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w 1. Introduction 

Let  g be a Lie algebra over R, the field of real numbers,  and a, a g-module in a Hilbert  

space ~/. I f  the domain of a is dense, one can define an adjoint  module a* in ~ such tha t  

(a(a) /, g) = (1, (r*(at)g) 

for all /E/ ) (a) ,  gETO(a*), aE ~/[g], (see Appendix  A for nota t ion and details). The module 

a is said to be symmetr ic  or (infinitesimally) un i ta ry  if a c a *  and self-adjoint if a = a  *. 

The importance of self-adjointness comes f rom the fact  t ha t  d T  is a self-adjoint module 

(see Appendix A). Here T is a un i ta ry  representat ion of the simply connected group 

corresponding to g, and d T  is the usual g-module with the set of C~176 of T as its 

domain.  Calling a g-module exact  if it is equal to d T  for some T, a natural  problem would 

be to  determine all exact  extensions of a given symmetr ic  g-module. The theory  here is 

analogous to the theory  of self-adjoint extensions of a single unbounded  symmetr ic  

operator.  I n  fact  if dim g = l ,  it is well known tha t  g-module is exact  if and only if it is 

self-adjoint. For  the general case, self-adjointness is necessary bu t  no t  sufficient for exact- 
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hess. (See Appendix A.) However there are many interesting cases where self-adjointness 

alone is enough to assure integrability to the group. In this paper one such module for 

~1(2, R) is studied in detail, and all its self-adjoint extensions are obtained. Since the 

extensions are determined by boundary conditions, it is natural to consider the correspond- 

ing group representations as being defined by the boundary conditions. An interesting 

feature is that  all non-trivial unitary irreducible representations are obtained by determin- 

ing all self-adjoint extensions of the module a~. Although the representations of G have 

been known for a long time this way of deriving them appears to be new. I t  is an interesting 

problem to find modules similar to a~ for other groups as well. This question will be pursued 

in future papers. 

A brief description of the contents follows. Generalities about fi-modules and some 

basic results which are used repeatedly are collected together in Appendix A. In Section 3, 

the basic homomorphism ~. of ~l(2, R) into differential operators and the modules a~, q~ 

are defined. All self-adjoint extensions are determined in Theorems 1, 2 and Lemma 10. 

They are shown to be integrable (Theorem 3). Their unitary equivalence classes are 

identified in Theorem 4. Theorems 5 and 6 describe the set of C ~ vectors, K-eigenbasis 

and the group operators for the representations T~, which correspond to self-adjoint 

extensions of q]~. Theorems 7, 8 and 10 do the same for the representations T~.$.~. (here 

(~, 6' parametrize self-adjoint extensions of a~). Theorem 9 is an auxiliary result which 

determines all representations of G in L~(R) with a given restriction to a parabolic sub- 

group. Theorem 11 gives the intertwining operator between the unitary principal series 

and the representations T~.$.$,, when ~ is imaginary. 

The methods and results of this paper will be used to obtain explicit decomposition 

of (1) the tensor product of two discrete series representations of 3|(2, R) ([12]), (2) the 

Well representation associated to a quadratic form [13]. In fact the present paper grew 

out of an attempt to get such an explicit decomposition. In this connection we refer to 

[11] for another approach to the same problem. 

The author wishes to thank the Institute for Advanced Study, Princeton, for the 

hospitality during summer of 1976, where the final version of the paper was prepared. 

w 2. Preliminaries on 312 

Let G denote the simply connected Lie group with Lie algebra 3l(2, R). Let X, H, Y 

denote the standard basis of 31(2, R), i.e. 

X = ( 0  10) ' H=(10 _ ~ ) ,  Y=(01 ~) .  
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Then [H, X] =2X,  [H, Y] = - 2 Y ,  and [X, Y] =H.  Write u(0)--exp O ( X - Y ) ,  h( t )=exp tH, 

and u(s)=exp sX. Here we have written exp, rather than expa for the exponential map 

of ~1(2, R) into (7. Put  K = (z(0)] 0 e R}, A = (h(t)]t e R} and N- -  {u(s)]s e R}. Then K, A, N 

are closed subgroups of G and G = K.  A-h  r. Write 

w = e x p ~ ( X - Y ) ,  ~ = e x p z ( X - Y ) = w  ~ (1) 

then the center Z(G) is the cyclic group = ~t~ n ] n e Z}. Also 

A d w . H = - H ,  A d w . X = - Y ,  A d w .  Y = - X .  (2) 

Let ~[~I~] denote the universal enveloping algebra of ~|(2, C). The following basis of ~[(2, C) 

will be frequently used 

X '  = (iH + X § Y)/2, H'  = i ( X -  Y), Y '  = ( - i H - F  X § Y)/2. (3) 

Then {X', H', Y'} is another Lie triple. Let 

= ( H § 2 4 7  = ( H - 1 ) 2 + 4 X Y  (4) 

Then ~ generates the center of ~[~[2]. 

Let E(G) denote the set of equivalence classes of irreducible unitary representations of 

G. These are all known (Bargman [1], Kunze-Stein [6], Pukhansky [10] and Sally [15]). 

In any irreducible representation the center of the group and the center of the algebra 

~[~I~] are mapped into scalars and they can be used to parametrize them. I t  is known tha t  

Spec H'  and Spec ~ determine the unitary equivalence classes. Then the points of ~(G) 

can be parametrized as follows: 

1. o~(~,),) where ).2 and ~ are real and IRe).[ + 17[ ~<1, with inequality holding if ), 

is real. These representations are characterized by S p e c H ' = ~ + 2 Z ,  Spec~=) .  8 and 

Spec ~ =e -t'r#. Also w(7, -)t) =o~0h ),), ~o(~ +2, ),) =eo(~, ),). 

2. o~+0,), where ), is real and ).+ 1 >0. Here Spec H'--q-(), + 1 +2N), Spec ~ =).~ and 

Spec ~ =exp ( ~_ i(), + 1)#). 

3. co(0, 1), the class of the trivial representation. 

The class co(T, ).) is known as the principal series when ). is purely imaginary, and as the 

complementary series when ). is real. The classes co• ,)  are the so-called discrete series. 

I t  is then known that  representations of the class oJ• are integrable (or matrix entries 

belong to LI(G]Z(G))) when ).> 1 and are square integrable when ).>0. I t  may be of some 

interest to note that  although co+0') and <o-0') are not unitarily equivalent, they are physi- 

cally (viewpoint of physicists) equivalent since there is an anti-unitary isomorphism 

between representations of the two classes. 
13 - 772905 Acta Mathematiea 139. Impr im*  le 30 D~w, embrr 1977 
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w 3. The homomorphism qx and the modules a~ 

For each ).~C, define the following differential operators on R ' =  R\(0}: 

Ca(H) = 2ta~ + 1, en(X) = - it 

Q ~(X) = - i(ta~ § Ot - ~ / 4 t )  (5) 

Then one checks easily that  these operators satisfy the same commutation rules as the 

Lie triple {X, H, Y). Thus ~ extends as an algebra homomorphism of ~[~la] into differen- 

tial operators on R'. A simple calculation shows that  

The formal transpose and adjoint with respect to Lebesgue measure on R is easily checked 

to be 
t ~ ( H ) = - q ~ . ( H ) ,  te~(X)=qn(X), te~( Y) -- e~( Y) 

In particular, if 2~ is real the operators ~a(Z)*= -~n(Z) for each ZEal(2, R), i.e. they are 

formally skew adjoint. The natural domain of ~n is C~(R').  In this part we shall determine 

all sub-modules of ~a in L2(R ') which are integrable to a group representation. We also 

discuss simultaneously the I~-modules on R• defined by ~ = (C~(R• ~ ) .  Define 

an = (C~(R'),  ~n), (r~ = (CT(R• en). (6) 

Then an is a g-module in L2(R) and its adjoint module is described in the following lemma. 

L~MMA 1. The domain o] the adjoint module ~)((~}={leCc~(R')len(a)/eL ~, /or all a 

in ~[~l~]}. Moreover, e~(a)/=e~(a)/ /or all IE ~0(~). 1 / / e  ~O(a~), then/or each t o >0 

sup I < oo 
l tl > to 

]or all m, heN. Similar results hold/or the modules (~ in L2( R • 

Proo]. The description of ~)(a~) is just Weyl's lemma. (See Appendix A.) Let [e  ]O(q]). 

Then 

I](8)1 < f ;  I,~,]1 dt < 

< .,1-,,-"~ II Q,,(H - 1)]11,,. 

The lemma follows by replacing [ by ~x(Xm(H - 1)~)[. 
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w 4. Eigenfmact ions  ot  QA(H') 

Suppose ~ ( H ' ) / = ~ / f o r  some ~EC. Then / satisfies the  Tr icomi 's  equat ion 

1 
+ ~:/t - 2~/4t "} 1 = o. cqf + - -  1 8t 

I f  we p u t / = 2  It 1-1/eg(2t) (see [3], p. 251) then  g satisfies the  Whi t t ake r ' s  equat ion  

[ ~  - 1/4 + ~ / t  + (1 - f fe ) / t e ]g  = 0 

where ~ =~/2,  ff =2/2.  On any  connected interval  W~4,(t), W_~.~(- t )  are a basis of solutions 

of the  Whi t t ake r ' s  equat ion,  where W,,.~ is the  W h i t t a k e r ' s  function. Also W~4,(t ) = 

O(t~/se-t/~) as t-+ c~, so t ha t  a solution which is in L ~ near  oo has to be a mul t ip le  of W~,#(t). 

Thus  we introduce the  funct ion 

L~,/,(t) = (2t)-u~W~,/,(2t), t > 0. (7) 

Then  

= f  cl L~ls.~/u(t), t :>0 / 
I c2L_~/2.~2 ( - t ) ,  t < 0  

for suitable constants  cl, c a. The  funct ion / will be in L ~ when ~ and  2 are such t ha t  L~j2.~s(t) 

is in L s near  0. Now the point  t = 0  is a regular singular  poin t  of the  Tr icomi 's  equat ion with  

indices __+).]2. Now L~l~.~12(t) =e t(2t)~/~LF(a, c; 2t) with a = ( 1  - ~  +2)/2 and c =  1 +2 ,  ~F 

being Tr icomi 's  function. ([3], p. 255, Vol. I.) F rom fract ional  power series expansion of 

u~' near  0 ([3], p. 257, Vol. I) one obta ins  those of L and the  results are summar ized  in the  

following 

LEMMA 2. There exist convergent power series Pj(t) depending on 2 such that/or t >O 

L~/2.a/2(t) [t~l~(Pl(t)lnt+Ps(t)}+t_~Sp2(t) /or 2E Z, 2 . 0 .  

