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The considerations of this paper were suggested by the ‘abelian’ version of a problem
concerning a Fuchsian group G. Greenberg [4] has shown that if F(G) denotes the system
of all finitely generated subgroups of G, ordered by the relation of being included of finite
index, then F(G) has maximal elements. To comprehend the ordered system F(G), a first
approximation is to look at its ‘homology groups’, these being definable for any partially
ordered set with zero (see below). The resulting problem is still intractable, and it seemed
of interest to try the analogous problem when G is replaced by a finitely generated abelian
group M: the analogue of the maximal elements of F(G) is then the family $(M) of all
direct factors of M. Here, S(M) happens to be a lattice, ordered by inclusion, and we form
from it a complex WM whose vertices are the elements of S(M), and whose simplices (v,,
..., v,) are ordered sets of vertices such that v, N ... Nv,+0. The homology groups of VM
are then the ones we consider (with related matters) in this paper. A principal result (see
section 15) states:

If M has n>3 generators, then W M contains a wedge of (n—2)-spheres, and the inclusion
induces isomorphisms of homology and homotopy groups. The set of spheres is bijective with
the group of all n xn non-singular rational upper triangular mairices, modulo the diagonal
matrices.

Just as VM was formed from the partially ordered set $(M), we can form a complex
WP* from the lattice Flat(P") of flats of a projective n-space P*(F) over a field F. It
happens that W' M ~WP*1(Q). When F is finite, the M&bius function g of Flat(P") was
studied by Rota [11] who related it to the Euler Characteristic y of '¥'P", and calculated
u and y. Our treatment, however, is geometrical rather than arithmetical, and thus gives
more information (for example, here W'P" has the homotopy type of a wedge of spheres.)
We take a more general point of view than Rota, working at first with partially ordered
sets rather than lattices, and abstracting the role of the ‘support’ v, N ... N v, of a simplex

(vgy ---» V). It turns out (see section 16) that Rota’s equation y =1+ for a general finite
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lattice expresses the complementary nature of two subcomplexes of an acyclic complex,
and several known relations about u are easily inferred from this point of view.

The plan of the paper is as follows. It is divided into seventeen sections, and in the
first we introduce some notation and three Examples, to which we return several times in
later sections, for motivation. In section 2 we look at a special complex ¥z X associated
with an ordered set X and prove that its homology and homotopy groups depend only on
the minimal elements in X. A notion of ‘dimension’ is introduced in section 3, and we show
that the fundamental group and ‘early’ homology groups of Wz X vanish for rather primi-
tive reasons. For an example in groups see 3.8: and for one concerning sections of a vector
bundle see 5.9. The later groups are calculated by means of the Mayer-Vietoris sequence in
sections 7 and 10; and the associated inductive arguments force us to consider a situation
where the simplices have ‘supports’ in an ordered system I, to which we gradually add
extra structure (in the form of existence of atoms, descending chains etc.). These considera-
tions occupy the sections from 4 to 10, and confirm the intuitive expectation that the first
non-vanishing homology group is free abelian while the higher ones vanish. In section 11
we show how to work with L entirely, and in section 12 we relate the homology groups to
the ‘order-homology’ of L discussed in Pretzel [10] and Rota [12]; we use a ‘uniqueness’
theorem for homology, established in section 7 by the Mayer-Vietoris technique. This uni-
queness theorem enables us also in section 13 to find a significant wedge of spheres in the
associated complex W'L; the theory is shown to work for example, with the geometric lat-
tices considered by Crapo-Rota [1] (see 13.6 below). When L is Flat(P"), the projective
group is used in section 14 to describe the set of spheres of the wedge. In section 15 we
relate VM (when M is a free abelian finitely generated group) to P*, but in a more general
situation when the embedding, of the ring of integers in the field of rationals, is replaced
by a similar kind of embedding of a ring in a (possibly non-commutative) field. Next, in
section 16, we show how our geometric theory can be a basis for Rota’s theory of the
Moebius function. Finally, we look at ‘intrinsic’ conditions on L which yield the conditions

imposed earlier: these indicate the role of geometric lattices in the theory.

1. Notation

For partially ordered sets and lattices we use the general terminology of MacLane
and Birkhoff [9]; in particular, ‘partially ordered set’ is abbreviated to ‘poset’. Also we
use the abbreviation ‘izoposet’ for a poset with intersection or glb (written a A b), zero (0)
and ‘one’ or universal upper bound (1). Three examples will be kept in mind for illustra-

tive purposes, and for future reference we enumerate them here.
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Example 1. Let m >0 be an integer. Then Fact (m) will denote the isoposet of all factors
of m, ordered by divisibility; here 0 and 1 are 1 and m respectively, and a A b =HCF(a,b).
The atoms in Fact (m) are the prime divisors of m, and the coatoms (elements covered by

1) are all factors of the form m/p, where p is an atom.

Example 2. Let U be a set. Then PU will denote the family of subsets of U, ordered by
inclusion. It is an izoposet of course, with extra structure. Its atoms are the singletons,

and its coatoms are subsets of the form U —=x, z€U.

Example 3. Let P™ be a projective space of dimension m. Then Flat (P™) will denote
the family of all linear subspaces of P™, ordered by inclusion. It is an izoposet, with 0 the
empty set and 1 the whole space; the atoms are the single points, and the coatoms are the
hyperplanes. We denote by Flat! P™ the dual izoposet, obtained by reversing the order
relation and taking 0, 1 to be P™ and @ respectively. Here atoms and coatoms are hyper-

planes and points respectively.

By an abstract complex, we mean a family K of subsets ¢ of a set K, of vertices of K,
for which every non-empty subset of any ¢ in K lies also in K. Thus K is a poset, ordered
by inclusion. It has a geometrical realisation, in the sense that there is an isomorphism
between K and a geometric simplical complex J which preserves the simplicial structure;
but J is also a topological space (see Hilton-Wylie [7] p. 46). The homology groups H, K
will be those of the total complex K (see Hilton-Wylie, p. 100), whose chain-groups are
freely generated by ordered simplices o= (v, vy, ..., ¥,), i.e. points of the weak Cartesian
product K§ for which the unordered set {v, ..., v,} (deleting repetitions) is a simplex
of K. It iz well-known that H K is isomorphic to the gth singular homology group of J.
For such matters we follow the approach of Hilton-Wylie.

2. The complex of minimal elements

We begin by showing in this section how certain complexes can be associated with
a non-empty poset (X, <). First, we observe that the family ®X of all finite non-empty
subsets of X is an abstract complex in the sense of section 1. Its vertices are the points
of X. Thus its associated total complex (®X)@ is simply the weak Cartesian product Xe,
i.e. the set of all finite ordered subsets ¢?= (%, ..., ,) of X, repetitions being allowed in
0% By identifying € X with () € X“ we allow ourselves to write X S X®, and we call the
elements of X the ‘vertices’ of X®. If ¢ >0 and 0<¢ <y, let 2,67 denote the ordered set ob-
tained from ¢? by suppressing the vertex z; if ¢ =0 define 2,0 =a.

The ordering on X induces orderings (X*, <), (0X, <) on X®, OX, if we define

¢?<1? to mean:
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for each vertex x; of 6%, there exists a vertex y, of ©° such that x; <y, in X.

Then < is transitive on X®, ®X, and agrees with the given ordering on X. Note, however

that we may have 09 <1?<g? yet 0?+1". Also
2.1. If 6%€ X?, then 9,0°<0? 0<i<gq.

Now X* defines a chain-complex with simplices ¢? and face-operators &;. If we fix one
vertex x€X, then for each ¢?€X®, the cone zo?=(x, 09)€X®, so X® (and hence ®X) is
acyclic in the sense of homology theory using finite chains. Observe that we have a ‘sup-

port’ function
2.2. & X°- X

given by #(xy, ..., 2;) = {#,, ..., 7,), the unordered set with deletion of repetitions. Clearly,
& (X®, <) (DX, <) is order-preserving.

Since acyclic complexes are not very interesting, we shall suppose that we are given
a set E S ®X of ‘excluded’ simplexes, so that the complex ®X — F is the one of interest.
E must satisfy:

2.3. (The Exclusion Condition). If o <v in ®X and 1 ¢ E then 0§ E.
Thus ®X — F is a closed subcomplex of ®X. Further,
2.4. OPX-E=0X—-E)-E

by the Exclusion Condition, so that we may replace X and F by X'=X—H, F' =
O(X — E) N E respectively.

To help illustrate, and motivate the later work, let us now extend the three examples
of Section 1. In Example 1, with X =Fact (m), we take E = H(m) to consist of those ¢?=
{%g, ..., ¢, for which the LCM of the vertices x, is m. In Example 2 with X = DU, let
E =E(U) consist of those ¢9={x,, ..., 2,} for which zyUx,U..Ux,=U; here E=0if U
is infinite. In Example 3, with X =Flat (P"), let E = E(P") consist of those o?={x,, ..., %}
for which ,U ...Ux, spans P" and if X =Flat' P* we take the dual version of E: all g%
for which z,N ... Nw, = are to form E'= E' (P"). In each example, the Exclusion Condi-
tion 2.3 is obviously satisfied. It so happens that in each example (except when U is in-
finite), X N B =©; in fact, X N E is the 1 of the izoposet X. Thus, using the notation fol-

lowing 2.4, we have

2.5. Fact'(m) = Fact (m) —{m}, Pp'U = PU —{U}, ete

(1) By our definition of a complex in Section 1, a subcomplex is automatically closed, since it is
a subset that is a complex.
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the latter when U is finite; and then E’'(m) consists of those ¢ € E(m) for which m is not a
vertex of o.

Here and in the general case, our concern is to give a simplified description of ®X — K,
either by describing its homotopy type (as in 13.4 below) or by computing its homology
groups. The latter are the groups of the total complex of ®X — F; that is to say of X —
t-1E, a closed subcomplex of X*. By the Exclusion Condition, ¢-1E satisfies two ‘exclusion

conditions’, one a special case of the other:
2.6. If o"<7?in X and 1? ¢t E, then o* ¢t E.

2.7, If 69=(xy, ..., x,) €47 LE, then also 69 ¢t 1E, where ¢! =(Zgy oes Tip Typ oovy T,) With x;

repeated.

For simplicity we write T for -1 E. Observe that 2.6 implies for example, that if x <y
in X then (x,y)¢7T if y¢T; for, (z,y)<y in X*. Moreover, (X —T)*—-T=X*—-1T, also
by 2.6. Hence we shall now suppose that TN X =2 (see 2.4). Further, as a first step in
our programme for simplifying ®X — E, we shall suppose also that X has minimal elements,

Le. given x€ X, there exists y€X such that y <z and if 2<y in X then z=y. Throughout
X, denotes the set of all minimal elements of X;
since X =, then X, +@. To simplify the notation we write 7X for the subcomplexes
TX =X*—T,and TX, =X, T,
note that the ordering on X, induced by that on X is the relation of equality.

The principal result of this section now follows: compare Folkman [3].

2.8. THEOREM. The inclusion T'X, < T'X induces isomorphisms
Oy H(TX, )~ H(TX), 0<q.

Proof. Recall that to calculate H (TX) we use finite chains y?= 2 n,0 where ¢ runs
through all g-simplices ¢? in TX, and all but a finite number of the integers n, vanish.
If n,=+0 say that ¢ is ‘in’ y% If o also lies in T'X,, we call ¢ ‘minimal’.

For any minimal element u€X,, there is a function f,; X—~X defined by setting
fu®)=p if p<wx, and f,(x) =2 otherwise. By condition 2.6, f, induces a simplicial mapping
fuio TX—>TX, and on TX,, f, is the identity.

Clearly, if C is a g-chain of K, the no more g-simplexes lie in f,C' than in C, while for

the number #(C) of non-minimal vertices of C we may assert

(a) h(f,C) < k(C).
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The standard formula of Cech theory:
D(e) =2 (—1)!(xy ... % @i ... %) (¥)="F.)

where ¢%=(x,, ..., %), shows as in Wilder [14] p. 128, that y~f,p on TX, for every cycle
y on TX; for, each term in the above sum lies in 7X by 2.6 and 2.7.

Hence, using induction and (a) on A(y) we may assert
(b) If y is a g-cycle on T'X, then y ~y, on TX, where y, is a g-cycle on TX,.

