THE POISSON INTEGRAL.
A STUDY IN THE UNIQUENESS OF HARMONIC FUNCTIONS.

By
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In this paper I want to deduce some uniqueness theorems for harmonic
functions with assigned boundary values in the unit circle.

In this direction there exists a classical result for harmonic functions con-
tinuous on the boundary, based on the fact that harmonic functions take their
extreme values on the frontier. Here, there was understood by a boundary value
what we are going to denote by uP(2) (cf. 2.1). It was shown that a function,
harmonic in a domain and such that «” =0 at all boundary points, vanishes
identically. HEven discontinuous boundary values, defined as limits along the
radius, have been considered, especially by G. C. Evans, in his book on the
logarithmic potential. The harmonie functions had to be restricted by one of

the following majorants:
2

|u(r,6)] < M, flu(?‘,0)|pd0<M.
0
The aim of this paper is to consider (i) more general boundary values, such
as up, defined in 2.2 or limits w; along the radius, or even more general curves,
defined in 6.0; (ii) more general majorants.
Thus we prove in 7.4.6 a result which in a simplified form runs;
If (i) u(r,0) is harmonic in the unit circle,
(ii) at every boundary point 6, u(r,6) converges to zero, if (r,8) - (1,6,)
in any sector (cf. def. in 1.0),
(iii) for every &> o, there is an R <1 such that [u(r,6)| < e#2—7" for
r> R,
then » = o.

! Now: Macalester College, St. Paul, Minn., U. 8. A.
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If m <1, then we may, in (ii), require at every boundary point the con-
vergence only in @ sector, however small, which contains the radius in its
interior.

If we define a boundary value not as the limit in a sector, but the limit
along a curve, especially the radius, then we are no more able to prove a
uniqueness theorem. Even if these boundary values are zero, there can exist
boundary points, near which the harmonic function is unbounded. But we can
still prove the following theorem.

If (i) «(r,8) is harmonic in the unit circle,

(i) lim Ju(r,0)] < » for all 6,
1

(ifi) lim w(r,0) < o < lim u(r, §) for almost all 6,

71 r—1

(i) u,8) =0 ({;L)—)

then there is a reducible set of points N, such that u(r,8) takes continuously
the value zero at every boundary point which does not belong to . At an
isolated point of this set, the analytic function f(z), for which R f(z) = u(r,6),
has a pole of finite order. .

We recall that a reducible set of points is such that it contains no part
dense in itself. Now, if we study the behaviour of the function in the neigh-
bourhood of an isolated singular point (cf. section 4), we may hope to find the
most convenient and best conditions for the non-occurence of an isolated singular
boundary point. But a reducible set without isolated points is empty. Hence
these last conditions together with the conditions of the above theorem, give a
number of very general uniqueness theorems (cf. section §).

The fundamental theorem, a generalisaﬁon of that given above, is enunciated
in 7.0. The important notion of a restricted Poisson Integral on an arc of the
frontier is defined in 2.9. It describes a, what we may call, normal behaviour
of a harmonic function in the neighbourhood of the frontier. It makes it
possible to use for such functions the theory of the Poisson integral, of which
an account can be found e.g. in Evans’ book.

In section z there is a number of results from the theory of the Poisson
integral. By means of a conformal representation of a general domain on a
unit circle, we define the Poisson integral for general domains (cf. 24). The
most important results are to be found in 2.14, 2.18, 2.19 and 2.20.
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In section 3 we deduce some known lemmas for harmonic and analytic
functions. The chief difference from the classical cases is the use of T. Carle-
man’s extension of Lindelof's theorem and the authors extension of the Pragmen-
Lindel6f’s theorem.

Section 4 is devoted to the study of a harmonic function which is con-
tinuously equal to zero on the boundary everywhere except at one point. We
find it convenient to study the problem in a half-plane.

In section 5, we state and deduce lemmas from the theory of conformal
representation.

Section 6 is devoted to lemmas and can be considered as the beginning of
the proof of the main theorem. We find it stated in 7.0 and proved in 7.1
and 7.2. In 7.o1 and 7.0.2 I state two particular cases which are important
for the uniqueness problem of trigonometrical expansions. In 7.0.3 and 7.0.4
I state alternative conditions for the validity of 7.o. In 7-4 we prove a result
based on a double system of curves, which might prove useful in maﬁy cases.
We deduce from it, in 7.4.6, a very important result of which I have above
stated a particular case.

Section 8 deals with conditions which make isolated singular points im-
possible and lead to uniqueness theorems. The great variety of different possible
uniqueness theorems has not been exhausted and the section presents rather a
few examples for constructing such theorems with suitable conditions.

In 9.0 we state our main theorem for general domains.

As regards the conditions in 7.0, the first four are essential. Condition (iii)
may be somewhat relaxed by demanding only lim u(r,(Kr,$) > —o. Then we

r—1
have to substitute Poisson Stieltjes integrals in our resoning. If we restrict o(9)
in (iv) to be <<, the assertion of the theorem remains the same. Otherwise
we should get at the end of 7.0 u= RIPIyuc (cf. 2. 17) instead of u=R PIcuc.
It seems that with our method conditions (v) and (vi) are essential, too. But,
by using some other method, they might possibly be improved.

The first result of this kind I have explained in a talk at Professor G. H.
Hardy’'s Conversation Class in Cambridge in December 1937. In their full
generality, the results have been made public when 1 had the honour to
be invited by Mittag-Leffler’s Institute to deliver two lectures on harmonic
functions.
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I want to express my deep gratitude to the Swedish government which, by
granting me during two years a scholarship, made it possible for me to finish
this paper.!

1. Notation. We denote the complex variable by =z + 1y =r¢? or by
{=&8+in=0¢? The functions f(z), g(z), h(z) are supposed to be analytic in
certain specified domains. Their real and imaginary parts, or harmonic functions
in general, will be denoted by wu(z)=u(x,y)=u(re'?), v(£n). PFor functions
transformed by a conformal representation = @ (2), 2= ¥({) we shall use the
notation f(), u{{) etec. The domain D(z) in the z-plane and the domain D (),
in the (-plane, are connected by the conformal transformation. The letter C
is reserved for the unit-circle and H for the upper half-plane. The domains will
be supposed simply-connected and bounded by free rectifiable Jordan curves.
The functions a(z), b(z) will be defined only on F(D), the frontier of D. If
“the unit-circle C({) is conformally represented by { = ¢(2) on the domain D(z),
and if %({) or a(f) have a certain property A4, then we say that u(z) or a(z)
»have the property 4 in the corresponding unit-circle»>. Further, N(z,) will
denote a mneighbourhood of z, and ¢ a positive number arbitrarly small. If 2,
is a point of the boundary F'(D), then we say that z converges to ¢, in a sector,

if, denoting by ¢(z) the distance of z from F(D), we have lim '7()%—' >o0. The
=z )T “0

geometrical significance of this is well known. All boundary functions in C are

supposed L-integrable as functions of 6. Generally, a boundary function in D

will be supposed to ‘be »L-integrable in the corresponding C».

2.1. Definition. Let u(z) be defined in D(z) and 2z, < F{(D). Then a isa
boundary value of w(2) in 2z, if there exists a sequence {z:} such that z; < D,
2z > 2, and w(zx) > a. All such boundary values in a point 2z, are values of the
function u” (z,).

2.2. Definition. The number & is a boundary value in the strict sence, if
there exists a sequence {z:} which converges in a sector to z, and such that
u(ex) ~ b. All boundary values in the strict sense at the point 2, are values of
the function wp(z,).

! T am also very much indebted to Professor F. Carlson for his kindness and for reading the
manuseript and calling my attention to a number of imperfections, and to Professor T. Carleman,
who as Director of Mittag-Leffler's Iustitute has invited me to lecture.
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2.3. If uP(z) is finite in a closed set of F (D), then u?(¢) is there bounded.
The analogous result for up(2) is false.!

2. 4. Definition. If

27
2.4.1 u(reif) = —— Lot a(év)dg
‘ 2w ) 1—2rcos(@ —¢@) + r* ’
0

then we say that u(2) is the Poisson integral of the boundary function a(z) . . .
Shortly we shall write: u(z) = PIca(z). If u(z) is defined in D(z) and {= ¢ (¢)
represents conformally C(f) on D(z), then

u(2)= PIpa(e)
is equivalent with

u(l) = PIca(l).

