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1. Introduction

In [F2] H. Federer exhibited the classical complex algebraic varieties as integral cur-
rents and applied techniques of geometric measure theory to give new formulations of the
algebraic geometer’s concepts of dimension, tangent cone and intersection. Wishing to
extend such notions to larger classes of geometric objects, he gave geometric-measure-
theoretic characterizations of the dimension of a real analytic variety and of the tangent
cone of a real analytic chain ([F, 3.4.8, 4.3.18]); he also conjectured in [F, 4.3.20] that the
theory of slicing, which has enjoyed several applications in geometric measure theory
([FF, 3.9], [F1], [A], [F2, 3], [B1], [B2], [B3], [F]), could be used to construct a viable
intersection theory for real analytic chains, This is the aim of the present paper.

Let ¢ >n be integers and M be a separable oriented real analytic manifold. A ¢ dimen-
sional locally integral flat current ([F,4.1.24]) 7' in M is called a ¢ dimensional analytic
chain in M if M can be covered by open sets U for which there exist  and ¢ —1 dimensional
real analytic subvarieties ¥V and W of U with U Nspt T<V and U Nspt 67< W. It then
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follows from [F, 4.2.28] that T is a locally finite sum of chains corresponding to integra-
tion over certain ¢ dimensional oriented analytic submanifolds of M. If f is an analytic
map from M into R", then for almost all y in R the slice of T' in f~1{y}, denoted (T, f, y>
is a t—n chain in M defined by the relative differentiation of measures (3.5, [F, 4.3],
{F2, 3.5]; in case 7' corresponds to integration over an oriented analytic submanifold N
of M, the slice <T, f, y> for almost all y, is the {—= chain given by integration along the
oriented fiber f1{y} N N.). Let ¥ be the set of those y in R for which the dimensions of
f{y} Nspt T and f{y} Nspt T do not exceed ¢t —n and t —n—1 respectively. We prove

in 4.3 our basic result:

SviciNe THEOREM. The function which associates (T, f, y> with y maps Y into the
t—n dimensional analytic chains in M and is continuous with respect to the topology of the

locally integral flat chains in M.

It follows in §5 that if S and T are analytic chains in M and the dimensions of
spt S Nspt T, spt 98 Nspt T, and spt SN spt 7 are not unusually large, then the infersec-
tion of S and T, denoted SN T, is well-defined by slicing the Cartesian product S x 7', in
any coordinate peighborhood, by the subtraction map. The resulting real analytic intersec-
tion theory is then characterized in 5.8-5.11 by certain classical algebraic formulae.

To prove the Slicing theorem we employ the proposition:

If A is a real analytic subvariety of M and K is a compact subset of M, then there exists
an integer I such that

card(KnANfi{y})<I
whenever y ER and dim(4 0 -1 {y}) <O.

The existence of such a bound (which apparently was previously unknown even in the
analogous complex case) is established in 2.9(1) following a description in 2.4 of analytic
mappings of bounded semianalytic sets. The lemma in 3.1 whose statement and proof are
essentially due to H. Federer, is intended to supplement the discussion of [F, 4.3.16].
The proofs of 4.7 and 5.8(11) are also due to Federer. An application. of the Slicing theorem
to the chains associated with the zero sets of real polynomial mappings is given in 4.8.
For the case of positivé holomorphic chaing, the theorem in 6.5 on the continuity of slic-
ing is more general than 4.3. The counterexample in 6.6 to the corresponding proposition
for real analytic chains is a modified version of an example of H. Federer.

The origins of intersection theory go back to the paper [KR] of Kronecker in which he
associated an integer-valued index to certain systems of functions of several variables.
In [LE] Lefschetz gave an algebraic topological definition for certain intersections of sim-
plicial chains and discussed briefly intersections of real and complex analytic objects. The
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case of complex algebraic chains has been studied by many algebraic geometers (for ex-
ample [C], [W], [SA], [SE}). Complex holomorphic intersections have been treated in
[BH], [D], [K1], and {K2]. [BH] also contains an intersection theory for the eycles modulo
two defined by the real parts of holomorphic sets. The real analytic chains which we con-
sider include each of the above cases. Their supports correspond to arbitrary real analytic
sets which may fail to be either coherent or C-analytic ([N, pp. 93-109], [WB, pp. 152-156]).
The methods employed in [F2], [F], [K1], [K2], and the present paper are all based on
geometric measure theory, notably H. Federer’s theory of slicing.

Most of the references will be from [F]. We refer to [F2] mainly for theorem 3.17 and
to [IN] for some elementary properties of holomorphic sets used in § 6. Most of the notation
is also from [F] (see his glossaries on pp. 669-671). In addition for any two maps f: 4— B,

g: A— 0 we use the symbol
1y

to denote the map which sends a € 4 onto (f(a), g(a)) EB = C.

The author wishes to express his deepest appreciation to his teacher Professor Herbert
Federer for his constant moral support and encouragement, for many helpful discussions,

and for several suggestions on simplifying proofs and notations.

2. Analytic blocks and analytic fibers

Let M be a separable m dimensional real analytic Riemannian manifold. For >0
let e denote the o dimensional Hausdorff measure induced by the Riemannian metric
(KN, p. 157], [F, 2.10.2]). Whenever ¢ is a nonnegative integer with m>¢ (respectively,
m=t) and G is a subset of M, we call G a t dimensional analytic block in M if there exist an
open set U in M, with Clos G< U, and real-valued functions g, ¢y, ..., ¢ (T€SP., g,) ana-

lytic in U so that @ is one of the connected components of the set

Un{z: gyx) = ... =gp_o(x) =0}~ U N {z: go(x) =0}

(resp., U~UN{x: g,(x)=0}) and for each 2€Q, the sequence Dg,(x), ..., Dy, _{x) is
linearly independent (compare [F, 3.4.5]). We shall be interested in the class $(J) of those
subsets of M which are locally finite unions of analytic blocks in M of various dimensions;
thus 4 € §(M) if and only if there exist analytic blocks G,, Gy, ... in M so that 4 = U 2,6,
and {j: G,n K =@} is finite for every compact K< M. It follows from the results of S.
Yiojaseiwicz in [LO3, pp. 40-70] that $(M) coincides with the class of semianalytic setsin
M as defined and studied in [LO1], [LO2], and [LO3]. Moreover [LO3] contains the com-

plete proofs of many interesting properties of such sets. However we shall refer only to [F],
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notably [F, 3.4.5-3.4.12, 4.2.28] for our discussion of §(M) first because [F] contains all
those facts relevant for our purposes and second because the I.H.E.S. course notes [LO3]

are not as readily available to the reader.

2.1. LeMMA. If A, BES(M), then:
1) AU BeS(M).
2) AN BeS§(M).
3) A~BeS§(M).
4) A x BES(M x M).
(5) For any connected component C of 4, C€ S(M)}.
(6) For any real-valued function g analytic in a neighborhood of Clos A, A 1 {x: g(x) =0} €
S(H).

(
(
(
(

Proof. (1), (4) and (5) are clear. For any of the sets D which occur in (2), (3), or (8)
and any point z€Clos D we may, by [F, 3.4.9], find an open neighborhood U, of  so that
first, there exists an analytic isomorphism h of U, into R™ with k(x) =0, and

second, there exist real analytic subvarieties V, and W, of U,
so that U, 0 D is the union of some finite family of connected components of V,N W,.
Then we apply the local theory of [F, 3.4.8(11), 3.4.9]to A(V ,~ W,)=h(V,)~h(W,) and
select a possibly smaller open neighborhood U%* of x so that Uy N D€ §(M). By the para-

compactness of M and [F, 3.4.9] we may choose a locally finite refinement {U,, U,, ...}
of the cover {U*: x€Clos D} of Clos D such that Uy, U,, ... € S(M), hence

D=j§(U, n D)ES(M).

2.2. Dimension. Recalling [F, 3.4.8(3)], we define, for @+E< M, the real analytic
dimension of K, denoted dim #, as
8UP,ey inf {dim a: o is the germ of an analytic variety at x and o contains the germ

of E at x};

in addition, we define dim @ = —1. Then for any two subsets £ and F' of M we have, by
[F, 3.4.8(14)], the equation

dim (£ U F) =sup {dim E, dim F}.
We will say that a point x € M is a regular point for a set A € (M) if there exists a neighbor-
hood U of z so that U N A is a connected real analytic submanifold of M. From [F, 3.4.8(11)
(13) (14) (18}, 3.4.9] we infer that if @44 € (M), then the following four expressions are

equivalent characterizations of dim A4:
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(1) sup {dim[Tan(4, #)]: « is a regular point of 4},
(2) sup {k: there exists a k dimensional analytic block G in M with G= 4},
(8) inf {k: 4 N K is k rectifiable for every compact K< M},
(4) sup {p: He(4)>0}.
We will also use the following two important facts for @ =4 € §(M):
(5) dim (Clos 4 ~ 4) <dim A;
(6) dim (4 ~ A N {x: 2 is a regular point of 4})<dim 4.
(6) follows from [F, 3.4.8(16)] by reasoning as in [F, 4.2.28] and (6) follows from [F, 3.4.10].

From (4) and [F, 2.10.25] we infer:
(7) If f is an analytic map of a neighborhood of Clos E into R”, then for £* almost all
y in R”
dim (ENf2{y}) <sup{—1, dim E—n}.
2.3. LEMMA. If E is a subset of M and U is a neighborhood of Clos E, then there exists
a closed set A€ S(M) such that

EcA<U and dim A =dim E.

Proof. This is obvious in case dim £= —1. We assume inductively that 2.3 with E
replaced by F is true for all subsets ¥ of M with dim F < dim E. By applying [F, 3.4.8(11),
3.4.9] and the paracompactness of M as in the proof of 2.1, we choose a locally finite open
cover {U,, Uy, ...} of Clos E and B,, B,, ... €$(M) so that

U,NEcBcU;nU, dim B;<dim E
for j€{1, 2, ...}, hence
-
B=UB;€S(M), EcBcU, anddimB=dimZE.
=1

Since, by 2.2(5), dim (Clos B~ B)<dim E, we may use induction to choose a closed set

C€S(M) so that
Clos B~B<(Cc U, dim C <dim E,

and we take A =B U C to finish the proof.

2.4. We will prove by induction on ¢ that the following two propositions hold for

every nonnegative integer ¢,

ProrosITION (A,). If A is the union of finitely many analytic blocks in R™ such that
Clos 4 1s compact and dim 4 <, f is an analytic map of a neighborhood of Clos A into R®, and
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R =An{x: xis a regular point of A and dim Df(x)[Tan(4, x)] =4},

then there exist o compact set Q in some Euclidean space, with dim Q <t —1, and an aralytic
map q of a neighborhood of @ into R™ such that R~ [~[q(Q)] and f(R)~q(Q) are t dimensional
analytic submanifolds of BR™ and R" having only finitely many connected components, and f

maps each connected component of R~ f1{q(@)] isomorphically onto a connected component

of f(R)~q¢(@)-

ProrositionN (B,). If m, n; A, and | are as in Proposition (A;) and if n=1t+1, then
the set
Rt~ f(A)
has only a finite number of connected components.
In case £=0, the set A is finite, and the truth of Proposition (A,) is evident. We will

show in 2.8 that
(A,) implies (B,) for every integer ¢ =20
and in 2.9 that

(B;_,) implies (A,) for every integer ¢=1.
First we prove two lemmas.

2.5. LEMMA. If m, n,t,f, A, and R are as in Proposition (A;) and if G is a finite family
of real-valued functions analytic in a neighborhood of dmn f, then there exists a compact set
Be S(R™) such that

Bcdmn f, dim B<¢—1, Clos R~ R< B, BU {4~ R) s compact, BU (A~ R)ES(H),

and for every component C of
R~B=A~[BU (4~ R)]

and every g€ G the function g|C is either strictly megative, or identically zero, or strictly posi-

tive.

Proof. Letting © denote the collection of all maps from §G to the set {~1, 0, 1}, we
verify with the aid 2.1(1) (2) (3) (5) (6) that for each OEQ

Ay = AN {x: sign g(x) =06(g) for g€ G} ESR™)

and that A= Ug.q Ay is a partition of 4. By [F, 3.4.8(11), 3.4.9] and the compactness of
Clos A, there exist a positive integer J, and open cover {U,, U,, ..., U;} of Clos 4, and,
for each j€{1,2,...,J} and 6€O, a finite family I'; 4 of disjoint analytic blocks in R™
such that
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Ucdmnf and U,n4,=UT, 4
whence the decomposition
U,n A= UT; where Fj:ogarj'e
is a partition of U;N A4 into analytic blocks in R™.
Fixing j€{1, 2, ..., J} we will now prove that if GET',, then
etther GN R =@ or dim(G'~ R) <t —1.

For this purpose we assume G€I';, GN B4+, and dim G =¢ and infer from [F, 3.1.18]
that G N R is open relative to G, hence dim(G N B)=¢. Then choosing, according to 2.2(5)
and 2.3, a compact set D,€ S(R™) so that dim D,<¢—1 and

U{Clos H~H: HEl';}< D;<dmn f,
we note that (G N B)~ D, is nonempty because
t = dim(G N R) <sup {dim[(G N R)~ D], dim D,}.

To estimate the dimension of (G~ R)~ D,= (G~ D,)~ R we observe that every point in

G~ Dy is a regular point of 4 because
(G~D;)NClos H=0@ for any Hel',~{G}.

Choosing a neighborhood U of Clos G and real-valued functions g, ¢y, ..., gy Which de-
seribe @ as in the definition in § 2 and letting f,, ..., f, be the real-valued functions such that

(@) = (f(), .., f{(x)) ER® for zE€dmn f,
we associate with each A€A(n, t) the real-valued analytic function
¢1=|Dgy A .. ADgp_i A Dfay A ... A Dfyn |2
Then the function ¢=>;c A1, ¢; is analytic on U N dmn f and satisfies the condition
D +(G~D;)N R =(G~D)N {x: dim Df(z)[Tan(G, x)] =1}
= (G~ D)0 {x: d(x) £0} € S(B™,
hence the real analytic dimension of
(G~ B)~ D, = (G~ D)) 0 {2 $(2) = 0} G {a: $(z) =0}

does not exceed t —1 by virtue of [F, 3.4.8(15), 3.1.24]. Consequently

6 — 727901 Acta mathematica 129. Imprimé le 2 Juin 1972,
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dim (G'~ R) = sup {dim(G~ R~ D)), dim D;} <¢—1.
Next, we let ['= U7_; [}, recall 2.2(5), and apply 2.3 with
E=(U{G~R:QeTl, Gn R+D}) U (U{Clos G~G: GET})

and U equal to some compact neighborhood of Clos E in dmn f to choose a compact set
BeS(R™ with B< B<dmn f and dim B<¢{—1.
We infer that R< U {G: GET, GN R4}, hence

Clos R~ R< U{Clos G~ R: GET', GN R+D}
< U{(Clos G~@)U (G~ R): GET', Gn R+D}< B.
Since B is the union of finitely many analytic blocks in R™, so is the set
BU(A~R)=BU[U{G: GET,GN R =02}].
Moreover B U (4~ R) is compact, because A ~ R is closed relative to 4, and hence
Clos (A~ R)~(A~R)<Clos A~A< U{Clos G~G: GET'}= B.

Finally we assume that g€ § and that C is a connected component of R~ B. Since,
by 2.2(1), dim C'=¢, there exist j€ {1, 2, ..., J}, €0, and G€ET; 4 so that

CNGE+D and dim G=1.

