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§ 1. Introduction

The starting point of this paper is the well known theorem of Dvoretzky [6] on the
existence of almost spherical sections of convex bodies. Our interest is in getting good
estimates for the dimension of the almost spherical sections. It turns out that it is possible
to obtain quite sharp general estimates which in many interesting examples give actually the
best possible results. The theorem of Dvoretzky is by now a very important tool in Banach
space theory, in particular in the so called local theory of Banach spaces. It is not sur-
prising therefore that sharp estimates on the dimension of the spherical sections have also
many applications.

Though the main purpose of this paper is to present new results, we have tried to
make several parts of the paper selfcontained by presenting also some proofs of known
results. Most of these proofs are simpler or different from the proofs appearing already
in the literature. An announcement of the main new results of this paper appeared in [10].

The basic idea of our approach is that used by the third named author [29] in proving
Dvoretzky’s theorem. We use the approach of [29] in a slightly simplified form and examine
in detail the estimates which go into each step of the proof. Let up point out however, that
for Dvoretzky’s theorem itself there is known by now a shorter measure theoretic
proof (cf. [32] and especially [9]) as well as functional analytic proofs (cf. [19], [35]).

The approach of [29] and of the present paper is based on a lemma of P. Levy [22]
which is a simple consequence of the isoperimetric inequality for subsets of the unit sphere
Sr-1={(xy, g, ..., T); Df1 x7=1} in R" This inequality states that among all the closed
subset of 8”1 having the same (n—1)-dimensional surface measure the caps are the sets
which have the smallest boundary measure (the boundary measure itself will actually
not appear explicitely in this paper; we use instead a quantity which enters in the usual
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definition of boundary measure). The isoperimetric inequality was as far as we know,
proved first in the general case by E. Schmidt [33). The original proof of Schmidt was
very long and has been simplified (see e.g. Dinghas [5]). We present in the appendix to
this paper a proof of the isoperimetrie inequality which seems to be simpler than the other
available proofs, though it is based on classical ideas (like symmetrization) which are dis-
cussed in detail e.g. in the book of Hadwiger [14].

In section 2 we show how to deduce from Levy’s lemma the main general estimates
on the dimension of spherical sections. In order to explain these results let us recall first
the definition of the Banach-Mazur distance coefficient d(X, Y') between isomorphic Banach
spaces X and ¥: d(X, Y)=inf {||7|||7-}||, T ranges over the isomorphisms from X onto Y}.
Our first general result on the dimension of almost spherical sections is the following. Let
(X, || ||) be an » dimensional Banach space, let ||| ||| be an inner product norm on X with
|||} <®]||=|||, x€X and let M, be the median of r(z)=||z|| on {=; |||z|||=1} with respect
to the rotation invariant measure on this set. Then whenever k <nnM?/b? there is a subspace
Y of X with dim ¥ =k and d(Y, I§) <2 (here 7 is a positive absolute constant). By using
duality we deduce from this result a formula which is very useful in applications

ky kg > || P|[2n2/d3 X, 1) (L1)

where k, and k, are such that there exist subspaces Y< X, Z< X* with d(V, l§) <2,
d(Z, I§*)<2 and || P|| is the norm of a projection P which projects X onto ¥ or X* onto Z
(depending on whether k,>k, or k,>k,). Another formula proved in section 2 connects
the dimension of the almost Hilbertian subspaces of X to the projection constant of X*.

Section 3 contains various applications and examples related to (1.1). We compute
for example the exact (up to a multiplicative constant) dimension of the largest possible
almost Hilbertian subspaces of the spaces I}, 1 <p< oo and C}, 1<p<oo. We show that
(1.1) implies the following inequality concerning convex n-dimensional polytopes which
are symmetric with respect to the origin. If ¢ is such a polytope having 2s extreme points
and 2v faces, then log v - log s >yn where y is some absolute constant. We present examples
of polytopes which show that this result (as well as other consequences of (1.1)) are asympto-
tically the best possible. We also present in section 3, as an application of (1.1) (mainly
of the term ||P|| appearing in it), an answer to a question of A. Pelezynski on absolutely
summing operators.

In section 4 we examine the Dvoretzky Rogers lemma [7] and its relation to the dis-
cussion of section 2. We show first (following the reasoning in [29]) how to deduce from the
Dvoretzky Rogers lemma the fact that every Banach space X of dimension n has an

almost Hilbertian subspace of dimension 7 log n. This of course is Dvoretzky’s theorem
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(Dvoretzky’s original proof gave however the weaker estimate # (log #)/2). In section 4
we present also a new version of the Dvoretzky Rogers lemma whose proof is very simple.
This version gives some information which does not seem to follow from the known versions
and proofs of the Dvoretzky Rogers lemma.

Section 5 is devoted to the study of the connection between the dimension of almost
spherical sections and the notion of the cotype of a Banach space. We show that the cotype
of an infinite-dimensional Banach space X can be determined up to an arbitrary £>0 by
considering the dimension of almost Hilbertian subspaces of finite-dimensional subspaces
of X. We also present in this section an example due to W. B. Johnson which clarifies the
role of the &.

The results of sections 2-5 are all in the following general direction: Given a Banach
space X with dim X =n then for some suitable k£ (often surprisingly large) ‘“most” k-
dimensional subspaces of X are close to /. In section 6 we investigate the situation where
for a given k=k(n) all k-dimensional subspaces are close to 5. It turns out that if
log k(n)/log n =y for some positive y independent of n then X itself must be close to an inner
product space (i.e. i). This fact is proved by examining some constants which enter naturally
in the study of the type or cotype of a Banach space. We present in section 6 also some con-
sequences of this result. In particular, by combining this result with a result from section 2,
we are able to solve the local version of the complemented subspaces problem: If all the
subspaces of a finite dimensional space X are nicely complemented then X must be close
to an inner product space.

In section 7 we indicate briefly some directions in which the approach used in section
2 can possibly provide additional interesting information.

As we mentioned already above, the paper ends with an appendix which contains a
proof of the isoperimetric inequality.

In this paper we consider only Banach spaces over the real field. The results and their
proofs are valid (with some obvious minor modifications) also in the complex case. There
are several universal constants which enter into the estimates below. These constants are
mostly denoted by the letters », v, c. We did not carefully distinguish between the different
constants, neither did we try to get good estimates for them. The same letter will be used

to denote different universal constants in different parts of the paper.

§ 2. The basic estimates

As mentioned in the introduction our approach is based on an isoperimetric inequality
for subsets of the usual Euclidean sphere. Before stating this inequality let us introduce

some notation.
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Let S8*1={z=(a,, ..., Z,) € R% 2, |%,|2=1}. The sphere 8"~ has a natural structure
as a measure space as well as a metric space. We let u,_, denote the unique rotation in-
variant measure on 8"! normalized by u,_,(8"-!)=1. As the metric on §"! we take
the usual géodesic distance, i.e. d(z, y) is the angle between the lines joining x and y to
the origin (0 <d(z, y) < for all z, y€8"1), The intersection of 8"-! with half spaces of
B are called caps; these are exactly the balls with respect to the metric d, i.e. sets of
the form B(X,, r)={x€8™, d(z,, ) <r}. For a set A<S"! and £>0 we let A, be the set
{x€8™1; d(x, A)<e}.

THEOREM 2.1 [33]. Let A be a closed subset of 8"~ and let B be a cap of 8" so that
pin1(A) =pn_1(B). Then for every £>0, pin_y(4,)>pao(B).

Observe that if B is the cap B(z, r) then B, is the cap B(z, r +¢). The requirement that
Hn_1(A)=p,_1( Bz, r)) determines r uniquely and therefore it determines also u,_,(B(z, r),)
for every £>>0. A proof of Theorem 2.1 will be presented in the appendix.

The usefulness of Theorem 2.1 stems from the fact that for a cap the quantity u,_,(B)

is trivially evaluated, namely

r— /2
n—1(B(@g, 7)) = y,,f cos™ 2t dt (2.1)
-ni2
where
n/2 n— 1 n
yut= f cos” 2tdt= F(—) I‘(i)/[‘(—). (2.2)
-n/2 2 2

The key to all the results in this section is that for large », u,_,(B(z, & +7/2)) is very
close to 1 already for small e. Consequently, by Theorem 2.1, the same is true for p,_,(4,)
whenever u,_,(4)=1/2. The sets A which we shall use will be level sets of functions f
defined on S™*). We state now the lemma of Levy which is the precise version of Theorem
2.1 which will be applied in the sequel.

LEMMA 2.2. Let f{x) be a continuous real valued function on S8*~'. Let M, be the median

of f, i.e. the unique number satisfying
Pnafs {2y S M} 212, pn_i{z; flx} > M} >1)2.

Let A'={x; {x)=M,}. Then for every >0

Ha-1((47)e) = 2y,,fo cos® 2t dt. (2.3)
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Proof. Let A, ={x; flx)>M,;} and A’ ={=x; f(x)<M,}. Then u, ,(4%)>1/2 and
Un1(A7)>1/2. Observe that for every £>0

(4%)e n(AL), = (4)..
Hence by Theorem 2.1 and (2.1)

£

1—p,,((40) < 2(1 -~ y,,f cos™ %t dt)

—n/2

and this implies (2.3). 0

t3/2

It is convenient to give (2.3) a simpler form. The funetion f(t)=e""* cost decreases

on [0, z/2]. Hence for 0 <e <x/2

72 /2 00 .
—-nts —_ 3 - 2 -
f cos"tdt<f e M2 dtC e mj e~ "2 du = (77/2n)V2 e~ eVE,
(1]

€ €

n n+ N\ (m+NYE_ ((n+ 1\ _ [n+1
F(é“)“(T) F(T) <( 2 ) F( 2)

/2 n B n+1 n T 1/2
fo cos tdt—F(T) F(u})/2l1(§+ 1) > (2(n+ 1)) .

Thus we deduce from (2.3) that for e<1

Also since

we get that

_ 12
Pa-1((4)) = 1— (%T;) e TR ] g2, (2.4)

We apply now Lemma 2.2 to the function r(x)=||z|| defined on S"-1={z; |||«}|| =1}
where ||+|| is a norm in an » dimensional Banach space X and |||-||| is an inner product

norm on X so that

al=lll <ll2ll < blflelll, x€X (2.5)

for suitable 0 <a<b<oo. Let M, be the median of r(x) with respect to the rotation in-
variant measure u, , on 8*! and let 4 ={x; |||«||| =1, ||«|| = M,}. Assume that y€ 4, for
some ¢£>0; i.e. ¥ is a point on S"~! so that d(x, y) <e for some x€4. Recall that d(z, y)
is the geodesic distance from x to y on S"~1 and this quantity is always larger than |||z —y]||-
Hence ||z ~y|| <b||x —y||| <be and thus

M, —be<|ly|]| <M,+be, y€A,.
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It follows now from Lemma 2.2 (or more precisely from (2.4)) that

L=y lllylll =1, [llyll =B, | <be} <demm™. (2.6)

From this inequality it is easy to deduce the following proposition.

ProrositTioN 2.3. Let (X, || ||) be a Banach space of dimension n. Let |||-||| be an
inner product norm on X so that (2.5) holds. Let M, be the median of r(x)=||z|| on {=; |||{|| =1}
and let 0<e<1. Let {y,}"1 be any m points of norm 1 in I3 where m <e""'*/4. Then there is
an isometry U from 13 onto (X, |- |I]) so that

M, —be<||Uy)| < M,+be, i=1,2, .., m. 2.7
Proof. Let U, by any isometry from I3 onto (X, ||| ||[)- Let o be the normalized Haar
measure on the space of all orthogonal transformations V of (X, {|| |||). By (2.6) we have

for every unit vector y in 13
ofV; M,—be <||VU,y|| < M,+be} >1~1/m.

Hence there is at least one orthogonal transformation ¥, of (X, ||| ]||) so that (2.7) holds
for U = V,U,. g

Remark. If we take as m a number which is smaller than 4-1¢™"% say ye™"? with a
small y then the proof of the proposition shows that for ‘“most’ choices of V (or more
precisely, for a set of V’s of large ¢ measure) the operator U=V, U, has the desired
properties.