2.5. If wu(z) is defined in H, then the two assertions

2.5.1 u(2) = Plgalz),
v [ a@) o
2.5.2 u(z)—;f(x_x,)z_l_ y2dx

are equivalent.
The condifion

o

|2 (@]
1 +a:2dx<°°

is equivalent with the L-integrability of #(x) in the corresponding C.

The relation 2.5.2 follows from 2.4.1 by a conformal representation of
C on H.

2.6. If w(z2)=PlIpal(e), then up(z) =al(z) almost everywhere, and for the
upper and lower bounds we get the relations

U.B. u(z) < U.B. alz)
L.B. ulz)= L.B. a(2).

' ¢f. E. LINDELOF, Calcul des résidus, Coll. Borel, Paris 1905, p. 121. From the function
Eg(z) we can constract a Gegenbeispiel.
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For D= C this is a well known property of Poisson integrals.! For a
general domain, it follows from the definition of the Poisson integral (cf. 2.4).
We get the existence of up(2) only almost everywhere in the corresponding C.
Since F(D) is rectifiable, this is also, by a theorem of Riesz-Privaloff?, almost
everywhere on F(D). The two inequalities for the bounds are easy deductions
from 2.4.1.

2.7. If u(z) is bounded, then u(2)= PIpup.

By 2.4, it is sufficient to prove it for D = C. But then, it is a well known
result (cf. Evans, p. 52).

2.8 If

1° u=Plpale), v=PIpb(z)
and

2° a(z)=10b(e)
almost everywhere on a rectifiable part K of F (D), then {(u — v)? = o at all interior
ponts of K.

We may again consider only the case of D=(C. We have u—v=
= PI¢[a(z) — ble)] and at K, which is a part of the circumference (¢ < 6 < g),
a(z) —b(z) = o almost everywhere. Without changing the functions u(z), v(z)
we may suppose a(z) and b(z) to be equal everywhere in (¢, §). And it is a
classical result that the Poisson integral converges uniformly to its boundary
function in any interval which is interior to an interval of continuity of the
boundary function (cf. Hobson, Theory of functions, II. Cambridge 1926,
p. 633).

2.9. Definition. If there is a z, < F'(D) and a neighbourhood N({z), such
that #(z) is a PI in N(g,)- D, then we shall say that «(z) is a restricted Poisson
integral® in z,, and we shall write w(2) = RPIplz,).

It D,<D, K<F(D-D,) and u= PIp, then we shall say that u(z) is a
restricted Poisson integral on K. Shortly u(z) = RPIp(K).

2.10. If wu=RPI(e,), then u= RPI() for all 2’ < F(D)- N{z).

2.11. If w=RPI(z), then up s onevalued and finite almost everywhere on
N- F(D).

! G. C. EvaNs: The Log. Potential, New York, 1927, p. 40. Corallary. Particular case of
Fatou's theorem in Acta math. 30. 1906, p. 345.

? F. & M. Rigsz, Ueber Randwerte analytischer Funktionen, Stockholm Congress 1916; LUSIN-
PRIVALOFF, Ann. de 1'Ecole Normale, T. 42, 1925; the simplest proof F. RiEsz, Math. Zeitschrift,
Bd. 18. 1923. p. 95.

* W. H. Young has introduced the notion of a »restricted Fourier series». Cf. e.g. HOBSON
II p. 686.
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If w= RPI(K) then up s one-valued and finite almost everywhere on K.

This follows from 2.9 and 2.6.

2.12. If the values of u®(z,) are finite, then u= RPI(z,). If uP(2) is finite
on K < F(D), then w= RPI(K).

This is a consequence of 2.1, 2.7 and 2.9, because the values of »?(z) form
a closed set of points and if it does not contain the infinite point it must be
bounded. TFor the second part of the assertion we use the Heine-Borel theorem.

2.13. If wu(2) ¢s harmonic in D;, and D < D,, then u = RPI(K) for a K
which lies in the interior of D,.

On such a K, u?(z) is evidently bounded.

2.14. If w(z)= PIp,, and D < D,, then we have also u(z)= PIp.

By a conformal representation we reduce the case to D= C. Further u(2)
is the difference of two Poisson integrals with positive\ boundary functions.
Hence, without loss of generality, we may suppose that u(z) has a positive
boundary function on F(D,). We put

aup,(2) =up,(2) if wup(e)< A
aup (2)=A if uple)=A
The function 4u(z)= PIp (uup) as a function of A is non-decreasing and

lim 4% (z) = u(2)

A—®

in Dy (ef. 2.4.1). In D= C, 4u(z) is bounded. We have therefore (cf. 2.7.)

27

_ _ 1 1—¢
AM(Z)__PIC(AuC)—zn 1—2¢cos(d—ep)+ o
0

5 auc(€)d .
If A~ o, the limit in the first member exists. Under the integral sign
there is a non-decreasing sequence of positive functions. Hence lim juc(e'?)

A— o

exists and is L-integrable. Thus we get

ule) = PIc(uc).

2.15. If
(i) K< F(D-D),)
(ii) w= Plpup, v= Plp vp,
(iit) K rectifiable and wup == vp, almost everywhere on K,

then (u — v)P =0 at all inner points of K.



72 Frantisek Wolf,

By 2.14, = Plp.p, and v= Plp.p,. Now, the result follows from 2.8.

2.16. If u=RPI(K,a@) and v=RPI(K,a2) then (u— v}’ =0 at all
interior points of K.

This is a corollary of 2.13.

2.17. Definition. If
2

wle) = f L1 1U(9)

T 2m) 1—2rcos(@—g) + ?
0

and Ulp)= U, (p) + Us(p), where U, is an integral and U, a non-decreasing
function, then we shall say that «(2) is a lower Poisson-Stieltjes integral and we
ghall write
w(e) =1PIA{U).
. 1 . . . au
It is known' that u¢ exists almost everywhere and that it is equal to TR
2.17.1. A sufficient condition for w(z) to be a lower Poisson-Stieltjes integral
is the existence of an A such that
u(z)= A, z< D.
2.17.2. If
u(e) = 1PIp(U),

then

uw ZPID(M) = PIpup.
dg

It is sufficient to prove the inequality for D= (. If U is an integral,
then u = PIpup. We may, therefore, suppose that U is a non decreasing
function. Then u(2) = o.

Using Fatou's theorem we deduce from

27
1 92 —_ ?,.2

u(z)=(l)111:; o®—2prcos{f —¢)+r
¢

sulee’ ) de

the desired result

27

1

1 —? ;
u(e) Z;zfl —27rcos (0 —¢) + rzuc(e ")dg.
.0

! Evans, p. 40, Corollary.
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2.18. If ul2) is harmonic in D,

2.18. 1 Diy< D, 3Dy+ SF(Dy)> C,
2,18.2 u(2) = PlIp, up,
2.18.3 lul|=M for z< F(D:y)D, k=1,2,...

2.18.4. there exists a boundary function a(z), equal to one of the values of wup,
which s integrable in the corresponding C, then

u=PIDup.

Without lack of generality we may suppose D= C, and Di-Dy=o0, k # .
If the last condition would not be satisfied, it would be easy to construct new
D satisfying this and all the previous conditions.

The set F(C)- F(D:)- F (D)) consists of at most two points. Let there exist
two points z,,2z,, Then we can join them by two curves K < Dy and K; < D,
D; will be contained in a domain bounded by Kj and a circular arc z:?g, and

——

F(D;) can have points on 2,2, but not on the complementary arc. Since K;

separates Dy from z:??_, F(Dy) cannot have points on ,Z,.z; This shows that
there are no more common points on F(C).