Observing first that ¢ N @ is open relative to C because
Ccd>d, dim(C=dim 4 =dim G,

and any point in C N @ is a regular point for C, 4, and G, and second that C N & is closed
relative to C because

Cn(Clos G~ <=CNB =9,
we conclude that C N G'=C, C <@, hence sign g(x) =6 (g) for all x€ C, and the proof of 2.5
is complete.

2.6, LEmMA. Let s, n, my, m, be nonnegative integers. If, for each 1€{1, 2}, @ is a com-
pact element of S(R™), dim Q,<s, and ¢, is an analytic map of a neighborhood of Q; into
R”, then there exists a compact set @€ S(BR™ xR™), with dim Q@< s, and an analytic map q
of a neighborhood of Q into R™ such that

9(Q) = 1(€1) U 22(Qs)-
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Proof. Choosing a €ER™ ~@Q, and bER™ ~@Q, and letting
Q@ = (@ x {b}) U ({a} x@;)=R™ xR™,

we see that @€ S(R™ xR™), that dim @ <s, and that there exists an analytic map ¢ of a

neighborhood of @ so that
g(z, b) = ¢4(x) for z€Q,,

(@, y) = ¢5(y) for y€Q,.
2.7. Proof that proposition (A;) tmplies proposition (BY) for £ 0.
We infer from 2.2(6) that
dim[4 N {z: « is not a regular point of A}]<t—1
and from [F, 3.1.18] that

(AN {x:  is a regular point of A and dim Df(z)[Tan(4, z)] <¢})] =0,

hence X =[f(A)~HB)V q(@)=f(A~R) U q(Q)

has J* measure zero. Moreover Proposition (A,) implies that f(A)~ X =f(R)~q(Q) is a t
dimensional analytic submanifold of R**! having only a finite number of connected com-

ponents.
Incase f(A)< X, the set R ~ f(4) is connected. In fact, we define, for each a ERF 1~ X,

the open analytic map
y: R 1~ {a} > St

by w,(y)=(y—a)/|y —a| whenever y€R**'~ {a}. Fixing a €R‘*'~ X, we observe that on
the one hand, by 2.2(7),
XNy {E} =D for H* almost all £€8*
while on the other hand
Int 9,(C)+=@ whenever C is a component of Ri*!~ f(4).
Hence there exists &€ y,(C) with X Ny, '{€} =0, and so the closed half-line
RN {y: (y—a)®&=|y—al}

lies in Ré*!~ X and connects a with C.
From now on we assume that f(4)~ X 4s nonempty, and we observe that the proof of

2.8 reduces to demonstrating the following two assertions:
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(1) For every component D of f(A)~ X there are at most two components C of R** 1~ f(4)
with D N Clos C +@.

(2) For every component C of R**! ~ f(A) there exists at least one component D of f(A)~ X
with D N Clos C+Q.

In fact, these two assertions imply that
the number of components of R**! ~ f(4) <twice the number of components of f(4)~ X.

To prove (1) we assume that D is a component of f(4)~X and verify that if C is a
component of R**'~f(4) for which D n Clos C @, then D<Clos C. Clearly D N Clos C is
closed relative to D. To see that D N Clos C is also open relative to D, we let d €D N Clos C
and choose by [F, 3.1.19(1), 3.1.24] a neighborhood U of d in R**! such that U N f(4)=
U N D along with an analytic isomorphism % of U onto the open ball U(0, 1) in R**! such

that 2(d)=0 and
h(UND)y="TU(0,1)N {z: e,@z =0}.

Then unon{y: e,®h(y)+0}+0,
hence either U N {y: e, ®h(y) >0}=C or UN {y: e, ®h(y) <0}<=C.

In either case we conclude that U N .D N Clos C=U N D is a neighborhood of d relative to
D. Whence D<Clos C.

Now suppose d, and d, are two points in D. From the previous paragraph we see that
for each 1€{1, 2} there are at most two components C;, CF of R‘*'~f(4) whose closures

contain d; and that therefore
D<Clos €, N Clos Cf n Clos C, 1 Clos CF,

hence either 0 =C,, Of =Cj or C,=C§, Of =0,, and (1) now follows.
To prove (2) we assume that C is a component of Rf*'~f(4) and choose a point
bef(4)~ X. Since, by 2.2(4) (5),

H(Clos A~A) =0,
we may, according to [F, 2.10.11], select a point &€y, (C) so that
[X U f(Clos A~ A)] Ny, {£} =T
to conclude that the closed half-line

L=R"n{y: (y—b)e& = [y—b|}
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connects b with ¢ and that the set L N [{(4)~ X]=L N f(Clos 4) is nonempty and closed.
If ¢€C N L, then there exists a point d€L N [f(4)~ X] for which

|d—c| =inf{|e—c|: e€L N [{(4)~X]}.

Therefore d€ Clos C, and (2) follows by choosing that component D of f(4)~X which

contains d.

2.8. Proof that proposition (B,_,) vmplies proposition (A,) for t=1. The proof will con-
sist of two applications of Proposition (B,_,) and a construction using various Cartesian
products of R™ Throughout 2.8 we assume that the set B is chosen as in 2.5 with G=0.
The first use of (B;_,) will be made in proving:

(1) There exists an integer I such that
card(R N f{y}) < I for all y€R™.

For this we consider three cases:
Case 1, n<t. Here B=@ and we take I=0.
Case 2, n=t. Here we recall [F, 3.1.18], note that for each wER!~ f(B) the fiber

Bn 2 {w}=Clos Bnf*{w}

is compact and discrete, hence finite, and observe that f| (R~ f-![f(B)]) is a covering map
because Clos R~ R< B. By Proposition (B, ;) the set R~ f(B) has only a finite number

of components, and therefore there exists an integer I for which
| card(RN f1{w}) <I whenever wER'~ f(B).

Suppose now that there exist a point y ER’ and a subset F of R N f~!{y} whose cardinality
is I+1. For each z€ F we choose, according to [F, 3.1.18], a neighborhood U, of # in R™
so that U, N 4 is a connected ¢ dimensional analytic submanifold of R” and f|(U,N 4) is
an analytic isomorphism. Since H![{(B)]=0 and since M, f(U, N 4)is a neighborhood of

y, we may choose a point
we () f(U, 0 A)]~B)

to obtain the contradiction

I+1=card F <card (RN {2 {w}) <1,
and Case 2 follows.

Case 3, n>t. If (1) is false, then there exists a countable set £ R" for which

sup card (R 0§ {e})= co.
ecE
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Since RN fY(E) is also countable we may find an n—¢ dimensional vector subspace P
of R” such that for all z€ R n f-1(E)

P Df(x)[Tan(4, )] = {0}.
Choosing p €0*(n, £} so that ker p =P, we see that R N f-1(E) is contained in the set

R'=AnN {z: x is a regular point of 4 and dim D(pof)(z)[Tan(4, z)] =t},

hence
sup card [R' N (po f) " {p(e)}] >sup card (R N f*{e}) = oo.

This contradicts Case 2 with f and R replaced by pof and R’, and finishes the proof of (1).
For the construction of @ and g we will use for each 1€{1, 2, ..., I} the set

A;i=RB~BYn{(zy, ..., 2): (@) =...=flx;) andleg Z)le(l,—xl(z)I’#O},

which is an element of §([R™])! by virtue of 2.1(2) (3) (4) (6), and the analytic map f;:
(dmn f)*—>R"” given by fi(x,, ..., x;) =f(z;) for (zy, ..., z,) €(dmn f)*.
We first make the observation that

dim 4, <i.

In fact, by 2.2(2) there exists an analytic block @< 4, with dim G'=dim 4,, To compute
dim G we recall from [F, 3.1.18] that for any b €@ for which

dim Df,(b) [Tan (G, b)]=sup dim Df,(a) [Tan (G, a)]
ae@
one has the equation

dim Tan(@G, b) = dim Tan[G N f;l{f,-(b)}, b]+dim Df,(b) [Tan(@, b)].
Since
card [G'N fi—l{fi (b)Y} < card [4;N ,fi—l {fi(b)}]

is finite, dim Tan[G N f;'{f,(b)}, b]<0. On the other hand, dim Df,(b)[Tan(@, b)]<t be-

cause f factors as fop,, where p)(zy, ..., ) ==, for (z,, ..., z;) € (dmn f)!. Consequently
dim 4, < dim Tan(@, b) <0-+¢.
Next, we define for every 1€{1, 2, ..., I'}
R, = A, {a: a is a regular point of 4, and dim Df(a)[Tan(4,, a)] =1},
Gi= {9, 27€{1,2, .., m}, A€EA(s, 2)}
where for each j€{1, 2, ..., m} and 2€A(, 2)
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95,20 B >R, g, 2(@y, ... T) = 0,0 (X307) — () for (24, ..., 2;) E(BR™),

and we apply 2.5 with R™, f, 4, R, and G replaced by (R™), f;, 4,, R;, and G, to choose
a compact set B, € S([R™*) such that

B,=(dmn fY, dim B, <¢—1, Clos R,~R,< B,
B, U (4;,~ R)ES(IR™), B, U (4;~R,) is compact,

and for every component C of R,~B;=A4,~[B;U (4,~ R,)] and every g€ (,, the func-
tion ¢|C is either strictly negative, or identically zero, or strictly positive.
Setting @;=B; U (4;~ R,), we note that

dim Qi < t—' 1.
In fact, since Q;~B,=[B,U (4,~ R))]~ B,€ S(R"T"),

there exists by 2.2(2) an analytic block H<Q;~ B; with dim H =dim(@,~ B,). If dim H =¢,
then we may, according to [F, 3.1.18] and 2.2(6), select a point b €H such that b is a
regular point of 4, and

dim Df,(b) [Tan (H,b)]= su}) dim D}, (a) [Tan (H, a)]
to obtain the contradiction

dim H = dim Tan(H, b)
=dim Tan(H n f;* {1,(®)}, b)+dim Df(b)[Tan({H, b)] <O+¢—1.

because A;N {71 {f(b)} is finite and b€ A;~ R,. Thus
dim @, =sup{dim(Q,~ B)), dim B} <t-—1.
Recalling 2.6 we choose a compact set
QESR™ xR™ < [R™]2 x ... x[R™]),
with dim @ <¢—1, and an analytic map ¢ of a neighborhood of @ into R" such that

9@ ={(B)U H(@) U - U f{Qs)-

To verify that all the conclusions of Proposition (A ;) hold, it will be sufficient to prove
the following three statements.

(2) For every component C of R~ f~[q(@)]
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Clos f(C)~f(C)< q(@)

and f|C is an analytic isomorphism.
(3) For every two components C and D of R~ fq(Q)] either {C)NKD)=D or {(C)=
A(D).
(4) The set R~f1q(@)] has only finitely many connected components.
To prove (2) we assume that C is a component of R~ f~q(@)], note that Clos C is
compact, and conclude that
Clos {{CY~H(C)< {(Clos C~ ()
<f([Clos R~ RV fg(@)] < /(B U [~ {g(@)]) = q(Q)-
Moreover to show that f|C is an analytic isomorphism it suffices to note that C< R, re-

call [F, 8.1.18], and prove that f|C is one-to-one.
For this purpose we define, for each pair of integers h, ¢ with I>h>¢>1 and each

wEA(h, 7), the map
2, (dmn f)*->(dmn f)*

so that p,(2y, ..., 7)) = (), -+ Tuy) for (@, ..., 2,)€(dmn f)", we let Q,, for each i€

{1, 2, ..., I}, denote the family of connected components of
R~ U{p,(Qr): k€{s, i +1, ..., I}, vEA(K, 1)},
and we make the observation:
(5) If I=h>i>1 are integers, u€A(h, i), E€Q),, FEQ,, and F N p, (E)+D, then
Fcp,(E).
In fact, Fnip ,u(E) is closed relative to F because
F n[Clos p(E)~p, E)]<Fnp,Clos E~E)
< Fnp,[(Clos By~ Ry) U (U {p,(@x): kEE{R, ..., I}, vEA(, B)})]
S FNU{p.(Qx): k€3, ..., I}, vEA(R, 1)}] =D.

To see that F Np,(E) is also open relative to F we assume ¢€ F N p, (&) and choose dis-
tinct points a,, ..., z, in the fiber BN f~'{f,(e)} such that (z, ..., %,)€ E and e=(x,,, ...,
T40)- Since dim F=t=dim A, there exists a neighborhood U of e in (R™)! with Un F=
U N A;. Furthermore p,| E has constant rank ¢ because f,| E=f,0(p,| E) does, and so

PJENP (U< UN4,=UNF
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is a neighborhood of e relative to F in F N p,(E). Thus (5) follows by the connectedness
of F.

Returning to the proof of (2) we show that there exists an integer i€{1, 2, ..., I'}
so that

(6) card(RNf{y})=1¢ for every y€f(C). In fact fix a point w€F(C) and select <€
{1, 2, ..., I} and (vy, v, ..., v;) E(R™)} so that

card (RN f~1{w}) = ¢, v, €C, and RN fYw} = {v}, vy, ..., v,

Choosing F€Q,; and p€A(s, 1) so that (v, ..., v,) €EF and u(l)=1, we infer from (5) that
C<p,(F) because (' is contained in some element of (2,. Hence if y €(C), then

h=card (RN f2{y}) =1.
If 2>+, then we may choose (2, ..., x,) E(R™", F€Q,, and v€EA(h, 1) so that
x, €C, RNy} = {xy, ..., 2}, (1, ..., 2,) EE, and »(1) =1,
deduce from (5) that C'<p,(F) and obtain the contradiction
card(R n f~1{w}) =4,

and (8) follows.

Next choosing ¢€{l,2, ..., I}, FE€Q,, and u€A(s, 1) as in the previous paragraph,
we observe that

(7) 1:|[F 0 g (O)] is one-to-one.

In fact otherwise by (6) there exist a y€f(C) and points @, @y, ..., z;€R N f*{y}, and a
permutation o =1g,5, .. .5 of {1, 2, ..., 4} so that

(@ys ooy ) EF and (Tg(qys ooy Toipy) EF
Accordingly ©,;® (X, — ) 0
for some j€{1,2, ..., m} and h€{1, 2, ..., i}. Defining
H={1,2,..,:}n {k: signfe;® (z,—x,)] = sign[e,® (x4, —Z)]}
we observe that & ¢ H and ¢(k) €H and that for each k€{1, 2, ..., i}
sign [;® (@, —Z,y)] = sign [e;@ (7, — ;)]

because F is a connected subset of B;~ B, and hence
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sign g;, 1(Zoays s Tory) = SigN g5, 2%y, -y 2)

where A€A(s, 2) and im A={A, k}. Using the equation
;@ (T ~n) = ;8 Ty ~ L) + €5 (To(n) —Tn)

for every k€ H, we infer that o(H)< H, hence ¢(H)=H, which contradicts o(h) € H ~o(H),
and we conclude that the map f,|[¥ N p;*(C)] is, indeed, one-to-one.
Then since C<p,(F) and since

AILF N p (€)= (f]C) o (pu| [F 0 9 (O)D),

the map f|C is also one-to-one, and the proof of (2) is complete.

To prove (3) we assume that ¢ and D are connected components of R~ f-1¢(Q)]
with f(C) N {(D)=+D. To see that f(C)=f(D) we note that f(C) U (D) is connected and that
HC) N f(D) is closed relative to f{C) U f(D) because

[/(C) U (D)1 (Clos[f(C) N f(D)]~[HO)N{(D
< [R~q(@)]1n ([Clos f(C)~ ()] U [ClOSf (D)~ {(D)])
<[R*~g(@)] N f[(Clos C~C) U (Clos D~ D)]
< [R*~g(@)]1n f([Clos B~ R U f¢(@)])
SR ~g@)]N (B [ g@1 < [R"~q(@)]ng(@) =D.