The most useful way to apply Proposition 2.3 is to choose the points {y,}/Z, so that
they form a ‘4 net” in a subspace of I3 of a suitable dimension. In this case {Uy,}iL,
also form a & net in a subspace of (X, |||-|||) of the same dimension. By the term “6 net”
in a metric space (K, o) we mean a subset K, of K so that for every x€ K there is a y€ K|
with o(z, y) <4.

We need first two elementary lemmas, both well known.

LeMMA 2.4. Let X be a k-dimensional Banach space and let 6 >0. Then {x€X; ||z]| =1}
has a 6 net of cardinality < (1 +2/8).

Proof. Let {z,}{L, be a maximal subset of the boundary of the unit ball B of X consist-
ing of points whose mutual distances are larger than 8. The maximality of {z,};.; implies
that this set is a & net of {x € X; ||2|| =1}. The sets z,+ 3B are all disjoint and are contained
in (1+6/2) B. By comparing volumes we get that m(d/2)* <(1 +6/2)* and this proves the
lemma. (m|
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LemMa 2.5. Let (X, || -|]) be @ Banach space and let |||- ||| be an equivalent inner product
norm on X. Let 0 <9, p <1 and assume that for a & net K, of the set {x; |||||| =1} we know that
1—p<|j|| <1+p for every x€ K. Then for every x€X

Flo, 0 i=lll < {l=ll < #(e, 9) {Hl=il
for some function F(p, 8) (depending only on g and 6 but not on X) for which lim, 5o F(p, 6)=1.

Proof. 1t |]|z,]]l =1 we can represent z, as x, =z, + 6z, + 325+ ... with z,€ K, for every 1.
Hence ||z || < (1+g)/(1—0) i.e. {[={|<(1+o)|[z]|[/(L —8) for every x€X. We identify X
with X* via the inner product induced by ||} |{| and let ||2||, be the norm of « as an element
of X* (i.e. ||z]|, =sup {(x, 2); ]|z]| <1}). For every x€ K, let y, be an element in X so that
(42 2)=1 and |[y,||, <1/(1 —¢). Then

1<||lwfll <Q+e)(1-8) 1 ~p), |||lz+w.ll] =2
Hence

lll=—g:ll|* < 2+2(1 +0)*/(1 ~0)*(1 —0)* —4 = A%(g, )

where lim; , .o A(g, 8) =0.
Put 7, =v,/|||y.|||- Then [||#. —=j| <A(o, 8). Hence the set {7,; x € K,} forms a § +A(g, )
net in {y; {||y||| =1}. Since ||7.||, <1/(1 —o) for every x€ K, we get from the first step of the

proof that

llylls < Hlglll/(1 ~e)(1 -8 ~Ale. 8)), y€X
and consequently

lizll = lll=lll1 —e) (1 -0 - Afe, ), z€X
and this concludes the proof. O
Summarizing the preceding results we get

THEOREM 2.6. For every T >0 there is a constant n(z) >0 having the following property.
Let (X, ]} |}) be an n dimensional Banach space and let |||-||| be an inner product norm on X
so that (2.5) holds. Let M, be the median of r(x)=|lz|| on {z;|||2|||=1}. Then for k=
[n{v) - nMEb2] there is a k-dimensional subspace ¥ of X so that d(Y, ) <1 +7.

Proof. Given 7>0 choose § >0 and ¢ >0 so that F2(g, 8) <1 -+t where F is the function
appearing in Lemma 2.5. We claim that 5(r) =0?/4 log (3/6) has the desired property. Indeed,
by Proposition 2.3 with e =¢.M,/b we can find, for every choice of m =[} exp (ng® M?/2b*)] unit
vectors {y,}i, in I3, an isometry U from I onto (X, M;|||-||]) so that 1 —o <||Uyj|<1+p
for every 1 <i<m. By Lemma 2.4 and the fact that by our choice of #(r) and &k

(L+2/0) < (3/8) =" 183D <y
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we may choose the points {y,}{L; so that they form a J net in a k-dimensional subspace
Y, of I. By Lemma 2.5 we get that d(UY,, I5) <1 +7.

Remark. The probabilistic nature of the proof (see the remark following Proposition
2.3) shows that if we replace the #(r) by a smaller constant then we can achieve that
“most” k-dimensional subspaces of X are of distance <1-+7 from l§. “Most” means here
a set of measure close to 1 (the closeness to 1 depends on the choice of #(t)} in the natural
measure induced by {|[-[|| on the Grassmann manifold of k-dimensional subspaces of X.
Since this measure depends on the choice of the inner product [||-||| it is not an intrinsic
notion related to (X, ||-[))-

The usefulness of Theorem 2.6 depends very much on the possibility of choosing “good”
inner product norms |||-||| on X and on the possibility to evaluate the median M,. Let
us recall the fact due to F. John [15] that for every Banach space X of dimension #,
d(X, I3) <n'/%. More precisely, if £ is the (unique) ellipsoid of minimal volume containing
the unit ball B of X then B>n-12E, i.e. |||z||] <||]| <nV?|||a]|| for every 2€X where
[lI-]]] is the norm whose unit ball is E.

For inner product norms such as this one (i.e. for which bja <n1/2 in (2.5)) the median
M, behaves like the mean fg-1 ||2]|du, (), a quantity which in practice is much easier
to compute. The reason for this is the high concentration of r(x)=||z|| near its median
which is exhibited in (2.6).

LeMwma 2.7, There i3 an absolute constant ¢ so that whenever (2.5) holds with b<n1/?
(where n=dim X) then

[l a1, |<e.
sr~1
Proof. For every integer m we have by (2.6)
tnafes ll2fll =1 m <|{lz]| - M,| <m+1} <d4e7™?

and thus ¢=2%., 4(m +1)e™™? has the required property. O
It follows from Lemma 2.7 that whenever b/a <nl/2 we have

<M [ lalldu @ <y @9

for some absolute positive constant p. The high concentration of r(x) near its median shows
also that for every ¢ >0, fgn-1 [[[[?duq_,(x) behaves like M2, i.e. that

rori< [ lalFdunso /([ lelldun ) <r0) 29)
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for some positive constant y(o), whenever bja <n'/2. The constant y(p) is bounded on every
compact set in (0, oo).

We shall present now some variants of Theorem 2.6 which do not require the computa-
tion of M,. A completely trivial way to eliminate M, is to observe that always M,>a and
thus by choosing the inner product norm in (2.5) so that bja =d(X, I3) we get that

k(X) = q(7) nfd*(X, 1) (2.10)

where k& =k_,(X) is an integer so that X contains a subspace ¥ with d(Y, I§) <1 +7.

We present now an improved version of (2.10) which involves the projection constant
of X*. Let us recall that the projection constant A(X) of a Banach space X is the infimum
of all the numbers A such that whenever X is a subspace of a Banach space Z there is a
projection of norm <A from Z onto X. It is known (cf. [17], [12]) that A(X) <n'/2 for every
X with dim X =n. For a Banach space X we denote by 77,(X) the number

k k
w0 =sup(3 ol {maeX, 3 @l <ol all avexs).

In terms of absolutely summing operators (which will be discussed briefly in the next
section) 77,(X) is the 1-absolutely summing norm of the identity of X. The number 7,(X)
is related to A(X) by the inequality A(X)m, (X)>=, and this inequality becomes an equality
for spaces X which have “enough’ isometries (e.g. if X has a basis whose symmetric

constant is 1, cf. [12]).

THEOREM 2.8. For every 1>0 there is a y(t) >0 so that for every Banach space X of

dimension n the following formula holds
k(X) = y(v)n*ld X, I3) 23(X*). (2.11)

As before, k,(X) is an integer such that X has a subspace whose distance from the Hilbert

space of the same dimension is <1+1.

Proof. We deduce (2.11) directly from Theorem 2.6 and an estimate of M, in terms of
7t,(X*) which is due to Rutovitz [31], which we reproduce now.

Let ||| ||| be an inner product norm on X so that (2.5) holds with bja=d(X, [). We
identify X with X* via the inner product induced by |||||| and as before (the proof of

Lemma 2.5) let ||z]|, be the norm of  as an element in X*. Clearly

bl < [l=lle < @ |lafl], x€X. (2.12)
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Let {x,}}., be elements in X so that

k
,lelw,-llﬁ>n1(x*)/2 (2.13)
Ell(x, z)| <||z|l, z€X. (2.14)

By integrating (2.14) on {z, |||z||| =1} with respect to the normalized rotation invariant
measure on this set we get

k k
f “x” d,un-l(x) > Z I (x’ x}) |d3“n—l(x) =, Z ulxl l“ (215)
Hzijl=1 $=1

i=1vlllzlHi=1
where

aﬂ:fn . tldua-a(0).

= -1

1=11

A direct computation shows that e, = 2y,/(n — 1) where y, is the number defined in (2.2).
Hence «,>n"1%/2. By (2.8), (2.12), (2.13) we deduce from (2.15) that for some absolute
constant 57 >0

k k
M, z5-02"2 3 ||zl = nan22 3 ||2,||« > nan~"2n,(X*)/2 > nan'?[24(X*).  (2.16)
=1 i1

Substituting this estimate for M, in the value of k.(X) appearing in the statement of Theo-
rem 2.6 we get

k(X)) = n(z)n*n3a?/4b* X X *) = n(v)n?n?[4d¥(X, [3)A3(X*),
and this proves the theorem. g

Remarks. That (2.11) is an improvement on (2.10) follows from the fact that A(X*) <n!/2,
For spaces which do not have ‘‘enough’ isometries it is preferable to state (2.11) in the
sharper form k. (X)>y(1)n}(X*)/d% X, I3). We mention also that the proof of Theorem 2.8
and (2.9) shows that for every ¢ >0 there is a y(z, p) so that

ko(X) = (v, ) mp(X*)/dX(X, 13) (2.17)

where 7,(X*) is the ¢ absolutely summing norm of the identity of X* (the estimate (2.17)
becomes better as ¢ approaches 0).

Perhaps the most useful version of Theorem 2.6 is obtained by considering simul-
taneously k. (X) and k (X*).

THEOREM 2.9. For every v>0 there is a 8(r) >0 so that for every Banach space X of
dimension n the following formula holds

k(X)k(X*) > 8()n¥| P||2/d2( X, I3). (2.18)
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Here ||P|| is the norm of a projection P which acts either on X or on X*. If ky=k(X)<k,=
k,(X*) then P is a projection from X onto a subspace Y for which d(¥, I§)<1+1. If ky<k,
then P is a projection from X* onto a subspace Z for which d(Z, 1) <1 +1.

Proof. Let |||-||| be an inner product norm on X so that |||2||| <||z}| <d|||z||| for every
x€X where d=d(X, I3). By identifying X with X* via the inner product induced by |||]]|
get that d=1|||z|]| <||z||« <|||#}|| for every x€X where ||||, denotes the norm of z when
considered as a functional on (X, || ||). In other words X*=(X, || ||«)- Let M, and M.,
be the medians.of r(x)=||z|| and r*(x) =||z||« on {z; |||«}|]| =1}. By Theorem 2.6 there are
subspaces ¥ of X and Z of X* so that d(Y,l§")<1+7 and d(Z, [3*) <1+t where k>
y(r)nM%/d? and k,>7n(r)nME. In order to prove (2.18) it suffices therefore to find a pro-
jection P so that ||P|| <y.M,M,. for some absolute constant y.