Also, since [, is a chain-mapping and f,| T X, =identity, then by (a) and induction on

R{C) we may assert
(c) If y=08C in TX and y is in TX,, then there exists C' in TX, such that y =0C",

But then (b) and (c) respectively assert that , in 2.7 is surjective and injective. This
completes the proof.
By definition of the homology groups as those of the total complex, we obtain at

once the
2.9. CorROLLARY. The inclusion X, =X, —E< X — E induces isomorphisms
H (PX,—E)~H,(PX—-E), 0<qg.
For brevity, we shall write:
Y X=0X-E, ¥;X,=0X,—F

respectively for (geometrical realisations of) the abstract complexes OX - E, OX, - K
(=0X%—E).

From the proof of Theorem 2.6 we may extract a little more, viz:

2.10. THEOREM. The inclusion X, = X — E induces an epimorphism 0: a¥p X ,—~n ¥ X
of Fundamental groups (assuming ®X — E is connected).

Proof. Choose a base point x € Xx. We may regard the fundamental groups as edge-path
groups (see Hilton-Wylie [7] p. 237), so that representative loops may be taken to be
simplicial curves o on a finite subcomplex K =K(y). Also by Hilton-Wylie [7] p. 46, we
may here replace 7'X by an isomorphic geometrical realisation.

In the last proof we saw that if » were any vertex of 7'X, then (v, f,v) is a 1-simplex
of TX. Hence in ¥';X there is induced a homotopy ¢,(v)=(1~t)v+if,(v) and ()
remains fixed. Thus by using A(y) as before, we find an edge-path loop y, in Wi X,
such that y ~y, rel 2, This proves that 0 in 2.10 is onto, as required.

{In applications, ¥z X, will turn out to be zero, so § will then be an isomorphism).
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3. Dimension

We now concentrate on the groups H WX, and write t,: X§—~®X, for the restric-
tion of ¢; then E(X,)=EN®X, consistently with the requirement prior to 2.4 that
t;'B(X,)=TnX%. Contemplation of the above Examples 1-3 leads us to impose a

‘dimensional’ restriction in the general case.

3.1. Definition. The system (X, <, E) is of dimension >n, provided that for each c*€ DX,

o E if g<n. We write
dim (X, E) > n.

Consider the examples of section 1 using the notation X, B(X,)=E,. In Example 1,
suppose m has k distinet prime factors. If m is not square free, then F,(m)=0), so (omit-

ting the subscript & for brevity in standard cases):
3.2 W(m) = Facty (m) — E o (m)

is acyclic and (with an obvious notation) dim (Fact (m), E(m))=-co. If m is square-free,
then W(m) =0 if k=1, and otherwise

P'(m) =82, dim (Fact (m), E(m)) > k—2.

Observe that the Euler characteristic, (7'X), is y(¥'(m)) by Corollary 2.9, and this is
1-+u(m) where u denotes the Moebius function. Compare Rota [11] p. 356.
In Example 2, if the set U is empty, then dim (DU, E(U))=c° but if card U=~k < oo

then
‘F(U) =®D*U—E*(U) =®Y_{U}

is empty if k=1, while otherwise
3.3 W(U) =82 dim (PU, BU))=k-2.

In Example 3, we have

34 dim (Flat (P™), E(P™)) = dim (Flat' (P™), E* (P™)) = m.
Here,
3.5 W'(P™) = @ Flat(P™) — B (P™)

has no immediate simple description; but if P™ is the geometry with ¢+ 1 points on a line
(g <o) then WP™ is a complex of dimension < g™ 14¢™ 2+..+g+1 since any larger
number of points spans P™ and therefore forms a simplex in E.

Turning to the general case, observe first that for any system (X, <, £), dim (X, ) >0.
For caleulating homology groups we now prove:
14 — 722902 Acta mathematica 129, Imprimé lo 3 Octobre 1972
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3.6 TarorEM. If dim (X, E)>n>1 then VX is connected and
HY;X=0, 0<¢g<n-2
(we use reduced homology when ¢ =0).

Proof. By Theorem 2.8, it suffices, for showing that ¥z X is connected, to show that
z~yin TX, for any two minimal elements of X. But by 2.6 and 2.7 the 1-simplex (,y)
does not lie in 7' since 1 <#n by hypothesis. Thus 7'X is connected, and hence so is ¥z X.

To compute H,TX when ¢>0, it suffices by Theorem 2.8 to show that every g-cycle
y%in TX, bounds if g<n—2. Since X + & we can choose a minimal element y € X,.. Then
for every simplex o =(x, ..., z,) in ¥% uoc ¢ T, where uc denotes (u, @,, ..., ,); for, uo is a
(¢ +1)-simplex in X%, and g+1<n if g<n—2. Therefore all the cells of the cone K=
@]y, with vertex u, exist in TX,; and y?~0 on K< Y X so the proof is complete.

3.7 CoroLLARY (of proof). The edge-path group ¥ X, (and hence zW;X) is trivial if
dim (X, E)=3. For, if y in the probf represented an edge-path, it is homotopic to zero on
the cone K; here ¢=1<n—2, so n>3. Therefore by 2.10, #¥"; X is trivial also, when n=>3.

Thus, by 3.4, the complex W (P™) of 3.5 is simply connected if m >3 (and it is not

connected if m=1). Also, by 3.6, if m>1 we have

HWYP™ =0, 0<g<m-2.
We shall prove below that
HXY(P") =0, ¢>m—1

while H,_,'¥'(P™) is free abelian on a (determinable) set of generators. The considerations

leading to the proof of these extra facts generate the remaining sections of this paper.

3.8 To conclude the present section, consider the following example. Let G be a non
quasi-abelian Fuchsian group (as in Greenberg [4]), and let X denote the set of subnormal
subgroups (=1) of G. Any two such intersect in a third, by Lemma 3 of Greenberg’s pa-
per. Hence if we take E to be empty, the system (X, E) has dimension > for all n. Thus
¥ X here is acyclic.

4. Supports

The ‘projective’ Example 3, of the system ¥'(P™), suggests that we investigate the fol-
lowing situation. There, each ¢?€Flat (P™) has a ‘support’, the smallest subspace ¥ of P™
containing the vertices of ¢% and V lies in the poset Flat (P™). Similarly each ¢?=
(%5 ..., ) € Flatt (P™) has ‘support’ , N ... Nz, €Flat (P™); and in Examples 1 and 2, supports
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may be readily defined. We therefore now consider the general case where we are given a
function
41 g: ®X—-L

where (L, <) is a poset with 1, while ¢: (®X, <)—(L, <) is order-preserving, and ¢ is con-

vex in the sense of
4.2  Definition. If A€L, 7¢={, ..., t} €EOX and gz, <A, (0<i<q) then gr? <.

Let E =g Y1): then E, satisfies the Bxclusion Condition 2.3 above since g is order-
preserving and in L the order-relation is transitive. If E, =@ then as observed after 2.1,
Y, X=0X—E,is acyclic. Thus we now assume that K 3@ and hence that g is onio (by
using Image (g) to replace L). Using the ‘support’ function ¢: X*—>®X of 2.2, we obtain a

commutative diagram

LD =1 ) RN )

%

xo
so that f is also order-preserving and convex (i.e. f(z;) <A implies f(z,, ..., ;) <A). Note that
if we regard (®X, <) as a poset, then ¢ is convex in the sense of 4.2. Since { and g are onto,
so0 is f.

Conversely, given a system (X, <, F) as in 3.1, then there is a convex order-preserving
function q: ®X - M such that E = E, and M is a poset with 1; for, let M =(®X — E) U {E},
ordered in the obvious way by the ordering induced from X, let £ be the universal bound
1, and let ¢ denote the quotient map. Certainly, ¢ is order-preserving, and the Exclusion
Condition 2.3 ensures that ¢ is convex. Thus 4.1 is a natural generalisation of the case con-
sidered in section 2.

We introduce a little notation. If A€L we write:
44 AL={u€L|u<}
and if 4< X® we write (with f as in 4.3):
AA=fYAL)N A< A.

It is easily checked that if 4 is a sub-complex of X« then so is A.4. Also, to avoid brackets,
we write w4 for 4°. Now, we remarked, following 4.3 that the convexity of g implies that

of f; and this in turn implies (as is easily checked) that

45 roX =w(A.X)
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Further progress requires that we impose extra conditions on f and L. Thus, we sup-
pose that in L, any two elements A, 4 have a glb in L denoted by z Ay, so that x Ay is the
maximal z€L such that z<z and z<y. It is easily checked that

4.6 AANuA=ANu A =2 (uA).

In 4.3, ¢ is onto, and therefore f is onto if and (here) only if g is onto. The following result
will be useful, although it follows at once from the hypotheses.

47. PrRoPoSITION. Let f: X®—L be an order-preserving surjection. Then the function
A—A.wX is an embedding 1: L— DX® of L into the family of subsets of X°.

Observe that Propositions 4.6 and 4.7 have analogues for any order-preserving sur-
jection h: M —L of posets. In particular, if % is the identity mapping on L, the correspond-
ing embedding #: L— PL has the property that for any minimal element c€L, 5(c) is the
singleton {c}. Thus we shall in future use A N for A A y and, for minimal elements ¢, write
¢ €4 rather than ¢ <A. We let L, denote the set of minimal elements of L, and suppose that
L +{2} so that L,=+@. Finally we add a zero to L, as universal lower bound, and the re-
sulting system becomes an izoposet still denoted by L, in which the minimal elements
cover 0 and hence are atoms. This addition of 0 leaves the sets f~1(A.L) unchanged since
110) =0.

4.8 LeEmwmA. If f: X®—>L is convex, and tf c€ELy then f~1(c)=c. X" is a cone, and a sub-
complex of X°.

Proof. By our earlier conventions, f is onto L — {0}, so f~1{c) =@. Fix v €f~*c}, so f(v) <e.
If 0?€f2(c) then since f is convex, f(vo?) <c, so f~(c) is a cone with vertex v. Hence f~1(c)
is acyelic. If ¢?€f1(c) then 8,0?<0¢? in X® so 0;07€f~(c) since f is order-preserving and
¢€L,; hence f~1(c) is a subcomplex of X®. Finally, f-1(¢) =c.X® because ¢€L,. This com-

pletes the proof.

5. X|f and its subcomplexes
When computing homology, we emphasise that we are working in X* by writing
51 X|f=X°—¢1E, ="'V, X

(the complex T'X in the notation 2.8): it is the total complex of ¥, X =®X — .
The following result is suggested by analogy with Theorem 2.8.

5.2 ProposiTiON. In the diagram 4.3, we may assume, for calculating homology, that f

maps vertices to atoms. More precisely, let
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Y =X N {(Ly).
Then Y° < X°, and if f': Y~ L denotes the restriction of f, the inclusion induces isomorphisms
HYY|f)~H{X|f), q>0.

Proof. First observe that Y +@, For, L, =@; and f is onto L —{0}, so if c=f(0) €L,,
then for each vertex v of g, f(v) < f(o) since f preserves order. But 0< f(») and {(¢) is an
atom, so v€Y, and Y +@.

Next, let <’ denote a new order-relation on X, defined by:

a<'b if and only if a=>b or f(a) <f(b) in L.

With E,=g-1(1) as in section 4, let F =¢-1E,=f"1(1) € X® Then F satisfies the Exclusion
Condition 2.3 relative to the order relation induced by <’ in X¢; this follows from the
convexity of f. But the atoms of X, relative to <’ are exactly the eléments of Y. The
Proposition now follows directly from Theorem 2.8.

Next we supplement the notation of 44 by defining, for each 1 €L and subset B of OX

A.B=g*(AL)N B=B.

In particular 2.0X < ®(A.X) since g preserves order and X was agreed in Section 2 to lie

in X®. The reverse inclusion holds because ¢ is convex, so we have
20X = P(1.X).
Also, since f(2.X*)<S A.L we shall denote by
Af: A X®—>A.L

the restriction of f regarded as having codomain 4.L. We make similar conventions for A.g
and A.t, and frequently omit the dots if no ambiguity arises. Then we obtain from 4.3 the

commutative diagram

¥, X © i0X— ;L

W i T

X\ = Axe

where A.X |A.f=(A8)"'¥,, X consistently with 5.1. Now, in 5.1, {1E,=f"1(1,), so

(A6 Bj, = ()7 (Aa) = FHA) SA.X%;
Therefore, by 5.1

52 AX|Af = 2.X2 = fHA) +A.(X | ).
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We now develop this notation, eventually to express Definition 2.3 in a form (see Section
9) such that if dim (X, £,) >#» and A is a co-atom of L then dim (AX, K, )=» —1. This will
allow inductive arguments to be made. First, consider the co-atoms of L.

