (x) d .*  (..), 

whenever g2 h , are integrable {B, u*}. This yields the generalized Fourier 
expansion 
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(I2. I 3 b) 

- ~  (D~) 

almost everywhere {u*}, for all f for which .f~ is integrable {B, u*}. 

Let  f , (x )  be the solution, for s in a set 0 (cf. (8. I a)), of the equation 

(12. I). The inequality (9.4) of Lemma 9. I will hold; thus 

/ .  
(,2. I4) /l~,,(~)l'd,,,*(e.,.)_-<B'~(Z) (z in o; , = ~ , , n ,  . . . .  ), 

i /  

(Dx) 

where (cf. (9. 4), (9 .1 a) and s ta tement  subsequent to (9. I a)) 

[ [f 1' (~2. I4a)  B(.~)= 1 + I~1]  If(x)l'du*(ex) 
~(z)l (Dz) 

By Theorem 4.2 the  sequence {nj} contains a subsequenee {rnj} so tha t  the 
sequence { ~ j  (x)} 

(x) for which 

(I2. 14 b) 

converges in the weak sense (Definition 4. I) to a function 

f l ~ (x)p (e~) <= (z), d u* B ~ 

Z having a value fixed in O. If  in (12.4) we let n = m j - - * ~ ,  let t ing ~v,~ denote 

the solution of (I2. I) in consequence of the conditions (I2. 3)--(I2. 3 d ) a n d  

of some of the theorem of section 4, it is inferred that  ~0(x) satL~es the equa- 
tion (I2.5). 

The above solution q~ (x)'can be represented in the form 

(I2. 15) / i  f qo(x) = f ( x )  + ZDx ~ d,  f(y)Du~2(ex, eJ~)du* (e ) = 0(Z, x / f )  
- ~ (by) 

almost everywhere {u*} in (Dx) (Z in 0). This result is an extension of a for- 

mula in (C; p. 139) , for ,~ non real, and of a result in (T; p. 600), for ~ possibly 

real in 0. The operator O(Z, .~ / . . . )  can be chosen independent  of f. 

With  0(~, x / . . . )  from (12. I5) in place of the operator so designated in 

(II .6) ,  one obtains an analogue of the identitp (iI .  8'), as well as uniqueness 

properties, relating to the homogeneous problem (I2. 5 a) (Z in 0), closely:similar to 
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those given in Theorem I I. 2 - -  the latter under the supposition that  T~(~/h(x)) 

is real whenever h (x) (with h ~ integrable {B, u*}) is real, while 

~o, (S/h (x)) = T~ (I/~ (x;) 

(el. (T; pp. 607, 608)). There is also an analogue of the result [(II. 9), (II .  9 a)]. 
For the problem now under consideration one may obtain extensions of all 

those results in (C; Chapter IV) which are not based on continuity properties 

of the kernels involved. 

:3. In tegra l  Equations of  the first Kind. 

In this section use is made of the notions and results of section :2. The 

problem now under consideration is similar to the one considered by TnJITZII~SKY 

in (T; pp. 61 I--619)" 

With L(x ,  y) a kernel of the type specified in section I2 and T ~ ( ~ / . . . )  

denoting a corresponding operator, subject to (i2. 3)--(I2. 3 d), we consider the 

equation 

f (I 3. I) L (x, y) qD (y) d u* (eu) = f ( x ) ,  
(by) 

where f~ is integrable {B, u*}, and the corresponding problem 

(I 3. 2) 
f ~ ( 

~ (~/L ,x, yl) ~ (y) d ,~* (e~,,) = L~ (:lying). 
(1) u) 

All solutions i n  question (of (I3, 2) or (I3. 3)) are implied to have squares in= 

tegrable {B, u*}. 

