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§ 1. Introduction

Let g be a Lie algebra over R, the field of real numbers, and g, a g-module in a Hilbert

space H. If the domain of ¢ is dense, one can define an adjoint module o' in H such that
ala)f, 9) = (f, a*(a")g)

for all 1€ D(o), g€ D(s*), a€ Ulg], (see Appendix A for notation and details). The module
o is said to be symmetric or (infinitesimally) unitary if c<¢' and self-adjoint if o=0".
The importance of self-adjointness comes from the fact that d7 is a self-adjoint module
{see Appendix A). Here 7T is a unitary representation of the simply connected group
corresponding to g, and d7 is the usual g-module with the set of C®-vectors of T' as its
domain. Calling a g-module exact if it is equal to d7 for some 7', a natural problem would
be to determine all exact extensions of a given symmetric g-module. The theory here is
analogous to the theory of self-adjoint extensions of a single unbounded symmetric
operator. In fact if dim g=1, it is well known that g-module is exact if and only if it is
self-adjoint. For the general case, self-adjointness is necessary but not sufficient for exact-

(1) Partially supported by NSF grant MCS 76-06981.
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ness. (See Appendix A.) However there are many interesting cases where self-adjointness
alone is enough to assure integrability to the group. In this paper one such module for
8l(2, R) is studied in detail, and all its self-adjoint extensions are obtained. Since the
extensions are determined by boundary conditions, it is natural to consider the correspond-
ing group representations as being defined by the boundary conditions. An interesting
feature is that all non-trivial unitary irreducible representations are obtained by determin-
ing all self-adjoint extensions of the module ;. Although the representations of G' have
been known for a long time this way of deriving them appears to be new. It is an interesting
problem to find modules similar to o, for other groups as well. This question will be pursued
in future papers.

A brief description of the contents follows. Generalities about g-modules and some
basic results which are used repeatedly are collected together in Appendix A. In Section 3,
the basic homomorphism g, of 3l(2, R) into differential operators and the modules ¢, 6}
are defined. All self-adjoint extensions are determined in Theorems 1, 2 and Lemma 10.
They are shown to be integrable (Theorem 3). Their unitary equivalence classes are
identified in Theorem 4. Theorems 5 and 6 describe the set of C® vectors, K-eigenbasis
and the group operators for the representations 7'j, which correspond to self-adjoint
extensions of of. Theorems 7, 8 and 10 do the same for the representations 7', 5 5 (here
d, ¢’ parametrize self-adjoint extensions of ¢,). Theorem 9 is an auxiliary result which
determines all representations of ¢ in L% R) with a given restriction to a parabolic sub-
group. Theorem 11 gives the intertwining operator between the unitary principal series
and the representations T'; ; 5, when A is imaginary.

The methods and results of this paper will be used to obtain explicit decomposition
of (1) the tensor product of two discrete series representations of 3[(2, R) ([12]), (2) the
Weil representation associated to a quadratic form [{13]. In fact the present paper grew
out of an attempt to get such an explicit decomposition. In this connection we refer to
{117 for another approach to the same problem.

The author wishes to thank the Institute for Advanced Study, Princeton, for the

hospitality during summer of 1976, where the final version of the paper was prepared.

§ 2. Preliminaries on 3,

Let @ denote the simply connected Lie group with Lie algebra 8l(2, R). Let X, H, ¥
denote the standard basis of 3l(2, R), i.e.

I
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Then (H, X]1=2X, [H, Y]= —27F, and [X, Y]=H. Write x(0) =exp (X — ¥), h(t)=exp tH,
and «(s) =exp sX. Here we have written exp, rather than exp, for the exponential map
of 3[(2, R) into G. Put K ={x(6)|0€ R}, A ={h(t)|t€R} and N ={u(s)|s€R}. Then K, 4, N
are closed subgroups of G and G=K-A4-N. Write

w=expg(X—Y), y=expm(X ~ Y)=w? (1)

then the center Z(G) is the cyclic group=3{y*|n€Z}. Also
Adw-H=-H, Adw-X=-Y, Adw-Y=—X. 2)

Let U[3l,] denote the universal enveloping algebra of 8[(2, €). The following basis of 3((2, C)
will be frequently used

X'=@H+X+Y)2, H=4X~-Y) Y =(—iH+X+7Y)/2. (3)
Then {X’, H’, Y’} is another Lie triple. Let
Q=(H+12+4YX = (H—-12+4XY (4)

Then Q generates the center of U[3ly].

Let £(G) denote the set of equivalence classes of irreducible unitary representations of
G. These are all known (Bargman [1], Kunze-Stein [6], Pukhansky [10] and Sally [15]).
In any irreducible representation the center of the group and the center of the algebra
U[8l,]) are mapped into scalars and they can be used to parametrize them. It is known that
Spec H' and Spec 2 determine the unitary equivalence classes. Then the points of £(G)
can be parametrized as follows:

1. w(n, A) where 12 and 7 are real and |Re 4| + |5| <1, with inequality holding if 1
is real. These representations are characterized by Spec H'=%+2Z, Spec Q=42 and
Spec y =e™'™. Also w(n, —1)=w(y, 1), w(n+2, ) =w(y, 4).

2. wi(A), where 4 is real and A+1>0. Here Spec H' =+ (1+1+2N), Spec Q=42 and
Spec y =exp (F #A+ 1)x).

3. w(0, 1), the class of the trivial representation.

The class w(, A) is known as the principal series when 4 is purely imaginary, and as the
complementary series when A is real. The classes w*(4) are the so-called discrete series.
It is then known that representations of the class w*(4) are integrable (or matrix entries
belong to L'(G/Z(®))) when A>1 and are square integrable when A>0. It may be of some
interest to note that although w+(1) and w—(4) are not unitarily equivalent, they are physi-
cally (viewpoint of physicists) equivalent since there is an anti-unitary isomorphism
between representations of the two classes.

13 - 772905 Acta Mathematica 139. Imprimé le 30 Décembre 1977
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§ 3. The homomorphism ¢; and the modules ¢,
For each 1€, define the following differential operators on R'= R\{0}:

oi(H) =210, +1, X)) = —it
eu(X) = —i(t5f +0,—A%41) (8)
Then one checks easily that these operators satisfy the same commutation rules as the

Lie triple {X, H, Y}. Thus p; extends as an algebra homomorphism of U[3l,] into differen-
tial operators on R'. A simple calculation shows that

0,(Q2) =22

The formal transpose and adjoint with respect to Lebesgue measure on R is easily checked
to be

o(H) = ~0x(H), ‘ei(X)=0uX), ‘eu(¥)=esY)

In particular, if A2 is real the operators p;(Zy*= —g,(Z) for each Z€3l(2, R), i.e. they are
formally skew adjoint. The natural domain of g, is C®(R’). In this part we shall determine
all sub-modules of g, in L% R’) which are integrable to a group representation. We also
discuss simultaneously the g-modules on R_, defined by g; =(C®(R,), ;). Define

01 =(CP(R"),03), of =(OF(Ry),01) (6)

Then ¢, is a g-module in L2(R) and its adjoint module is described in the following lemma.

Lemma 1. The domain of the adjoint module D(o})={f€CT(R')|or(a)fEL?, for all a
in U[B,)}. Moreover, gi(a)f =pa(a)f for all {€ D(o}). If {€ D(q}), then for each t,>0

sup [£7(t0,)"f| < oo

1t1>to

for all m, n €N. Similar results hold for the modules o} in L R.).

Proof. The description of D(o}) is just Weyl’s lemma. (See Appendix A.) Let f€ D(q}).
Then

el [ talar< sl
<t =1l

The lemma follows by replacing f by g(X™(H —1)*){.
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§ 4. Eigenfunctions of g,(H’)
Suppose g;(H')f =&f for some £€C. Then f satisfies the Tricomi’s equation

{a%+ t} 0 —1+&Jt— 12/41&2}}: 0.

If we put f=2[t| ""2g(2t) (see [3], p. 251) then g satisfies the Whittaker’s equation
(07 —1/4+2x/t+(1 —uH)t2lg =0

where » =§/2, u=4/2. On any connected interval W, ,(t), W_, ,( —t) are a basis of solutions
of the Whittaker’s equation, where W, , is the Whittaker’s function. Also W, ,(¢)=
O(#**e™""%) as t— oo, so that a solution which is in L? near oo has to be a multiple of W, ,(t).

Thus we introduce the function

L, ,(t) = (26)"12W, ,(2t), t>0. (7)
Then
={ 1Ly, a2(t), >0
CoL_gp.a2( 1), £<0

for suitable constants c,, ¢,. The function f will be in L? when £ and 4 are such that Lg o 2(¢)
is in L2 near 0. Now the point ¢ =0 is a regular singular point of the Tricomi’s equation with
indices +4/2. Now Lgs 1(t) =e {(2t)*W(a, c; 2t) with a=(1—&+4)/2 and ¢=1+1, ¥
being Tricomi’s function. ([3], p. 255, Vol. 1.) From fractional power series expansion of
¥ near 0 ([3], p. 257, Vol. I) one obtains those of L and the results are summarized in the

following
LeEMMA 2. There exist convergent power series Py(t) depending on A such that for t>0

V2P (8) +t7M2Py(t), if AGZ

L =
e aelt) {t“z(Pl(t)lnt+Pa(t)}+t'WP2(t) for A€Z, 2+0.