On the other hand if y€f(C)N /(D) and BN {y}={x,, ..., x;}, then there exist FE€Q,,
WEA(i, 1), and v€A(4, 1) so that
(@15 s %) €EF, 2,1)€C, and z,;€D.
We infer from (5) that
Ocp,(F) and D<p,(F)
and from (7) that f, maps F Np;’(C) isomorphically onto f(0) and F N p; (D) isomor-
phically onto f(D), and we conclude that
HC) N (D)= f,[F n p*(C) N p; 1 (D)]
is open relative to f(C), to f(D), and hence to f(C) U f(D). Therefore f(C)=f(D) and (3)
follows.

For the proof of (4) we will make a second application of Proposition (B,_,) by con-
sidering three cases.

Case 1, n<t. Here R=@.

Case 2, n=t. Here we need only observe that f{(E~ f-1[g(Q)]) is a covering map with
finite fibers because
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Clos R~ R B< f[g(Q)]

and that the set Rf~g{@) has only a finite number of connected components by Proposi-
tion {B,_;).

Case 3, n>t. Here we first choose p€0*(n, t) so that the set
R’ = AN {x: x is a regular point of 4 and dim D(pof)(z)[Tan(4, z)] =t}

satisfies dim (R~ R’)<t—1. For this purpose we choose a countable dense subset V of R,
let P be an n —¢ dimensional vector subspace of R* with

PN Df(w)[Tan(4, v)] = {0} for all vEV,

and choose p €0%(n, t) so that ker p=P. It follows that dim(R~ R’)<¢—1, because other-
wise we may first apply 2.5 with f, B, and § replaced by pof, E’, and @ to choose a com-
pact set B’ € S(R™) so that
dim B'<t—1, R'~ B €S(B™), Clos R'~R' < B,
(R~R')~(BU B')=(R~B)~(R'~B')~ B €§R"),
dim[(R~R')~(BU B)]=t,

and then apply 2.2(2) with 4 replaced by (B~ R’)~(B U B’} to choose a ¢ dimensional
analytic block @ satisfying the contradictory conditions

Gc(R~R)~(BUB), O+GNV<=GNR".
Next we choose by 2.3 a compact set ¥ € §(R™) so that
(R~RYUB'<Y and dim Y <t—1,
and observe that X =R 0 (pof)Up[/(Y) U @)

has ' measure zero because H(p[f(¥) U ¢(@)])=0 and because R’ may be covered by
countably many sets U open in R™ such that (pof)|(U N R’) is an analytic isomorphism
whose inverse is Lipschitzian. Moreover (pof)|(R’~ X) is a covering map with finite fibers

because
Clos RR~R'<B'<Y.

Since, according to 2.6 and Proposition (B,_;), Ri~p[f(Y) U ¢(@)] has only a finite number
of components, so does R’ ~ X. Finally every component of R~ f[¢(@)] contains at least
one component of B'~ X because
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B~{1g@)]~ (R ~X)<(B~R)U X
has ¥’ measure zero. This completes the proof of (4) and hence of 2.8.
2.9. CoROLLARY. If A is the unton of finitely many analytic blocks in M, Clos A
is compact, dim 4 =t, and f is an analytic map of a neighborhood of Clos A into R", then:
(1) There exists an integer J such that
card (4 N -1 {y}) < J whenever dim (A N f{y}) <O0.
(2) In case t>n, there exists an integer J* such that
WA N {y)) < T* whenever dim (4 N f~Y{y}) <t—n.
Proof. 1t is sufficient to prove the corollary in case M =R™.

In this case we prove (1) by induction on ¢ For ¢=—1 we take J =0, and for =0
we take J =card 4. We now assume that £>0 and that (1) with 4 replaced by B is true
whenever B€ §(M), Clos B is compact and dim B <t. We may also assume, without loss
of generality, that A itself is a ¢ dimensional analytic block in M and that 4 is described
by U.9, 95, -.- s gm-¢ 88 in the definition in §2.

_ Letting {,, ..., f, be the real-valued functions such that

f(.’t) = (fl(x)’ e fn(x)) fOI‘ xEdmn f:
we define for each s€{1, ..., {} and A€A(n, s) the real-valued analytic function
¢ =|Dgi A .. A Dgp_y A Dfgy A .. A Dy |%
Then the analytic functions

¢0=1, ¢s= Z ¢l fOI' 86{1,...,t}

Ae An, 8)
satisfy the condition

r, = sup{s: ¢,(x) =0} = dim Df(x)[Tan(4, x)] for z€A.
Letting r =sup; ¢4 r, we infer from 2.1(6) that
B=An{z:r,<r}=AN0{x: ($,+ ... ~;}(x) =0} €ES(M)
and from [F, 3.4.8(15), 3.1.24] that dim B <¢. Choosing an integer j such that
card(B N f~1{y}) <j whenever dim(Bn f~{y}) <0,
we consider the two cases:

Case 1, r<t. Here it suffices to take J =j because any point €A ~ B is a generic point
of rank r for f| 4, hence
dim{4 N {fx)}]=t—-r>0
by [F, 3.1.18].
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Case 2, r=t. Here we let
R=A~B=A0{a: dim Df(x)[Tan(4, z)] =¢},
choose I as in 2.8(1), and take J=1I+j.

To prove (2) we recall, for each A€A(m, t—n), the projection p;: R"—R!~" defined in
{F, 1.7.4}, apply (1) with f replaced by f{-1p, to choose an integer J; such that

card (4 n f~{y} N pr'{z}) <J, whenever dim (4 n f~{y} N p:*{z}) <0,

Jr= 2> LLTm4)]
e Admt—m)

and set

If y€R" and dim (4 0§ {y}) <¢—n, then by 2.2(7)
dim (4 n fH{y} npi*{z})) <0

for all A€A(m,t—n) and £ almost all zER'™"; using 2.2(3) and [F, 3.2.27], we conclude

WrAnfyh<s 3 card (4 n fHy} npit{zhdL "2 < J*.

AeAlm,t—n)
2.10. CorOLLARY. Suppose that E< M, Clos E is compact, dim E<¢, and f is an
analytic map of a neighborhood of Clos E into R™.
(1) If t<n, then there exists an integer J such that
card(E N f~{y}) <J for W almost all yER™.
(2) If t=n, then there exists an integer J* such that
W-MEN[f{y}) <JT* for C* almost all y ER™.

Proof. We note by [F, 2.10.35], that on R¢ the two measures #, L coincide, and on
R™ #° equals counting measure. Then we choose, according to 2.3, a compact set 4 € $(M)
with F< A< dmn { and dim 4 =dim E, and we apply (F, 2.10.11] and 2.9.

2.11. Remark. Propositions (A;) and (B,) remain true if R™ is replaced by an m
dimensional analytic manifold M. In fact, there exist a positive integer J and for each
j€{1,2, ..., J} an open subset U; of M along with an analytic isomorphism %; of a neigh-
borhood of Clos U, into R™ so that k,(U;)=U(0, 1) and

Clos A=U,UU,U ..U U,

For each j€{1, 2, ..., J} we select a point a,ER™~h,(Clos U)), define
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A*= jl;l[{al} X oo X {@;20) X By (U, 0 A) % {ageq} % ... x {a}]<R?Y,

note that 4*€ S(IR™]) by 2.1(1) (2) (4) (5) (6), choose an analytic map ¢ of a neighbor-
hood of Clos A* so that
By oo Bygy 2, Cpryy oo Bp) = D7 (2)
whenever j€{1, 2, ..., J} and 2€hy(U;N A), and define f*=fo¢ and
R* = 4*n {w: w is a regular point of 4* and dim Df*(w)[Tan(4*, w)] =t}.
To prove Proposition (A,) and (B;) with R™ replaced by M, we apply Propositions

(A,) and (B,) with R™, 4, f replaced by (R™)’, 4*, f* and choose @ and g accordingly. We
observe that

f4) =1(4%), HR)={(B"),
hence f(R)~¢(Q)=f*(B*)~¢(Q) is a ¢ dimensional analytic submanifold of R?. Also

the number of components of B~ f-1[g(@)]
<the number of components of B*~ (f*)~g(@)].

In fact, if C is a component of R~ f~¢(@Q)] and C* is a component of B*~ (f*)~¢(Q)]
with ¢(C*) N 0+, then ¢(C*), being a connected subset of B~ f-1[g(@)], is contained in
C. Moreover in this case

$(C*) =C and f|C is an analytic isomorphism

because C is connected, f*|C* =fo($|C*) is an analytic isomorphism, ¢{C* is an analytic

isomorphism, ¢(C*) is open relative to C, and

00 [Clos $(C*) ~ $(C*)]< C N $[Clos C* ~ C*]
<=0 N {1 *(Clos C* ~ C*)]= O N f[Clos f*(C*) ~ {C*)]
<00 f[Clos *(R*)~ {(B*)] U ¢[Q)

=0 N f[Clos f(R)~(R)] U q[Q]) =2.

3. Some properties of the groups F°° (M) and I;>° (M)

In this section let M be a separable Riemannian manifold of class oo, and let ¢ be a
nonnegative integer. We will consider the vectorspaces D (M) and D(M) of ¢ dimensional
differential forms with compact support in M and t dimensional currents in M, the mass norm
M on D,(M), the abelian subgroups R(M) and L,(M) of D,(M) consisting of t dimensional
rectifiable and infegral currents in M, and the group F,(M) of ¢ dimensional integral flat
chains in M defined by
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F M) =DUM) N {R+58: RERYM), S€Repn(M)}.

These concepts are discussed thoroughly in Chapter Four of [F] in case M is an open sub-
set of a Buclidean space. For an arbitrary separable Riemannian manifold of class oo
DYM), DAM), M, R(M), and I,(M) have been used in [F2] and are easily defined by
reformulating [F, 4.1]. Moreover most of the results of [F, 4.1-4.3] have been written so
as to be readily adaptable to Riemannian manifolds. As in [F, 4.1.24] we may consider
the localized versions of each of these groups by defining the group

R (M) [resp. I (M), resp. Fi*°(M)]

of ¢ dimensional locally rectifiable currents [resp. locally integral currents, vesp. locally inte-
gral flat chains] in M as the collection of all currents 7€ D, (M) such that for every x€M
there exists a current Q € R,(M) [resp. I,(M), resp. F,(M)] with 2 ¢ spt(T —@). Consequently

Lo (M) < R¥°(M) < F° (M)
U U U
L(M) =R, (M) < F.(H).

loc

As in [F, 4,3.16] we topologize the group 7:°°(M) by associating with each pair (U, )

such that
U is open, Clos U is compact, § >0,

a basic neighborhood of 0 N(U, 8) consisting of those currents 7T'€ J;°°(M) for which there
exist R€ R, (M) and S€ R, (M) with

spt(T — R—88)= M ~ U, M(R) +M(S) <4.

This definition has the following three consequences.

(1) If Uy Uy ... are open sets having compact closures in M and U2, U;=M, then

the collection
NU;, 1 5=1,2,..}

forms a countable neighborhood basis at 0.
(2) If f is & locally Lipschitzian map of M into a Riemannian manifold N of class oo,
K<M, and the map f| K is proper, then the induced homomorphism fy maps
FeeMn{T:spt T K}
continuously into Fi°°(N).

(3) In case t=1 the boundary operator & maps Fi°° (M) continuously into F°% (M).
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3.1. Lemma (Extending representations). If, for each 1€{1,2}, U, and V; are open
subsets of M so that Clos V; is a compact subset of U,, then there exists a positive number p

such that whenever
TE€ F°°(M), RERJM), S;€ Rei(M),

and spt(T — R —28 Y=< M ~ U, for i€{1, 2}
one may find RERyM), SE€ Ryy (M) with
spt(R— R,) U spt(S —8,)= M ~ V7,
spt(T — R—08)< M ~(V, U V),
M(R) +M(S) < o[M(R,) +M(S,) +M(Ry) +M(S,)].

Proof. We choose o€ D(M) with im a< {y: 0<y <1}, a(z)=0 for €V, a(z)=1 for
2€Vy~U,, and set g =2+2 Lip(a). Noting that

K = (Clos V3) N {z: 1/4 < afz) <3j4}= (U, 0 Uy)~ Vy,
we also choose B€ D"(M) with im f< {y: 0<y<1},
spt (U N Uy~ V,, KNspt(l~g)=0.
We will now show that there exists a number » so that 0 <r <1 and
(83— 8L {=: B(&) > r} €l (M).
For this purpose we choose y € DYM) with
imy<{y: 0 <y <1}, spty< (U, N Uy)~ ¥y, spt(B) Nspt(l —p) =0,

and we observe that (S, —8;)| 7 is a normal current in M ({F, p. 358]) because, for each
$€DUU),
8[(Sy 8 Ly)($) = (8= 8,) (ydep) = (05, —881) (y$) — (S — 81} (¢ N dy),
spt(y)= (U, 0 Ug)~ Vs,
(B, +88,) (y$) = T(y¢) = (B, +68,) (v4),
hence M@{(S,— Sy L_v]) SM(R,— R,) +Lip(y)M(S, - 8;) <oo.

Noting that the discussions of [F, 4.2.1, 4.3.4, 4.3.6] apply to Riemannian manifolds, we
choose r such that 0 <r<1 and

A8 =8By, B, r+) =8, —SpiL_y, B, > EL(M),
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hence @=[(S;—Sy)_yll_{z: fx) >r} €L,y (M); inasmuch as {x:f(x) >r}<sptf<
{z: y(x)=1} we find that
Q = (83— Sp)L_{w: () >} €L,y (M),
Next we remark that K< {z: f(z)>r},
spt(S,— 8, — Q)< M ~ K, and M(Q) <M(S,) +M(S,),
and choose s so that
1/4 <5 <3[4, <Q, a, s +>EL(M), MQ, a, s +> < 2 Lip(c) M(Q).

Defining R =R, +(By—R,)|_{a: afx) >s}+(Q, &, s+,

8 =8, +(8; =8y {=: a(x) > s},
we readily obtain the mass estimate

M(R)+M(S) < 2M(R,) +M(R,) +2M(S,) -+ M(S,) +2 Lip(er) [M(S;) +M(S,)]

< o[M(R,) +M(S,) +M(R,) +M(S,)]

and the inclusion spt(R~R,)Uspt(S—S,)c M~ T,

because VN [{spt «)Uspt @Q]=C. In order to verify that spt(7—~R—oS)c M ~(V,UV,)
we suppose ¢ € DYM) and consider three special cases.

Case 1, sptd<=(V U Vy) 0 {x: a(x) <s}. Here R($)=R,(¢), S(d$)=38,(d¢), and spt

?"C Ula
hence T'($) = (B, +08,)(¢) =(R +28)(¢).

Case 2, spt d<(V, U Vy) N {z: afx)>s}. Here R($)=E,(¢p), S(dp)=8.(d$), and spt

S{’C U2a
hence T'($) = (Ry+28,) ($) = (R +88) ().

Case 3, spt¢c (VU V)N {x: 1/d<a(r)<3/4}. Here spty<K<U,NU, T($) =
(R, +28,)(¢). Letting ¢ denote the characteristic function of {z: «(z)>s} we infer that
@, «, s+ =(8Q) o —8(@Q@L o),

hence (R+08—T)($)=(By~— Ry)(6¢) +<@Q, &, s+ () +O[(S: ~ 81 L_0](¢)
= (By— B,)(0¢) +(9Q) (0¢) —Qadd) + (83— 3,) (adeb)
= (By— B, +8Q)(0¢) + (8~ 5, —@) (od$) =0

becaunse spt(oé) U sptodsd) < K while
spt(S;—8; —@)<=M~K, spt[Ry,—R,—8(S;~8)JcM~(U,NTU)cM~K.