The points of F(Dy) are, therefore (i) inner points of arcs F(Dy)- F(C),
then wc = up,; (ii) points which are not on F(C), there |up| =< M; and (iii) those

of the enumerable set
2 F(C) - F(Dy)- F (D).
k1

We define
~a(2) = max (a(2), — N)
and
NU (Z) = Pl ya (Z)

At almost all the points of the first kind we shall have yup, = up,, since
at those points u = RPI(¢). At the points of the second kind we have up,=—N,
and the enumerable set of the points of the third kind may be disregarded.
Hence in virtue of 2.18.2 we shall have yu —u = — N — M in all D;. The
same is clearly true at the points of F (D). Hence we get yu — u=1I[PI.

Since (yu — u)¢ = 0, 2.17.2. gives yu — u =0 or

u < Ply yuc.
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For N —» o« this becomes

u <= Plouc.

By means of a similar reasoning we can deduce the opposite inequality and
complete the proof.

2.19. If
(i) D = 3Dy

(i) for all z < F(D) there vs an N(2) and a k such that D-N(z) < Dx, and
(iii) U = .PI])k ’upk,

then
u == PID Up

We may again suppose D= C. In every N(z), uc is almost everywhere
one-valued and finite and, by (iii) and 5.5, L-integrable on F(C)-N{z). By
means of the Heine-Borel theorem it is easy to show that #¢ is L-integrable on
the whole F(O).

Without loss of generality we may suppose that the N(z) are all circles
with centre in 2. Since wuc¢ exists one-valued and finite almost everywhere, we
can construct, by diminishing, circular neighbourhoods, such that #¢ would be
finite and one-valued at the points F(N(@)- F(C). Now, u(z) is bounded on
F(N@)- C. To every z<< F(C) we make correspond a closed circular neighbourhood
N’(z) whose radius is half of that of N(z). By the Heine-Borel theorem we
may cover F(C) by a finite number of N'(z), say N'(z1), k=1, 2,... K. Then

K
DK+1 = C-— Z N(Zk)
k=1
is completely interior to € and there is an M such that Ju(z)] < M in it.

Now it is easy to see that the conditions of theorem 2.18 are satisfied for

2.20. If u= RPI(2) at all points z of F(C), then w= Plpup.

Out of these neighbourhoods (s. 2.9) we can choose a finite number of them
which completely cover F(D) and such that in the rest of D, w is bounded.
Then we can apply 2.19.

2.21. If K< F(D) is a curve with its both endpoints and u(z) = RPI(2) for
all e < K, then w= RPI(K).
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The proof follows from 2.9 and 2. zo.
2.22. If w= Plg, then

f=u+z'v=o( ! )

I—7r
uniformly in 0.
We start from the expression
27 "
1 er+re
f(Z)——f———uo(qv)dqv

T2m) f0—rett
0

and establish the result by the usual reasoning.
2.23. If fle)=u + 1v and w= PIg(alx)), where

f a(z) dx’ < o

1+ 22

_(Lep
vy
uniformly for z - « in H.
The condition for a(z’) is equivalent with the L-integrability of the boundary
function in the corresponding C. We may therefore use 2.22. By

—

then

z2—1
C__z +1

we represent C() on H(z). Hence we get

11 2z 1@ty +2y+a) |2
1—eo 11— 11— ye@+yi+y+1) 29

uniformly for # ~«. Now, 2.22 gives the required resulf.

2.24. If
2.24. 1 Sl&)=wu+ iv,
2.24.2 = PIg(a))
2.24.3 la@)| =M for 2 >N,

then f(2) is bounded for x> N+ 2, o<a<y<b.



76 Frantitek Wolf.

Without lack of generality we may suppose N =o0. Then

0 -]
Y a(x) !
““n(f““f)(x—x')* AT
0 0

My [ dd
,ugl_'é ”f(x__x1)2+y9"M

0

where

and

0 (V]
y [a(x)] ¢ [lal)]
% A B LACS) B Ry ) EACSA
lel ﬂfx2+x'2+y2dx P 1+w"’dx

—2 —

for o < y<c¢. Hence u is bounded in the strip x> N+ 1 o<y <g¢, for any
arbitrary positive c.

Now we use 3.1 in a way similar to 3.2 and we deduce the boundedness
of vinx>N+z, o<a<y<b<e

3.0. In this section we shall prove some results about barmonic and
analytic functions which we shall use later.
3.1. If Ju]|<M in r < R, then

oul  _2M
Or r=09, 8 4]
From
2n . .
oy — L o —r "
0
we deduce
PE: 4
Hu I )
vu _ _ v
(8r)r=0,0 o cos (0 — p)ulee?)d .
0

Hence the desired inequality easily follows.
3.2. If 1° u(2) is harmonic in D, defined by

e<argz<fB
2° u{z) = o(g?) for z » o, uniformly in D; then
f@)=u+1v=0(z)

for 2 — o, uniformly for « + e < arge < g — .
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For [=2,-5, 0<s<1 we get

f"f f(au i5) 1= f(gg* 7@

where g—: is the derivative in the direction of the normal to argz=argz, In

order to get upper bounds for these derivatives, we use 3.1 for cercles with
centres in {, and radius ¢|{|. The rest of the proof is straightforward.

1
3.3. If 1° fle)=wu+iv is an entire function, 2° |u| < exp [elzlwa/y"]
for all e > o and | 2| > R(e); 3° w(e) = 0(¢'*?) for 2z - o uniformly in & < argz<<f,
! integral; then f(2) is a polynomial of I-th degree.
Using 3.2 for cercles with centre at z radius y/2 we get

! n nts
sac el es[eflet+ () ] s e Lemorer ]

for all ¢ >0 and |z| > R(e).
By 3.2, it follows from 3° that

fle)=o(")

a+ﬁ.

2
The funection

00 = [r@ = 0= £ 0= = 5poi0)| [

for argz =

a+f

satisfies 3.3.1 and is o(1) on arg g== Now, we use the generalized

theorem of Phragmén-Lindelof' to the function g(¢/“+#2(?) in J({) > 0. We get

fle)=o()

uniformly for all z— . Hence f(2) must be a polynomial of [-th degree.

3.4. If f(z) is a polynomial of degree I, whose coefficients are real, and
there exists a sequence of points {a:} such that 1° ar > o0, 2° T{f(ar)} = o(a),
3° lin: arg @y = wx where % is not a fraction, with a denominator less than or

equal I, then f(2) is a constant.

1 F. WoLF, An extension of the P. L. theorem, Journal of the London Math. 8. 1939.
p. 208.
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If, indeed, the highest power in f(2) is ¢;2* (0 < k < ]), then, if 3° is satisfied,
T{f(ar)} ~ cx|ax |t sin (k7w x).

For % > o, this would be a contradiction to 2°.
3.5. If 1° f(2) is analytic for 6, <8 <86, 2° |f(z)| < exp e8] for all
£>0,0,<0<86, and |z| > R(s),

3° Slz)=o0(2%) for 6 =10,
fle)=0(z) for 6 =46,

4 pley= =02+ D=0

then f(z) = 0(z?¥) uniformly for 6, <6 <6,.
We prove it by applying Phragmén-Lindelof’s theorem to f(z)/z7(=?1€%) in
9, <0<,

4.0. If
1° u(x,y) s harmonic in H,
2° w= RPI(z) for all z << F(H)
5 Iua(x,(:)ldx<w’
1+
then

w(z, y) =gfﬁi)?d§ +c7[éanz"] =plx,y) + sz, y)

—x 1

The series D\ ane" converges Jor all 2z and T (ar) = o for all k.
1

By 2° and 2.11, uy is one-valued and finite almost everywhere. Condition
3° is equivalent with the integrability of s in the corresponding C. By 2.3,
p(x,y)=Plguyg and 2.7 gives

(u—p=o.

Hence s{z,y) is continuous and equal to zero on y =o. It can be extended
to a function which is harmonic in the whole plane by the equation

4.0.1 s(x, —y) =—s(z,y).
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It may be considered as the imaginary part of an analytic entire function

-]

D)@ e™ which is real on the real axis.
1
4. 1. Conditions for the non-existence of the singular part.

4.1.1. If the conditions of 4.0 are satisfied and u(2) = o (2%/y), then u= PIyug.

By 2.23, we find that s=vo0(¢*y) in H, and by 4.0.1 also in the
whole plane. Further 3.1 gives k(2) =s(¢) + 2¢{¢) = 0(¢*/y) which shows that
R[h(z)] =o' or u= Ply.