Moreover, define

o(§, 4) =T(-A2"{T((1 —&-2)/2)}*

for A¢N, and c(&, n) as the residue of c(&, A) at A=n (for example c(§, 0)= —{T'((1 —§)/2)}~1).
Then P,(0)=c¢(&, 2) for all A, and P,(0)=c(&, —A) for all A¢ ~N. When A=0 we have

Qi(t), &—-1€2N

Lgs2,0(t) ={ Q:(t)In |t] +Qytt), if E—1¢2N



190 R. RANGA RAO

where Q,(t) is a polynomial, Q,(0)=(—1)¢"1"2 and Q,, Q; are convergent power series with
Q2(0)=c(&, 0) and Q4(0) =c(&, 0)d(£), where d(§) =v((1 —£&)/2) ~2y¢(0) +In 2, y is the logarith-
mic derivative of the I'-function.

From the above lemma, the following corollary is immediate.

CoroLLARY 1. If [ReA| <1, then Ly 3,,€LA(R,) for all £€C. If Red>1, then
Ly 10€L3(R,) tf and only if c(&, —4)=0 or if and only if E€1+1+2N.

COoROLLARY 2. Let V;(§)(Vi(§)) denote the linear space of eigenfunctions of g (H') in

LA(RY(L¥R.)) for the eigen-value &. Then
(i) Va&)=ViE) +Vié),

(i) dim Vi(é)=1 for all £€C if |Rel| <1 and

(iil) for A=1, dim VF(&)=1 if £€ + (1 +A+2N), dim Vi (&) =0 otherwise.
From the above corollary V§(4¢)=0 when A>1, and so we have

CoROLLARY 3. The symmetric operators o(H'), oif (H') are essentially self-adjoint in
L¥(R) and L* R,) respectively when 4 is real and >1.

The situation is very different when |ReA| <1. In the following paragraphs we shall
find all 3{;-modules ¢ such that o; < o< g} for which g(H') is essentially self-adjoint.

§ 5. Boundary forms

For each a€ U and f, g € D(c}), let B, denote the boundary form of the module g, i.e.

By(a: f:9) = (ea(@) ], 9) — (/, 0a(a®)g)

(see the appendix for the identities satisfied by B;). If Z=¢t, H +t,X, with t,, t, real, then
it is easy to check that none of the eigenfunctions of g;(Z) for real eigenvalues are in L2
and so the operators ¢;(Z) are essentially skew adjoint. Thus B,(Z: f: g)=0 and so from
the identities satisfied by B, (see Lemma A.2) it follows that

Bj(a: f:9)=0
for all f, g€ D(o}) and a of the form H™X". Thus it is sufficient to study B,(H'™ }: g). Now

pi(H') = —8,0t0d, +t+A2/4t
so that
@A)t W(f, g) = (u(H') f)g —for(H')g

= ={lex( V)9 —fex(¥)g} (8)
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where W(f, g)=10.9 —g@é,f is the Wronskian. Thus
ByH': f:§) = —iBy(Y: f:3) = —{tW(f, 9)| 1}. 9)

Here | =lim o, ¢(t) —lim,so_ (t).

§ 6. Boundary values

We assume that A2 is real and |Re 4| <1. To consider all different cases simultaneously
we use the following device. Define
|¢] %2, 440

10
In|t],A=0 (10)

a,(t) ={

and define
Ai (f) =limeq, {EW(f, as(t)}
A3 (f) =limysop {EW(F, |¢]*)}

LeMMA 3. For fe D(6}), AF(f), =1, 2, exist and
A=(9 [, swen
A= (£0) [, li¥eunpae.

Moreover, for a suitable choice of p+ € #(R’), we have

£(f) =iB(Y: f: a,(t) )
A3 (f) =iB(Y: f: |t]2qpt)

Proof. Note that g,(¥)a,(t) =0, gA(Y¥)|¢|*2=0, the first two formulae follow from (8)
and the fact that f is rapidly decreasing at oo (cf. Lemma 1). The last two follow from (9).

The following class of functions is somewhat more convenient to work with than
D(o}). For any open subset U of R denote &(U) as the Schwartz space of U, i.e. #(U) =
{f€C2(U)|supy |t"} f| < oo for all m, n€N}. If f€F(U), then f and its derivatives have
limits as ¢ approaches a boundary point of U. It is somewhat more convenient to work
with classes of functions in D(¢}) which have asymptotic expansions at the boundary.
For this purpose we introduce the class X;.

Let X, denote the class of functions € C(R’) such that
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(i) for each §>0, sup{|t"a}f|:|t] >} <o
(ii) there exists § >0 and functions f, f,€ % (R’) such that for 0 < |t] <¢

f(E) = J£] 1%, (8) +aa(t) folt) (11)

Also write ¥ = |t|**¥(R,).

Lemma 4. (i) X,CIAR) and XfCIXR,). (i) 0x2) X< X, and 0x(Z) Xic Xi
for all Z€3l(2, R). In particular, X,< D(o}) and Xi < D((oi)").

Proof. Only (ii) needs checking. This follows from the following. Let o= +4/2. Put
61=[t]"¥%00,0|t|*%. Then §,(H)=260,+1+a, §,(X)= —it, and §,(¥) = —i(td} + (1 +)3,).
This proves (ii) for A+0. For A=0, define §,=(In|t|)~tog,o(In|t|), then py(H)=
210, +1—(In|t])"L, §o(X) = —it and gy ¥) = —i(te; + 0, +2(In|t])~12,). Thus gy(Z) ¥,= X, for
all Z€3[(2, R). The rest is clear.

The following lemma is easily checked, by direct calculation.

Lemuma 5. Let [Reld|<1. Suppose that f=|t|"*f;+a,()fo g=|t|"%0, +aslt)g, with
{1, 9,€F(R), then
{tW(f, 9)}t = cl(flgz—glf2)lt

where ¢, is the constant =tW([t|*% a,(t)), = —4 if A=0 and =1 if A=0. In particular,
By(H": f:§)= —ci(f192— f291) -

LEMMA 6. Assume |Red| <1. Let f€X; have the local expansion f=|t|**f; +a;)f,

near 0. Then
A (f) = —c;f2(01), Ai(f) =c/,(01).

Moreover, for all §, g€ Dio})
e By(H": f:9) = AT () A3 @) — Az (N AT (@) — A () 42 (§) + A2 () 41 ().

Proof. The first part of the lemma follows from the definition and the fact ¢;=
tW(|¢]** a;). Next the formula for B,y(H': f: g) follows from the previous lemma when
/, 9€X,. To prove it in the general case note that the eigenspaces V(&)< X, and from
known results about the adjoint of a symmetric operator, it follows that D(o,(H')*)=
D(Clo,(H’)) + V(1) + V ( —¢). Thus, given ¢, € D(a}), it follows that there exist ¢,, y; € X,
such that ¢ —@,, y—y, € D(Cloy(H')). But By(H': ¢, y)=B;(H": ¢y: 9,). Finally observe
that A (f)=0 for all fECP(R’) and thus Af =0 on D(Clo;(H’)) 0 D(o}) by Lemma 3. The
formula for B;(H': f: g) thus follows from the corresponsing formula for f, g€ X;.
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LeMMA 7. Define the sesquilinear form F,(x, 4) on C* as follows:

Py, g)=| BT 0T wh b uds <0
FACE xlgz_w2gl_x3g4+x4y-3’ @f l2>0’ |ll<1.

Define Ay: Dio})—>C* by setting

Aolf) = (41 ()), A2(f), AT (), A2(f)
then A, maps onto and
1 Bi(H': f: 9) = Fi(Aq(f), Aolg)) (12)
for all §, g€ D(sl).

Proof. This follows from the previous lemma if you note the following. If A2<0, then
Af () =43 (9), and if 1220, |Re A| <1 then Af () = A{(g), 45 (g) = A7 (g). From the formulas
for Af in Lemma 6, if follows that A, maps X, onto C4. '

LemMMA 8. (i) Aylos(X)f) =0 for all {€ D(c}) and (ii} there exists @ matriz M ; €GL(4, C)
such that Aglo(H)f) =M, Ay(f). Also M;=diag 144, 1—4, 144, 1~1) if A2=0 and

1 -2 0 0

0 1 0 0
My=

0 0 1 -2

0 0 0 1

Proof. To show that A (0:(X)f)=0, it is sufficient to show that lim, o tW(if, ) =0,
where p=|t|** or a,(t). Now tW(tf, )= —tfp +2W(f, v). Now £2W(f, )0 as t->0. Now
f€D(o}) implies that f=0(]t] '"*), and thus tfy=0(|¢t|* **) if 150, and O(|¢]"*In |¢t])
if A=0. Thus in all cases lim ¢fyy=0. This proves that Ayp;(X)f)=0.