Theorem 13. 1. (:~ 

f 
(D,) 

Suppose the equation 

T~ (~/L (x, y)) ~ (y) d u* (ey) = o 

is closed in the sense that i t  has ~o solution 9~ (y) for  which 

d 
(D,~) 



302 W . J .  Trjit~insky. 

(2~ Suppose, moreover, that for a,, infinite subsequenee 0'./) of (:,,) one has 

k 

where A is indepe~dent of ~j (j : I ,  '2, . . . )  a~,d 

( t 3 . 4  a) f,,,k : ; f ( s )  T,,,k (s) d u* (e~). 
a ]  

(&) 

The equation (I 3. 2) will have a u~dque solution ~(x)wi th  q~ integrable {B, u*}. I f  

(I3- 4 b) ~, ~2+2~ ~'~ < B < oo (~ n .  ~.2, �9 some ~ > o), 
~ , k , ]  ;% !~ ~ - - -  �9 �9 � 9  

k 

this solution will be representable in the form 
av 

" I f  (x3. 5) qD(x)=Dxr Adz f (s)D~2(ex 
a ]  

, e,/Z) d u*  

almost everywhere {u*}. 

Uniqueness  of solut ion of (I 3. 2) follows f rom the  fact  t h a t  a difference of 

two dis t inct  solutions,  t ha t  is of solut ions differing on a set of points  of positive 

{u*} measure,  would be a solut ion of (I3. 3), cont rary  to hypothesis .  

Adap t ing  the  developments  of (C), leading to a resul t  in (C; p. I42), to our 

p rob lem we infer  w i thou t  difficulty t h a t  condi t ion  (I ~ ) of the  Theo rem implies 

t h a t  g2(e~, e.,//Z) is 'closed'; accordingly,  (I2. I3) will hold with the  equal i ty  sign, 

as well as (I2. 13 b) - -  for all h(x), f(x),  whose squares are integrable  {B, u*}. 

This  fact  does no t  necessari ly imply t ha t  f2~,(ex, ey/s tha t  is the  sequence 
T,,.1 (x), 99~,2(x) . . . .  , is closed. 

W e  define 99, (x) by the  re la t ion 

(i3.6) 
c~ 

e~ - - |  (1)8) 

In  view of ( I2.6) ,  (6. I) and (6. I a) 

(I 3" 6 a) ~n (ex) = ~,  L,,k f,,,k f 9,,,k (x) d u* (e~) (n = n j). 
k e~ 
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The  series, here involved, and  the  integral  of the last member  in ( I 3 . 6 ) c o n -  

verge because q~, 1 (x), ~,~. 2 (x), . . .  is an or thonormal  sequence, while the  series 

in (I 3.4) is implied to be convergent  by hypothesis.  I t  will be essential  for  

onr purposes to consider  the  si tuation in greater  detail. 

As remarked  before, the  in tegra l  

f ~o. (x)d  u* (eD 

ex 

is the 'Fourier '  coefficient (with respect  to ~n, KX)) of q~x(x), the la t ter  funct ion 

being defined as uni ty  in e~ and as zero in (D.~) - -  e~. Hence  by Bessel's inequali ty 

If )If f . .~ (x) d ,*  (e. _--< qL (x) d , *  (~) --  ,,* (e~,). 

~ (Dx) 

Thus on ~aking account  of (I 3. 4) f rom (I3- 6a)  it is inferred ~hat 

[f 1' (I 3" 6 b) I ~o, (ex) p =< ~ Z,".,~ ~.,~ ~ ~,,.,  (~) d, ,* (eD --_< A . *  (e.~) 
k ex 

(n = h i ,  n ~ , . . . ) .  Consequently,  in view of the De la 

theorem, for an infinite subsequence (mj) of (nj) one has 

(I3.7) lim q%~j (ex) = ~ (e.~.), I q~ (ex)I ~ ~ A u* (e~) 

