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1. Introduection.

Our present purpose s to obtain vesults of «an analytic character for differential
equations algebraic n

(I. I) ¥, yU L !/(n\)

4 being the unknown to be determined in terms of a complex variable x; we

thus consider the equation
(1. 2) Ple, y, v, ...y =o,

arranged as a polynomial in the symbols (1. 1). The coefficients of the various
monomials

(1.2 a) (o (Y L (Y,
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involved in the first member of (1. 2), will be assumed to be series of the form
(1. 3) An ™ + pea ™1+t ay+ ot g+

convergent for |z|= ¢(>0) or, more generally, they will be assumed to be
functions, analytic in suitable regions', extending to infinity, and asymptotic (at
infinity) within these regions to series (possibly divergent for all z £ «) of the
form (1. 3). The subject, as formulated, is very vast.

Accordingly, we shall examine the situation in the case when the equation (1.2)
has formal solutions of the same type as occur in the case of the irregular singular
point (for ordinary linear differential equations). In the formal theory of the
equation (1.2) we replace the coefficients of the monomials (1. 2 a) by the series
(of the form (1. 3)) to which these coefficients are asymptotic. It will be desirable
first to carry out suitable formal developments and afterwards to proceed with
considerations of analytic character.

At this stage one may appropriately say a few words about the classical
problem of the ¢rregular singular point. Let

Fo(x,y, 9V, ... y")

be the homogeneous part of F' of degree v in ¥, yV, ... y"™; thus
(1. 4) Fy= 3\ fir- () (y)o (V) . .. (y™)n,
where the summation is over non-negative integers 7, . . . 7, with z,+ - -+ + =1,

In particular,

(1.4 a) FOZFO(J:)———f?)""O(x),
We have
(1. 5) F=F+F + -+ I,

In the particular case of 6 =1 the equation (1.2) will be of the form
(1. 6) Fi{w,y, ", . .. y™) =— F, ().

This is a non-homogeneous linear ordinary differential equation® whose solution
is based on that of
(1.6 a) I =o.

! The precise details regarding the regions will be given in the sequel.
* In order that (1.6) should be a differential equation it is necessary that not all the coef-
ficients in ¥, should be identically zero.
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Tt is the latter equation which presents the classical problem of the irregular
singular point. The complete solution of the irregular singular point problem, both
Jrom the point of view of asymptotic representation and exponential summability
(Laplace integrals, convergent factorial sevies), has been given by W. J. TritrzInsxy’.
For a concise statement of the pertinent results the reader is referred to an
address given by Triirzinsky before the American Mathematical Society?. Of
the earlier work involving asymptotic methods in the problem of the irregular
singular point of fundamental importance is the work of G. D. BirkHo¥FFr (cf.
reference in (T)), which relates to the particular case when the roots of the
characteristic equation are distinet. With regard to the methods involving La-
place integrals and factorial series, highly significant work had been previously
done by N. E. NorLuxp and J. Horn?®.

The equation (1. 2) (with F,, (x)=0) is a special case of non-linear ordinary
differential equations (single equation of n-th order or systems) of the type
investigated by a considerable number of authors, including W. J. Triirzinsky?,
with respect to whose work (T,)* the following statements can be appropriately
made at this time.

The main purpose of the developments given in (T,) was the analytic theory
of the single n-th order (> 1) non-linear ordinary differential equation® This
necessitated use of asymptotic methods. As a preliminary was given the detailed
tredtment of the first order problem, the methods used being of the asymptotic
type; this asymptotic method was then extended to the general case of » > 1.
It must be said, however, that on one hand when the equations are given asym-
ptotically with respect to the unknown and the derivatives of the unknown, the use
of asymptotic methods in the development of the analytic theory is tmperative. On the
other hand, sn the particular case of a first order equation, given in the non-

! TRIITZINSKY, Analytic theory of linear differential equations [Acta mathematica 62 (1934),
167—226].

TRJITZINSKY, Laplace integrals and factorial series in the theory of linear differential and
linear difference equations [Transactions Amer. Math. Soe. 37 (1935), 80—146].

? TRIITZINSKY, Singular point problems in the theory of linear differential equations
[Bulletin Amer. Math. Soc. (1938), 20g—233), in the sequel referred to as (T).

8 For references and some details cf. (T).

4 TRIITZINSKY, Analytic theory of non-linear singular differential equations [Mémorial des
Sciences Mathématiques, No go (1938), 1—381], in the sequel referred to as (T,). Many references
are given in this work.

TRJITZINSKY, Theory of non-linear singular differential systems [Transactions Amer. Math.
Soc. #2 (1937), 225-—321], in the sequel referred to as (T,).

® Cf. for formulation given in (T)).
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asymptotic form', wuse of asymptotic methods 7s not necessary, the methods of the
highly important paper of J. Marmquist® being entirely adequate for the com-
plete analytic treatment of this case; the latter fact was overlooked in (T,).

In (7)) and (7,) ‘actual’ solutions were obtained which (in suitable complex
neighborhoods of the singular point in question) were of the form, whose essential
components were of the same asymptotic character as that of the ‘actual’ solu-
tions in the problem of the irregular singular point for linear differential equa-
tions. The non-linear problem, referred to in (T,) and (T,), has obviously a
connection with our present problem.

We shall also give some developments of analytic character, along the lines
indicated above, for non lnear algebraic differential equations containing a para-
meter. The formulation of the latter problem is given in section o.

The main results of the present work are embodied in Theorems 6. 1, 7.1, 8. 1

and 10. 1.

2. Formal Developments.

In so far as the formal developments are concerned, the situation is some-
what analogous to that involved in a paper by O. E. Lawcaster® who gives
partial formal results for difference equations. The analogy in the formal theory
is to be expected. In view of our present main purpose with regard to develop-
ments of analytic character, it will be necessary to give in detail some formal
results for differential equations. »

In accordance with E. Fasry*! the formal solutions for the irregular singular

point are of the type

(2. 1) s(x) =Wz g (x),
where

P p—1 1
(2. 1 a) Q@) =gt + qprz ® + - +qat

(integer p = 0; Q@ =o for p =o0)
and

! The equation (with n= 1) being defined with the aid of convergent series.

2 J. MALMQUIST, Sur les points singuliers des équations différentielles [Arkiv for mat., astro-
nomi och fysik, K. Svens. Vet. 75 (1920), No 3].

# 0. E. LANCASTER, Non-linear algebraic difference equations with formal solutions ... Amer.
Journ. of Math. I.XI (1939), 187—209].

4 Ctf. (T; 210).
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(2.1Db) o(x) = 0,(x) + o, (x)logx + - + 0. (x}logtx {integer u = 0),
_1 2
(2.1¢) o,(@)=0,0+ 0,12 ¥ +a,.x b+

here % (= 1) is an integer. The series (2. 1 ¢) may diverge for all x £ oo,

Throughout this section, unless stated otherwise, the coefficients in F ((1. 2))
will be supposed to be series, convergent for |x| > o, or divergent of the form (1. 3).
We recall the following definition of (T; 213).

Definition 2. 1. Generically {x}q (q an integer = o), will denote an expression
(2. 2) ¢ (@) + ¢ (x)logx + - + g4 (x) log? 2,

the ¢;(x) berng series, possibly divergent (for all x 5~ %), of the form

1 2
(2. 2 a) oo+ g1x ¥ +g.x P4+ (£ a positive integer).

Let s(x) be defined by an expression (2. 1). It is observed that

2. 3) P_ [ -1 — (=t
( QW (x) = 2* ' rotrx F4d (L)
where, if Q(x) = 0, one may take 7,7 0, p > o,

L felo = 2 b, = [tz logia] = 2 [{alylogla + ol logi~ ]

(for j > o) and
(2. 3 a) oW (x) = T {2} =2 {x},.

In view of {2. 3) and (2. 3 a)

(2. 4) s () = ¢ g7 W) {5}, [,.(I):,, +%—1]-
Similarly, from (2. 4) we obtain

s (x) = Q& 27 @ {1}, [7‘(2) =7(1) + ];; — 1]
and, in general,
(2. ) s () = €@ g ) {2},

where

(2. 5 a) 7'(j)=7'+j(17;——1) (j=o0,1,2,...)
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Thus
(2. 6) (s@)e (s @) . .. (sW@)n = e @ g™ {2}, ,,
n

(2. 6 a) Y =vr+F, ?=(€~I)J§jij,
provided ¢, -+ -+ i =,

Now, by hypothesis,
(2. 7) fiﬂ*"'fn(x)=a;”n”'o"“"nx'” + a;zf')i“-"'nx’"—l + .+ az:io,...i" +

ot gt b e g b= g )
where m=m(»:4,, . . . 7,). Whence, in consequence of (1. 4), (2. 6) and (2. 7),
F,(x, 5,80, ... sM)= Qi grr 3 gmtr {g} Aaph,

here the summation is with respect to 7,, ... 7% (¢, + - + 2, = »), while integers
m and rational numbers # depend on 7, ...7, Clearly
(2. 8) Fy(x,s, M, .. s) = e v fy; x); flo; ) = 2™ {a},,,

where m (v) = 1 (»)/k (integer 1(»); v =1,...0).
If a series s(x) satisfies the equation I'= o0, in consequence of (2. 8) one
should have formally

(2. 9) Fy+ ez f(y;2) = o,

y=1
where by (1. 4 a) and (2. 7)
(2. 9 a) F,=am{x}, (m=m(o:0,...0)=m)

It is accordingly inferred without difficulty that if s(x) satisfies (1. 2) (formally),
while Q(x) == 0, then necessarily Fy=0" and s(x) satisfies each of the equations

(2. 10) Fi(xs .. )=0,...F;x,s...)=o0.

In fact, the coefficients in @(x),» and the coefficients in o(x) will have to satisfy
each of the following ¢ formal relations

(2. 10 a) Sflz)=o0, f(z;2)=o0, ... flo;x) =0,

in the sense that, when f(v;z) is arranged in the form 2™ {x},, (cf. (2. 8)), the
coefficients in the various power series involved are all zero. On taking note of

! Throughout, a formal series will be said to he = o provided all the coefficients are zero.
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(2. 9) and of the form of I, and of the f(»;x) it is observed that, {f s(z) satis-
fies (1. 2), while Q(x) =0 and » (5 0) is wrrational, we shall have Fy= 0 and s(x)
will satisfy each of the equations (2. 10).

Inasmuch as in the sequel it will be assumed that in the series s(x),
formally satisfying F =0, @(x) is not identically zero or §(x)= o, but r is
irrational, we may confine carselves to homogeneous equations of degree v; namely,
F,=o.

The following will be proved.

If the formal homogeneous equation of degree v,

(2. 11) F,(z,y, 9", ... y™ =0 (actually of order n),
s salisfied by the general formal solulion of a linear differential equation

K

(2. 12) Lz, y@)= 3 filz)y? (@) =o,
=0

actually of order n (< n) and with
(2. 12 a) Silx) = a0 {z}, (n (2) rational),
then

(n) S K (1) (n+7)
(2. 13) Fy(wy, .. .y )EEO Jo L@ v @) @y, 9, ytd)

=,y ...y,

where the @; are homogeneous (of degree v — 1) in y, . . .y, the coefficients being

of the form x {x}, (A, rational).
To establish this result form the expression

(2' 14) w:va—Q:

where Q is of the form of the second member in (2. 13}, the ®@; for the present
being undefined. We may write

i :
(2 15) Ll y @) = Dhilmo, e, ) Py

(summation with respect to mq, ... my4;, with my + -~ + 74 = 1); clearly the
coefficients in (2. 15) are of the same form in z as the fi(z). Also

(2. 15 a) @ = @iz ko, - . ega) (). o (Y
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(summation with respect to %, ... /k1j, with bk + -+ kj=»—1). The ¢;
are at our disposal; we wish to select these expressions so that ¥ of (2. 14) is of
the form

(2. 16) Y=uylzy,...y")

with no dertvatives of y of order higher than n — 1 present.
Substitution of (2. 15) and (2. 15 a) into the expression 2 will yield

n—1

(z.17) Q=3 N filnto,. .. musi) @il@i ko, - Fpr) e lyV) L (e,
J=0 my, .. ke, ...

where

(2. 17 a) =g+ ki omg gy =05 ke k= — L

We thus may write

n—ry
Q=2 Dailte, . - - tyag) Vo yM) ... ("),
j=0

where the second sum displayed is with respect to ¢, ... ¢,4;, with

1‘0+'"'+ Z.r)]-i—j:v,

and
(2.17b)  qilde, . .. dyys) = Z’ Z Silmg, « o my sy i ko o o Fysg),
My, . .. Kkoy...

the summation in {2. 17 b) (with 4,,...7,4+; fixed) being subject to {2. 17 a).

Thus, by (2. 14) and (1. 4)

(2.18) = D flo-i(x)(yVo. .. (y)n — Q=Tu+ Iy + -+ Iy,

IS

the expressions Iy, ... I,—: being characterised as follows. I, consists of all
the therms in I, — 2 which contain %"; I'n—; contains no y'™ but contains
y™=1; Iy, contains no %™ and no %"V but contains y»~¥; and so on —
finally, I';—; contains no y™, ... y" but contains y"~1'. Picking from Q the

terms for which j=n — 5 and ¢, > 0 we obtain

(2. 19) o= ) [fir (@) — gueglige - - i ). . . [y

(summation with respect to 4y, ... 2 4y + - + @ =1 2 > 0).

 When I’ is said to contain yl#) it is implied that this is the ease when certain particular
choices of the ¢; are avoided.
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To form I,.; we select from F, the terms for which 7, =0, ¢—1 > 0; from 2
we choose terms for which

(j=n—mn, ta=0, G1>0), j=n—19—1, 2,04 > 0);
thus

rn-~1 = 2 [fio: oin (x) - Qn—q (7/.0, . 2‘71) - Qn—-,"—l (7:0, e Z.n—l)] (y)fo L. (y(n))ln
(ZTO +--+ Zn:’}y Z.n:(); in-—l > O).

(2. 194)
Proceeding further, one similarly obtains

Iyp = 2 [fio’”'{" (@) — gr—ylig, - . 8) = Gu—y -1 (7o, . . . In1)
(2' 19 b) - Qn—q——Q (7.0, . .' . Z.n—2)} (?/)i" P (y(”))fn

(g + +  + tn="9; in=0; tug = 0; Tn—s > 0).
In general

Iy = Z [f;“’“ () = qu—n (io’ o) — n—-y—1 (7;0, o) —
(z.19 ¢) = Qo (20, - - o)) (Yo . .. (y™)im
(lg+ -+ ta=2; 1,=10; tn1 =10, .. .; n—ot1 = 0; In—g > O);

such expressions are formed for ¢=o0,1,...,2—7. The remaining expres-
sion I—; will consist of all terms of F, — £, not contained in any of the
I—s(0=0=<n—m). The @; can be so chosen that

qn—-n (io, - ’l:n) + Qn—f':—l (1'0? [ 2‘n—-—l) + -t Qn—)‘-—g (?‘0, e in—u) :fio’ ...in (x)

(2. 20) . . . : s
[ef. (2. 17D0); 4 + -+ + tn =19} tn=tnm1 =+ = tn—gt1 = O; In—g > O]

for 6=0,1,...,n— .

Let ¢(m, v) be the number of distinct sets of integers 7,, 7;, ... ¢n such that

foF Ftm=v 5,=0,..., =0,
then
( ) e(m,v)=¢c¢m—1,0)+elm—1,1)+ - +clm—1,v)
2. 21
(m=1,2,...; clo, »)=1).

The number of equations (2. 20) (with ¢ fixed) is the number of sets (¢, 7, . . . Tn—)

for which 7, 4+ -+ {p—g=» and ¢w—;>o0. The number of equations (2. 20)
(with ¢ and ¢n—s fixed) will be ¢(n — 6 — 1, » — ?,—s) and the total number (for

a given o) will be

ch—o—1,0+¢n—0o—1,1)+ - +cw—a—1,v—1);
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in view of (2. 21) the expression for this number may be written as

c(n—a,%—1).

Thus, the total number of equations (2, 20), formed for 6 =0, ...n — 1, will be
n—7

(2. 21 a) ey = 2 cln—o0,v—1) (cf. (2. 21)).
o=0

In consequence of (2. 17b) the equations (2.20) are linear non-homogeneous in

the @j(x; ko, ... ky+;). Inasmuch as in (2. 17 b)
b+ F kprj=v—1 (kg=o0, ..., kyr; = 0)
it follows that, for j fixed, there are
el +j,v—1)

expressions @;(x; &, ... ky+;). To infer this it is necessary merely to note the
statement preceding (2. 21). Accordingly, the total number of ¢; (for j=o, ...
n — 1), involved in the equations (2. 20), is

clpy—1)+eclp+1,v—1)+-+cn,v—1).

The latter sum, however, is precisely the number ¢, of (2. 21a). It is not dif
ficult to see that the equations (2.20) are actually satisfied (formally) for a suitable
choice of the @;; clearly, the @; so chosen will be in the form of a product of a
rational power of x by an expression {z},.

With the equations (2. 20) satisfied, (2. 18) will be reduced to

(2. 22) W= =Yz, y g, ... g ),
none of the y” (A = ) being involved. From (2. 14) we then obtain
(2. 23) F,=Q(@,y, ... y") + e,y 9", ...y,

where Q is of the form of the second member in (2.13). According to the
hypothesis of the assertion {to be proved) in connection with (2. 11), ... (2. 13),
the equation [, =0 is satisfied by the general formal solution (containing
arbitrary constants) of (2.12). In view of the definition of 2 by the second
member of (2. 13) we shall have @ =0 for the above mentioned general formal
solution. Whence this solution must also satisfy the equation y = o. Inasmuch
as the latter equation is of order = 5 — 1, the coefficients of the various monomials
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(2. 23a) () . .. (yor—)u—

in v must be all formally zero. We thus have F, = Q, which completes the
proof of the assertion in question. Clearly, if the fi(xz) in (2. 12) and the coef-
ficients in F, are rational functions of x the same will be true of the coefficients
in the (Dj.

An examination of the steps involved from (2. 14) to (2. 23 a) leads to the
following conclusion.