To prove (ii) we use the identity (see Lemma A.2) satisfied by boundary forms.
Thus 2B)(Y: f: q)=B,(YH—HY: f. g)=By(Y:0,(H)}: 9) + B,(Y: f: ¢;(H)g) since (see sec-
tion 5), By(H:-:-)=0. Thus B;(Y:0,(H)f: g)=B,(Y:[:0,(2—H)g). Now let pECT(R)
such that =1 around 0, then

02— H)[t|"2 = (—2t3,)|t| 2 = (1 - A)|¢] 2

in a neighborhood of 0. A§(gu(H)f)=1iBy(Y:0:(H)f: |t|"%p)=(1—=A)A5(f). Again
(2~ H)(a;(t)p)=(1+2)]¢|** around 0 if 140, and =In|t| —2 near 0 if A=0. Thus
Af(ox(H) ) =(1 +A) AF(f) if 440, =AF(f)—243(f) if A=0. Thus Ayloz(H)f)=M;-Aglh),
where M is given in the lemma. This completes the proof.
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LEMMA 9. Let the boundary values A, be defined by A, (f) =Aq(0(Y)"f). Then we have

i) Apogy(Xy=—m(M;+m—1)-Ap_,
(i) Apogi(H)=(M;+2) Ay
(i) Apooa(Y)=Apy
(iv) ca By(H'™: f:g) = SrGFa(Af), Am-r-1(9))
(v) Let v, €C* be arbitrary. Then there exists an f€ X, such that A,(f)=v,,, mEN.

Proof. The first statement follows from the identity ¥Y”X=XY¥Y"—m(H +m—1) Y™-?
in U[8l;). The statements (ii) and (iii) are obvious. The part (iv) follows from the identity
(iii) of Lemma A.2, satisfied by boundary forms and Lemma 7. Finally let { € ¥, and suppose
that

f=|t|**f, +asf, near 0, with f, f,EL(R').

Put 0x(¥)"f=|¢]*?f,.m+ ;5 »- Then we have the formula
[t]~*20@a(¥)o [¢]*2 = —i(td] + (1 +)2,)
One checks easily by induction that

m—1
{@i +(1 +a)a,>}m={n (ta¢+z'+a)} o =Dy, o s2y.
I=1

Then fy.n=(—)"Dp.yafss 80 that fy m(0)=(=i)"(1+0)n(@,)(+0). If 140, we have
similarly f, .(£0)=(—1)"(1+ o), 07 f3( +0). If v, =A,(f), then

vm = cl(!l.m(o'*' )) fz.m(o + ): fl,m(o '_)’ me(O_))

W, = (0f1(0 1), 0'fo(0 1), 87f1(0~), &7f3(0—)).
Then

Wo = ™1+ &)} 265 Ve

By Borel’s theorem ([6], p. 30}, one can choose f;, f, € #(R’) with values w,, for the derivatives
at 0. Thus there exist f€ X, such that A,,(f) =v,. In the case 1 =0

- 20 b
fz.m 0 tat"'l —":at f2.m—1

One checks by induction on m

(fl_m)=(ta,+1 2 ) (ta,+m 2 )((—ia,)’"fl)
o m 0 t8,+1) " \0 10,+m) \(—i8,)" [,
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From which one gets easily

hm(0%) =m{(— @) "[(0£) +2(L+{+ ... +1/m)(—10,)"f,(0+)}
fam(0%) =m!(—1)"™(@'f,) (0 %)

An argument similar to the case 130, now gives that there exists f € X, such that A,,(f) =v,,

for all m.

§ 7. Self-adjoint extensions

With these preparations we can now obtain all the self-adjoint extensions of a,.

THEOREM 1. (i) Let o be an 8l,-module such that o,<o<c}. Then o,<c'<a}. Let
E(0) denote the subspace of C* defined by E(o)={Ayf)|f€ D(o)}. Then M, E(c)=E(o)
and D(c") ={f € D(c})|An(f) € E(0)* for all mEN}.

(i) Conversely let E<C* be such that M, E=E. Let a 3l,-module c<o} be defined by
D(o)={f€ D(o})|An(f) EE, for all mEN}. Then E(o)=E and 6" =0. In particular, the map
o~ E(0) is a bijection of self-adjoint 3l,-modules o such that 0,< o and subspaces E such that
(a) M;-E=E and (b) E=E"*. Here the orthogonal complement is with respect to the form
F, introduced in Lemma 7.

Proof. Since Ay(p:(H)f) =M ;- Ay(f) and M , is invertible, it follows that M ;- E(c) = E(a).
From the relation A,o00;(X)=—-m(M,;+m—1)A,_,, it follows by induction on m,
that A,,(D(0))=E(s) for all m. Now g,c0<o} implies that g;cg'<o} and D(c")=
{f€ D(o}}| By(a: g: /)=0 for all a€ Y and g€ D(0)}. Since B;(H™X": g: f)=0 for all g and f
it follows that € D(c*) if and only if B,(H'™ g: f) =0 for all m. From part (iv) of previous

lemma, this is equivalent to
n-1
Zo FZ(Ar(g)’ An—r—l(f)) =0

for all n€N, and g€ D(o). Since the range A,,(D(c))= E(g), it follows by induction on n
that the above identity holds if and only if A, (f) € E(0)*, for all m€N. That E(s') = E(s)*
follows from the statement (v) of the previous lemma.

To prove (ii), note first that D(o) is invariant under g;(Z), for all Z€3l(2, R). In fact
this follows from the properties (i)~(iii) of the previous lemma. Since A,,(f) =0 for € D(a;),
it follows that 0;< o< o}. Thus o is a well defined 3l,-module. From the first part it follows
that D(o™)={f€ D(c})| Anlf) € E(c")*, for all m}. Since E(c*)=E* and E++=E, it follows

that ¢ =c¢*. The rest is clear.
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CoroLLaRY. D(o}")={f€ D(0})|An(f)=0 for all m€N}.

Proof. For E(o})=C* and thus E(c}') ={0}, the corollary follows from this.

The next lemma describes all such subspaces.

LEMMA 10. Let 22<1. For each A, the following is a complete list of all subspaces E such
that M ;- E=E and E =E*.

Case 1. 22<0. In this case E is of the form E; s.=C(e, +deg) +Cley+0'e,), where §,0'€C
are such that || =|d'| =1.

Case 2. 0<}?<1. There are two classes. Case 2a. E is of the form Ej; ; =C(e, =deg) +
Cle, +0'e,), where §’d=1. Case 2b. E is one of the following E,3="Ce,+Cey, E ;= Ce, +Ce,,
E,3=Cey+Cey and By, =Cey+Ce,.

Case 3. A=0. There are two classes. Case 3a. E is of the form
Ey 5 = {(zy, 25, 25, 2,) €EC|2,— 62, =0 and Oz, +6'x,—x, =0},
where |0] =1, 0 is real. Case 3b. E = E4.

Proof. In the statement of the Lemma, e, is the standard basis of C%. Put W, =Ce, + Ce,q

and W,=Ce,+Ce,. We consider each case separately.

Case 1. 12<0. Here the form F; (see Lemma 7) is symmetric, and M, is a diagonal
matrix, with W, W, being the eigenspaces. Thus E=E N W;=E N W,. In this case Wi =W,
so that we must have dim EN W,;=1, j=1,2. Let v,=a,¢, +aze;, v,=a,e,+ae, be a
basis of E. Then F(vy, v)=|a,|2— |ag|2=0; Fy(v,, v,)= —|az|%+ |a,}2=0. Thus E is of
the form E; ;.. One checks that (E; ;)" =E; ;..

Case 2. 42>0. In this case the form F, is symplectic, but W, are still the eigenspaces
of M;. Consider first the case dim EN W,=1. Suppose v, =a,e,+ae,, v,=a,e,+a,e,,
E=Cv;+Cv,. Then B(v,, v,) =a,d; —0a3d,=0. Now consider the case where none of the
a,'s are zero. In this case & is of the form E; ;. =C(e; +dey) +C(ey +6'e4) with §,8" satisfying
86’ =1. One checks that E+=E.

Case 2b. dim E N W,=1. But one of a,’s is zero. Suppose a, =0. Then a,=0, so that
a,=0. Thus in this case E =Ce,+ Ce,. Similarly you get the other possibilities listed.

Case 3. In this case M, (see Lemma 8) is unipotent. Write M,=exp (—2C), then C
is nilpotent and C?=0. Also W, =Ce,+Cey={v€C*|Cv=0}.
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Case 3a. dim EN W;=1. Then E has a basis v,, v, such that Cv, =0, Cv,=v,. Thus
vi=a,e; +age; and v;=32bse; Then by=a,, and b,=az. Fo(vy, vs) =a,b,—azb, =|a,|2—
|as)2 = 0. Fy(vg, vy) = by by —byb; —b3b,+b,8, = 0. Thus we may suppose E =Cle, + deg) +
C(d'e; + ey +de,), where §,0'€C. Then MyE=E. The condition E*=E gives that |6] =1
and 84’ is real. Thus in this case E=E; ;..