Moreover, define 

c(~, 2) = r ( -2 )2~/2(F( (1  - ~ - 2 ) / 2 ) }  -1 

/or 2 r N, and c(~, n) as the residue o/c(~, 2) at 2 = n (/or example c(~, 0) = - {F((1 - ~)/2)}-1). 

Then PI(0)=e(~,  ~ ) /o r  all 2, and Pa(0) =c(~, - 2 ) / o r  all 2 ~ --N. When 2 = 0  we have 

__l Qx(t), ~ - l e2N 
L~/s.o(t) [Qg.(t)lnltl +Qa(t), if ~-1r 
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where Ql(t) is a polynomial, QI(O)= ( -1)  r and Q2, Qa are convergent power series with 

Q~(O) =c(~, 0) and Qa(0) =c(~, 0)d(~), where d(~) =~o((1 -~)/2) -2~p(0) + In 2, v 2 is the logarith. 

mic derivative o] the F-]unetion. 

From the above lemma, the following corollary is immediate. 

COROLLARY 1. I[  IRe~tl <1, then Lr [or all ~EC. I] Re)l>~l, then 

L~l~.al2 EL2(R+) i/and only i] c(~, -~) = 0 or i/and only i/~ e 1 + ~ + 2N. 

COROLLARY 2. Let Va(~)(V~(~)) denote the linear space o/eigen[unctions o/ Qa(H') in 

L2(R) (L~(RJ) ]or the eigen-value ~. Then 

(i) Va(~ ) = V~ (~) + V; (~), 

(ii) dim V~ (~) = 1/or all ~ fi C i~ [ Re A ] < 1 and 

(iii) /or ~>1,  dim V~(~)=I i / ~  +(1 +2+2N), dim V~(~)=0 otherwise. 

From the above corollary V[(+_i)=0 when ~>~1, and so we have 

COROLLARY 3. Th~ symmetric operators aa(It'), a] (H') are essentially sel/-ad]oint in 

L~(R) and L~(R+) respectively when ~ is real and >11. 

The situation is very different when I Re 21 < 1. In the following paragraphs we shall 

find all ~[~-modules a such that  aa~a~a] for which a(H') is essentially self-adjoint. 

w 5. Boundary forms 

For each a E ~ and ], g E 7D(a*a), let Ba denote the boundary form of the module aa, i.e. 

Ba(a: 1: g) = (~(a)/, g ) -  (/, ~a(a*)g) 

(see the appendix for the identities satisfied by Ba). If Z =txH +t2X, with tl, t~ real, then 

it is easy to check that  none of the eigenfunetions of oa(Z) for real eigenvalues are in L ~ 

and so the operators aa(Z) are essentially skew adjoint. Thus Ba(Z:/: g) - 0  and so from 

the identities satisfied by Ba (see Lemma A.2) it follows that  

Ba(a:/: 9) = 0 

for all / ,  [7 fi D(a*a) and a of the form HmX ". Thus it is sufficient to s tudy Ba(H'":/: 9% Now 

Qa(H') = -c'~otoOt + t  +2~/4t 
so that  

(d/dt)t W (l, 9) = (qa(H') / ) g -  /~a(H')g 

= -i{(e~(r) l)g-lea(r)g} (s)  
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where W(/, g)=]~tg-g~t] is the Wronskian. Thus 

B~(H':/: ~) = - iBm(Y:/:  y) = - ( tW([ ,  g)] +_). 

Here ~[ +_ =limt-.0+ ~(t) -limt-~0_ ~(t). 

191 

(9) 

w 6. Boundary values 

We assume that  22 is real and [ Re 2 [ < 1. To consider all different cases simultaneously 

we use the following device. Define 

{Itl - ~ ,  ~ . o  

aa(t) = I n  It I, ~ = 0 
(10) 

and define 

A1 t (I) ffi limt--,o-~ {tW(/, aa(t)) } 

A~ (I) = limu.o-~ (tW(], [t[a/~)} 

LEI~MA 3. For/E ~)(a]), AS(l), j= 1, 2, exist and 

A~(/) = ( +_ i) fn~ as(t)~a(Y)/dr 

A~ (/) = ( + i) f ~  I t]~J~qa(r) ~at. 

Moreover,/or a suitable choice o/q)• E 5f ( R'), we have 

A { (]) = iB( Y: ]: aa(t)~v +) 

A~(/) = iB(Y: /: IriS%• 

Proo/. Note that  Q~(Y)a~(t)= O, ea(Y) l t [~/2 =0, the first two formulae follow from (8) 

and the fact that  / is rapidly decreasing at cr (cf. Lemma I). The last two follow from (9). 

The following class of functions is somewhat more convenient to work with than 

]0(aa*). For any open subset U of R denote ~ ( U )  as the Schwartz space of U, i.e. he(U) = 

{[eC~o(U)lsupv ItmO~/] < r for all m, heN}. If ]e$P(U), then / and its derivatives have 

limits as t approaches a boundary point of U. I t  is somewhat more convenient to work 

with classes of functions in ~0(a~*) which have asymptotic expansions at the boundary. 

For this purpose we introduce the class :~a. 

Let Xa denote the class of funct ions/EC~(R ') such that  
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(i) for each d>O, sup(It orll:ltl > o } < ~  
(if) there exists d > 0 and functions/~/~ E 5~(R ') such that  for 0 < I tl < 

fit) = It]~/l(t)  +ah(t)/~(t) 

Also write :~[ = I t ] ~ ( R •  

( l l )  

L~M~A 4. (i) ~ L ~ ( R )  and ~ c L ~ ( R •  (if) e ~ ( Z ) ~ h = ~ ,  and o ~ ( Z ) ~ : ~  

]or all Z e ~[(2, R). I n  particular, : ~  ~ I)(a~) and : ~  ~ l)(((r~ )*). 

ProoJ. Only (if) needs checking. This follows from the following. Let  r162 = • Pu t  

0h = It[ -~/eo 0k o It[ ~/e. Then 0h(H) = 2tO~ + 1 + a, Oh(X) = - it, and ~,(Y) = - i(tO~ + (1 + a)~t). 

This proves (if) for ~ : 0 .  For ~=0,  define Oo=(lnltl)-~OOoo(lnlt]), then ~o(H) = 

2t~ + 1 - (ln lt [ )-1, ~0(X ) = _ it and ~o(Y) = - i ( t~ + ~t + 2(lnlt I)-~Ot) �9 Thus ~0(Z) :~o= :~0 for 

all Z ~ gl(2, R). The rest is clear. 

The following lemma is easily checked, by direct calculation. 

LEPTA 5. Let 

[~, g ~ ( R ' ) ,  then 

II~e 2] <I. Suppose that /=  { t ]~h +a~(t)/~, g= [t[~gl § ~ with 

{tw(/, g)}~_ = c ~ ( / , ~ - ~ l h ) [  +_ 

where c~ is the constant ~ t W ( I t }  ~/2, ah(t)), = -,~ i /  ,~=VO and =1 i / ,~=0 .  I n  particular, 

B~(H' : 1: ~) = - c:~([lg 2 - [2gl)2. 

L~.MMA 6. Assume IRe~l < l .  Let f e  ~ h have the local e x p a n s i o n / =  Itlx'2/l +a~(t)/z 

near O. Then 
A~(/) = -c~f~(0• A; (/) = eh/l(0• 

Moreover, ]or all ], g e t)(a~) 

chBa(H': /: g) = A ~ ( / ) A ~ ( ~ ) - A ~ ( / ) A { ( ~ )  - A ~ ( / ) A ~ ( y )  + A~( / )A f (~ ) .  

Proo/. The first part of the lemma follows from the definition and the fact oh-- = - 

tW(I t l  at2, ah). Next the formula for Bh(H': ]: g) follows from the previous lemma when 

/, gfi~h. To prove it in the general case note that  the eigenspaces Vh(~)c ~ a and from 

known results about the adjoint of a symmetric operator, it follows that  ~)(a~(H')*)= 

O(Clah(H')) + Vh(i) + Vh( - i). Thus, given ~, v? E ~0(a]), it follows that  there exist ~01, ~1 E :~a 

such that  ~ - ~ 1 ,  Y~-Y~IE/)(Cla~(H')) �9 But  Bh(H': ~, yJ) =B~(H':  ~x: v21). Finally observe 

that  A [ ( / ) = 0  for a l l / eCT(R ' )  and thus A~ ~ 0  on ~(C1 a~(H')) fi O(a]) by Lemma 3. The 

formula for Bh(H': ]: g) thus follows from the corresponsing formula for [, g e ~h. 
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LE~MA 7. Define the sesquilinear /orm Fa(x, y) on C a as/ollows: 

f Zlffl ~2<0 
Fa(x, y) = 

Define Ao: D(a~)-~C a by setting 

then A o maps onto and 

/or all/,  g e 72(a~). 

Ao(/) = (A{(/), A~(/), A;(/), A~(])) 

c~Ba(H':/: ~) = Fa(Ao(/), Ao(g)) (12)  

Proo/. This follows from the previous lemma if you note the following. If 22 < 0, then 

A{(~) =A~(g), andif  2~ ~0, IRe 21 <1 then A~(~)=A~=(g), A~(~)=A~(g).Fromtheformulas 
for A~ in Lemma 6, if follows that Ao maps ~ onto C a. 

LEM~A 8. (i) Ao(pa(X)/)=0/or all/E Z)(a*a) and (ii) there exists a matrix MaEGL(4, C) 

such that Ao(oa(H)/)=Ma'Ao(/). Also Ma =diag (1 +2, 1 - 2 ,  1 +2, 1 - 2 )  i / 2 ~ 0  and 

t l - 2  0 0 1 0 1 0 0 
M 0 = 

0 0 1 - 2  

0 0 0 1 

Proo]. To show that Ai~:(o~(X)/)=0, it is sufficient to show that lim~_,o tW(t/, ~p)=0, 

where F =  It] ~/~ or a~(t). Now tW(t/, v2)= -t/v2+tzW(/, v2). :Now t~W(f, ~p)~0 as toO. Now 

]e/)(a])  implies that  ]=O(]t] 1~2), and thus t]y)=O(]t] 1-~1~) if 2=4=0, and O([t[ l'e In It[) 

if ~t *=0. Thus in all cases lim t/~0 =0. This proves that  Ao(Ox(X)/) =0. 