So far, L has been an izoposet with atoms. We now assume

5.3 L has co-atoms; i.e. if A€L then there exists u <1 in L with A<p, unless A=1.

[a <b in L means that b covers a, i.e. if a <¢<b then either a =c¢ or b=c]. Let L* denote
the set of all co-atoms of L.

Now for any atom c€L, and co-atom p€L* then either c€u, or the lub of z and u
is 1. There may, however, be other elements ¢ €L with this property: thus we define

Lic)={a€L|cVa=1+a}UL*
where ¢ V o denotes lub of ¢ and «. The set
Lt = U{LH(c)|c€Ly}
will be called the set of atomic complements in L. Also let

L*(c) = {A€EL*|c€A},
so that
L(c) 2 L* — L¥(c).
The definition of the complex X|f in 5.1 then yields at once (with 1.X|f) as in 5.2):

54 ProrositioN. X|f=U{1.(X|f)|A€L*}.

This proposition suggests that we compute the homology of X|f using the Mayer-
Vietoris sequence. As a step towards the computation, we choose an atom c€L,, with

L*(c) as defined above. A direct argument concerning the convexity of f proves:

5.5 LEmMA. Suppose f: X®—L is convex. If vE€f(c) and AEL*(c), then each A.(X|f) is a

cone with vertex v. Also

E(c) = U{A(X|f)]1€L¥0)}
is a cone with vertex v, and hence an acyclic subcomplex of X |f.
Now, from 5.4 we may write:
X|f = K(e) U U{A(X|f)|1€LH0) ~L*(0)}

where for a technical reason (see 7.2 below) we replace L* by L*(c).
In case the set L(c) —L*(c) is infinite, we compute H.(X|f) as the direct limit of cer-
tain groups H,K) and the appropriate induced homomorphisms, when M runs through
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the family ®(L*(c) —L*(c)) of all non-empty finite subsets of L*(c) —L*(c), directed by in-

clusion; here:
5.6 Ky=K(c)U ZEJMZT, T=X|f.

Let M = {uy, ..., tn}, and
5.7 Ky=K(), Ki1y=K Up T, (0<t<m).

Since we are dealing with complexes, the triads

(Ky, J3y Kiq)y Ji=p43 T,

are proper (see [2] p. 34) so the Mayer-Vietoris sequence
5.8 wrH K ~HEKNT)~H,K,+H,J,~H,K, .~ H, (K;0J)~>...

is exact. We therefore need to know more about K;NJ;, and for this we study L further,

in the next section.

5.9. However, we pause to consider the following cautionary example. Let B denote a
vector bundle over a space Y, whose fibre is an #-dimensional vector space (n>2). Let X
denote the set of all factors B’ of B, i.e. B=B'+B" (Whitney sum). Thus B’ is a con-
tinuously varying distribution s(y) of k-flats, s(y) in the fibre B, at y€Y. We order X by:
s<s'if s(y)=s'(y) in B, for all y€Y. Unfortunately X is not closed under intersection, nor
under the operation (sVs') (y) =s(y) V §'(y), since sV &' may not have constant dimension
on each fibre. Nevertheless if I'(B)< X denotes the family of sections of B, we can form a
complex W' where B consists of those o=(sy, ..., s,) €I’ such that for each €Y, the
points sy(x), ..., 8,(x) span B,. Just as for WP (to which the example reduces if Yisa
single point) we find that H,W;T'=0 if 0<g<n—2, but perhaps H ¥ ;I'+H V; X. It
would be interesting to known how to modify the considerations of the later sections to

compute H W;I" in general.

6. A Uniqueness theorem for homology

It is convenient here to derive from the sequence 5.8 a uniqueness theorem for homo-
logy groups, as follows. Suppose that, for each A €L, we can associate a (closed) subcomplex
C; of X® such that Cy=@ but if 0 <1 then

6.1 (i) C; is acyclic, C,<A.(X|f), and C; N C,=Chn,.
Let ¢ be an atom, and let @(c) = U{C;|A€L*(c)}. Suppose
6.1 (ii) Q(c) is acyclic.
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With M as in 5.6, we can form complexes @, @;, P; analogously to the complexes
Ky, Ky, J; in 5.7, but using O instead of 1.7. We thus derive an exact Mayer-Vietoris
sequence S% analogous to the sequence S% of 5.8, and the inclusions €3 SA.T induce a

homomorphism s;: 8—Sk of exact sequences.

6.2 PRoOPOSITION. If, for each i in 5.8, the inclusion induces tsomorphisms H o (P; N Q,) ~
H (K,NJ,) then s;: 84— Sk is an isomorphism of exact sequences. Therefore

H,Qu~H, Ky

Proof. The conditions of the “Five Lemma® (see.[2] p. 19) are satisfied when =0,
since Ko, Jo, Qy, Py are all acyclic and H,(PyN Qo) ~Hy(KyN Pg). Thus s, is an isomor-
phism, so by induction on ¢, ¢, is always an isomorphism and the proposition follows.

This proposition will be worked into a more useful form in 7.8 below.

7. The Mayer—Vietoris Sequence

Going back to the situation in 5.7, we shall now compute K;NJ;=K,;N ;4 1, in the
notation there, assuming that L satisfies condition L, below. Recall from 5.6 that M =

{1 -» Um}> and we may assume that M is labelled so that u,<u, implies & <j.
7.1 LEmmA. For each 1=0, ..., m—1,

En Jz‘g./le,“f (1= Wip)-
Proof. It ¢€K,N.J, then we may suppose ¢€A.T by definition of K,, where either
AEL*(c) or A=y, for some j<z. Tence o€ (AN p).T, using 4.6, It remains to prove that
ANp<p. But, if A€L*(c), then ¢ VA=4; so if A Ny =y we would have.

l=cVu=cV{@Anu)<eVi=4,

a contradiction. And, if A=y, then again ANy <p, otherwise y <A=u, contrary to our
agreed manner of labelling M. This completes the proof.
To obtain equality in 7.1 we need to suppose that L satisfies:

L,. For each atom ¢, and A€L*(c), the set A.L*(c) is finite. (Recall: 1 €L*(c)).

This enables us to suppose that the set M in 5.6 is complete, in the sense that if eeM
and BEL*(c) then BEM if f<a. Every such M lies in a complete member of ®(L*(c)—
L*(c)), since we need only take the union IV of all sets «.L*(c) as « runs through M; \by L,
N is finite and complete. Thus the family of complete subsets is cofinal in ®(Le)—
L*(c)), so we may confine ourselves to this family when taking direct limits of the homblogy
groups H, K, With this agreement we have
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7.2 LemmAa. If M is complete, then K, 0 J;=puX|uf, (0<i<m).

Proof. By 7.1 we must prove that uX |ufS K;NJ ;. If 0 €uX|uf, then a=f(o) <u, and
then either (i) ¢ and « are <] for some A€L*, or (ii) ¢Voa=1, so a€L"*(c). If (i) holds,
then ¢€AT < K,= K;, while GEﬂT%Ji’, so 0 €K;NJ, as required. If (ii) h:olds, then by the
labelling of M, x=p,;€M for some j<i+1 since e <pr=g,,, and M is complete. Therefore
c€uT<K,cK, Since a<y then c€ul'=J,, s0 ¢,€K NJ, as required. This establishes
the lemma.

The last lemma suggests an inductive approach to the problem of computing H,(X|{),

since the Mayer-Vietoris sequence 5.8 now reduces to:
(73) o> Hopy(K ) > HAX|Af) ~ Hy(K ) _’Hq(Kigd) - Ho (A X[2f) > ...
> HoAX |M) > Hy K+ HoJ ,—~ Hy K,y —~0
when A=gy,,,, using Lemmas 7.1 and 7.2. (By 5.5, J, is acyclic; we use unreduced homology
groups Hy in this sequence.)

One useful conclusion can be drawn'at once from the sequence 7.3, and the hypotheses

will be shown below to arise ‘naturally’. To indicate reduced homology groups we use H.

74 TaEOREM. Suppose there exists n>0 such that, for all AEL*(c), H AX|Af)=0 if
g==n—1. Then H(X|f)=0 if ¢ +n.

Proof. The exact sequence 7.3 yields
(a) 0=H,Ky~H, K, ~..~H K,~H,K,,,
if g+n—1 or n; and for these two dimensions

0-H,K,~H,K,,~H, ,(AX|i\)~H, ,K;~H, K, ,~0,

is exact. Since K, is acyclic, the last sequence yields H, ; K;=0 by induction on ¢, and
leaves us with the exact sequence
(b) O0~H,K;~H,K, ~H, (AX|Af)=0.
Thus (a) holds if g==n, whence as K, =K, in 5.6, 0=H K, =H (X |f) if g+n.
7.5 CoroLLARY. If also, each group H,_,(AX|Af) is free abelian, so is H,(X|f).

For, since H,Ky=0 in (b), induction on ¢ shows that H, K, ,~H,K;+ H, ,(AX|if)
is free abelian. Hence H,(X|{), as a direct limit of the union of free abelian groups H,, K,
in 5.8, is free abelian because if M <N then H,K,, is a direct summand of H,Ky. This

establishes the corollary.
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Clearly, we now need L to be such that assumptions about X |f will be inherited (with
appropriate dimension shift) by the subcomplexes X |Af. This explains the style of the
digression in the next seétion, to study L further. Meanwhile, the case when L is finite is
of interest. For then, X|f is K, for a suitable M, and the proof of Corollary 7.5 shows

immediately:

7.6 rank H, (X |f) =§lrank H, (X |41

where A; runs through L1(c) —L*(c), of cardinal m.
Instead of using the complexes K;, J,, T in the proofs of Lemmas 7.1, 7.2 we could
have used the complexes @, P,, C; of 5.9, with uX |uf replaced by the complex

7.7(1) D,={c|o€D and f(o) <u}cuX|uf
and, guided by 5.4, we define the complex
7.7(it) D =U{C,|AeL*}= X |j.

For, the arguments in the lemmas used only inclusion relations between complexes, be-
cause the rest of the argument concerned L and M. Just as with X |/, we define the homo-
logy of D to be the direct limit of H,Q,,, with Q,, as in 6.2, and where M runs through the
complete subsets of ®(L*(c)—L*(c)) described prior to 7.2. Hence we obtain at once from
Proposition 6.2 the result:

7.8 THEOREM. Let the izoposet L satisfy condition L,. For each A€L*(c)—L*(c), suppose
that in 1.7 (i), the natural homomorphism H,D;~ H (A X |}f) is an isomorphism, for all ¢=>0.
Then in 7.7 (ii) also, each H,D—H (X |f) is an isomorphism.

8. A filtration on L

In order to allow inductive arguments to be made, we shall now suppose that the izo-
poset L is filtered; that is to say, there is a monotonic, strictly increasing function ¢ from
L to the non-negative integers, with ¢(0)=0. (For example, if L is finite then it is filtered:
take ¢(z) to be the number of y <z). Since L has atoms and co-atoms, we have immedi-
ately.

8.1. If0<x<lin L then 0<d(x) <$H(1).

Therefore L contains no infinite chains, so lub’s exist in L, i.e. L is o lattice. Hence, also,
if ¢(1)=1 then L consists solely of 0 and 1.

82 LEeMMA. If (1)=2, then L, =L*.
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Proof. If 2€L*, then there exists an atom c€41; so by strict monotonicity, 0 < $(c) <
$(A)<2, whence ¢(c)=¢(A)=1, and ¢=1 again by strict monotonicity. Thus L*< L,.
Similarly L,<=.L* and the lemma follows.

As a first application, consider condition 6.1 (ii) on the system C;. We use the nota-
tion of 6.1.