If the 'actual’ homogeneous equation of order n and degree v

(2‘ 24) F/v (x, Y, y(l)’ . y(ﬂ)) =0

has coefficients asymptotic, in a region R extending to infinity, to series of the form
(2. 7) and if (2. 24) @s satisfied by every actual solution of an ’actual’ linear dif-
Jerential equation

(2. 25) L, y@) = /@)y (@) —o (o < ),
where -
(2. 25 a) Ji(@) ~ i (@) = an® {z}, (in R; 7 (¢) rational),

then (2. 13) will hold, the coefficients in the @; being functions asymptotic in R to
expressions of the form xh{x}, (A, rational). The above assertion is made under the

supposition that

(2. 25 b) S (@) ~ L (x) (in R;j=1,2,...0—1).
The truth of this statement follows, if we recall that the coefficients
@j(@; Ky, . . . ky+j), involved in the @;, enter linearly in the system of equations

(2. 20), while in (2 20) the coefficients of the g; are functions asymptotic in R
to expressions of the form x*{x}, (1 rational).

3. Conditions for Existence of Formal Solutions.

In view of (1. 4) and (2. 7) the formal equation (1. 4) may be written as

Fy?__zxn(il,...iv) [bz'),,,..i,,, + bt;l,...ivx—l d b:;”"'i”x_a‘*' ]
(3. 1) S
syl gyl gl =0 (0=<1i, 75, ...% =n),

where the 7%(7,,...7,) are integers. We shall now examine conditions under
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which (3. 1) has a formal solution s(x), as given by (2. 1),
and p > 0; that is, a solution

(3. 2) s(x) = e 27 o (x)
with
1 m
(3. 2a) olx)=o0,(x)=06,+ 0,2 *+ - +opxr F +- (6, &= 0),
b4 1
(3.2D) Q@) =hox* + - + hyy x* (hy = 0).
Formally one then will have
d . d
— = gQ) pr -
5. 3 L= 1@+ Lo,
where
P_.
AMx)= QW (z) + ra—l = x* 1w(x),
(3.3a) 1 o
wE)=w, +w,z ¥+ A+ wpx F, wy=2A{j)h (j=o0,1,...9),
A4 _P—J < j<qp— Ap) = By =y
(3. 3b) G)="7~l=isp—1), rp)=1, =

c..{2.1¢) with u=0

Consecutive applications of the operations involved in (3. 3) will yield

s () = €@l g7 [A (@) + Ed;]ia(x),

which, in view of (3. 3a) and (3. 3b), can be put in the form

(3.4) 0 () = @) g’ -1, (2),
oia) — [w (2) + ml—%i]{a (2) — [w (2) + % i]

(3. 42) dz dz

Accordingly

(3. 4b) 0, (x) = o(x), 0" =0y

It is observed that in (3. 4a) the symbol
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cannot be symbolically expanded according to the binomial theorem. By (3. 4a)

Zl Y hio ) + q(7) o)

(3-5)
[t=0,1,2,...;7=p; cf. (3.3b), (3. 2b)],
where
(3. 5a) g(r)=o{forr < p), q(z) = _1—1;77 (for > p).
One may write (3. 5) in the form
5. yeli + 1) = aye (i) 400 (a=22).
where
Yo () =6, fo(i) = DA byl + q (o) 0,

(3. 6a) sjl

= Ay () + gl y—pli)  (of. (3.3b); j =)
and, by (3. 4 b), |
(3.6D) Y. (0) == o, (z=o0,1,...).

If in (3. 6) f.(¢) is thought of as known, the resulting difference equation gives

the following solution for positive integral values z:

7—1

(3.7) yo ) = at g (0) + D fulj) @1

=0

Accordingly, from (3. 5) we infer that

(3. 8) =qa' g, + Z(t 1 [Zl Jheal + q(7) 0&&,)]

(cf. (3.6), (3.3Db), (3.5 a); s=p). Consideration of (3. 8) leads to the conclusion

that the ¢/ are of the form

,
ol = A7 o,

(3-9) prt

i=0,1,2,...; Apy=o0(0=0<1), Lr=1].

Substitution of this in (3. 8) will yield
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T i~1 8 —1 ~p
» 3‘2)0 =qgg, + 2@’*1"9 Z). hSZA{_c Ot Zal" 7 q(z) liﬁp,gog
=0 e=0 = =0
i—) 1
{3. 10) ——ao,JrZal""“}{oOZk Moo+ o0 DAl +
§=1
~m i1 P
+om21 MWt e A1) R A 1}4« Dag(t) D) A g
J=0 =0
Here and in the sequel
(3. 10a) A =0 (for j > p).
Comparing the coefficients of the g, we obtain
' s _ph
(3. 10b) M) =at. (aw—k-“),
i—1 kanadd
(3. 10¢) Eal“‘_JZA (s) hs Aﬁ{_w (r—p<e<w),
i—1 0
A9, Za"“fz M) he i)+ Zaz“lﬂq i ]
(3- 104d) =1

(s<p, o=e=1—p; cf. (3.10a), (3. 5a), (3. 3b).

In view of (3.9) it is noted that the A7, are known. For ¢= 1 the relations
{3. 10b)}—{3. 104) will serve to determine the A7’,. In general, having obtained the

12, (j=1,2,...,¢— 1),

the lg)p (0 = ¢ =) will be given by (3. 10 b}—(3. 10d), as formulated. Thus we
observe that the coefficients o, involved in o:(x) of (3. 4), are of the form (3. 9),
where the A7 can be determined with the aid of (3. 10 b)—(3. 10 ).

By (3. 4)

(n)( Yt (e ) I st (x) == v @) rx(i) )(z doeed 1) ﬁmu(x
(3. 11) P w |
where =
s = Sy
(3. 11 a) e

(Jis - dvz 05 gy + ot e =)
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In consequence of (3. 11) and (3. 1) it is observed that s(x) ((3. 2)) will be

a formal solution of F, = o, if

n @ -3 _l
3. 12) S @, Ry vat Neeha F—o,
7y, .. 1,=0 f=0 j=0

where

(3. 12a) Ny oriy =N (lg, ... Ts) + (%—I)(i1 + o+ z'v)'—-ili,,,,,.fv

{integers I;,,...;). For convenience we shall write

° e N
Zbl(}"“’vx ﬁzEbj(zlv cooh)a F,
g0 =0

with
J

% #+ an integer)

bi(ty, ... %) = o (when
(3. 13) )

Iiﬁk(il,...iqy)zb;;"-"‘v B=o0,1,2 ..).

From (3. 12) it is then deduced that

n L .= g
(3. 14) 2 x’"‘ll”"'”Zd]‘f"'“"vx k=0 (cf. (3. 12 2)),
Tyy .o dy=0 Jj=0
where
(3. 142) diptr= X biley, .. el {ef. (3. 13), (3. 11 a)).
nti=J i

In order that (3. 14) should be formally satisfied it is necessary that there
should be at leaat two terms of the same degree ¢ in «, the other terms being
all of degree =p¢. Thus, we should have

I 1 4
];la;,.A.av:%Zﬁl,.‘.ﬂv :Q:Q(z)

for some particular distinct sets of values (e, ... a), (8, ... 8), while

I

% Ly,.i, =0 (8) (for all sets (Z,, ... 7).

k

In view of (3. 12a) it is accordingly observed that one should have

{3. 135)
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provided 8, + -+ B # o, + - + «,, and

. . P . .
1580 Al )=l g = = (=)l ) = G )
(for all sets ((,...7)). This gives rise to a diagram of the Puistux-type, in a
way analogous to that of the case of non-linear algebraic difference equations.

Thus, the number-pairs
(3. 16) @+t e, gl 1)

we represent in the Cartesian (x, y) plane, where x=i,+ - +4, and y=n5(i,, ... 7).

It is then observed that admissible values ]i—- 1 (which will be taken rational,

p and % being integers), such that (3. 15), (3. 15 a) hold, are defined as the nega-
tives of the slopes of the rectilinear segments joining pairs of points (3. 16),
with the understanding that only those segments are considered whose totality

constitutes a polygonal line L concave downward, with no points (5. 16) above

L. Inasmuch as we should have 1]—2> o, only those sides of the polygon L will
give rise to admissible values 1]—: whose slopes are less than unity.

In the case when a vertex P of L is multiple, that is, when we have for
at least two distinct sets (8, ... &), (o, ... @) the equalities

(3. 17) B+t b=t ta, 9B, .. 8)=1le, ... a)
one may choose for %* 1 any rational number «(> — 1), provided that L lies
to one side of the line through P with the slope — «¢. We then shall have
§> o and (3. 13 a) will be satisfied.

Suppose %(> o) is given by (3. 13) (or as described in the case of a multiple

vertex). We proceed finding conditions under which the differential equation
has a corresponding feormal solution of the stated type. Tt is observed that
(3. 14) can be arranged as follows:

18 4 _1 _
(3. 18) x*[d + 0,2 P4+ dx P4+ ]=0,

2

where



Developments in the Analytic Theory of Algebraic Differential Equations. 17
the tntegers A, k being suitably chosen. Clearly one should have
(3. 18a) dj=o G=o0,1,...).

Subsequent developments will be considerably simplified if, corresponding to the

P

value % under consideration, we take note of the relations
p A
i, ... o)+ /E_I (e + - +a)=nB, ... 0 ~—I +"'+‘3~):']'c,
(3. 19)
0 ...z;)+(1-"—x i)+ i )sﬂ
1 k ‘1 = ]C

and write the differential equation (3. 1) in the form

A (p_ fteerin ) & .
(3.20) Fy= Dot (=) +”[Zb§(i,,...z’v)x "']-y("*).‘.y(’w)=o.

Ty eedy, =0

This is possible, inasmuch as in view of the second inequality (3. 19) one has

Y

A . . . . | G .
(3. 20 a) P (ZZ—— I)(z, 4+ L)~ ... zv)=];w(zl, L) =0,
where w(7;, ... %) is an integer. By (3. 20a) the b;(¢;, ... 7,) of (3. 20) are re-

lated with the b,(7;, ...7,) of (3. 13) as follows:

e . O (7 < ’lt’),
.20b bo(ey, ... 7)) = ! .
5 ) 1 ) {by_w(z',, vty (we=wlly . ) y=w).
According to this the bo(iy, ...7) are those by(ey, ,..2)[= by "] for awhich
w(iy, ... 1) is zero; thus, amongst the b;(7,, ... 7,) will be found in particular
(3. 21) boleg, . .. an), Bo{Bi, .-, 8).

Substitution of (3. 11) in (3. 20) will yield, after division by x*" exp. [vQ (z)],
1= _d
(3 22) xkz Zl,...l',,).’}C kzo;h"'ivx k_—.—_o‘

oy 7—~0 Jj=0

Thus, the d; of (3. 18 a) (cf. (3. 18)) may be expressed as

(3. 22 a) Z szﬁt oy o) iy,

L.y t==0
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Hence, in view of (3. 11 a), the equations (3. 18 a) may be written in the form
i v
(3. 23) gi= 3 Dzl .- 4) X [[e=0  (i=o,1,..).
Uy o0l Ty £=0 Tyt tr,=t =1

Furthermore, by virtue of (3. 9)
(3. 24) Si= 3 Sbiily.i) D [ She,
' =0

T dy Tt =t s=1 ¢=0

(cf. (3. 10b)—(3. 104d)). By (3. 24), for =0, and by (3. 10b)

o Gy =07" X\ boliy, ... %) Hliis‘)’ %
(3. 23) Pt -

e . ; h (7R SRRSO h
= Z bo(iy, ... 14 (%) =B, (1%)

Thus the first equation (3.23) will be satisfied if and only if 7, 15 a root of

the characteristic equation
(3. 26) B, (]7_]?2) =0,

where By(u) vs defined in (3. 23).
From (3. 10a)—(3. 10d) we obtain

(3 27) W, = ia= A1)y (a=22).
(3. 27a) li"’)z_g =ciod(2) by + ¢ (A(DR) @2

By induction it is established that

2'(ti,)t—m = ZC"’ q—1 ai—q Z ()" \kl) hk:) s (2‘ M"ﬂ h/;q) = F’S:L)
g=1

(328) k,+~~~+kq:m
m=1,...p—1),
where
i—1
(3. 29) PZh=1; ¢0=1; Cz‘,a=2(‘j,o—x.
J=0
Furthermore,
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By induction it is inferred that

m
l‘(tl,)t-—p—m = F,(;Lm + q (T - ;) 2(5' + 1) ¢, sal—s_l,

s=1
(3. 31) S Ak - (R b
P Y
A hs=0 (fors>p) p=kh=1,m=1,2,...t1—p;t=p+1].

In view of (3. 24) it is then found that d, contains A (1) h; B (a) + B, (a) (a 210—/,:0)

as a factor. Accordingly, h, will be determined from the equation ¢, =o, if a
is a simple root of the characteristic equation (3. 26).
The subsequent expressions for the d; (j =2, 3, ...) are rather complicated.

fo should satisfy (3. 26), it is

Suffice it to say that, while it is necessary that P P

2ho 4 ouia

not necessary for the existence of a solution of the stated kind that %

. .. h
be a simple root of (3. 26). On the other hand, a condition requiring %’ to be

a simple root of (3.26), while sufficient in an extended varicty of cases for the
existence of a formal solution of the stated type, is sufficient not in all cases.
Inasmuch as our main concern is with the analytic theory we shall not
need any further details in this direction. It will be essential, however, to note
the following.
With (3. 26) satisfied, d;(¢ > o) is a function of h,, ... hy, 0, ... 6i—1; thus,

0; = 6i(ho, ce . hp; Gy, - - - 0'[—1),
d; being independent of ¢, 641, ... .

Lemma 3. 1. Consider the formal non-linear differential equation F,=o0 (3. 1).
Let ]7:( >o0) be an admissible value (p, k integers) formed in accordance with the
text subsequent to (3. 14a) up to (3. 17). If the equation F, =0 has a formal solu-
tion (3. 2)—(3. 2 b) with this value of % then hy necessarily satisfies the characteristic
equation (3. 26) and we have d, given by (3. 23), while

(3 33) 61'56;'(}’0, -.'hp; (U ...0'5—1)=O (i>0),
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where the 0; are defined by (3. 24); the d; are the coefficients in the expansion (3. 18)
of the first member of (3. 14) {¢f. (3. 11)—(3. 14a)).

Examples of equations F,=o0 (3. 1) which possess formal solutions (3. 2)—
(3. 2b) can be easily given. For instance, let L(z, y)=o0 be any equation of
the form (2. 12), (2. 12a) and satisfied by the given formal solutions; we may
then take F, of the form (2. 13), assigning the coefficients in the ¢, arbitrarily
of the form z* {x}, (4, rational).

4. A Transformation.

Suppose that we have on hand a differential equation

= Z iy ) By ey (x) y(f,)y(iz) L y(fy) =0
(4. I) Ty oendy

(0=14,4,...4=n; 90, ... integers)

with coefficients &% (x) analytic (for ) in a region R, extending to in-
finity and bounded by two curves each with a limiting direction at infinity;

moreover, suppose that

«©0

(4. 1a) B ()~ Db iv gt = B () (in R).

7=0

With the ’actual’ differential equation (4. 1) there is associated a formal equation

(4 2) Fv == 2 " (i, .. 7,) ﬂ"]' sty (x) y(’l) y(”?) .. y(l‘y) = 0.
Ty e iy

In accordance with the previously established usage, we shall say that s(x) is a
formal solution of (4. 1) if it is a formal solution of (4. 2).

Suppose now that s{x) of the form (3. 2)—(3. 2 b) is a formal solution of
(4. 2) in accordance with Lemma (3. 1). The main purpose of this paper is to
examine the possibility that there should exist an ’actual’ solution y(x), analytic in
a suitable subregion (extending to infinity) R’ of R and satisfying in R’ the equa-
tion (4. 1) as well as the asymptotic relation

(4. 3) y(x) ~s(x).
As a preliminary to the investigation of this sort, we recall that corresponding

to the side of the Puiseux diagram, to which the value ‘-z {(involved in (3. 2 b))
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belongs, the formal equation (4. 2) has been put in the form (3. 20). The cor-
responding form for the actual equation will be

3_—1)(f1+--~+z',.)

i
(4 4) F,:’ = Z xF (’v Pin ... (x) y(fl) y(iz) . y(iv) =0,
[I T

where the functions -~ % (z) satisfy the relations

* _r
(4. 4 a) B (g ~ Bl () = Zb;(i,, ootz F

=0

{in R}.

On the basis of the form of s(xz), as given by (3. 2), we envisage the trans-

formation
(4. 5) y(@)=eWar (ot 2) + o @),
where
1 _t
(4. 5 a) olt,ry=0,+0,x *+ -+ oax *
and ¢(z) is the new variable. We have
7 rdi P
(4. 0 2 a7 o) — v ) g )
with
1—-2 g4
(4. 6 a) 0s ) — [w () + & F ﬁ] ol2) (cf. (3. 3 ).
In particular
_?
(4. 6 b) g,-(ac)z[w(oc)—l—oc1 k@]gi_l(x) (t=1,2,...; @ =)
On the other hand,
i - (P
(4. 7 Lo (s ) = 012 ) o1, 2),

(4.73)  oft,x)= [w (x) + = 'dc'c]ia(t, x) = [w (x) + &'~ %] 0:—1 (t, 2)

=6l (() + P (Hx F 4 - +.00 (o K+ (0, (8, ) = 0 (¢, ).
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In section 3 the o of (3.4 a) have been computed explicitly in terms of
the coefficients o, of (3. 2a). In view of (4. 5 a) it is inferred that the ¢/ (¢) of
(4. 7 a) are the o{;') with the g;(j > ) replaced by zeros. Thus

(4. 8) o) =0l [with ;i (7 > t) replaced by zeros].

Whenece in consequence of (3. 9)

t
(4. 8 a) @ (f) = B

here the Z(i) are precisely the constants so designated in (3. 9) and defined in

(3.9), (3. 10 b) (3. 10¢), (3. 10 d).
By (4. 5), (4. 6) and (4.7)

Y

(4. 9) Y (2) = 2 =) (0: (¢, ) + @:(x)) (cf. (4. 6 b), (4.7 a), (4. 8)).
Furthermore

U WA
(4. 9a) ¥y (x)y™ (). ..yl ()= e e@ cc”x(" l)( et )H(a,-a(f, x) + o;, (@).

a=1

Substituting in (4. 4) we get
(4. 10) F; =e W) 2_’ b (2) [T o, ¢ 2) + @i, @) =

a=1

Now, inasmuch as

H(1+ca—l+z D GGGy,

a= m= 1]x<],,\...<jm

the above may be written as

AT Ha,atx{1+2 > AR

iy iy i< <y O, @) 00 (@) .oy (x)J

Accordingly ¢ satisfies

(4. 11) Lg) + K (o) = F (),
where

(4. 11 a) L{o) Ei 27 bt 1;[% @)
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(4. 11 b) K(Q)E‘ Z b"'l'“‘"v(x)ﬁaia(t,x)é 2 @@(ﬁ)%@

e i 0@y (@)

(4. 11 ¢) Fx)= - Z by () f[al-a {t, x).