V. Pouss in-Frostman 

for all {B}-sets (in D.~)) on whose front iers  u* vanishes, the l imit ing additive 

funct ion of {B}-sets T(e.,.) being defined for all {B}-sets e.~. in (D.~.); by the second 

relat ion (I3.7)  r is absolutely continuous {u*}. Hence  

( I 3 . 7  a) qv (x) = Dx qv (e~) 

is a function defined almost everywhere {u*}, measurable {B, u*} over (Dx); further-  

m o r e ,  

(~ 3. 7 b) q~ (e.~,) = ; q~ (x) d u* (eD 

e x 

We shall prove the following Lemma. 
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L e m m a  13 .1 .  Let tOt(x), ~p~.(x),... be a seq,,e,,ce ortho ~o,'mal i,~ (D.~,) (the 

measure fmwlio~ bei~g u*). Let  e] + e~ + . . . .  e~ < ~o The ./imctio~ ~p(x)= 

---: D ,  ga (e,,.), u, here 

] e r " 

has the propertie.~ 

('~ ( v, (.~) ~,., (x) ~ u* (e:,,) C~, 
. ]  

(~] ~-  I~ 2~ . . . ) ~  

(2o) 

Note. I t  is to be recalled tha t  ~ denotes convergence in the mean square. 

The series representing #,(e~.) converges in consequence of previous remarks;  

since 

I ~  (e~)l =< e [,,* (ex)]~, 

existence of ~(x)  is likewise assured. 

we have 

For  the funct ion 

,i 

t 

f vr" (.i, x)~l, ,* (e.,.) = d + ' -  + c ~ < & 

(Dx) 

moreover, in consequence of the definition of q~(e~.) 

f ' f 
1 gX 

(x) d u* (e2 

(as j --+ cr Hence 

~, (j, ~-) -~ ~ (.4 (as j -0 ~ )  

in the weak sense; in view of (4.6) 

( 4  d C '2 

(Dx/ 
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Accordingly,  on not ing  tha t  

f ~ . '  ~)V,~ (J, 
(1>~) 

d,,* (~:,.) --  ~,,, (.i > ~,~) 

and on let t ing j - - ) ~z ,  we observe tha t  passage to the limit under  the integral  

sign is permissible, yielding 

f ~  (x) d ,,* (r.,.) = (x) 1])m Cm, 

th,nt is, the relation (I ~ of the Lemmm We form 

In consequence of (I ~ 

f 
B (J) -= ] [,,~ (.~0 - , .~  (J, ~)]~ ,~-* (,% 

/ 

]):g) 

f .] 
71 2 I~ (.i) = ~-' (.~,)d,,.* (,'.,./- ~ ~.. _-> o. 

(lJx'~ 1 

Hence, in the limit (as j -+  oz), one obtains 

[ '~.~;-' d , *  & (~.) > 

(D.L 

together  with (c~), this implies 

(~) f ~" (~) d ~,* (e.,,) = c,2 + c_~ + ... 
] 

and, accordingly,  lim / ~ ( j ) =  o, which yields (2~ the Lemma is thus established. 

Tile above result  picks out a par t icular  funct ion (of interest  for  our pur- 

poses) amono'st the functions whose existence is asserted in the Riesz-T'ishe~" 

theorem. 

111 accordance with Lemm~ I3. I for the function ~,,(x) Of ( ,3 .6)  we ha.ve 

(I3. 7 e) 

20 

k 

f (x )4 ,*  (,~.~.) ~4 
fg~, 

(l~x) 
(ef. (, 3. 4)). 
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The lat ter  inequalit ies,  together  with (I3. 7) imply tha t  

(~ 3 . 8 )  lira ~ (x) = ~ (x) 

in the weak sense. The mj here are the  subscripts  f rom (I 3. 7) and may be 

chosen so tha t  

lim Omj (x, y/~.) = 0 (x, y/k) 

exists - -  this is merely a mat te r  of ehosing a suitable subsequenee,  if necessary, 

of the original sequence. 