We recall now that if #(r) is chosen small enough we can ensure not only that
d(Y,15")<1+7 but that for a set of isometries U of (X, |||:|||) whose Haar measure is
>1/2 we have that d(UY, I§*) =1+ (see the remark following Proposition 2.3). A similar
remark holds for X* and Z. Thus if e.g. k, <k, there is no loss of generality to assume that
Y<Z. We claim now that the orthogonal (with respect to |||+|||) projection P from X onto
Y satisfies ||P}| <(1 +7)2M,M,.. Indeed, we have for every y€ Y

llgll < 2,0 +2) gl llle < 2,4(1+ ) llgll
Hence for every z€ X

[[{P=]|[* = (Pz, Px) = (Px, 2) < ||Pz||x|la}| < M (L +0)]||Pa]||||=]|
and thus
||Px|| <M1 +1)|||Pz||] < (1+t)"‘M,M,.||x||. O

Remark. We would like once again to point out the measure theoretic nature of the
proof and the result. If §(7) is chosen small enough we get that most (in the sense of having
large measure with respect to the natural measure induced by |||-||| on the Grassmanian)
subspaces Y of X of dimension k, satisfy d(Y, ') <1+t and similarly for subspaces of
X* of dimension k,. Moreover if k, <k, then on most subspaces Y of X of dimension k,
there is a projection P from X onto ¥ whose norm may be used in the right hand side of
(2.18).

To conclude this section we state explicitely two formulas which are weaker versions
of (2.18). Since always ||P|| >1 and d(X, I3) <n'/2 we get

E(X)k(X*) = d(T)n (2.19)
max (k(X), k(X *)) = (6(z) - n)*/2. (2.20)
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It should be pointed out that in order to derive (2.19) (and thus (2.20)) we do not have to
go through the construction of the projection P in the proof of Theorem 2.9. It is clear
directly that we always have M, M .>1. This is a consequence of the trivial inequality

1=(z, z) <||z}|||]|« for every @ with |||x||| =1.

§ 3. Examples and applications

In this section we present several applications of the results of section 2 and especially
of Theorem 2.9. We shall mostly consider subspaces ¥ with d(Y, I5) <2 and not the more
general case of 1 +7. The passage from 2 to 1 +7 changes the dimension we get by a multi-
plicative constant which depends only on 7. This follows by applying (2.10) to a Banach
space X with d(X, I3)<2.

Ezample 3.1. Let X =1}, 1<p<oo,n=1, 2, ... There is a constant ¢ so that X contains
a subspace ¥ with dim ¥ =% and d(7, I§) <2 where

(i) k=clogn, ifp=co
(i) k=cn?>, if2<p<oo
(iii) k=cn, ifl<p<2.

In all three cases these are the best possible estimates.

Proof. Let |||-]|| be the usual Euclidean norm in R", i.e. |||(ty, Ly, ..., ta)||| =(2 1 8)V2.
For p>2 we have that n"'?~"|||z||| <||=|| <|||z]|| and in particular d(l}, I5) <n®®- "),
Assertion (ii) is therefore a consequence of (2.10). In the other cases however, (2.10) does
not give the desired result.

For 1<p<2 we have [||z]|| <||z|| <n"” ?|||«||| and it is quite easy to compute
M.. By (2.8) and (2.9) we have

wr~ [ el @ =n b du i
Hlzll=1 It=1

i

where the symbol «, ~ §, means that «,/8, is bounded and bounded away from 0. Also,

since 1 <p<2
1/p 1/2
w225 [14]duaa)< ([aPduatt)  <( [l i) " =nore

we get that M, ~n@»1® and thus (iii) is a consequence of Theorem 2.6.
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Also (i) can be verified by computing M, and applying Theorem 2.6. This computation
is somewhat more delicate and will be done in the next section in a somewhat more general
context (cf Proposition 4.3). The simplest way to prove (i) is by a direct argument. Let
{y,}j~1 be a }—net on the boundary of the unit ball of I5. By Lemma 2.4 n can be taken
<b*, i.e. k>log n/log 5. The operator T: lf—~1% defined by Tz((z, ¥1), (&, ¥s), ---s (X, Yp))
satisties 1||x|| <||Tx|| <||x|| for every €I and thus d(i3, Tl) <2.

Let us verify that (ii) and (iii) are the best possible estimates. For (iii) this is obvious.
For (ii) the simplest argument is the following one (taken from [2]). Let w;=(t; 1, {2, ..., ;. n),

i=1,2, ..., k be vectors in [} so that
k 1/2
( > ,1,2) <
j=1

for any choice of scalars {4}.,. Then if {r,(s)}}=1 denote the Rademacher functions on

k k 12
S A, <2(z /1,2)
i=1 j=1

[0,1] we have for every s€[0,1]

k

2 7,(8) u,

=1

P k

-3

i=1

kP/ 2 <

k ?
2 ry(s) tv.i\ .

j=1

By integrating with respect to s and using Khintchine’s inequality we deduce that for some

c(p)
n k p/2
Br<ep)3 (z tf,) "
fm1 \j=1

Since by our assumption on the {u,}}., we have that (3}, #},)/2<2 for 1 <i<n it follows
that kP2 <2P¢(p)n and thus (ii) cannot be improved.

Assertion (iii) is also a consequence of (2.11). Indeed since A(lz)=1 we have that
AL <d(17, 1) <nt? for 2<g<oo, Thus if (1/p)+(1/g)=1 and X =I} with 1 <p<2 we get
from (2.11) that k(X) Zy(7)n?¥/n=y(t)n.

It is perhaps also instructive to deduce (ii) and (iii) from (2.18). Let X =I7 with
2<p<oo. By (2.18)

©(X) k(X *) = dnPld(1], 13) = dn! D),

Since we verified directly that k(X)<C(p)n?® and trivially k(X*)<n we deduce (ii) and
(iii) (for p>1). In this way we get however (iii) in a slightly weaker form in which ¢ is
replaced by a constant depending on p. The way to overcome this difficulty is to take into
account also the term ||P|| in (2.18) which we ignored above. Using this term we can deduce
(iii) also for p=1. Indeed since A(13) =(2n[x)/2 (cf. [31]}, [12]) we get by taking X =[7 in
(2.18) that ||P|| > (k,/27)"2 and since k, k> dn2k,[27n it follows that k,>0n/27. O

5—1772904 Acta mathematica 139. Imprimé le 14 Octobre 1977
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We have still to verify that (i) is the best possible estimate. This fact will be used
several times in the sequel and we state it therefore explicitly (cf. [29]).

ProPosITION 3.2. Let T be an operator from I into Iy, so that ||T||||T-Y||<A. Then
log n= C(A) k where C(4) is a positive constant depending on A.

Proof. By the remark in the beginning of this section it suffices to prove the proposition
for some A>1 say for 1=8/7. We may assume that ||T|| =1. Let {e,}{, be the unit vector
basis in I} = (I3)* and put y,=7T"%e,€lf, 1<i<n. The vectors y, are all in the unit ball of
15 and for every z €15 with ||z|| =1 there is an ¢ so that min (||z +y .|, ||z —»,||) <1/2.Indeed,
since ||7-Y||<8/7 there is an ¢ so that |(x,y,)| =|Tx(e,)| >7/8 and hence for a suitable
choice of the sign ||zt y||2=||2||2+]||y:|? + 2(z, y;) <1/4. The union of the balls in I with
centers {+y,}i.1 and radius 3/2 cover, thus the ball with radius 2 centered at the origin.
By comparing volumes we get that 2* <2n(3/2)* and this proves the proposition. O

In Example 3.1 we exhibited various ways in which the estimates of section 2 can
be used in verifying (ii) and (iii). (Another probabilistic method for proving (ii) is presented
in [2].) We shall now illustrate still another approach in which the results of section 2 can
be applied by computing the dimensions of almost Hilbertian subspaces of the spaces
Ch, 1<p<oo,n=1,2,3,... The Banach space (7} is the space B(l7) of all operators 7 from
I3 into itself endowed with the norm ||T||,=(27-1 A!)Y? where {4,}i., are the eigenvalues
of |T|=(TT*)2 For p=-co we get the usual operator norm, for p =2 we get the Hilbert-
Schmidt norm. Recall that (C3)* is isometric to C; where p~1+¢~! =1. Clearly dim C} =n2

Ezxample 3.3. Let X =C};, 1<p<oc,n=1,2,... There is a constant ¢ so that X contains
a subspace Y with dim ¥ =k and d(Y, I§) <2 where

(i) k=cnltt? f2<p<oo

(ii) k=cn? ifl<p<2.
These estimates are the best possible.

Proof. We settle first the case p= oo, For every 1 <p< oo it is obvious that 7} has a
subspace isometric to I3. This proves (i) for p=oco. In order to prove that (i) cannot be
improved for p = oo it is enough by Proposition 3.2 to show that d(C5,, Z) <2 for some sub-
space Z of IZ" for some constant y. This follows from Lemma 2.4 and the fact that
|17 >} maxi i sem (T, ;) for every T€B(3) if {x,}iL, is a }—net in the boundary
of the unit ball of 13.

We pass now to the case 2<p<oo. Let Y=} be such that d(Y, 5} <2 and let Y,

be the same space as Y but with the norm induced from C%,. Since for every T € B(l3),
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17)leo <||T|], <2V?|| T|}eo We get that d(¥, I5) <2n1/?. By (2.10) we get that ¥, has a sub-
space Y, with d{(Y, 5}<2 where s=nk/4n??. By the case p=oc we deduce that s<en

and hence
k < moni+ep (3.1

for some constant 1,. Observe also that for p>2 and T € B(), || T}|, <|| Tl <»"® || 7|,
and thus d(C7, I7") <P~ Tt follows from (2.18) that

k(oz) ’C(CZ) > 6(n2)2/(n(1/2)-—(1/p))2 = 6n2+(1+2/p)_ (3.2)

Assertions (i) and (ii) are immediate consequences of (3.1) and (3.2). Also, (3.1) asserts
that (i) is the best possible estimate. Clearly (ii) is also the best possible. |
We pass now to some examples of spaces whose unit balls are polytopes. First we

present a general result on polytopes.

THEHEOREM 3.4. There s an absolute positive constant y so that the following holds. For
every convex polytope @ in R™ which is symmelric with respect to the origin (and has the origin

as an tnterior point) we have
log s log t = yn, (3.3)

where 2s s the number of vertices of @ and 2t is the number of (n—1)-dimensional faces of Q.

Proof. Let X be the Banach space whose unit ball is . Then X is isometric to a
subspace of I}, and X* is a subspace of I%,. Inequality (3.3) is thus an immediate consequence
of (2.19) and Proposition 3.2. O

For furture reference we state explicitly the following consequence of (3.3).
max (log 8, log t) = (yn)/2 (3.4)

Theorem 3.4 is a partial solution to the so called “lower bound problem” for symmetric
convex polytopes: Give a lower bound for the number of (n—1) dimensional faces for a
symmetric polytope in R™ having 2s vertices. For s with log s<yn formula (3.3) gives
such a lower estimate and as we shall see below this estimate is asymptotically the best
possible in this range. Let us note that for general (i.e. not necessarily symmetric) polytopes
the lower bound problem was solved in precise terms by Barnette {1]. For non symmetric
polytopes the situation is different from that expressed in (3.3). In the non symmetric
case we have no logarithmic (or equivalently exponential) terms, this is seen by considering
e.g. a simplex in R™ where s=t=n1.

Let us point out that though Theorem:3.4 is a theorem in the combinatorial theory
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of convex polytopes its proof allows us to make some statements which relate combinatorial
quantities to the global shape of the polytope. We note first that our proof shows e.g.
that the following variant of (3.3) holds. Let @, and @, be two symmetric convex poly-
topes in R" so that @, =Q,< 2@),. Then (3.3) is valid if we take as 2s the number of vertices
of @, and as 2¢ the number of faces of @,. Note also that (3.3) was derived from (2.19)
which in turn was obtained from (2.18) by replacing d(X, I3) by its upper bound »!/? and
||P]| by its lower bound 1. Thus in case where @ is nearer to an ellipsoid than »1/2 or if @
does not have nicely complemented almost spherical sections our proof gives a stronger
estimate than (3.3).

Our next example is of a very simple polytope for which we have almost equality
in (3.4). Its main purpose is to illustrate how the term ||P|| in (2.18) can be used to solve

a problem in the theory of p-absolutely summing operators.