8.3 LEemmA. If L is filtered, then Q(c) is acyclic.

Proof. It suffices to prove that if c€A() €L, 1 <i<k, then C;q) U ... U 0y, i acyclic. We
prove this by induction on n =max ¢(A(¢)), starting with » =1 sirice no A(¢) is zero. But if
n=1, then each A(¢) is an atom by strict monotonicity, so each A(Z) is ¢, and C, is acyclic
by condition 6.1 (z). If n>1, we first observe that the inclusion 0; N C,=C;n, in 6.1 (i)
implies C3q,=C; N C,. Hence, for each r=2, ..., k,

£, =Can 1 U Caoy= UCinnae-
Since O, increases with A we may assume that for no ¢ <r can A(¢) <A(r). Hence A(r) N A(¢) <
A{z), so by strict monotonicity of ¢, ${A(r) N A(3)) <n. Therefore, by an inductive hypothesis

on n, K, is acyclic since ¢€A(r) N A(z). But then, by the Mayer-Vietoris theorem and induc-
tion on 7, 0,y U U<, Cay 18 acyelic; therefore the lemma follows by induction on n.

9. Filtration and dimension

For the system f: ®X~L in 4.1, an appropriate version of the notion of dimension

(see 3.1), when L is filtered by a function ¢, is given by:
9.1 Definition. We write dim (X, g) =n provided that for all 6?€DX and 0 <q<n,
then $(g09) <(1)—(n—q).

Thus since E,=g~%(1) as in 4.1, then dim (X, E,)>n in the sense of 3.1, by strict mono-
tonicity of ¢. Hence by Theorem 3.6, we have

9.2 TrEOREM. If dim (X, g)>n>0, then H(X|f)=0, 0<q<n-2.

Always, dim (X, g) 0. Further, if n>0 and dim (X, ¢) >n, then clearly dim (X, g) >
n—1.

A further consequence of strict monotonicity is
9.3 LemwmA. If dim (X, g) =n>0, and a €L, then

dim (@.X, a.9) 2 n— ({1} — d(a)).
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Recall from 5.2 the set Y < X of vertices mapped by f to atoms of L. Since @Y = DX
there, let g’ =g|®Y; then dim (¥, ¢') > if dim (X, g)=>n. Now if >3, both ¥, Y and
¥, X are simply connected, by 3.7. Hence, a well-known result of homotopy theory (see
Hu [5] p. 167) allows us to add to Proposition 5.2 the

9.4 CoRrRoLLARY. Suppose dim (X, ¢)>8, and Y =X N f-1L,. Then the inclusion Y<X

induces isomorphisms of the homotopy groups of W, Y on those of ¥, X, in all dimensions.

One might now investigate, along the lines of dimension theory, the consequences of
defining dim (X, g) to be n if dim (X, g) = » and dim (X, g) = + 1; in particular to aim for
an-analogue of Lemma 9.3. It seems more direct, however, to investigate the filbration

further because Proposition 10.2 below is'more precise than Theorem 9.2.

10. The non-vanishing homology group of X|f

It is now possible to complete the calculations of homology, from Section 7. We use

the notation of 4.2, and assume L is filtered by ¢.

10.1 Lemma. Suppose L is such that $(1)=2. Then H (X|f)=0 ¢f ¢=0, and Hy(X|f)
is free abelian on N generators, where N +1 =card (L, N 1X°).

Proof. By Lemma 8.2, L* =L,. Now by Proposition 5.4, X |f is the union of the sub-
complexes A.(X|f), AEL*: but since L*=L,, then 1.X|f=/-*(4), so these subcomplexes are
mutually disjoint, while each is acyclic (if non-empty) by Lemma 5.5. The lemma follows,

Lemma 10.1 starts an inductive caleulation of H, (X |f) if we impose two further con-

ditions on L:
L,.  The filtration is minimal, i.e. of a > b in L'then $(a)=¢(b)+1.
L, For all b€L and atoms c¢b, cVb>b (if ¢V b exists).

Thus, L, and L, together imply that afomic complements are co-atoms. ¥or, by Ly,
and the strict monotonicity of ¢, b in L, is a co-atom in (¢ V b).L. Therefore for each a €L,
the set aL is an izoposet satisfying L; ~L,, with o as 1, and filtration ¢,=¢|aL. Thus aL
has no infinite ehains; 80 atoms and co-atoms exist in aL, and oL is a lattice, as remarked
after 8.1

10.2 ProrositioN. If L satisfies Ly — Ly and $(1)=n+2, then H (X|})=0 if ¢+n,
while H (X |f) is free abelian.

Proof. Atomic complements are co-atoms, so each A in 7.4 lies in L*. Thus 1> 4 so
${A)=n+1 by L,. Hence as observed above, AL is a lattice satisfying Ly — Ly. Therefore in-
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duction on # can be used, with Lemma 10.1 for n=0. The proposition now follows at
once from Theorem 7.4 and its corollary. The relationship of L with geometric lattices
(see 13.6) is discussed in 17.20.

The next problem of interest is to describe the set of generators of H,(X|f). Return-
ing first to the case when L is finite (see 7.6), let us suppose that w€L, p(1)=n+2 and
p(w)=n-+2—j4; so by 10.2,

o(w) =rank H,_ ;(wX |wf)

may be non-zero, and we compute it in certain cases as follows.
Suppose that L has the following ‘homogeneity’ property, which is true of the izoposet
Flat (P™) filtered by dimension (see also 17.5 below):

L, For each element w€L, atom c€EW =w.L, and co-atom A of W, then (AW)*~ W*(c); and
card W*=card (vL)* if p(w)=gp(v).

Then we have the lemma:

10.3. LemMA. Suppose f is onto L — {0}, while L is finite and L satisfies L, —L,. If v, w€L
and ¢(v)=p(w), then p(v) =p(w). In fact, if j=¢(1) — d(w), then

o(w) = (¢;—C41) (€11 —Cju2) - (Cny —Cn) (€n—1)

where card (wL)* =c; and n=¢(1)—220.

Proof. By induction on ¢(w); for when ¢(w) =2, o(w) =rank Hy(w.L|w.f) by definition;
since f is onto, then L,=fX“, and by 8.2, (w.L), = (w.L)*, whence by Lemma 10.1, p(w) =
¢,—1, independently of w (by L;). To complete the proof, we observe from 6.6 that, for

general 4,
o(w) =e(j) = (¢;—¢1) 0 +1),

if we make an obvious inductive hypothesis and use L, to write card (L* —L*(c)) =c¢;~

¢;+1. (Since atomic complements are here co-atoms, L* =L1{(c)).
104 CoRoLLARY. In Example 3, where L=TFlat (P") and P is the finite geometry with
g+ 1 points on each line, then
n+1
rank H,_; (¥ P =q(2) (m>1).
[For here, ¢;=¢"7+¢" "1+ ... +¢+1; (1) =n+1 since ¢(z)=1+dim z to make $(D)=0]..

This result augments that of Rota [11], where he calculates rank H, ,(W'P") by working
out the Moebius function of Flat (P").
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11. The replacement of X by L,

When L is not finite, we can simplify the study of the complex ¥, X by constructing

a new complex from L,—at least when L satisfies a new condition:

L,. Atoms add in L, i.e. if ay, ..., a, are atoms tn L, then they have a lub in L, denoted by
ayV..va,.

If L satisfies L; we show that L itself contains all the information about the homology
and homotopy of V', X. Thus X and g can in fact be discarded for the computation. Through-
out this section, then, L is an izoposet with atoms, satisfying L.. Conditions L, —L, are not
needed.

To compute the homology of ¥, X we may assume, by 5.2, that f(X)= L,. Hence if,

as in section 1, we form the ordered sets
®A, 4°, (A=Ly)

there is a commutative diagram, extending 4.3:

<I)X~———*L
(11.2) \ \

‘Y, X——»X“'

which we explain as follows. First, since {(X)=L, and E,=g7'(1), then XN E,=0 if
d(0)>1 in L (as we now assume). The simplicial maps s, m are defined by

$(ag, o-v, @g) = {@g, ..r Ag}, a0 M {Bg, ..y B} =@V ... Va,

and [ by commutativity: I =mos; since V is a lub operation, it is associative and commu-
tative, so m is well-defined. Further, the order properties of V ensure that m (and hence [)
is order-preserving and convex.

To define the function A, we use the fact that f(X)=L, to set

h(xl)s ey xq) = (@, .-, a’q)’ a; :f(xi) :g(xi)-

To establish the commutative relation loh =f, we observe that z,<(x,, ..., ,) whence
a;=f(x;) <f(zy, ..., %,) since f is order-preserving, so
OR(xg, ooy 2y) = Uy, ooy Bg) =gV ... VO S W < [, ory T):
but each a;<w, so f(z,, ..., ,) Sw by convexity of f, whence loh=f as required. (N.B. In
L, the order relation is antisymmetric].

The remaining arrows in diagram 11.2 indicate inclusions, in the following sense. If

we well.order 4, we turn ®A4 into an oriented complex, so there is an embedding of @4
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in A®, whose image I we identify with ®A4. Thus ¥, 4 is identified with the oriented sub-
complex I -m Y (1)c 1< 4%,

The well-ordering in 4 induces one among the sets {A1(@)}4e 4, and we well-order each
one, to obtain a well-ordering in X, which is preserved by 4. We then identify ®X and
¥, X with oriented sub-complexes of X, just as we did in A®. It can be verified that (with
these identifications) the restrictions of s, ¢ to @4, ®X respectively are the identity func-
tions, and A(®X)<c ®A whence h(¥',X)=¥,, 4. Thus we have a function

11.3 EY,X->V,A4, k=h|¥,X

which is onto since g(X) =g(X4) =f(X4) =4; also k is simplicial and commutes with the
face operators 9, since the same is true of A. Similarly since X|f=(¥,X)% we have a

map of the total complexes, induced by k: -
114 Fh XAl

For the purposes of the following theorem, we now identify X® and A” with geo-
metrical relisations, so that all the function in 11.2 may be regarded as continuous (as
well as simplicial) mappings. We still write ‘K’ for both a complex and its underlying

topological space. Then we have
11.5 TurorEM. The mappings k, k¥ (in 11.3, 11.4) are homotopy equivalences.

Proof. Given the simplex y = (a, ..., a,) € A®, then A~2(y) consists of all 6 = (, ...,z,) € X®
for which g(x;) =a, (0<i<¢q). Since ¢ is onto, this means that

(@) F =0 y) =97 ao) Xg7H(a,) X .. xg7H(ag);

but each factor g~1(a;) is a cone, by 5.5, whence F is contractible. Ify €4 |l, thenmos(y) <1,
whence mosoh(g)=got(c)<1 so c€X|f. If y€V,, 4 then a,<...<a, in the well-ordering
of A mentioned above, so for any o€ F, z,<...<wx, by construction of the well ordering
of X, whence ¢ = (%, ..., ¥,) lies in the subcomplex of X identified earlier with ¥, X.

Both for k and & then, the inverse image of a simplex is a product of cones, like F
in (a) above.

Next, we define a simplicial mapping p: 4°—X* by assigning to each vertex c€L”
some vertex x €7-1(c) and extending by linearity on each simplex; clearly h o pis the ident-
ity on 4. By convexity of f, p maps 4|l into X|I; and for any simplex y €V, 4, p(y) €
i(y)=W¥,X, since hop=1,4, so p maps ¥, 4 into ¥'; X. Thus the restrictions %, v of D
to W, 4, A|l respectively are right inverses for k, k. It remains to prove that wok~1,

vok® ~ 1,—identity maps on ¥, X, X|f respectively. But for each vertex z of X, we know
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that A~'(hx) is a cone in which # and y =(poh)z may be joined by the segment {(1--&)z+
Ey}oce<y. This yields a homotopy ¥ from pok to the identity on X, and its restrictions to
¥, X, X|f respectively are the required homotopies of uok, vok“. Thus k, &° have the
homotopy inverses u, v, and the proof is complete.

We can now concentrate our attention on L. In particular, if L satisfies L, and Ly
(and hence L; by 10.2) then for each simplex ¢?€®A4, we have ¢(l{c?))<g+1. Hence, in
the sense of definition 9.1, we have

dim (4, m) > ¢(1)~1
so that, in addition to 10.2 we have (by 3.1):
11.6 Lemwa. If (1) >4, then V4 and ¥, X are simply connected.