Case 3b. If dim EN W, =2, then K =Cei +Ceg, is the only solution in this case,

Definition. Let ¢, ;.5 be the 3l,-module which is self-adjoint and is defined by the

boundary conditions 0, ¢; 4 5. o} and
D(01.5.5) = {1 € D(6D) | Anlf) € By 5., for all mEN}. (13)

Here' E; ; is defined in the above lemma, and 4,0’ satisfy the appropriate conditions
(depending on 1) stated there.

Remark. In this connection note that the module ¢; depends only on A2, while g, ; 4
depends on A. In fact we have (15=0),

C_15.86 0148 (14)

This may be seen as follows. Writing A (f: A) for A (f) to denote its dependence on A,
it is clear that Af(f: —A)=43(f: 2), if 2==0. From this it follows that A,(f: —A)€E, ;.
if and only if Ay(f: 1) € E4 4, proving (14).

Remark. Let V denote the unitary operator Vi=c,f if >0, =c¢,f if t<0, where
[e1] =]|cs| =1. Let 6=V o0, 5 50 V-1 Then it is easily checked that

G = 0} 8calcr.8'c:ler (15)

TurorREM 2. (i) For each A real and A+1>0, there exists a unigque self-adjoint 8l,-
module ui in L R,) such D(pi)> Xj.

(it} For A=0, and for 121, of has a unique self-adjoint extension and for —1<A<1,
A==0, of has exactly two self-adjoint extensions namely pi, nl).

Proof. Case 1. A=1. In this case o7 (Z) is essentially self-adjoint, for all Z€3[(2, R)
(Cor. 3 of Lemma 2). Hence if u; is a self-adjoint extension of o, then by Lemma A.5
(o3) =i, and ujf is the unique self-adjoint extension of o7 .

Case 2. —1<A<1. Consider the self-adjoint module ¢ in L% R) such that o;c¢ and
E{c)=E5. Then it is clear that D(e)=D(o) N L} R, )+ D{o) N L R_) where we consider
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L*R,) as subspaces of L}(E). Define ot as 8l,-modules in L*(R.), D(o%)=D(o) N L*(R,).
Then ¢ self-adjoint means that ot are self-adjoint in L2(R,). From the definition of E(c),
it follows that D(o%)> Xi. Define uj =o*. Then uj are self-adjoint and D(uf)> Xi.
To prove uniqueness suppose ' is another self-adjoint module in L%(R,) such that
D(u')> X5 . Consider ¢’ =y’ +uj. Then ¢’ is self-adjoint and E(a)> Eyy. Therefore E(o’) =
E.s and o0 =¢', implying u' =u{. The other cases are handled similarly.

LenMMA 1). Let 0;< o< g} and o't =0. Then the operator o(H’) is essentially self-adjoint.

Proof. Now ¢ =¢" implies that o(H') is a symmetric operator. Also o(H')*<o,(H')*.
Suppose & is not real and o(H')*f=§f. Then o,(H')*f=&f and so g,(H')f=§f, i.e.,, fEX,
(see Lemma 2). Also f€ D{o(H')*). Thus (o;(H")g, )~ (g, 02(H'}f)=0 for all g€ D(s) or
B;(H’: ¢: {)=0 for all g€ D(c). Thus F;(Ay(g), Ae(f)) =0, for all g€ D(¢). This implies that
Ay(f)€ E(o)* = E(c), since ¢ is self-adjoint. Fiha]ly, by the identity satisfied by boundary

forms, it follows that
n-1

By(H™: g: f) = go B(H'":o(H'y g: £ f)=0

for all g€ D(o), and all n. Using formula (iv) of Lemma 9 it follows by induction on z,
that A,(f)€E(o) for all n€N. Thus f€ D(c*) = D{(0). This contradicts symmetry of o(H'),
since £ is not real. Thus f=0. This completes the proof.

LeMMma 12, Let g;c0<6) and o' =0. Then the Spec 6(H') is discrete, Moreover, all
the eigenfunctions of Clo{H') are actually in D(o).

Proof. Let R; denote the resolvent of the closure of the operator o(H’), i.e., B;=
(Clo(H")—{)-1. We shall show that for each fECT(R’'), R;f is a meromorphic function of
{. This implies, by a well known formula for the spectral measure in terms of the resolvent,
that the spectrum is discrete.

Let £ €C, { not real. Two linearly independent solutions of g,(H')f=(f may be chosen
as follows. The Whittaker’s function has an analytic continuation to a domain con.-
taining the upper half-plane and R’, and so we may define y, =(22)"2W, ,(22), y,=
(22)71*W_,, ,(—2) where x={/2, u=4/2. Then y,, y, are solutions of the equation g;(H')f=
{f. Also from the formula for the Wronskian of Whittaker’s functions, it follows
that W(y,, yo) =2"2¢ "% Thus, tW(y, y,)~e %*® is a constant. Define Kg(t, s)=
e "2y (t)ya(s) if s<t and e“"Zy,(t)y,(s) if s>¢. Then it follows from standard methods
in differential equations that the function g,=K,f: t— (r K(t, s)f(s)ds is a solution of
(0:(H"Y—8)g, =1, in R’, whenever f€EC(R’). Actually K ;f€ X; when fECP(R’), since ¥, (y,)
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is rapidly decreasing as ¢~ oo (ast-> — o0). If R, f =g, then itis clear that (o,(H') —{) (g —¢,) =
0. Thus g —g, is an L2-eigenfunction and so g —¢, € X;. Thus g—g, =b,(H)y, if t >0, =by(f)y,
if £ <0, where b,, b, are constants depending on f. Now g€ X, and g€ D(Clo(H’)) means
that B,(H': ¢: g)=0 for all ¢ € D(0). Thus the boundary condition to be satisfied by ¢
is that Ay(g) € E(o). Or the constants are to be determined from the condition Ay(K,f)+
bi(HAo(yT) +ba() Aglyz ) € B(o) where yi =y, if t>0, and =0 if £<0. Since Ay (K,f), Ay(y7i)
and Ay(yz) are meromorphic in ¢ (in fact, see Lemma 2, they involve only I'-functions),
it follows that b,(f), by(f) depend meromorphically on {. Thus the function {~(R.f, ¢)
is & meromorphic function of {. This proves then the spectrum is discrete. Since L2-eigen-
functions of the operator g;(H’) are in X,, it follows that, if o(H')*f=§f, then f€ X; and
B,(H'": ¢: f)=0 for all ¢ € D(c). But this implies that B,;(H'™: ¢: f{)=0 for all m, and so
1€ D(c%) = D(0). This completes the proof.

In the above lemma we are dealing with the case A% real and <1. If 1 is real and >1,
then we have already seen in Corollary 3 of Lemma 2 that o (H') is essentially self-adjoint
in L?(R,). The proof of the above lemma actually gives the following for this case.

Lemma 13. Let A=1. Then spectrum of oif (H') is discrete. All the eigenfunctions of
Clof(H') are in Xi.

Proof. In this case B,={Cloj(H’)—{}-%, and as in the previous lemma, we have
R;{=K_fin this case, for all f€CP(R,). Thus spec ¢;(H’) is discrete.
Combining the previous discussion with Nelson’s theorem, we have

THEOREM 3. (i) Let o be a self-adjoint 3l,-module in L¥R) (in L*R,)) such that
0, < o(of o), then there exists a unique unitary representation T of the simply connected Lie
group of 31(2, R) tn L*(R) (in L*(R,)) such that dT =¢.

(i) Let the representations 7'; 5 5, Tf be defined by dT; ;5 5=0,5. and dT; =uj.
Then T, 5.4 and T are all irreductble.

(iii) If T is the unitary representation such that BE(dT)= By, then T=TF @ Ty, if A>0.
Similar results hold for other subspaces listed in Lemma 10.

Proof. Let A=H2+(X+Y)2+(X—Y)2 Then A=Q—1—2H"2 Then g,(A)=A2—1-
20,(H’)%. From Lemmas 11-13, it follows that o(H’) is essentially self-adjoint and has
discrete spectrum. Moreover, all the eigenfunctions belong to D(¢). From this it is clear
that o(H'?) is also essentially self-adjoint. So Nelson’s theorem now gives (i). The case
o> of is discussed similarly.

To prove (ii) note that if 7' is any unitary representation such that o,=d7, then
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T(exp sH)f:t—>e’f(e?t), and T(exp sX)f: t—e *f(t), Any bounded operator which commutes
with these two one parameter groups must be scalars on each of the subspaces L¥(R,).
If the bounded operator commutes with 7, then 4 D(dT') < D(dT) also. Thus if the boundary
condition E(c) relates the boundary values on E, and R_, the two scalars on R, must
coincide. This proves that T ;s is irreducible. Similarly T'f is always irreduciblé. The

rest is clear.

TueEoREM 4. (i) Spec dT's - (H')=+(A+1+2N) for all 1 real A+1>0. The unitary
equivalence class of Ty is wt(A).