In view of (4. 4 a) one may write for any 7> o0

(4. 12) bin -y (x) = j by (@, .. . 2) a;%’ + x_%l Bi,, ..., (T, @),

with -

(4. 12 a) lﬂi,,.,.f, (v, 2)]| = 8. (z in R).
Thus F{z) of (4. 11 ¢) may be expressed as

(4. 13) Flx)=F,(x) + F,(x),

(4. 13 ) Bl =— 3 ¥l e o5

Tyy e oo By ==

z+1

4.13b) Fyl@)=—2z F* gt,7;2), B(t,7;2) = 2 Bi,...i, (2, x) Ho;a(f,x).

Ty e ey

We shall examine F'(x) closer. On taking account of (3. 11) it is inferred
that

v w ) ) __L

(4. 14 o) = Sena
a=1 Jj=0
where (compare with (3. 11 a))
(4. 149) Gt = S O () . o) Gt =)
i dy

By (4. 8 a) and (3. 9)
(4. 13) " (t) = d? o=y=t).

7 7

Bence from (4. 14 a) it is deduced that

419 =g T
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Substituting (4. 14) in F,{(x) of (4. 13 a) one obtains

1 d

(4. 17) —F (@)= 0y(x, ) + 0, (z,)x F+ -+ &(r,hax F+---.

First of all we mnote that in view of the origin of I',(x) the series (4. 17)
certainly converges for |xz|= x, (x, sufficiently great). If it is recalled how d;
of (3. 25) was derived, it is concluded that

(4. 17 a) di(z,t) = d&s,

with the UJ(-i“) replaced by ¢/ (f) and the b;(i, ... %) (for y > ) replaced by
zeros. Accordingly, by (4. 15) and (3. 23)

(4. 17 b) di(z, t) = o; o=i=t),

proveded we take T = 1.
The relations (4. 17 b) are of great importance for us, inasmuch as in con-

sequence of the way the formal solution s(z) has been defined
do==0, d,==0, §;=o0,....

Thus, with © = t, from (4. 17) it is deduced that

t+1

1
_Fl(x):: k [6t+1(’l,t)+at+2(’[’t)x k. ]

On taking account of the convergence of the series (4. 17) we conclude that

t+1

(4. 18) |Fy@)| x| * Fy(t0) (in R).

Farthermore, by (4. 13 b}, (4. 12 a) and (4. 7 a) one has

(4. 18 a) [Fe@) =l F Byt ) (in R).
Thus, by (4. 13), (4. 18), (4. 18 a)
(4- 19) Fla)=z * F(ta),

(4. 19 a) | F(t,2)| = F (in R; finite F}; independent of z).
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The form of L{g) ((4. 11 a)) will be now determined. It is observed that
0o () = o () and that in view of (4.6 b)

(4. 20) 0: (%) = wio (@) @ () + 1051 (x) @ (&) + -~ + 1wy, +(x) 0¥ (),

where o, o(x) =1 and

_P ? _i
(4. 20 a)  wiol@) = w(x) wiy, o (x) + x k wl | o (a), wlx) = DAz k,
Jj=0
(4. 20 b) ws,m () = w () iy, m () + xl—’z(wi-ﬂlfm(x) + Wie1,m—1 ()
m=r1,2,...7— 1),
P
1__
(4. 20 ¢) wi,i(@) =2 *wi_y ().

By (4. 11 a) and (4. 20)
L(o)= Z b+t (x) 2 0; (x) HUL',, (t, x)
T ey j=1

a#*j

v

— Z | Blis .-y (@) Z i Wi,y (x) 9(7) (x) H o, (t, x)

iy a Ty j=1 y=0 a# ]
Thus
(4. 21) L{g) = ln(#) " (&) + Lo (@) " (x) + - + L () @ (),
where
(4.218) L= D bhiofa) D wy, (@) k5 I o (t.2)  (cf. (4. 20 a)—(4. 20 c))
Ty ona iy i=1 a#f
with
(4. 21 b) Fr=o0 (for i <y), Br=1 (for ¢ =)
It is observed that
m(l—p—) .
(4. 22) wim(x) = v m(x) (m=o,1,...17),
where .
(4. 22 a) vi,m (x) = polynomial in & ¥, vi, i (@) = 1.

Whence (4. 21 a) may be put in the form

) v
(4. 23) L@ =08 S ) oy ] 060
7 J
TR Ji=1

a#j

[ef. (4. 20 a}—(4. 20 ¢}, (4. 21 b), (4. 22)].
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By (4. 4 a), (4. 7 a) and (4. 23)

J

(4. 24) UL(2) 90—7(1_%) = Ay () ~ Lo (8) + 1,1 (9) x—%‘ + 4+ L0z E4+-- (in R).

The series in (4. 24) is the formal expansion of the expression

(4. 248) D Fiobv(@) Doy, @E ][ Do (e ¥ (ef. (4. 4 a), (4. 21.b)).
Tyeeaty j=1 a#®j 8=0

It is observed that

(4 24 b) lej (t) = I‘ij (j = 0) 7:: .. t’)7

where the l;; are independent of ¢, being the coefficients in the formal expan-
sion of (4. 24 a) with the ¢/ (¢) replaced by the ol’, respectively; moreover, ¢ can

be made arbitrarily great by a suitable choice of . On taking account of (4. 24)
one may write (4. 21) in the form

n

L) =" 8 [ (@) 0 (@) + 2o ) 8 @ (0) o -

(n—7) (g —1

@ e 4w E o) et (0 2

Let w40 denote the constant term in the polynomial v;,(x). Then by (4.22 a)
we have
(4 26) /Un, n, 0= I.

The constant ln,o(f) (=1, 0), involved in 2, (z), is obtained from (4. 24 a) on noting
that

(4. 26 a) olia) (£) = o, a'a (a — P_k’b)

and on taking account of (4. 4 a). Thus

o= by (ly, - - - 2) D vimo k™ [ (0o a'a) (cef. (4. 21 b)).
foe. 1, j=1

a#j

Whence, inasmuch as £%" =0 for ¢; <n» and %" =1, one has

v
ln,o= Z b, (g, - . . 7n) Z Vn,m,o K™ 0% @i+
Ay iy j=1
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and, finally,
— .\ (pho\
(4. 27) Ino=0a" 12] 2 21, R Zw) (7) ;

J=1 1,,...1

here the summation symbol with the superscript j s over the tolality of all those sets
(24, . . . %) which contain precisely j elements each equal to n.

At times the supposition will be made that I, , ((4. 27)) is distinct from
zero. This hypothesis depends only on those of the initial coefficients of the
differential equation F, =0 which correspond to the Puiseux-diagram-segment

associated with % In this connection it is to be recalled that h, depends on

the aforesaid coefficients only.
By (4. 25), if 1, 0 = 0, one will have

n

_P p_ wl®—
(4. 28) Lo)==x (1 ") An () [o™ @) + by (x) 19("‘” @+ + @ (" g o))

(cf. (4. 24)),

where
1

(4. 28 a) by () ~ by o(t) + by () ¥ +--- (in R).

Here the b,;(0 <j =<') are independent of ¢; on the other hand, j/ can be made
arbitrarily great by a suitable choice of ¢
In view of (4. 11 b), of (4. 20) and (4. 22)

420 K= 3 1) ) S el e, o (8,

m=2 ji <+--<jp

Syl 3 [Sumenst)

m=2 j, < 7=0

ijz ijm P e
. [ S vy, () €9 () 2 (‘—%)] [ vy @) o () o (‘"E)] H'% (t, 2),
y=0 y=0 a=1

where the product symbol is with respect to 7,, 7y, . . . 7,, omitting 7, %,, . . . %,

In consequence of (4. 22 a) from (4. 29) it is inferred that

(4. 30) K(o) = K, (0) + Ky(o) + - + K, (o),
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where

300 Kald= 3 #mmio) [[@@@res D™ (gt mamn)

”no,...m"
In (4. 30 a) the &™ - (¢,x) are analytic in « for z in R (x # «) and

® -
(4. 30 b) koMt )~ D ke mn()w

y=0

(in R),

while the & ™ (f) are independent of ¢ for y <y (y > o with #).

We formulate the preceding results as follows.

Lemma 4. 1. Consider the actual differential equation F, =o0 ((4.1)). Let
s{x) (3. 2)—(3.2Db) be a formal solution of (4. 2) according to Lemma 3. 1. Let
4. 4) be the corresponding form for the equation It =o. The transformation (4. 5)
(with (4. 5 a)) leads to the equation

(4. 31) L{e) + K(o) = F(x)

for the new variable ¢(x). In (4. 31) the linear differential expression L (o) is given
by (4.25) (with (4. 24)); when L, o of (4. 27) is not zero, one may put L(o) in the
Jorm (4. 28) (with (4. 28 a)). Moreover

Ko)=K,(o) + - + K, (o),

where Kn(9)(2<m =) is a homogeneous differential expression of order not ex-
ceeding n and of degrec m; Ku (o) may be expressed as in (4. 30 a) (with (4. 30 b)).
The function F(x) is analytic in R(x # ) and is of the form (4. 19) (with (4.19 a)).

5. Lemmas Preliminary to Existence Theorems.

To construct a solution, with appropriate properties, of (4. 31) we determine
in succession functions

(5. 1) wy(x), wy (), . ..

by means of the relations

(5. 2) L{wo) = F(x), w—1(x)=o,

(5.2 a) L(w) = — K(wi—) + F(z) (t=1,2,...).

Under suitable conditions lim w;(z) will be a solution of (4. 31). Whe shall write
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(5. 3) 2i(x) = wi () — wi— (x) (t=o0,1,...);
then
(5.3 a) 2o(x) + - + 2j(x) = wj(x) (j=o,1,...).

The successive differential relations to be satisfied by the #;(x) are

(5. 4) L(zy) = F(z), L(z;@) = — K (wj— @) + K (wj—o ) (j=1,2,...).
Under suitable convergence counditions the series

(5. 5) e@)=2zo(2) + 2,(@) + -+ gi(x) + -

will represent a solution of (4. 31).
Unless stated otherwise it will be assumed that R covers the complete neigh-
borhood of infinity; that is, that R consists of the region

o=i=z2nk; |z|=x(>0) (£ = angle of z).

For the present it will be assumed that 1,0 0 (¢f. (4. 27)). In this case L (o)
is given by (4. 28). The equation

P

50 ) L= T = + nwE e s

presents the general problem of the ¢rregular singular point (for linear differential
equations). It will be necessary to use some of the results of the complete
analytic theory of this problem, developed by Trsrrzinsgy?,

The equation (5. 6) possesses » formally linearly independent formal solutions

(5. 7) si(x) = e W grig(, x) t=1,2,...n)
where
(5.7a) o(t,z) = {z},, (cf. Definition 2. 1)
and

1
(5.7 b) Q:(x) = polynomial in z* (integers #»; = 1).

The power series involved in {x},, are series in xV**). We note also that the

P
highest power in €; is xz*. Now the @;(x) depend only on a certain initial

! See the concise statement of the pertinent results, established by TRJIITZINSKY, in (T) [cf.
foot-note on p. 3J.
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number of the coefficients in the formal series to which the b,(z) are asymptotic.
Hence by taking ¢ sufficiently great (as forthwith is done) we have the @;(x) in
(5. 7) 2ndependent of t. We recall the following definitions introduced in (T) (cf.
pp. 213, 214).

A curve B will be said to be regular if it is simple and extends to infinity
where it has a unique limiting direction.

A region R is regular if it is closed, extends to infinity, and is such that if
x is in R then |xz| = a > 0; also the boundary of R is simple and consists of
an arc y of the circle |z|=r, and of two regular curves extending from dif-

ferent extremities of y. In a generic sense

(5 8) R(alv 02)

is to denote a regnlar region for which the two regular curves (parts of the boundary)
have limiting directions 6, and 0,, respectively.

We designate by B;; a regular curve along which

(5. 9) R(Q:@) — Q) =o.
Such curves are defined only provided @;(x)— @;(x)=0. We denote by
(5. 10) R, R,,...Rxy

the regular regions, separated by the B;; curves (formed, whenever possible, for
¢,j=1, 2,...n), constructed so that interior no such region are there any B; ;
curves. Any particular region Ry has the form R (0 1, Or o) (k1= 0r2). We
shall designate the regular curves, forming part of the boundary of I and
possessing at infinity the limiting directions 6y 1 and 6., by By and .B,
respectively.

According to the Fundamental Existence Theorem, due to Trirrzinsky, the
following may be stated for the equation (5. 6), with reference to any particular
region Rj of the set (5. 10).

If 6 1= 0, ., equation (5. 6) will possess a full set of solutions

(5. 11) i (x) (f=1,...n)
with elements y;(x) analytic in Ri(x % «) and satisfying relations

(5. 11 a) yi(@) ~si(e)  (in Re; 2=1,...mn; cf. (5. 7));
that is,
(5. 12) yi{w) = e ariy (4, x),
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with
(5. 12 a) y (2, ) ~o(l, x) = {x},, (in Ry).
If 61 << 04, there exist regular overlapping subregions of Ry,
(5. 13) +Ri= R0k, 1, 0i9), 1R = R (0,1, 0k 1),

with boundaries containing ;B; and ,B;, respectively, so that there exist two

full sets of solutions

(5. 13a) i) f=1,...n); wilx) =1, ...2),
for which?!
(5. 13b) Wi(X) ~si(x) (=1, ...n; in ,Ry),
(5. 13¢) Wilx) ~si(x) (=1,...n; in (Ry).

In the sequel the symbol (a;;) will denote a matrix with a;; in 7-th row
and j-th column (7, j=1,...%n). The determinant of (a;; will be designated
by |(a: )|

In view of the definition of 7'(g), given in (5. 6), the equations (5. 4) may
be written in the form

(5. 14) T (2 (@) = 8 () U=o0,1,...),
where

(5. 140) B () = @x (=) 1),

(5. 14b) B (#) = ).nl(x) o i (— K(wj1 (@) + K(wja@)]  (j=1,2,...)

(cf. (4. 19), (4. 30), (4. 30a), (4. 30D)).
Let us consider now a non homogeneous differential equation

(5. 15) T (@) =8,

typical of any equation (5. 14). TIn view of our purposes it will be desirable to
transform (5. 15) into a system.

First of all we note that the system, written in matrix form,

! For details see TRIITZINSKY [Acta mathematica, loc. cit.]
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(5. 16) Z0(2) = Z () D (2), Z(x) = (& (),
where
0, O, , — bn (x) x" (%_1)
(5. 16a) D (x) = (d; @) = {1, 0, R x(n-—l)(
0, 0, 1, ——bl(x)x%—l

is associated with the equation T ({() =0 as follows.
solution of (5. 16) then ({;,;(@) = (¥ () and the & (x)

If (& ;@) is a matrix

(¢=1,...n) will con-

stitute a full set of solutions of T'({(x)) = 0. On the other hand, ¢/ L (x)(i=1,...7)

constitute a full set of solutions of T ([(x)) = 0, the matrix
(s. 16 b) Z (@) = (&, @) = (7 @)
will satisfy (5, 16). It is also observed that if a matrix

(Gi, 5 @)

satisfies the non homogeneous system
(5. 17) ZW(a) = Z(x) D (@) + B(z), Z(x)= (&
(cf. (5. 16 a)), where B(x)=(8; ;(z)) with

(s.172) Bi;(x) =0 (j <), fial@)=gx),
then

(5. 17 b) 8 (@) = Gijra (@) (5 < m), i, () =,
and

(5. 17 ¢) T (5,1 @) = B ).

That s, every function in the first column of the matriz sol
will satisfy the equation T (C(x)=8(x).
A solution of (5. 17) may be given in the form

;@)

(@)

ution (G, ;@) of (5. 17)

(5. 18) Z(z)=W(a) Zy(2) [Z (@)= (L:s@), Zo(x)=(Lrs0@), Wla)=(ews;@)],

where Z,(x) satisfies (5. 16) and
(5. 18 a) W (x) = B(x) Z;" (x).
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Let R denote any particular region referred to in the text from (5. 11) to
(5. 13).

On taking account of the italicised statement in connection with (5. 16 b),
the matrix Z;(z) in (5. 18) is formed according to (5. 16 b),

(5. 19) Zy(x) = (Gi,j:0 @) = (¥ (@),

where the y;(x) are from (5. 11a) or from (5. 13b), (5. 13 ¢), according to the
character of B. Thus

(5. 19a) yilx) = 4™ ariy(d, x), y (2, x) ~ {x),, (in R).
We also have
(5. 19 b) Y () = et gt =0 (§=1) g, 1, ),

where y;—1(¢, z) ~ {z},, (in R). We proceed to determine the form of the ele.
ments in the 7-th row of the matrix

(5 20) Zo_l (Z‘) == (!71,](’11'))

In the determinant |(y/~" ()| the logarithms, occurring in (5. 19b), will of

course disappear and we obtain

!
v w
(n2—n)—-

{5.21) A (@) = |G @) ] = @it + @l gt oty Y kd(2),
with integer w=o, %’ :};; — 1 and
1
dx)~dy +d,x ¥+ (in R; d,+ 0).

By (5. 20)
(@), oy (@), yin@), e (@)

Y (@), oy ), i ), e ()

Whence, in view of (5. 19 b)

Iy
-(n2—3n+2)

(5.22) () n, s () = e@lelt - F Q=G gru oty vy g2 dn,j (),

where
dn,3 (%) ~ {2} ) (in R).
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Thus, in consequence of (5. 21) and (5. 22)

(5. 23) Injlx) = YW T 27§ (n, 4, 2) (wl =k (n—1) — %),
with
(5. 232) §(n, j, ) ~ {x}a ) (in R).

y (5. 17a), (5. 20) and (5. 18 a)

(5. 24) w5 j 8 () s (i (cf. (5. 23)).