To prove (ii) we use the identity (see Lemma A.2) satisfied by boundary forms. 

Thus 2B~(Y:/: g) = B~( YH - H Y:/: g) = B~( Y: ~(H) /: 9) + B~( Y: /: ~(H) g) since (see sec- 

t ion  5), B~(H:. : . ) - 0 .  Thus Ba(Y: Qa(H)/: g)=B~(Y:/ :  Q~(2-H)g). Now let ~e6'T(R) 
such that q0 = 1 around 0, then 

ca(2- H) ltl~% = ( - 2t~,) It I a %  = (1 - ~ )  Itl ~,~ 

in a neighborhood of 0. A~(ea(HI/)=ina(Y:ea(H)/:ltla'~)--(l--;t)A~(/). Again 

qa(2-n)(a~(t)~o)=O+2)ltl -a'z around 0 if ~t:~0, and = ~ l t  1-2 near 0 if 2=0 .  Thus 

a?(e~(H)/)=(1 +2}A{(/} if 24=0, =A~(/}-2A~(/)  if 2=0 .  Thus Ao(ea(H)/)=M~.Ao(l), 
where M~ is given in the lemma. This completes the proof. 
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L E ~M A 9. Le~ the boundary values Am be defined by Am(f) =A0(~.(y)m]). Then we have 

(i) AmoQ~(X) = -m(M~ §  1)-Am_z 

(if) Amo~(H) -- (M~ + 2).A~ 

(iii) Areola(Y) =Am+~ 

~-0 ~(A,(f), Am_,_l(~)) (iv) c~B~(H'm: I: g) = m-~ 

(v) Let vaq O be arbitrary. Then there exists an f s :~  such that A~(/) =vm, m e ~ .  

Proof. The first statement follows from the identity YmX = X  ym_ m(H + m -  1) ym-1 

in ~[~1~], The statements (if) and (iii) are obvious. The part  (iv) follows from the identi ty 

(iii) of Lemma A.2, satisfied by boundary forms and Lemma 7. Finally let f E :~  and suppose 

that  

f=ltl~h+a~f~ near 0, with h, /2eSf(R') .  

Put  ~ (  y)mf = [t [~J~fx.m § ax f~,m. Then we have the formula 

I tl - ~ o q ~ ( Y ) o  I tl ~ = - i(w~ + (1 + ~)o,) 

One checks easily by induction that  

((tO~ + (l + a)O~)}m= l;~z(t~t + j + a)} ~'~ = Dm.,, say. 

Then f1.,,=(-i)mDm.a/~fl, so that  fl.m(_+0)=(-i)m(l+g)m(O~/1)(_+0). If 2 ~0 ,  we have 

similarly fz.~(+0) = ( - 1)m(1 + c~)m~'~[a( +_ 0). If v m =Am(f), then 

vm = c~(f l .Ao + ), I~.Ao + ) , / 1 . A o  - ), f~ .Ao - )). 
Put  

w ~ = (aT'h(o + ), a77~(o + ), a ~ ' h ( o -  ), a?lz(O - )). 

Then 

wm -- im{(1 + ~)m}-le~ l ' v - .  

By Borel's theorem ([6], p. 30), one can choose fl, f2 E ~ (R ' )  with values wm for the derivatives 

at  0. Thus there exist f E ~ ,  such that  Am(f) = vm. In the case ~L = 0 

One checks by induction on m 

m 2 
~f2,,,/  ta~ + " '"  iat) '~f~] 
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From which one gets easily 

h.m(O+) =m!{(- /a , )~l l (O+)+20 +�89 ... +l/m)(-i~,)'%(O+)} 
)`~.m(O +_ ) = m l (  - -  i)ra(~[~) (0 +_ ) 

An argument  similar to the case 2:4:0, now gives tha t  there exists )  ̀E : ~  such t ha t  Am()`) = v~, 

for all m. 

w 7. Self-adjoint extensions 

With  these preparat ions we can now obtain all the  self-adjoint extensions of a~. 

THEOREM 1. (i) Let ~ be an ~[~-module such that aacac(~*~. Then q~c(xt~a*~. Let 

E(a) denote the subspace o)' 0 de/ined by E(a)-=(Ao()`)I)`EZ)(a)}. Then M~.E(a)=E(a) 

and Z)(a*) = {)  ̀E Z)(a~*) [Am()') E E(a) • all m E N}. 

(if) Conversely let E ~ O  be such that M a . E = E .  Let a ~lz-module crca*~ be de/ined by 

~(o') = ~/e ~(o'~) [Am(/) e E,  /or all m E N}. Then E(a) = E and a u = q. In  particular, the map 

a ~  E(a) is a bisection o)̀  sel/.ad]oint ~l~.modules a xuch that a~ c a and subspace8 E such that 

(a) M a. E = E and (b) E - - E  • Here the orthogonal complement is with respect to the )`orm 

F a introduced in Lemma 7. 

Proo[. Since A0(Q~(H )/) = M~.A0([) and M~ is invertible, it follows tha t  M~. E(a) = E(a). 

From the relation Amo~a(X)=-m(M~+m-1)Am_x,  it  follows by  induct ion on m, 

tha t  Am(Z)(a))=E(a) for all m. Now a~caca*~ implies tha t  a~ca+cal  and 7D(a*) = 

{/E Z)(a])iB~.(a: g: [)=0 for all aE 72 and gE Z)(a)}. Since B~(HmXn: g:/) =0 for all g and / 

it  follows t h a t / E  Z)(a*) if and only if B~(H'm: g: ]) =0 for all m. From par t  (iv) of previous 

lemma, this is equivalent  to 

n-1  

~ ~ ( h , ( g ) ,  A , - , - I ( I ) )  = o 
r - 0  

for all n E N, and g E ]0(a). Since the range Am(~0(a))= E(a), it  follows by  induct ion on n 

tha t  the above ident i ty  holds if and only if Am(/)EE(a) • for all mEN. Tha t  E(a  t) = E(a) • 

follows from the  s ta tement  (v) of the previous lemma. 

To prove (if), note  first t ha t  O(a) is invar iant  under  ~(Z) ,  for all ZEal(2, R). In  fact  

this follows from the properties (i)-(iii) of the previous lemma. Since Am(/) = 0  f o r / E  ~)(aa), 

it  follows t ha t  s a c  a c  a~. Thus a is a well defined ~[~-module. F rom the first par t  it follows 

tha t  ~O(a *t) = {/E O(a~) [Am()') E E(a*)• for all m}. Since E(a  t) = E • and E •177 = E, it  follows 

t ha t  a = a**. The rest is clear. 



196 R. RANGA R A 0  

COROLLARY. ~(a~*+)={]eTO(a*~)]A,,(/)=O for all  m ~ N ) .  

Proo/. For  E ( ~ ) =  C a a n d  thus  E ( ~  ~) = (0),: the  corol lary  follows f rom this.  

The nex t  l emma descr ibes  all such subspaces.  

L ~ M A  10. Let 22 < 1. For each ,~, the/ollowing is a complete list o/al l  subspaces E such 

that M a �9 E = E and E -~ E -~. 

Case 1. ~t 2 <0 .  I n  this case E is o / t h e / o r m  Ea.# ,=C(e  1 +(~e3)+C(e2+~'e4) , where ~,5' ~C 

are such that I~[ = I~'l -~ 1. 

Case 2. 0 < ~ t 2 < l .  There are two classes. Case 2a. E is o / t h e / o r m  Ea.$,=C(el=(~ea)+ 

C(e2+5'e4), where ~ ' ~ = 1 .  Case 2b. E is one o / the /o l lowing Ela=Cel +Ce a, E14=Cel +Ce 4, 

E2a = Ce 2 + Ce a and E~a = Ce e + Ce 4. 

Case 3. ~ = O. There are two classes. Case 3 a. E is o / the /orm 

Ea.,, = {(xl, x2, x3, x4) EClxa--Sx2 = O and 5x~ +c~' x ~ - x s  = O~, 

where I (~ I = 1, ~'~ is real. Case 3 b. E = Ela. 

Proo/. I n  the  s t a t e m e n t  of the  Lemma,  ej is the  s t a n d a r d  basis of C a. P u t  W 1 = Ce 1 + Ce a 

and W~ = Ce 2 + Ce i. We  consider  each case separa te ly .  

Case 1. ~t2<0. Here  the  form F~ (see L e m m a  7) is symmet r i c ,  and  M~ is a d iagona l  

ma t r ix ,  wi th  W1, W2 being the  eigenspaces.  Thus E = E N W1 = E N W2. I n  th is  case W~ = W2 

so t h a t  we mus t  have  d im E N  W j - - 1 ,  ~ = l ,  2. Le t  v l = a l e l + a a e  a, v~=a2ez+a4e a be a 

basis of E.  Then F~(vl, v l ) =  l a i l  2 -  la312=0; F~(vz, v~) = -  la~.l~+ la412=0. Thus  E is of 

the  form E8.8.. One checks t h a t  (E~.~,) •  Es.8.. 

Case 2. ~2 > 0. I n  th is  case the  form Fx is symplec t ic ,  bu t  Wj are st i l l  the  e igenspaces  

of M~. Consider  f i rs t  the  case d im E N W I = I .  Suppose  vl=alex+aaea, v2=a2e2+a4e 4, 

E = C v l + C V  2. Then  B(vl, v2)=alSa-aada=O.  Now consider  the  case where none of the  

a / s  are  zero. I n  th is  case E is of the  form E~.~. =C(e 1 ~-~e3) ~-C(e2~-(~'e4) with  ~},(~' sa t i s fy ing  

~$' = 1. One checks t h a t  E • = E. 

Case 2b. dim E N W I = I .  Bu t  one of a / s  is zero. Suppose  al=O. Then  aa=[:0 , so t h a t  

a 4 = 0. Thus  in th is  case E = C% + Ce a. S imi la r ly  you ge t  the  o ther  possibi l i t ies  l isted.  