4.1.2. If the conditions of 4.0 are satisfied and (i) u(2) = o (™), (i1) u(z)=0 (2)

on a sequence of points {ax}, such that lim|ay|= o, lim arg a; = nwx where » s
k k

not a fraction with a denominator less than m,
then w = PIpyun.

k>m

Condition (i) gives, in the same way as above, s(z) I:Zakzk] Now,
we apply 3.4.

4.1.3. If the conditions of 4.0 are satisfied and (i) |u| < exp [ |2 | /g/]
Jorall e > o0 and |z| > R(e) (ii) u () = 0 (2" 1) for 2z > » umfmmly n o << argz <,
I integral, (iii) there exists a sequence of points {a} such that 1° lim|a|= =,

k
2° u(ar) =o(a), 3° lim arg ax = mwx where x is not a fraction with a denominator
k
less than or equal to 1, then

U = PIHMH.

‘We deduce the proof in the usual way from 3.3 and 3.5.
4.2. If
(i) u(z,y) is harmonic in H

k)

(ii) w=RPI(x) for x| = M,

(" e
then
(f f) uH d§ + viz) + 3[2%5‘]

! Cf. Carleman’s generalization of Lindeldf’s th. Acta m. 48.
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where v(z) is harmonic in |z|> M, v(e)=o0 for y=o, |z| =M, v(e) =0(§)
uniformly for ¢ - . The series Zan Z" converges for all z and T (ax) = o for
1

all k.

Similarly to 4.0 we have (u—p)f=o0 for |z|=M. Hence g¢x,y)=
=y —p=—q(+ x, —y) defines a function harmonic in |z| = M, which may be
considered to be the imaginary part of a function g(¢) analytic in [z| = M.

This can be written g(z)——-Zan 2", where J(an,) =o0. We may, evidently, take
ay=0. Then we get -
@ —1
T(g) = 3[2 an z"] + 3[2 n z"]
1 —%

which proves our assertion.
4.3. If (i) z, vs an isolated singular point on F(O), i.e. of there is a circular
neighbourhood N (z,), such that at all points z < F(C)- N(e,), & == 5, = RPI(z)

(i) u(2)=o(z—2z,)"™ in 2 < C- N(z),

then there are constants ¢y such that

S afe—ap] - [ =ruclen)
431 ule) 3[26‘/(2 ZO)] 2 1—27'cos(ﬁ—¢)+rzd¢
k=0 F(C€) - N (2)
2s a harmonic function which is continuous in N{zy)- C, zero on F(C)- N{z,)} and
o0(z — 2,).
If we define the functions

0 Sn-—l
a0

4.3.2 SI=1+221~"cosn0, Sh =
1

which are harmonic in C and SP = o at all points of F(C) except at 6 =o0, then
the imaginary part of the sum in 4.3.1 may be substituted by a sum of the form.

4.3.3 e Se(r,0 — 8y), T(dy) =o.
k=1

Proof. We represent, by
.2+ 2,

{=—1

z— 2,
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H() on C(2) and apply 4.2. We get
_ ¥ “H(g) 1 < k
“(C)-F(mf(g ) 4 o d§ + v (g )+c7[‘12akC].

Now, we have only to prove that the imaginary part of the series can be
written in the form which occurs in 4.3. 1. DBut this is evident from

=i+ 27z, .
¢ v

Now we show that 4.3.3 is an alternative form
We have for z,=1

s=R[1+2 30|~ 2| =~ -2t - a0

Similarly

_0S8 _ gl gl gl 2e |-
S ‘7[&0]“ g[ldzg ”g[ =

o[-t o]t

4.3.4 k=1
n=1

and we shall show that this is true even for £ =1 We have indeed

03{ 1_

S = Z 7 C—1 nc7[ n—l(I + gg)]

{— .
which is of the required form and ¢,; = bt ¢i—1,1—1. The equations 4. 3.4 are

such that it is clearly possible to express J({*) by means of S,. We have, thus,
proved that 4.3.3 can be substituted in 4.3.1.

5.0.

In this section we shall formulate some theorems on conformal
representation.

5.0.1. Ostrowski has proved the following theorems:’

! ALEXANDER OSTROWSKI, Acta math. V. 64, 1935, p. 100, 116, 173
6
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Let £ = ¢@(z) represent conformally D({) on D(z2). Further F(D(2) has at
2, a »corner», i.e. has two half tangents, which form au inner angle y > o.
Similarly F (D)) has a corner at {, = ¢{z,) with an angle y, >0. Then

5.0.2. argg—:—_éz:(%—- 1) arg (¢ —z,) + ¢+ elz—2,)
and
5.0.3. arg ¢’ (¢) = (%‘- I) arg (z — &) + ¢ + &.(e — 2,).

Where ¢, ¢, converge to zero, as z ~ 2z, uniformly in a sector.
5.0.4. We denote by c¢,, ¢, two arbitrary positive constants such that

¢, < 6. I, now 2, # 2, are two points in a sector of z, such that

2, — 2,
Cl< 1 0

=

23— &
then

97(31) — lP(Zo) N (31 — ,20)71/7
plz) — @) \& — 2

when z, z, converge towards z,.
5.0.5. Finally,

loglgp(e) —@lal] _n
log [z — 2] y

and

log l¢"(2)]

-~

log [z —2)| 7

for 2z converging towards z, in a sector.
5.0.6. (Warschawski'). We denote by s the length of F(D) from the point
2z, on and by 6(s) the angle between the real axis and the tangent to F(D)

+6
at s. If (i) fleos 6(s) — cos 6(£ O)Ids, d > o0 converges, (ii) lim () — 2|
0

$ s

exists, (iii) D(z) has an inner angle ¢ at z, and (iv) { = @ (¢) represents C({)
on D (z), then

* Uber das Randverhalten etc. Math. Zeit. 35 (1932) p. 427.
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. 2) — @z
Jim 2 ((Z)_ Z:)ane o
exists uniformly for z < D(2).
5.0.7. It is easy to show that the conditions are satisfied in the case
that |8(s) — 0(+ o)| = C|sl*, «>o.
For condition (i) this is evident and, as for (ii), we have

8
:lfgi(0(3)_9(i0)) ds
o

) f|0(5) — 0+ o) ds) =s + 0=,

8

fe“’(*’)ds
0
8
e
0

5.0.8. (Warschawskil).
Let F(D) have an arc K with a continuous tangent and z=y({), ({= @)
represent D(z) conformally on C(f). We denote by K’ an arc interior to K,

1ot = sl | fas0

and by ¢ the corresponding arc of ¥(C).

A necessary and sufficient condition for the relations
lo'(2) — @' (Z)| < const |z ~ 2’ |°, 2, &’ < K’
' Q) — ¢ €)= const |E - L', £, 0" <,
is the existence of a % such that
5.0.0. [0(s) — ()< k|s—5']5, s, < K.

5.1.0. Definition. The curve K (z) is said to have the property E at the
point 2z, if it is analytic in a certain neighbourhood of 2, except possibly at
the point z, itself.

If it is not analytic at 2, then we suppose moreover K (z) to be such that
there exists a domain D* = D* + D} for which (i) K= F(D*) - F(D?) (ii)F(D*)
has a corner at z, and (iii) D}, D} are inverse to each other with respect to
the analytic part of K{z).

We see that if K{(z) is analytic also at 2z, then the last conditions are
superfluous.

5.1.1. If {=¢@(2) represents conformally H({) on D*(2) and o= g(z,),
then K({) is, by our hypothesis, the upper part of the imaginary axis. Now

'L e p, 447.
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we see easily, by 5.0.2 and 5.0.3, that K(2) is rectifiable near z,, that it has.
a tangent at z, which is the bissectrice of the cormer of F(D*).