12. The order-homelogy of an izoposet

In [11] and [12], Rota relates the Moebius function of a lattice to its ‘order-homology’;
and ‘we shall throw light on the relationship by using the uniqueness theorem 7.8. Thus,
let L denote an izoposet, and let OL< L® denote the (closed) subcomplex consisting of all
simplices (g, ..., #,) such that u,<u,<<... <'uq in the ordering of L. The homology groups
of OL constitute the ‘order-homology’ of L (see also Pretzell {10]). Note that simplices of
the form 0<u,<...<1 are allowed, the ‘chains of L stretched from 0 to 1’ used in {11]
p. 346. If on the other hand we do not allow such simplices, but only those with either u,=-0
or u#,+1, we obtain a closed subcomplex M < OL; and if we insist that both u,=-0, and
u,+1, we obtain a subcomplex oL= M of which M is the suspension, SoL. Now OL is a
cone with vertex 1 (or vertex Q) so it is acyclie. Thus it is the homology of oL or of SoL
which is of interest; and Pretzell works with oL, which is valid for posets without 0 or 1.

But it is well-known that Sol is connected, while the inclusions induce isomorphisms
12.1 H(oL)y~H, (SoLl) (g>0).

Suppose further that L has atoms that add (i.e. I; holds). Let Ly=L—{0}. Then by
11.2 we have convex functions I: Ly~ Ly, m: ®Ly-L, given by

Uttgs <oy Ug) =g V Uy Voo Vg = m {8y, ..., Uy},

whence Lyl consists of all simplices ¢ of LY such that (o) <1, and similarly for ¥L,=
DL, -m(1). As usual let 4 =L,. We already know by 5.1 and 5.2 that (using ! also to

denote its restrictions)
12.2 H (¥, 4) =H*(A|l) ”H*(Loll) =H, (¥, L)

and now we prove the following result, which needs none of the conditions L; —1L;.



THE HOMOLOGY GROUPS OF SOME ORDERED SYSTEMS 217

12.3 TurorREM. Suppose the tzoposet L is filtered, and atoms add (i.e. L holds). Then there

exist natural isomorphisms H (oL)~ H (L, | D), ¢g=0.

Proof. If ¢(1) =2, then the proof of 10.1 showed that Ly|! is a disjoint union of acyclic
subcomplexes K, a €L,; in this case, too, oL consists solely of the vertices @, a €L,.. Hence
the inclusion oL < Ly}l certainly induces isomorphisms of homology in each dimension.

We now use induction on ¢(1), because for each w€L, w.L is an izoposet, filtered by
é|w.L.

We apply Theorem 7.8, and begin by defining the complex C; to be A.oL, so that

D; in 7.7(i) becomes
D, =0(A.L), (AEL).

Then conditions 6.1 (i) and 6.1 (ii) need to be verified. This is done by noting first that

since 4 is a vertex of (;, then (; is always a cone with vertex 2. Obviously ;N C,=0C)n,,

and C; < A(X|f). Thus condition 6.1 (i) holds, while 6.1 (ii) holds by Lemma 8.3. Note

that in the notation of 7.7 (ii), D=oL. Also A.Ly=(A.L),, and in A.L, ¢(1; ) =p(A) <H(1).

Thus the statement of 12.3 with ¢(1)=n yields the hypothesis of 7.8, whose conclusion

then yields the case ¢(1) == +1 of 12.3. This completes the proof of 12.3, by induction.
For brevity we write WL for ¥, L,. Thus by 12.2 we obtain

124 Corovrvuary. H (oLy~H, (VL), ¢=0.

13. The homotopy type of WL

In this section, let L be an izoposet satisfying L, and L, (so L is a lattice), with 4 as
its set L, of atoms. Thus, in the notation of 12.4, V', A <WL; we now write ¥4, dropping
the subscript m. The main result of the section is Theorem 13.2, which shows that ¥'4
is rather lika wedge of spheres contained within it. We first describe the sort of wedge
that concerns us.

Suppose that we have in A® a set {0,},cq Of g-simplexes, for which there is an 7-
simplex 7(r < g¢) such that o, N os27 for all «, § in @ (perhaps @ is empty). Then we call
TYU Usee0, @ ‘T-wedge’ W in 4%, We set 0W = U 480, where do denotes the subcomplex
of 4v consisting of 7 and all boundary simplexes of 6. We call W and 6W ‘degenerate’ if
and only if Q = ©; and then W=0W =z. Thus 8W is a union of 7 with some (g — 1)-spheres,
all having 7 in common; and any two intersecting in a simplex. We call W a z-wedge (or
‘wedge’) of (¢ --1)-spheres.

If vis a vertex of A®, not in W, we may form the cone vW on W with vertex »; thus
15 —1722902 Acta mathematica 129. Imprimé le 3 Octobre 1972
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W= Uuequo, 4%, and oW is a vr-wedge. Also SvW is a wr-wedge of g-spheres S, =
ovo, U a,.
Now each group H,_,{¢s,) is infinite cyclic {(even when ¢=1 since we use reduced

homology), generated by &, say; whence
13.1 H, ,(0W) is free abelian, freely generated by the(*) family {£,},e0(g>1).

Therefore H,(¢vW) is free abelian, freely generated by the images v&, of H,S, under
the inclusion homomorphisms H,8,—H (oo W).

As a first example, consider Lemma 10.1 again, when X =4 (so L, N X there, is
now 4 also.) Recalling our conventions concerning diagram 11.2, so that 4 is well-ordered,
let ¢ denote the first element of 4, and for each a€4 —¢, let g, denote the 1-simplex
o.={c,a} of ®A. Then W=cU Ugea_c0,is a c-wedge, (degenerate if and only if 4 ={c})
and oW =AY, A<YL. Since ¢(1)=2 in L then ¢Va=1, so g,€E,,; therefore ¥, 4 =
A=8W. Moreover, the proof of Lemma 10.1 showed that 4 ]l consisted of mutually dis-
joint cones K,, a€A. Therefore the inclusion 6W < A}l is a homotopy equivalence, and
H(6W) is freely generated by the generators &,{a €4 —¢) of 13.1. Note that @W is a wedge
of zero-spheres, degenerate if and only if 4 ={c}. This example leads us to formulate:

13.2 TerEOREM. If 4(1)=n+2 (n>0) then VL contains a c-wedge V<V A, of n-spheres
such that the inclusion induces isomorphisms of homology groups in all dimensions. If n>0,
the wedge is non-degenerate if an only if for some co-atom o of AL, ¢ € and H, V(0. L)y 0.

Proof. With A4 well-ordered ss before, we pick from each non-zero « €L its first

atom c(x)=c,€ax. Thus ¢(1)=c above; and if €A then ¢, =c.

I o=(vy, ..., v,) €A” we call ¢ full if each v; precedes v,,, in the well-ordering of 4,
while ¢;,)€ ¢ and ${l{o))=1+dim 0. Then ¢ is very full if each (non-empty) face 1< is
full (so 7 is also very full). Thus every 0-simplex is very full, and no full simplex ¢ has a
repeated vertex. In order to apply Theorem 7.8, we now define subcomplexes ;< 4 by

0, ={olo is very full and l{c) <A}

Since every face of ¢ €0, is very full, then O, is a (closed) subcomplex of 4%; C, is empty,
and if 2 <1, then C;<4.(4|1). Moreover, C; N €, =C)q,.

Fuarther each C; is acyclic (4 40). For, if 0 €C, then }{¢) <1 so ¢;, being the first atom
in A, must precede or equal ¢,(,,. Thus either ¢; €0, or ¢; §6<S ;0 =7€ 4% But then l(t) <A

{*) This terminology is to imply that if the family is empty, then the group is zero.
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and, 7 being ordered correctly, it suffices to prove that 7 is very full, to show that C, is

in fact a cone with vertex c;. Now, by L, and L,
d(l(1)) =dlc, VU 0)) =1+¢(l{0)) =2 +dim o =1 +dim 7;

while, if I(z) =y, then ¢; €y <A 80 ¢;, being the first atom in A, must also be the first in y.
Hence ¢; = ¢, €1. Therefore, 7 is full. Of its faces, those in ¢ are very full, like ¢, while
those of the form c;p with g C o, are full by the same argument as for 7. Hence 7 is very full
and therefore 7 €C; as required, so C, is acyclic.

These considerations verify condition 6.1(i), while 6.1(ii) now holds by Lemma 8.3.
Before we can apply 7.8, however, we need to know the homology of the sets D, D, of
7.7. In the case at hand, D consists of all very full o with l(¢) <A for some A€ L*; so ¢(l(0))
<n+1=¢(1)—1 and dim ¢ <n. Similarly if u €L, then D,<C, and consists of all very full
o with l(e) <u, so ¢(l(0)) <¢(u)—1, and dim 6 <¢(u)—2. Therefore if ¢(u)=2, then D,
consists of O-simplices, the atoms of u.L; so H, D,~H,(uA|ul) in this case. Hence by
an inductive hypothesis and 7.8,

H,D;,~H,(2A4|A), 0<A€EL;
(and when A=1, D, = D).
To get at the wedge 8, required in the statement of the theorem, define

V;, = {o‘(—lC’ﬂl(o‘) =l}§ CAEA.A(D;

then V; is a (possibly degenerate) c,-wedge since c; = ¢;, € 6. The vertices of each ¢ in
V, lie in (A.L),, so V, is bijective with the wedge 7', =sV,<¥W'(1.L),, where s: A®~>®4 is
the function defined in 11.2 which ignores the ordering of 6 € A®. If (1) =2, this definition
agrees with that of W, in the example prior to 13.2.

Now let W denote the subcomplex of C,, that consists of the simplices of V', together
with all their faces; then if §;=s(@W,), we have §;=067T,. The case when ¢(1)=2 having
already been considered, we assume ¢(4) >2. But then, by the last isomorphism and 10.2,
each (reduced) group H, D, is zero unless ¢ = ¢(A) —2, the dimension of D,. Therefore the
homology of D; (as an ordered complex )depends only on its (¢(A) —2)-simplices, and these
consist of those in W, together with a set R, of others. Now, when we earlier proved C;
to be acyclic, we saw that if 0 €C'; then either ¢, €0 or < ¢;6 € ;. Therefore, if also cE R,
then c; €¢ since ¢ is not a face of any 7€ V,. Hence the simplices of R;, together with their
faces, form an acyclic subcomplex of D,, so the inclusion 6 W, < D, (of ordered complexes)
induces isomorphisms H(6W;)~H, D, in all dimensions.

Since 8W , is 88, together with a particular ordering, we have shown
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H,(08;) = H(0W,)~H,(AA|Al) = HY(J.L),

and it remains to establish the final sentence of 13.2. But if ¢(1) >2 and S, is non-degenerate,
then V, =, so there exists 6€V; and ¢; =¢,, €g; and the order in ¢ is induced from 4,
so o =c,T where T is very full. Since ¢; §7 and I(r) <4, then c; ¢!/(r) by the ‘first’ property
of ¢;; 80 (o) =4 =c, VI(t) > l(r) by L. Thus 7€ V,;) where a=1(7) is a co-atom of A1not con-
taining ¢;. Hence T, =sV,=+0, so HW(x.L);+0 when g=d¢(x)—2=¢(1)—3>0. The

argument reverses. Note that it allows us to write, provided W, is non-degenerate:
W, =U{c,Wylc,da< i}

This completes the proof of Theorem 13.2.
We write W;=W, T,=T when A=1. Then:

13.3 CoRrOLLARY. If ¢(1)>2, the inclusions oW< A|l, 0T <YL induce isomorphisms
of homotopy groups.

If (1) >4, oW and A |l are connected and simply connected by 11.6, so the result follows
from homotopy theory (see Hu [5] p. 167) and Theorem 13.2. But if ¢(1)=3, 4|l is con-
nected and its fundamental group is the edgepath group G of its 2-skeleton B. Now (a, b, ¢)
is a 2-simplex of B if and only if U(a, b, ¢) =a V b V c+1; therefore either at least two ver-
tices coincide, or a Vb =bVc=c Va. In either case, then, if any two simplicial loops on the
1.skeleton B! of B are equivalent (in the sense of (), then they are homotopic on B.
Hence G~m,(BY), so m,(4|1) is free on the same set of generators as H,(4]l). Therefore
since 0W < A |l induces H,(0W)~H,(A|l), it induces 7,(0W) ~7,(4 |1) as required. A simi-
lar argument establishes that 71,(07) ~7,(Y'L) completing the proof,

13.4 CoroLLARY. If L is finite, then the inclusions 6TV A<YL are homotopy equi-
valences.

(For then 8T and WL are finite, and a theorem of J. H. C. Whitehead (see Hilton [6] p.
107) may be used with Corollary 13.3). This shows the advantage of ¥'4 over 4 |I, since
A |l is rarely even locally finite.