Case 3. I n  th is  case M 0 (see L e m m a  8) is un ipo ten t .  W r i t e  M 0 = e x  p ( - 2 C ) ,  t hen  C 

is n i lpo ten t  and  C 2 = 0. Also W1 = Cel + Cea = {v E C 41 Cv = 0). 
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Case 3a. dim Er l  W i = l .  Then E h a s a  basis vl, v~ such tha t  Cvi=0,  Cv~=vi. Thus 

v~-alei +aae s and v~=Zb~e~. T h e n  b~=al, and b~=a a. Fo(vi, v~)----ai~--~a~=lail ~- 

I a~ I ~ = O. Fo(v~, v~) = b i ~ - b~ 51 - b aS~ + b~ ~a = 0. Thus we may  suppose E = C(e i + ~es) :F 

C(~'ea+e~+~%) , where (~,~'~C. Then MoE=E.  The condition E Z = E  gives tha t  ]~] =1  

and $~' is real. Thus in this case E=E$.~,. 

Case 3b. If dim E ~ Wl =2,  then E=Cel+Ce~, is the only solution in this ease, 

Definition. Let a~.~,~, be the ~l~-module which is self-adjoint and is defined by the 

boundary conditions a~ ~ ~,~.~, ~ ~ and 

~0(~.~.~.)  = {1 e ~0(a~*)IA~(I) ' e E~.~., for  all m e l~} .  (13) 

H e r e  E$;8, is defined in the above lemma, and  6~ '  satisfy the appropriate conditions 

(depending on 4) Stated there. 

Remark. In  this connection note that  the module ~ depends only on 2 2, while a~.8,~, 

depends on 4. In  fact we have (2=k0), 

a_~,$,~, = a~,8,.~ (14) 

This may  be seen as follows. Writing A~(]: 4) for A~(/) to denote its dependence on )t, 

it is clear tha t  A~(/: -2)=A~(/:  ~), if 2=k0. From this it follows tha t  Ao(/: -2)EE~.~, 

if and only if A0(/: 4) E Es,.~, proving (14). 

Remark. Let V denote the uni tary operator V/=%/ if t>0 ,  =c,,/ if t<0 ,  where 

[c~ [ =  [c21 = 1. Let a = Voa~.~.8,o V ~.  Then it is easily checked tha t  

(~ = a l . a ~ , / r  c : /~, .  (15) 

THEORE~ 2. (i) For each 2 real and 2 + 1 > 0 ,  there exists a unique sel/-adjoint ~I2- 

module i~ in L~(R~=) such 7D(I~ )D ~ .  

(ii) For 4 = 0 ,  and/or 2 >~1, a~ has a unique sel]-ad]oint extension and/or ~ 1 < 2 < 1 ,  

;(=kO, a~ has exactly two sell-adioint extensions namely #~, #~ .  

Proo]. Case 1. 2 >~ 1. In  this case (~(Z) is essentially self-adjoint, for all ZEal(2, R) 

(Cor. 3 of Lemma 2). Hence i f / ~  is a self-adjoint extension of aS, then by Lemma A.5 

(aS)~--/~,  and/~i~ is the unique self-adjoint extension of a~:. 

Case 2. - 1  < 2 < 1 .  Consider the self-adjoint module a in L2(R) such that  a ~ c a  and 

E(a) =El l .  Then it  is clear that  ~ ( a ) =  ~(o)NL~(R+)+ ~D(a)nL~(R_) where we consider 
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L~(R• as subspaces of L~(R). Define o~ as ~l~-modules in L~(R• ~)(o"~:) = ~((~) N L~(R• 

Then a self-adjoint means that  o~ are self-adjoint in L~(R• From the definition of E(q), 

it follows that  0 (o~)~  ~ .  Define ~u~ = a  ~. Then # [  are self-adjoint and O( /z [ )~  : ~ .  

To prove uniqueness suppose ~u' is another self.adjoint module in L2(R+) such that  

]0(~u')~ :~[. Consider a' =/~' +~u[. Then a' is self-adjoint and E(a)~ E~s. Therefore E(~') = 

E~s and a =a ' ,  implying ~u' = / ~ .  The other cases are handled similarly. 

LE~a~A 11. Let (x ~ ~ a~  (~ and a* = a. Then the operator a( H') is essentially sel/-ad~oint. 

Proo]. Now ~=ar implies that  a(H') is a symmetric operator. Also (~(H')*caa(H')*. 

Suppose ~ is not real and a(H')*[=~/. Then a~(H')*]=~] and so ~(H')]=~], i.e., [ E ~  

(see Lemma 2). Also /Et)(a(H')*).  Thus (~(H')g, / )-(~,  ~ ( H ' ) / ) = 0  for all 9Et)(a) or 

B~(H': g: ]) =0 for all ge  O(a). Thus F~(A0(g), A0(/)) =0, for all gE ]0(a). This implies that  

A0(/) E E(a) • E(a), since ~ is self-adjoint. Finally, by the identi ty satisfied by boundary 

forms, it follows that  

B~(H'=: g: ]) = ~ B(H': ~(H'yg: ~=-'-~]) = 0 
r~O 

for all gE~0(a), and all n. Using formula (iv) of Lemma 9 it follows by induction on n, 

that  A.(/)E E(a) for all n E N. Thus /E O(qt)= ~0(a). This contradicts symmetry of a(H'), 

since ~ is not real. T h u s / = 0 .  This completes the proof. 

LEMMA 12. Let q ~ ( ~ a ]  and at=a. Then the Speca(H') is discrete. Moreover, all 

the eigenIunction8 o] Cla(H') are actually in t)(a). 

Proo]. Let R e denote the resolvent of the closure of the operator a(H'), i.e., Re = 

(Cla(H' ) -~)  -I. We shall show that  for each/EC~(R') ,  Rr a meromorphic function of 

~. This implies, by a well known formula for the spectral measure in terms of the resolvent, 

that  the spectrum is discrete. 

Let  ~ E C, ~ not real. Two linearly independent solutions of ~a(H')] = ~/may be chosen 

as follows. The Whittaker 's  function has an analytic continuation to a domain con- 

taining the upper half-plane and R', and so we may define yl=(2z)-l/zW~.~,(2z), y2 = 

(2z)-l/~W_x.a(-z) where ~ =~/2, # =~/2. Then Yl, Yz are solutions of the equation ~a(H') /= 

~/. Also from the formula for the Wronskian of Whittaker 's functions, it  follows 

that  W(yl, y~)=z-le -*:€ Thus, tW(yl, yz)=e -~12 is a constant. Define K~(t,,)= 

e-*~"/2yl(t)y~(s) if s < t  and et~'J~y2(t)yl(s ) if s >t. Then it follows from standard methods 

in differential equations that  the function gl=Ki[: t -~a.Kf(t ,  s)/(s)ds is a solution of 

(~(H') -~)91 =/ ,  in R', whenever/ECc(R'  ). Actually K J E  ~ when fEC~ (R'), since Yx (Y~) 
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is rapidly decreasing as t-~ ~o (as t-~ - ~) .  If R:/= g, then it is clear that  (~(H')  - ~) (g - gl) = 

0. Thus g - g l  is an L2-eigenfunction and so g -  gl E :~.  Thus g -  gl = bl(/)Yl if t > 0, = b2(/)Y2 

if t<0 ,  where bl, b 2 arc constants depending o n / .  Now g E : ~  and gE O(Cla(H')) means 

that  B~(H':~: g )=0  for all ~E~0(a). Thus the boundary condition to be satisfied by g 

is that  A0(g) E E(a). Or the constants are to be determined from the condition A0(Kr + 

b~(/)Ao(y~)+b,(/)Ao(y~)EE(a ) where y~ =y~ if t>0 ,  and =0  if t<0 .  Since A0(K~/), A0(y~) 

and A0(y~ ) are meromorphic in ~" (in fact, see Lemma 2, they involve only F-functions), 

it follows that  b~(/), b2(/) depend meromorphically on ~. Thus the function ~ ( R r  r 

is a meromorphic function of $. This proves then the spectrum is discrete. Since L~-eigen- 

functions of the operator ~ (H ' )  are in :~,  it follows that,  if a(H')*/=~/, t h e n / E  : ~  and 

B~(H': ~ : / ) = 0  for all ~EO(a).  But this implies that  B~(H'~: ~ : / ) = 0  for all m, and so 

]E ]0(a ~) = ~0(a). This completes the proof. 

In the above lemma we are dealing with the case ~t a real and < 1. If ~t is real and >/1, 

~hen we have already seen in Corollary 3 of Lemma 2 that  o'~(H') is essentially self-adjoint 

in L2(R• The proof of the above lemma actually gives the following for this case. 

LEMMA 13. Let ~>~1. Then spectrum o/ ~ ( H ' )  is discrete. All the eigen/unctions o/ 

Cla~(H') are in ~ .  

Proo/. In this case R:=(Cla~(H') -$}  -1, and as in the previous lemma, we have 

R : / =  K~/ in  this case, for all /E C~ (R~:). Thus spee a~(H') is discrete. 

Combining the previous discussion with Nelson's theorem, we have 

THEOREM 3. (i) Let a be a sel/-adjoint ~[,,.module in L~(R) (in L2(R+)) such that 

~ c a ( ~  c a), then there exists a unique unitary representation T o~ the simply connected Lie 

group o/ ~[(2, R) in L2(R) (in L~(R+)) such that dT=a.  

(ii) Let  the representations T~.8.x, T~= be defined by dT~.8.~,=a~.$.$, and dT~: =]u~. 

Then T~.$.~, and T~ are all irreducible. 

(iii) I /  T is the unitary representation xuvh that E(dT) = Ela , then T ~- T~ (~ T~-, i/ ~ >~ O. 

Similar results hold/or other subspaces listed in Lemma 10. 

Proo/. Let A---Hz+(X+ Y ) 2 + ( X -  y)2. Then A = ~ - 1 - 2 H  '~. Then ~t(A) =~t~- 1 - 

2Q~(H') ~. From Lemmas 11-13, it follows that  a(H') is essentially self-adjoint and has 

discrete spectrum. Moreover, all the eigenfunctions belong to ]0(a). From this it is clear 

that  a(H '~) is also essentially self-adjoint. So Nelson's theorem now gives (i). The case 

a ~  a[  is discussed similarly. 