In view of (5. 18) and (5. 19) a solution of (5. 17) will accordingly be given by

( ) Cl ](.’1?) (sz r Cl i: 0(m>)

(5. 25)

= (Z Y=y (@fﬁ(x}gﬁ,z(m)dx) (ef. (5. 19Db)).
i=1

In consequence of the remark subsequent to (5. 17¢) it may be asserted that
the elements

A= 3 yla) JECERCIEENE

will be independent of 7 and will constitute a solution of 1(z(x) = 8(x) (provided
the integrations can be evaluated). The statement with respect to (5. 17), (5. 17 b)
will be applicable, yielding from (5.25) the following important further result

(5. 26) Rt Z Y )fﬁ(w) i, @) doe =200 x (=1, ...m).

On taking account of (5. 19 b) and (5. 23) the following Lemma is inferred.

Lemma 5. 1. Let T(z@) be the linear differential operator of (5. 6). Let I
be a wregion of the text from (5. 11) to (5. 13). Provided the integrations involved

can be evaluated, the equation

(5. 27) T(z @) =B(x) (8(z) defined in R)
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will possess a solution z(x) such that (5. 26) will hold; that s,
< )
A () = 3 e@ile) gratis- (2=1) gt (4, @)

i=1

(5. 27 a)
f B(x) e %W g7 (n, A, x) dx (j=1,...n).

In consequense of the asymptotic relation given subsequent to (5. 19Db), as
well as of (5.23a), from (5. 27 a) we derive

x
»
J2li=0 (2)| < aVZleQN‘) gt i—1) (%—1)+6|.f|e—Q,;(r) arimeBte| | da|
r=1

(5. 28)
(j=1,...7m; & > o0, arbitrarily small; z in R)!,
provided
(5. 28 a) Bla)=a=fflz), |flx)| =f (in R).

In this connection it is understood that the integrals in (5. 28) exist along
suitable paths; moreover, ¢ may depend on e.
We shall need the following Lemma.

1
Lemma 5. 2. Let C(x) be a polynomial in x*. Let R be a region extending

to infintty. Suppose

(s. 20) 5%‘[””“” <o (in B), R(@)= — 1 — 0 (6>0);
then
(s. 208) fww wildul = ot ae]

Jor all x in R which are such that the ray
6 = angle of z, r=|x| (polar coordinates 6, )

lies in R, the path of integration in (5. 20a) being along this ray. If in place
of (5. 20) we have

! Use is made of inequalities | yi—1 @4, 2)|, |7, 4, ©)| < alx e, valid in R.
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(5. 30) 5?—&3%(0@‘)) >0 (in R), || ~o0 @n R)Y,

then

X
(5. 304a) f|ec(“) wlldu] <|ef@aett|(le] = cleh); ¢ = — Riw),
c

provided z{|x]| = |c|) ¢s on a ray 6 = angle of ¢, extending into R.
g
It is noted that, if the leading term in C(z) is g,«*, then the asymptotic

relation of (5. 30) will hold when

(5. 31) cos (gjq + %0) =&>o0 (in R; j, = angle of g,).
To establish the first part of the Lemma we write

(5 32) | el ual —— I o) ua«}—l-&-al | u—-l—al —_ I Y | eH (w) ,

where by (5. 29)

(5. 32 a) 5%—'H(u) :(ﬁ’mmww 4 |—;|s)t(a ti+a=o0 (in R).

Along the ray in question H(u) is monotone non-increasing, on this ray
exp. H (u) attains its upper bound at . We have

X x
flec(“) w||du| = e”(“')f[u |77 du] (z in R).
o0 @

The second member here is clearly identical with the last member in (5. 29 a).
To demonstrate (5. 30a) we note that

(5. 33) | @ x| = exp. H,(u), H,(u)=R(Cw) + Nz log u),
gso that
0 0 I w
o ]u H, () _r’)|u|%(0<“)) + I_“—Igl(a)

With

* The asymptotic relation here is in the sense that lim |x|7|exp. (— Cl@)|=o0 (as x—
in B; all y>o).
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g 1
Clu)y=g,x*+ - + g, z* (g; = angle of g;)
and R(a) = — o', it is inferred that
% j
k i+ 1e) —
kg g 70 = Sl ot eos 3+ o)
Hence for all u on the ray 6 = angle of ¢ (|¢| = c(e”) sufficiently great, with
lul=lel,
g
——— A= .
OlulHl(u)_o

In view of (5. 33) this would imply that the upper bound of |u® exp. C(u}|, for
u on the path of integration in (5. 30a), is attained at v =2z. Thus, under the
stated conditions

Z z
/ | €l g || dun| < | ™) x“l] |dul| < |ef®@ae+t].
3 c

The Lemma is accordingly established.

Definition 6. 1. Let R denote any particular region referred to in the text
from (5.11) fo (5.13¢c). We shall designate by R* any reqular subregion of B
such that with respect to R* the following will hold for every particular function

(5. 34) g {a) = — ks (Q:(@).
Either
(5. 34a) @z)=<o {(tn R*)
or
(5. 34 D) () > o (in R¥), [¢%W]~o0 (in (R¥).

Given a region R, as specified in the above Definition, subregions E* could
be found as follows. We consider all regular curves extending into R along
which at least one of the functions g;(x) vanishes.! Interlor each of the several

! Such curves are formed only corresponding to the functions ¢, (ac) which are not 1dentlcally
zero. A regular curve satisfying an equation g,(x) =o will have at infinity the limiting direction

of a corresponding curve satisfying the equation ER(Q/-: (x)=o0.
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regular subregions of R, into which R is subdivided by these curves, each of

the functions

(s. 33) 2:(2), .- - ga (@)

will maintain its sign. Consider any such particular subregion R’. If in R’
all the ¢;(z) =0, R is a region R*. If there are some g;(x), say

(5. 36) 0, @), glx), .. g, @),

which are positive in R’, one may take as R* any subregion of R’ within which
(5. 36 a) ¢G5 e eUm®™ < o

in the case when R = R(6,,6,) (0, < 6,) conditions (5. 36 a) will be satisfied in
R*= R0, + &, 0, —¢&,) (¢, > 0, suitably small).

In any case, at least when B = R({«,, a,) (@, @,) existence of subregions
B* of R is certainly assured; moreover, the parts of R which are not of the
type R* (for |z| = ry; 7, suitably great) can be enclosed in a number of sectors
the sum of whose angles can be taken arbitrarily small. Furthermore, these
statements can still be made with the subregions R* so chosen that, if « is a
point in E¥, necessarily the ray

(5. 37) 0 = angle of =, r = | x| (polar coordinatas 6, 7)

will lie in E*.
In the sequel ¢t will be always dmplied that a region B* 1s so chosen that the
statement tn connection with (5. 37) holds.

Case I. R* s a region, as specified in Definition 5.1, such that

(5. 38) gilz) <o (j=1,...n; 9 R*; ¢f (3. 34)

Case II. R*™ is a region, as described in Definition 5. 1, such that q; (x),
0,(x), ... @, (@) are positive in R* while (5. 36 a) holds tn R*. In this case, as a

matter of notation, entailing no loss of generality, one may write
(5. 39) gi@ >0 (G=1,...m), g@)=o j=m+1,...n)
for z in R* and

(5. 39 a) i) ~ o (j=r,...m; in B¥).
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It will be sufficient to have (5. 39 a) satisfied to a finite (sufficiently great)
number of terms. We then may assert the results of Theorems 7.1, 8. 1 for

some value ¢( > 0), but not necessarily for arbitrarily great values of t.

6. The First Existence Theorem.

Let us consider Case I (§ 5). We shall solve in succession the equations
(5. 14). In view of (5. 14a) and (4. 19), (4. 19 a)

(6.1) Bolr) = a2 sy (a), By =t — (}Z“)’
where
(6. 1a) |fo(@) | = fo (in R*).

We choose ¢ in the transformation (4. 5) sufficiently great so that
(6. 2) R—m—w,—f+e)=—1—0¢ (6>0;A=1,...n).

With the aid of (6. 2) and of Lemma 5.2 we obtain

z
(6 3) f | e— Q) g—ri—o—fote | I dx I = I I e—Qi () pr— o te +1'
g
w

(in BR*). Whence in consequence of Lemma 5. 1 and of (5. 28)

n
Izgf—*l) (l) I < l GQf;) Z I eQ,‘.(n‘) xr;_+(j——-1) (1{— 1) + & l | e (@) xri— w,»ﬁ\.+£+1|‘
4
i=1

Thus

(6. 4) [ ()] <z | 2|7 (2_1“90“0] (j=1,...n; z in R¥),
where

(6. 4 a) gy=2¢e—w —f +1 (cf. (6.1)), 3‘0::7—2a2ﬁ).

g

It is supposed that ¢ is taken sufficiently great so that ¢, << 1. This is secured
in consequence of (6. 6¢), below. Using the definition of 7'(g), given in (5. 6),
we obtain

n—1

0l = 3 )2 G 0@+ 18 )1
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Inasmuch as (4. 28 a) implies that

6. 5) (b} = b (in RB¥),

in consequence of (6. 1), (6. 1a) and (6. 4) we obtain

(6. 5 a) 20 ()| < nbog | G ) vl 4 1 |0 (in R¥).
Thus

(6. 6) [W @) < cofzl” (%‘i)lxl"ﬂ (x in R*; |x|{=09,),
with

(6. 6 a) ¢, = max. of z,, nbz, + fyo7™";

here in view of (5. 23)

(6. 6b) 7z'=/5’0+a0+n(g—1)=28+/%(p+w)>o.

The relation (6. 6b) is secured in wiew of (5. 23). We take ¢ so that

t+1

(6. 6¢) ?

=29,

Combining (6. 4) and (6. 6) it is inferred that

P
(6. 7) [ (@)] < el 2| (1_')|x|"° (f=o0,...n; x in R¥),

where o, and ¢, are defined by (6. 4a), (6. 6a).
By (5. 14 b; j=1)

B (x) = i;—(;—) x" (%_1> K (z,(x).

Thus, using (4. 30), (4. 30b) and (6. 7) we obtain

n
|Enleo@)l= 3 Do ol [Jealabre G B
M+ +my=m a=0
and
(6. 8) [Emo malt, 2)| < & (in R*);
furthermore

IK(ZO("w)l = ZIKm, (3()(1/‘))' = I_lz Czll.'l} Iaom qm

m=2 m=

[
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(in R*), where
(6 9) qm == Z L

Mo+ Fmy=m
thus, inasmuch as ¢, < 0,

(6. 10) | K(zp@) | = k& | [t (in BR*; |z| = 1),
(6. 10a) k= 2 " @ (cf. 6. 9), 6. 6 a)).
m=2

Whence, with
1
< 3! . >

|ln (.L‘) =1 (m R J
we obtain
(6. 11) B () =a—F f, (z) (_131:” (1];“’1) + 2“0):
where
(6. 11 a) A=/ n BY, fi=LEL (cf. (6. 10a), (6. 8)).

In view of (5. 28), (5. 28a) a solution 2, (x) of the equation T'(z, (x)) == 8, ()
will satisfy the inequalities (5. 28) with =g, and /= f, (¢ in R*). Application
of Lemma 5. 2 will yield

- (—1) (7f—1) . < e
(6. 12) |20 (2)| < 2, ] el (G=1,...n; x in B,
where
(6. 12 a) ¢y =2e—w,— B +1 (cf. (6. 11), ZI:Zu,‘"f,),

In this connection it is understood that ¢ is so chosen that
(6. 13) RN(—rr—w,—B+e)=—1—0 (6>0,A=1,...10),

which holds in consequence of the preceding. With the aid of (5.6) and of

(6. 12) we obtain the inequality, analogous to (6. 5 a),

(6. 14) [z @) <n bzllac1l (")—1) +a’l + filzl# (ef. 6. 11, (6. 11a),
valid in R*. Whence

(6. 14a) |20 ()] < ¢, ]| (L’:_I>I.’IJ|“‘ (in R*; |x] = o),
with

(6. 14 b) ¢, =max. of z,, nbz + f,o7";

6-—40459. Acta mathematica. 73. Imprimé le 20 aoht 1940.
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here »" is from (6. 6b). Together with (6. 14) this yields

P
(6. 13) 20 (2)] < e | =] (’" 1)|ac|“l (f=o0,1,...2; in R*).

In consequence of (6. 4a), (6. 1) and (5. 23)

(6. 16) oy =n — —

, , (t—}- 1)
oo =n +2e,=3n —2 )

where 7' (> 0) is given by (6. 6 b). Under (6. 6 c)

(6. 16 a) @, < o, < o.

Let A be a number such that

We may replace ¢, ¢, in (6, 7), (6, 15) by A and 42 respectively.

Suppose that for some j = 2 we have

e
6. 17) 2 (x)=x (L‘ 1) Lol (s=o0,1,...j—1;¢2=0,1,...n),

8

6 174 il S At ale (=0, 1, ... u in B || = o)
Jor s=o0,...)—1: while for s==0,1,...j5— 1

(6. 17 b) a=(2s+ 1)n — (s + 1) (t;i) (2’ from (6. 6 b)).

The statement with respect to (6. 17)—(6. 17 b) has been already established
for j =2 (in (6. ), 6. 15), (6. 16)).
By (4. 30), (4. 30a)

| K (10j—1 (0) — K (wj— @) ] = | K{2j—1(0) + w0j—2 @) — K{wj—s ()| = 2 T ()},

where "
Tn= K, (Zj——l (@) + Wi—2 («@)) — Kn (wJ‘—‘z (33»
We have
[¢4 (ﬂ —])
wW (o) =2 () + -+, (W) =a (),
with

(6. 18) Wi—s,a(®) = Lo,a (@) +  + Lo al®).
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Moreover,

(6. 19) Z Ko [H (10j—2, o (@) + &jm1, o ()7 — H (urj—g,a(x))'"a]

Mo+ * +Mpy=m a=0 a=0

_ Z kﬂm, T ) [H (10,1, @) F+ Limr, i, @) — H Wj—a,4,, (x)]
a=1 =1

Myt - +mp=m

0o=1i, ... imn=n).

Here sets of subscripts (7}, %y, . .. 7,) depend on the sets (g, ... m,). Now

mn

m m
(6. 19a) ] (021, @ + Gr, @) — J] 16521, (@) = D (H i, o )Cj—] i, (%)
a=}1 a=1

71=1 \8¥F 7y,

+Z ( H’w,—st )CJ~11 ( )C] 11 ( ) +CJ‘—‘1 11( )§7-—17( ) -'Cj-—l,fm(x)'
Nn<r1=1 \s+1,t
On the other hand, by (6. 18) and (6. 17 a), {6. 17b)

t+1
IH/'j-—Qa |<ZA3+I|xlab—|xlaoAZAlxl-sn ( )

< Al Z La)ef™- Sk (in R*).

§s=0
Choosing t sufficiently great so that in R*
. ft+1
(6. 19b) A|x|2n—(’~’/§;,
one accordingly obtains
(6. 20) | t0j—s,a(@)] < 2 A| x| (in R* e¢==0,1,...n).

Using (6. 8), (6. 17a; s=j—1), (6. 20) and (6. 19), (6. 19 a), it is inferred that

6. 21) | Tw| < kgmim]a|m—vetg_1(2 A1 47 + *m (m — 1) |a[m—Bat2e—

(2 A2 AW 4+ - 4 4™ |z |mey—]
~ Fanllz Alal + 2]als—] — (2 4|l
= ]—‘;qnl (2 A)mlx,%m [(I + O'('jv x))m - I] (in ]{*))

where ¢, is given by (6. 9) and
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an— (Y
(6. 22) a(j, 1‘)=é4‘1j'_1|x|“j—1_“"=—; [A|x| = (5 )] '

Now, by a mean value theorem

1+u—1=m(1 +u™u (for u > 0);
hence

(6. 23) (1 +0(, @ —1=m(t +0(j, &) alj, 2).

In view of (6. 19 b) and (6. 22)
o(j, x) =< 279.
Thus, by (6. 23) and (6. 22)

t+1

n'— it
I+O’<j7x)m_1 é??l—I[A x2 (k)] (I +2—jm—1
2

< m ™2 [A lx |2 " (HTl)]j—l (in R*);

whence from (6. 21) we deduce
(6. 24) | 7w < Egnm2m=2 (2 Ay» A/ | [oim—1+a—1,

Furthermore, in consequence of the inequality subsequent to (6. 17 b)

(6. 25) |K(H)j—-1 (@) — K(wj_2 (x))l < L Z m Y 22m—2| x I(m—l)a.,+aj,_1 Am+i—1

= |z oty—1e APt (in BY),

with ¢’ denoting’ a number, independent of x and j, such that

(6. 25 a) Dy man2m A |z = (in R¥).
m=2

By virtue of the inequality |1/A.(x)| =4 from (6. 25) and (5. 14 b) it is
inferred that

. P_
18;)| < ¥ ¢ Fla|™ s—1+n (52) g (in B*).
One accordingly may write

(6. 26) Bilw) =~ fi(@), i@ <J (in B7),

where

(6. 26a) —51':“0""“}-1"'"(%—1), Si=Ac kA,
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By (5. 28), stated in connection with (5. 28 a), in consequence of the rela-
tion T (z@) = B;(x), from (6. 26) it is deduced that
2
P_ )
lzh I< a2.f;2 ,te 7',1,+i( 1) l / IG*Q; x) —T,—wr—ﬁj-f-sldxl

™

?==0,...n—1; in R*). Lemma 3.2 is applicable if ¢ is chosen sufficiently
great so that

(6. 27) R(—m—w,—F+e=—1—0 (6>o0;d=1,...n).
We then obtain

. i(1’~1) .
(6. 28) [ (@) <zlal V¥ /]l (t=o0,1,...n—1)
where
(6. 28 a) zj:ga“’f}, gg=2c—w +1—f

Using the equation 7'(z;(x)) = 8;(x) and the definition of 7 given in (5. 6), from
(6. 28) and (6. 26) it is inferred that

n—1

629 1= 3 st ()

[ ()] + 18 ()]
n(g—l) . *
<anbzlz| \* T|z|v + || (in R*).
8+ 72(2—1) +a=n">0

by (6. 6b). Hence (6. 29) and (6. 28) imply

.
(6. 30) IZ](.i)(x>|<Cjlel(k l)|.70|‘7‘j (=20, 1,...mn;in R%),
where
(6. 30 a) ¢;=max. of z;, nbz; + fioT",

inasmuch as x is in R* with |x|=¢,. Let us examine oj, as given in (6. 28 a).
In consequence of (6.26a), (6. 17b) and (5. 23), as well as in view of the de-
finition of »’
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(6. 30 b) w=1(2j+1)n —(j+ 1)(%1)

This is what we would obtain from (6. 17b) for s=j.
Turning attention to (6. 30a), in view of (6. 28a) and (6. 26a) it is con-
cluded that

(6. 31) G=a fi=da kA
where

L/ ,
(6. 31 a) a’ = max. of gag, 7—201) a® + o7,

By taking ¢ > 0 and g, suitably great one may secure a (from the inequalities
of foot-note p. 35) to be as small as desired. Accordingly, &’ of (6. 31 a) can
be made so small that a'2 ¢’k = 1. We then obtain ¢ < 47*!, and one may take

(6. 31 D) ¢ = AITL.