(ii) Spec dT; 5 s{H')=&+2Z where &, 0,8 and A are related as follows: Case 1. Sup-
pose A==0, then

cos(é—A)/2 & sinz(p+A)/2 giné
d

cot (€ +A)[2 sinz(p—A)j2

where 8]0’ =e . Case 2. 1=0. In this case  tan n&/2=08"/8. In each of these cases & in the
spectrum can be chosen uniquely so that |&| <1 and if 4 is real, then |A| +|&| <1. The unitary

equivalence class of T 5.4 18 w(&, 2).

Proof. (i) In this case £€SpecdT{(H’) if and only if L/, ;,€ X7. From Lemma 2
this happens if and only if ¢(§, —4)=0, i.e. iff §€A+1+2N. A similar argument works

for the case T'; .

Proof of (ii). In this case £€Spec dT; ; o(H’) if and only if there exists an f€X,,
oa(H')f=¢&f such that Ay(f)€EE; 5. Now f=aly, 5(t) for t>0, =fLy; 2/5(— ) if £ <0. Then

we have two cases.

Case 1. Suppose A2<1, 1==0. Then from Lemma 2, we have the following
Ao(f) = (“6(5, 2‘)7 aC(f, _l)) ﬂc( -‘E, A); ﬁc( _5’ —A))

Thus £ belongs to the spectrum if and only if Bec(—&, A)=08ac(&, ) and Bo(—§,4)=
8’ ac(€é, —1) since (&, A), ¢( —&, —A) cannot both be zero simultaneously it follows that both
« and 0. (Note |66'| >0.) Thus £ belongs to the spectrum if and only if

C(—E,A) 6(5; —A)

5
& A o(—& —2) &

Now
&, Me(—&, ~A=T(-AHTA){TA-E-1)2)T (1 +&+2)2)}*
=(z) (= A)T(A) cos m(£ +1)/2.
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Thus we have
cosm(§—A)[2_ 4
cosm(E+A)2 &

If you put §/0’=e ** and simplify this expression above, we get the equivalent formula-
tion given in the theorem. It is then easy to check that there exists a £ in the spectrum such
that [Re 4] -+ |&] <1, when 1 is real.

Case 2. Suppose 4=0. In this case we have from Lemma 2 that

Ao(f) = (e —1)¢"V2,0, Be(—§, 0)d( &), Be( —&, 0)) or
= (ac(&, 0)d(£), ac(&, 0), (—1)*92 0) or
= (ac(f’ O)d(é)’ ow E’ O)’ 186 —E: O)d( -E)’ ﬂc( _E’ 0))
where the first expression holds if £ —1€2N, the second one holds if —(&+1)€2N, and the

last one is valid if £ ¢ 4 (1 +2N). One checks easily from the definition of E; ; (see Lemma
10) that in the first two cases Ay(f) ¢ E5 5. Thus £ ¢ 4 (1 +2N) and Ay(f) € E; ; implies

Be(— = dacc(£, 0)
doec(€, 0)d(E) + 0 ac(é, 0) —fe( — &, 0)d(—&) =

Note that a, § cannot both be zero. If « =0, then ¢(—§, 0)=0, which is impossible since
£¢ £ (1 +2N). Thus both a==0, §==0. Thus we have

d(&) —d(—§) =815

Now d(&) —d(— &) =y((1 —£)/2) —p((1 +§)/2) =n tan n&/2, since y is the logarithmic deriva-
tive of the I'-function. Thus 7z tan (n£)/2 =4'/8. The rest is clear.

§ 8. Bases of eigenfunctions—the discrete series
We next obtain a basis of K-finite vectors for each of the representations 7'f. We

begin with

LeMMA 14. Let Ly 35(t)=(28)"V3W 19 22(28) (¢>0) be the eigenfunctions of og(H')

wntroduced earlier. Then

(1) ea(H")Lgsp,22=&Lg/a 22
(i) ea(X")Lg/p,22= —tLcgior2.02
(iii) 0(Y")Lgp 20= —ala—c+1)Lig_gy0 3

where a=(1—£+41)[2, c=1+A, X' and Y’ are defined by (3).



202 R. RANGA RAO

Proof. Let ¥(a, c; ) denote Tricomi’s confluent hypergeometric function. Then the

following identities for ¥ are known (see [3], p. 258)

(o,—x+c—a)¥ = —FY(a—1,¢x
(0, +a)¥ = a(a—c+1)P(a +1, ¢; z).

Since Lg/q 1/(t) = (26) V% *¥(a, c; 2t), the lemma follows from the identities satistied by ¥'.

TuEOREM 5. (i) Let A be real and A+1>0. Define i (t)={c(&, A)}Lg/a.1/5(t), t>0.
Then yi, £E€EA+1+2N is a K-eigenbasis in L*R.) for the representation T7. Another
expression for p¥ is the following

yi (6)= {(" N 1)}_1e“t"2L§,"(2t) (13)

where £ =4+1+ 2n. Also

-1
wiwi-{("3 )} Tz

(ii) If S(R,) denotes the Schwartz space of R, then DATT)={t"*f|f€L(R,)}.
(iii) If J is the anti-unitary isomorphism Jf:t—f(—t), fELX(R_), then Ty =J 1o T} olJ.

Proof. This theorem can be proved independently of the earlier development. The
expression for yf in terms of the Laguerre polynomials follows from the identity
Y(—n,1+4; 2)=n!(—1)"LP(x) (see [3], p. 268). One could deduce this directly, since the
differential equation g,(H')f=&f reduces to that of Laguerre polynomials, by putting
f=e""%. To prove (ii) note that t**%(R,)< D((67)")=D(@T5). Let { be a C®-vector.
Then we know (see Lemma 1) fEC®(R.) and g,(a)fEL*(R,) for all a€ U. From Lemma 1
it follows that f is rapidly decreasing at co. Now let f =Zazy; be the eigenfunction expan-
sion of f. It follows then that a;& =(o;(H')*f, y{). Now (yi, p§)=0(n"")if E=A+1+2n.
Thus a;=0(n"") for every k. Now it is known that | LiP(x)| <COn* for all z, 0 <z <1 (see
Szegd [16], p. 176), where u=Max (1/2—1/4, 4/2). Also (d/dz) L= —LP, ((16], p. 101).

Thus the series
Tag(d/dty’ L (2t)

converges absolutely and uniformly in (0, 1/2). Then the functiong(t) = Xa £L${"(2t) €C>[0,1/2)
and f=t"2¢~tp in 0 <t <1/2, proving fE€t*>L(R,).

For the part (iii), it is easy to check that o3 =J-'oo] oJ, and since representations
T, such that D(dT)> Xi are unique, the result follows.

The following theorem is known. We state it and sketch a proof since it fits in naturally
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with the-development here,-and we: will need it.for another paper. (Foor SL(2, R) see Kunze
and Stein [6], Vilenkin [17], and for simply connected covering :group of .SL(2, R) see
Sally [15].)

THEOREM 6. The unitary representations T; of the simply connected group G of SL(2, R)
may be described by the formulae

(i) Ti(h,)f: t—>ef(e™t)
(i) T5 (u,)f: t—>e ™f(t)
(iii) T (w)f=e"**V*2H { where H, is Hankel transform

Hjif=lim. f:f(s) J1(2(st)?)ds,

Proof. The first two statements are clear. The last one can be proved in several ways.
It is known that the Hankel transform is a unitary operator and self-reciprocal or H=
identity. It is thus sufficient to check that H e ﬁ‘éxp (—i&m)pi. But this follows from
a known integral formula. (See [4], p. 42, No. (3).) One could also prove it by observing
that the operator.o;(Y) with domain 2 (R.) is essentially skew-adjoint, and the operator
H, is really the spectral map (or ‘diagonalizing’ operator) for o,(Y). In other words
H,o00;(Y)oH;'=0,(X) (see Dunford and Schwartz [2], p. 1535). Since T#(w) is also a
spectral map, it follows that the operator T3 (w)oHi' commutes with 0;(X), ,(Y) and
hence with ¢,(Z) for all Z€3((2, R). Thus the operator T'f (w)oHj! is a scalar. The scalar

—¢t1/2

can be evaluated by evaluating 7'y (w)f and H;,-{, for f=e =yi1. We omit the details.

Remark 1. It is-easy to calculate the matrix entry
Q0
(T3 (he) Yier, Y1) = f e veosityd gy = I'(A+ 1)/(cosh ¢)* 2,
0

Since any element of G can be written in the form- »(0,) h(t)»(0y) with ¢t >0, and the Haar
measure in this decomposition is |e*—e™%*|df,dtdf,, it follows that Ti €LNG/(Z) if A>1
and T'; €L if 2> 0. These aré well known.