F———f———%
Example 3.5. The space X =(l{®}®...®17), has a subspace Y of dimension k>cn
with d(Y, 1) <2 so that there is a projection P from X onto Y with || P[] <c(log »)V2.

Proof. The number of extreme points in the unit ball of X is 2s =(2r)" and the number

of extreme points of the unit ball of X*=([3®®...®I%), is 2t=n-2" Observe that
logt~n and log s~nlogn while dim X =n? i.e. in this case (3.4) is close to being an
equality.

We apply now (2.18) to this space X and obtain k(X)k(X*)>dn?||P||2. From the
evaluation of s and ¢t and Proposition 3.2 we deduce that k(X)<yn and k(X*)<yn logn
and thus ||P|| <y(log n)/2/62. From this information it does not follow directly that
k(X)>nn for some 5 >0 (and not only k(X)=nn/log n). In order to show that k(X)=nn
we go back to Theorem 2.6 and evaluate M,. The norm in X is given by ||z||=
SUP1csen(2in1 | %s]). As an inner product norm |||-}|} in X we take ||Ja}|| =(27;-1 |2, ,| D2
Clearly |||z]||-n~22<||2|| <|||=]||n*/2 for every x€ X. Also

i 1 1 1
z|| ity z>2f @4 | Q@) 20 - =1,
f'”zm_lu Il pts -1 (2) S lellll 1| Bt o 2 (¥ 2
and thus, by Theorem 2.6, k(X)>nn?/4(n'/2)2 =yn 4. This concludes the proof. 0O

Remark. We do not know whether there is a sequence k, with lim, . k, =0 and a
constant ¢ independent of 7 so that X contains a subspace ¥ with dim Y =k,, d(Y, I§*) <2
and so that there is a projection P from X onto Y with ||P|| <c.
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Example 3.5 enables the solution of a problem of A. Pelezynski concerning p-absolutely
summing operators. Recall that a bounded linear operator 7': X - Y is said to be p absolutely

summing, 1 <p <o if there is a constant K so that

n up n 1ip
(Z17ate)” <& sup (3 loer)

for every choice of n and {,}i.; in X. It is easily verified and well known that if p; <p,
then every p,-absolutely summing operator is also p,-absolutely summing. Thus the smallest
family of operators among those defined above is that of 1-absolutely summing operators.
A fundamental result of Grothendieck {13] (cf. also [23]) asserts that every bounded linear
operator from I, into I, is l-absolutely summing. It was proved in [23] that this result
actually characterizes in a certain sense the pair (l,, I;) among all pairs of Banach spaces
{e.g. if X has an unconditional basis and the pair (X, Y)=(l,, l;) then there is a bounded
operator from X to Y which is not 1-absolutely summing). The situation changes if we
consider pairs (X, Y) such that every bounded linear operator from X to Y is 2-absolutely
summing. Here there are much more examples, e.g. for every 1<p<2 the pair (c,, ;)
has this property (cf. [23]). Pelezynski conjectured that the class of all Banach spaces X
such that every bounded 7T: X-»l, is 2-absolutely summing is closed under direct sum

in the sense of I,. It follows easily from Example 3.5 that this is false.

Prorosition 3.6. There exists a bounded linear operator T: (Co@®cy®...);—>1; which

8 not p-absolutely summing for any p < oo,

Proof. By Example 3.5 there is for every n a projection P, from X =(c,@c,®...);
onto a subspace Y, so that d(Y,, i3) <2 and ||P,|| <c(log n)!/2. The space ¥ =(Z7.1® Y2)s
is isomorphic to I,. The operator 7: X — Y defined by

Tx = (Pyx, 4 1Pz, ..., n"2Pynz, ...)

is bounded but it is not p-absolutely summing for any p <oo (apply the definition of a
p-absolutely summing operator to a set {x,}?:l which corresponds to an orthonormal basis
in I£" by the isomorphism from ¥, onto I2").

We conclude this section by an example which shows that (3.4) (and therefore also
(2.20)) are sharp estimates.

Example 3.7. Let {X,}7.; be the sequence of Banach spaces defined by X,=I%
and for n>1
Xon = (Xon1®Xgn1)1s Xonyr = (Xon® X pp)eo
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Then dim X,, =22" and the unit ball of X,, is a polytope with 2s, vertices and 2¢, faces
with log s,, log ¢, <3-2".

Proof. A straightforward verification shows that 2s, =22"" ~'and 2, =22"""+2"-2, - []

Remarks. 1. Observe that by (2.18) and Proposition 3.2 there is a constant »>0
so that for every n there is a subspace Y,< X,, with dim ¥,=k,>y-2", d(Y,, lf*) <2
and a projection P, from X,, onto Y, with |[P,]| <y~

2. Let {m,}¥., be a sequence of integers so that > 5., 2" log m, < co. If we change the

definition of the {X }7_, in the example above by putting X,, =(X,, 18 X,, 1 ®...®X,, 1)
and keeping the definition of X,,,, then we get that dim X,, =2".m,m, ... m,, log s, ~2"

and log ¢, ~m,;m, ... m,. This shows that (3.3) can become an equality (up to a constant
independent of =) if logs is given in advance provided that log n=0(logs) and

log s =0(n/log n).

§4. The Dvoretzky Rogers lemma

In this section we discuss the “Dvoretzky Rogers Lemma” and various variants of it.
We also show how this lemma is used in proving Dvoretzky’s theorem on the existence
of almost spherical sections.

We begin by stating the Dvoretzky-Rogers Lemma in its original formulation
(cf. [7]).

TueorEM4.1. Let (X, || ||) be an n dimensional Banach space and let E be the ellipsoid
of maximal volume contained in the unit ball of X. Let ||| ||| be the inner product norm induced
on X by E. Then there exists an orthonormal basis {u}{.1 of (X, ||| |||) and vectors {z,}]
in X so that ||z || =]||z /|| =1 and

n—4+1

=2 a,u, an=1-Yal,>———, 1<i<n. (4.1)
i<i j<i n

This theorem is by now well known and its proof has been reproduced in many places
{e.g. in Day’s book) so we do not reproduce its proof here. We just mention that the proof
is based on a variational argument.

Let us point out explicitly one immediate consequence of (4.1). We have for every ¢

Hacud| > ||lzd] ~loc el =1 -[lle—ar ]
=1-(1-a V2 =af,/(1+ (1 —a;)*?)
and thus ||u || > |a | /(1 +(1 —af,)1/2). Consequently, by (4.1)
Hell =1/2 ifi-1<gn (4.2)
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In other words there are ¢ dim X vectors in X which are orthogonal with respect to

[Il ||| and on which the norms |||-||| and || || differ by the factor two at most. There is an

obvious duality between the ellipsoid E of maximal volume in the unit ball of X and the

ellipsoid E’ of minimal volume containing the unit ball of X*. Thus the result of Fritz

John [15] which was mentioned already in section 2 shows that in the notation of Theorem
4.1

=12 ||x||| < ||2]| < |||]|| for every z€X (4.3)

Theorem 4.1 enables us to give a non trivial estimate of the median M, of r(x)=||x||
on {z; |||#||| =1} i.e. on the surface of E. For obtaining this estimate we need the following

computational result.

LeEMMA 4.2, Let 1 <m<n be integers. Then

J max |t du,_,(t) = c(log m/n)''* (4.4)
S

n—1 1<i<m

where ¢ is an absolute constant, S™1={(t,, ..., t,); 2i1 tf=1} and p,_, is the normalized

rotation invariant measure on S*L.

Proof. Let v be the measure on R" whose density is given by exp(—z >1.1 t7). For every
continuous real valued function f(t) on S™~1 let f(t) be a function on R~ {0} defined by
& =1lellife/Niell) where [jj¢]l] = (21 t9)¥2. It follows immediately from the uniqueness

of a normalized rotation invariant measure on S™1 that there is a constant 4, so that
fmﬂ‘) d(t) =1, LH’“’ ditn (1), FEC(S™). (4.5)

By taking f=1 in (4.5) we deduce that

12 n n 12
= [ el < ([ eliean) "= ([ 5 toxp (a5 ) at...du)
R® R* Rt i=1 i=1

= (nf00 2 dt)1/2= (n/2m)"2. (4.68)

—o0

Observe next that for every £>0, and 0<d<l/mx we have »{; max;qcn|t;| <
(6 log m)¥/2} <g provided m =m(d, &). Indeed, put «=(4 log m)'/2, then

—nt® —mad — -2, -nd _plim
J; e dt>4mxe 471:(6 log m)™ém™™ > 3(1 —g"'™)
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and thus

v{t; max |t <a} = (f 8“’"'dt) <(e"™"=¢

igigm

by using this observation for ¢=9=1/4 say, (4.5) for the function f(t) =max,n |¢;] and
{(4.6) we deduce that

f 1) A, 1 (8) = 43" Lﬁ fydv(t) = A1+ 3 - (} log m)'? = c(log m/n)2. O

sm-1

ProrosiTioN 4.3. With the notation preceding Lemma 4.2 we have M, >n(log n/n)*/?

for some absolute constant n>0.

Proof. By Lemma, 2.7 it is enough to prove that

J...

for some constant y. Let {r,(s)}i>; denote the Rademacher functions on [0, 1]. Observe

n
2 b,

i=1

dp,-(t) > y(log n/n)"*

that for vectors {w,}{-, in a Banach space [;||2i.1 7(s)w,||ds is just the average of
||2i.1+ w/|| over all choices of signs and is therefore >max, ||w,||. Consequently by (4.2)
and (4.4) we get for m =[4n/25 —1]

1
f dﬂn—l(t)':f f
sn-1 0 Jena

> J‘sﬂ max ||t u, || du,—,(t) = %J‘SHH max |t du,_(t) = y (log n/n)t/?

—llgign 1<igm

From Theorem 2.6, Proposition 4.3 and (4.3) we deduce immediately Dvoretzky’s

n ]

t ’“tl du,_1{t)ds
1

n
421 (ACIEATS

i

theorem (with an estimate first given in {29], which is better than the original estimate)

THEOREM 4.4. There s an absolute constant ¢ so that every Banach space X with
dim X =n has a subspace Y with dim ¥ =K >c log n and d(Y, I§) <2.

It follows from Proposition 3.2 that this estimate cannot be improved in the general
case. By combining Theorem 4.4 with 2.10 we get that if dim X =» then X> ¥ with
dim Y=k, d(Y,15)<2 and k>c max (log n, n/d%X, BB)). It is natural to ask in view of
this formula whether Theorem 4.4 can be improved in situations where we know that
d(X, I3) =o(n*/%) (but of course d(X, 13) = ¢(n/log »)V/?). The answer is negative as the follow-

ing example shows.
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Example 4.5. There is a Banach space X of dimension n so that d(X, I7) = (n/log n)¥/?
and so that X does not have subspaces close to a Hilbert space of dimension > C log n.

Proof. Let X be R" with the norm defined as follows
[|(tys tgs ooy £0)]| = max ((log n/n)V2( 2 )12, |t,],i=1, .., n)
i=1

Put |||(ty, ..., t)|]| =(Zit1 8)2. Then (log n/n)¥2|||2||| <||x|| <]||x]|| for every € X and thus
d(X, I3) < (n/log n)V/? (actually we have an equality in this inequality). Let Y be a subspace
of X and let ||| ||lo be an inner product norm on ¥ so that ||jy|||o <||¥l| <2|||vl||o for every
y€Y. Tt is an elementary fact that every ellipsoid in R?* with the origin as center has a
k-dimensional section through O which is a ball (cf. e.g. [6]). Thus by passing if necessary
to a subspace of Y of half the dimension we may assume without loss of generality that
llllllo=qlll#||| for some & >0 and every y€Y.

We consider now separately two cases.

Case (i): a> (log n/n)V2. In this case ||y|| > (log n/n)¥2|||y||| and thus ||y}| = max; ;x| ¢,
for every y=(t;, t; ..., £,) €Y. The fact that dim ¥ <C log n follows now from Proposition
3.2.