Further, if 2, is inverse to z,, then

lim (arg z, + arg z,) =2 lim argz
2,0 2K, 2=z

2, — 2, . (_gl)c
&3 — & -

5.1.2. An immediate consequence of these results is the following.
If (i) D(2) has a corner at z,, (ii) K < F(D) has the property E at one side
of z, and (iii) { = @(z) represents conformally H({} on D{z) so that o= ¢ (),

and, by 5.0.4,

uniformly, if z - 2, in a sector.

then { = g(2) represents also conformally HY(l)}(> H (), whose inner angle is.
larger than =, on D,(2) whose inner angle at ¢, is larger than that of D{z).
Here K(z) comes to be in a sector of D,{z) and the results of 5.0 are valid
in an 'one-sided’ sector of D(z) whose one side is K(z) itself.

5.1.3. If (i) D(2) has a corner at z,, (ii) K (¢) lies tn a sector at z, and has
the property E at that point and (iii) { = @ (2) represents D (L) on D(2), then K(L)
has the property E at §,== g (2,).

Let D*(2)=D%(2) + Di(z) be the domain of 35.1.0. Since K lies in a
sector at 2z, we may suppose without loss of generality that D* < D. Let
D*(2) be represented conformally on H (w), by 2=y (w). Then [ = ¢ (2} trans-
forms D*(g) into D*({)(<< D) which, by {= ¢ (¢ @w)) is conformally represented
on H(w). Hence D*({) satisfies 5. 1. (iii).

It is easy to see that D*({) satisfies also (i) and (ii) and K{{) has there-
fore the property E.

5.2. We shall say that K(z) has the property E* at z, if it has the
property E and if,

(iv) denoting by s the length of K(z) from the point z, on and by 6(s) the
angle between the tangent and a fixed direction,

5.2.1. 160(s) —6(0)| < Cs?, e>o,
is fulfilled, for the point s, in a N(z).

5.2.2. If (i) D(z) has a corner at z, and at each of the parts of F(D), in a
certarn netghbourhood of z,,
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5.2.3. 10(s) —0(s"N|<Cls — s, «>0
s satisfied,

(i) K(2) has the property E* at z, and les in a sector at 2,

(iii) &= @ (2) represents D(L) conformally on D (g),
then K (£) has also the property E* at $y= @ {z,).

It is, by 5.1.3, evidently sufficient to show that K ({) satisfies 5.2.1. It
is easy to verify that, although the constants change, the property E* is in-
variant with the transformation {—,= (z — 2.}

‘We may therefore suppose that the two parts of F (D) at 2, have a com-
mon ‘tangent and that, therefore, 5.2.3 is valid not only separately on both
sides -of 2,, but in a certain two-sided nmeighbourhood of z,.

Now, we see that the econditions of 5.0.8 are satisfied. Hence

¢'(2) — ¢’ (z)
(e — 2,)*

is bounded, if z < F(D)- N{z,). By the Phragmén-Lindelof theorem it must be
so even for # < D-N(g,). And the same deduction can be made for ¢/ ({) =
=1/¢'(z), in the corresponding C-«N{(). Hence ¢'(¢) is in absolute value
between two positive constants. We have, therefore

arg ¢ (¢) — arg @' (z)) = o (e — 2°).

If, now, 6(c) has for K({) the analoguous meaning as 8(s) has for K (z),
then
8{c) — 0,{0) =0(s) — 65 (0) + arg ¢’ (2) —arg ¢ (25) =0 (s*) + o((z — 2,

or, using 5.0.7,

0{0) — 6,(0) = o (¢ — 20%) = 0 (€ — LX) = 0(0%).

Thus, we have proved that K (f) satisfies condition 5.2. 1.

5.2.9. We have the following result similar to s5.1.2.

If (i) D{e) has a corner of the same kind as in 5.0.6 at z, (ii) K < F(D)
has the property E* at one side of 2, and (iii) { = @ (2) represents conformally
H() on D{z) so that o = ¢ (2,), then {= @ (z) represents conformally also H, ({),
whose inner angle at { =0 is larger than =, on D, (z), whose inner angle at 2,
is larger than that of D(z).

! WARSCHAWSKI, L c. p. 446.
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Further, instead for 5.0.5, Warschawski’'s more precise result 5.0.6. holds
in D(z).

5.3. Let {=o0< D)< CE) and (e<0<pB, r=1)<F(D)-F(C). By
z=1l(l), C(z) is represented conformally on D(L), in such a way that o=y (o).

Then

Z—ngIfor a<<g.

Since 1 ({) is analytic on (e, 8), ¥ ({) must exist everywhere. By the theorem
of Julia-Caratheodory’, we have, for o < 3, < 8, €% =Y (¢'®) and 2= ¢({)

1 —gr Ed

[em—1] Il

If we put z=_{=0, we get

= (o)

5.3.1. If a(l) is a boundary function of D(L), which is integrable on (e, f)
and bounded on the rest of F (D), then it is integrable in the corresponding C(r,8).

We have indeed
g
0|$f|a(s)|ds
ag
and on the rest of F(C) it is bounded.

0l
5.4. For application of our uniqueness theorem to general domains we

f|a ) dé= fla Nds-

(el

shall use a result proved by W. Seidel.?

5.4.1. If z=1y({) represents conformally a convex D(z) on C({), then
|2y (2)] is increasing on every radius. The boundary function, thus defined,
is almost everywhere finite and greater than a certain positive number.

5.4.2. If z=1({) represents conformally a domain with bounded »outer
curvature» D(z) on C(), then |y'({)| is everywhere greater than a certain
positive number,

This is a generalization of the preceding result and of another of Seidel’s
theorems. The outer curvature in a frontier point is the reciprocal value of
the radius of the greatest circle which goes through the point and is completely

! Cf. e.g. NEVANLINNA: Eindeutige analytische Funktionen, p. 52.
? Ueber Riinderzuordnung bei konformen Abbildungen, Math. Annalen, 104 (1931), pp. 212,
217, 222.
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outside D. By a linear transformation, which transforms this circle into
the unit circle, we reduce this theorem to the theorem of Julia-Caratheodory
(ef. 5.3).

5.4.3. If a(e) is a boundary funection, integrable on F(D), and D has a
bounded outer curvature, then afz) is integrable in the corresponding C.

The proof is identical with that given at the end of 5.3.1.

5.5. If K< F(D) is analytic and K' < K completely interior to K, then
the L-integrability of a{z) on K’ is equivalent with the L-integrability of a(2)
on the arc in the corresponding C.

If {=g(z) represents conformally C({) on D(z), then, on K’', |9 ()] is
between two positive constants. Hence the result readily follows.

5.6. Let D{s){< C(z) be a domain bounded by a curve K{(2) joining the
points €® ¢f, and by the circular arc between those points. At €% K (2)
has the property E and D(z) an inner angle o. If s < D(2), z~¢® and
L=1g(2) (z =y () represents H({) on D(F), (0 =: p('9), then

I __IIZ] = o (Lel=*e - &/m)

5.6.1.

for any positive e.
If, moreover, K (z) has the property E* at ¢¢, then

5.6.2. = 0L - G/

1—|z|

Proof. By applying first the intermediary transformation { = {77, we get

from 5.0. 5

5.6. 3. W (L) — e = o (L0l +e), (Y Q) = o (Lletnlinte),

Since the circular arc has also the property E* at ¢/ these relations are
valid uniformly not only in a sector but, by 5.1.2, for all z < D ().
Now, let z=re? z*= ¢ be two points lying on a circle with centre at

¢% Then we get

= % max [y Q11— 21 < o0 @),

Thus 5.6.1 is proved.
In order to deduce 5.6.2 we have to use the more precise result of
Warschawski (¢f. 5.0.6). Hence we shall find instead for 5.6.3, that
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[ © — e &

and

5.6.4 [y’ () et min]

are between two finite positive constants. The rest of the proof is the same

as above.

6.0. In the unitcircle C(r,0) we define, by the equation 0=K(r,2), a
system of curves K (1) which shall satisfy the following conditions:

1°. The function K(r,2) is continuous as a function of two variables, and
periodic, with the period 2m, in A;

2°. K(1,4) =4 and (d K/dr)r=1 s finite;

3°.  The curve 0= K(r, 1) has the property E* (cf. §.0. 1) af the point r=1,0=14.

6.0.1. A consequence of the definition is the uniform convergence of
KA to K(&,) as A, — 4,

6.0.2. The second condition in 2° signifies geometrically that no curve
is tangent to the circumference of the unit-circle.