Remark 2. Let P=ZAN be the minimal parabolic subgroup of G. One has the Bruhat
decomposition @ =P U NwP. G is then generated by P and w and the relations satisfied by
w are w?=y, wh,w-'=h_, and for {30,

WUW = U_y s WU_ghinyy '?’m(t) (16)

where the integer m(t) =1 if >0 and =0.if ¢ <0. This can be checked direetly for SL(2, R).
However, for the simply connected covering group, the third relation above is not so
14— 772905 Acta Mathematica 139. Imprimé le 30 Décembre 1977
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obvious. One could presumably use Bargmann’s parametrization of G to verify this.
Another method would be to use the representations 7'; for this purpose. For example,

let t >0, define
F(y,t)= {Tf (w“tw)llifﬂ}(?/)’e‘”(“l)-

Then the identity for wu,w gives the following functional equation
ein(l+1)(m—1/2)F(y’ t) =¢1 e’”"F(y/t”, — l/t).

The integer m can be determined from the above identity. In fact
o0
F(y’ t)= f e"“*“’x"’2J3(2(xy)”2) dx
0

and from formula (10), ([4], p: 29), it follows that
F(y, t) = y**(1 +it)" %V exp (—y/1 +it).

From this the value of the integer m is easily calculated to be=1. Thus m(t)=1 for ¢>0.
Also it is easy to check directly that m(t) +m(—¢)=1. Thus m(¢) =0 for ¢ <0, proving the
identity completely.

Remark 3. Another formula for T’} (w) is known. (See Sally [15], for details.) It may be
described as follows. Let M: L?(R+)~L?*R) be the unitary isomorphism given by the

Mellin transform

. _,_l__ w—(i“z)
Mf:x = fo t fydt (17)

for f€C(R,). Then T'{(w)=W ;- V, where V is the operator

vVt t—»t1 f (})

and MW, M- is the operator of multiplication by the function

- inA+DI2 (1 +A— 2ix) /1" (1 +A+ 2iz) .
2 p)

This can be checked easily from the following facts.

(i) VT%(h,)V-1=T3(h-,) and thus W, commutes with %, for all s.

(i) MW, M- is thus & multiplication operator. Finally the multiplier function can
be evaluated by using the fact that e~*¢* is an eigenfunction for 7' (w). We omit the
details.
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§ 9. The representations T} , ;.

'The representations 7’; ; s/ were defined infinitesimally by the condition dT; 44 =

Gi.8.8 ie.
D(dTﬁ.8.J’) = {fe D(GD IAm(n € Ed,d” for all'm eN}

Here A2 isreal and <1. E; ;. is defined in Lemma 10. A K-eigenbasis for the representation

is given in the following.

LemMMA 15. For each £€Spec dT'; 5 5(H'), define

{c(&, D} L 10t), >0

o
vrel) {6{0(“5, ML ga,29(—t), ¢<0.

Then g, ¢ is an eigenbasis of dT'; 4 3 (H'). Moreover, the following formulae hold:

(@) T390 (H )92, =Epa0
(ii) @7 4 8(X V1.6 = (B +E+D)/23 90 400
(iil) dT'3,4,0(Y" )p2.e = {31 —&+2)[2}pa¢ s

Proof. Since £ is an eigenvalue, the eigenfunction f; is of the form ¢, L3 ;5(t), t>0
and ¢, L_gg 3/9( —t), for ¢ <0. The constants ¢,, ¢, are to be determined from the condition
Ay(f)EE; 5. From the local expansion of L, ;/, it is easy to check that Ay(y; ()€ E; 4.
Since the multiplicities are one, it follows that {y; ¢} is an eigenbasis. The formulae (i)-(iii)

follow from Lemma 14.

Remark. The basis y; ; is not orthonormal. If A=ivy, » real=0, then the identity
(X" a6 Pagre) = —Wap Y ¥a40) BiVeS (Wa,p40 Ya.042) =(Wa,p ¥a,¢), for all & Thus
all the functions y; ; have the same norm. Using the formula (40) on page 409 of [4],
one can show that in this case

_ _vtanh(un[2) sec? (n&/2)
(a6 0.8 = T8 (22 2) tam W )2)”

(19)

The norm of y; ; can be evaluated for other values of 4, but it is no longer independent of £.
We next describe C®-vectors of the representation.

THEOREM 7. Suppose A<0. Then {€ D(o}) if and only if

(i) fEC®(R') and supyy.,,|t"d; f| < oo for all t,>0 and m, n€N.

(il) Let aa=+A. Then limg_.,oiltl“’zg;,(a)  exists for all a belonging to the right ideal
H-1-a)U+XU
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Moreover, f€ DT, 3 4) or is a C®-vector for the representation if and only if
lim,,o_ |}*%0(a) f = &, limt, o, |¢]*%0s(a) f (20)
for all a€(H~1—a) U+ XU, a= 1A, where §,=0.for a=A, ,=0" for o= —A.

Proof. Suppose f€D(o]). Then f satisfies (i) by Lemma 1. Moreover, f(t)=0(|t| "%
as t—0 so that |¢]*%g;(e)f=0 for all a€ X Y. Next

AR =lim o tW(S, 8]~
= limg o, (— 1/2){#} “202(H —1 +A)f.
Similarly
() = (—1/2) lim;p, ltIAmQA(H‘l -1

Thus if f€D(o}), then (ii) holds. Conversely suppose f satisfies (i) and (ii). Then
o)(H—1—a)f€L? for a=+4 and thus f€EL2 Thus g,(a)f€L? for all e €Y, or fE D(o}).
Next note that if f€ D(a}), then

limt_,&ltl“/“’gl(a)f =0
if a€ XU. On the other hand, the result Ajog;(H)=M; Ay of Lemma 8, implies that
limt*otltlulzel{(H_l —a)2a}f =0

for all a€ Y. Thus when f€ D(s}), the condition (20) is satisfied when a is of the form
(H~1-aPU+ XU. Now B, 5. ={(z,, @y, %3, 7,) €€ 23 =0y, 2, =0"2,}. Also A, =Aq00,(Y)™,
where A,=(A4y, Az, 47, 42). Thus if f€ Dio}), then fis a C=.vector if and only if it
satisfies A,,(f) € E; 4 this is equivalent to the condition (20).

THEOREM 8. Suppose A=0. Then € D(a}) if and only if

(i) fEC®(R') and supyys.,|t"8; f| < oo for all t,>0 and m, n€N.
(i) limg 0. 0ola)f exists for all a€(H—-1)U+XU.
(iti) lim,sgy {2—In|t|oo(H —1)}0o(a)f exists for all a€U. Moreover, f is a C®-vector
for Ty 5.5 tf and only if
(iv) lim,q_ 0o(a)f =0 limyags.00(@)f for all a€ (H—1)U+ XU and
(v) lim o {2 —In|t|oo(H - 1)}90(“”
= 31ith gy {210 ]| @o(H —1)}0o(@)f — &' i, @o{(H ~T)a} for all a€ U,

This theorem is proved the same way as the previous one. We omit the details.



UNITARY REPRESENTATIONS DEFINED BY BOUNDARY CONDITIONS 207

THEOREM 9. Let 7t be a continuous (not necessarily unitary) representation of G in
L3*(R) such that

(i) 7w(h,) f: t—>e*f(e>)
(ii) 7(u,)f: t—>e *f(t) for all SER. Then CP(R')<= D(dn) and there exist complex
constants A, u such that

dn|C¥(R,)> 0o}, dn|CP(R.)>0,.

In particular, if 7 is unitary, then there are only two possibilities: (a) x is irreducible
and x="T, 5 5 for some A, 8,8"; (b) 7 is reducible and x=T7 @ T,, for some A, p.

Proof. We first show that D,= D(dn)—the set of C®-vectors of 7 is an &(R)-module;
ie., if fEL(R), @€ D, then fo€D,. Let =, =7t|AN.Y Then one checks by Weyl’s lemma
(see Appendix A) that D(dm,)={f€C®(R")|¢"(t0,)"f EL*R), for all m, n EN}, and drm,(H)f =
(2t0,+1)f, and (dm)(X)f= —itf. Clearly D,< D(dm,)< C®(R'). Next D, is a complete
locally convex vector space in the semi-norms, /- ||dzn - (a) ]|, @ € U. Moreover, (x) Dy < D,

and n| D, is a continuous representation of G. If ¢ € D,, g€ LY(R), and if

fl g(8) | v(7r(u,) - p) ds < o0

for all continuous semi-norms » on D, then dp = { g(s)m(u,)pds € D,. Now suppose a € U,
dega<r, and »(f)=|dn(a)-f|l;, /€D, From the properties of universal enveloping al-
gebras, it follows that if a,, a,, ..., a,,€ U is a basis of the subspace of elements of degree

<r, then there exist polynomials p,, ..., p,, in 8 such that

Adut-a=Xp,s)a,.
Thus
v(n(u,) @) < Xpy(s)| ldnla))e]-

It thus follows that if {|g(s)| |s| ds<oco for all r€N, then Jp€ D,, where § denotes the
Fourier transform of g. In particular, #(R)p< D,. In particular, CX(R')Dy< D,.