7—1722901 Acta Mathematica 129. Imprimé le § Juin 1972
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3.2. COROLLARY.

(1) If U s a cover for M consisting of open sets having compact closures, then the collec-
tion of all N(U, 8) corresponding to U €U and >0 forms a reighborhood subbasis of J:°°(M)
at 0.

(2) Whenever Uy, U, ... are open sets having compact closures in M and U2, U,=M
we may exhibit F°° (M) with its topology as a complete metric space by defining the distance
between two points T, Ty of F°°(M) as

dist (T, Ty) = > [8,/2/(1+ 8,)) where 6,=inf {6: T, — T,€N(U,, 6)}.

=1
(8) Fi(M)y=F(M) N {T:spt T is compact}.
(4) F.(M) is dense in F°(M).
{5) For each TEFP°(M) there exist RERP (M) and SERY (M) such that T =R+ 0S.
Proof. To prove {1) we assume that U is an open subset of M, Clos U is compact and
0>0. We choose
first, open sets Uy, U,, ..., U; in U so that
Clos UcU,UU,U ... U T,
second, open sets V,, V,, ..., ¥V; so that
Clos UcV,UV,U ..UV, Clos V,=U, for j€{1, 2, .., J},
and third, open sets W, W, ..., W, so that W,=0
9
and Clos (UV)c W,cClos W;c W,_,U U,
i=1
for every j€{1, 2, ..., J}. Then for each j€{2, 3, ..., J} we apply 3.1 with U,, V;, U,, V,
replaced by W, ,UU,_;, W, ,, U;, V; to choose an appropriate positive number g;, and

we seb
g;=0/[2V " V0,0,,1...0]] and & =e,

To prove the inclusion
N(Uy, &) NN(Uy, &) N .. NN(U;, £7)=N(U, )

we assume T EN(U,, &) 0 ... NN(U,, ¢;), choose for each j€{1, 2, ..., J} currents R,€ R,(M)
S]e RH_I(M) 80 tha,t

spt(T —R,—o8,)c M ~U,, M(R,)+M(S,) <e,

and inductively select currents P., P,, ..., P; in Ry(M) and @, @, ..., Q; in R,,(M) so
that P,=R,, 9, =48, and
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sp(T —P;~0Q) = M~ (W, U V)),
M(P;) +M(Q)) <gje; T0jalejqt - T0o(e27F8) -.-))
for every j€{2, 3, ..., J} by using 3.1 with

Ul’ Vl» U2’ VZ’ 9’ Rl: Sl, Rz: S2
replaced by
W;aUU; 5. Wi 1, U, Viegg Piyy @540 By, 85
In particular
sp{T —P,~oQc M ~(W, UV, )cM~U,
M(P,)) +M(Q)) <pde;+oafery+ ... Tooleatg) ..)) =6,

hence TeN(U, 8).

To prove {2) we note that the metric dist defines the topology of 7i°°(M) by virtue
of (4). To show completeness we assume that 7', T',, ... is a dist Cauchy sequence in J}°° (M),
observe that R is complete and that the topology of #°°(M) is stronger than the relative
topology induced by the inclusion J°°(M)< D{(M), and then let T be the functional de-
fined on DY M) by the condition

T(¢)=1lim T;($) for $€D!(M).
i>00
Clearly T is linear; to see that T'€ F1°°(M) we pass to a subsequence and relabel so that
diSt(TH_l, Ti) < 2~i fOl‘ iE{l, 2, ...}.

Choosing for each ¢€{1,2, ...} and j€{l1,2, ...} currents R, ;€ R, (M) and S, ;€ER,, (M) so

that
spt (Tysy— Ty — R, ;— 08, )= M ~ U,

i [M(R, )+ M(S; )1< 3 27Y(1—-2" )< oo,
i=j+1 i=j+1
we conclude that

By= SRy, €RI(M), 8= 58, €RE(M), Tyt Ry+08,€30(M),

T(¢) = (T, + R;+88;) (¢) whenever ¢ €D*(M) with spt ¢ < U,,
dist (T, T)>0 as i co.
The proofs of (3), (4), and (5) are similar to that of (1).

3.3. Whenever U< W are open subsets of M there is a continuous monomorphism
DYU)~> DY W) which sends $€DYU) to $ U (W~ U) x {0}] € DYW). For every T € D,(W)
the image of T under the dual linear map D{W)— DU} will be called the restriction of
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T to DY(U) and denoted T'|U. Moreover whenever S€ D{U) and spt S is a compact sub-
set of U we define the extension of S to DY W) to be the unique current T'€ Dy(W) for which
spt T<spt S and T|U =8.

3.4. CompacTNESs THEOREM. If C is a subset of I°°(M) and if for every compact
K< M there exists an integer I such that

WTN+ 18T (K) < I whenever TEC,
then C is relatively compact in 1°° (M) with respect to the topology of Fv°°(M).

Proof. We choose Uy, Vy, by, Uy, Va, by, ... s0 that U2, V,;=M and for each j€{1,2,...}
U, is an open subset of M, h; is a Lipschitzian analytic isomorphism from U, onto the
open ball U(0, 2)<R™ with h,(V,)=U(0, 1), and we define the function

u: 0(0,2) >R, u(y)=|y| for y€U(, 2).

Suppose that 7', T, ... is a sequence of elements of C. To show that this sequence
contains a subsequence convergent in L°°(M), we recall [F, 4.2.1, 4.3.4, 4.3.6] and for each
1€{1,2,..} and j€{1, 2, ...} select r; ; so that 1 <r, ,<2,

<hf#(T¢ I Uy a1y, —>= <hj #(TilUj)’ u, 150 € L_,{U(0, 2],
M <h1#(Ti|Uj)7 u, 15— » < [Lip (h,)]‘”T‘“ U;n {:1< Ih,(x)l <2},

and deduce that
R, ;= [hy(T, |U)IL U0, 7, ,) EL[T(0, 2)],

M(R, ) <[Lip (k) 7.4y,

M(oR, ;) < [Lip (k)1 ~*[Lip (b)) |T]| + 0T }1 (U
We may now inductively select currents R, B, ... €I,[U(0,2)] and strictly increasing
maps ay, %, ... of {1, 2, ...} into {1, 2, ...} so that for every j€{1, 2, ...} im a;,;<im «, and

Row.s—~ By In Fi°[U (0,2)] as 1> oo
by repeatedly applying the Compactness theorem of [F, 4.2.17(2)] to extract convergent
subsequences first from the sequence
Ry, Byy, Ry oo

then consecutively from the sequences

Rrxi(x).iﬂ, -Razi(2),/+11 Ra,(:;)_/ﬂ, ... forj=1,23,....
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Letting, for each 1€{1, 2, ...} and j€{1, 2, ...}, T ; and S, denote the extensions to D*(M)
of (h;")4R; ; and (hj')yR, respectively, we infer that
Tois~>8) in Feo(M) as i co.
It also follows that whenever j <k are positive integers
spt (S, =S )= M~(V,0 V,)
because im o, Cim o;: thus there exists S€L°°(M) characterized by the condition
spt (S—8;) =M ~V,; wheneverj€{l,2,..}.
Moreover the subsequence
Tey>8 in F(M) as i— oo
because for each j€{1, 2, ...}
Ty = 8= (Tayy~ Tay) + (Teyiny = Ty, 1) + (Tayiiy.s— 83) + (8= 8),
8pt (Ta,n = Tayr,s) U 8Pt (8= S)c M~V

Toiy = Toyn~>0 and Ty ;— 8,0 as i-> oo,
and 3.2(1) is applicable with the cover U={V,, V,, ...}.

3.5. Slicing. Letting Y, ..., Y, be the standard coordinate functions on R", we ab-
breviate the standard n form Q=DY, A ...AN DY, on R", and we recall from [F, 4.3.1],
[F2, 3.5] that

if T€ (M), then for £* almost all y in R™ there exists a current (T, f, y> € Do_.(M),
called the slice of T in {2 {y} and defined by the formula

T, 1y p)= gﬂ(T L #(B(y, ) A Q1/[a(n) 0™]) ()

whenever w € D™ M).
For such y we readily verify the following four statements:

(1) sp6<T, £, y>= 1 {y} Nspt T.

(2) KT, f, yp=(—1)<oT, {, y> in case ¢ >n.

@)Y LT, 1, 9>|U=LT|U, {|U, y)> whenever U is an open subset of M.

(4) ky<T, t, y> =<hyT, foh1, y> € D,_,(N) whenever kb is a diffeomorphism of class
oo from M onto a manifold NV of class oo,

Section 4.3 of [F], to which we shall often refer, contains a comprehensive discussion
of slicing including several applications. In addition, Section 3.17 of [F2] provides a basic
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theorem concerning the existence and continuity of zero dimensional slices of integral cur-
rents. We shall present here a complete restatement of this theorem with some slight
improvement to include those cases where the domain of the slicing function (7', f,-) is

not necessarily open.

3.6. THEOREM. Let f: M—+R" be a locally Lipschitzian map and T € °°(M) satisfy
flspt T is proper and spt T ~spt 8T is locally-connected. Suppose u and v are positive in-

tegers with
O||TY, ») <u whenever x€ M,

L'R™ N {y: card(f~*{y} Nspt T) >»}] =0.
Let G be the class of all nonempty connected open subsets of R"~ f(spt 0T) and
Y =[R*~ f(sptaT)] N {y: card(f* {y} N spt T) <oo};
for each W €@ let I'(W) denote the set of all components of [~{W)Nspt T and
T*(W) = {V N f-}(Y): VEI(W)};
also let H=U{(W): Weq}, H*=U{IT*W): Wea}
Then the following nine conclusions hold:

(1) For each Ve (W) there exists an integer A(V) such that
f#(TLY) =AME"|_W.

(2) If VEI(W) and A(V) =0, then f(V)=W.
(3) card [I(W) N {V: A(V)40}1<9.
(4) If W W’ belong to G, and V' €T(W'), then
ATVY= 5 AV

V'oVel(W)
(8) H* is a base for the relative topology of 1Y) Nspt T.
(6) If x€fYY)Ospt T, then A(V) has the same value, hereafter denoted A(zx), for all

sufficiently small neighborhoods V of x belonging to H.

(7) For every Borel set E<R"~ f(spt oT)

M7 Q| E))<mwC"(E).
(8) For every ye€Y

<T~ f. Y= Z A(x) 8:7 M<T7 f’ :'/> < uv.

ref~Yunspt T
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(9) The function mapping

y€Y onto {T,{,y>€Ie° (M)
18 continuous.

Proof. Only a few modifications in the proof of [F2, 3.17] are required. The proofs of
(1), (2), (4), and (7) are essentially the same. For (3) we note that £* almost all points in
W have at most » counterimages in spt 7. To prove (5) let € /YY) Nspt T, choose V,,
V;, ... ag in the proof of [F2, 3.17(5)], and verify that

,ﬁ Clos [7, 0 f(Y)] = {x}.

(6) and (8) now follow as in the proof of [F2, 3.17(6)(8)].
For the proof of (9) we fix y€Y and £>0 and abbreviate f~{y} Nspt 7= F. Corre-
sponding to every x€ F is a set U,€H which satisfies the conditions: z€U,,

diam U, <inf {g/uv, } distance ({z}, F~ {z})}, A(U,) =Ax).

Since o = distance [{y}, f(spt T~ U U,)] >0,
TEF

we may choose W€G with y€ W< TUl(y, g) and set
Ve=UNfYW)el(W) forz€F

so that fA(W)Nspt T=U;cr V..

Let we€W. For each vE€f-{w} Nspt T we select that x€F for which v€V,, choose a
Lipschitzian curve 8,: [0, 11--M of length ([F, 3.2.46], [KN, p. 157]) less than &/uy so that
$.(0)=x and g,(1) =v, define the current

8= 2 A() Boy [0, 11 € L (M),

ver~lywinspt T

and verify by (4)y (6), and (8) that

=2 3 A@)(8,—8)

zeF vet~l{wynv,

= Z A(?)) su_ngA("‘w) sz=<T’ f,w> ~<T, f: Y

ver~lnspt 7
and by (6), (1), and (7) that

M(S)< > |A(v)| length B, < ur(eluv) = e.

vef"l{w}nsptT
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4. Slicing analytic chains

Suppose M is a separable m dimensional analytic Riemannian manifold. We call 7

a t dimensional analytic chain in M if and only if
TeFre(M),dim (spt 7)< t, dim (spt oT) <t —1. .

In case £>0, 6T is consequently a ¢ —1 dimensional analytic chain in M. It follows from
[F, 4.2.28] that every analytic chain 7T is representable as a locally finite sum of chains
which correspond to integration over ¢ dimensional oriented analytic blocks in M. This
decomposition plus [F, 3.4.8(11)] implies that 7 is an element of I;°° (M), that dim(spt ') =¢
whenever T =0, and that K N spt T is ¢ rectifiable for every compact set K< M.

4.1. LeMMA. If U is an open subset of R™, s is a positive integer, S€ 3>°(U), and
pEDYU), then
sw-, 2 [S v @pacs

Proof. Letting Q denote the standard s form on R?, we infer from [F, 4.1.6, 4.3.2 (1)]
that
S)=S > <eny) Am|UFQI= 5 [SL(0:]0} Q)< p>

= z <Sa PAIU,Z> <ej,y'(/)> dcsZo

2eA(m, s)

4.2. LemMa. If T is a t dimensional analytic chain in M, f is an analytic map from M
into R™, and t=n, then for every compact set K< M there exists a positive integer I such that

(KT £, | + &, £ pINE) < T
whenever y ER” and T, f, y> € D,_.(M).
Proof. Choosing by [F, 4.2.28, 3.4.8(13)] a positive integer x so that

OY)|T)), x) <u whenever z€K

and choosing J* as in 2.11(2) with E=K Nspt 7T, we infer from [F, 4.3.6,4.3.8,2.9.2,
2.9.7] that for £ almost all w€R" the following statements hold true:

W H{wh n K nspt TISJT*, (T, f,w) €L25%(M),
O (KT, t, wll, ) < p O (" Hw} nspt T, z) for H=" almost all z€K,

hence KT, f, wi]| (K) < f . O (KT, f, wil, x) aH < .
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For an arbitrary point y€R" for which (T, f, y> € D;_,(M) we refer to [F, 4.1.5,4.3.1,
4.3.2(2)] to conclude that

14T, £, 9] (K) < lim in ( f KT, 1, ] (B) dE"w/[a(n)g“]) <ul®.
o0+ Bw.o)
A similar argument for &7, f, y> =(—1yXoT, {, y> finishes the proof.

4.3. SL1iciNnGg THEOREM. If T, f, n are as in 4.2 and if
Y =R"0 {y: dim(/*{y} Nspt T') <t—n and dim (/2 {y} Nspt oT) <t—n—1},

then the function which associates (T, f, y> with y maps Y into the t —n dimensional analytic
chains in M and is continuous in the topology of Ji°, (M).

Proof. We will first prove 4.3 assuming that M is an open subset of R™ and spt T is
compact, by considering two cases.