6.0.3. If we say that u(z) has a property in (e, 8), then we mean that it
has that property in the domain bounded by the circular arc ¢« <6 =g and by
K{x), K(8)

6.1. Definition. We shall say that u(r, §) satisfies condition 4 if (i) it is

harmonic in € and (ii) lim Ju(r, K(, &)| is finite for all A except for those
=1

belonging to an enumerable set 9.
6.2. If u(r, 0) satisfies condition 4, then for every perfect set &, there is
a number M, and a section € (a, b), such that

laulr, Ko, D)| < M, for A < §-(a, b).
Since u(r, K(r, 1)) is a continuous function of » and A, the set

A (M) = lim Bl u(, K¢, D)| = M, r <]
e—1 4

is closed. From (ii) it follows that

lim o (M) > O(H)

M

and in particular!

o«
! We put @——-Zﬁn.
1
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M x

lim [%I(M) +ion] E=6.

M,
Hence follows the existence of a M, such that % (M) + D 6, is dense in a
1

section of €. But, then, even A (M) must be dense in a section €-(a, b). The
rest follows from the closure of U (J1,).

6.3. If wu(r, 8) satisfies the condition A, then the inner points of the set
of points «, for which w= RPI(c'®), form an open everywhere dense set D.
By ¥, we shall denote the closed set complementary to .

If we take € = (a, b) in 6. 2, we see that u” is finite at a partial interval
of (a,b), and since this is arbitrary it follows that «” is finite at an every-
where dense set of points. By 2. 12, D is, therefore, also everywhere dense.

6.4. 1f wu(r, ) satisfies the condition A and F =P + R, where P is per-
fect and N reducible, then, if P is not empty, we can find a closed interval
{a, b), containing a section P, of B, and having no points of R in its interior.
Further, there exists an M, such that

6. 4. 1. lulr, Kor, D)} = M

for 4 < $B,.
In one of the intervals complementary to N, there exists a section of .
To this we apply 6. 2.

7.0. Theorem. If
(i) wu(r,8) is harmonic in C,
(ii) the curve K(9), defined in 6.0, forms with the circumference the angle §(6)

GO

(iif) Xim |u (r, K(r, 9)| is finite for all 9, except for the points of an enumerable
r—1

set 9.
(iv) im u(r, K(r, 9) <0¢(9) < lim u(r, K (r, 9)) where 6(9) is L-integrable,

r—1 r—1

(v) for every 9 and &, there is a N(e®), such that

|u(r,0)] < exp [e/(1 —7)28)] for (r,8) < N(e?),
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(vi) for every 9 there exists an angle A(9): ¢, (1—r) <0 — 9 < ¢,(1—71) having
K (9) in ots enterior, such that

u(r,0)=o (FIW)
Jor (r,0) < A(3), n(9) integral,

then u=RPI(z) (¢f. 2.1) for all z<F(C), except for the points of a reducible set R.

Remark. Without changing the conclusions, it is possible to introduce a
reducible set R, for the points of which no conditions need to be satisfied. We
may, indeed, by the following reasoning, show that in every complementary
interval of R;, there is only a reducible set of singular points. The final set of
singular points is again reducible.

7.0.1. In order to illustrate by simpler examples the meaning of the theorem,
we enunciate two particular cases.

If (i) u(r,0) is harmonic in the unit circle C(r,6),

(i1) @lu(r, 6)| us finite, except at the points of an enumerable set 9,
r—

(iii) lim w(r,0) < o(0) < Lim w(r,6) where 6(0) is L-integrable,

r—1 r—1

(iv) w(r,0) =0 ((—I:I—;)—m) untformly for all 8,

then u=RPI(z) for all 2 < F(C) except for the points of a reducible set R.
This theorem is fundamental for application to the uniqueness theory of sum-
mable trigonometrical series (cf. F. Wolf, On (C, k) summable trigonometrical series).!
7.0.2. If (i) u(x,y) is harmonic in the upper half-plane H,
(ii) Um Ju(z, )| s finste except at the points of an enumerable set of points 9,
y—0

x <o,

(iii) lim « (, 4) < () < lim « (x, y), where l_‘_’_(ﬂl_é d
y—0 y—0 I+

(iv) u(x, y) = oy~ ™D} wniformly in any finite interval (— X, X);
then w= RPI(2) for all z < F(H) except for the points of a reducible set of points R.

This theorem is equally fundamental for the uniqueness theory of (C,%)
summable trigonometrical integrals.

It is deduced from 7.0 by the conformal representation of H({) on C(z).
It is easy to define suitable K(J).

! Proc. London Math. Soc. 8. 2, Vol. 45, 1939, p. 328.
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7.0.3. If the first four conditions of 7.0 are satisfied and

" v(r,6)
u (?‘3 ) = 07.m0n—m0

where v(r,6) is a harmonic function continuous in C + F(C), then the result of
7.0 holds good, with »(3)=n.
From 3.1 it follows indeed that,

1 I
= 7(1 —llfol)2f|v(IZ) - 1;(30)|d3:o(1_|30|);

—z] =1—] %l

dv(zy)

or

0 v(z,)
a0

similarly for higher derivatives
v
g = ol —la .

Hence 7.0 (v) and (vi) are satisfied.
7.0.4. If the first four conditions of 7.0 are satisfied and

R—1

R 27
() lim | (x —1')"’P;'d1'f|u(r,0)|1’d0<oo, p=1.
0 0

then the result of 7.0 holds good, with

2
n{d) =m-+ --
(#) ’
‘We have indeed

27 R 2r
1 1
|u(o,0)|—|;7;fu(r,0)d0|——lmffu(r,ﬁ)dﬂv dr
0 0 0

R an 1

=2 [ [t ovraoal

_[nRz L, )] r 26 ar |°
0 0

Further for an arbifrary ¢ > o there exists a ¢ > o such that

ff(l — )2 u(r,6)|Prdrdf <e

if the area of D is less than 4.



92 Frantifek Wolf.

Now, we take a R such that the area of R <r <1 is less than J. Then,
2R+

for all r> , the circle C; round (r,6) with the radius I—%_l is in the

domain and we get

1
”(’70)S[;G-%7Ff Iu(?‘,(?)lprdrde]p
2+m
’[ 12__7.:-”11)]] I—7mp|“(7 Ip?'d7 dB]

1A

or
w(r,8) =.0(1 — yj—m—2p,
.1 If
(1) {a, 8) is an interval of D (ef. 6.33),
{1i) w(r, K(r,c)) is bounded,

(iii) ¥ such that e <y< g, and wucly) is finite and therefore u(r, K (r,7))
bounded,

(iv) D=FE[K(r,a) <8 < K{r,y), o<r< 1] + E[r < R}, and z = @({) is the
8 r, 8

conformal representation of D(z) on H(), such that

de=g(*),  o=gp),

then
7. 1.1 %) =p() + s
where
7.1.2 p()=Plguy
and

ks nle) fla)/n—1
7.1.3 sQ=I[ 3 a]

k=1

7.1.4. Further there is an angle Ble): — 6, <J < d, in which p({) =0 ({

uniformly for { » .

1 R<1, but so large that D should be connected.
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The function «(z) is an RPI at the points of K(a) and K(B) (cf. 2.12)
except possibly at their endpoints e'%, ¢'#. From the definition of O it follows
that #= RPI;(¢'%) a<d<fB. By 2.9 and 2.14 we have also u= RPIp ().
The only possible singular point of u{2) on F(D) is, therefore, ¢*. (Condition
(iv) shows that 4.0 (ii) is satisfied.

The domain D satisfies the conditions in 5.3 and by 7.0 (iv) and 5.3.1 p,
which exists almost everywhere on F(D); is integrable in the corresponding C.
Hence 4.0 (iii) is satisfied, and 4.0 gives 7. 1.1 and 7.1.2.

Let the inner angle of D at ¢'* be denoted by ¢ (< g(a), cf. 7.0 (ii)). Now;,
we use the second part of 5.6 and we get: from 7.0 (v)

(@)= lule)| = exp [e/ir —r)"F10] <

7.1 5 =< exp [&02F sin—2F (arg {)]
= exp [eé‘_% sin~! arg {].