Since 7(h)Dy< D,, it follows that for each {,€R’, there exists ¢ €D, such that
@(2)==0, and hence a f, ECY(R’) N D,, such that f, =1 in a neighborhood of t,. This implies
easily that CP(R’)< D,. Let D=dn(Y). It will be shown next that D is a second order
differential operator. In fact 7w(u; ') Dr(u,)p =dn(e ****Y)p =dn(Y + sH — 2 X)p =@, — 5@, —
sy, where g, = Do, g, =dn(H)p, p,=dn(X)p. Thus

ist ist

Dr(u,)p = e g, —se g, —s2e g,
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Let

f(t)= fg(s)e“’”ds, with g€ #(R).
Then

D(fp)= fg(S) Dr(u,) @ ds = fo, — (0, f) P2+ (@1 f) @5

Now suppose fECT(R’) and 9 €ECX(R') with ¢ =1 on supp f. Then fp =/, ¢, =1 on supp f,
@3 = —it on supp f. Thus

Df = fo, —(i0,f) *it(ﬁ?f)

where fo,=fDgp, for any ¢ in CP(R') equal to 1 on supp f. From this it follows that
D|C2(R') is a second order differential operator of the form —i(te? +0,+v). Now the
commutation rule [H, Y]= —27, gives, that there exist constants c,, ¢, such that p=jt
for £>0, =c,ft for £<0. Thus dn|CP(R,)> 0}, dn|CX(R_)> 0, for some A, u. Unitarity
of & implies 42, y2 are real. If & is irreducible, then dn(QQ) =constant, so that 1=y in this
case. In this case d7'; ; ;- are the only irreducible self-adjoint extensions of ¢;. Thus
n=T, 5 s for some 4,3, d’. The second case is proved similarly.

For the representations T, ; 5, an analogue of Theorem 6 can be given via the two-
component Mellin transform. (See also Remark 3 following Theorem 6.) (In this connection
see Sally (15], Vilenkin [17], for another approach.) Let M: L¥ R,)—L?* R) be the Mellin
transform defined earlier (17). Define M': L2(R_)~L2(R) by M'f= Mo, fo¢t)=f(—t). Put
Myf=(Mf, M'f). Then M, gives a unitary isomorphism of LR’} with L} R)QC? and is
called the two-component Mellin transform. Let A (x) = {(a,{x))1<i <2 be & unitary matrix
valued function on R. Define the operator I® A on L} R)QC? as follows:

I®A (f;) . ("’u(x) Fa() + ay5(x) fol ) .

2 91 () f1(%) + ge() fo ()
We call I&) A4 a matrix multiplication operator.

TEEOREM 10. Let V be the unitary operator Vf:t— |t|Y(1]t), in LX(R). Put W, 5 5 =
T}.,&.S‘(w) V. Then

MpoW;s50M;'=IQA; ;4

for a suitable matriz-function A, ; s, and its matriz entries have explicit formulas in terms
of the gamma and hypergeometric functions.
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Proof. For the sake of brevity we use the module notation and write %, instead of the
operator T s s(h,). One checks easily that VA, V-1=h_, and wh,w1=h_,'in G. So it
follows that the operator W, ;; commutes with the operator h,, However, M,k M5!
is just the operator of multiplication by exp ( —2isz). Thus it follows from known results
that W, ; s is a matrix multiplication operator. To determine this matrix we use that
¥;.¢ are eigenfunctions. Note M, VM;': p—>¢° for g ELAR)RC?, ¢°(x) =¢(—=z). Now put

l o]
ga.e(x) = Vo fo By, () dE = My, ;.

Then

_{ grel=)
Mayne= (691._5(@)

Since v, . is an eigenfunction for the eigenvalue exp (—}iné), it follows that

A gas(—x) )= _ms/z( g1, &(x)
(691._5(—@ ¢ 591.—5(90))

for all £ in the spectrum. Now it is easy to check that if

a()-G) G- G

(R

Let &, &’ be in the spectrum of H’ and £==£’. Then we have, using the above formulas,

1, 0O 1, 0 ez )
(0, 1/6) 4 (0, a) = Q=) (3 e—me'/z) Q(—=)?

_ (92.¢) ga.e'(x))
=) (gz.—s(x) 91, -¢(®))

then

where

From the formula for Mellin transform of W, ,(x) ([4], p- 337), it follows that

___ 2  T@I®Tle—a)
gA.E(x) V2—7IF( _ l) F(C)

where a=(1 +1 —2iz)/2, b=(1 —1—2z)/2, c=1—14x —~£/2. This completes the proof.
Finally we mention here the intertwining operator connecting 7'; 5 ;- with the unitary

Fl(a,b;c: %)

principal series. Let #®e¢* denote the representation y™h,u,—~e""* of P and U, ;=
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Indpyn®e*. The following realization of U, ; in L¥ R) is well known. It comes from using
G =P U NwP and using

f—»f flu, wP)dt
R
as the quasi-invariant measure in G/P. In fact, we have
- dt—b
. — —(1-2) yigm(z—L )y
U, (x) f:t—~|—ct +al e f(—_—ct—f—a) (21)

where o(z)= [Z 2] , and z—g(x) is the covering homomorphism and the integer valued
function m(z, ¢) is defined as follows:

€EP, if c+d=0

XUy w { .
= Uiatrmyict+ WP, 8), i ct+d=£0.
The element p(x, t)EP and m(z, t) is defined uniquely by

p(x’ t) = u—c(ct+d)hln|ct+d|'}’mw' t)' (23)

We have already seen that m(w, f)=1 if >0, =0 if { <0 and m(z, t) for arbitrary « can be

found by using the identities
m(z-y,t) =m(y, t) +m(x, a(y)-t) and m(y'y, t)=r if y€AN.
Let F denote the Fourier transform and let F, denote the operator F;=[t[**0 ¥,
Fi'=3F10|t| "2 Then F, is unitary for A€iR and for f€C(R)
1
Fyf:t—> tm—f eV f(y)d
2t |t Vos | & T dy
and
Filf x—»—l_—; J e ¢~ de.
Vor Jr
We then have
THEOREM 11. Let A€4R, —1<9<1 and suppose (4, n)==(0, 1). Then
T;..')'a: = Fao U”'AOF)TI

where d= —1, &' = —{cos n(n + 1)/2}/{cos (n— 4)[2} if A0, and § = — 1,8’ = —x tan (nn/2)
if A=0.

Proof. Let S=F;o0 U,MoF;l. Then direct calculation shows that S(h)f: t->e’f(e?t)
and S(uy)f: t->e ®(t). Also U, ; is known to be irreducible. Thus by Theorem 9, it follows
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that there exists 6,0 such that T'; 3 5 =8 =F,0U, ;o0 F; !, We have to find é and &’. These
are obtained by comparing K eigenfunctions in both. First of all Spec dU,, ;(H')=n+2Z.
Comparing it with spectrum of d7'; ; s(H') we have (see Theorem 4)

816 = {cos m(n +1)/2}/{cos m(n—A)/2} if A==0 and =wmtanay/2, if A=0.

Next consider the representation dU, ;. From the formulas for the one-parameter
groups U, ;(exp sZ), where Z=H or X or Y, it is not difficult to show that CT(R)<
D@dU,,;) and dU, ; > 7, where D(r;) =C?(R) and

T H) = —(28,+1-2), 14X)=—8, and ty(Y)=(t2,+(1—2)¢).

By Weyl’s lemma D(z})={f€C®(R)|t;(a)fELHR), for all a€U} and for f€D(z}),
ti(a)f=7:(a)f. Since U, ; is unitary, it follows that dU 7S 7). Thus the eigenfunctions
{dU, J(H') [ =&fy< {f€C®(R)|t,(H')f=£f}. By direct computation, these eigenspaces are

one-dimensional and if f; is an eigenfunction then
fg = (1 +it)—(l—l—6)/2(1 _it)—(l—l+5)/2

for £€n+2Z. Thus there exists a constant §; such that F;f, =y, ., where y; , is the
eigenfunction introduced in Lemma 15. From formula (12) on page 119 of [4], it follows
that

— V22 ¥ (1 ~A+8)[2)} L/ a(t), >0

F =
ale Ver 22 {T((L —A—£)/2)}L_gp.24(—t), £<0.

Comparing this with the formula for y; ,, one gets that 6 = —1 always. This completes the

proof.

Appendix A. On extensions of symmetric g-modules

Let U be an associative algebra over € and 7 an involutory, conjugate linear anti-
automorphism of Y. We write a® instead of z(a) for a € U. A U-module o consists of a
complex vector space D(c), called the domain of ¢, and linear operators g(a): D(¢)— D(o),
such that a—>o(a) is a homomorphism of Y. If ¢,, o; are two such modules, we say o, g,
if D(oy)< Dlo;) and o,(a) =a,(a)| D(s,), for all a€U. Let ¥ be a complex separable
Hilbert space. We shall be mainly concerned with U-modules in ¥, ie., o such that
D(o)< H. In the following we write (-,+) for the inner product on 3 and use standard
terminology for operators in a Hilbert space.