W e  define f ( u ,  x) by the relation 

(I 3" 9) f (n,  X)= f L,~ (x, s)q~,, (s)d u* (e,). 
. /  

(D,) 

In  view of (I3. 7c)  

( 1 3 . 9  a) 
and 

~,,( ,)  ~ ~,(~/~) 

k 

where the summat ion  is with respect  to k over values of k for which 

- -  1 < Z , , , ~  < l .  

On writ ing 

(I3. 9 b) 
1" 

f(I, n, X) --= I L ,  (x, s) qg,~ (1/,) d U $ (e,) 
I t ]  

(De) 

and on taking note 

being justifiable, we obtain the  relat ion 

( I 3 . 9  c) lira f(1, n, x ) =  ; L,,{x, s)qo,~(s)du* (e,) X) 
l J (D,) 

of (I3, 9a),  passage to the  limit under  the integral  sign 

so tha t  in consequence of ( I 3 . 9  c) one has 

(as l -+ oo); 

(as l ~ + oo). On the other  hand, 

f(1, , , ,  x) = ~(') Z..~fn,~ f L,,(X, = ~ j )  f,,~q~,,,k(x) 
k (Ds) k 
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(I3' 9 d) Z A,kr = f ( n .  x), 
k 

convergence of the 

03. ~o) f f ' ( , , ,  ~)du*(~.) 
t /  

for  n ---- n~, n~, . . . .  

W e  have 

f f(n, x) du*(e~)= ~f.., f g.,k(x)du*(e.) 
k ex e x 

series to f(n, x) being in the ordinary sense; in particular,  

d U *  (~) 
(D.) 

F F / "  1 

k (D,) , .  

= i d:~a,,(ex/]~), an(ex/,~)= ff(.)D.O,,(e., e,/)~)du*(e~). 

Thus, for l > o, 

3" I I )  f y(,,, x) d u* (ex) (, 
e~ 

Now, in (I 3 . II), 

= f a on(e./Z,+ ( f  + 
- - l  - - m  l 

- - ~  I e x 

where the summat ion is over values of k corresponding to the intervals (--  r 

(l, + oo); for  these values of k 

I;t..~l_>- z; 
accordingly 

- - l  

e x 

" If 1 = < ~ ,  ]Z,,,kf,,,k] g~k(x)du*(e.~.), =lZ"'<I 
ex k 

e x 

--l), 

2 
d u* (e. 
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and, by virtue of (I 3. 4) and of the  inequali ty preceding (~3-6b),  

I ( f  ' 
I A~ [~ ::((,r)]~ " 

--or l 

W e  n o w  

consequence of (~2. II c) 

tu rn  to the first term in the  second member  of (I 3. ,I).  In  

1 1 

t f (I ,3 .  I I b) lira a,,~ (ex/Z) =- d~ a (e.JZ), 
- - I  

F 
f 

In  fact, to demonst ra te  this one needs only to replace ez, fl, ,($), g(z)in (12. 1I e) 

by --1, l, I, f (x) ,  respectively; and to let~ h(y)--x in % and h(y)=o in 

(D::)- % (e,/ being a fixed {B}-set). 

By (3. I I)--(3. I l b )  

lim f f(mj, x) du* (e~.)= f d, f e/~)d~* (e~). 
, 3  .: J 

As noted before, f2 is closed; thus (r2.13 b) holds and one has 

( '3.  ,2) lira ;f(nij, x) du*(e,)~- f f(x)du*(e:.,,). 
r gx 

In  consequence of (13. Io) and (I 3. I2) 

( '3. I3) f(m2, x)--~ f(x) a s  ~Tj -+ ~ )  

weakly in the sense of Definition 4. I. 