Case 1, t=n. Here we remark that spt 7 ~spt dT is locally connected by virtue of
[F, 4.2.28, 3.4.8(11)], choose, according to [F, 4.2.28, 3.4.8(13)] and 2.10(1) positive in-
tegers u and v so that
O™(||T]l, ») <u whenever €M,

CR™ N {y: card(f1{y} Nspt T) >»}] =0,
and then apply 3.6(9).
Case 2, t>n. From 2.2(7) and Case 1 we infer that for each y €Y the statements
dim (/- {y} N pr'{z} Nspt T) <0,
1 {y} npil{z} Nspt o7 =0,
T, fRMma M), (. 2)) € L(M)

hold true for all A€ A(m, t —n) and L'~ " almost all zER*~", and we observe that if ¢ € D*(M),
then the function mapping z onto <T, f1(ps| M), (¥, 2)) (¢) is defined, continuous, and
bounded except for an £*~” null set, and is hence £’ summable. We deduce that for each
y €Y the linear functional on D'~*(M) defined by

Lip= 2 (T, 1,0 M), (5, 2)> <es, p> L "z for pED' " (M)

2eA(m, t—n)

is an element of D,_,(}) because we may apply 4.2 with f and K replaced by f}(p;| M)
and spt ¢ to obtain the estimates

KT, Q02| M), (y, 2)>| (spt w) < I whenever <T,{[1(ps| M), (y,2)> €Dy (M),
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Ly <IM(yp) > )Et‘"[pz(sptw)]‘

AeA(m, t—n

Moreover for each y€ D'""(M) the function mapping y€Y onto L,(y)€R is continu-
ous. In fact let ¢e€Y and E be a countable subset of Y containing e. Recalling 2.2(7), we
note that for £*~" almost all zER*~" the two conditions

dim (f-1{y} N pig{z} Nspt T) <O, f{y}npi{z} Nspt 8T =2

hold whenever ¥ €E and A€ A(m, t—n), and we may apply the above estimate, Lebesgue’s
bounded convergence theorem ([F, 2.4.9]), and Case 1 to conclude that

tm Z,p) = im0 (G0, 4,2 <o > A

Eay—e Esy-»e AeA(m,t—n)

= 2 im (T, fE1(pa| M), (y, 2)) <ew, > AL "2

AeA@m.t—n) Esy—e

= Z <T> ﬂ:’ (pi,M)’ (6, z)> <G,1, 1/)> dct—nz = Le (V))

AeA(m, t—-n)

We next observe by 2.2(7), [F, 4.3.6,4.3.5] and Fubini’s theorem that for £" almost
all a€R"
a€Y, (T,f,a>€F (M),

KT, f, a),p2| M, 2> =<T, (| M), (@,2)> for L™ almost all zER™

hence we deduce from 4.1, for all wy€D* (M), the equation

<T’ f» a> (1/))'_— z <<T, f7 a>7 (PAIM)7 z> <eh w> dCt—nz

AeA(m, t—n)

= Z <T: f A (pl | M)) (tt, Z)> <el7 1P> dct—nz = La (W)

AeA(m,t—n)

For an arbitrary point y€Y and all €D "(M), recall [F,4.3.2(1)] to compute

lim (7 L_f#[B(y,0) A Q1/ [a(n) ¢")) () = lim [f T.f,a () dC"a] /[a(n) "]
>0+ o0 B, )

+

= lim [ f L, () dc"a] / [a(n) "] = Ly (),
o0+ Bw,o)

and conclude that T, f,y>=L,€Ds—n(M).

To infer that <T,f, y> €L}°%, (M) we let



SLICING AND INTERSECTION THEORY 107
W=7Yn{w: LT, fw)€el,_ (M)}
and note that y € Clos W because by 2.2(7), [F, 4.3.6] L"(R"~ W)=0; then, observing that
the set of currents {7, f, wy: we W}in 71, (M) relatively compact in I}°% (M) by reason
of 4.2 and 3.4, we see that the convergence
(T, f,wy~><T,f,y> asw-y inW,

which occurs in the weak topology of D, (M), occurs also in the topology of Fi°, (M)
and that the limiting current {7, f, y> is therefore a locally integral current.

As a consequence W=1Y, and we also conclude from this compactness argument that
on Y the function <7', f,-> is continuous in the topology of Fi°% (M). Thus the proof of
Case 2 is complete.

The transition to the general case of an arbitrary separable analytic Riemannian mani-
fold M and analytic chain T in M is only technical. Let E be a4 countable subset of Y.
Choosing w, Uy, V4, by, Uy, Vs, by, ... asin 3.4, we recall 2.2(7) to select for each j€{1,2, ...}

a number r; so that 1 <r,<2,
dim [U; 0 (wok)1{r,;} Nspt T]<t—1,
dim [U; N (uoh){r}nf1{e}Nspt T]<t—n—1 foralle€k
and we infer that the current
By =[hyy(T|U,ILUO, r))

is a ¢ dimensional analytic chain in U(0, 2), that spt R, is compact, and that the inequali-

ties
dim [(foh; )" {e} N spt R]<t—n,

dim [foh; ") '{e} Nspt R]<t—n—1

hold whenever e € E; applying the previous discussion with M, T, and f replaced by U(0, 2),
R;, and foh;! and recalling 3.5(4), 3.(2), we conclude that

<(hj—1)#Ri7 f? 6> = (hf_l)#<Rn fO hi_ly €> eIt—n(Uj)
whenever ¢€ F and that the function ((h; ')y R,, f,*> is % (U,) continuous on E. Conse-
quently if S; denotes the extension of (h;')4R; to DYM), then
spt (T—8)cM~V,, <8, f e€l,_ (M) whenevere€E,

and the function ¢S, f,*> is Ji°,(M) continuous on E.
To show that <7, f,-> is a J°% (M) continuous function from E into L% (M), it
will be sufficient to prove that, for each e€ E, (T, f, &> € D,_,(3), then observe that



108 ROBERT M. HARDT
spt (KT, f, e —<8;, f, ep)<spt (T —8;,) =M ~V, wheneverj€{l,2, ..},

and apply 3.2(1) with t=t—n and U={V;, V,, ...}. For this purpose we use a partition of
unity ¢;, ¢,, ... so that

$,€D%(M) and spt ¢, <V, for j€{1,2,...},
{j: K nspt ¢; =D} < o for every compact K< M, and > ¢,=1,
1=1
compute for each ¢e€E and y€D' " (M), the limit

lim (T |_f*[B(e, o) A Q)/[a(n) 0"]) ()

o—0+

= lim (TL_{#(Be, @) A Q] Tatm) ) (Z4v)

~ lim (S, #[B(e,0) A Q1/Tatn) &) (v = 5 <11, (G9),

and apply the characterization of D;_,(M) given on p. 345 of [F].
The proof of 4.3 is completed by noting the arbitrariness of ¥ and making the ob-
servation that if y€ Y, then
(T, 1,yy €B%(M) = F5(M),
spt <T, f,y> <y} nspt T, spt8<T, fy) <17 {y} n spt o7,
and thus (7, f, y> is a ¢ —n dimensional analytic chain in M.

"4.4. COROLLARY. If t=n>1>0 are inlegers, N is a separable n dimensional analytic

Riemannian manifold, T is a t dimensional analytic chain in M,
M—L>N—-R
are analytic maps, and f|spt T is proper, then
T, 9,2 = [KT, gof,
whenever z ER! satisfies the two conditions
dim [(gof)-1{z} Nspt T} <t—1, dim [(gof)~1{z}NsptoT]<t—I—1.
Proof. In case spt T' is compact, the corollary follows from 4.3 and [F, 4.3.1, 4.3.2(7) (1)).

To prove the general case we choose a cover ¥ of N consisting of sets V for which there
exist an open set U containing ¥V along with an analytic isomorphism % of U onto
U(0, 2)=R" such that A(V)=T(0, 1), and we define the function
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v: U(0, 2) >R, v(a) = |a| for a€T(0, 2).
For each V€W we use 2.2(7) to choose r so that 1 <r<2 and

dim [/~Y(U) n (wohof)~*{rinspt T)< —1,

dim [f~Y(U) N (vohof)1{r} N (gof)*{z} Nspt T <t—1-1,
infer that § =7 (hof)~(U(0, r)] is a ¢ dimensional analytic chain in M with compact
support, that
dim [(gof)~1{z} Nspt 8] <¢—I, dim[(gof)~2{z} NsptaS]<t—I—1,

and hence that

(f#T)l V= (f#S)l v, <f#S’ g, z> =i#<S: gOf, z>7 f#<S: gof: Z>l V=f#<T’ gof! z>| V.

We conclude first, by use of a partition of unity, that {f4 T, g, 2) €1;>%(N), and second
that (fuT, g, 2)| V=F4{T, gof, z>| V for every V€Y, and 4.4 follows.

4.5. COROLLARY. If s, n, and | are nonnegative integers with s=>n+1>0, 8 is an s
dimensional analytic chain in M,

fM->R" g:M—-R
are analytic maps, and

A=R"n{y: dim (f{y} Nspt S)<s—n and dim (/2 {y} Nspt aS) <s—n—1},
B=R'n{z: dim (g7 {z} N spt S)<s—1 and dim (g~2{z} Nspt S)<s—1—1},
C=R"xR) N {(y, 2): dim ({1 {y} ng-1{z} Nspt 8)<s—n—1 and
dim (f1{y} ng-1{z} Nspt 8S)<s—n—1—1},
then KB, f,w>, g, b3 =(8, {19, (a, b)> whenever (a, b)€(AxR)NC,
KB, 1, @, g,b> = (—1) LS, g,b>, f, @) whenever (a, b)€(4 x BYn C.

Proof. To prove the first conclusion we consider the set

D=00{(y,2): K8, 1, 9>, 9, 2> =<8, {0¢g, (¥, 2>},
and make the observation:

If a€ A, then (a,2)€D for C' almost all z€ER!. In fact, we note by 2.2(7), [F, 4.3.5]
and Fubini’s theorem that the set

E=R"n{y: (y, z)€D for £ almost all zER'}

satisfies L*(R"~ E)=0, hence a€Clos E. Letting ) denote the standard ! form on R/,
we use [F, 4.3.2(1)], 4.3, 4.2, and Lebesgue’s bounded convergence theorem to see that
for each y €D~ ""{(M)
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f K8, 1,85, 9, 2> () ALz =8, f,a> [(g# Q) Ayl = Jim ¢8.f9> [(g* Q) Ayl

= lim |8, 1,9>,9,2 (p)dLlz= Eglyn_n) f<S, B9 (y,2)) (p)dLlz

Esy—a

- f lim ¢S, /(g (4, 2)> (p) dC'z = f (8, 1E0g (@,2)> (p) dCtz.

E3y—a

The observation now follows, thanks to the arbitrary nature of v and 2.2(7).
Consequently if (a, b) €(4 xRY) N O, then

beClos[R N {z: (a, z) €D}],
and we again use 4.3 to conclude that

<<S7.f’a>ag:b>=(a lim b <<S>f’a>,g’z>

,2)eD,z

= lim  <8,fmg(a,z)>=<8,fQg(a, b))

(a, 2eD, 2>b
To prove the second conclusion we assume that (g, b)€(4 x B) N C, note that the map
RR* xR >R xR™, h(y, z) = (2, y) for (y, z) ER"* xR}

has determinant (—1)", recall [F, 4.3.2(6)], and make two applications of the first con-
clusion to deduce that

(8, 1, a>, 9,5y = (8, g, (@, b)) = (—1)" (8, g[Tf, (b, a)> = (=)™ ({8, ¢, ), f, @)
4.6. Ezxample. Consider the real-valued analytic function & on R2 given by
Mz, y, z) = a2 +y%2—y? for (z,y,z)ER?
and the two-dimensional analytic submanifold of R3
H=RN{(x,y, 2): bz, y,z) =0, y==0}.

The current S=08(E3| {(x, y, 2): k(z, y, 2) <0} is a two-dimensional analytic chain in R®

with 88 =0 and
spt S=Clos H=HU{(0,0,2): —1<z<1}.

Defining the two maps
FRE-R, :R3>R, fz,y,2)=2 glx,y,2)=y

for {z, y, z) ER3, we recall 3.5(2) and compute
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(8, 1, 0) = —oCE3_{(x, y, %) bz, y, 2) <0}, f, 0> = —O[<E? {, 0>L_{(x, ¥, 2): h(, y, 2) <O}]
= —o[(8, xE2)| _{(0,y,2): ~1<z<1}]

=8, xE1 x 8, —8,xE! x5_,,

8, 9,00 = —&EB2_{(=z, y, 2): M=, y, 2) <0}, g, 0> = —O[<E3, g, O>_{(x, y, 2): h(x, y, 2) <O}]
= —g[(E1x 8, xEY)|_{(0, 0, 2): ~1<z<1}]= —o[0]=0.

Hence
<<S: f: O>: g, 0> =8(0,0,1) _8(0.0,—1) 4:0 = <<S’ g’ 0>: f: O>
even though
dim (f-1{0} N spt 8) = dim (9-1{0} N spt 8) =1,

dim (g~1{0} Nspt (8, £, 0>) =0, dim (f~1{0} Nspt S, g,0>) = —1.

4.7, THEOREM. If L and M are ! and m dimensional separable analytic manifolds,
h: L x M—~R" is an analytic map,

hy: M —R"™, h,(x) = h(w, ) for w€L and x€M,
T is a t dimensional analytic chain in M with t=>n,
dim [(L xspt TYNA2{0}]<I+t—n,
dim [(L xspt 8T)NA1{0}] <I+t—n—1,
W =Ln {w: dim (k' {0} Nspt T') <t—n and dim (h3' {0} Nspt 0T) <t —n—1},
then the function mapping

weW onto (T,h,,0>€F (M)
18 CONLINUOUS.

Proof. We assume L is an open subset of R, let S=FE'|L, and let

AiLxM-—>L, u:LxM—-M

be the projections. Also let g,: M—~L x M be given by o,(x)=(w, z) so that hog,=h,
and poo,=1,. For each w€ W we note that ¢, is proper and use 4.5 and 4.4 to compute

S xT, A0k, (w,0)) =8 T, 2, wy, b, 0) =84 X T,h,0> =o,uT, b, 0> =0,4{T, b, 0>,
hence iy {8 < T, ATk, (w, 0)> =T, hy, 0.

From 4.3 we see that the function mapping w€ W to (S x T, A[-1h, (w, 0)> is continuous.
For any open set V having compact closure in L we observe that the map u|(Clos V) x M
is proper; hence, by 3.(2), ug <Sx T, A[Jh, (-, 0)> is continuous on VN W.
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4.8. Letting k be a nonnegative integer, we apply 4.7 to give precise form to the idea
that the variety of common zeros of a system of real-valued polynomials in several variables of
degrees not exceeding k depends continuously on the coefficients of the polynomials (Compare
(F, 4.3.12]).

Let m>n be positive integers and let L be the collection of all polynomial maps w
from R™ to R” for which degree w <k ([F, 1.10.4]). L is a real vector space of dimension

l=n§ (i+m—1).

=0\ m—1
Also let W =L {w: dim w-{0} <m—n}.
TarEoREM. The function mapping

wEW onto (E™ w,0>€FC, (R™)
18 continuous.

Proof. Defining the analytic map
h: LxR™—R", h(w, x) = w(x) for w€L and z€R™
we observe that im Dh(w, ) =R" for all w€L and x€R™
because h(w +c(y), ) = h{w, z)+y for yER"
where ¢(y) is the constant function mapping R™ onto {y}, hence
{(e(y), 0), Dh(w, x)> =y for yeR™

Thus by [F, 3.1.18] the set A~1{0} is a I+ m —n dimensional analytic submanifold of R,
and we may apply 4.7 with M =R", t=m, and T=E".