To prove (ii) note that  if T is any unitary representation such that  a~cdT,  then 
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T(exp sH)/: t~e~/(e2St), and T(exp sX)/: t--*e-~St](t), Any bounded operator which commutes 

with these two one parameter groups must be scalars On each of the subspaces L~(R• 

If the bounded operator commutes with T, then A D(dT) r D(dT) also. Thus if the boundary 

condition E(a) relates the boundary values on R .  and R_, the two scalars on R d must 

coincide. This proves that  T~.~.~. is irreducible. Similarly T [  is always irreducible. T h e  

rest is clear. 

T ~ o a ~ M  4. (i) Spec d T [ . ( H ' ) =  _ ( ; t + l  +2N) /or all ,~ real 4 + 1 > 0 .  The unitary 

equivalence class o] T~ is r177 

(ii) Spee dT~.&#.(H') = ~ + 2 Z  where ~, (~, (~' and 4 are related as ]ollows: Case 1. Sup- 

pose )~#=0, then 

cos z(~ - 2)/2 ~_~' or sin ~r(/~ + ~)/2__ e~#r 
cot xe($ + ,~)/2 ~ sin z(/~ - 2)/2 

where ~/eY =e - ~ .  Case 2:2  =0. In  this case ~r tan n~]2 =~']~. In  each o/these cases ~ in the 

spectrum can be chosen uniquely so that I~ I < 1 and i] ~ is real, then 14] § It ] < 1. The unitary 

equivalence class o/T~.~.8, is r 4): 

Proo/. (i) In this case ~ESpec dT~(H') if and only if L~/~.~/~E)f~. From Lemma 2 

this happens if and only if c(~, - 4 ) = 0 ,  i.e. i f fSE4+ 1 +2N. A similar argument works 

for the case T[ .  

Proo/ o/ (ii). In this case ~ESpecdTa.~.8,(H') if and only if there exists an /E~f~, 

~x(H' ) /=~/such  that  A0(/) E Es.~,. Now / = ~L~/2.~/2(t ) for t >0,  =flLr - t) if t <0. Then 

we have two cases. 

Case 1. Suppose 4 2 < 1, ;t=V0. Then from Lemma 2, we have the following 

A0(/) = (:r 4), ~c($, -~),  tic( -~,  2), tic( - ~, -4)) 

Thus ~ belongs to the spectrum if and only if f lc(-~, 4)=~ac(~, 4) and flc(-~, X)= 

~'ac(~, -X) since c(~, ~t), c ( -~ ,  - 2 )  cannot both be zero simultaneously it follows that  both 

a and fl:V0. (Note 155'1 >0.) Thus ~ belongs to the spectrum if and only if 

Now 

c( - ~, ~) c(~,  - 2) 

c ( ~ ,  4) c( - ~, - 2)  ~" 

c(~, 4)e(-~, -4 )=P( -4)P(4)  {P(1 - ~-4)/2) r((1 ~-~ +4)/e)} -1 

=(n-1)P(=4)F(4) cos n(~ 44)/2. 
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Thus we have 
cos  :~(~ - ~ ) /2  = _~ 
c o s ~ ( ~ +  ~ ) /2  ~" 

If you put  5/(V =e -t€ and simplify this expression above, we get the equivalent formula- 

tion given in the theorem. I t  is then easy to check that  there exists a ~ in the spectrum such 

that  [Re~[ + I~1 <1,  when 2 is real. 

Case 2. Suppose 2 = 0. In this case we have from Lemma 2 t h a t  

A0(/) = (~ ( -  1)(~-1)'2, 0, t ic(-~, O)d(-~), t ic(-~,  0)) or 

= (~c(~, 0)d(~), ~c(~, 0), ( -1 )  (~+~)/2, 0) or 

= (~c(~, 0)d(~), ~c(~, 0), tic( -~ ,  O)d(~-~), fie( -~ ,  0)) 

where the first expression holds if ~ - 1 fi2N, the second one holds if - (~ + 1) fi2N, and the 

last one is valid if ~ r • (1 +2N). One checks easily from the definition of E~.,, (see Lemma 

10) that  in the first two cases A0(/) r E,.s,. Thus ~ ~ +_ (1 + 2N) and Ao(/) fi E~.,. implies 

tic( - ~ ,  o) = ~ac(~, o) 

~c($ ,  0)d($) + ~'~c(~,'0) -tic(-~, 0 ) d ( - ~ )  = o 

Note that  a, fl cannot both be zero. If ~=0,  then c( -~ ,  0 )=0 ,  which is impossible since 

~r • +2N). Thus both a ~ 0 ,  fl=~0. Thus we have 

d(~) - d ( - ~ )  = ,~'/~ 

Now d ( ~ ) - d ( - ~ )  =~p((1-~)/2)-~0((1 +~)/2)=~ tan 7~]2, since ~ is the logarithmic deriva- 

tive of the F-function. Thus ~ tan (~ ) /2  =~'/~. The rest is clear. 

w 8. Bases of eigenfunetions---the discrete series 

We next obtain a basis of K-finite vectors for each of the representations T~. We 

begin with 

L~M~A 14. Let L~/2.~/~(t)=(2t)-lJ~W~/~.~/2(2t) ( t>0) be the eigen/unctiona o/ ~(H' )  

introduced earlier. Then 

(i) Q2(H')Lu2AI2=~Lu2AI2 
(if) Q~(X')Lf/2.~I2 = -iL(f+2)l~.~l ~ 

(iii) Q~.( Y')L~/~.~/2 = - a ( a - c  + 1)L(~_2)/~,~/2 

where a=(1 -~+~t)/2,  c = l  +~t, X'  and Y' are de/ined by (3). 
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Proo/. Let ~F(a, c; x) denote Tricomi's confluent hypergeometric function. Then the 

following identities for ~" are known (see [3], p. 258) 

( x a , - x  + c - a ) t F  = - tF(a-  1, e; x) 

(x~ +a)tF = a ( a - c  + 1)tF(a + 1, c; x). 

Since L~/~.~/2(t ) = (2t)(~-~)/ee-ttF(a, e; 2t), the lemma follows from the identities satisfied bytF. 

TItEOREM 5. (i) Let ~ be real and ~t+l >0. De/ine v2;(t)=(c(~ , ~)}-1Lf12.212(t), t>O. 
Then v2~ , ~ E 2 + l + 2 N  is a K-eigenbasis in L2(R+) /or the representation T~. Another 

expression/or yJ[ is the/oUowing 

where ~ = ~ + 1 + 2n. Also 

(ii) I[ ,.9"(17+) denotes the Schwartz 8pox:e 4 R+ then 7D(dT~)={t""l[leS~(R§ 

(iii) I / J  is the anti-unitary isomorphism J/: t ~ /( - t), /EL~(R_), then T~ = J-~o TI  oJ. 

Proo/. This theorem can be proved independently of the earlier development. The 

expression for yJ~ in terms of the Laguerre polynomials follows from the identity 

t F ( - n ,  1 +~t; x ) = n ! ( -  1)nL~)(x) (see [3], p. 268). One could deduce this directly, since the 

differential equation ~(H ' ) /=~ f  reduces to that  of Laguerre polynomials, by putting 

/=e-~t~g. To prove (ii) note that  t~l~Sf(R+)cO((a~)*)=~)(dT~). Let / be a C~-vector. 

Then we know (see Lemma 1) [EC~(R+) and ~(a)/EL2(R+) for all a E ~ .  From Lemma 1 

it follows that  [ is rapidly decreasing at ~ .  Now let / =  Za~w[ be the eigenfunction expan- 

sion o f / .  I t  follows then that  ag~ ~= (q~(H')k/, v2[ ). Now (~[, W~)=O(n -a) if ~----~t + 1 +2n. 

Thus ar -k) for every k. Now it is known that  IL~)(x)l <<.Cn ~ for all x, 0 < x <  1 (see 

Szeg6 [16], p. 176), where / ,=Max (1/2-1/4,  ~/2). Also (d/dx) L~ )= - L ( ~  ([16], p. 101). 

Thus the series 
Za~(d/dt)rL~)(2t) 

converges absolutely and uniformly in (0, 1/2). Then the function ~0(t) = Za~L~)(2t) E Cr176 1/2) 

and/---t~12e-tq~ in 0 < t  < 1/2, proving/Eta/~SP(R+). 

For the part (iii), it is easy to check that  q~ =J- loa~oJ ,  and since representations 

T, such that  O(dT)D ~ are unique, the result follows. 

The following theorem is known. We state it  and sketch a proof since it fits in naturally 
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with thedevelopment here,,and we~ will need it,for another, paper. (FoorSL(2, R)see Kunze 

an d Stein [6], Vflenkin [17], and for simply connected covering ~group of ~SL(2,R) see 

Sally [15].) 

THEOREM 6. The unitary representations T~ o/the simply connected group G o/SL(2, R) 

may be described by the/ormulae 

(i) T~(h,)/: t-->es/(e2~t) 
(ii) T~(u.)/: t~e-~'~/(t) 
(iii) T~(w)/=e-~(~§ where H~ is Hankd trans/orm 

f o t( /-/~! ~1. i. m: s) J~(e(st)'2)~&, 

Proo]. The first two statements are clea r. The last on e ca n be proved in several ways: 

I t  is known that  the Hankel transform is a unitary operator and self-reciprocal or H~ = 

identity. I t  is thus sufficient tO check that  H~y~---exp ('i~g)~0~. But this follows from 

a known integral formula. (See [4], p. 42, No. (3).) On e could also prove it b y  observing 

that  the operator, a~(Y) w!th domain ta/~f(R+) is essentially skew-adjoint, and  the operator 

Ha is really the spectral map (or 'diagonalizip 4 '  operator) for a~(Y). In other words 

H~oa~(Y)oH~I=a~(X) (see Dunford and Schwartz [2], p. 1535). Since T~(w) is also a 

spectral map, it follows that  the operator T~(w)oH~ ~ commutes'with a~(X); a~(Y)and 

hence wi~h a~(Z)for all Z E~(2, ~). Thus the Operator T~(w)oH~ ~ i sa  scalar.The scalar 

can be evaluated by evaluating T~(w)] and H~ .], f o r / = e - t t  ~2 = y ~ .  We omit the details. 