This completes the induction formulated in connection with (6. 17)—(6. 17 b).
Recalling the statement with respect to (5. 5), we conclude that the series

o © P

(6. 32) o (z) = 2 20 () = Z x (k 1) Co () (t=0,1,...0)
§ =0 $§=0 )

are absolutely and uniformly convergent for x in R* (|| = ¢,; o, sufficiently

great). In fact, the series displayed in the last member of (6. 32) is dominated by

5@ =3 1t U)o = o B = (0 3 Lo =G
§=0 §=(0

(in R*; |z| = 0,); the latter series converges in the indicated region, inasmuch
as (6. 19b) holds. We have

(P~ n'— i+l
(6. 33) |Q(">(x)|§2A|x|(" 1)|x| (") (in R*; || = o,; cf. 6. 6 b))

for v=0,1,...n Clearly the function ¢(x), defined in R* by the above limiting

process and  satisfying (6. 33), constitutes an ’actual’ solution of the transformed
differential equation (4. 31) (¢f. Lemma 4. 1).

Existence Theoreme 6.1. Consider the actual differential equation ((4.1).
Let s(x) (3. 2—13. 2b) be a formal solution of (4. 2). Let (4. 4) (with (4. 4 ) be
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the corresponding form for the equation I’y =o. Corresponding to s(x) there is a
linear differential expression
r_ 11( ~1)
Tlot) = ¢ (e) + by ()2t gn N (a) + o+ hala)a” ¢ o)
[of. (4. 28a), (4. 28), (4. 25), (4. 21)];

it us assumed that the number L, o of (4. 27) is distinct from zero. We let R denote
a region of the text from (5. 11) to (5. 13). Let R* denote a regular subregion of
R for which (5. 39; j=1, 2, ... %) holds, (¢cf. formulation of Case I in connection
with (5. 39), as well as (5. 34)).

Given an integer t, however large (t = ¢'; t suitable great), there exists a solu-
tion y(x) of I'y =0, analytic in R* and such that

(6. 34) Yy (x) ~ s (x) (x in R*; to n(t) terms; ¢ =0, ... n);

here n(t) > o, as t > . DMore precisely, we have

(6. 33) Y\ () = ddx" [ g (at, ) + o{a)] i=o0,1,...n),
where

1 _!
(6. 35 a) olt, v)=o0,+0,2 *+ - +ox *

and ¢(x) is analytic in R* and satisfies in R* the inequalities (6. 33).

We observe that the function #(r), involved in the above Theorem may
conceivably depend on ¢{. The question whether y(x) does actually depend on ¢
is for the present left open. If y(r) is independent of ¢ then the asymptotic
relations (6. 34) will be in the ordinary seuse; that is, to infinitely many terms.

7. The Second Existence Theorem.
We consider now Case IT (cf. the end of section 5). Accordingly, in R*,
(7. 1) glx)>o (j=1,...m), g@=o (f=m+1,...n),

and (5. 40a) will hold; ¢;(x) is defined in (5. 34). All the integrations in this

section will be along a portion of a fixed ray I" in R*, say

(7. 2) 60,

As in section 6 one has
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7.3 Bl =arhe) Lhlss on ), =" a(l-),

We chcose t so that

(7. 4) R(—ri—ow, — B+ &)= —2 A=m+1,...n)
Lemma 5.2 may be then applied with o =1, yielding

(7 5) j I(4~Q;_(a.) T O — Bute l I d x.l < | G-Ql(.::) T Botet1 I

@®

(on I'; m <i=u). In consequence of the second part of Lemma 3.2
&
(7 5 3.-) j Ie—-Q).(a') x‘—w')_»—w,—ﬁo-é-e I I dml < |(}_Q/'-(T) w—r'g_~w1——ﬂo+é+l I
Co

(z on I; |z| =|el; | o]l = o (f) sufficiently great; A = m).

On noting that 7'(zy'xj} = g,{z), from (5. 28) we infer

(v
76 1= alel™ E e G,

b

z on T; |x| = ¢®),

with
t+ 1

(7. 6a) aozze—w,—ﬂo—irl:n'——(—k—»)v zo=mnaf, (cf. (6. 6 b)).

As before, it is arranged to have »" > 0. By methods like those employed from
(6. 4a) to (6. 6a) we now obtain

p_
0. 7) = elel C el won 1y el 2 a0)
where
(7. 7a) o =max. of g, nbz, + f,le, L)%,
Thus
. i (?' —1) . ‘
(7. 8) |20 ()| < coa| Vo 7 || (¢=0,...n; on I'; |z| = ¢,'t).

Now, it is noted that B, (z) is given by a formula subsequent to (6. 7). In
consequence of (7. 8) we obtain the analogue of (6. 11), (6. 11 a)

(7.9) Bilw)=aPf(z), |Nhl)l=/fi  (on T || = et =)
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(7. 9 a) —ﬂl:n(%—l) +2ay, fi=kE2 (k" from (6. 102)).

It is noted that, in view of (7.6a) and (7. 7a), ¢, and hence k' can be made
arbetrarily small, if we take ¢ > 0 and ¢,(f) suitably great.’ When solving the
equation 7T'(z, @) = B, (x), in view of (7. 9) and (5. 28) it is concluded that

i (2 =) +
Q) 54+ ) (; 1)“[

n
Go10) (4@l <atn S e
=1
X
-fle‘Qi-(“')x_’l"W_ﬂ!“ Hdz] (j=1,...m; 2 on I'; || Z ¢, @®);
i
here 1 =1¢, for 1=1=m and /= o for m <2 =n. By Lemma 5. 2 (with 6=1)
0 y
x
fl e Qy lx) x~—r;‘—w,—f)’,+5 | | d xl = I eu(l;.(m) x—rl—w,—ﬂ.+e+l I
2]
(on I'; x| = ¢, @®); m <A =#n). Thus

x
(7 1 I) f I e—Q}. () x~r).—wl—‘6‘l+5 | I dx | =< 71 I e_Q}. (x) x’“l‘)_—wx‘ﬁu‘F et+1 I
®

2t (‘fjl)
(won T x|z e®); m<A=mn), y =/ct) k)

inasmuch as 8, — 8, =2n" — (¢ + 1)/k. As before, we choose ¢ so that §,—8,<o.
On the other hand, for 1 = A =m

I e— ) 1o pite | = 7 I e Q@) pri—wi—3te I

for  on I' (Jz| = ¢,(t). Thus, by (7. 5a)

2
(7 11 a,) fl e_Q),(l‘) p i fite | I d xl < 71 I e_Q,{(}) p— P ot et 1 I
Lo

fon T'; || = ey®; A=1,...m)

By virtue of (7. 10), (7. 11), (7. 11 a) it is inferred that

' One may arrange to have « as small as desired.
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) G—1) (2 —1
7. 12) |61 (@)| < o2 G oo

G=1,...m; 2 on I'; |z]| = ¢,(8); 2, = na®f).

In consequence of (7.12) and of the inequality obtained from the relation
T(z,@) = B; (x) and of (7. 9), one observes that

n LA + e n b .2

10 @ <nbnalel 4 flop G0

Thus
) i("Z —1)
(7. 13) |20(x)| < e, || M | | (x on T; |x| = ¢ @)
for 1=o0, ... n, where
()

(7. 13a) ¢, =max. of 3,2, nby, 2, + fi(e ) k7 (ef. (7.12), (7. 9a), (7. 11)).

For a suitable choice of ¢,(f) we have both ¢, and ¢, sufficiently small so that

(7. 14) leol = 4, Je, | = 42 0< A=

N |-

Suppose now that for some j = 2 we have

i(’%—L) . i
(7. 13) Mz =a Vv 7L, () (s=o0,1,...5—1;i=0, ...n),
(7. 15 a) o i) = A3+ x]n (t=o0,...n; m T; |x| = cft)

where «, is from (7. 6 a).

The relations (7. 15), (7. 15a) have been established for j=2 in (7. 8),
(7. 13), (7. 14).

In view of (4. 30) and (4. 30 a)

| K (w0j—1 @) — K (wj—@)| = 2| Tul2)],

where
Tn(x) = Kn(2j—1 @ + w0j—a @) — Ky (10j—2 ().

As before, we write

P,

(7. 16} wl?,(x) =2l (z) + - + £, (x) = z (k )H’j—_g’ o),

Wi, o (2) = 8o, a () + - + Ljms, o ().
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In consequence of (7. 15 a) we now have
(7. 16 a) Jwis, o (@)] <|z)o(d + A2+ )< 24]|x| (@==0,...n)
for x on I' {Jz| = ¢, ().

By (6. 19), (6. 19 a) and (7. 16 a)

ENCIRED D S e e

me+ ctmy=m =1

+ 2, ‘Cj—l iy x) §i, o ( ')|(2Atx|a°)m_2 +o G () Cj—l.im(x”-

N1<y2=1
Hence by virtue of (7. 15 a) (for s =4 — 1)
| T () | <k qm[(47] 2| + 2 A |2 |)m — (2 4|z |)m)
(on I'; |z]= ¢ (f); cf. (6.9). Whence by (7. 14)
| T (2)] < T g (2 4 |2 oo [(1 + ;—Af’*l)m . 1]
m—1 m—~—1
(7.17) < i—cmqm(zA[:cI"‘v)m(l + ;Ai”l) Lymis (i) bmgn (e 4 |olim 4
and
(7. 18) | K(wj—1 @) — K(wj—@)| < k(2 A |z]|*fec=2kc A+ |x[tw,

where ¢ is a number independent of 7 and x, such that

4 m—1
(7. 18 a) p (‘—i) man(2z Azl < g

m=2

for  on I {Jz] = ¢, (). Consequently, in view of the inequality |1/, (2)] = 4/,
from (7. 18) and (5. 14 b) it is inferred that

oy np ,
16(@)| < 24 ke|z[ ™" G=) gio
Thus

(7. 19) Bi(x) = a7 f; (), 1f(x)| < f (on T),

(7. 19 a) —&=2“o+”(€’*1):-ﬂl,ﬁ=21'7w‘f1"“ (cf. 7. 9 a).
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In consequence of (5. 28) and in view of the relation 7 (z;(x) = g8;(x)

x
n (2
(7. 20) IZ‘;‘I.) (x)l < az‘f}. Z l eQ}, (x) xrl+1 (Iv' 1) te I f I e‘Q;'(x) x“'?‘&“(}h"ﬁj*‘ & ; I dxl
i=1 14

(t=o0,...n—1; on I'; ! as in (7. 10)). Inasmuch as, by (7. 19 a), §; =8, it is
concluded that the integrals displayed in (7. 20) are identical with those in
(7. 10). Reecalling (7. 11), (7. 11 a) one obtains

| )
(7. 21) @) <pzlel * 7 |ale

(t=o0,...n—1; x on I; |z| = ¢, (t); 2z =naf),

where y; is from (7. 11) and f; is from (7. 19 a). With the aid of (7. 21) and of
the inequality

n—1

I @] = S @)a (), |26 ()] + 18 ()],

in view of (7. 19), (7, 19 a) it is deduced that

nlL)-—1
@l < el 6N ope + glatr,

Thus by (7. 9 a) and (7. 21)
1= oo E)
(7. 22) |z}”(x)|§cﬂx| o x| (xon I; |z |=c®)
for 7=o0, 1,...n, where
n— (,*})
¢; = max. of y,2;, nby, 2 + fi{c,®) k
(compare with (7. 13 a)). In consequence of (7. 19 a), (7. 21), (7. 19 a)
(7. 22 a) cg=m' A" A+ (A" =24Fke; ct. (7. 18 a)),
()
{(7.22h) m' =max. of y, na?, n®ba’y, + (¢, 1) k1

Inasmuch as y, is given by (7. 11) and »' — (ti]-;{) < 0, it is observed that m’

of (7.22b) can be made arbitrarily small by choosing ¢, (f) suitably great. On
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the other hand, 2” in (7. 22 a) does not increase indefinitely with ¢,(¢). Thus,
if we take c,(t) sufficiently great (but independent of j) so that

m A=,
from (7. 22 a) we obtain
(7, 23) 6= A+

In conjunction with (7. 22) the inequality (7. 23) implies that (7. 15), (7. 15 a)
holds for s =73. Therefore by induction it has been established that

(7. 24) ,zf;’)(ac)-:—*;v2 (k 1) Lioilx) (s=o0,1,...;74=0,...n),
(7. 24 a) |8, i) = 45ttja]e (=o0,...n; on T; |x|= ¢, ),

provided ¢, (t) 7s taken sufficiently great.
The series

(7. 25) :i ( )gu x) (f=0,1,...0)

converge absolutely and uniformly for x on I' {|z| = ¢ ®); moreover, in view of
(7. 24 a)

(7. 26 60w = 2 4o 6 el 0 on 1y el 2 q0)

for i==0, 1, ...n. The function ¢(x) wil be an ‘actual’ solution of the transformed
equation referred to tn Lemma 4. 1.

Existence Theorem 7.1. Let Iy =o0 be an ‘actual’ differential equation, as
given in (4. 1). Let s(x) (3. 2)—(3. 2 b)) be a formal solution of (4. 2). We recall
the fact that corresponding to s(x) there is a linear differential expression T (o (x)
(cf. (4. 28 a), (4. 28), (4. 28), (4. 21)). We assume that ln o of (4. 27) 7% 0. With R
designating a region of the text in connection with (5. 11)—(5. 13), let R* denote a
subregion of R, as specified in Definition 5. 1. Thus, with suitable notation one
may assert (§. 40), (5. 40 a), where q;(x) =— 5?2'9%(@@)).

Given an integer t(t=t'; t suitably great), however large, and given a fixed
ray I, 8 =10, in R*' there exists a solution y(x) of F, =0 analytic on T’
(x| = eo®; eyt sufficiently great) and such that

! Extending to infinity in R¥.
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(7. 27) Yy (x) ~ s (x) (x on I'; to n®) terms; =0, ...n);

here n(t)— o, as t > . In detail, one has

(7. 28) y () = gd; (20 27 (o6, 2) + 0 (@) (i=o,...n),

where o(t,x) is given by (6. 35 a) and o (x) is analytic on I’ (for |z| = ¢, @) and
satisfies on T the inequalities (7. 26).

8. The Third Existence Theorem.
With
0

(8. 1) Qj(w)=—m—|m(9j(@) =r1,...n)

where the @;{x) are the polynomials involved in the text from (5. 6) to (5. 7 b),
Theorem 6.1 was concerned with existence results for Iy =0 (4. 1) for z in a
regular region R*, in which ¢;(z) <o (j=1,...n).

In Theorem 7.1 we succeeded in obtaining existence results for F; =0
when 2 is merely on a ray I in a regular region R, in which some of the g;(x)
are non-positive and others are positive; thus, ¢gj(x) >0 (j=1,...m), gx)=o0
=m+1,...m), exp. Qi(x)~0 (j—1,...m) in R*,

We are now concerned with the possibility of proving existence of solutions
of F;=o0, under the same circumstances as in Theorem 7.1, but for z in
regular region R’, in place of a ray I We proceed to construct suitable regions
R’. First, let R* denote a regular subregion of R (R from the text in conjunction
with (5. 7)-—(5. 13 ¢)) such that the q;(x) of (8. 1) do not change signs in B*; as
a matter of notation one then may write

(8. 2) g;(x) > o (j=1,...m; in R*),
' gilx)=o (j=m +1,...n; in R*).
Take R* so that exp. Qi(x)~o (j=1,....m; in BR*). We let R’ denote any

reqular subregion of R*, such that interior R’ there extend no regular curves!
defined by the equations

g 1
bIf Q; () = g o2k +- -+ g, g—1 ** (qj,o =] %0 | exp. V=1 ¢;,0)#0), then the regular curves
g (@) = o (j fixed) will possess at infinity the limiting directions satisfying the equation

_ c . . . .
cos (qj,o + zo) =o0; on the other hand, the regular curves ¢(j,x) = o (j fixed) will have at in-

s
finity directions @ for which sin (Ej ot 2 0) = o.
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. d .
(8. 3) q(y,x)E——td—g—S{(Qj(x))=o (j=1,...m; 0=angle of x);
moreover, R’ is to be such that, if x represents a point in R, the ray 6 = angle
of z, r = |z| 0,7 polar coordinates), is in R’,

With respect to the behaviour of the ¢;{x) in R’ we note the following.
If C(x)=— @;(x) (m <j = n), then by Lemma 5. 2

x
5. ) 1wl 1au s e (@ in R)

provided R(e) =<— 2 and the path of integration is along the ray 6 = angle of
z. If Clx)=— @;(x) (1 =j = m) one has

(8. 5) ﬁ R(Cw) = g;(@) > 0, —C@ ~ o (in R);

hence by Lemma 5.2 we again have
(8. 5a) flec(“) w| | du| < | €@ g1 (el = e@); & =— R(@)
c

for z (Jz|=|c| on the ray #=angle of ¢. The function C(r)=— @;(x)
(1 =j = m) is such that

(8. 6) b%%ﬂ((](x)) =q(j,2)

does not change sign in R’. Let the two regular curves (without common
points) which form part of the boundary of R’ be designated as 7, and 7).
In view of the statement with reference to (8. 6), there exists a curve T
(»(»=1 or 2) such that, when y(j) is a point on T, |exp. C'(x)| is monotone

non-decreasing as z varies in R’ from y(j) along an arc of the circle » =]y|.
With integration along an arc » =|y(j)}| and ¢ (in R’) on this are, we shall have
. ¢
(8. 7) f |6€9 2| |du] = B(") f |0 0= | | du],
v ) 1)

where e =— ¢ + V—1¢” and
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(8.7 a) B(a”) = upper bound in R’ of ¢%"¢;

moreover,

c 4
(8. 8) f |0t ] |du < Bla”)] e | f [du| = B Bl")| ¢ o—+1],
J) 7 U

7

where B’ is the upper bound of |8, — 6,| (8, = angle of z,, 8, = angle of w,)
for all pairs of points x,, x, in R’. With j =m and C(x) =— @;(x) it will be
understood that

x [ @

(8. 9) fe"‘“) uedu -———J ety dog + ] et ye gy

y () 7) ¢

(angle of c¢=angle of x; |¢c|=|y(H]; |z]l = |7 (j)|), where the integration from
7(j) to ¢ is within R’ along an arc of the circle » = |y{j)| and the integration
from ¢ to x is along a rectilinear segment. By (8. 9), (8. 8) and (8. 5 a)

x

fec‘“) u* du

y )

(8. 10) < B Bla")| e ¢ +1] + | € got1]

z in R'; o =— Ra), provided |y{j)| is selected sufficiently great. Inasmuch
as R (Cw) is monotone increasing along {c,z), from ¢ to z, and |c(z)| = 1,
from (8. 10) we obtain

&

|‘[cc(“) u® du

1)

<B' B(a")| e g1 |+ B ()] el g +1|

= B(@")| @+ (1 + B) (x in R'; ' =— Ra).