We deduce in a similar way from 7.0 (vi) the existence of an angle
o < argl{ < ¢ im which

7. 1.6 w(E) = o (Cemtein),

From 7.1.3, 7.1.2 and 2.23 it follows that 7.1.5 and 7.1.6 are valid alse
for s({). Now, 3.3 gives 7.1.3.

By 5.2.9, {=¢(z) represents a. P,(2) > D{z) on D,(()> H(). Further
D, ({) — H(L) has a positive angle at o below the real positive axis and may be
supposed te be so small that D, (z) — D(z) < 4{e) (cf. 7.0 (vi)). Then, by 7.0 {vi)
and 5.0.6, there is an angle —d <argl{ < d in D,({) in which u = o({e»@),
In — ¢/2 <argl{ < d/2 we have, by 3.2, fF({)=u(l) + ‘v({)=0(e"@"). Further,
by 7.1.3, h{L)=s(l) + 2{{) = 0(5e"@/") and therefore also g{)=p({) + iq(}) =
= o ({e™@7) in the same angle.

Since we know from 2.24 and condition (ii) that g ({)=o0(1) for any constant
positive J(z), we can apply 3.5. We get g({)=10(() in a certain partial angle
Ble): — 8, <argl <d,. Thus, 7.1.4 is proved.

7.2. Proof of 7.0. If the conditions of 7.0 are satisfied, then so is
condition A4 of 6.1. If the set of exceptional points is not reducible, then, by
6.4, there is an interval (a,b), such that the exceptional points in (g, ) form a
perfect set PB,, and there is a constant N such that

7.2.1 lulr, Kr,D)| < N
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for A<<B,. We shall show that this is impossible, by deducing that u=RPI (a, b),
which is an obvious contradiction to the existence of B, (cf. 6. 3).

Let « <SB, be a left-hand endpoint of an interval of {(a,b) — B,. Then
all the conditions of 7.1 are satisfied. We can find a sequence of points {a:}
such that e <P, er < ery1 and lim ez =c. From 6.0.1 we know that K{e)
converges uniformly to K(¢). Hence for all sufficiently large k, K(ox) intersect
the nearer side S of the angle B(e,2) (cf. end of 7.1). We call C(e,2) the
angle formed by S and the bissectrice of that part of B which lies outside D.

(Then B(a,() is asymptotically — d;, < arg { < — %) The parts of K (ax) which

lie in C(e,2) converge uniformly to ¢*. In H (f) there will correspond to the sides
of C(a,2) two curves K, K,, which asymptotically form an angle d,/2, and to the
parts of K(w:) correspond curves K% which join K; and K, and converge uni-
formly to infinity. On K3, we have, by 7.2.1, |u|<N and by 7.1.4, s({)=0().
But, by 7.1.3, s({) is a polynomial to which we may apply 3.4. This shows
that s({) is a constant which is, by 7.1.3 equal to zero.

Hence
ulg)=ple) = Plpup.

A similar reasoning we can apply to a right-hand endpoint of any interval of
(a,b) — B,. Hence we have proved that uw= RPI(z) for all z,< F(De, B),
where D (e, ) denotes the domain bounded by K (), K (8) and the circular arc o, 8.
By 2.20 this is equivalent to u = PIp(,p. The conditions of 2. 18 are satisfied
for D(a,b) (cf. 5.3). Hence we get the desired contradiction u = PIp,u).

7.3. The theorem 7.0 remains valid, if we substitute (ii) by

(iia) the curve K(9), defined in 6.0, has the property E' and forms with the
circumference an angle which vs less than §(6).

We have used the property E* in using 5.2.1 to establish 5.6.2 and 7.1.5.
Now we use 5.6.1 in the same way and we get

l(0)] = exp [¢ Le+o)2P1) sin— (arg {)].

Since () is this time less than ¢, we take & so small as to make
(0 + &)/28(0) < 1/2 and we get again

[w(C)] < exp [¢5” - sin™ arg L.

! Instead of E*.
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7.4. Let L,(4), L,(2) be two systems of curves in C{r, 0) given by the equa-
tions 6 = Ly (r, 2) which satisfy the following conditions:

(i) The funections Li(r, i), k=0, 1 are continuous as functions of both
variables and periodic with the period 2z in i,

(ii) Li(1,2) =1, and (0;11;‘) , (%,%2) are finite and different from each
r=1 4 r=1

other. That means that the two curves have at (1, ) tangents, different from
each other and from that of the circumference.

7.4.1. Theorem.* If
(i) wu(r,6) s harmonic in C(r, 6)
(

i) lim Ju(r, LG, B)| 4s finite for k=o0, 1 except for i in an enumerable
r——s1

set of points
(iii) there s a function o(6) integrable in (0, 2 w), lying between the larger
upper and the smaller lower Limit of u(r, Ly(r, ), k=0, 1 as r—1
(iv) for every & and £>o there is a N(¢?) such that |u| < exp [¢/(1 — r)7?¢],
where 0(3) is larger than the largest angle between a Lx and the circumference;
then wu=RPI(z) at all z << F(D) except at the pornts of a reducible set R.
7.4.2. We shall say that u(r, 6) satisfies condition B, if lLim |u(r, Li(r, 3)|

r—1
exists finite for £ =0, 1 at all $ except those of an enumerable set of points §.
7.4.3. If w(r, 0) satisfies condition B, then for every perfect set €, there
exists a M, and a section €-(a, &) such that

Vu(r, Litr, )| = M,

for $ < E-(a,b) and k=o, 1.

Since u(r, Li(r, %) is continuous in (r, $)

W (M) =1lim Elfju(r, Ltr, N)| <M, k=0, 1, r < ¢
o—1 &

is closed. The rest of the proof is similar to that of 6. z.

7.4. 4. If wu satisfies condition B, then the results of 6.3. and 6.4. hold
good. In 6.4.1, K(r, ) should be substituted by Li(r, ), k= o0, I.

7.4.5. Let a« be a left-hand endpoint of an interval of (a, 1) — B,. By
7.4 (1i), one of the two Li(r, «} is less than the other in a certain neighbour-

! Note that this theorem has a much simpler proof than 7. 0. It does not require the results of § 5.
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hood of »=1. We shall suppose that L,(r, ¢) < Ly(r, @), for B<r < 1.
We define
D=E[L(ra)<0<Lyr,y), R<r<i|+ E[lr<R]

(r, 6) (r.6)

where y is chosen in the same way as in 7.1.3. Now, 7.1.1 and 7.1.2 are
deduced in the same manner as in 7.1.

H o <P, and op - «, then for sufficiently large & there exists domains

Di=FE[L (r,a) <0< Lyr,er), B<r<i.
(r, 6)
From the hypothesis made about Lk (r, 6) it follows that Dj converges uniformly
to Dy= E[L,(r,e) <0< Ly(r,a), R<r<1]. Further, D; has evidently no
(r,9)

point in common with F'(C) and u(z) is therefore continuous in Di. Since it is
on Ly{ay), ox < B, and on L,(r, ¢} in absolute value less than M, it is so in
Dy and hence in D, also. If we represent D(z) on H({) in the same way as
in 7.1 then D,(} will be a domain with a positive angle at infinity. From the
boundedness of w in D, (L) it is easy to deduce, by means of 3.3 and 2.23, that
s{{} =o0. The rest of the proof is the same as in 7.2.

7.4.6. If (i) w(r, 6) is harmonic in C(r, 6), (ii) uc(0) is finite and there exists
an L-integrable function o(0) lying between the largest and the smallest value of
uc (0) and (iii) for every 9 and &>o0 there is a N(¢%) and M(9), such that
ful < exp [e/(1 — »)H] for (r, 6) < N(e9); then u(r, 8) = P Iy uc(0).

It is easy to see that the conditions of 7.4.5 are satisfied, if we choose
e.g. Li(%), Ly(A) to be the two straight lines going through ¢'* and forming
with the radius the angle = (M — 1)/2 M. 1In the angle 4 (=n/2 M() between
the circumference and the nearest Ix(e), 7.1 gives u = R PI,(¢'%). Between
L {e) and L,(e), u(¢) is bounded. Hence we get u = R P I¢(¢'®) for all c.