Further corollaries yield information about the atoms of L.
13.5 CoroLrLArY. If ¢(1)=n+2>2, then H, WA =0 if and only if 1 is a join of atoms.

For, by 13.2, if H,¥'4 &0 then W contains at least one (n +1)-simplex ¢ and l(g) =1,
since o is full; thus 1 is the join of the atoms in ¢. Conversely suppose 1 =9y Vo, V... Vo, 4,
where 720 and the v’s are atoms. Let x(¢)=v,V...Vv,,,. We can always well-order A4

o0 that vy =c¢;, and v,=¢,;,. Then the wedge W, is non-degenerate by the example fol-
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lowing 13.1; so by 13.2 the wedge W,(,_;, is non-degenerate for each j, by induction on j.
In particular W, , is non-degenerate, so H,WA~H_ (6W,,) +£0, and the corollary is
proved.

Let us sayy that a €L {0} is without complementary atoms provided that there exists
B < o such that for no atom z€L is x VB =a (s0 (a.L)y=(B.L)4).

13.6 CororraRry. If H WA =0 then some o in L is without complemeniary atoms.

For, co-atoms exist in each izoposet «. L by the strict monotonicity of ¢. Hence if no ele-
ment of L — {0} is without complementary atoms, 1 is a join « V @, ¢ €L*. Hence by induec-
tion, 1 is a join of atoms. The corollary follows therefore from 13.5.

In particular when L =Flat (P") and P" is the geometry over a finite field, then (using
13.4) WP has the homotopy type of a non-degenerate wedge of (n —1)-spheres; we analyse

this further in the next section.

13.7 As another example, let T" be a finite geometric lattice of rank n +2. Thus (see Rota
[11]) every element is a join of atoms and I" is filtered by the rank function which is strictly
monotonic and satisfies r(x Vy)+r(z Ny) <r{x)+r(y), r(atom)=1. Hence L, and L, both
hold in I', while atoms add (Condition L;). Therefore 13.5 applies to I', so H,(¥T) =0
and WT' has the homotopy type of a non-degenerate wedge of n-spheres. The number in
the wedge is the nth Betti-number 8, of I'; so the Euler characteristic y =4 (YT is 1 +(—)"5,
(if n>0). But y —1 is the Moebius function of I' (see 16.1) so 8, = (—1)"u. Compare Folkman
[8] Theorem 4.1, and see 17.20 below.

14. The case when L is Flat (P*)

When L is Flat (P*) and P" is defined over a field F, we can specify more precisely
the wedge V =0W in 13.2.

14.1 TuaroreM. Within the group GL, (F)let T, .4, D, ., denote the subgroups of triangu-
lar and diagonal matrices, respectively. Let A™ denote the n-simplex of reference in P*. Then
for the wedge W in WP" we may take the orbit of A" under the projective transformations cor-
responding to T,,,. Hence the spheres tn OW correspond biuniquely with the elements of
T/ Dy

Before giving the proof, we observe that, since F is a (possibly non-commutative)

field, then each coset in 7', .,/D, ., has a unique representative matrix with 1’s down the

n+1)

main diagonal. The set of such representative matrices is bijective with F( 2 7, and hence

n+l
it has q( 2) elements when F is finite with ¢ elements. This result augments that of
Corollary 10.4.
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The proof of Theorem 14.1, while basically simple, involves a lot of notation, so we
explain this in the following paragraphs before giving the proof proper. The reader may
find the Figure helpful.

As in section 4, we use wX for X*. Given a g-simplex ¢?€wP", we call 62 full if its ver-
tices are distinet and in general position; thus there is a g-dimensional subspace Vo?=
el V.. Vol containing the vertices (o, ..., 6f) of 0? such that no r-dimensional subspace
has this property if »<q. The set of (g ~1)-hyperplanes of Vo? will be denoted by V*o?
We write

14.1 Bor= (6, 0iV ol 1, ...,00V ...V}

for the ordered family of ¢ subspaces of V¢, and the last term is of special importance,

being independent of the last vertex ¢f; we write
Ba¥=glv ...V oi€V*s"

Let 7 denote the (q—1)-simplex %= (0?.4,...,08), (when ¢ >0). Then 57 is also
full, and V5?€V*g% Moreover, if 03¢ AV u, where A, u€ V*¢% there is a projective trans-

formation
i Vo? = Vo,

such that T Og =08, T, (A)=p.

Taking A to be V%, let ¢%/u denote the (¢ — 1)-simplex (v4_1, ..., v,) such that v, = 73, (a?),
0<i<gq. Again ¢%y is full, while V(¢¥/u)= u; also 7;,6%=0%u, and

Bo*2 B(o¢/u) = m;,(BG%), (A=Va9).
Note that, if € V*¢? and ol¢v.

14.2 700 BloY 1) = BlaYv),
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while 7, leaves Po? invariant, i.e.
14.3 Au(0dV oq V... Veh)Solv...val, 1<i<q.
We shall need the following result which follows easily from the definitions, con-
cerning the set of points of the affine space Vg?~— Bo?:
144 ProrosiTioN. Vo?—Bo?= U{V(eYu)— B(c/u)|u€V*a? al¢u}.

The last equation in the proof of Theorem 13.2, suggests an inductive process for
associating with ¢? a wedge W(c?) of g-simplexes in w(Vo?), together with a subsidiary set
Sxz(c?) of (¢—1)-simplexes. Thus when ¢=1, Sx(¢') is to consist of the single 0-simplex
(1) while we express W(o') in the unnecessarily complicated but usefully suggestive man-

ner as:
W(c') = (zy|vt€Sz(c') and y€Vo'— Bo'}.

Observe that o' € W(o1). If ¢>1, then we set inductively
Sx(0?) = {olvr|r€Sx(c%Yu) and uE€V*e?, adéu},
and take W(o? to be the cone
W (oY) =oiU {W (o) | u€V*0% ol u}

(which contains ¢? =0%(6%/4) when A = V9%, by an inductive hypothesis and the last observa-
tion.) Since W(o%/u) consists of simplices in y, it follows that W(o?%/u) N W(o%/v) =D if y +v,

so W(c?) is indeed a non-degenerate wedge. Two results now follow easily by induction:
14.5 ProrosIiTION. W(0?) = {19|7 ES*(0?) and y € Vo?— Bo"}.
14.6 PrOPOSITION. If 7% 4s full and 1¥ =0 if 1 <i<q, then

Sx(t?) = Sz(c?).

Next, lebt G{c? denote the group of projective transformations of Vo? which leave

Bo? (see 14.1) tnvariant,
ie. gleiveiVv..vaehsolvel v...vel, 1<i<q.

We denote by Stab (6?) the subgroup of G{¢?) consisting of transformations which leave
every vertex of ¢? fixed. In terms of G(¢?), Proposition 14.5 will now be shown to have the

more precise form:

14.7. LeMma. W(c? is the orbit of 6% under G(c?). Hence its simplices correspond biuniguely
with G(c%)/Stab (¢9).
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Proof. The invariance of Po? under g € G{c?) shows easily by induction on ¢ that
(A) g fizes all vertices of 0% except gf. Hence g(Bo?) < Bo.

The next step is to prove
(B) g preserves the wedge W(a), i.e. gW (o))< W(s9).

Here, the result is obvious when g =1 since g(01) =oi. When ¢>1, we first observe that by
(A) above, if u€ V*0?, then both o%/gu and go?/gu have identical vertices except their last,
so by Proposition 14.6,

Sz(o%gu) = Sa(go®/gu)
By Proposition 14.5, W(a?) consists of ¢-simplices of the form

* o =clry, {1€8z(c'u), u€V*%? and y€Vo—Bo},o=10%
0 n), u

Hence go=o0lr'y’ where v/ =gv and y' =gy€V(go)— B(gs). But since 7€Sx(c/u), then
1" € 8x(go®/gu) =Sx(0"/gu) as seen above; while g leaves V*¢, Vo and Bo invariant. There-
fore gg € W(g?), and (B) follows.

To complete the proof, it suffices to show that given g as in (*) above, then there exists
g€G(0%) such that 9 =¢(c7) (since 7€ W(c?) as we saw earlier). When g=1, this follows at
once by the Fundamental Theorem of Projective Geometry, and we now suppose q>1.
Consider then a g-simplex g of W(g% as above, and let 1= V5% Then using the notation
of 14.2,

o =mu0=0i7y, where T =um,t, ¥ =muY:
and 7' €S%(7,,(06%/u)) =Sx6* while y' € V5" — B5?. Moreover, by 14.3, 7,, € G(o?). But now,
by an inductive hypothesis, there exists & € (5% which maps &% onto 'y’ € W(6%) = W(a%/4).
Since k is a projective transformation of A which leaves (5% invariant, & has an extension
k: Vo?— Vo9 such that k(c?) =0l and hence k leaves Po? invariant. Therefore k€G(o%
and k17,;(0) =k 0fr'y') =0ig vy ) =0¢5°=0". Hence m;,0k is the required element
g €G(c?) which maps ¢? to g, and the lemma is proved.

The proof of Theorem 14.1 now follows by linear algebra. For, we may regard the
projective group as the factor group of GL, ,(F) by its centre ', when the points of P”
are the lines through 0€ F*+.. We choose a basis e, ..., €, of vectors in F™+1, where e, lies
on the line corresponding to the vertex o of the n-simplex of reference, A,.

Relative to this basis, the elements of G{A™ have triangular matrices (mod C) be-
cause they leave PA” invariant; while the elements of Stab (A") are represented by dia-

gonal matrices (mod (). Hence in the notation of 14.1 and 14.7
G(A™/Stab (A" ~T,.,/D, ;.
and the proof of Theorem 14.1 is complete.
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15. Extension to lattices of sub-modules

In the introduection to this paper, we mentioned the problem of describing the complex
W(M) associated with the lattice of free factors of a finitely generated free abelian group
M. Now M is a Z-module, so the problem can be generalised to replace Z by a (unitary)
ring R, and M by a free R-module. Just how general R can be, we do not know, and merely
choose a situation in this section, where the theory works, and which applies to the original
case when R=Z. It would be interesting to see a theory for a regular ring R, in the light
of the work of von Neumann and others on continuous projective geometries (see Skor-
nyakov [13]).

For our purposes here, let R denote a ring with unit, let K be a (left) R-module, and
let M be a sub-module of K. We call M ‘saturated’ provided

rk€EM=keM

whenever 0==r€ R, and k€K. Then the family $(K) of saturated submodules of K forms
an izoposet under intersection, with 0=0, and 1=K. Observe that if K is a free, finitely
generated abelian group and R=1Z, then M is saturated if and only if K/M has no divisors
of zero, and then M is a free factor of K.

Next let F be a ring with left inverses (i.e. a field), such that R< F. For each n>1,
we regard RE™ as a (left) R-submodule of F” (qua R-module). Let C(F") denote the lattice
of all (left) subspaces of F'; since F has left inverses then each 4 € L(#7) is saturated. Also,
AN R"is an R-saturated R-submodule of R". Moreover we may saturate each submodule
B< R*, by forming ¢B€ L(F"), the subspace of F* spanned by B; thus B<oB. It here
suffices to consider the case when the following condition holds:

Condition A. For each A€ L(F"), (4 N R")=A (n>1).

This condition implies that A4 intersects R non-trivially, unless 4 =0, so R" is ‘dense’
in F". More precisely, the relation between B and F is given by

Condition B. Given s€ F, there exists r € R with 0%y and rs€R.