4.9. Remark. The notions of analytic block, §(M), real analytic dimension, slicing,
and apalytic chain do not depend on the Riemannian metric. Thus the statements of
Propositions (A,) (B;), Corollary 2.9(1), the Slicing theorem with its corollaries, and Theorem
4.7 do not depend on the existence of a particular Riemannian metric. On the other hand,
different Riemannian metrics are likely to give rise to different bounds, J* in 2.9(2) and
Iin 4.2.

5. Intersections of analytic chains

In this section we assume that M and N are separable m and » dimensional orientable

analytic Riemannian manifolds with orienting m and n vectorfields &, and &y and let

M=HU"NE and H=H'A&y



SLICING AND INTERSECTION THEORY 113

be the corresponding orienting m and n cycles for M and N. We shall repeatedly use the

functions i
f: R"xBR™ > R™ f:R*xR"—~R",

g:R">R"xR", y>M->MxM, yp:N->N % N,
uMxN—->M, v: MxN->N, pyMxM~->M, py:MxM—>M
given by [(uy, ug) =u; — Uy, fo, ve) =vy—v5, glug) =(uy, uy), y(@)=(2,2), PH =, ¥)
wlx, y) =z, v(@, ¥)=y, p(w, x)=w, px(w,x)=2x for (uy,u,) ER"xR", (v, v,) ER"xR",
u ER™, x€M, yEN, (v, y) EM x N, and (w, z)EM x M.
Whenever Q€ J5°(M), RE F°°(M), @ x R€ 5. (M x M), and g+r=>m we shall say
that the intersection of @ and R ewists provided there exists a current QN R€ D,y _n(M)

characterized by the condition:

(1) If U is an open subset of M and h is an orientation-preserving analytic isomorphism

from U onto some open subset of R™, then
@IURLQN B U= (=1)""2" L@ x RY|(U x U), fo(h xh), 0.

(Compare [F, 4.3.20]). ¥or an s dimensional analytic chain 8 in M and a ¢ dimensional ana-

lytic chain 7' in M we shall say that

{8, T} intersect suitably
if and only if
s+t=m, dim(spt SNsptT)<s+t—m,

dim [(spt @S Nspt T) U (spt S Nspt dT)] <s-+t—m—1.
In 5.1-5.4 we will prove that

(2) if {8, T} intersect suitably, then the intersection of S and T exists and SNT is an

s+t —m dimenstonal analytic chain in M.

Moreover in 5.8-5.11 we prove various intersection formulae and discuss how these pro-

perties characterize the fesulting real analytic intersection theory.

5.1. Lemma. If b: M—R* and c¢: N>R} are locally Lipschitzian maps, Q€ F° (M),
REJ’}‘OQ (N): ?IGRk> ZERI; <Q, b: y> € ‘D(I—k(M)’ and <R’ c, Z> ED ——I(N): then

@by xB=<@xE,boy,y,
Qx{(R,c,z>=(—1)"Q xR, cov, 2>.

Proof. Whenever i is an integer with ¢q—k+r>i>0, € D **""{(M), and S€ D)
we deduce that

8 — 722901 Acta mathematica 129. Imprimé le 5 Juin 1972
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(bo)4l(Q x R)L_(ufans#B)]= 0 in case i=r,
=(—1)*by(Q_a)- R(B) in case i=r.

Noting that these currents are representable by integration according to [F, 4.1.18] and
recalling [F, 4.3.1], we see that if w is a bounded Baire form of degree k& on R¥, then

[{(@ x R)L(boy)# ] (,u#cx/\ v#ﬂ) = in case 737,
, = (Q_b* w)(«)R(B) in case =r.
Therefore by [F, 4.1.8]
@x B)_(bop) v = (@ b w) x R,
and the first conclusion follows. The proof of the second is similar.
5.2, LEmMA. If b, and b, are analytic maps of M inio R™ satisfying the conditions
F=0b71{0}=065{0}, dim F <m —n, <M, b,,0> = <M, b,,0>

and if R is an r dimensional analytic chain in M with r >n,

dim (FNspt B)<r—n, dim (FNspt OR) <r—n—1,

then (R, by, 05 = (R, by, 0>.

Proof. By 3.5(3) (4) it suffices to consider the special case when M is an open subset
of R™ and M=E™| M. In this case we infer from [F, 4.3.20] that

R=ROM=(—1)™"u (R x M, j|(M x M), 05,
note that the restriction of u, to the set
spt<R x M, f| (M x M), 0><y(M)
is a proper map, and then refer to 4.4, 4.5, and 5.1 to see that for t€{l, 2}

(1" "R, by, 05 = (ugy KB x M, f| (M x M), 03, b, 0)
= piay (B x M, f](M x M), 03, bou,, 0>
= (—1)™uyy (B x M, biops, O, f| (M x M), 0>
= (=1 ™ ueu (B x (M, b, 0), f| (M x M), 0.

5.3. LEMmMa. If h: U—~R™ is an analytic coordinate system (as on 5.(1)), then

M xM)|(U x U), fo(h xh), 0y = () Ne(M| V).
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Proof. We let V=im h, @Q=M|U, R=E™|V, note that hyQ =R because h preserves

orientation, and consider the commutative diagram:

Uxv—txt p oy HIXV) pn
[NU lglV
U h v

Observing that A x & is a proper map, we use 4.4 and [F, 4.3.20] (which implies E" N E™=
E”, (E" xE™, f, 0> =g4E"™) to compute

(b x 2)4<@ xQ, fo(h x k), 0> = {(h x h)x(@ xQ), f|(V > V), 0>
=(BxR, f|[(VxV),00=(g|V)pR=(g| V)phsQ = (h x k) (y| U)Q.
Since (b x h)y is univalent, <@ x @, fo(h x k), 0> =(y| U)4Q.

5.4. Returning to the proof of 5.(2) we assume that for each ¢€{1, 2}

U, is an open subset of M and h; is an orientation-preserving analytic isomorphism
from U; onto some open subset of R™,

and make the abbreviations

U*=U,N U, b= h,] U* for t€{1, 2}.
‘We infer from 5.3 that

(M xM|(U* x U*), fo (hT x hT), 05> = (y|U*)4(M|U*)
=M xM)|(U* = U*), fo (h x h3), 0.
Then observing that y maps spt S Nspt 7' and (spt &S nspt 7") U (spt S N spt 87) isomor-
phically onto spt(S x T') and spt &(8S x T') respectively and that
[fo (BT x B1)1 {0} = p(U*) =[fo (b7 x h3)]~* {0}

has real analytic dimension m, we apply 5.2 with M, M, m, b, n, F, and R replaced by
U* x U*, (M x M| (U* x U*), 2m, fo (ki xhY), m, y(U*), and S x T to conclude that
S xT)|[(Uyx Uy), folhy xby), 0>[(T* x U*) = (8 x T)|(U* x U*), fo(hi x kT), 0)

=8 xT)|(U* x U*), fo(h3 x h3), 0)

= (8% T)|(Uyx Uy), folhy x hy), 05| (U* x U*).

Thus SN 7T is, indeed, well-defined by conditions 5.(1). Moreover SN 7T is an s+t—m
dimensional analytic chain in M because the real analytic dimensions of
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spt (SR:T)<=spt SNspt 77 and spte(Sn T)<=(spt oS n T') U (spt S N spt 1)

do not exceed s+t—m and s+t —m—1 respectively and because, by condition 5.(1), the
current (SN 7)| U is the [, | (U x U)]y image of a locally integral flat slice, hence an ele-
ment of F:3% (U).

b.5, LeMMA. If @, R are g, r dimensional analytic chains in M, {Q, R} intersect
sustably, b: M —R" is an analytic map, ¢-+r=m+n, yER", and

dim (b {y} Nspt R)<r—=n, dim(b{y}NsptdR)<r-n—1,
dim (b~ {y} Nspt Q N spt B) <q-+r—m—n,
dim (b—*{y} Nspté@ Nspt R) <g+r—-m—n—1,
dim (0~ {y} Nspt QNspt OR) <g+r—m—n—1,
then QNLRB, b, y>=<LQN R, b,y>.

Proof. We may assume M is an open subset of R™ and M =E™| M. Then we use 5.(1),
5.1, 45, and 4.4 to compute

QN (R, b,y = (=1 ™" Moy (@ x <R, b, v, f{(M x M), 0)
= (~1)m0rmny L (Q x R, boug, y), f|(M x M), 0
= (=)™ 7y (K@ x R, | (M x M), O, bops, ¥>
= (= 1) gy (@ x R, f{(M x M), 05, b, y> =<@N R, b, ).

5.6. Noting that the definition of the intersection chain depends on slicing, we observe
how, eonversély, the slice is expressible in terms of intersection by using, for any analytic

map b of M into R"; the commutative diagram

M x R"
/ XA

where ¢ and - are the projections, and proving the lemma:

Lemma, If R is an r dimensional analytic chain in M, r=n, yER", and
dim (b-1{y} Nspt R) <r—mn, dim (G1{y}NsptoR)<r—n—1,

then (R, ByyS = (— 1Y% iy ([1,,6)4 R1 0 [N x 8,]).
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Proof. Observing that §,=<E", 1ge, >, we deduce from 5.1, 5.5, [F, 4.3.20], and 4.4 that

(= 1™ e ([(Ly0)4 B 0 [M x §,) = e ([(LyT0) g B 0 KM < B, 2, 9))
= 13 ((1y@0) BRI N [M X B, %, ) = ¢ {(Iy1b 4 B, %, 9> = <B,b,9).

5.7. LEMMA. Suppose that M and N are open subsets of R™ and R, M =E"| M, N=E"|N.
If L is an analytic chain in M x N and

o Mx(MUxN)>MxM, ©: Mx(MxN)y-MxN,
& (MxN)xN—>MxN, % (MxN)xN->NxN

are given by o(w, (z, y))=(w, ), T(w, (,¥)=(z, y), 6((=,y), 2)=(z,y), T((*,¥),2)=(¥,2)
whenever wEM, (x, y)EM x N, and z€N, then

(M x L,fo 5,00 =L=(~1)\4*""5,(L x N,fo %,0).
Proof. We consider the commutative diagram

P

Mx MM x(MxN)

17/
v

N

let Q denote the standard m form on R™, and define, for each ¢ >0, the form

Q, =[QL_B(O, o)1/ [a(m}e™].
If & is an integer with 0<k<I, o€ D" *(M), and B € D*(N) we may use [F, 4.3.1, 4.3.2(7),
4.3.20] to compute

MxN

(M x L,fo 0,0> (ut o A v B)
=(Mx L,fo0,0> (Fx Aytp)
=lim (M x L) [(f 0 0#Qq A ZHoc Ao ]
g—)

= (=1 lim [(M x D)L_n*B1[(fo 0 Qg A LHa)

= (= 1y Lim (7 x (LL_w#B)IL_[f o 07 Q0) (¢ )

= (=170 Hm (40 )y ([M x (LLY*BIL [0 0T 2,) (20

= (= 1) lim oy (M x g (LL* BT > )T Q) ()

= (=170 pgy S X g (L1_v* B), | (M x M), 0 (o)
= (=" P uy (LL_v*B) (@) = L{p# « A v# B).
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Recalling from. [F, 4.1.3] that the differential forms y#oc/\v#ﬂ corresponding to k€
{0, 1, .., 1}, € D" *(M), and BE€ D*(N) generate a dense vectorsubspace of D'(M x N),

we conclude that
T4 (M xL, foo, 0> =L.

The proof of the second equation is similar.

5.8. INTERSECTION FORMULAE. If R, S, T are r, s, t dimenstonal analytic chains
in M and if P, Q are p, q dimensional analytic chains in N, then the following twelve state-
ments hold:

If {8, T} intersect suitably, then

(0) 8N T is an s+t—m dimensional analytic chain in M,

(1) 80 (GT)=5(S N T) for any integer j,

(2) (anticommutativity) SN T =(~1)"-m-dpn g,

(3) (restriction) (SN T)|U=(S|U)N (T} U) for every open subset U of M,

(4) (tsomorphic invariance) ¢y(SNT)=(sS)N (psT), for every orientation-preserving
analytic isomorphism ¢ of M onto an oriented analytic manifold, and

(5) (reduction to the diagonal)
ye(SNT)=(—1)"" 948 x T) nyx M.

(8) (projection formulae) Suppose L is an analytic chain in M x N. If u|spt L is proper
and {L, B x N} intersect suitably, then the intersection of uyL and R exists and

(ugD) 0 R=py[L N (B x W€D ().

If v|spt L is proper and {M xQ, L} intersect suitably, then the intersection of Q and vy

exists and
QN (vpL)=vu[(M x Q) N L1ELT (4 (D).

(7) (associativity) If {R, S} intersect suitably, {8, T'} intersect suitably, and
dim (spt R Nspt SNspt T') <r+s+t—2m,
dim [(spt 2R Nspt SN spt‘ T) U (spt R nspt o8 Nspt T) U (spt R N spt S Nspt &T)]
<r+s+t—2m—1,
then (RNS)YNT=Rn(SnT)
By MaT=T=TnmMm.
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(9) (boundary formula) If {8, T} intersect suitably and s-+t>m, then

ASNT) ={(—=1)"HoYnT-+8N(@T) in cases>0<t¢,
=(—1™es)nT in case s > 0 ={,
=8N T in case 3 =0 <.

(10) (Cartesian product formula) If {R, S} intersect suitably and {P, Q} intersect suit-

ably, then
(BNSYX(PNQ)={—1)" "R «P)N(SxQ).

(11) (inverse mapping formula) Let b: M- N be an analytic mapping and consider the
commutative diagram

M x N

If Q satisfies the two conditions
dim b(spt Q) <g+m—n, dimbdsptaQ)<gtm—n—1,

then b Q=uu[(M =x Q) N (1, 1b)sM] is @ g+m—n dimensional analytic chain in M; more-
over if b|spt R is proper and

dim [b—'(spt @) Nspt R} <gq+r—n,

dim ([b~Y(spt Q) N spt ORIV [b~(spt 2Q) Nspt R)) <g-+r—n—1,
then the intersection of @ and byR exists and

Q0 bR =b,[(B*Q) n RIELG, (V).

Proof of (0) (1) (3) (4). (0) is proven in 5.4, (1) (3) follow from the definition 5.(1),
and (4) follows from 5.(1), 3.5(4).

Proof of (9). (9) follows from 5.(1), 3.5(2), and the remark ([F, 4.1.8]) that if s +¢>0, then

ASxT)=(@E8) x T'+{—~1y’Sx (@T) in case s >0 <{,
=@8)xT in case s > 0 ={,

=8 x@T) in case s =0 <{.
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Proof of (6). First we consider the special case
M is an open subset of R™, M =E"| M,
N is an open subset of R", 1 =E"|N.
Letting &, T be as in 5.7, we define the maps
F:(MxN)x (M xN)>R"xR*, o (MxNyx(MxN)-~M,
B (M xN)xN]IxM—~(MxN)x(MxN),

B [(MxN)xNIxM->MxM, By[(MxN)xN]xM->NxN

by F((x’ y): (w, z)) =(x—?/7 'w—z)’ OC((IL', ?/), (w’ Z)) =z,
ﬂ([(x: y)’ Z], w) =((.'E, y), (w7 Z)), ﬁM([(x’ ?/)» Z], w) =(x’ 1,()),
Bu(l(x, ), 2], w)=(y, 2) for (x,y)€M x N, wEM, and zEN.