8.0. In order to deduce from 7.0 uniqueness theorems, it is sufficient to
add conditions which make an isolated singular point impossible (cf. 4. 1).
Indeed, if there is mno isolated point, then the reducible set of singular points
must be empty.

Let 2z, < F(O) be an isolated point of the exceptional set . We construct
a neighbourhood N(z,) which contains no other exceptional point and is such
that uc is finite at F(O)- F(N). Then u is bounded on F(N)-C. Hence, the
only possible exceptional point on F(N- () is z,, Condition 4.0 (ii) is there-
fore satisfied in the corresponding H. Further, in virtue of 7.0 (iv), uc is inte-
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grable on F(C)- N, bounded on F(N)- C and, by 3. 3, it is, thevefore, integrable
in the corresponding C. Hence 4.0 (iii) is also satisfied.

Now, we can apply 4.1 in the corresponding H. The conformal representa-
tion {=¢(2) of H({) on N: C, is analytic in z=2,, We have, therefore,

8.0.1 lim (z — 2,) S = const

and hence, by 5.6.2 we get

8.0.2. Hlim (1 —2)|S*/n = const.

8.1. At an isolated point of N which does not belong to O, we cannot
have n(e) =1 (cf. 7.0 (vi). .

Let « be the point. Then 7.1 shows that s({) is a polynomial of degree
n(e) B(e)/wr — 1. If, now, we apply the same conformal representation as in 8.0
we find by 8.0.1 that in A(e, {), which corresponds to 4 (), s(C)=o("®).
Hence s(0) is a polynomial of degree at most zn(e) — 1. If n(e)=1, then
=R PI(¢% and « cannot be a point of R.

8.1.1. At an isolated point ¢ of N at which to every ¢, there is a N(e9),
in which |u(z)] < exp [¢/(1 — #)"*] n(e) cannot be equal to 1.

If we represent, as in 8.0, N- C conformally on H, then it is easy to see
that s(f) satisfies the conditions of 3.3. Hence s({) is a polynomial. If
n{e) =1 then, as in 8.1, ¢ cannot be a point of N.

8.2. The point ¢ cannot be both an isolated point of R and satisfy one
of the following conditions:

(i) if « belongs to §, then to every &> o there is a N (¢?) in which
|%(2)] < exp [e/(1 — 7)) and x(e) = 1.

(i) if o does not belong to £, then there exists a sequence of points

{ax (@)} such that (a) lim ax(¢) =€, (b) lim arg (ax — ¢%) — ¢ = %, x no frac-
K—» K—x

tion with a denominator less than % (e) (c) u(ax) = o(1/ax — €9).

At the point «, s() will be again a polynomial of degree n(a) — 1. Now,
4.2 gives u = R PI{e"). '

8.3.1. If the conditions of 7.0 are satisfied, and those of 8.2 are satisfied
for all a, then u= P Icuc. ‘

8.3.2. If the conditions of 7.0 are satisfied and for all @ < 9, we can find
to every & a N(e¢'®) in which |u(2)| < exp [¢/(1 — #)'¥] and n(«)= 1; for all the
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other a: if Ble)=mx (cf 7.0 (11), x not a fraction with a denominator less than
n(a), then w =PI, u.

For « not belonging to £, the points of K(z) have all the properties of
the sequence required in 8. 2.

8.3.3. If the conditions of 7.0 are satisfied with n(9) = 2 and, moreover,
Jor all « <8, we can find to every ¢ a N (%) in which |u(z)| < exp [¢/(1 — 1)
and n(a) =1, then u= P Icuc.

This is a simple corollary of 8. 3.2, since §(e) = =.

8.3.4. If Kla) are straight lines through a point 2,<C, z,40,  ts empty
and n(9) < N, then R has at most 2 N(N — 1)-arc sin|z,|/7 + 2 points.

If 2, =r1,¢e'%, then

7, sin (0 — 6,)

1— r,cos (0 —6,)

glo) = ;—E + arc tg
for 0,<6 <6, + n. Forb,— n<6=<86, we have §(6)=pg(26,—6). The func-
tion increases from g(6,) = ;—tto B(6,+ arc cos 1) =§ + arc sin r, and decreases
back to g(6, + n):—; Hence it takes every value four times in the interval
(0, 27). A point can be a singular point if g(6) =Zn—ln, n < N. Further

ol =< arc sin 7, There are, therefore, not more than 2 N(N — 1)arc sinry/w+ 2

points of R.

8.4.1. If ul(z) satisfies the first four conditions of 7.0 and it is the first
derivative of a function continuous in the closed C, then u= P Iouc.

This is a consequence of 7.0.3 and 8. 1.

8.4.2. If ul(e) satisfies the first fowr conditions of 7.0, if at the points of
D, n(F =1 and if u(z) is the second derivative of a function continuous in the
closed C, then w= P Icuc.

This follows from 7.0.3 and 8.3.3.

8.4.3. If the first four conditions of 7.0 are satisfied, and 7.0. 4 (i) is ful-
filled with m + 2/p < 1, then u= P Iy uc.

This follows from 7.0.4 and 8.1.

8.4.4. If u(2) satisfies the first fowr conditions of 7.0 and 7.0.4 (i) is ful-
Silled with m + 2/p <2 and H =0, then u= PlIcuc.

This follows from 7.0. 4 and 8.2.3.
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Remark. The two last results can be slightly generalized by means of 4. 3.

I
I—7r

It is possible to introduce into the first integral of 7. 0. 4 (i) log? without

impairing the results.

9.0. Theorem. If

(i) w(2) is harmonic in D;

(iia) except for the points of a reducible set R,, F(D) has at all points two
hal f-tangents, forming a positive angle; there is a system of curves K({), { < F(D)
given by the function z = K({, 1), o <t < 1, which ¢s continuous in both variables.
Further {=KI(, 1), 2,=K(,0) < D, K({) 7s analytic in a neighbourhood of {
and forms with F (D) angles which are positive and less than 8(C).

(iii) E;I;l |w (K€, 0)| vs finite for all ¢, except for the points of an enumerable

set
(iv) limu(K¢, ) =<0(l)=< Lim u(K(C, ©) where o(l) is L-integrable in the

t—1 t—1
corresponding C,
(v) For every L < F(D)— R, and & > o, there is a N(L) such that |u(e)] =
< exp [/ 85)] for 2 < N(O)- D, o= min |

L F(D)

(vi) for every { < F(D)— R, there exists an angle A() having K () in its

intertor, such that
u(z) =o(e™"")

Jor 2 < A (D).

Then w= R PI{) for all L < F (D) except for the points of a reducible set R.

9.0.1. (ii) If we add the condition that F(D) should satisfy %.2z.3, then we
may take B(5) equal to the greater angle which K({) forms with F(D) at (. This

relaxes somewhat (v).

9.0.2. If we represent conformally D(z) on C(Z), by z= ¢ (2'), then all
the respective conditions of 7.0 are satisfied.

We can disregard the reducible exceptional set of points, since we can
make the reasoning for each of the complementary interval, and at the end get
the same result. Since F (D) has a corner at all points, K(J) will still have
the property E, by 5.1.3 and (i), respectively (iia) (cf. 7. 3) will be satisfied.
The transformation of conditions (iii) and (iv) is immediate.

Conditions (v) and (vi) must be transformed by means of 5.0.5 in a way

very similar to 5.6 and go over into the corresponding conditions of 7.0.
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9.1. Now, we want to give a few criterii for the L-integrability of ¢({) in
the corresponding C.

9.1.1. If D is convex and o) is integrable on F (D), then o (L) s integrable
in the corresponding C.

This follows from 5.4.1 in a way similar to 5. 3.

9.1.2. If F(D) has bounded outer curvature and o({) ¢s integrable on F (D),
then o (L) ¢s integrable in the corresponding C.

We use 5.4.2 instead of 5.4.1.

9.1.3. It is also possible to suppose that on certain parts of F (D), u? is
bounded, the rest satisfying 9.1.1 or g.1.2. From the results in § 7 and § §,
it is easy to deduce a number of theorems adapted to different individual cases.
The only difficulty lies evidently in the field of conformal representation.