15.1 ProrositioN. Conditions A and B are equivalent.

Proof. If Condition A holds, and s€ F is given then we take A to be the submodule
of F" generated by the vector v=(s, 1, ..., 1); thus 4 N R*=+=0 so there exists £ € I' such that
tv € R". Checking coordinates we have ts€ R and (since n>1), € B. Thus Condition B holds.

If Condition B holds, we first observe that for any v=(v,, ..., v,) EF", there exists
7€ R such that » +=0 and rv € R"; for this is Condition B when » =1, and if (rv,, ..., rv,_;) € B",
then there exists t€ R with £40 and {(rv,) € B, so (tr)v € R" as required since {r =0 by the

existence of left inverses in F.
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Now let A€L(F™) be given. Obviously o(4 N R")S 4, so we suppose there exists
v€4 —o(4 N R™). By the observation above, there exists r€ R such that » -0 and rv € R™.
But rv€4 also, whence rv€4 N R". Therefore since r=+0, then v=r-1(rv)€Ec(4 N B, a
contradiction. This completes the proof.

The convenience of Condition A for our ‘structural’ point of view is shown by the

following

152 ProrositioN. The assignment 4 AN R" is an isomorphism 0: L(F*)— S(R") of

120posets.

Proof. Clearly, 8 preserves N, 0, and 1; and by Condition A, ¢ is a left-inverse of 4,
so 0 is one-one. If B€ §(R") then we assert that B=(cB) N R™; for B< (¢ B)N R"=.J, and
if veJ, then v=su for some s€F, v € B. By Condition B, there exists r+0 in R such that
rs€ R. Then rv€J so v is an element of B" with rv€ B, whence v € B since B is saturated.
Hence B=J =0(c(B)) and 8 is onto. This completes the proof.

Now L(F™) is isomorphic to Flat (P"~}(F)), when n>1. Therefore by 15.2 the entire
theory of Flat (P""') applies to $(R"). In particular, when R=Z and F is the field of
rationals, we obtain at once from 13.2 and 14.1 the theorem about the abelian group M,

stated in the introduction; for Condition B is obviously satisfied in this case.

16. Some geometrical aspects of the Moebius function

The conclusion of section 11 was that we could replace the study of the function g:
®X L of 4.3 by that of the function m: ®A4 L when 4 =L, and L is an izoposet in which
atoms add (Condition L;).

We shall suppose in this section that L is a finite non-empty lattice, so that the com-
plex W'L (see 12.2) is finite. Thus the Euler characteristic 4(L) of ¥'L is defined, and equals
2(F4). In the terminology of [11], 4 is a ‘cross-cut’ of L, whence we obtain from Rota’s

Theorem 3 the equation:
16.1 2Ly =1 4-u(L)
where u is the Moebius function L x L~Z defined inductively by

16.2 uw,x)=1, up@y)=-— 2 ux,z),

1K<y

whenever x<y in L; otherwise u(z, y)=0. Rota’s point of view was essentially ‘arith-
metic’ because of the applications he had in mind, but some of his results have a ‘geo-

metric’ content which we now discuss.
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Recall from 12.2, that YL=®L—E,, a closed subcomplex of the acyclic complex

DL (we assume L +0). From the exact sequence

w.>H WLy~ H{OL)—~ H, (DL, YLy~ H, (VL) ...
we obtain for the Euler characteristic (with non-reduced homology)
16.3 2DL) = 4(¥L) + (L, YL)

using an obvious notation. Since ®L is acyclic, then y(®L)=1 and 4(WL)=yx(L) in the
notation of 16.1. Thus 16.3 is Rota’s equation 16.1 with

16.4 —m(L) = (PL, VL) = y(®L—-YL),
since the RHS is y(®L —YL) and the chain groups C(®L, ¥L) have ranks

Ye=%a—Va
where ¢,=rank C(®L), p,~rank C,(VL). Thus

pL) = =ty —yet

an equation obtained in a different way by Rota (with p,=g¢,,, in his notation), to begin
his proof of 16.1. Our interpretation of —u as the y of the ‘excluded complex’ E explains
at once the multiplicative property of u (Proposition 5 in Rota [11]). This property is not
explained so easily if we use 16.1 to regard —u as the ‘reduced y’ of WL (i.e. computing y
with reduced homology groups). Further we see by 13.7 why, if <y in a finite geometric
lattice then y(z, y)+0; and that if 2 <y then u(z, ) and u(z, y) are of opposite signs if
z<x because the wedges of spheres in the two cases have dimensions differing by 1 (in
each case, y=(—1)"™ x Betti number).

It is interesting to see that u(L) can be expressed as in 16.4, but using either the pair
(@A, ¥ A4),—to work with ‘small’ complexes—or the order homology explained in section
12. Thus, we now establish 16.5 below. Let F(L) denote the exact sequence of the pair
(DL, YL) used for 16.3, and let F(A) denote that of (04, V' 4). The inclusion (P4, ¥4)=
(OL, ¥'L) induces a homomorphism f: F(4)— F(L) of which the components corresponding
to the inclusions A= OL, YA <YL are isomorphisms by acyeclicity and 2.9 respectively.
Hence by the ‘Five’ Lemma,

H, (®4,YA)~H (OL,YL);
thus in 16.4 we may write —u(L)=y(®A4, ¥'4).

For the order-homology, we proceed as follows, at least when L is a lattice (so it satis-

fies L;). As for 11.2, we may allow the inclusion
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(PL, YL)S (LY, Ly|l), L,=L—{0},

where ! was defined for 11.2. Then L is acyclic, while Ly|l is the total complex of WL;
hence we have the isomorphisms required by the ‘Five’ Lemma, when applied to the in-
duced homomorphism F(L)- F(Ly) to deduce

H (DL, WLy~ H(L*, Ly|1).

Now let OL, oL denote the complexes for order-homology, as explained in section 12.
Thus oL SoL.< OL where SoL denotes the suspension of oL. Let K, K, denote the closed

subcomplexes of OL formed by joining oL to zero and 1 respectively: each is a cone and
SoL =K,UK, K/, NK,=oL.
Then (K, oL) = (SoL, K,)= (LY, Ly|l), and by the exision axiom of homology theory
H, (K,, oL)~H (SoL, K,).

But K, is a cone and therefore acyclic, while H(oL)~ H (Ly|l) by 12.3. Hence by the

‘Five’ Lemma applied to the homomorphism

F(K,, oL) - F(LY, Ly|?)
of homology sequences, we get
H (K, oL)~H ,(Lg, Ly|1).

From all these isomorphisms then, we see that u(L) can be defined in various ways, by

16.5 — (L) = y(@L, L) = y(®A, VA) = 2(SoL, K,) = y(K,, oL).

5

These arguments tell us something of the geometrical nature of y, and have implications
when L is not finite.

The question arises, whether 16.2 has ‘geometrical content’: or rather, whether 16.2
is deducible if we define u by 16.4. (Observe that the set [z, y]={z|x<z<y} is a lattice
with 0 ==, and 1=y: while [z, ] is an ordered set with 0 =x and without atoms, so ®4
here is @ (not acyclic) and we need a convention in place of 16.4. Thus we set u(x, z)=1).
Let us now show how to deduce 16.2 from this geometrical definition of u.

First, choosing an atom c€L, we obtain the ‘geometrical’ relation:

16.6 wL)=~ 2 u(0, )

the sum over all atomic complements y €LY(c) —L*(c) in the notation of 6.5,
Proof. Taking Euler characteristics of the sequence 7.3 we get (in that notation but
taking A=y, X =4, f=1I):
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A K i) = Ky () —uly, 4 ‘“/il)~

But 4(J ;) =1, so we subtract 1 from each term and use induction on ¢ to get

uLy=—2 u(y: Alpl) = — 3 u(0, y,)

as required, since K, is acyclic with u(X,)=0. [Note: 16.6 is the especially simple case of
Weisner’s Theorem, disecussed in Wilson [15] § 4.}

It appears that 16.6 is the ‘geometrical’ part of 16.2, the remaining terms summing to
zero by a ‘book-keeping’ argument. Thus, let us suppose that we have established 16.2
for all filtered lattices L whose ‘1’ has ¢(1) <n. If ¢(1) =1, then L consists only of 0 and 1:
50 A={1} =04, VL =0 and yL =0; therefore by 16.1, u(L)= —1 and 16.2 holds. For larger
7, we are trying to prove that, if $(1)== in L, then

16.7 w0, 1)+ 2, 4(0, y) +2'u(0, 2) =0

where X, is summed over all y €L*(¢) — L*(c) for a fixed atom ¢ and 2’ is summed over the
set V of all remaining x +1 in L. By 16.6, it suffices then to prove £’ =0. Now, all intervals
[0,v] in V are lattices; hence y on [0, v] satisfies 16.6. Thus for any atom ¢ €[0, ], 2> (0, ) =
0, where the sum is taken over all atomic complements x€[u, v] such that xVa=v. We
therefore take a =c, and v to be a coatom in L*(c) to see that the sum 2’ is equal to a sum
over z in a smaller set V,< V, with v ¢ V,. By proceeding in this way (varying the choice
of atom a) we finally obtain £’ =0 and hence 16.2 follows by induction.

This justifies our earlier remark about the ‘geometric’ content of 16.2 and 16.6.

Our discussion so far in this section has assumed that L is a finite lattice, whereas the
Moebius function u{z, y) is defined in Rota [11] when #, y lie in any locally finite ordered
set. Hence, in the general case, u(x, y) =u(L) for the finite ordered set [z, y]=L. To express
—u as an Euler characteristic in the above manner we have to find a set £ of ‘excluded
simplices’ in the complex @L, to construct WL as @L — E. Proposition 5.4 tells us how to
find E: we simply include in WL only those simplices ¢ of ®L for which there exists a co-
atom A €L such that » <] for each vertex v of ¢. Thus, equation 16.6 is deducible as before,
and hence —y(WL)is u(L) as deduced previously, after 16.7. With the order-homology of

course, there is no problem of definition.

17. Some intrinsic conditions for L

In this final section we consider some intrinsic conditions that an izoposet L may
satisfy, which allow us to assume that the image of g ®X L in section 4 shall satisly

Conditions L,, Ly, L; above. The choice of intrinsic conditions is imposed on us naturally
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because of our policy of working inductively ‘downwards’ from 1 through the co-atoms
of L. Always, L is an izoposet with non-empty sets L., L* of atoms and co-atoms. The first

two conditions are
Ay For all co-atoms A, u€L*, if Ay then
AOuERLY* 0 (uLyx.
A,: Qiven €L, and A< u <1, a unigue lub xVA€EL is defined and Vi +1.

(Thus zVizz, VA=A, whence 2 VA=A if z€A; and if also x VA’ is defined and A>1/,
then 2z VA=>x V1'). Because of the possibility of parallels, eondition A, is not safisfied by
the lines and hyperplanes in the lattice of flats of Euclidean space, if hyperplanes are atoms
and 1 is the empty flat. The condition implies that atomic complements are co-atoms, by
the next lemma; and the later ones (17.2, 17.3) are weak forms of the modular law—mnot
surprisingly since A; will hold whenever the dual L' of L is semi-modular (see 17.19).

17.1 LEemMwmA. If A€L*, v€(A.L)*, and x €Ly, &2, then x V vEL*.

Proof. Since v< A <1, then by A,, a=2xVy is defined in L and «31. Hence there
exists p€L* such that o <u. Then by the isotone properties of N and Vv,

y=vNA<aNiA<uni

Now p N A+2, otherwise £€u < 4, contrary to x §4; also by A;, u NA€(4.L)* and since dis-
tinct co-atoms of A.L are not comparable, then v =g N A. But again by A;, u N A€ (u.L)*, so
v is a co-atom in u.L. However, « >v, otherwise x€a =y < i, contrary to hypothesis. But

x€u.L, so oo=p. Therefore x Vv €L*, as asserted.
172 LemMa. With v and x ¢4, as above, (xVy)NA=».

Proof. We have just seen that a=xVyEL*. Since €« and x ¢4, then x=+A. Hence
aNAE@A.L)*, by A,. But aNAZ=vNA=2» (since v€AL), so « N A=y since distinct co-atoms
are not comparable. This completes the proof.

173 COROLLARY. ¥vE(x Vr.L)*
For, by Lemma, 17.2, y=(x Vv) N A€(x Vv.L)* by A,.
174 LremMA. If z is an atom such that x ¢4, x€u, and A, yu €EL* then
zV{ANu)=pu.