Remark 1. I t  is-easy to calculate the matrix entry 

+ + .= f:e-yr176 F()t+ l)/(cosh t) ~§ (T~(ht) v2~+1, ~+1) - 

Since any element of G can be written fin the form, u(O1)h(t)u(Oz) with t >/0, and the Haar 

measure in this decomposition is le St-e -2t I dOldtd02, it follows that  T~ ELl(G/Z) if ~t > 1 

and T~ EL 2 if ~t>0. These are well known: 

Remark 2. Let P = Z A N b e  the minimal parabolic subgroup of G. One has the Bruhat 

decomposition G = P U NwP. G is then generated by P and w and the relations satisfied by 

w are w ~ =7, wht w-1---h-t and for t ~ 0 ,  

~ t w  = u_l/t~_thlnlt,'7 ma) (16) 

where the integer re(t) -- 1 if t > 0  and ~-Oif t <0. This can be checked djreot!y for SL(2, R), 

However, for the simply connected covering group, the third relation above is ;not so 
14 - 772905 Acta Mathematica 139. I m p r i m 6  le 30 D~embr�9 1977 
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obvious. One could presumably use Bargmann's parametrization o f  G to verify this. 

Another method would be to use the representations T~ for this purpose. For example, 

let t > 0, define 
F(y, t) - {~'~ (wu~w)~f§ ( y ) . ~ + ' .  

Then the identity for wutw gives the following functional equation 

e~(~+l)~m-1/~)F(y, t) = t -1 eJ~/tF(y/t 2, - l/t). 

The integer m can be determined from the above identity. In fact 

d~ 

and from formula (10), ([4], p. 29), it follows that  

F(y, t) -- yaJ~(1 +it) -~+~) exp ( - y /1  +it). 

From this the value of the integer m is easily calculated to be--1. Thus re(t)--1 for t >0. 

Also it is easy to cheek directly that  re(t)+ m(- t ) - -1 .  Thus re(t)=0 for t <0, proving the 

identity completely. 

Remark 3. Another formula for T~Cw) is known. (See Sally [15], for details.) I t  may be 

described as follows. Let M: L2(R+)~L~(R) be the unitary isomorphism given by the 

Mellin transform , f  MI: ~-~2--~ t-~t+'~)l(t)dt (17) 

for feCo(R+). Then T~(w)= W~" V, where V is the operator 

1 1 

and M W ~ M  -t  is the operator of multiplication by the function 

2 2 " 

This can be checked easily from the following facts. 

(i) VT~(hs) V -1 ffi= T~(h_~) and thus Wa commutes with h~ for all 8. 

(if} M W ~ M  -1 is thus a multiplication operator. Finally the multiplier function can 

be evaluated by using the fact that  e-tt ~ls is an eigenfunction for T~(w). We omit t h e  

d e t a i ~ .  



UNITARY REPRESENTATI01~IS D E F I N E D  B.Y BOUNDARY CONDITIONS 205 

w 9. The representations Ta.~.~, 

T h e  representations T a . s j  were defined infinitesimally by the condition dTa.s.s, =- 

aa.s.,~,, i.e. 
O(dTa.s.s,) = {l e D(ai) I A,(I)  e En.,,, for all 'm fiN}. 

Here: ha is real and < 1. E~.&, is defined in Lemma 10. A K-eigenbasis for the representation 

is given in the following. 

LEMMA 15. For each ~ ESpec dT~.8,~.(H'), define 

I t > o 
~ ' d t )  = 1. ~{c(-~,  ~)}-~L_~n.~/~(-t), t <0 .  

Then Wa.~ is an eigenbasis o/dTa s r(H'). Moreover, the/ollowiruj formulae hold: 

( i)  dT  a.n .~,(H')v2a if =~Va,~, 

(ii) 'dT~,s.x(X')~fa,~ = {i(1 +~ +2)/2}y+a.~+,, 

(iii) dTa.~.s,(Y')~pa.~ ffi { - i(1 - ~  +~)/2}~pa.~_,. 

Proo/. Since ~ is an eigenvalue, the eigenfunction 1~ is of the form cxLg/~,a/~(t ), t > 0  

and cnL_~/~.a/n(-t), for t <0. The constants cx, c a are to be determined from the condition 

Ao(l) e Es.s,. From the local expansion of L~/~.a/~ it is easy to check that  A0(Y)a.~)q Es.s,. 
Since the multiplicities are one, it follows that  {~Pa.~} is an eigenbasis. The formulae (i)-(iii) 

follow from Lemma 14. 

Remark. The basis ~a.g is not orthonormal. If 2=iv, v r e a l# 0 ,  then the identity 

(X'.~a.~,~p~.~+~)=-0Pa.~, Y"~Pa.~+~) gives 0pa.~+2,~p~.~+n)=0p~.~,~pa.~), for all ~. Thus 

all the functions ~a.~ have the same norm. Using the formula (40) on page 409 of [4], 

one can show that  in this case 

v tan h(wt/2) see n (~t~/2) 
(v2a' ~' v2a'~) ~ 1 + tan n (~t~/2) tan h2(v~/2)" (19) 

The norm of ~a.~ can be evaluated for other values of 2, but  it is no longer independent of ~. 

We next  describe C~-vectors of the representation. 

THEOREM 7. Suppose ~=~0. Then lE O(a~) i /and oCtly if 

(i) ]EC~(R ') and sup~tl>t~ltmo'~/I < oo /or all t0>0 and m, hEN. 

(ii) Let ~=  +2, Then limt..,~[t[~/~ea(a)/ exists /or all a belonging to the right ideal 

( I I -  1 - a ) ~  +.X.~ 
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Moreover, 1 ~ O(dT ~.$.~,) or is a C~-vector lot the representation i I and only i/ 

li.m,..o: I t I"'"o~ (a)i .-,~, lim,_.,o+ 1,1"*~,(~)! (20) 

/or all a E ( H - 1  - a ) ~  + X ~ ,  ~= • ~, where ~ = &/ o r  o:--~, ~ = ~ '  /or ~= -;t. 

Proof. Suppose /E ]0(a]). Then / satisfies (i) by Lemma 1. Moreover, !(t) = O( I t [ :~2) 

as t-~0 so that Itl~q~(a)t=O for all a E X ~ .  Next 

Similarly 

A~(I) = l i m ~ _ ~  tW(l , 

= l i m ~ . o ~  ( - -  1/2)ltl-%~{H- ~ +a)t 

A i  (! )  = ( - 1 / 2 )  l i m ~ o : ~  I ~ We~(H - ~ - ~ )  1. 

Thus if !eO(al),  then (ii) holds. Conversely suppose ! satisfies (i) and (ii). Then 

e ~ ( H - I - a ) / E L  2 for a =  +2 and thus / e L  2. Thus ~z(a)/EL ~ for all a E ~ ,  or /ED(al ) .  

Next note that  if 1 E O(a~), then 

l im,_~o~  I tl ~Q~(a)l = o 

if aEX~l: On the other hand,  the result A0oQa(H)=Mx.A 0 of Lemma 8, implies that  

for all a E ~.  Thus when /E  ~)(a]), the condition (20) is satisfied when a is o f  the form 

(H - 1 - ~)2~ ~- X"l~. Now E~ ,,, = {(x 1 , x~, x 3, x,) E O t x a =~x 1 , x4 = 5'x~}. Also Am ='Aeons( y)m, 

where A0-(A~,  As+,, A1, A~). Thus  i f /E O(a~), then ! is a C~ if and only if it 

satisfies Am(l) E Ea.a,; this is equivalent to the condition (20). 

THEOREM 8. Suppose )t--O. Then /e  ~)(a~) i /and only i! 

(i) /EC~~ ') and supltt>to[tm~/I < c~/or all to>O and m, nEN. 

(ii) limt_.0~: Qo( a ) / exists /or all a E ( H - 1) ~ + X ~.  

(iii) limt_,~:{2-1n{t[qo(H'l)}qo(a)/ exists /or all a e ~ .  Moreover, / i s  a C~ 

/or To.a. ~, i! and only i/ 

(iv) limt_~_ q0(a) / = 0 l i m i t :  o0(a) / / o r  all a E (H - 1) ~ + X ~ and 

(v) limt..,o_ {2 - l n [ t i q o ( H ,  1)}qo(a)! 

= 5 limt~.o+ {2 -- In It } eo(H "1)} qo(a) / -~ O' lim,~o§ ~0{(H - i) a} ! for all a e ~ .  

This theorem is proved the same way as the previous one. We omit the details. 
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THEOREM 9. Let ~ be a continuous (not necessarily unitary) representation o/ G in 

L~( R) such that 

(i) :~(h~)/: t-~e'/(e~'t) 
(ii) g(u,)/: t-~e-~"~/(t) /or all sE R .  Then C T ( R ' ) c  D(d~) and there exist complex 

constants ~, /~ such that 

dxeICT(R+)~aL dz]C~c(R_)~a[,. 

I n  particular, i / ~  is unitary, then there are only two possibilities: (a) ~ is irreducible 

and :~ = T ~. a.a, /or some ~t, (~, (~'; (b) ~ is reducible and 7e = T~ | T~, /or some ~, [~. 

ProD/. We first show that  Do = D(dg)-- the set of C| of ~ is an ~q'(R)-module; 

i.e., if ]ES~(R), ~ED0, then ]~EDo. Let  g ~ = g ] A N .  Then  one checks by Weyl's lemma 

(see Appendix A) that  D(d~)  = (/E C~(R')ltm(tOt)'[ EL2(R), for all m, nEN}, and d~l(H)[ = 

(2t~t+l)/ ,  and ( d g ~ ) ( X ) [ = - i t / .  Clearly DoCD(dg~)~C~(R ' ) .  Next Do is a complete 

looany convex vector space in the semi-norms, [-~ IId~. (a)[11 s, a E ~.  Moreover, g(x)Do ~- Do 

and gl Do is a continuous representation of G. If ~E Do, gELS(R), and if 

f ]  g(s) [~(:~(u.) �9 q~) ds < co 

for all continuous semi-norms v on Do, then ~q~=Sg(s)~(u~)q~dsEDo. Now suppose a E ~ ,  

deg a ~<r, and ~(/) = ][dz(a)./][~, /E Do. From the properties of universal enveloping al- 

gebras, it follows that  if al, a 2 .... , amE ~ is a basis of the subspace of elements of degree 

r, then there exist polynomia]s Pl . . . . .  Pm in s such that  

Thus 

Ad u - l . a  = Zpj(s)aj.  