By (I2. 3 d) from (I 3. 9) one obtains 

f / [ 
(Ds) 

In  view of (I3. I3) the proper~y (I2. 3 c) will yield 

lim T~ (~/f(mj, x)) -= T~ (~/f(x)). 
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On the o~her hand, by virtue of (~ .  3 b), (I2. 3 a), (13. 8) Theorem 4. I (the 
second pa~) is applicable so as to give the limiting relation 

( Z ,  ,(~/L~ i (x, s)) q~,!j (s) d u* {e,) = f rx (~/L (x, s)) q~ (s)d u* (e,). lim 
~ j  4, 

(D,) (~O,) 

Accordingly, the fi,,~etivn q~ {x) of (I 3.8) is a soh, h'o,, (the soh, h'on, in fact) of our 
problem 03.2) ;  qQ(x) is in*egrable {B, u*}. 

{13. 14) ~.(~.)-- f , ~ ,  ~,.(~./~) + ( f  + , . ,  o. (~./,~), 

where a,~(e:,./),) is from the relation preceding (t3. ti). By virtue of 02. It e) 

/ I 

(I3. I4a  ) lira f}cdza,,,j(ej)~) =f~,dza(e . j ) , )  (ef.(I3. IIb)). 
,,j 2 ~  

--I 

On the other hand, by (i 3. 6 a) 

( f+ 
F 

J 
k ex 

(summation corresponding to - - ~ ,  --1), (l, + w)) and, under (13.4b), one has 

1( j , I + .-.  I - I Y,  (z~,:7 f,,, ~-) z,, f", '~ (*) ,t u*  (e,) 
l k % I: - -  ~ eX, 

l/ I =< ~ Z za'k']f~tk't',kJ'" I ~gn, k (,9()) d ,,• (ex) 
k e x 

so that 

(I 3. I4 b) 

/'~ 1'2+2 '~f~' = - ,,, k ~ ~ , , ,  ~ ( x )  g u *  (e,.  

c x 
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We  note (13. 7); the relations (I 3. I4)--(I3. I4 b) therefore imply 

On taking account of (I]. 7 a) we finally obtain the representation (I 3. 5), thus 

completing the proof of the theorem. 

The developments of this section supersede those of section 6 in (T; 6 I x - -  

619). I t  is to  be noted that  the passage to the limit under the integral sign in 

formula (6. 3I e) of" (T; p. 618) is not necessarily justifiable; accordingly, the italics 

nreeeding Theorem 6. 2 in (T; p. 619) cannot be considered as established (even 

though closure of t2 will take place as stated). However, the co~cluding Theorem 

5. 2 of (T) is correct as formu, lated; this may be inferred in view of our present 

Theorem I3. I. 

We shall conclude this work with a few general remarks. The integral 

problem (7. 3 a), where the unknown is a function of sets {B}, is singular in 

the sense that  the kernel behaves in a manner irregular, according to various 

hypotheses involved, in the neighborhood of the frontier of the domain (D.~); 

for this problem the frontier of (D~:) is, so to say, a 'singular set'. I t  is possible 

to formulate the problem so that  the 'singular set' is any measurable subset of 

(D~.) (with some points possibly in the interior of (D~)), while the essential 

features of the theory of (7. 3 a) (and of the corresponding homogeneous problem), 

as developed in these pages, continue to hold (with appropriate modifications). 

For instance, those of the results which make use of the hypothesis of 'regularity' 

of u* w i t h  respect to the frontier of' (D~.) (Definition 8. I) would have to be 

restated under the supposition of 'regularity' of u* with respect to the 'singular 

set'. We shall not go into the details of formulating such an extension of the 

notion of 'regularity'. In order to make use of the results of Gunther we did 

assume in these pages that  u* (also F*) is continuous as a function of sets 

{B} (i. e. u* (e) -~ o with the diameter of e) - -  this enabled application of Lemma 

3.2,  leading to the desired connection. This condition on u* (and /?*) may be 

weakened by taking account of the text from (3. II) to (3. I5). As previously 

observed, for a part of our developments continuity conditions of kernels L(x ,y)  

may be deleted - -  we need merely to secure discreteness of the characteristic 

values and orthogonality of the characteristic functions of the approximating 

kernels. 