Thus, with C(z)=— @;(x) (j = m),

z

(8. 11) 'fe(’(“) ue dul < Dj(”)| @ 2ot {x in R)
1)

where

(8. 11 a) D;(a”") = upper bound in R’ of ¢ "¢ B(¢")(1 + B)

[6 = angle of z; « in R; |z| = y(j); B(") from (8. 7 a)].

In comsequence of (8. 4) and (8. 11) we have the following result.
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Lemma 8. 1. Consider the italicised statement in connection with (8. 2), (8. 3).
We shall have

x
(8. 12) fle‘Qj(")u“I [du] = |4 @ oo+
-]

(J=m+1,...n;, x in R), provided R(e) <— 2 and the path of integration is
along the ray 0 = angle of x. Also

(8. 13) fle—Qj Wys| |dul| < Dj(a”)| e @ gett]

1)
U=1,...m; 2z in R'; |z|=y(); y () sufficiently great; ¢’ = imaginary part of
D") from (8.11a)). In (8.13) y(j) is a point as specified subsequent to (8. 6)
and the path of integration is as described with respect to (8. 9).

Note. In (8. 13) one may replace D(e”) by
(8. 13 a) D = max. of D;(¢”) and 1 (J=1,...m).

As before, we arrange to have ' (cf. (6. 6 b)) > 0. We have (7. 3) in R’
and ¢ is chosen so that (7.4) holds. On using (5.28), from the equation
T{zy@) = B,(x) it is inferred that

X
» -
061 < atfy 3160 [ g o)

i=1

(t=o0,...n—1; in R'). Integrations here and in the remainder of this section
are along paths indicated tn Lemma 8. 1. Thus

S(P
(8. 14) |z£f)(x)|§Dz0|x|(" 1)le"‘ﬂ (¢=o0,...n—1; in R'),

where 2, and o, are from (7. 6a) and [z| = y,(f) (y,(® sufficiently great). In
consequence of the inequality subsequent to (6. 4 a) and of (6. 5) with the aid
of (8. 14) it is deduced that

(P~
(8. 13) EOIESAE] G 1)|ac|"‘o (i=o0,...n;in R'; |z| = y,0),
(8..15 a) yo=max. of Dz,, nb Dz, + f,{y,®&)™.
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Using (8. 15) and repeating the argument from (6. 7) to (6. 10), it is concluded
that

(2 — i
1@ =2 Eel G S nlefen g,
m=2

Thus
(8. 16) B (x) = 2P f (), |1l =11,
o0 —p=n(pr)vea, A=0E 3 G0

Inasmuch as, by (7. 6 a), z,=na’f, and one may arrange to have a arbitrarily
small, with y,(t) sufficiently great, it is inferred that y, of (8. 15 a) can be made
as small as desired; the same will be true of f, of (8. 16 a).

Since §, — B, =2n" — (¢ + 1)/k and |z| = 7, (¢), from (8. 16) it is deduced that

(11
5. 17) 8@ < |altsy, 7 =e)" " CF)

In consequence of the relation T(z@) =B, (x), of (8.17) and of (5. 28) we
obtain inequalities like those preceding (8. 14), with z,(x), f, replaced by z,(x)
and f,7", respectively. Accordingly, by virtue of Lemma 8. 1 it is observed that

&) " "(%_‘) 2
(5. 18) 10@ = D7z, |l E e, 2, —natsy

(f=o0,...n—1; in R').. As before, t is taken so that 2n" —(t + 1)/k < 0;
accordingly, ¥ can be made as small as desired by suitable choice of 7,(t). With
the aid of (8. 18) and (8. 17) it is concluded that

n—1

1@ = S ()™ 0 @)] + 18 @)1

n(2—1)+ 7 ’” ’
=|x| (k ) %{”bD}’ 2o+ fiy e}

Thus

. i(B—l) . '
(8. 19) |20 @) =y lz]l ™ |xl*  (=o0,...5; in R'; || =y0),
(8. 19 a) yo=max. of Dy’ 2z, nb Dy’ 2z, + f1 7" (7, ®O)".

Since »” of (8. 17) may be made as small as desired by suitable choice of
7 (¢) and since y, can be made as small as needed, we shall arrange to have
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(8. 20) 760=4, n=A4% o<4d=

I
2
Suppose that for some j = 2

, i(g—l) . .
(8. 21) 2 (x) = o \F Lo il) (s==0,...5—1;i=0,...n),
(8. 21 a) 1Ls,i(x)| < A2+ | x| (t=o0,...m; in R’ || = y,®).

In consequence of (8. 21), (8. 21 a) we obtain (7. 18), (7. 18 a), valid in R’
Hence from (5. 14 b) we infer

P_
(8. 22) 18 (@) < zz’l’cc-lxl”““+"(k ) g+ (in R,

where ¢ is from (7. 18 a) (with x in R’; |z|= y,(0). Whence

(8. 22 a) Bi(x)=a=8fx), |filwl<fi=21kedi ™
and
(8. 23) 8@ <lxl=fy” (cf. (8. 22a), (8. 17); in R').

By (5. 28), as applied to T (2 @) = B;(x), by (8. 23) and view of Lemma (8. 1) it
is deduced that

i v (2 -1
(8. 24) |2 ()] < Dy Zj|x|(" )|$|"", zj=mna’f;

(cf. (8.22a); ¢=o0,...n—1; in R’). In place of (8. 19), (8. 19 a) one now has

(P —
8. 23) 10@1<nlelCape  G=o,.. n in B |2] 2 1000,
"where
(8. 25 a) yi=max. of Dy’ z;, nbDy 2+ f;7" o™

(cf. (8.24), (8.17), (8.22a)). On taking account of (8.24) and of (8. 22 a), it
is seen that

vi=ufiy <28 Fkeuy” A7+t (¢ from (7. 18 a); = in R’;.|z|=y,(®)
where

p=max. of Dna®, n*ba®D 4 ()™

In consequence of the definition of y”, given in (8. 17), one may choose ¥,(f) (in-
dependent of j) so great that 22 kéuy”’ < 1. We then have

(8. 26) v < AT+
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The inequalities (8. 25), (8. 26) imply that (8, 21), (8, 21 a) will hold for s= 7.
This completes the induction, and one may assert that the equations

T (zj(@) = B;(x) (j=o,1,...)

can be solved in succession in such a wise that

(P2 -1 W ()
@) = C @ 0] = a2~

(8. 27)
(s=o0,1,...; i=o0,...n; zin R’; |z| = y,®);

here 7,(f) is to be suitably great; the I;:(x) are analytic in R'. With

e(@)=2z(@) + 2@ + -,
one has (7. 25) and

% P_ n'— Ltl
(8. 274a) o (x)]| = 2 4 || G 1)|ac| ) (in R; || = y,®).

As before, ¢(x) will constitute an analytic solution of the transformed equation
of Lemma 4. 1.
The above developments enable formulation of the following result.

Existence Theoreme 8.1. Let s(x) ((3. 2)—(3. 2b)) be a formal solution of
(4. 2) and let Fy =0 be the ’actual’ differential equation (4. 1). Assume that l.,
of (4. 27) 2 0. Designate by R’ a region as described in the italicised statement
in connection with (8. 2), (8. 3).

Given an integer t(t = t'; t suitably great), however large, there exists a solu-
ton y(x) of Fr=0 analytic in R’ (for |x| = y,(); 7o () sufficiently great), such that

(8. 28) Yy (x) ~ s (x) (x in BR'; to n(t) terms; i=o0, 1, ...n),

where n(t) - o with ¢. In particular, one has

3

(8. 28 a) y9 (z) = d

Xt

(@@ 2 (o (t, ) + o (@) f=o,...n);

here o(t. @) is given by (6. 35a) and o(x) satisfies (8. 27 a).

It is observed that exzstence of regions R’, referred to in the obove theorem,
is always assured.

When the given algebraic differential equation has a formal solution s(z)
of the general type (2. 1)—(2. 1 ¢), we still shall have existence results of essen-
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tially the same form as presented in theorems 6. 1, 7. 1, 8. 1. These results
can be obtained by the methods already used. Some additional, but not un-
surmountable, difficulties are encountered in this connection. No new ideas
are necessary in the indicated extension; accordingly, we shall not present the
details involved in such a generalisation.

9. Preliminaries for Equations with a Parameter.

In this section and in section 10 use will be made of the following
notation.
Generically {z, 1} is to signify a series

1 i
(0. 1) {x, 2} =0o(@) + 6y(@)d * + - +afx)d * + - (integer % > o),

whose coefficients ¢, (x) are, together with the derivatives of all orders, con-
tinuous on a real interval (a < x =< b); the series may diverge for any or all =
n (a, b) for all 17 «.

I'(a, b: R) will denote the aggregate of the values of x and A for which

(9. 2) a=2z=0b and 14sin R,

where R is a region regular in the sense indicated preceding (5. 8).
Generically [z, Al.(z, A in I'(a, b; B) is a function asymptotic in I'(a, b; R),
to « terms, to a series {z, A}; this will be expressed by writing

(9. 3) [, a oo {r, 2} (z, 2 in I'(a, b; R).

We shall denote by [x, A} a function ~{x, A} to any number of terms, however great.
A relation (9. 3) will signify that

1 a—1

(9. 3a) (2, a=oy(@) + o, (@) ¥+ + i @)h ¢ +oolx, )L F

(9. 3b) |ow (e, )} < b (z, 2 in I'(a, b; R).

With the above motation wn view we shall consider the algebraic differential
equation
(9. 4) Fla, b, y)= D ff il )l ™) ... (e =0

oy« v

(O=<1iy,...%; ¢, + - + ta =), where the coefficients are of the form
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(9. 5) Slotn(x, A) = AmUo. i) [x 2] (x, A in I'(a, b; R)

(the m iy, ... 1n) integers), the symbol involved in the second member in (9. 5) having
the generic significance tndicated above. Without any loss of generality one may
arrange to have only integral powers of 1 involved in [z, 4] of (9. 5). Amongst
functions of the form (9. 5) are obviously included polynomials in A, whose
coefficients are functions of x indefinitely differentiable on (a, b).

The particular case of (9. 4), when » =1, that is, when the equation is
linear is of considerable importance, as it contains as special instances a number
of classical equations and problems. Important earlier work for the linear case
of problem (9.4) has been previously done by G. D. Birknorr, R. LancEr,
J. D. Tamarkin.® A theory, complete from a certain point of view, of the
linear equation (9. 4) has been given by TriirTzinsky;® the results of his work
(T,) will be widely used in the sequel for the purpose of solution of the follow-
ing analytic problem.

In the case when (9. 4) has a formal solution

(9. 6) slz, ) ==z, 2} [of. (0. 1); 2 on (a, b)),
where
(9. 6a) Q(z, )= go (@) A* +¢, (x)f"i + o 4 grer (@) AF

[the qj(x) indefinitely differentiable on (a, b); h > o; ¢V (x) # 0], to construct regions
I'(d, b'; R)[(a’, b') sub interval of (@, b); cf. definition in connection with (9. 2)]
and ’actual’ solutions y(z, ) such that

(9. 6 bY ylx, 2) ~slxz, A) (x, 4 in T'@, V; B)
to a number of terms.

Formal solutions of type (9. 6) are of interest because it is known that
every n-th order homogeneous linear equation (9.4) has a full set of formal
solutions of the type (9. 6). Of course, some or all of the @V (x, 1) may be
zero.®

By a reasoning of the type used before it follows that, inasmuch as we

consider the case when (9.4) has a formal solution (g. 6) with QW(x, A) = o,

1 For references see (T, footnote 4).

* TRJITZINSKY, Theory of linear differential equations containing a parameter [Acta mathe-
matica, 67 (1936), 1—50], in the sequel referred to as (Ty). Also see (T; pp. 215—2I9).

% In sections g, 10 all the derivations are with respect to .
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we should confine ourselves to the homogeneous equation of degree, say, »
Thus, the equation under consideration wzll be

Pz, 1; y)= ZM (i s i0) Y-y (gp, R) gl ylid) | ylis) = 0

(9. 7)
0=4,...% =n; the 7(:,...7) integers),
where
(9. 7 a) biv oy (x, A) = [z, 4] (¢, 4 in I'Ga,b; R).

The corresponding formal equation will be

(9. 8) Fy(x, 4; ZM i) By () My Lyl =0
(0=7,...7% = n), where
(9. 8 a) B (x, A) = {x, A} (z on (a, b).

In accordance with (9. $a)

(9. 8b) Bt Z by
m=0
the b -%(x) being indefinitely differentiable for a <z < b.
By reasoning of the type employed in section 2 the following is established.
If the equation (9.7) (actually of order.m) is satisfied by the general ’actual’
soluteon of the ’actual’ linear differential equation

N
(9. 9) Lz, 4; y)= D file, Yy =0  (fulw, H==o0),
=0
where
(9.9a) Sile, A~ Lz, ) = 410 {z, A} (n@ integers; in I'(a, b; R)),
(9. 9 b) S (e, 2) ~ L (x) (j=1,... n—1n; in I'a, b; R),
then
S| (n+)
(9. 10) F,(x,2; y)= Z[d S Iz, 4 J)] iz, Ay y, ... g+ ),
=

the @; being homogeneous (of degree v — 1) in y, ...y with coefficients of the
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form Ax, A (integer y; 2, A in I'(a’, V'; R); (', &) a sub interval of (a, b)).
The same will hold with respect to (9. 8), with ’actual’ replaced by 'formal and
[x, 4] replaced by {z, i}.

With the above in view, it is easy to give examples of equations (9. 7), having
one or more formal solutions of the type (9. 6), (9. 6a).

Consider now a series s(z, i) of the form (9. 6)

® ____7 ]

(9. 11) s(x, M) =e4® g (x, 1), alz, X) = Z oi(x)d * (@, L) from (9. 6a)).
=0

Differentiating formally one obtains

n
(9. 12) sz, 1) = ¢ Pk g, (2, 4);

_h

(9. 12 a) o (x, Ay =w(x, Nolx, ) + 1 *olVl(z, A),

h—1

wlz, M) =g @+ +gl (@i *

From this it is inferred that

ih
(9. 13) s@{x, A) = e?®H2F g;(x, 2),
_*r
(9. 13 a) o, =wlz, Yoalz, )+ 1 ol {(x, 4) (i=1,2,...),
where
1
(9. 14) oplw, ) =0, &), ailw, N)=00,:(x) + o1, (@)X *+ - (g;0@)=0;@)
and

(9. 14 &) 00.1'(90) = QSI) (:c) 00, i—1 (x), o, (x) = (Ii” (90) 01, -1 (x) + Q(xl) (x) 0o, i—1 (90), cea
or—1,: () = ¢V (@) on—1, i1 (@) + - + {1, (&) 00, i—1 ();
(9. 14b) Om, 1 (%) = 0, . (@) + [V (@) o, i1 (x) + - + ¢, (@) On—nta, i1 ()]

for m = h. Thus

(9. 15) oo, : (x) = (¢! @) 0, (x) ((=1,2,..)
and, for d=o0, 1,... h— 1,

é
(9. 152) ag (&)= D a(d, ¢; y)ey(z) (t=1,2..)
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where the a(...) are polynomials in ¢V (x),...q}"{x). Moreover, in view of
(9. 14b) (for m = h) and (9. 15), (9. 15 a), one has

(9. 16) oh, i (x) = By (h, ) Z (@)

[B(h, 4), a(...) polynomials in ¢! (z), ... ¢¥ (@), ¢ (x)].
Using (9. 16) and the preceding relations, we obtain

k41

(9. 16a) Grty,i(@)=By(h+1, )0l (x) + B, (h + 1,74) +2 ath + 1, 7; 7)o, (),

where By(...), 8,(...), a(...) are polynomials in
g (@), ... g, (@) gP(a), ¢? ().

In consequence of (9. 14 a)—(9. 16 a) by induction we infer that, for o< d=<h—1,

(9 17) ontd,i(x) =By (b + d,8) o (z) + -+
htd
+8s(h + 9, 4) 6 (x) + D) alh + 6, 7 7)oy (z),
y=0

where the coefficients 8;(...), a(...) are polynomials in

g (@), ... g (@) P (), ¢ (), ... g ().
‘We next obtain

9. 18) o i) =Bo(2h, )0l (@) + DX alzh, 5 y)o,(x) + 3 a,(2h, 3 p)al) (x)
y=0 y=0

[6;(- ), al..), a(...) polynomials in ¢¥ (x), q}.“"(m), 73 (x)].