~(:~(us)~) < z ]p,(s) I ]ld~(a,)~ll. 

I t  thus follows that  if S [g(s) l ] s I rds < ~ for all r eN, then ~ E D0, where 0 denotes the 

Fourier transform of g. In particular, ~ ( R ) + c  Do. In particular, CT(R')Do c Do. 

Since g(ht)Do C Do, it follows that  for each toER' , there exists ~EDo such that  

r ~=0, and hence a/to E C~c (R') N Do, such tha t /u  = 1 in a neighborhood of t o. This implies 

easily that  C~ (R ' ) c  Do. Let  D = d g ( Y ) .  I t  will be shown next  that  D is a second order 

differential operator. In fact ~(u[ 1) Dxe(us) ~ =dxe(e-::dx Y )~  =d~( Y +_ sH -szX)ep =q~l - sq~  - 

s~s,  where qh = D% q~ =dTe(H)q~, q~s =dxegX)q~. Thus 

Dg(u~)q~ = e-~t ~fl - se-fatq~ - s 2 e-mq~a. 
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Let  

Then 

/(t) = f g(s) e-rods, with g~9'(R).  

Now suppose f ~ Cc~(R') and ~0 ~ C~(R') with ~ = 1 on supp/ .  T h e n / ~  ~-/, ~z = 1 on supp/ ,  

q~s = - i t  on supp/ .  Thus 

i ) / =  lq~l - (i~, t) - it (~ t) 

where f~l=fDq~, for any ~ in C~~ (R ') equal to 1 on supp / .  From this it  follows that  

DIC~(R' ) is a second order differential operator of the form - i ( t ~ + ~ §  Now the 

commutation rule [H, :Y] ~ - 2 Y ,  gives, that  there exist constants c 1, ce such that  ~-~cl]t 

for t > 0, = c~/t for t <0: Thus d~r [ C~ (R+) ~ a [ ,  d~r [ C~(R ) ~ a~ for some ~,/~. Unitarity 

of ~r implies ;~, #~ are real. If ~r is irreducible, then d~r(~} = constant, so that  ~ = #  in this 

case. In this ease dT~.a.~, are the only irreducible self-adjoint extensions of q~. Thus 

~r = Ta.8.a. for some 2, ~, 5'. The second case is proved similarly. 

For the representations T~.a.a. , an analogue of Theorem 6 can be given via the two- 

component Mellin transform. (See also Remark 3 following Theorem 6.) (In this connection 

see Sally [15], Vilenkin [17], for another approach.) Let  M: L~(R§ be the Mellin 

transform detined earlier (17). Define M': L~(R_)~,LZ(R) by M'J-~-Mf ), ]~ Put  

M2/=(M/,  M']). Then M~ gives a unitary isomorphism of L~(R ') with L~(R)@C ~ and is 

called the two-component Mellin transform. Let  A(x)= (a~(x))~<~.~<~ be a unitary matrix 

valued function on R. Define the operator I ( ~ A  on L~(R)@C ~ as follows: 

(11) _- 11( ) + 
I @ A  /2 \a21(x)/dx) + a~(x) f2(x)/" 

We call I @ A  a matrix multiplication operator. 

T ~ ] r o B ~ t  10. Let V be the unitary operator V]: t ~  Itl-l~(l/t), in La(R). Put  W~.a.a, = 

T a.~.~.(w) V. Then 

M~o Wx,~.roM~ I = I@A~.8.r 

/or a suitable matrix-/unction A a.a.~. , and its matrix entrie~ have explicit ]ormulaz in terms 

o/the gamma and hypergeometric functions. 
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Proo/. For the sake of brevity we use the module notation,and Write h~ instead of the 

operator T~.$.$,(hs). One checks easily that  Vh~V-X=h~ and wh, w-X=h_~in G. So it 

follows that  the operator Wa.$.$, commutes with the  operator h~. However, M~h~Mg ~ 
is just the operator of multiplication by exp ( '2isx) .  Thus it follows from known results 

tha t  W~,$.$, is a matrix multiplication operator. To determine this ma t r ix  we use that  

~ .~  are eigenfunctions. Note M~ VM~:  q~q~e for ~0 ~L~(R)@)0 ~, ~0~ Now put  

Then 

1 /:t_(1/2+~x)v2a.~(t)dt ~.~(~) = - ~  = M ~ . ~ .  

Since yJ~.~ is an eigenfunction for the eigenvalue exp ( -  �89 it follows that  

\Og~._d - z ) / -  \~g~.-dx) l  

for all ~ in the spectrum. Now it is easy to check that  if 

then 

Let  ~, ~' be in the spectrum of H'  and ~ . ~ ' .  Then we have, using the above formulas, 

where 

0 0 \ Q  x 1 

Q(x) [g~.~(x) g~.r(x) 
= \g~,-dz) g~._~,(x)]" 

From the formula for Mellin transform of W,,.g(x) ([4], p. 337), it follows that  

2 b F(a) F(b) F ( c -  a) 
g~.~(x) = 2V2~F(- ~t) - -  r(c) F(a, b; c: �89 

where a = (1 +)t - 2ix)/2, b = (1 - 2 - 2ix)/2, c = 1 - ix - ~/2. This completes the proof. 

Finally we mention here the intertwining operator connecting T~.8,a, with the unitary 

principal series. Let ~@)c a denote the representation ?r~htu,~e"v'~-~t of P and U~.~= 
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Indp t a ~ Q e~. The following realization of U~.~ in L ~(R) is well known. I t  comes from using 

G =P U NwP and using 

/ 

as the quasi-invariant measure in G/P. In fact, we have 

U~.~(x) /: t ~ [ - c, + al-('-~) e~'('-" ')'~ / ( ~ )  (21) 

function re(x, t) is defined as follows: 

6P, if e t+d=O 
x " ut" w = u(~t+b)j(ct+a)wp(x, t), if ct + d=4=O. 

The element p(x, t) EP and re(x, t) is defined uniquely by 

p(x, t) = u-c(ct+d)hi= Ict+d I~m(x" t). (23) 

We have already seen that  m(w, t)--1 if t > 0, = 0 if t <0  and m(x, t) for arbitrary x can be 

found by using the identities 

m(x .y , t ) - -m(y , t )+m(x ,a (y ) . t )  and m(yry, t ) = r  if y f iAN.  

Let ~ denote the Fourier transform and let Fa denote the operator Fa = [t[a/2o~, 

Fs =:~_1 o [t I -a/2. Then F a is unitary f o r t f i iR  and for ]EC~(R) 

and 

1 f/~t/(t)ltl_,1~dt. 
We then have 

THEORE~ 11. Let ~EiR, - 1  <~2<~1 and suppose (2, ~})=~(0, 1). Then 

Ta.a.a: = F~o U~.~o Fs 1 

where ~ = - l, 6' = - {cos ~(V + A)/2}/{cos (7 - I)/2} i/A 4 = O, and ~ = - I, 6' = -~ tan (~VI2) 

if l = 0 .  

Proo[. Let S=FaoU,I.~oF~ 1. Then direct calculation shows that  S(hs)]: t-~ea](e~S$) 

and S(us)/: t-~e-~f(t). Also U,.a is known to be irreducible. Thus by Theorem 9, it follows 
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tha t  there exists (~,~' such tha t  Ta.s,e. =S = F~o U~.~oF~ 1. We have to find ~ and ~'. These 

are obtained by  comparing K eigenfunctions in both. First of all Spec dU~.~(H')=~ §  

Comparing it with spectrum of dT~.~.~.(H') we have (see Theorem 4) 

dt'/(~ = {cos :t(~/+2)/2}/{cos ~t(~/-~t)/2} if }t~=0 and = :z tan :rz//2, if ~t = 0. 

Next  consider the representation dUmA. From the formulas for the one-parameter  

groups U,iA(expsZ), where Z = H  or X or Y, it is not difficult to show tha t  C~(R)~ 

~)(dU~.~) and dU~,~ ~ 1:~ where ~(v~) = Cc~(R) and 

v~(H)=- (2 t~ t+ l -2 ) ,  ~ ( X ) = - ~ t ,  a n d  ~'A(Y)=(t2~t+(1--~)t ). 

By Weyl 's  lemma O(T%)={/E~(R)I~(a)/eL~(R ), for all afi~/} and for /eO(T~), 

z~(a)/=z~(a)/. Since U~.~ is unitary,  it follows tha t  d U ~ . ~ ] .  Thus the eigenfunctions 

{dU,.~(H')/=~/}~ {/eC~(R)Iz~(H')/=~/}. By direct computation, these eigenspaces are 

one-dimensional and if /~ is an eigenfunction then 

/~ = (1 + it)-~-~-~m(1 - it) -(1-~+~m 

for ~E~+2Z.  Thus there exists a constant fl~ such tha t  Fx/~=fl~v2a.~, where ~V~.~ is the 

eigenfunction introduced in Lemma 15. From formula (12) on page 119 of [4], it follows 

tha t  

- 2 V ~ n 2 ~ { r ( ( 1 - ~ + ~ ) / 2 ) } - ~ L ~ / ~ , ~ / ~ ( t ) ,  t >0 

F~/~ = V~n2~/~{F((1-;t-~)/2)}-~L_~/~.~/.A-t), t<0 .  

Comparing this with the formula for T~.~, one gets tha t  ~ = - 1 always. This completes the 

proof. 

Appendix A. On extensions of symmetr ic  g-modules 

Let ~/ be an associative algebra over (3 and T an involutory, conjugate linear anti- 

automorphism of ~/. We write a T instead of T(a) for aE~/. A ~/-module a consists of a 

complex vector space Z){a), called the domain of a, and linear operators a(a): ~0(a)~ ~)(a), 

such tha t  a--*a(a) is a homomorphism of ~/. If  al, ag. are two such modu]es, we say alca2 
if ~D(al)c~(~2) and az(a)=a2(a)]D(~l), for all aE~/.  Let  :H be a complex separable 

Hilbert space. We shall be mainly concerned with ~/-modules in :H, i.e., a such tha t  

O ( a ) c  ~/. In  the following we write ( . , . )  for the inner product on ~ / a n d  use standard 

terminology for operators in a Hilbert space. 