Case (i1): a < (log njn)V% Let y,=(u,, %;, ..., %;,,), 1 S{<k be an orthonormal basis
in (Y, ||| llo)- Then 37 uf;=a% for every i. Also for every choice of {A,}i_; with
>¥1A2=1 we have

tyi”

and hence Y ¥, u},<4 for every j. Consequently

Z}.u,,

max
1

P
_Z Aiyt

k n k
atk=3 Sul=3 3l

i=1 =1 j=11=1
or k<4na®<4log n. O

From Theorem 4.1 we deduced (cf. (4.2)) the existence of many orthogonal vectors
with respect to |||+||| in which the right hand inequality of (4.3) is close to being equality.
In general this is not true for the left hand inequality of (4.3). More precisely, if
A=sup {|||«[||; |lx]| =1} then in general we cannot find many othogonal points on the surface
of the ellipsoid appearing in Theorem 4.1 for which ||x|| is up to a small constant factor
(say a constant independent of ») equal to 1/4. As we shall see in the next section it is
useful for some purposes to have an inner product norm ||| |||, with say al||2|||o<||=|| <
bj||x|||o so that both sides of the inequality are up to a constant factor precise for a large
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set of orthonormal vectors with respect to |||+|||,. We shall prove now a version of the
Dvoretzky Rogers lemma which ensures this. The proof we present is much simpler than

the known proofs of Theorem 4.1.

THEOREM 4.6. Let (X, || ||) be @ Banach space of dimension n and let |||- ||| be an inner
product norm on X so that |||z||| = ||| >|||=]||/@ for every x€X and some d<n. Let K and y
be constants so that 0 <y <1 and K>1.

Then there exists a subspace ¥ of X with dim Y =m >n! 18- £ o0 d constants a and

b so that
alllylll <yl < olliylll (4.7)

for every y €Y and so that for every subspace Y, of ¥ with dim Yo 2> (1 —y)m there are vectors

Y, and y, tn Y, satisfying
g:lll=lllzelll =1, Hlonll Z /K, |lyal| <aK. (48)

Before proving this result let us make some comments. The main point in this result
is that it ensures for both inequalities of (4.7) the existence of many orthonormal vectors
in which these inequalities are close to being sharp. Indeed, by an obvious inductive argu-
ment we get for k=[ym], k vectors {u,}{~; in ¥ which are orthonormal with respect to
[Il || and for which ||«,}|>b/K as well as k vectors {v;}{.; in ¥ which are orthonormal with
respect to [||-||| and for which ||jv,|| <aK. Let us also remark that the d appearing in the
statement need not be the distance from X to I3. The fact that we allow as d a number

as large as n enables us to apply Theorem 4.6 without using the result of Fritz John.

Proof. If we cannot take X itself as Y then there is a subspace X, of X with dim X, >
(1—y)n so that in X, we have either |||z|||>||z||>K|||z}||/d or |||=||l/K =||z|| >|||x|l|/d
for every x€X. If we cannot take X, as ¥ there is a subspace X, of X, of dimension >
(1 —y)*n so that on it for suitable §, 5,7, (each being either 0 or 1 or 2 with §; 5+, ,=2)

we have
K- allg]| > [el] > K=lfelljd - z€ X,

We continue in an obvious way. If this process does not stop before the p’th step we get a
subspace X, of X with dim X,>(1—9)"» and so that for suitable j, ;,5, ,€{0,1,2, ..., p}
with jy 5472, =P

K 0r|[[af|[ = [falf = K2ol|[all|/d,  z€X,.
Consequently K?<d<mn, i.e. p<logn/log K. Hence dim Y = (1L —y)Pn>(1 —p) "¢ X n,

This concludes the proof. O
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Another version of Theorem 4.1 appears in the paper of Larman and Mani [21].
Larman and Mani apply a variational argument which is very similar .to that used by
Dvoretzky and Rogers (but somewhat more involved) to an ellipsoid which determines
the Banach-Mazur distance d(X, I3) =d, rather than the ellipsoid of maximal value contained
in the unit ball of X. Using this ellipsoid they are able to find 2 sequences of k orthogonal
points like the points {u,}i.; and {v,}{~, described after the statement of Theorem 4.6.
In Larman and Mani’s proof we get k~cd. This gives relatively little information when
d is small but very useful information if d is close to its maximum i.e. nl/2.

Usually an ellipsoid which determines the distance from I is very far from the ellipsoid
of maximal volume (this is a source of many difficulties which oceur if we try to apply
the results of this paper to various open problems). Let us mention a simple and well
known example which exhibits this difference. Let X be the Banach space obtained by
taking in R" the norm whose unit ball B is the convex hull of By={(¢y, s, ..., ,), 211 tf =1}
and the points +(1,1,1,1,..). Then By is the ellipsoid of maximal volume in B (it is
even the ellipsoid of maximal volume in the unit cube @={(¢,, ..., ¢,); max, |¢,]| <1}.
We have By< B<nl/2B, and n'/2 cannot be replaced by a smaller number. On the other
hand the set B is obtained by rotating a 2 dimensional figure (namely the convex hull
of +(n1/2,0) and {(t;, t,); £} +¢5<1}) and thus d(X, I3) <212,

§5. Connection with the netion of cotype

The results proved in the previous sections have an interesting connection with the
notion of the cotype of a Banach space. Let us first recall the definitions of the notions
of type and cotype.

A Banach space X is said to be of type p (resp. cotype g} if there is a constant o <o

(resp #>0) so that for every integer m and every choice of {z,}i~, in X we have

1| m m lp
f PRAES ds<<x(2||xx||") (5.1)
o lli=1 =1
respectively
1|l m m 1/¢q
[ & v | 5= 8( 3 el 62

where {r,}{2; denote as before the Rademacher functions on [0, 1]. Let us recall that from
the classical Khintchine inequality it follows that necessarily for every X, 1 <p<2<g<co,
The constants « resp. 8 are called the p-type and g-cotype constants of X. We mention
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also a result of Kahane [18] which asserts that there is a constant y(r) for every r>1 so

that for every Banach space X every choice of m and {z}/%,

()"

Since obviously (§§ ||2: ris)z )| = 5 ||25 rds)z||ds we see that of functions f(s)
of the form |2/, ,(s)z,|| all the L, norms are equivalent and thus we could use on the left
hand side of (5.1) and (5.2) and L, norm (with of course a suitable change in « and §).

In the preceding section (the proof of Proposition 4.3) we used already integrals of

m

2. 7i(8) %

i=1

m

> r(s) z,

i=1

ds. (5.3)

the form appearing in (5.1) and (5.2) for computing medians. For spaces in which we know

the type and the cotype this computation gives naturally more information.

ProrosiTION 5.1. Let (X, || ||) be an n dimensional space whose p-type constant is
« and whose q-cotype constant is B for some 1 <p<2<g< oo, Let |||:||| be an inner product
norm on X so that al||z]|| <||x|] <b|||2||| for every x€X (with bja<n'/2). Let {u}i., be an

orthonormal basis of (X, ||| |||} so that |Ju,||=||us]| =... > ||w,||. Let M, be the median of
r(x)=||z|| on {z; |||z]|| =1}. Then
n 2-p)/2p
ca(z ||u,||2""2"”’) =M, >c 18 max {||uy,||m!n "V}, (5.3)
f=1 l<mgn

where ¢ s an absolute constant.

Proof. We apply Lemma 2.7 which allows us to replace M, by the mean of ||z|| (it is
here that the assumption b/a <n'/? is used). We have

1
[ i [ Isslido- [
sno1 sn-1 sn-1Jo
n 1ip
o (Zhnule) dnst
S"-1\i=1
n @-p)/2p n 1/2
{8 ()

»)/2p

ds d,u'n—l(t)

n
!E] ry(8) 4wy

N

N

n -
= a( Z ”u‘”2p/(2—p))
i+1

This proves the left hand inequality of (5.3). To prove the right hand inequality we use the

following estimate for every 1<m<n

n liq m 1q
[ (S ete) s> haall [ (3 16) draeatd
st-1\j=1 sn-1\{=1

m 1/2
?”um“mlla—lﬂf (Ellt‘ls) dy,,_l(t)>1}||u,,,||m”“n‘”2. 0

sn—1
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In general it is convenient to use different orthonormal bases in the two inequalities
of (5.3). For the right hand inequality we use {u;}{-; for which ||u|| is as large as possible
(preferably with ||u,|| close to b) while for the left hand inequality we use {u,}{., for which
||| is & small as possible (preferably ||u,|| close to a). The right hand inequality is more
convenient to use since for it, it is enough to have a good estimate on ||u,|| only for a large
set of indices ¢ and not for all 1 <i<nx. In particular if we take as ||| ||| the norm induced
by the ellipsoid of maximum volume in the unit ball of X we have b=1 and by (4.2) we
may choose the {u,}{", so that ||u,]|>1/2 for 1 <i<9n/25. Hence we get that in this case
M, >cfn/*-12, Thus we deduce from Theorem 2.6 the following result

THEOREM 5.2. Let X be a Banach space of cotype 2<q <o and let B be the g-cotype
constant of X. Then for every subspace X, = X with dim X,=n there is a subspace Y< X,
so that d(Y, I§) <2 and k>np2n* where n is an absolute constant.

Since every uniformly convex space is of cotype ¢ for some g << oo (cf. [27]) it follows
that in the presence of uniform convexity we always get Hilbertian subspace of X,
of dimension > (dim X,)° for some §>0.

The space L0, 1) is of cotype max (2, ¢) and the same is true for the space C, of
operators on I, with the norm ||7||,=(trace (T'T*)¥2)\/%, cf. [34]. By applying Theorem
5.2 to the spaces Ig=L,(0, 1) we recover exactly the results proved in Example 3.1 (for
1< g < oo). This shows that the result of Theorem 5.2 is sharp. By applying Theorem 5.2
to the spaces C;< C, we get the same result as that in Example 3.3 for 1 <¢ <2 while for
g>2 Theorem 5.2 does not give the best possible result which is presented in Example 3.3.
Theorem 5.2 gives however much more information than Examples 3.1 and 3.3 (at least
for 1 <q<2) since it applies not only to the spaces I; and C} but to any finite dimensional
subspace of L4(0, 1) respectively C,.

Theorem 5.2 can actually be used to characterize the cotype of a Banach space (up
to £>0). A result of Krivine and Maurey and Pisier {cf. [28]) states that if X is a Banach
space and if g,=inf {g; X is of cotype ¢} then for every n there is a subspace Y, of X so
that d(Y,, I;)<2. Note that by Example 3.1 these spaces Y, do not contain subspaces
close to Euclidean spaces of dimension larger than cn®%. Consequently if X is a Banach
space which satisfies the conclusion of Theorem 5.2 then X is of cotype ¢ +¢ for every
€>0. The ¢ cannot be dropped in this statement. This is shown by the following example
due to W. B. Johnson.

Example 5.3. Let ¢ >2,¢>0and asequence of integers {a, }., be given so that lim,, a,, = co.
Then there is a Banach space X of type 2 which is not of cotype ¢ and yet has the follow-
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ing property. For every subspace ¥ <X with dim ¥ =n there is a subspace Z< Y with
dim Z>n—a, and a subspace Z of [, so that d(Z, Z) <1 +e.

This example which was kindly communicated to us by W. B. Johnson is a slight
modification of another example of Johnson’s which appeared in [16]. Observe that the
a, may tend to oo as slowly as we wish. Thus if ¢=2 and e.g. a, =[log #] every subspace
Y of X with dim Y =n has an almost Hilbertian subspace of codimension <log n. Also
if ¢ >2 we get from Theorem 5.2 that, if @, <n/2 say, the space Z and therefore also ¥ has
an almost Hilbertian subspace of dimension >#n?9.