Observing that § and

Bul ([(spt L) x N]x M) 0 (fofiy) {0}
are proper maps and that

Foff = (fofu)[M(foBn),  xof =p10fu, Pu=(1od)x Ly,
we infer from 5.(1), [F, 4.1.8], 4.4, 4.5, 5.1, and 5.7 that
(= 1)mEn=DeEm L0 (R x 0]
= aydLx (R x ), F, (0, 0)>
={—1)"oy{Bul(L x M) x R, F, (0,0)>
= (= 1™ (g 0 Bur)y<(L x M) x R, (fo Br)(f o B, (0, 0))
= (= 1)™*™ (4 0 Bi)y<{(L x M) X R, fo By, 03, f © By, O
— (= 1) 1y Breg (L < T) x R, fo By, 0, f| (M x M), 0)
= (= 1)y [(o )<L x N, fo 7,001 x B, f| (M x M), 0)

— ( _ 1)(r+m+l+n)n‘u1#<(lu#L) % R, f[ (M X M), 0> — ( _ 1)(r+m+l+n)n+(m—l)r(‘u#L) nR.

To prove the general case we assume h: U—~R™ is an analytic coordinate system for

M (as in 5.(1)) and verify the formula
(— ™" ([(uy L) x BY| (UscT), fo (hx ),05 = (4] U}y (g [ 0 (B x N)|T)ET

loc
l+r—m

(UxU).

To do this it suffices to assume that Clos U is compact, hence »[u—2(Clos U) Nspt L] is

compact. Letting v be as in 4.4 we choose h,, U,, V4, ..., k;, U;, ¥, 50 that
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yu i (Clos U)Nspt L=<V, U ..UV, <N,

and for each j€{l, ..., J}, ¥,<U,=N and k; is an orientation-preserving analytic isomor-
phism from U; onto U(0, 2)<R" with A;(V,)="TU(0, 1). For each j€{l, ..., J} we choose r;
so that 1 <r;<2,

dim [(U x U,;) N (vohov)~t{r;} Nspt L] <11,

dim (U =x U) N (wohon)y 1 {r} Aput(spt R)Nspt L] <l+r—m—1,
and define the current

j-1
L= [Ll(U>< ML (U x[U;n {y: |hi(y)l<ri}~il=JlUi N {?/5 |hi(y)‘<ri}]):

hence L; is an I dimensional analytic chain in U x N, spt L,c U x U, {L,, (R|U)x N}
intersect suitably, and L|(U x N)=L, + ... + L; by [F, 4.1.20].
Using for each j€{1, ..., J} the commutative diagram

h .
UxU, b Uy < U0,2)
pl(Ux U, projection
U h (U

(3), 4.4, and the special case considered before, we find that
{([u (U x NYlgL) x (R|U), fo (b x b), 0>
= (= 1) |U)ylp| (U x N)g(L; 0 [(BIU) x NN ELS, (U x T),
and the desired formula follows by linearity.

From this formula we conclude first that the intersection of ﬂ#L and R exists and

second that
(gL 0 R= ey [L 01 (R % ) €L, ().

The proof of the second formula is similar.

Proof of (2) (5) (7) (8) (10). By (3) (4) we may assume without loss of generality that
M and N are open subsets of R™ and R", Ml=E™| M, and 7’l=E”|N.

For statements (2) and (8) it suffices to argue as in [F, 4.3.20] with f, g replaced by
(M x M), g| M.
To prove (5) we use 5.(1), 5.3, 5.5, and (8) to compute
(8 T) NygM = (S x T) 0 I, F| (M x L), 0> = (S x T) 0 (M x 1), f|(M x M), 0
=8 x T, f{(M x M), 0> =(—1)"48nT).

9 — 722901 Acta mathematica 129. Imprimé le 5 Juin 1972
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To prove (10) we consider the commutative diagram

my (M x M)x (N % N) -
MxM/ ]T \NxN

jf[(MxM) (M x N)x (M x N) jf[(NxN)

S

where Y((w, %), (%, 2))=((w, z), (y, 2)) and 7, 7y are the projections, and then conclude
from 5.(1), 5.1, 4.5, and 4.4 that

(= Lym-nstm-parcss—mn o, 5, [(R 0 S) x (P 0 Q)]
= (=17 Rx 8, f{(M x M), 00 x <P xQ, (N xXN),0)
= (B8, (M), 0) x (PxQ), fory,0)
= (B *8) x (P x Q), fo 7y, 0, fo ry, 0
= (=14 LB x P) x (S x Q)), (fo m)T(f 0 ), (0,0))
=(=1)*Yu{(Bx P)yx (8§x @), F, (0,0))
= (= 1)PrmEnTreRCEO () H) (R x P) N (8 x @)].

To prove (7) we use 5.(1), (2), (6), 5.5, and (10) to deduce that
(=" DERN(SNT)

=R 0 pp<Sx T, {|(M x M), 0>

= (=)™ "y (R x M) n S % T, f|(M x M), 0)]

=(=1)""" gy (R M) 0 (S x T),f|(M x M), 0>

= (=)™ py (B0 S)x (M T), f{(M x M), 0>
= (=D u (BN 8) x T, f{(M x M),0y=(—L)m-ni+m=r=stmi(ga8)nT.

Proof of (11). The chain b7 is an analytic chain because b Q€IS . (M) and
spt (B#Q) = b7 (spt @), spt (6b%Q) =b™" (spt 2Q).
Using (6) and (8), we obtain
vu[(M x Q) N (L, b)4 R = @ N va[(1,00)4R1=Q N byR,
pa([(1,00)4 M1 0 [R x U] = (uy[(1,b)sM) N R=M N R=R.
Since spt ([(1,/[515)3 M1 n [R x M) is contained in
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b= (M xDN)n{(x, b(x)): €M}
and [(1),21b)ou]|b=1,, (bou)|b=v|b we infer from (7) and (6) that

(LyE3b)y R = (1, D)y (L D0) M 0 [R x M) = [(1,D0)y M 0 [R x 1],
Q NbyR=vu[(M x Q) 0 ([(Ly )y M (1 [R x U])]

=byuy([(M x Q) N (L,Eb)yM] N [R x H])

=by (uy[(M x Q) N (1,00)3M] N R)=b4[(6*Q) N R].

5.9. Exzample. Choosing the oriented planes
R=§,xE'x B1e*(R%), 7T =E'x§,xEE*(RY)
and the analytic chain § from 4.6, we infer from 5.8(8) (9) (10) that
(ROS)NT =[RNOE3_{(x,y,2): bz, y,2)<0}10nT
= (O[S x EAxE)_{(0, 9, 2): 22 <1}])N T
= —0([(8, x E1 x Et) N (B! x §, x E1)]|_ {(0,0,2): 22<1})
= —o[([8, x BN} N (B x §o)] x ENY|_{(0, 0, 2): 22 < 1}]
=3[(8,x 8y x B {(0, 0, 2): 22 <1}]
=8(,0,0 = 810,0. -y ¥0 = —EN3(0)
= —RNO[(E*x 8, xE)_{(0,0,2):22<1}]=Rn(8n7T)
even though each of the four pairs

{R,S}, {8, T}, {RnS, T}, {R, SN T}
intersect suitably.

5.10. Assuming that 1€{2, 3, ...} and that for each ¢€{l, ..., I} T, is a ¢, dimensional
analytic chain in M, we are motivated by 4.5, 5.8(7), 5.9 to say that {T'y, ..., T';} éntersect
suitably if and only if

I I 1
>tz(I-1)m, dim (ﬂ spt Ti)S(Eti)—(I—l)m,
i=1 i=1 i=1
I I
dim U (spt T, N ... Nspt Ti s Nspt @7, Nspt Tyy N ... Nspt T < (2 t,) —(I-1)ym~1,
i=1 i=1

and in this case to define the I-fold tntersection of T, ..., T}, denoted

TN ..NTy
by the condition:

If U, h are as in 5.(1) and
F: ®™ ~@®™™, T M- M,
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Fluy, ..., w;)= (U — Uy, ..., %r_ —%;), ['(@) = (2, ..., %) for (u, ..., u;) EB™ and x€M, then

T O)sl(Ty0 ... 0 TH| U]
=(~1)(Ty % .. xTY(U x ... xU), Fo(hx ... xh), (0, ..., 0)>

I

i-1
where 6= 24 [(i——l)m— _th,].

152 =
From 4.5, 4.4 it then follows, for instance, that

Ty 0 Ty Ty =(Ty 0 Ty) 0 Ty
whenever {T;, T,, Ty} and {T';, T,} intersect suitably.

5.11. INTERSECTION AXIOMS. A real analytic intersection theory J is a rule which

assoctates with every triple (M, S, T') such that

there exists an m dimensional separable, orientable real analytic manifold M,
M is an orienting m cycle for M,

8 is an s dimensional analytic chain in M,

T is a t dimensional analytic chain in M, and

{8, T'} intersect suitably in M

an 8-+t —m dimensional analytic chain Iy (S, T) in M so that the following eight conditions
hold:
If M, M, S, T are as above, then

(1) InlS,3T) =3I (S, T) for every integer j,

(2) Im(S, T)=(~1)"=2" (T, 8),

(3) Im(8, T)|U = Imv(S|U, T|U) for every open subset U of M,

(4) dupIm(S, T)=Totm($4S, du T) for every analytic isomorphism ¢ of M onto an ana-
lytic manifold, and

(B) YaIm(S, T)= (=1 T (S x T, yy M) where y: M~ M x M is given by y(x) =
(x,x) for v€ M.

(6) If R, 8, T are r,s,t dimensional analytic chains in M such that {R, S}, {S, T}, and
{R, S, T} intersect suitably, then

jm[jm(R, S)’ T]=jm[R’ jm(S, ).

(7Y If N ¢s a separable, orientable real analytic manifold with orienting cycle N, L is an
analytic chain itn M x N, u: M x N— M is the projection, u|spt T is proper, uyL and R are
analytic chains in M, and {L, R x N} intersect suitably, then
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jm(H#L, R) =M#jmxn(L, RxMN).
(8) Jrs(B°, E’) =E® where E® is the orienting O cycle for R® = {0} defined by E°(y)=
¥(0) for every function y:R°—R.
TrroREM. There exists a unique real analytic intersection theory.

Proof. Existence has been proven in 5.8(0) (1) (2) (3) (4) (5) (6) (7) (8).

To show uniqueness we assume J is a real analytic intersection theory and M, M,

S, T are as above, we observe by (3) (1) (2)
spt T (S, T)< (spt S) Nspt T,

and then we prove the equation
by considering seven cases.

Case 1, 8=39, for some x€ M, T="M. Here SN T =3§, by 5.8(8), and
I (S, T) = ¢d, for some integer ¢
by the above observation and [F, 4.1.26]. To show that i equals one, we define the maps
é: M >R x M, d(w) = (0, w) for weM,
7y: RO x M - R, 714(0, w) = 0 for (0, w)ER* x M,
and use (4) (7) (8) to compute
(B = 7oy by (18,) = oy by Im (S, T) = 7oy o m (B x 8, B x M) = Tgo (B, B®) = E°.

Case 2, S=M, T=M. Here SN T=M. If U is a connected open subset of M ~spt

0 Jm(S, T), then
Iu(S, T)|U =jM|U for some integer §

by [F, 4.1.31]. Letting « € U we infer from (1) (3) (6) and Case 1 that j equals one by comput-
ing
jsxz jmlv[sx’ jm(S: T)lU] = jmlv[sz’ :]mlU(mlU: mlU)]

= Imiv[Imiv (8, M|T), MU= Tmy0 (8, M|U)=8,.
Consequently

dim spt [T (S, T) — ] < dim spt 8T (M, MY<m —1, Ty (8, T) — METFL® (M),
hence Jy (S, T)—M=0 by [F, 4.1.20].
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Case 3, M=R™ M=E"=T, S=(E", a,y> for some x€0*(m, m—s), yER"*. Here
SN T=8. By use of (1) (2) (4) we may replace M, M, S, T by R* xR™*, B xE"~°, E* x §,,
E* x E™*. For any connected open subsets ¥ and W of R® and R™"? with

(VxW)nspt 83y (S, T) =0
we infer from [F, 4.1.31] that
In(S, T)|(V x W) =EkS|(V x W) for some integer £,
we let y: V x W~V be the projection, and we compute from (3) (7) and Case 2 that

kESlV=”V# [Tm (S, T)[(V x W)]= 7tV#y(E‘IV)x(l<:"“‘|W> [(E’IV) x 8, (ESIV) X (Em—slw)]
=Tuepv (B°|V, B3 [V)=E*|V.

Hence spt[ Iy (S, T) —81<spt Iy (S, T), and Ju (S, T)=S8 by [F, 4.1.20].

Case 4, M=R" M=E", S=<E™ «,y>, T=<E" B,2> for some a€0%m, m—s),
yER™°, BEO*(m, m—t), zER™*. Here either a~1{y} N f~'{z} is empty, in which case

SNT=0=Jn(S,T)

by (3), or dim (oc—l{y} NB1{z})=s+i—m, in which case we may, by (1) (2) (4), replace
M, M, S, Tby RExR™ ¢, E:xE™ ¢, CEY, &, 0) x E™ ¢, Bt x §, for some ¢ €0*({, m —s). Then

80T =(=1)m-9"O(E ¢, 05 x 8,

by 5.8(10) (8). For connected open sets ¥ and W of Rt and R™* with (V x W) N spt 8 Im (S, T')
empty,
I (8, T |(V x W) =I{(<E, &, 05| V) x §] for some integer I.

To see that [ equals (—1)™ 2™ we compute, with the aid of (2) (3) (7) and Case 3, that

(= 1) =DLEE, 8, 0D |V = sy [T (T, S)|(V x W)]
=3E“V(Etl V: <Et’ &, O>,V) =jEt (Et’ <Et’ &, O>)|V= <Et’ & O>,V

Case 5, M is an open subset of R™, M =E™| M, s+t=m. Here we abbreviate X =
(spt S) N spt 7 and note by [F, 4.1.24] that there exist integers ¢,, f, for each z€X so that

SNT= Z izsz’ jm(S» T)= z 7.:51'
zeX reX

We fix 2€X and define the map
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e: R™ x R™ — R™, e(uy, uy) = u; +u, for (u,, u,) ER™ x R™,

Choosing p, ¢ so that
0 <p <} distance [{z}, (R"~M) U (X~ {z})],
0 <o <inf {distance (y[B(x, o)}, spt a[S x T']),
distance (y[B(z, o)~ U(z, )], spt [S x T1)}

and abbreviating ' =U(0, ¢) x U2z, 20)<R"™ x R™, we find that the set V =(f e)-i(U )is
a nonempty open subset of (M x M) ~spt &(8 x T) and that the map

FIV 0spt(S x T)
is proper. Moreover by {F, 4.3.2.(1)]
V(S x D) V]= (-D"""”éEmlU(O, o)

because {(SxT)|V,f|V,->(1) ,being a continuous, integer-valued function on U(0, )

has c¢onstant value
(8 x T)] V. {V,05(1)= (—1ym=9tg

Factoring f| V as m,0[(f[Je)| V] where ;: U-U(0, o) is the projection, we use Case 1 and
(1) (2) (3) (4) () to conclude that

(- 1)<m‘s)t@‘zso = JmjUe.0)[8g, ( — 1)(mv8)tizEm]U (0, )]
=Imive,o [(— 1) 245, E"U(0, 0), §]
=myJamxmio [({C1e)4(S x T)|U, (8, x ) |U]
= (Tmxm[(FED0)3 (8 X T, 8 x MUY = (F|V) 4 [T (8 x T, M) | V]
= (=12 V) [In (S, T)|[V]= (= 1)™ ¢4, 8,
Case 6, M 1is an open subset of R™, M =E"‘[M , §+t>m. Here we first observe that if

x€0*(m, s+t—m), yER", P=(E™, «, y>| M, {T, P} intersect suitably, and {S, 7, P}
intersect suitably, then by (5) (7) (6) (3), Case 5, and Case 4,

(=) I (8, )= (SN T NP =(~ 1", [T (8, T), P1—-[S N TN P)
=JInlpap Imsm(S X T, yu M), P1— (4 [(S x T) N yy M) O P
=,U1#(jmxm[:7mxm(s xT, V#m),P x MY =[(8 x T) N yyMIN [P x M)
=t (Tmxm [ X T, Tmsem (M, P x M1 =[S x T1N [(yM) 0 (P x T)])
= g (Tmxm[Sx T, (yg ) 0 (P x M)]— [S x T1 0 [(y4M) 0 (P x T)])
=p3(0)=0.
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For each A€A(m, s+t —m) both
{T, <E™ p;,z>| M} and {8, T, <E™, p;, 2>| M}
intersect suitably for £5**"™ almost all z€R***"™ hence by 5.5, 5.8(8)
CIn(S, TY—=8NT,p,| M, 2) =[In(S, T)=SNnTIN[CE™, p;, 2> | M] =0,
and we conclude from 4.1 that J, (S, TV'=8nT.