Proof. Since x€yu and ANu<py, then the lub property of V implies that y=
zV{ANg)<pu. Thus y€u.L. Also, by A4,
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u=yZAnue(uLy*.
But €y, and x¢ANp, so y>ANpu in u.L. Therefore y =u, as required.
For each atom z€L,, define L*(z) as in section 5 by
L) = {peL*|z€u}.

Suppose A€L*—L*(x); we prove the following lemma, whose interpretation in Flat (P")

is familiar. (It is part of Condition L, in section 10).
17.5 LzmMmA. There is a bijection ¢: L*(x) ~ (A.L)*, given by
dlu)=pNa (x¢lEL*).

Proof. By A,, ¢ is a function. It is onto, because each »€(A.L)* can be written » =
(V)N A by 17.2, and x Vv €EL(x) by 17.1.

To see that ¢ is one-one, suppose ¢(u)=¢(u’), i.e. uNA =p'NA. Hence, xV(unNi)=
axV{u NA); so u=p', by 17.4. This completes the proof.

Next we attempt to define a filtration on L, but we work ‘down from 1’ rather than
‘up from zero’. Suppose then that w€L is such that there exists in L a chain:

17.6 W=, <W;_y <..<w, <1

The least such & will be denoted by d,(w) with the subscript often omitted: clearly if w€L*
when d(w) is defined and d(w) =1. We extend the definition of d to all L by setting d(1) =0,
with d(w)= oo if d(w) is not finite. Thus we have a function d: L->A={0} UNU {oc}; the
corresponding function d,;: a.L—A, for any a €L, will be abbreviated to d,. An easy con-

sequence of the definitions is:

17.7 LemMA. If a€L* and d,(w) < oo, then d(w) < oo and d,(w) =d(w)—1.
To prove a converse (and for other purposes) we now impose an extra condition on L.
AL If d(w) < oo then w.L. satisfies Ay, and (w.LY* =D if w =0.

17.8. LEemMMA. Suppose that L satisfies A1 If a €L* and d(w) < o then d,(w) =d(w) —1 < oo,

(w<a).

Proof. Suppose d(w) =k < oo, so that there is a shortest chain as in 17.1 above. We
thus have a chain (in a.L):

(i) w=alw, <aNw,,; <..<aNw; <a.

If @ =w;,, there is nothing to prove. If a s=w;, then by A, for L, a N w; < a,and a N w, € (w,.L)*.
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Suppose inductively that a N w;<a Nw,;_,<...<aNw,<a and a N w,€(w,. L)*, or a Nw;_; =
w;. Now d(w;) < oo since 17.1 gives a finite chain, in L from w;, to 1, so by Aj, w;. L satisfies
A; and has co-atoms. Thus, since ¢ Nw; and w,,, both lie in (w;.L)*, then either a Nw,;=

W1, OF
allw;y =(@Nw)Nw,;€E(aNw.L)*N (w,L)*

whence a Nw;;<aNw; and aNw;, €(w,,,.L)*. This justifies the inductive supposition,

and proves that there is a chain in a.L:
w=w,<..<w;<eNw,;<aw;,_,<..<aNw<a

with £ —1 terms; if the equality @ N w;_, = w; never oceurred then in particular we would
have both a Nw,_, and wy in (w,_;.L)* with w,<a Nw,_ so w,=a Nw,_4. Thus we could
start the chain with w,=a Nw,_,<... which is again of length k-1, and the proof is com-

plete.
179 CororrnarY. If d(a) < oo, then d,(w)=d(w)—d{a), (w<a).
(For, a€(b.L)* for some b with d(b) =d(a)—1.)

17.10 ComroLLARY. If uzv in L then d(u) <d(v), provided d(u) < oo.
(For, v€u.L and 0<d, (v) =d(z) —d(w)).

17.11. ComovrraRryY. If a€L* and d(0) =m < oo, then d,(0)=m —1.

17.12 ProOPOSITION. Let L denote the subset of L, consisting of all @ of finite depth. If
d(0) < co then Ly is a sub-1zoposet of L.

Proof. Clearly 0 and 1 lie in L,, so it remains to prove that if w, v€L,, then
d(u Nv)<<oo. This is clear, if d(0)=1 or if

d(u) +d(v) = 1.

Suppose now that the proposition holds for all izoposets M with d,,(0)<d,(0) and for all
', v in L with d{u') +d(v')<n. If u, v in L satisty d(«)+d(v)=n we may suppose n>1
(remarked above); if d(u)=d(v)=1, then d(« Nv)=2 by condition A,. Suppose then that
d(v) =2, so there exists w€L such that v<w=1, and 0<d(w)<d(v)—1< oo, Therefore
d(u) +d(w)<n so d{uNw)<oco. In w.L we have, by Corollary 17.9, that d,,(0)=d,(0)—
d(w) <d;(0) so by the inductive hypothesis applied to w.L,

dy((w Nw) Nw) < oo

whence d(u N v) =d,,(u N v) +d(w) < o by 17.9 again. This completes the proof, by induction.
Next we strengthen our conditions further by assuming that L satisfies the following
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condition, which holds in the dual I'* of any finite geometric lattice I'(since A; in T is
the condition of semi-modularity in I'):

A, If d(w)<oo, then w.L satisfies A, and A, (with (w.L)* +0 if w=+0). (Note: w.L
has atoms if L has, and (w.L),=w.L,.)
1718 LemwmaA. If d(0)=k+1<oo, then d(a)=k for each atom a€L,.

Proof. There is a chain 0<w, ,<w,<...<w,; <1 in L, where w;, ;=0 must be an
atom. Certaintly then, d(b)<k; and we cannot have d(a) <k for any atom a, otherwise
{since 0<a) d(0)<d(a) +1<k+1. Hence d{b)=k. Now let @ be an atom, a #=5b. Then there
exists a greatest j such that adw, ;, a €w; (wy=1}.

Thus w;, 5 € (wr,y.L)*inw; L, and a € (w;.L),, so by L, and Lemma 17.1 for w;.L., we have
aVw; ,<w; Also by Lemma 17.3 for w,.L, w;,=(aVw,,) Nw,,; €(aVw,;,L* by A;.
Now suppose inductively that aVw, ,<aVw, , ;<..<aVw,,<w, and w, ,<aVw
Then by Lemmas 17.1 and 17.2 with z, », 1 taken to be a, w

j+p*
i1 Wigp D@V W, L we get
aVw, . <aVw;,, and w;,,=@Vw,,, ) v, ,<aVw,,,, justifying the inductive

supposition, 1 <p<k+1—4. Hence we have a chain
a<aVw<..<aVw;,,<w<..<],

8o d(a) <k. We observed that d(a)<k, so d(a) =k as required.

17.14 Lrmwma. If dw)<oo, and a€L,, then aVw is defined: if a€w, then aVw=w; if
abw, then we(aVw.L)* and dlaV w)=d(w)-1.

Proof. It d(w) <2, then the statement holds by A, and Corollary 17 4.

Suppose then that d(w)=F~ so that there is a chain w<w'<w'" <...<1. Clearly d(w') <
k-1, and if d(w')<k —1 then d{w)=d(w') +1<k. Thus d(w")=k—1.

Therefore by an inductive hypothesis, v =a V w' is defined, d(v) =% —2, and both a and
w’ lie in v.L = M. Moreover (by the hypothesis) w’ € M*. Thus, a V w is defined since M satis-
fies A, (for L satisfies A;). If a ¢w, then by Lemma 17.1, a V w € M*, and by Corollary 17.3,
w€(a Vw.Ly*. Also by Corollary 174, d{a Vw)=d,(aVw)+d(v)=1+(k—2)=d(w)—1 and

the lemma follows by induction.

17.15. LEemMA. In the set Ly of elements of L of finite depth, we have (w.Lg)* N Ly 4D, pro-
vided w€ L, and w.Lp+={w}.

Proof. Since w.Ly #{w}, there exists v €wL, with v <w such that a <w. If v is not a co-
atom of w.Ly, there exists v €w.Ly with v <u<w. Now by 17.9, d,,(u) exists, 80 0 <d(u) =
d{w) —d(u), whence d(v) >d(u)>d{w). Therefore we reach a co-atom y of w.Ly from v after

at most d,(v) —1 steps, and d{y) < oo so (w.Lz)* N L, +O.
16 — 722902 Acto mathematica 129. Imprimé le 5 Octobre 1972
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17.16 COROLLARY OF PROOF. If u<w€Ly, then d(w)<d(u); if u<w then d(w)=
d(u)+1 (because d,(u)=1).

‘We can now extend 17.12 to:

17.17 THEOREM. If d(0)< oo in L, and L satisfies A,, then Ly is a sub-izoposet of L which

has the same atoms as L and which also satisfies A;.

Proof. We know from 17.12 that Ly is a sub-izoposet, while by 17.13, L, = (Lz),. Also,
by 17.15, if 0 <w €L, each set (w.Lgy)*, taken relative to Ly, is non-empty. If 2 4=p in (w.Lg)*
then by A, for w.L, AN w€(AL)* N (uL)*; therefore A Nu<4, so ANu€L; by 17.16, whence
AN € (A.Ly)*. This verifies Aj for L. To show that w.L; satisfies A, we proceed similarly,
using 17.14. Therefore L satisfies A; as required.

Now recall conditions L, —L; used in previous sections. Let us denote by Ls, the con-

dition L, with the clause about cardinals deleted.

17.18 TuEOREM. If L is an tz2oposet satisfying A, such that every element is of finite depth,

then L is a lattice and satisfies Ly — L.

Proof. By 17.16, the function ¢ is a filtration on L, where ¢(x) =d(0) —d(z), and ¢ is
minimal (i.e. L, holds). By 17.14, condition L, holds; so L; holds and L is a lattice as we ob-
served prior to 10.2. Since 17.5 holds in each set w.L, by A; and 17.15, then Lg, follows.
Thiscompletes the proof.

A consequence of this theorem is that we can forget about those mysterious elements of
L which have infinite depth, when computing the homology of ¥, X in 4.1. For, we saw
in section 11, that starting with the function g: ®X —~L we could pass to m: ®A—L in
11.2; and we can change L to the image of m, which is generated by atomic sums and hence
les in Ly if I satisfies A,. Therefore, we can change from L to Ly, which then satisfies Conds-
teons Ly — L.

As a sort of converse of 17.18, we prove the next result which leads to a curious con-

clusion about geometric lattices (see 13.6).

17.19. TaEOREM. Let L be a submodular lattice with 0 and 1, satisfying Ly and Lg. Then
the dual, L, of L satisfies A, and all elements of L' are of finite depth. Further, all mazimal

chains in Lt between fixed end-points are of constant length.

Proof. The strict monotonicity of ¢ excludes infinite chains in L, so all elements x €L
have finite depth d(x), and x has depth ¢(1) —d(z) in L*. By L,, the length of any maximal

chain in L (or L') between z and y is |¢(x) —¢(y)|. Since there are no infinite chains, co-



THE HOMOLOGY GROUPS OF SOME ORDERED SYSTEMS 235

atoms always exist, so (#L')* =0 unless =1 in L. Now A, holds in zL' since it is precisely
the condition of submodularity in L. Therefore L' satisfies A;, and it satisfies A; by L.
Hence L' satisfies A; as required. The relationship between our condition A; and geo-

metric lattices is given by 13.6 and our final

17.20 TuEOREM. Let L be a finite lattice with 0 and 1 satisfying A;. If d(0)=n+2, and
H,WY'L &0, then the dual of L is a geomstric lattice.

For, d is always finite, so L satisfies L, and L, by 17.18. Hence, for each z €L, all
maximal chains from 0 and « in the dual L' are of constant length, by 17.19. Also are
remarked above, L' is submodular since A; holds in L. It remains to verify that 1'is a

join of atoms in L. Now, by definition of orderhomology in section 12, oL =o0L' so
0=+H,WYL~H,((oL)~H, (oL ~H, (VL")

using the hypothesis of the theorem, with 12.2.
By 17.19, L' satisfies A;, so L' is filtered by the depth function of L, by 17.18, and
$'(17) =d(0) =n+ 2. Therefore by 13.4, 1" is a join of atoms in L' as required.
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