Definition of the adjoint module. Let  a be a densely defined 2/-module, i.e., O(a) 

is dense in ~ .  Then a vector 9 belongs to the domain of the adjoint of a or 9EO(a T) if 
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for each aEW, there is ga such tha t  (a(a)/, g )= (/,g~) for all ]E O(a). Then the vector ga 

is unique and we define ~T(a)g=gaT. I t  is then clear tha t  if gE ~0(a~), gaE~)(a ~) for all a 

and (ga)b =gab" Thus a ~ is a W-module called the adjoint  of a. Also note tha t  O(q~)= 

N (~)(a(a)*)laE W} and a~(a)~ (a(a')) *. 
A W-module a is said to be z-symmetric (or simply symmetric when it is clear from 

the context what ~ is meant)  if a c  a T. This is equivalent to the s ta tement  

(a(a) /, g) = (/, ~(a~)g) 

for al l / ,  g E ~O(a). 

The following lemma is proved the same way as in the case of a single operator. 

LEM~A A.1. (i) I /  ~1 is densely defined and a ~ e s  2, then a ~ a ~ ,  

(ii) I]  a and a T are both densely de/ined, then a r~= (a~) ~ exists, ( ~  a T~ and a ~ =a  ~. 

LE~M).  A.2. Let (~ be a densely de/ined, symmetric W-module. Let B,(a: /: g)=  

(a~(a) ], g) - ( ] ,  a~(aT)g) /or a E W, / ,  g E l)(a~). Then the boundary ]orms Ba satis/y the/ollow- 

ing identities: 

(i) B,(a: /: g )=0  i/either / or geO(a), 
(ii) Ba(ab: /: g) = Bo(a: a~(b)/: g)+ Ba(b: /: cf(a~)g) and 

(iii) Bo(an: ]: g)--~r_on-1B~(a: a~(a)r/: (~T(aT) . . . . .  lg). Moreover, a c a T ~ c a  ~ and ~)(a ~) = 

(/E l)(a~) l B~(a: /: g) = 0 /o r  all g E O(a') ). 

(iv) U a c  a 1 ~ a T, then a ~  a l c  a T and ~D(al) = (] E O(a T) I B~ (a:/: g) = 0 /or  all a E W and 

The proofs are all straightforward and are omitted. 

There are two prime examples of the pairs (W, T). In  the first one, let W ~ C[t], the 

polynomial algebra in one indeterminate t, and v is defined by  v(t)=t.  In  this case, a W- 

module is defined by an operator A with domain O such tha t  A O c  O and a ( t ' ) = A  n. 

In  this ease, ~O(a ~) = N ~)(A *n) = ~~ and T symmetry  coincides with the usual notion 

of symmet ry  for a single operator. 

The second example arises natural ly in representation theory of Lie groups. Let  

I~ be a Lie algebra over R, and gc its eomplexification. Let W = W(gc) denote the universal 

enveloping algebra of go. There exists a unique conjugate linear involutory anti-auto- 

morphism a~a*  of W onto itself, such tha t  X t =  - X  for all XE~. When dealing with 

Lie algebras, the pair (W(gc), t )  is the one we shall be concerned with. Since a 9-module 

extends uniquely to a W(I]c)-module, we shall treat  the concepts synonymously.  

Let G be the simply connected Lie group with Lie algebra 9. Let  T be a continuous re- 
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presentation of G in ~ .  We define d T  as the I~-module whose domain is the collection of all 

Coo-vectors of the representation T, and when v E ~0(dT), d T .  (X)v = (d/dt) I t-o T(exp tX)  v. 

The following lemma is well known and is stated here only for ease of reference (see 

Warner [18], chapter 4). 

Lv, M~A A.3. (i) A vector v E O ( d T )  i/  and only i~ the/unction x ~ ( T ( x ) v ,  v') is a Coo- 

/unction on G,/or  each v' E :H. 

(ii) .For each X Eg, the closure o / d T ( X )  is the infinitesimal generator o/ the one para- 

meter group t ~  T(exp tX)  and 

~ ( d T )  = N {~)(A n ... Aj , ) l r  = 1, 2, ...; A j = C l d T .  (Xj), 

where X1, ..., X n is a basis o /g} .  

LEMMA A.4. Let a be a ~-module and T a unitary representation such that (~cdT .  

Assume that ~((z) is dense and T(x)O(a)= ~(~) /or all xeG.  Then, (i) a t = d T ;  (ii) I /  

zEcent ~/[g~] and z*=z, then a(z) is essentially sel/-ad~oint; (iii) I /  XEg; then a(X)  is 

essentially skew ad]oint. 

Proo/. Now cr~dT  implies that  (dT)*=a*. Since T is unitary, we have d T c  (dT)*. 

Thus it is sufficient to check that  O(a*)=~)(dT).  Let/E~O(a*) and let gE:H be arbitrary. 

I t  is sufficient to verify that  the function x~qg.r(x)=(g , T(x)/)  is Coo. Let g,E~:)(a) 

be such that  gn-~g in :H. Then 

~g,.i(x; ~) = (dT(w~ = (T(x-1)g, ,  a(~0)*/), since ~)(a) 

is G-invariant. Thus 

q~o,,.r(x; ~) = ~g..,,*(.)r(x) 

for all ~/E ~/[g]. Thus q%~.r(x; ~) converges uniformly on compact subsets to q~g.~*(,)f(x). 

Since ~g,.1 is C ~176 it follows that  ~o.t is also Coo o r / E  ~)(dT). The rest of the statements of 

the lemma are known, cf. [8] or [9]. 

COROLLARY 1. (dT)~=dT.  

COROLLARY 2. With the same assumptions on a as in Lemma A.4,  let (IICG be a 

g-submodule such that O(al) is dense. Then a l c  a c d T = a~ and i/  Z) = {/E O(a~) I (a'1(~1) g , / )  = 

(g, a*l(Zf)]) /or all g E ~)(a) and all ~ E ~l}, then ~ = ~)(dT). 
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Proo/. The first corollary follows from Lemma A.4 by taking a = d T. Since al ~ a c  d T, 

i t  follows tha t  (dT) t = d T ~  at. Since a c  d T c  a~, it follows tha t  O(dt)~ 9 .  On t h e  other 

hand ~0~ ]0(a*). But  a t =dT,  so that  ~)(dt) = ~), 

Definition A.1. A symmetric t]-module a is said to be integrable if there exists a continu- 

ous unitary representation T of the simply connected Lie group in ~ such tha t  a c d T .  

I t  is said to be exact if a = d T .  

We note that  if a = d T l = d T ~ ,  then T I = T  ~. In  fact, Tl (eXptX  ) and T2(exp tX  ) 

have the same infinitesimal generator, so  tha t  Tl(exp X) = T2(ex p X) for all X Eg. How- 

ever, if a ~  dT, d T  is not in general unique. In  this connection we note the following 

L~MM.r A.5. Let a be a densely defined 9-module such that a(Xj) is essentially skew- 

ad]oint /or a basis X j  o/g.  Then a t t=a  t. In  particular, i / a ~ d T ,  then d T = a  t, and T is 

unique. 

Proo/. I f  a(Xj) is essentially skew-adjoint, it follows tha t  the boundary forms 

B~(Xj:/: g) =0 for all ], gE ~ ( a  t) and, therefore, B~(a: ]: g) =0 for all aE ~ ,  from identities 

satisfied by the boundary forms B,  (see Lemma A.2). Thus att =a t, by the same lemma. 

Now if a ~ d T ,  then a c d T ~ a  ~, and so a t t c d T c a  t or d T = a  t. 

The following is just a reformulation in our notation of a theorem of Nelson ([8]). 

TH~.OR~M. Let X 1 ..... X ,  be a basis o/fl and a a g-module in ~ .  Then a = d T  ]or some 

continuous unitary representation T i / and  only if (i) a = a  t, and (ii) a(A) is essentially sell. 

adjoint, where A = X~ + ... + X~. 

Remark. An example of Nelson (see [8], section 11) may be interpreted in our notation 

as follows: there exists g-module a, of a two-dimensional abelian Lie algebra such tha t  

a = a  t, but  a is not integrable. Whether such examples exist for semi-simple g is not 

known. In  this connection it might be of interest to note tha t  all self-adjoint extensions 

of the module a~ considered in Section 3 are integrable to the group (el. Theorem 3). 

Let M be a Coo-manifold and # a C~176 on M, i.e.,/~: (U, ~)-+/~v.~ a map from 

local charts (U, ~) to C~-functions on U, such that/~u.~ transforms like the modulus of the 

Jacobian under change of coordinates. We also denote by #, the corresponding measure 

induced on M. Let M ' c  M be an open subset of M and D a smooth differential operator 

on M'.  Then there exists a smooth differential operator tD, called the transpose of D, 

such tha t  

f D / , a d ~ =  f / . ' D g d ~  
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f o r  all ./, gEC~(M').  The operator  D*g=(tD~) - is called the formal adjoint  of D, and if 

(/, g)= S /~dla, then (D/, 9)= (1, D'g) for a l l / ,  gEC~~ (M'). 

Let  X ~ ( X )  be a h0m0morphism of g into differential operators on M', such tha t  

(i) ~(X)* = -~ (X) ,  for  all XEfl,  

(ii) For  each m 0 EM' ,  t he re  exists an a 0 E ~(g~), such tha t  the operator  ~(a0) is elliptic 

in a neighborhood of m 0, 

Let  a = (C~(M'), Q). Then a is a symmetr ic  g-module in L2(/~), 

W E Y L ' S  LEMMA. With the above notation 7~(a*)={/EC~176 /or all 

a E ~/(gc)}. Moreover, at(a) /=q(a)/ , /or  all [ E t)(at). 

Proof. This lemma is quite classical and we include a sketch of proof, for lack of 

adequate  reference. I t  follows easily f rom the regulari ty theorem for elliptic operators. 

I n  fact, suppose [E O(a*). Let  u I be the distr ibution ~-~(~, / ) ,  ~EC~(M' ) ;  to(a0)uI(~v ) = 

uf(~(ao)q~)=(7 ~, [ao). Thus the distr ibution t~(a~)ul is an  L*-function for all n; since o(a0) 

is elliptic in a neighborhood of m 0 EM' ,  it follows from regular i ty theorem tha t  u s is locally 

a C~176 near m 0. Thus [EC~176 ') and (Q(a)T, [)=(q~,Q(a*)[) for all aE~/ .  This 

proves the lemma. 
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