Proof. We call a finite collection {E,}}.; of subsets of the positive integers allowable
if the E, are mutually disjoint and the smallest integer in U, B, is =n+1. Let X,
be the linear space of all sequences of scalars which are eventually 0. For every subset
E of the integers and every € X we denote by Ex the vector defined by Ez(i) =z(s) if
i€ K and Ex(1)=0if i¢ E. Let >0 and #>1 be such (1 +8)n<1+e.

We define now inductively a sequence of norms {||||,}31 on X, as follows: ||z||,=

|||, =max, |(i)|, and for k>1
n lig
[+ = max (“x“k, 7! sup ((Z ||E,x||Z) , {E,}}-1 allowable, n=1, 2, ))
j=1

It is easy to see that ||z, <(221]x(i)|9)/ for every k and thus lim ||x||,=]||z|| exists

for every x€X,. The completion of X, with respect to this limiting norm is denoted by
X=Xa.n.

It is easily verified that the unit vectors {e,}{°; form an unconditional basis of X and

el =max (el sup (2 1B 2lle) " €871 slowabe)). 5.4)

Also, if {z,}]., are elements in X with disjoint support (with respect to the unit vector

basis) we get that

”lhgl K

< (ﬁ le,ll")w. (5.5)

The example presented in [16] is the one obtained by taking ¢ =1 and =2. The main
technical argument in [16] is the proof of the fact that with these choices of ¢ and , X(q, )
does not contain a subspace isomorphie to /;. The same argument (with some obvious minor
modifications) shows that for a general 1 <g<oc and #>1 the space X(g,7) does not have
a subspace isomorphic to I,. If follows from this that X(g, 5) has no infinite-dimensional
subspace of cotype ¢. Indeed, suppose that W is an infinite-dimensional subspace of X of
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cotype ¢. Then by the standard gliding hump argument we get a sequence {w,}{2; of vectors
of norm 1 in W which are almost disjointly supported with respect to the unit vector
basis. Since W is of cotype g there is a §>0 so that || 22, A,w,|| >B(221 |4,| ) for every
choice of scalars {4,};2;. By combining this inequality with (5.5) we deduce that {w,}2,
is equivalent to the unit vector basis of I, and this, as mentioned above, is impossible.

We quote now a result due essentially to Pelczynski and Rosenthal [30] (cf. also [16])
which we shall need in the sequel. For every integer n and >0 there is an integer N = N(n, §)
having the following property. If W is a space with an unconditional basis (whose uncondi-
tionality constant is 1) and Y is a subspace of W with dim Y =n then there is a subspace

Y< W spanned by N vectors with mutually disjoint supports and an operator T ¥-> ¥
so that ||y|| <||Ty|| <(1+9)||y|| for every y€ Y.

Using this function N(n, §) we define in terms of the given sequence {a,}1 and the
6 we have chosen above a sequence k; of positive integers so that k,>max {N(n, d);
a(n)<i}. We claim that the subspace X of ¥ which is spanned by the sequence {ex; )21
has the required properties.

To prove this fix n and let

V= {xEXC)?; (k) =0, 1=1,2,.., a,}.

Observe that if {y,};*, are non zero vectors in ¥ which have mutually disjoint supports
and m <N(n, §) <k,, then the sequence {supp y,};2, of the supports of the y,’s is allowable
and thus by (5.4) and (5.5)

m 1l/q m
(Z “}*1?/1“0) = “ 2 My
j-1 J=1

m l/g
|>7]‘1(g]||l,y,||°) )
2, scalars.

Hence d(span {y,};*y, lg) <#.

Let now Y X withdim Y =nandletZ=Y 0 V. Clearly dim Z > n —a,. The discussion
above shows that Z is (1 +9d)-isomorphic to a subspace of V spanned by N(n, 4) disjointly
supported vectors which, as we have just seen, is z isomorphic to 1.

That X is not of cotype ¢ was already verified above. We omit the proof of the fact
that X is of type 2 since this fact is not needed in the present context. a

In order to complete the discussion of the relation between the cotype of a space

and the dimension of almost spherical sections we present another example.

Example 5.4. For every q =2 there is a Banach space X of type 2 and of cotype g +e&
for every ¢ >0 yet there is no constant ¢ so that every ¥ < X with dim ¥ =n» has a subspace
Z with k=dim Z >¢n?? and d(Z, I§) <2.
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Proof. As X we take the Orlicz sequence space I, where M(t) =19/ |log t| near ¢t = 0. The
fact that X is of cotype ¢ +¢ for every £ >0 and of type 2 follows from the following general
result (cf. {25] and [11]). An Orlicz sequence space I, for which M (2)/M(t) <y for t€(0, 1]
is of type p, p <2 (respectively of cotype ¢, ¢ >2) if and only if

M(uv)/M(v) < Ku® resp. M(uv)/M(v)>=K-1u?

for all u, v€(0, 1] and some K < oo,

As for the dimension of almost Hilbertian subspaces, let X, be the span of the first
n unit vectors in I, and let ¥, < X, with dim Y, =%, and d(Y,, I5*) <2. Since I, is of type 2
it follows from a result of Maurey [26] that there is a projection P, from [, (and thus from
X,) onto Y, with ||P,||<y with y independent of n. By comparing projection constants

we get

32k, )2 < 2l S UY) < || P || MX,) < y (X, ) <yl M l(i)

A short computation shows that this implies that %, <c(n/log n)¥¢, for some constant ¢

independent of =. O

Remark. The estimate we just obtained for k, is precise. For every subspace Y of I,
where M(t)=t%/|log t| (¢=>2) with dim Y =n there is a subspace Z< Y with k=dim Z>
n(nflog n)?? so that d(Z, I5) <2. This follows from a generalization of theorem 5.2 which
involves the notion of (Gaussian) cotype f where f is a non negative nonincreasing function
on [0, (m/2)V/?]. A Banach space X is said to be of cotype f (with f-cotype constant c) if

for every finite sequence {z,};.;< X with

o)

one has 37, f(J|z|/I)<¢ (g,(w) are independent normalized Gaussian variables in the

5 @) m||dP(@)+0

probability space (Q, P)).
Now in the setting of Proposition 5.1 we have

o)

where ¢, is a constant depending only on n. More precisely the proof of Lemma 4.2 shows
that ¢, equals [ (371 gi(w))V2dP(w) and hence c, > cnl/2 where ¢ >0 is an absolute constant.

dP(w)=c, fsn_l““’”dﬂn—l(x)

2. gilw)u,
1=1

Since, as in the proof of Theorem 5.2

z Kzl > ©/25) - f1/20)
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we obtain that
[ el dstar =10, 30701 (56)

for some constant y.
From (5.6) we get a useful estimate for M, and hence for k(X) whenever we know f.
In the case of Orlicz sequence spaces there is an explicit formula for f (cf. [25] and [11])

f(t)=in f{ ZM(()) t<u<l, 0<v<1} (6.7)

for t€(0, 1). The estimate for k, mentioned in the beginning of this remark follows from

(5.6) and (5.7) after some elementary computations.

§ 6. Spaces all whose subspaces of a given dimension are almost Hilbertian

In the previous sections we investigated for a given Banach space X with dim X=x»
the question for what integer k does X have k dimensional subspaces which are close to
being Hilbertian. Our proofs usually proved not only the existence of such subspaces but
that ‘“‘most” subspaces of a given dimension are almost Hilbertian. In this section we
consider the problem under what conditions can all the k& dimensional subspaces of X
be close to Hilbertian. It will turn out that if & is large enough (compared to n) then X
itself must be close to being Hilbertian.

Convenient tools for handling the problem mentioned in the preceding paragraph are
again the notions of type and cotype which were introduced in the previous section. In
this section we shall only be interested in type 2 and cotype 2 but we shall examine in
more detail the constants associated with these two notions.

Let X be a Banach space and let N be an integer. We let o,(X) resp. f,(X) be the

smallest numbers such that the following inequality

(lexll” f szm dt) <an<X>(2||x,II2) (6.1)

holds for every choice of {z;}], in X.

It is clear that the sequences «,(X) and f,(X) are monotonely increasing with » and
that X is of type 2 (resp. cotype 2) if and only if sup, a,(X) < oo (resp. sup, f,(X) <oo).
It is also clear that if X is a Hilbert space then o,,(X)=8,(X) =1 for every ». These equations

characterize spaces which are isometric to Hilbert space (indeed, the equation o,(X)=
B5(X) =1 is precisely the paralielogram identity). Spaces X which are isomorphic to Hilbert

6 — 772904 Acta mathematica 139. Imprimé le 14 Octobre 1977
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space are characterized by the relation sup, o,(X)<oo and sup, 8,(X)<oo. This is a
result of Kwapien [20]. We shall state (and apply) in the sequel Kwapien’s result in a

slightly stronger form.
The quantities «,(X) and §8,(X) were investigated by Maurey and Pisier [28]. We shall

need here the following simple facts concerning these constants.
%y X) < 0(X) (X)), B X) S BulX)Bn(X), m,n=1,2, ... (6.2)
(X)) < o, (X*). (6.3)

Let us recall the proof of these inequalities. The first inequality in (6.2) follows from

1 2 1 1
ol o=, |
0 0Jo

+r2(s)( > r,(t)x,)+...+r,,,(s)( >, r,(t)x,)

f=n+1 {=nm-n+1

nm

2 AVES
=1

71(8) (é:l ri(t) x,)
2n

2
dtds

1m 2

< oc,,,(X)”f >

0j=1

in

Z (),

t=(j-1)n+1

dt < o (X )2 %(XVZ, | AT

The proof of the second inequality in (6.2) is the same. Inequality (6.3) is proved as follows.
Pick any {z,}/.;€X and let {z{}i-;€X* be such that ||z ||?=||z||2=2{(z,) for every i.
Then

n n 1/n n
Sllali= 3 st = [ (3 nrsr) (3 niom)ae
f=1 i=1 0 \i=1 fal
1 n 2 \1/2
< (J.0 RN GE? dt)

2 1/2 1
)" (]
0 fli=1
2 1/2
a)”

n 1/2 1| »
<eatx) (3 lalt) ([ ]| 2 n0=

n

PRAVEN

i=1

Asin the remark at the end of the preceding section it will be useful for us to introduce
variants of «,(X) and §,(X) obtained by replacing the Rademacher functions by inde-
pendent random variables g,(w) on some probability space (2, P) each having a normalized
(i.e. mean 0 and variance 1) Gaussian distribution. We let for every integer #, &,(X) and

ﬁ,,(X ) be the smallest constants for which

2 1/2 n 1/2
aPw) " <a® (i) 60

A0 (S 1) < ([ | ora

for every choice of {z}i.; < X.
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We shall use the following relation between «,(X) and &,(X) (resp. 8,(X) and ﬂ:,(X
GlX) S anX), BuX) <BuX), n=1,2, .. (6.5)

Indeed, by the symmetry of the g,’s we get

() gy(w) dP(w) dt

<ay(X) fn 2 lo@)PllalPdP) = a(X)* X |||

and analogus inequality holds for the f,(X). We mention without proof some other results
on the relation between these constants which can be found in [28] but which we shall
not use here. For every Banach space X and every n, o,(X) <(n/2)}/2 d,(X). On the other
hand there is a constant ¢ so that §,(X) <c/§n(X ) for all » if and only if X is of cotype
¢ for some g<<oo. The constants &,(X) and ﬁn(X ) are in general not submultiplicative in
the sense of (6.2). From the results we quoted it follows that &,(X) is always equivalent
to a submultiplicative sequence (namely e, (X)). This is false for ﬁ,,(X). For example if
X =¢, it is not hard to verify (this is related to Lemma 4.2) that ﬂ~,,(co)~(n/log n)2, The

importance of &,(X) and ﬂ:,(X ) in our context stems from the following lemma:

LeMMA 6.1. Let X be a Banach space with dim X =n. Then Gp(X)=GEnmn+1y2+1(X)
and Bu{X) =Pumr1yz+1{X) for every m>n(n+1)/2+1.