Definition of the adjoint module. Let o be a densely defined U-module, i.e., D(o)
is dense in H. Then a vector g belongs to the domain of the adjoint of o or g€ D(o%) if
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for each a €U, there is g, such that (a(a)f, 9)=(f,g,) for all € D(c). Then the vector g,
is unique and we define ¢™{a)g=ga®. It is then clear that if g€ D(o%), g,€ D(o") for alla
and (g,),=¢ga- Thus o° is a U-module called the adjoint of ¢. Also note that D(c*)=
N {D(o(a)*)|a € U} and ¢*(a)< (o(a™))*.

A U-module ¢ is said to be T-symmetric (or simply symmetric when it is clear from
the context what 7 is meant) if ¢<¢”. This is equivalent to the statement

(ola)f, 9) = (f, o(a®)g)
for all f, g € D(o).
The following lemma is proved the same way as in the case of a single operator.

Lemma A.l. (i) If o, is densely defined and o, < gy, then o5< of,

(il) If o and o® are both densely defined, then 6™ = (6%)" exists, 0< 6" and ¢° =¢".

LemMa A2 Let o be a densely defined, symmetric U-module. Let B,(a: f: g)=
(6" (@)}, g)—(f, a"(a")g) for a €U, f, g€ D(c"). Then the boundary forms B, satisfy the follow-
ing identities:
(1) Bgla: f: ) =0 if either f or g€ D(o),
(i1) By(ab: f: g) = B,(a: 6*(b) f: g) + By(b: f: 6*(a7)g) and
(iil) By(a™ f: g)=2>723 Byla: o-(a)'f: 6*(a")"""'g). Moreover, 60" *<g* and D(c"")=
{1€ D(o")| Bu(a: J: 9)=0 for all g€ D(a™)}.
(iv) If o<0,< 0", then g<=ai<o® and Do) ={f€ D(6")| B,(a: f: )=0 for all a € Y and
g€ D(oy)}-

The proofs are all straightforward and are omitted.

There are two prime examples of the pairs (U, 7). In the first one, let U = C[t], the
polynomial algebra in one indeterminate ¢, and v is defined by z(t) =t. In this case, a U-
module is defined by an operator 4 with domain D such that AD< D and a(t")=4".
In this case, D(c%) = N D(A*")=D*(4*), and 7 symmetry coincides with the usual notion
of symmetry for a single operator.

The second example arises naturally in representation theory of Lie groups. Let
g be a Lie algebra over R, and g, its complexification. Let U = U(g.) denote the universal
enveloping algebra of g, There exists a unique conjugate linear involutory anti-auto-
morphism a-~a' of U onto itself, such that X*'=—X for all X €g. When dealing with
Lie algebras, the pair (U(g,.), T) is the one we shall be concerned with. Since a g-module
extends uniquely to a U(g.)-module, we shall treat the concepts synonymously..

Let @ be the simply connected Lie group with Lie algebra g. Let 7" be a continuous re-
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presentation of @ in }.. We define dT as the g-module whose domain is the collection of all
C®-vectors of the representation T, and when v€ D(dT), dT+(X)v=(d/dt)|.-o T(exp tX)v.

The following lemma is well known and is stated here only for ease of reference (see
Warner (18], chapter 4).

LeMma A3. (i) A vector v€D(AT) if and only if the function x—(T(x)v, v') is @ C®-
function on G, for each v' €Y.

(ii) For each X €g, the closure of dT(X) is the infinitesimal generator of the one para-
meter group t— T'(exp tX) and

DUAT) = n{D(4 .. 4,)|r=1,2,..; 4,=CldT - (X)),
where X, ..., X, 1s a basis of g}.

LeMma Ad4. Let ¢ be a g-module and T a unitary representation such that c<=dT.
Assume that D(o) is dense and T(2)D(o)< Do) for all z€G. Then, (i) ¢*=dT; (i) If
z€cent u[gc] and zt=z, then o(z) is essentially self-adjoint; (iii) If X €g; then o(X) is
essentially skew adjoint.

Proof. Now ¢<dT implies that (d7)tcot. Since T is unitary, we have dT< (dT).
Thus it is sufficient to check that D(o*) = D(dT). Let f€ D(c') and let g€ W be arbitrary.
It is sufficient to verify that the function z—¢, (x)=(g, T(2)f) is C®. Let g,€ D(0)
be such that g,—¢ in . Then

Pons@; 1) = @T M) T (@) gn, ) = (T(*72)gn, 6(°)*f), since Do)

is G-invariant. Thus

Pon.r{® 1) = P ateprl®)

for all 7€ U[g]. Thus ¢,, (x;7) converges uniformly on compact subsets to @, ot/ (%)
Since @, , is C®, it follows that ¢, ,is also C® or f€ D(dT). The rest of the statements of

the lemma are known, cf. [8] or [9].
CoroLLaRrY 1. (dT)" =dT.

CoROLLARY 2. With the same assumptions on o as in Lemma A.4, let 0,<c be a
g-submodule such that D(a,) is dense. Then o, o<dT <ol andif D={f€ D(o})|(cl(n)g, /)=
(9, o1 for all g€ D(o) and all € U}, then D=D(AT).
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Proof. The first corollary follows from Lemma A.4 by taking 0 =d7'. Since ¢, o<d7,
it follows that (d7)'=dT<e}. Since ccdT <ai, it follows that D(dt)< D. On the other
hand D< D(a*). But ¢*=dT, so that D(dt)=D.

Definition A.1. A symmetric g-module ¢ is said to be integrable if there exists a continu-
ous unitary representation T of the simply connected Lie group in ¥ such that ¢<=d7.
It is said to be exact if o =dT.

We note that if o=d7,=dT,, then T,=17, In fact, T,(exptX) and T,(exp¢X)
have the same infinitesimal generator, so that T,(exp X) = T,(exp X) for all X €g. How-

ever, if c=dT, dT is not in general unique. In this connection we note the following

LeMMA A5, Let o be a densely defined g-module such that a(X,) is essentially skew-
adjoint for a basis X, of g. Then o't =0'. In particular, if c<dT, then dT =o', and T is

unique.

Proof. If o(X,) is essentially skew-adjoint, it follows that the boundary forms
B, (X, f: 9)=0 for all {, g€ D(o") and, therefore, B,(a: f: g) =0 for all a € Y, from identities
satisfied by the boundary forms B, (see Lemma A.2). Thus ¢*' =¢', by the same lemma.
Now if g<dT, then s<dT < o', and so ¢"'<dT <o’ or dT =¢".

The following is just a reformulation in our notation of a theorem of Nelson ([8]).

TueorEM. Let Xy, ..., X, be a basis of g and o a g-module in Y. Then 6 =dT for some
continuous unitary representation T if and only if (i) o =o', and (ii) o(A) is essentially self-
adjoint, where A=X2+ ... + X2

Remark. An example of Nelson (see [8], section 11) may be interpreted in our notation
as follows: there exists g-module ¢, of a two-dimensional abelian Lie algebra such that
o=0"%, but ¢ is not integrable. Whether such examples exist for semi-simple ¢ is not
known. In this connection it might be of interest to note that all self-adjoint extensions
of the module ¢; considered in Section 3 are integrable to the group (cf. Theorem 3).

Let M be a C®-manifold and 4 a C®-density on M, i.e., u: (U, ¢)~>uy,, & map from
local charts (U, @) to C®-functions on U, such that uy,, transforms like the modulus of the
Jacobian under change of coordinates. We also denote by u, the corresponding measure
induced on M. Let M'< M be an open subset of M and D a smooth differential operator
on M'. Then there exists a smooth differential operator !D, called the transpose of D,
such that

fo’ngU:ff"ngﬂ
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for -all -f, g€CX(M'). The operator D*g=('Dg)” is called the formal adjoint of D, and if
(1, 9)={ fgdu, then (Df, g)=(f, D*) for all f, g€ECX(IL’).
Let X —+g(X) be a homomorphism of g into differential operators on M’, such that

(i) o(X)*= —p(X), for all X €gq,
(ii) For each my,€M’, there exists an a,€ U(g,), such that the operator g(a,) is elliptic

in a neighborhood of m,,

Let 0 =(CP(M'), ¢). Then ¢ is a symmetric g-module in L?(u).

WEYL’S LEMMA. With the above notation D{(c’)={f€C=(M')|o(a)fEL¥u), for all
a€ U(g.)}. Moreover, a'(a)f=p(a)f, for all {€ D(c*).

Proof. This lemma is quite classical and we include a sketch of proof, for lack of
adequate reference. It follows easily from the regularity theorem for elliptic operators.
In fact, suppose f€D(c?). Let u, be the distribution ¢— (g, f), p ECZ(M’); %o(a,) u, (@) =
u(o(ao) @) = (@, fa,). Thus the distribution ‘p(ag)u, is an L2-function for all »; since g(a,)
is elliptic in a neighborhood of m,€ M’, it follows from regularity theorem that u, is locally
a C®-function near my Thus fEC®(M') and (o(a)p, f)=(p, ola®)f) for all a€ Y. This
proves the lemma.
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