By induction in a larger sense it is finally deduced that

Om, ¢ () = By (m, 7)o (x) + B, (m, ) ol’ (x) + -+ + Bs(m, i) of (x)
th+d (t—1) ht-d (t—2) htd
+2 (m, <; ) oy +Za1mz y)o ‘ +Za9mL az(x)-i-'“

=0
(9 19) h+d
+ Z a—; (m, 7; 9) 0;’_1) ()

m=1th+d; g(...), @(...) polynomials in ¢ (@), ... P @) (=0, ... h—1),
g0 (), ... gt ()]
for t=1,2,...and d=0,1,... h — 1.
5
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By (9. 13) and (9. 14)

(9. 20) sl gl | gl = »Qln &) A [ (@) A
j=0
(9 203‘) 071 ty Z,O:]nix Ojy, 4, ) “O:iwiv(x) (jl?"'j”:éo; Jl++.71*=J)

If s(x, 1) is a formal solution of (9. 8) one must have

(9.21)  Fiz, A s, ) = ¢ 2D jut i Ay - (x) /1_7‘1 =0,
where
{9. 21 a) Niyy ooty =N (01 - 2a) + (B + +z})%= %li,,,,,,-v (..., integers)
and
(9. 21 b) div (@) = D bully, ... i @) {a),
m+i=j

the bn (7, ... 7,; ) being defined by the relations

bty ... 4; ¢)=0 (for % #£ an integer)»
(9. 21 ¢)

bar 2y, ... 10 @) = b’{}“--”(x) B=o0,1,...; cf. (9. 8D)).

One should select h/k so that there are at least two terms of the same
degree ¢ in A, the other terms being all of degree = g¢. Thus, h/k must be
so selected that for some particular two distinct sets (¢, ... a.), (B, ... )

1 I
‘II; lal,...ay“: Elﬁlr"'ﬂ’v: ¢

while
—]E— L,...i,= ¢ (for all sets (¢, ... 7).
Thus, provided 8 + - +8, # a;+ - tay,

171 U(ﬂl»---ﬂv)——'l)(a,,...av)
k

(9.22) = (‘6’1+"'+,3v)—‘(01'+"'+a1')’

while
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(9. 22 a) iy, o) — By B S — e+ a)— B+ B

|

(for all sets (¢;,...7,). It is important to note that admissible values of h/k
will arise only if the second member ¢n (9. 22) us positive. We represent the num-
ber pairs (¢, + --- +4), g{¢;, ...%) in the Cartesian (x, y) plane, with z=
4w+ -+, and y =197, ... 1). There arises a diagram L of Puiseux-type precisely
as described in the text from (3. 15a) to (3. 17). The polygonal line L is con-
cave downward. The admissible values of % are found amongst the negatives of

the slopes of the rectilinear segments constituting L. Inasmuch as one should

. . . .. h
have ;c—l> 0, only those sides of L will give rise to admissible values 7 whose

slopes are negative.
In the case when for at least two distinct sets (3, ... 8), (¢y, . .. @) one has

Bi+ =+t a n@,...8)=71la,...a)
that is, when there is a vertex P of L which is 'multiple’, we may take for

% any positive rational number e, provided that L lies to one side of the line

through P with the slope —ea. One then will have %> o {(h, & integers) and

(9. 22 a) will be satisfied.

Suppose % is selected as an admissible value according to the above, either
given by (9. 22) or as indicated above in connection with a 'multiple’ vertex of
L. One may then arrange (9. 21) formally as

r 1 2
(9. 23) Filx, ; sla, b)) = e =ik [60(x) + 0, (@A *+ & @)A k+ ] =0,
where %z ¢. Thus, if s(x, 4) is a formal solution of I} = o, necessarily
(9. 24) di(x) =0 (t=o0,1,...).

Corresponding to the value h under consideration we write the equation

k
Fy=o0{9. 8), (9.8b)] as follows
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Py S S, iy iy 9

(9- 25) . ,
Tt - o
EZ/’L" k Zb Uy ovn oy ) A Byl ylb) =0
T ) =0
(ef. (9. 21 ¢), (9. 8 b)), where
o o=y <w),
(0.258)  B{Ey, ... 6 @ | . . o= ). :
1b.,_w(zl, ) yzw=w@,...i)
with
1 . . r h,. . . .
(9. 25 b) Z'w(z], e ) =z ;(zl—k et h)— 1, .. L) = 0.

In view of (9. 25), (9. 25 b) the equations (9. 24) are expressible in the form

(9. 26) d:(x) = 2 2 bict(iy, .. 4y e (@)=0  (cf. (9. 20a)),

iy, ... iyt =0

By (9. 26), (9. 20a) and (9. 13)
(9.26a) dy(x)=0c(x) E(zx; ¢V @) =0 (x Zb Tyy o ontyy X) (U @)t Fh =0,

We thus see that of importance is the charucteristic equation E(x; ¢V (@)= o,
which must be satisfied by ¢{!(x). There is a characteristic equation like (9. 26 a)
corresponding to every side, with a negative slope of the polygon L, as well
as corresponding to some lines through the 'multiple’ vertices of L. It is
recalled that ¢,(x) is the leading coefficient in the polynomial ¢ (z, ).

We shall not go through any further formal details except to note that,
in view of (g. 26), (9. 20a), (9. 15), (9. 15 a) and (9. 19),

(9 27) d; ((I/') =d; (Qg), s QEll)_ly 0 (ZU), <. 0 (,b\) (Z =0, 1,.. ')7

with a number of derivatives of ¢{’(x)(j=o,... h—1) and of g;(x)(j=o0, ...1)

involved. The o:+3(x)(8 =1, 2,...) do not enter in the expression for d;.

Lemma 9.1. Consider the formal non linear differential equation (9. 8),

(9. 8b). Let — (h k positive integers) be an admissible value in accordance with
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the text from (9. 21¢) to (9.23). If the equation Fy =0 has a formal solution

0.28) sl )= ceiole 1)@, D= g@F + -+ g )iE],
where
(9. 28 a) oz, ),)=Jo(x)+ol(ac)l~%+m,

Jor x in (a, b), then necessarily q\V satisfies the characteristic equation (9. 26 a),

. . . . .. h
assoctated with the side of the Puiseux-polygon to which % belongs; moreover, the

0;(x) in the formal expansion (9. 23) will be of the form described in connection
with (9. 27); we have &;(x)=0 (i=o0,1,...).

The ’actual’ differential equation F.,(x, ; y)=o0 (9. 7) may be brought to
the form corresponding to (9. 25). Thus,

n
L L it 1)

(9-20)  Fulw i y)= D *

where
© ¥

(0. 29a) Vo vz, )~ FN (2, A) = Z U (dy, oo 4 @) A * (in '@, b R).

=0

Basing on (9. 28), (9. 28 a), we make use of the transformation

{9. 30) yle, 1) == 2e{t; 2, 1) + olx, 1)),
where

L _t
(9. 30a) olt; 2, ) =o0,(x) + o, (@)X * + -+ alx)d ¥

¢(x, A} being the new variable. One has

i l'h.
(9. 31) e g, 1) = 28 1'% ()
where
h
(0.31a) gilx, 4)= [w (x, A) + 4 * %] oz, ) (E=1,2,..; gz A =0z, L)

with e« (x, 2) from (9. 12 a). Moreover,
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i i
(0. 32) Ll ol @, ) = 90 Fault; 2, 1)
)
oi(t; x, )= [w(x, A+A k %] ci—1(t; =, A)
(9. 32a) : ,

=00 (t; &)+ ot DA E+ o+ ooyt 2)A F+ o
[00(¢; 2, 3)=0(t; z,4)]. In consequence of (9. 30), (9. 32a) and (9. 13 a) it is in-
ferred that o,,:(t; x) is g;,:(x) (cf. (9. 14)) with the o;(z}(j > ?) replaced by zeros.
Hence, by virtue of (9. 15a) and (9. 19),

(9. 32b) 0,,:(¢; ) = 0y,:(x) (¢=o0,1,...; z=0,1,...1).

In view of (9. 30), (9. 31) and (9. 32)

2
Y (2, 2) = @@ D1 Fg;(t; @, 2) + i, A)]
and

LT iy
g = e FTTT g (4w, 1) + 0, (, ).

a=1

Substituting this into the ’actual’ equation (9. 29) we obtain

(9-33) Fy(m, d;y) = =22k 9%t (g, )] lo, (£ 2, 1) + 01, (2, M) =0

iy, . » =]

(cf. (9.29a)). Using developments of the type employed subsequent to (4. 10)
it is now inferred that ¢(x, 1) satisfies

(9. 34) L(o) + K(o) = F(x, ),
where
. i iz, A)
(9. 34) Liey= 2 v% (e ) [[ ot 2 ) X0 5
denn ity a=1 =1 43
K= 3 btz )]]o, 21 >
iy, e 0y a=1 m=2 jy<-.-<j
(9. 34 b) "

i, (3), }.) Ql]m (13, )')
.O-[jx A oy (4 z,A)

(9. 34¢) Fla, )= — D bt (x, 4) et 2 2).

a=1
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Now, the asymptotic relations (9. 29 a) imply in particular that

(9.35) it thp.m)fﬁ+[7@wamﬁﬂ,

7=0

(9. 35 a) [18i,...0,(t; 2, M| = B (@, 4 in I'(a, b; R).

Hence, by (9. 34¢), F(x, A)= F, + F,, where

t
(9. 36) Fyla, )=— > Dbliy, .. a0 ’*Ha, (¢ x, A),

Igs v Ty ¥=20

t+1 v
Fylz, )= —1 F Bt x, 4), B¢z, A) = Zﬂ,, i (85 2, ) [] 03, (t; =, 4.

a=1

By the same method as involved from (4. 14) to (4. 18) and using Lemma 9. 1

we now obtain
t+1

(0. 37) | Fy(, Ml <14 * F,(0) (@, A in T'(a, b; R).

Similarly by (9. 36) and (9. 35 a) it is deduced that

t+1

(9. 37a) [Fylw, )= |2 * Fy(h) (z, A in I'a, b; R)).
Whence
_tt1
(9. 38) F,))=41 * F(; = 4),
(9. 38 a) |F(t; x, )] < F (in I'(a, b; R),

where F; is independent of z and A.
Using (9. 31 a) one finds

(9- 39) 0ilx, &) =wio(x, Aoz, 2) + wi1(x) o (2, ) + - + 2w, :(x, X) 0? (2, 4),

where wo,o(z, A) =1 and
h h~—1
(9-398) wiole, N)=w@, Vw0l ) + 4 FuwisolzA), wlx )= NaP ()i *,

i=0

.

_2
3

wi,m (€, &) = w(z, Nwimy,m (2, ) + 2 ¥ w2, X) + wie1, m—1 (z, 2)]

m=1,2,...2—1),

(9. 39 b)
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=

(9. 39 ¢) awi i (x, A) = A Ry i (z, A).
By virtue of (9, 39 a)—(9. 39 ¢)
h
(9. 40) Wi m(x, 2) =12 "Er m () (m=o,...7),

1
(9. 40a)  vim(x, 1) = polynomial in 4 *= [z, 4], vy:(x, ) =1 (in ', b; R).

In consequence of (9. 39), (9. 40) and (9. 34 a)

(9. 41) L{o) = lu{z, ) @™ + li—1(, 1) 0"V + - + [y (x, A) 0,

where

h

(9. 412) Lz, 4)= iR Z bt (2, Z)Zz;ij,q,(x, A) Koy Ha,-a (¢; z, A)

By ooidy j=t a#*j

(k%7 from (4. 21 b)). One has

1

3
(9. 42) py(x, l):ﬂkzv(x:l)“’l_’w)(t; 95)“‘1’7,1('5; ) h K4+l ) A

J
Tk

for x,4 in I'(a, b; R). The series last displayed in (9. 42) is the formal ex-
1
pansion in powers of 4 ¥ of

(9- 42 a) N ASICW DTSRV | I AR GE P
(29N =1

axj 8=0
(ef. (4. 21b), (9.29a), (9. 40), (9. 32a)). Hence

(9. 42 b) Py, (t; ) = py, 5 () (j=o,...t; > with ),
where the second members are independent of ¢. Thus, L{g) may be expressed as

h

h h
(9-43) Lle)=1 * [pn (@, 2) @™ + pu—la, H)AF" + -+ py(w, 1) 4 "Q]
(ef. (9. 42), (9. 42b)). We shall now obtain explicitly pn,o(t; ) = pu,o{x). Since

wo,0(x, A) =1, In consequence of (9. 30¢) we obtain v, n(x, ) = 1. It is noted
1
that p, o{z) is the term free of 1 in the formal expansion in powers of A * of

(9 42 a) (for y ==n). Thus, in view of (9. 15) and (4. 21 b)
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<9 44) D, 0 - 0-(1)—1 Z j Z‘(] bo Zl! e Zv; .Z') (qgl) (‘Z'))il + oot i,ﬂ-—-n,

where the summation symbol with the superscript j 7s over all sets (i,, ... 1,) con-
tarning precisely j elements each equal to n.

Case 9.45. There is a closed sub interval (a', V) of (a, b) in which pa,o(x)
of (9. 44) does not vanish.

Case 9.46. p, o(x) =pu1(@) = =pu, (@) =0 (x on (@, b); w> 0), while
Pn,wix) (which is the coefficient of Z—I’ in the expansion of (9. 42 a; for y = n)
is mnot identically zero. In this case let (a', V') be a closed sub interval of (a, b) in
which pn, . (x) does not vanish.

If Case 9. 46 is on hand we choose f sufficiently great so that the p. j(z)
(=0, ... w) are independent of ¢,

In the Case 9. 45 one may write L(g) in the form

h
(9. 47) Lg)=2 *palx, 1) T() (cf. (9. 42); pulw, &), p;* (&, 1) =], 1]),
1» o
(9. 47 a) T(0) = o™ + b, (x, ) A* =1 + .- + by(z, )4 *o,
where
1
(9. 4710)  bylw, A) =, ] ~ by o(t; @) + by 1 (t; ) £+ (in '@, V'; R);

here the b, ;(t; z)(0 =j =j’;j o with £) are independent of ¢.
In the Case 9. 46

—_— (nh-{ )

(9. 48) Lig)=4 * Palz, ) T (o),

where

0 482)  pule, D)=l A~ puule) +oo, - (; 5=l (in I'a' V'; R)
and

(0. 488)  T() = ¢ + (o D gm0 ot (0, )2

with

(9. 48 ¢) by (e, 2) = (2, A} ~ by, o (t; ) + by (t; x)lﬁ;“ + (in I'a', V'; R)),

the b, ;(t; ) (0=j =4j,; j, =% with ¢) being independent of ¢.
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By (9.34b), (9.39) and (9. 40) we get an analogue of (4. 29), (4. 30) and
(4. 30a). More precisely,

(9. 49) K(o) = K, (o) + Ky(0) + -+ K, (0),

where

=

(9-492)  Emle)= 3 hpromalt; o 4) [[(9)mad—eme®  (my+ - +mu=m)
My, ... My a=0

with

(9 49 b) kzo’ s My (t, x, l) = [x, Z.] ~ Z ]c:’l?”}’ e My (t’ x) l_

=0

=

(in I'(a, b; R)),

the coefficients in the series last displayed being independent of ¢ for y =<y’
(y) > o with f).

Lemma 9. 2. Suppose that s(x, 1) (9. 28) ds a formal solution for x on (a, b)
of the formal non linear homogeneous differential equation (9. 8), (9. 8 b), ¢n accordance
with Lemma 9.1. Let F,=o0 (9.29) be the corresponding form of the 'actual
differential equation. The transformation

y=e?=Vg(t; x, 4) + o(x, )] (¢f. (9. 30), (9. 30a))
will yield the equation
(9. 50) L(o) + K(o) = F(x, 4).

In the Case 9. 45 L(o) is given by (9. 47)—(9. 47 b). In the Case (9. 46) L (o) vs
given by (9. 48)—(9. 48 ¢). K (o) s of the form (9. 49)—(9. 49 ¢) and the function
F(x, ) satisfies (9. 38)—(9. 38 a).

10. The Fourth Existence Theorem.
With 7(g) from (9. 47) or (9. 48), as the case may be, consider the equation
(10. 1) T (o) = o.

In accordance with the existence theorems established by Trsirzinsky! for
linear differential equations containing a parameter a sub-interval (a,, 1) of (a’, V')
can be found and a regular sub region R, of R so that the equation (10. 1)
possesses a full set of solutions y;(x, A) (=1, ...n) of the form

P (Ty).
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(10. 2) yi(x, &) = %t Ay (, 1),

where
_ X _.2
(10. 2 a) nile, A) = [, e i 0() + i1 (@)A "% + pial@)d "k + - =0z, 1)
1
for z, 4 in I'(a,, b; R,). In (10. 2} the Q:{x, 1) are polynomials in A%* (integers
»; > 0) with coefficients indefinitely differentiable for a; < « < b,. The highest

possible power of 4 in Q:(z, 2) is lﬁ" (in the Case g. 45) and Z%(h+w) in the Case
0. 46. By choosing t sufficiently great we arrange to have the Q:(x, ), as well
as the 7, j(x) (0 =<j=j; j ~ with t), independent of t. The region R, is such
that no function

(10. 3) NG @, H) — @ (x, 4) (6,7=1,...n)

changes sign for A in Ry and for a, =2 =<b,. Such sub regions R, of R can
always be constructed, taking, if necessary, b, — a, sufficiently small.
Given ¢, however large, the solution referred to in {(i0. 2), {10. 2 a) ean be so

constructed that
di—1

(10. 4) = (@, ) ep 75 (€9 A 5 (x, )] (in I'(ay, b,; R)

for j=1,... % and

(10. 4a) Y (2, A) = %l A lu—l)%’m, j—1{z, 4) (k" =h or h + w),

{(10. 4b) i j—1(x, &) = [z, Ao (in I'tay, b; Ry); j=1,...n).
The determinant of the matrix (y—V(z, ) (/,j=1,...7) is

1, F
Az, 2) =¥V @, b)| = exp. [—‘).T‘h fcl (z, l)dm],

where ¢, (x, 4) is b, (z, 4) (9. 47 b) or b, (z, &) (9. 48 ¢) and where the 'constant’ of
integration may depend on 1 and is to be suitably chosen. Together with
(10. 4 a) this implies that

s
_n)h_ bl

1, _w
(10. 5) A (x, A) = eulm 50 ) BT TRy (x, &) (integer w = o),

1

(1o.5a)  d@, )=z, ] ~d,(x) + d, (X)X *+--- (in I'(ay, by; Ry); dy(x) = 0).
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It is noted that d,(x) of (10. 5 a) does not vanish on (ay, b)). Thus

(10. 5 b) d—(;j—l) = [z, 4] (in I(a, b; R)).