Proof. Let m>n(n+1)/2+1 and let {x,}iL, be any m elements. n X. Then Q(z*)=
>, a*(z;)? is & quadratio form on X*. Since the dimension of the space of quadratic forms
on X* is n(n+1)/2 it follows from Caratheodory’s theorem that Q(«*) can be represented
as a convex combination of fewer than m quadratic forms of the set {ma*(z,)*}j~,. Hence
there exist 4,20 with >;.; 4,=1 so that at least one A, (say 4,) vanishes and Q(z*)=
m o5t Axt(z,)? Let A=max;gmA; (say that A=1;) and put y,=(1,/A)V2x, and
zy=(1—A AP %2, 1 <i<m. Then

1, =0, 2,=0, (6.8)

Z llll* = Z o ll® -+ Z e (8.7)

Also Q(x*)=Am >\, x*(y,)® and thus

dP(w). (6.8)

dP(w) = gi(w) z,

(w) Yi
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(Here we used the basic property of normal variables namely that the value of
fa ||Zi%1 gi(@)u/|[?dP(w) depends only on the quadratic form >, 2*(u,)2.) Similarly

J.

Since by (6.6) the sequences {z,}i.; and {y,}i~, consist of at most m —1 non-zero
vectors we get from (6.7), (6.8) and (6.9) that &,(X)<&,_,(X) and ﬁ,,,(X)Sﬁm_l(X) and
this concludes the proof. O

2dP(w). (6.9)

igl gi(w) X

m 2
4§1 gi(w) z|| dP(w)=(1— (lm)_l)fn

Remark. By using a variant of Caratheodory’s theorem valid for cones a similar
argument shows that we can actually replace n(n +1)/2+1 by n(n+1)/2.

In order to apply Lemma 6.1 we have to use the theorem of Kwapien [20], which was
mentioned already above, in the following form. Let X be a Banach space. Then there is a
Hilbert space H so that d(X, H) <sup,; n(X) ﬂ:,(X } (This result has of course a meaningful
contents only if sup, &,(X )/§,,(X ) < o0).

THEOREM 6.2. Let X be an n dimensional Banach space and let 1 <k<n. Then
(X, B) < (0 X) Bl X)) #2108 mios &, (6.10)
In particular if d(Y, I§) <c for every k dimensional subspace Y of X then

d(X, lg)<02(1+2 log n/log k). (6.11)
Proof. Let r =[1+2 log n/log k]. Then ¥ Zn2>n(n+1)/2+1. By (6.2) and (6.5)
e (X) < o (X) S o X)', Birl X) < Bt X) < Bl X"

By Lemma 6.1 and Kwapien’s theorem we have that d(X, lg)<a,"(X),§,,'(X) and this
proves the first assertion of the theorem. The second assertion follows from the following

obvious remark

o(X) =sup{(Y), Y=< X, dim X =k} <sup{d(Y,5), Y< X,dim Y =k}

and the analogous remark for 8,(X). O
Another consequence of Lemma 6.1 is the following

THEOREM 6.3. Let X be a Banach space of type p <2 and cotype ¢=>2. Then there is a
constant y (depending only on the type p and cotype q constants of X) s0 that for every Yo X
withdim Y =n»n

d(Y, I3) < pn®dir-1io, (6.12)
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Proof. By the definition of type p and the result of Kahane (cf (5.3)) it follows that for
some %{p)
1
)

Hence &,(Y) < a(Y) < 5(p) n2V?~1, Similarly f,(Y)<n(g) n®V2~Y9. An application of
Kwapien’s theorem gives the desired results. |

n 1/2

Z Ti(t) z,

i=1

2 nt 1/2 nd
at<nw) (3 llale) " < a0 (5 )

We do not know whether the factor 2 appearing in the exponent of n in (6.12) is
really necessary. Our proof would show that it could be dropped if we knew that & ,(X) <
c&,(X) for some absolute constant ¢ and all X with dim X =n. In the case of X =L,0, 1)
or X=C, (6.12) takes the form d(Y, I5) <yn®'?~'2| for every Y<X with dim ¥ =n.
We do not know even in this special case whether the factor 2 is necessary (without the
factor 2 we would certainly get the best possible result since d(iZ, I3) =«!"?~121) (1)

Observe that Theorem 6.3 asserts in particular that the second statement of
Theorem 6.2 is in a sense the best possible. Indeed let k(n) be a function of » so that
lim,, log k(n)/log n =0. Choose for every » a p,>2 so that k(n)*V2-VP =2 andlet X, =1I},.
Then by (6.12), d(Y,l5”)<2y for every Y<X, with dim ¥ =Fk(n) while d(X,, 5)=
nl/2-1Pn = gloE M210B k(M) oo Theorem 6.2 states of course that we cannot find such X, if
lim,, inf log k(n)/log n>0.

We present now a variant of Theorem 6.3 where the factor 2 in the exponent in (6.12)
is eliminated in the expense of replacing Y by a suitable subspace of ¥ of relatively high

dimension.

ProrosiTioN 6.4. Let X be a Banach space of type p<2 and cotype ¢ =2. Then there
is a constant 7 (depending only on the type p and cotype q constants of X) so that for every
Y<X with dim Y =n there is a subspace Z< Y, k=dim Z > }n' 1818 W8 o6 that

d(Z, ll;) <nk1/ﬂ—lla+<3/loz log k)'

Proof. We apply Theorem 4.6 to a given subspace Y of X of dimension n with
K=n'o#1%" gnd y=1—1/logn. We obtain a subspace U of Y with dim U=m>
! (08108 WYOE ™ gnd an inner product norm |||-||| on U so that a|||y||| <|ly|| <®l||y]|| for
every y€U and suitable constants a and b and so that for every subspace U,< U with

dim Uy =m/log n there are vectors y, and y, in U, with
Mlwalll = lllgalil =1, llgall >5/K  and  ||yf| <aK.

In particular, we can find k=>(1—1/log n)m vectors {u,};; in U so that the {u,}}~,
are orthonormal with respect to |||-||| and satisfy ||u,|| <aK, j=1, ..., k. Let Z =span {u }}_,.

() (Added in proof). D. R. Lewis proved recently that if ¥ < L,(0,1) with dim ¥ =nand 1<p<oo
dthen (Y, l;‘) < pliip-vel
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Clearly dim Z=Fk>m/2. By the construction of Z there are k> (1 —2/log n)m >m/2 vectors
{vi}i=1 in Z so that the {v;}{, are orthogonal with respect to |||-||| and satisfy ||v,|| >b/K
for every i¢. We shall use these vectors {u;}j., and {v,}i-, in order to estimate M=
§1lzl|dux-1(2), where the integration is taken over {z; 2€Z, |||2||| =1} with the usual rota-
tion invariant measure u,_;. By the proof of Proposition 5.1 applied to the {u,}/.; we get
that

k (2-p)/2p
M< a(’zl I u,||2”’<"-2>) < oaKEHP71E (6.13)

where « is the p-type constant of X. Similarly if § is g-cotype constant of X we get by the
proof of the same proposition (this time using the {v,}{.,) that

M> %ﬂbK—l hl/qk—1/2 > ﬂbK_l k1/2—1/a2—1—1/a. (614)
By combining (6.13) and (6.14) we get that
d(Z, ll2c) < b/a < 77(“’ /9) K2plr-Yag n(a’ ‘3) J1/p-1/a+(3/log log k)

and this concludes the proof. O

Proposition 6.4 is of interest only in the case where p is close to 2 and ¢ is relatively
large. If ¢ =2 Proposition 6.4 is of course much weaker than Theorem 5.2.

We return to Lemma 6.1 and present some additional applications of it. This lemma
can be used in getting new information concerning the so called three space problem which
was treated in [8]. This problem is the following: Let X be a Banach space which has a
subspace Y so that X/Y and Y are both isomorphic to a Hilbert space. How far can X
itself be from a Hilbert space?

THEOREM 6.5. Let X be a Banach space having a subspace Y so that X|Y and Y are
isomorphic to a Hilbert space. Then there is a constant ¢ so that for every Z< X with dim Z =n,
AZ, I3) <c(log n)t.

Proof. As we shall show below (Proposition 6.6) it is enough to prove the theorem in
case where Y and X/Y are both isometric to a Hilbert space. In [8] the following generaliza-
tion of (6.2) is proved

Xpm(X) S 0, (V) (X) top( V) o X/ Y ) + 0 (X) 0 ( X[ Y), n,m=1,2, .. (6.15)

In our case we have o,(¥)=a,(X/Y)=1 for every n and thus we get from (6.15) that
(X)) <20, (X) +1 for every m. Since ay(X)<d(X, I§) <212 we deduce by easy induction
that “2.k(X ) <2¥(2V24+1) —1 for every k or

o, (X) < (2824 2) log,n, n=3,86, ..., (6.16)
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By (6.3) we deduce from (6.16) that also f§,(X)<(2¥2+2)log, n. Hence by Kwapien’s
theorem and Lemma 6.1 it follows that for every Z< X with dim Z=n

A2, ) < G X) Bl X) < ta(X) Ba(X) < 16(3 +2572) (log, n)2. (6.17)

ProrosiTIiON 6.6. Let XY, Y, and Z, be Banach spaces such that Y is isomorphic
to Yy and X|Y is isomorphic to Z,. Then there is a Banach space X;> Y, so that X/Y
is tsometric to Zy and
(X, Xo) <d(Y, Y)d(X|Y, Z,).

Proof. Another way to formulate this proposition is the following. Given Banach
spaces X, Y, and Z, and bounded linear operators 7: Y,—~X and S§: X—Z, so that
ST =0, ||Ty|| = |ly||, yE€ Y, and ||Sz|| Zinf, .y, ||+ Ty|| for all z€ X. Then there is a norm
[| llo on X so that

WTI=l=l] < Hl=llo < iSIHlel| =€X

and so that in ||-||o, 7 becomes an isometry and S a quotient map. It is easily checked
that such a norm ||-||, is obtained by taking as its unit ball the set of all « of the form

z=Ty+zy, ||ylly.+max ([Jz], ||82])) <1.

Remark. It follows from Theorem 6.5 in particular that if X> Y with n =dim X and Y
and X/Y both inner product spaces then d(X, I3) <c(log, n)? for ¢=16(3 +2%2), In [8]
an example is constructed of such an X for which d(X, 5)>n(log n)V/? for some 5>0.
Hence up to the exponent of the log » Theorem 6.5 is the best possible. Observe also that
in the setting of Theorem 6.5 the distance from X to a Hilbert space is essentially the same
as the smallest norm of a projection from X onto Y.

We conclude this section with the solution to the local version of the complemented
subspaces problem. In [24] it was proved that if X is an infinite dimensional Banach space
so that every closed subspace of X is complemented then X is isomorphic to Hilbert space.
The first step in this proof was the simple observation (made in {3]) that it is enough to
prove that there is a function 1->f(1) so that if on any closed subspace of X there is a
projection of norm <A then the distance of X from a Hilbert space is < f(4). In this formu.
lation this problem makes sense also without the assumption that dim X = oo, The proof
given in [24] does not suffice for proving this case. In order to clarify this point let us
review briefly the argument of [24]. It went as follows. We start with an arbitrary finite
dimensional subspace Z< X with dim Z=Fk say, and put d(Z, If) =d. By the assumption
there is a projection @ from X onto Z with ||Q|| <A. The space (I —@) X is infinite-dimen-
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sional and hence by Dvoretzky’s theorem there is a Z,<= (I —Q) X such that d(Z,, If) <2.
Let T be an operator from Z onto Z, with ||]|/2d <||T'z|| <||2|| for every x€Z. By using
the assumption there is a projection P from X onto {x+2%*Tx, 2€Z} with norm <A4.

The computation done in [24] shows that this implies that
d=d(Z,15) <A-20. (6.18)

The point where this argument breaks down in case dim X < oo is the choice of Z,.
This difficulty can however by overcome if we use the results of section 2 as well as Theorem
6.2.

THEOREM 6.7. There is a function A f(A) so that if X is a Banach space with dim X =n
such that for every Y < X there is a projection of norm <A from X onto Y then d(X, I3) <f(A).
One can take f(A)=cA®? for a suitable constant c.

Proof. If every subspace of X is A-complemented then every subspace of X* is (1 +4)
complemented. Indeed, if Y < X* and P is a projection from X onto Y1 < X then Jy. —P*
is a projection from X* onto Y. By (2.19) we have k(X)k(X*)>dn for some §>0. Hence
there is no loss of generality to assume that every subspace of X is (A +1)-complemented
and there is a subspace Y in X with dim ¥ =k>(dn)2 and d(Y, l§)<2. Let Z be any
subspace of X with dim Z=m <k/2. Let @ be a projection from X onto Z with ||Q|| <A+ 1.
We take now as Z, an m dimensional subspace of ¥ N kern @, and proceed as in [24].
1t follows from (6.18) that d(Z,15)<2%A+1)%. Consequently if m=[}(dn)¥/2] then
oy (X) <2%(A+1)* and B,(X)<2°(A+1)4. Consequently by Theorem 6.2 d(X, I3) < cA®® for

a suitable constant c. 0

Remark. By repeating the same argument using this time (2.18) instead of (2.19)
and using in (2.18) the estimate we just obtained for d(X, I3) we actually get that d(X, 13) <

¢,42¢ provided that n >c,A%.

§7. Additional results

The approach we presented in section 2 for proving the existence of almost spherical
sections was based on Proposition 2.3. This proposition allows us to choose any m points
on the surface of the unit ball in I3. The choice we made in section 2 was always that of a
d-net in a subspace of a suitable dimension. It is however quite likely that other choices
of the points in Proposition 2.3 will lead to some useful consequences. We present here one
result obtained by making a somewhat different choice of the points appearing in Pro-

position 2.3.
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Let {e;}}.1 be an orthonormal basis in I3, let ¥ <z be an integer and let §>>0. We
choose the points {y,}iZ; so that they form a J-net in all the subspaces of I3 spanned by
choosing & distinct elements out of {e,}}\.;. In view of Lemma 2.4 an estimate for the

number m of points needed is given by
1+ 2;5)*(’;) < (1 +2/8)en /6! < (c(8) mjk)*

for some constant ¢(d). Comparing this estimate with the one allowed by Proposition 2.3

we get that we can make the desired choice if
klog n/k < y(8)nM?7/b2. (7.1)
Consequently we get the following result.

THEOREM 7.1. (i) There is an absolute constant >0 so that the following is true. Let X

be a Banach space of dimension n and let |||-|{| be an inner product norm so that (2.5) holds.
Let k=[nnM?:[b2 log n]. Then there exists a basis {x,};-1 of X so that
o2 || » n N1z
( /1,2) <|5a5|< 2(2 z,z) (1.2)
=1 F-1 s=1

for every choice of scalars {A}].; for which at most k scalars are different from 0.

(ii) Let X be a Banach space of cotype 2. Then there is a constant y >0 (depending
only on the cotype 2 constant of X) and a basis {x;};., of X so that (7.2) holds for every
choice of scalars {A,};-1 so that at most yn of the scalars are different from 0.

To derive (ii) we use (7.1) and the estimate on M, deduced in section 5 (for the |||-]||
appearing in the Dvoretzky Rogers theorem). Let us note that in the case of statement
(ii) we get by the triangle inequality that the right hand inequality in (7.2) holds for arbit-
rary {4,}j-1 provided we replace 2 by 2y~1/2,

One unfortunate fact about the basis {r,;}}., appearing in (7.2) is that it is usually
a “‘bad” basis from the Banach space point of view since its basis constant may be large.
For example if X =I} we may apply assertion (ii) of Theorem 7.1. The basis {z;}]., we
get will always have a basis constant >cnl/? since every projection from If on a subspace
close to I§ has norm >y, k2,

Another general remark which may be useful in some applications is the following.
Since the approach in section 2 is probabilistic in nature we can ensure the existence of
subspaces which are almost Hilbertian in several given norms simultaneously. More pre-
cisely, given v and s there is an #(t, 8) >0 so that if {|| |[;}{-1 are norms on R and |||-|||
is an inner product norm on R" then there is a subspace Y < R" with dim ¥ =k so that
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a(Y, ||]]), B) <1+ forj=1,..,s, where k=[z(z, s) min, n}7 b]] (and M, and b, have the
obvious meaning). A similar but somewhat more complicated statement can be made

if instead of keeping s fixed we allow also s to grow with =.

§8. Appendix—A proof of the isoperimetric inequality

We present in this appendix a complete proof of Theorem 2.1. We start by introducing
some notations. For a subset 4<8"1 we let r(4) be the radius of 4 defined by
min {r; Iz €8"-!, A< B(z, r)}. It is obvious that the minimum always exists. The geodesic
metric d on 8”1 induces a natural metric 4 (the Hausdorff metric) on the space of closed
non-empty subsets of §"~1 by putting (4, B)=min {r; A< B,, B 4,}. The set of closed
subsets of §"-! forms a compact metric space in this metric §. The function R(A4) is clearly
a continuous function of A4, the function u,_,(4) is however only upper semicontinuous
i.e. §(4%, A)~0implies u,_,(4)>lim, sup p,_,(4%).

The main tool in the proof of Theorem 2.1 will be the notion of spherical symmetriza-
tion. Let Z< 8"-1 be a closed set and let y be a half circle on §"-1 joining the pair of antipodal
points &, and —x,. For each y€y let HY be the hyperplane in B" which is ortogonal to the
line joining x, with —z, and which contains y. The intersection HY N S*-! is an (n —2)-
sphere which we denote by SV (if y ==, or y = —x, then H¥ N 8! is just a single point).
We let p,_,, be the unique normalized rotation invariant measure on 8" . For y€y
we let AV=ANHY and let B be a cap in S" *¥ with center y such that u,_, ,(BY)=
Hn s (AY) (f g, 5 ,(AY)=0 we let B” be either the empty set or the set consisting of the
point y only depending on whether 4% is empty or not; we do the same also in case y = + ;).
The set B={J,, BY is called the symmetrization of 4 with respect to y and is denoted by
g,(4). It follows from Fubini’s theorem that u,_,(B)=u,_,(4). It is also easily seen that
the function y—u,_, ,(4Y) =g,_q ,(B") is upper semi continuous and hence B is a closed
subset of S"~1,

The proof of Theorem 2.1 is by induction on n. The theorem is trivial for »=1. For

general » it is an immediate consequence of the following three lemmas.

Lemma 8.1, Let A< 8" be a closed set and let M(A)={C<8"; C closed, p,_1(C)=
fa_1(A), o y(Co)Spn_i(A,) for every £>0}. Then there is a B€ M(A) with minimal radius,
i.e. min {r(C); C< M(A)} exists.

LeEMMA 8.2. Let A< 8" be a closed set. Then for every half circle y, a,(A4)€EM(A).

LeMMA 8.3. Let B S8" be a closed set which is not a cap. Then there exist a finite
family of half circles (y}-1 so that r(cy,(cy, , ... ov(B))) <r(B).
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The induction hypothesis will be used in the proof of Lemma 8.2 (the proof of this
lemma for n=n, assumes the validity of Theorem 2.1 for n=n,—1).

It is clear from the definition of M(A) that B€ M(A) and C € M(B) implies C € M (4).
Thus Lemmas 8.2 and 8.3 imply that an element of minimal radius in M(4) must be a
cap. By Lemma 8.1 such an element always exists i.e. M(4) must contain a cap. This is

exactly the assertion of Theorem 2.1.

Proof of Lemma 8.1. Since the function B—r(B) is continuous it is enough to show that
M(A4) is a closed subset in the space of all closed subsets of S*-!. Assume that B*€ M(4),
k=1, ..., and §(B* B)—0, and let £>0. For every 5 >0 we have for large enough k that
Bc< B} and thus B,c BY.,. Consequently

:un-l(Be) < :u'n—l(B,:w‘n) < :un—l(As+1/)~
Tt follows that

,unul(Be) <inf ,un~l(Ae+rl) = ,un—l( no Ae+r]) = ,un—l(As)-
n 7>

In particular for. ¢=0 we have u, ,(B)<p, ,(4). On the other hand p,_,(B)=>
lim,, sup p,_,(B*¥)=u,_,(4). This shows that BEM(A). M

Proof of Lemma 8.2. Let A be a closed subset of 8"~ and let » be a half circle on S"-*
joining x, with —x,. Let u be the midpoint of y. We identify the sphere S"~%-* with §"-2
(this identification preserves the usual » —2 dimensional measure as well as the distances).
For every y €y (y =+ x,) we define a mapping 7, from 8"~ %¥ onto §" % * =8"-2 by projecting
along the meridians (i.e. for z€8" %, 7,(z) is the point on S >* which belongs to the
half circle joining z,, 2, —x,). It is obvious that there is a function f such that whenever

x, 8™ 2V, 2, €8" %V then
d(zl’ x2) = f(ylv y2’ d(tlll(xl)’ Ty.(xz)))~

Hence there is for every y,, y,€y, >0 (with d(y,, y,) <é&) an 7{yy, ¥,, €) =0 so that for
every subset C of §"**, NS> =1;}(2,,Cluys ) (If dlyy, y2)>¢ then clearly
C N 8*%% =4) Hence for every >0, y€y (y==+x,) we have

Ty((A,)") = U (7zAz)n(z'v,z)' (8.1)

ZEY
d(z. W)<e

Let B=o0,(4). By applying (8.1) to B we get
T(B))= U (z.B)y.0 (8.2)

E£3%
d(z. <e
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For every z€y the set t, B? is by definition a cap in 8"~ for which u,_s(z, B*) =, 5(1.4%).
By the induction hypothesis (i.e. Theorem 2.1 for »—1) we get that

Hn_o((T, Bz)n(z. ve) S /"n—z((TzAz)n(a. we) (8.3)

for all admissible y, 2, ¢. Since all the sets appearing in the right hand side of (8.2) are caps
with the same center (namely «) we get from (8.1), (8.2) and (8.3).

luﬂ—2(‘ry(~B£)y) = 8sup ,un—Z((tz Bz)ﬂ(z. v, e))
d(;:)y<e
< sup ”"—2((72 Aa)ﬂ(a. v, s)) < /‘n—2(7y(‘45)v)- (8-4)

zey
a2, y)<e

In other words we have for every y==+x, in  that
U2,y ((Be’) < ting 1 ((4¢)?)- (8.5)

By Fubini’s theorem this implies that u, ,(B,) <u,_,(4,) and this concludes the proof of
the lemma. u

Proof of Lemma 8.3. Let B 8"! be a closed set which is not a cap and let r =r(B).
Then there exists a »€8%1 such that B< B(u, r). We shall perform now some spherical
symmetrizations on B. All these symmetrizations will be with respect to half circles y
whose middle point is u. All these symmetrizations leave B(u, r) invariant. We perform
first one symmetrization of B with respect to any half circle y;, with center u. Since B is
not a cap o,,(B) is not all of B(u,r) and thus it does not contain the entire boundary
oB(u, r) of B(u, r).

We make now the following two simple observations

(i) Let C be a closed subset of B(u, r) and x€0B(u, r)~ C then for every half circle
v whose center is u, ¢,(C) does not contain z.

(i) Let C be a closed subset of B(u, r) and G a relatively open subset of 2.8(u, r) which
is disjoint from C. Then for every z€0B(u, r) there is a relatively open set G, of 6B(u, r)
and a half circle y, with center u so that G, N g,,(C)=¢. (Both G, and y, depend only on
and & but not on C).

By using (i) and (ii) (taking as ¢ an open subset of &B(u, r) which does not belong to
6,.(B)) and the compactness of dB(u, r) we deduce that there are {z,}i., in 0B(u, r) so
that oy, (0, , .. Oy, (0,(B))...) 18 disjoint from 8B(u, r) and thus has a radius smaller
than r. This concludes the proof of Lemma 8.3 and thus of Theorem 2.1, a
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