Define the §: ;(x, 1) by the matrix relation
(r0. 6) (71,5 e, 1) = (47 @@, D).

One has

Yo 5o Y1 Yivr 5o Yn
A, Dgn jla, N(—1Hi=] - - 0 ]

y(ln—2)’ .. ?/}":12): ?/](sz), . ygl_m
which in consequence of (10. 4a) yields

1 L3
A (x, l) gn,j (Z’, l) = & @A+ T Qlx H—Qla, 4) }‘E _

(10. 6 a)
(in I'(a,, by; Ry).
By (10. 6a), (10. 5) and (10. 5 b) one finally obtains
(10. 7) in,j (@, ) = e~ Y@ A 1=y (n, j; x, 4) (w1 = %(H—I)— %)
with
(10. 7 a) Gn, ;@ A) =z, A (in I'(ay, by; RY).

It is to be recalled that for a solution z of the equation T(z) =8 (7'(2)
from (5.6)) we have previously obtained (5. 26). Adapting that result to the

equation
(10. 8) T(2)=8(x, 4) (T from (10. 1)),

we conclude that, provided the integrations can he carried out, a solution z(z, )
of (10. 8) will satisfy

0 (@, )= 3y (w, ) f 8o, Vo, Nz (=1,...n)
=1

where the #, .(x, 1) are given by (10. 7), (10. 7a) and the yV~"(x, A) are of the

form (10.4a), (10.4b). Accordingly, it is observed that for a solution z(x, A)

of (10. 8) one has, for j=1, ... n,
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14 4

n . —
A () = el ;.);“(J“‘)T%j_l (2, l)/‘e_Qt("’ Na—en g (n, ; u, A) 3w, A)du
=1

(10. 9) % w
[w1 = ;(n.—l)— > ef. (10. 5), (10. 7a), (10. 4b];

here W =h (in Case 9. 43) and B’ =h + w (in Case 9. 46).

We shall now proceed to construct an appropriate solution of the trans-
formed equation (9. 50). Unless stated otherwise we shall consider the Case
9. 46, when L{p) is expressible by (9. 48).

A solution of (9. 50) will be given in a form of a convergent series

(10. 10) olx, ) =zy(w, A) + z,(x, 4) + -,

whose terms are suitable determined functions satisfying

(10. 11) Lz} = F(x, 4),

(10. 12) L(z) = — K (wj—1) + K (w;—s) (j==1,2,...; w—=0)
with

(10. 12 2) wile, A) ==z,(x,A) + 2, (2, A) + - + 2 (x, 4) (j=o0,1,...).

By (9. 48) the equations (10. 11), (10. 12) may be put in the form

(ro. 13) T (z) =8z, A) (j=o0,1,..,
where
1
(10. 13 a) By, 1) = (putee, D1 AE T TV Bt 2) (of. (0. 38 a)),
1
(10. 13 b) B, 1) = (pue, )2 2™ (= K (1) + K (100)

(j=1,2,...). In view of (9. 48a)

(10. 14) i)n(;, 7~)| =p (z,A in I(ay, by; RY).
Hence by (10. 13 a)

(10. 15) Bo(x, &) = A Poy, (x, 1), ﬂor—]}c—(t-f— 1)—12(nh+w),
(10. 15 a} 70 (e, ] = 70 (in (@, b; RY);

t is taken so that 5, > o.
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By virtue of (10. 4b) and (10. 7 a)

|’7w’—1 (x) 2’) Ia Ig (n’ T %, l)l = Y2 (ln F(al’ bl; Rl))
Hence in consequence of (10.9) it is inferred that for a solution z(z, 1) of the
equation
(IO' 16) T(Z(.’Z', l)):l—ﬁy(xv }‘) [I}’(-’E, l)l é}/ in F(al, bl) -RI)]y

where B> 0, we have

Mo w n
\ () o + 2 = .
(10. I6a.) IZ(j_l)(x, A)l—g]ﬁ)’“l] ")k +% ﬂz lng(a’,A)-Qz(u,l)”dul
z=1
%1
for j=1,2,...n and z, 4 in I'(a, b,; R,), provided y(x, A) is integrable in x for
x on (a,b). In (10. 162a) ¢, is a; or b, (see (10. 18), below).
Let R, be a reqular sub regeon of R, such that no function

(10. 17) R(QV @, ) (j=1, ...n;cf. Def. of Ry with respect to (10. 3))

changes sign for x.in Ry and for a, =2 =1b,. Regions R, will exist in all cases
at least for b, — a,(> o) sufficiently small.

We shall take
a, (when R Q7" (x, ) =0 in I'(ay, by; Ry),

(10. 18) e, :j
lbx (when R @ (x,2) = 0 in I'(a,, b;; Ry).

Then the integral displayed in (10. 16 a) will satisfy

(10. 19) erQf(x»“_Qr(“’” Hdu|=b, —a (in I'(ay, b;; Ry).
€y

Lemma 10. 1. For a solution z(x, 1) of the equation
T (2, b)) = APy (x,1) |7 (@, M| =y in I'ay, by Ry,
where B s real and R, 4s defined in connection with (10. 17), one has, for =, A in
I'(ay, by; Ry) and for j=1, ... n,

'
. %}
]—n)+ —k

h
(10. 20) |60, )| = my ]2 T E (1, = n by — ay)pi),

provided y(x, A) is integrable in x for = on (a;, b,). This result holds with k' =h+w
in the Case 9. 46 and with h' = h in the Case 9. 45.



Developments in the Analytic Theory of Algebraic Differential Equations. 79
Let " be a number, independent of x and 4, such that
(10. 21) |bi(x, )] =¥ (¢=1,...n; in I'(a,, b,; R,),
in the Case 9. 45, and such that
(10. 21 a) | bile, A)| < &' (i=1,...n; in I'la,b;; RY),
in the Case 9.46. In consequence of (9. 47a) and (9. 48b) for the solution
referred to in Lemma 10. 1 one will have

n 1,
(10. 22) Loz, )] < S o | oo (2, )]+ p ]2

(in I'(ay, by; Ry); here w is to be replaced by zero in the Case 9. 45. By (10. 20)
and (10. 22)

_ & —i=1) Y 4 hg—f
(10.23)  |eW (e, Y] =y |AP+ DV mpla] — F

i=1

(h2=7lc(h'+w) > o).

Inasmuch as in R, |A| =1, where for simplicity one may take i,=1, it is
concluded that

(10. 24) |2 (2, 2] < ngy | AFHR (ng=mnmn b’ +1; hy from (10. 23))
for x, 4 in I'(ay, b;; R;). Using (10. 24) and Lemma 10. 1 we obtain

Lemma 10. 2. For the solution z(x, ) referred to in Lemma 10. 1, we have

Jor i=o,1,...n

h' .
(10. 25) |24 (2, 2)| < ﬂ’?’llrﬂk (i—n)+hy

[/Lg“—:%(h +wtw);, W=h~h-+w; x4 Ta,b; R2)]

in the Case 9. 46. In (10.25) ' is the greater of the numbers n, and ny=nn,b" + 1.
In the Case 9. 45 the same result may be asserted with w replaced by zero.

On taking account of (10.15), (10. 152a) with the aid of Lemma 10. 2 we
obtain a solution zy{(z, ) of the first equation (10. 13) such that

1

50
. . ~—— +h,
(10, 26) |0 2, )| < Llaf T E

(in T(alw bl) R2))7

for 2 =o0, ... n, where
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w

(10. 26 a) Co=2n"y5, ho=hy— (n— Ny

In view of (9. 49b) there exists a constant % independent of my, ... my,
x, A so that

(10. 27) | Bmo o (t; 2, D) = T (in I'iay, b;; Ry).

It is noted that Ky (g) is given by (9. 49 a) in both Cases 9. 45, 9. 46. By (10. 26)
and (10. 27)

t+l Y+mhg (my+2my+ - +nmn)
| Ko (20, D) < K¢ mll| lel"‘
M+ - tmy=m
Now, for mg, ...m, =0 and m, + - + m, = m the greatest value of m, +2m, +

-+ nmy is wm. Thus, with || = 1, one has

S‘ ll l%u (myt2my+ - - amy) = ‘Z.IL nmq
il m,
Myt - +my=m
where
(10. 28) qm = Z 1
Mo+« - Fmy=m
and
< m % +)h°+0 k 3 . . —

(IO' 29) I (Zo(x 2‘>)| = 0 "L|}‘I (In F(al) bly R2)3 m=z, ... ’V),

provided we take t so that

I w
— — _ . = <<
(10. 20 a) k(t+ I)+h°+k” [ L(t+ 1)+ hy + k] =o.

By virtue of (9. 49)
(10. 29 b) | K (2o, D) | < ko | 2] Flr e (7%: Zgrgqm)
m=2

in I'(ay, b;; R,) and, by (10. 13 b) and (10. 14)

(nh+ w)

(10. 30) |8, (=, ll<plll’”

where

IK(ZO (, D)l'é 71‘“-‘3‘ (in I'(ay, by; Ry),

(10. 30a) n=pkk, B = (t + 1) — 2}10"2%”‘

I 1
—];(nh—i-u)— By — 2 hy +](nh——u)
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In consequence of (10.30) and Lemma 10. 2 there exists a solution z,(x, 4) of
the equation (10. 13; j = 1) satisfying

,
if— (i)l

. —fi+
(10. 31) [0 (2, )] = &l 2]

for t=o0,...n

& = % vi;in I'ay, by; Ry)

We choose t so that in addition to (10. 29 a) the inequality

(10. 32) d'=—%(t+ 1)+2h2+2%<o (h2=]%(h+w+w))
s satisfied.
By (10. 26) and (10. 31) we have
(10. 33) |20 (@, D] = Ll A1%, & (@ ) = &2l fal”
[z’:—o,...n; di:——i(t—k I)+;—Li+h0; in I'(a,, bl;Rz)].

We take A, in Ry, so that |A| =2, (= 1), where Ay is sufficiently great so that

(r0. 34) LIl =Ge (for [A] = Ay; &’ from (10. 32)

where @ is some fixed number such that o < ¢ < 1. With 4,> 1 one may secure
(10. 34) taking t sufficiently great. Whence (10. 33) will yield

(10. 33) 20w, A) = A%z (2, A), 20 (x, 2) =iz, (2, A),
where
(r0. 35 a) | 20,: (2, )| = L, |21, 62, )] = oo

[z’=o, coom; di= —i(t + 1) + ;h'i + hy; in I'(ay, by, Rz)]-
With a view to proof by induction a supposition is now made that for some
7= 2 we have

(10. 36) 2w, )= ANz (2, d) (s=o0,1,...J—1;{=0,...n),

(10. 36 a) |25, i(, ] = L0 (¢=o0,...n;in I'a, b;; Ry)
Jor s=o,1,...j—1.
On writing

(10. 37) wll (@, 2) =20 (2, A) + - + 20 (x, A) = Ve, s (2, 1),

one has
6
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(10.37a) |weilx, A)| =0y = b (s=o0,...J—1; i=o0, ... n; in I'a,, b;; Ry).

I—e

By (10. 13b) and (10. 14)

(nh+10) (nh+w)

| K (10— + 21) — K (wj—s)| <1’|l|k

zm

18i(, )| = Il|‘

where (compare with 6. 19)

n —am
= Sk -oom txl[ﬂ(w LR YR | FTERLY "'“k]

Mo+ »* +my=m a=0

n n
= ka,--- n(t; , ) AJCmo - o) [H (wp—,a + 21, )" — ] (s a)'"a],

a=0 =0
where
(ro0. 38) f(mo,...mﬂ)=m[—];(t+ I ] wz @ M.
a—l

Thus
) m m
(IO. 39 Z 70’”" n(t; x, l) AL (Mo <o) H (wj_z, iy T &1, ia) — H Wi—a, i,

Mo+« > +my=m a=1 =1

(sets @y, ... #m) depending on (my, ... mw).

The difference of products involved above can be expressed as

m m
b= Z &y, [l iz + 22, i Zi iy, H W2

i1 §F 1 Nn<re=1 sFE VL 12

to Tt g Gy By,

In view of (10. 36a) and (10. 37 a) this differences satisfies

IS D 6o + et e + o+ e

n=1 <=l
m
= (g + Lo/ )" — o' = ¢ [(I + %;9’“1) - I] (in I'(ay, by; Ry).

With the aid of the inequality subsequent to (6. 22) we finally obtain
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m—1
l{}lggz"”z(l.}.g)g.]—l) ggej—‘l’
Qo )
which by virtue of (10. 39), (10. 38) and (10. 27) implies that

| T < S| Ap 0o m)| (-} |

Myt Fmy=m

< Illm[ s TcQG”M(I + C_ng—l)mﬁlggf—l2|AI%<’"¥+2’"2+“'+""’")
) Qo

mg, ...

étmgjlllm[ t+1) +ho]|},|knm
where

(10. 40) tn =k gm @™ m(2 — @)™ ! (I z 9) (gm from (10. 28)).

The above is asserted for z,4 (|[A|= 1) in I'(a,, b,; R,). By virtue of (10. 29 a)

t+1)+ho+ E ]

|Tm|<{m9|l|[ (m=12,...9),

which implies in consequence of the inequality subsequent to (10. 37 a) that

{10. 41) |8i(x, )| = ;| A8 (in I'(ay, b;; Ry),
where

(10.418) pj=(H +t,+ - + Lype!, —f= ;c(nh + w) — k(t + 1)+ 2hy + %n;
it is noted that

(10. 41 b) gi=8 (8, from (10. 30 a)).

Applying Lemma 10. 2 to the equation T (z;)= §;(z, 4) (cf. (10. 41)), a solu-
tion 2;(x, 4) is obtained for which

—5 + t—n) +hy

(10. 42) |2 (z, 1)) = #" 5|4 | ="y, | AJ%| 4|
[i:o,...n; h2=]%(h+w+ w); in I'(a,, by; Rg)].

In (10. 42) d;, d’ are from (10. 33) and (10. 32).
We take A, in Ry, with |A| = &, where 2y is so greut that
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(10. 43) b+ - W) plAT =0, (for JA} = &)
One may choose i, independent of j.

Substituting y; from (10. 41 a) in (10. 42) and applying (10. 43), we derive

(10. 44) z;f) (x, &) == Adig;, 4 (2, A) (t=o0,...n),
with
(10. 44 2) 2y i(x, Y] = Le! (=0, ...n;in I'(a,, by; Ry).

It is clear that equations T (z;)= B;(x, X) can be solved in succession so as to
determine functions zj{x, 1) (j=o0,1,...) for which (10. 44), (10. 442) may be
asserted for ‘

j=0,1,..; 2=0,...n

Moreover, we shall have
18, ] = |A1Fy =+ +t)pe)

for y=1,2,... and for x, 4 in I'(a,, b;; Ry). The B;(x, A) will be integrable in
x for x on (a,, b,).
In terms of the above functions z;(x, ) one may now form the series

(10. 10). One will have

(10. 45) ¢ (@, ) =2 (w, 1) + 2Px, ) + - =125 D) zeilw, D)
§=0
(¢==0,...m). The function ¢(x, ) will be a solution of the transformed equation

(9. 50) and will satisfy

(10. 46) |0 (z, A)| = . g_" Q[lldi (f=o0,...n;in I'ay, by; Ry),
with d; = ——-]I;(t + 1) + I}ciL + hy. By (10. 26 a) and (10. 23)
(10. 46 a) di= — ]I;(t + 1) + %(i + 1) + ]Ic—[w —(n— 1)w] (o from (10. 7).

By virtue of Lemma 9.2 and of the result just formulated it is possible

to assert the following theorem.

Existence Theorem 10.1. Suppose s(x, 1) (9. 28), (0. 28 a) is a formal solu-
tion for x on (a, b) of the formal non linear homogeneous differential equation (9. 8),
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(9. 8b) (¢f. Lemma 9. 1). Correspondingly the formal equation may be written us
(9. 25), (9. 25 a): the »actual> equation F, =0 may be expressed as (9. 20}, (9. 29 a).
Associated with s(x, 1) the non linear problem has the linear equation T(g)= o
(10. 1), whose solutions involve polynomials Q:(x, 1) (independent of t, if t is suf-
Sficiently great) (cf. (10. 2)). We note that existence of solutions of T ()= o of form
(10. 2), (10.2a) 7s asserted for x, A in I'(ay, by; R,) (notation of the early part of
section 9); (ay, b,) s a closed sub interval of (a, b); Ry is a regular sub region of
R such that no function (10. 3) changes sign for x, L in I'(a;, b;; R,). We let R,
be a regular sub region of R, so that no function R QY (x, &) changes sign for z, k
m I'(ay, b; Ry).

In the Case 9.45 (ay, b) 2s to be chosen so that p o(x) of (9. 44) does not
vanish for ay = x = b,.

In the Case 9. 46 we choose (ay, b,) so that p., «(x) does not vanish for a, < x = b,.

Given an integer t (t = t'; t suitably great), however large, there exists a solu,
tion y(x, A) of F,=o, defined for x, L (|1|= 4y; A, suitably great) in I'(ay, by; R,),
such that

(10. 47) Yy {z, A) ~ s" [z, A) [z, 4 in T'{ay, by; Ry); ton () terms; i =o0, ... n,

where n(t) > o with t. More specifically, one has

(10. 47 a) Yz, ) = ddxi 6% D (at; 2, 1) + olx, D))
(=o0,1,...n) wih

1 i
(10. 47 b) ot e, N=o0,(x) + o, ()X *+ - + o ()2 *

and o(x, A) satisfies in I'(ay, b;; R,) the relations (10. 46), (10. 46 a).

In the above B = h + w, where w=0 7n the Case 9. 45.

Briefly, the essence of the developments of this work is as follows.

When the given 'actual’ non linear homogeneous n-th order algebraic dif-
ferential equation F, = o0 has a formal solution s of the same type as occurs in
the corresponding linear case, one can always construct regions R and ’actual
solutions’ y; of F,==0 for which

Yyl ~ 50 (¢=o0,...n;in R; to n(f) terms; n(f)—> o with ?).

Essentially, the regions are determined by the character of a certain linear
problem associated with F, = o.

— ——— e n