Case 7, general case. Here we apply Case 5, Case 6, and (3) (4).

6. Slicing positive holomorphic chains

We have studied the continuity of the real analytic slice (7', f, y> with respect to y
in 4.3 and with respect to f in 4.7. Continuity with respect to T, on the other hand, even
when the dimensions of spt 7' N f~1{y} and spt &7 N /' {y} do not become unusually large,
is in general false, as is shown by the example in 6.6. Affirmative results, however, may
be obtained in the analogous complex holomorphic case.

In this section we assume that M is a separable complex m dimensional complex
manifold. A current T'€ Ji¥ (M) is called a complex t dimensional holomorphic chain in M
if 87 =0 and if M can be covered by open sets U for which there exists a complex ¢ dimen-
sional holomorphic subvariety H of U with U nspt T'< H. It follows that T is a 2f dimen-
sional analytic chain in M. We will say that 7T is positive if and only if for || 7’| almost all
2€M the simple 2¢ vector T(x) is complex and positive ({F, 4.1.28, 1.6.6]). By [F, 4.2.29]
the support of a holomorphic chain in M is a holomorphic subset of M, because the closure
of any connected component of the set of regular points of a holomorphic set is also holo-
morphic ([N, p. 67]).

J. King has characterized in [K2] complex ¢ dimensional positive holomorphic chains
as those currents 7' € Ry¥ (M) for which 67 =0 and T(x) is complex and positive for || 7|
almost all x€M; he has also described complex holomorphic intersection theory and has
proven the complex analogue of the Slicing theorem of 4.3. Here we propose to prove a
more general statement (6.5) by exploiting the fact that in C™ such chains are area mini-
mazing currents ([F, 5.4.1, 5.4.19)).

6.1. LEMMA. Suppose UcCm, V<, WoC"xC" are open sets, V s connected,
Clos (U x V) is a compact subset of W, and q: U x V-V is the projection. If R is a positive

complex n dimensional holomorphic chain in W,
[(Bdry U) x Clos V] nspt R =,
and 8= R|(U x V), then there exists an integer k such that for all v€EV
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card (g1 {v} Nspt 8) <k, M<(8, q,v)> =k.

Moreover if Ry, for each €{1,2, ...}, is a positive complex n dimensional holomorphic chain
in W,

S;=R,|(U x V), and R,~ R in F5¢ (W) as j— oo,
then there exists an integer J such that for all j >

[(Bdry U)yx Clos V]Nspt B, =03,

card (g~1{v} Nspt 8;) <k, M{S,,q,v) =k for vEV.

Fuyrthermore for each v€V
{85, ¢, v>=>(8, ¢, v> as j>oco in {J,J+1, ..},

Proof. For every v€V, ¢1{v} Nspt § is a compact holomorphic subset of U x ¥V and
is hence finite ([N, p. 52]). Therefore 4.3 implies that the function {8, ¢,-> is F>°(U x V)

continuous on V,

For (u, v) € spt S we define the integer

Aw, v) = [<8, ¢, v L_{(v, v)}1(1),
and recall 3.6 to see that the inequality A(u, ) >0 may be verified

first, in case (u, v) is a regular point of spt §
because by [F, 1.6.6],
det [ Dg(u, v)| Tan (spt 8, (u, v))] >0,
then, in general by 3.6(4) (6).
It follows that M<S, q, ¢> ={8, ¢, ¥)(1) is a continuous, positive integer-valued function

on ¥V, hence has constant value k for some positive integer k; moreover by 3.6(2) (4)
card (g~ {v} Nspt 8) <k for v€V, ¢48 =kE®|V

where we have identified ¢* with R?".

Next we refer to [F, 5.4.19] to see that R, R, R,, ... are area minimizing currents and
apply [F, 5.4.2] with H=(Bdry U) xClos V to conclude that the set A={j: H Nspt R; =0}
is finite. For integers § >sup 4 there exist positive integers k; such that

M(S), g, v) =j; for v€V, g4 S, =k, E*|V;

moreover since ¢|spt S; is proper for j>sup 4 and
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q#S,%q#S as j —>oo in {sup A+1,sup 4+2, },

we may choose an integer J >sup 4 so that k;=Fk for all integers j=.J.

To complete the proof we fix v€V, ¢>0, abbreviate
F=Un{u: (u,v)€spt 8}, F;=0Un{u: (u,v)EsptS;},
choose for each € F an open convex neighborhood U, of u such that Clos U, <= U,
diam U, < inf {¢/k, } distance ({u}, F ~ {u})},
and then select a connected open neighborhood Y of v so that Clos Y=V and

K=(Clos U~ JU,)xClos Y

ueF

does not intersect spt S. Applying [F, 5.4.2] again, this time with H=K, we choose an
integer J* >J such that for j =J* and u € F

K0spt 8;=0, g4[8;L (Unx Y)]=gs[SL(Uyx ¥)] =Alu, o) (E*L_Y),

hence [{S;, ¢, ¥>|_(U, x Y)](1)=A(u, v). For each j>J* and w€F; we choose that u€F
for which w€ U, and define the current

Q10 =S5, ¢, L {(w, v)}) D (%, v), (w, v)] €L(T x V)

to conclude that

M(2 @.,)< 2 Alu,v) diam U, <[ % Afu,w)) eflk=e,
weF, ueF u

a( Z Qi.w) = Z ZnU (<Sj: q, v)(_{(w, U)}) (1) [s(w v) 8(u.v)]

weFj ueF weFi

=8, ¢, 0>~ ugFA(u: ) 8w,y =483 ¢, 0> — <8, ¢, v>.

6.2, Notations. Let U(m) denote the unitary group of all € linear isometries of (™
and u(m) denote the associated Haar measure. We shall use the usual € base

€1y Eg5 iy Epy
of €” given by ¢, =(1,0, ..., 0), &=(0, 1,0, ..., 0), ..., £,=(0, ..., 0, 1) and the dual C base
0y Oy oeey Ol

of A (C™, C). Whenever 2m >1>0 are integers, the products
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O = Cuy A oo A Oy A By A e ABygy

corresponding to all k€{0,1,...,1}, u€A(m, k), and vE€A(m,l—k) form a R base for
A'(C™, C). In case s€ {1, 2, ..., m} and A€A(m, s) we also define

e=&m N i8;_(1) Ao Ngym N is(l)se A 4, C™,
EL7 M Cr— Cs’ 5 (wb sees wm) = (wl(l)» LX) w}.(s)) for (w1> san ’wm) ecn.

6.3. LeMma. If D is a complex s dimensional holomorphic subset of some open subset
of C™ and 0€ D, the for u(m) almost all g €U(m) there exists an open ball B about 0 in C™ such
that

BN (1;09)71{0} N D = {0}
whenever A€EA(m, s).
Proof. (Compare [F, 3.2.48]). Let
S=C"N{(wy, ..., Wn): wy By + ... +w, @, =1},
fix a point ¢€8, and consider the map

®: Uim) = 8, D(g) =g(¢) for g€U(m).

Recalling {F, 3.2.47] one readily finds a neighborhood W of ¢ in § along with real analytic

isomorphisms

O [g(W)]~g(W) x D-1{c} {for all g€U(m).
Consequently, setting y=dim U(m)—2m+1,

X=~07' 80 Tan (D,0)], Y=07'n U m*{0)]
€A(m, s)

and noting that dim [Tan (D, 0) 0 81<2s5—1 by [F, 3.4.11], we infer
dim X <2s—1+p, dim ¥ <2m—2s—1+pu,
hence dim (X x ¥) <2m—2+2p.

Using the map
¥: X xY-Umm), ¥(z,y) =yoxfor (v, y) EX x ¥,

we see that, whenever g €U(m),

¥Hgy={(z,g02):x€D7[S N Tan (D,0)ng™* (lEk(Jm s)ﬂil{o})]}
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and apply [F, 2.10.11, 2.7.7] to conclude that for u(m) almost all g €U(m)
dim W-1{g} < (2m—2+2u)—(u+2m—1) =p—1,

hence $ N Tan (D,0) N g”l(/1 U =i {0})=2
eA(m, 8)

because dim ®@-1{a} =y whenever a€8. Reference to [F, 3.1.21] completes the proof.

6.4. LeMmma. If W is an open subset of C™, s is a positive integer, S is a complex 8
dimensional holomorphic chain in W, and v € D?** (W), then

Swy= > |8, mlW, 2> (es p) dL¥z.

AeA(m,s)

Proof. Recalling [F, 1.6.6], we observe that if 6€A,,C™ is complex, u€A(m, k), and
vEA(m, 2s—k), then

{o0,a,,>=0 unlessk=sand u=y.

Noting that for ||S|| almost all €W the simple 2s vector S(z) is complex and letting Q
be the standard 2s form on €* =R?°, we infer from [F, 4.1.6, 4.3.2(1)] that

Sp)=8 )<em«p>A<pnlW)#Q]=S[MZm N Cen > A (| WHFQ]

neA(2m,2s

= > [SL(m|W)¥Q]<es v =“A%" o f<S, | W, 2> (e, ) dL% 2.

AeA(m, s)

6.5. THEOREM. If f: M~ C" is holomorphic, ¢ > n, and T is the set of all positive com-

plex t dimensional holomorphic chains T in M for which
dim (/~1{0} Nspt T') <2t —2n,

then the function on T which sends
TtoT,f, 0>

loc loc

is continuous with respect to the topologies of F5¥ (M) and J5i on(M).
Proof. By 3.5(3) (4) and 3.2(1) we may assume that M is an open subset of €™
Suppose that Ty, Ty, T, ... are elements of J and that
T,~T, in F5°(M) as j— oo.

To show that (T, f, 0> approaches (T, f, 0> as j approaches oo, it suffices by 3.4 and
3.2(1) to prove the following local result:
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For every point x € M there exist an open neighborhood
U of x in M and o positive number I

satisfying the two conditions:

(1) M(T,|U, {lU,05<1 for j€{0,1,...}.
(2) For each € D* 2" (U)

(T\U, U, 05 (9) > (To|U, 1]U, 0> () as j—> oo.
This we prove by considering four cases.

Case 1, f(z)=+0. Here we take U= M ~ f~'{0}, hence {T,|U,{|U, f| U, 0) =0 for every
j€{0,1,...}.

Case 2, x¢sptT,. Here we take any neighborhood U of x such that Clos U is a
compact subset of M ~spt T, and apply [F,5.4.2] with H=Clos U to infer that

A={j:(Clos U) nspt T,=0}
is finite, hence |0, 11U, 00 =<T,|U, {|]U,0>=0
for j >sup 4.

Case 3, x€f {0} N spt Ty and t=n. Here we choose first, an open neighborhood U

of x with compact closure in M and
(Bdry U)n {0} nspt Ty=0,

then, an open ball ¥ about 0 in €* of radius less than

distance [(Bdry U) x {0}, (1,[51f) (spt T4)),
hence [(Bdry U) x (Clos V)]0 (1,,2f)(spt T) =2.
Letting p: Ux VU, q: U x V=V be the projections and defining the holomorphic chains

S, = (@M TAU V) for je{o,1,..,

we infer statements (1) and (2) from 6.1, 3.(2), and the equation

<T5|U, f|U, 00 =pu<8;,4,0> for j€{0,1,..}
which follows from 4.4.

Case 4, x€f~1{0} Nspt Ty and t>n. Here we assume without loss of generality that
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x=0€C", and we apply 6.3 with D=f-1{0} Nspt T, s=t—n to choose g€E€U(m)
and an open ball B about 0 in M so that

B0 [fE)(m,09)]{(0, 0)} nspt Ty = {0}
whenever A€A(m, ¢ —n). In order to apply 6.4 and 6.1 we choose for each A€EA(m, t —n)
the map A*€A(m, m —t+n) for which im 2*={1, ..., m} ~im 4 and define the two maps.
€ x O grmten o (O € m) s O

so that ¢,(x, y) = (7 (), (¥, 7(x))), pr0ds(z, y) ==, for (z, y)EC™"xC* and consider the
holomorphic chains
RJ.1=(¢Z°[(9]M)B,ﬂ)#T1 fOI'je{O, 1, "'}'
Noting that
[0+ (B) x {(0, 0)}1nspt By, = {(0, (0, 0))},
we choose open neighborhoods U, of 0 in €"**", ¥, of (0, 0) in C" x C*-" so that
Clos (U, x V)= é,(BxC"), [(Bdry U;)x(Clos V;)]nspt R, ; =0,

we let p;: Uy x V~U,, q;0 Uy x V,;~V, be the projections, and we apply 6.1 with R,
R,;, U, V, q replaced by Ry ;, R, ;, U, V3, ¢, to find integers I;, J, such that for every

'I)E-V;b
MR (U x Vo) g vy < I

whenever j€{J,, J;+1, ...} and for every € D*(U, x V})
CBy 2| (Uax V3, g2 0D(9) > <{Bo 2| (Uax V), 02, 0 ()
as j—>oo in {J, J3+1, ..}

Letting I= > L7 {[m(B)],

AeA(m, t—n)

U be an open neighborhood of 0 in €™, and ¥ be an open neighborhood of 0 in €* such that
Y,=¢(Ux V)< U, xV, for every A€A(m, t —n), we readily obtain statements (1) and (2)
from Lebesgue’s bounded convergence theorem and the equation

{0, 11U, 05 (v) = (@|U)4<T, U, /iU, 03 [(g|UY# 4]
=<g|0)u(T,|U), fo g |g(T), 05 [(g]|U)* 4]

= 2 f<(9|U)#(TJ|U), [(fog YD md|g(U), (0, 2)) <, (9| U)o AL 22

AeA(m,t—n)
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= > ) | Y2)p (R 2| Y 2), [(f o g T mal|g(D), (0, 2)) e, (9|UYF 1 yp) dL¥ 272

AeA(m,t—n

= @I TCR T 0] T, 0,2)) <o (g|U#F 1y dC2n,
€ m,t—n

for j€{0, 1, ...} and y€ D*~*"(U) which follows from 4.4, 4.5, and 6.4 applied with W=
g(U), s=t—n, 8=g| U)(T;| U), fog~2|g(U), 0>, This completes the proof.

6.6. Example. The real analytic analogue of 6.5 is false. In fact, lot S, f, g be as in 4.6
and for each 0=+z€R let

Q: = (B1x 8 xB1)|_{(z, &, 2): a®e2+22<1}.
Then by 3.5(2)
(8,9, =00, M@Q)=m|e|,

<<S: g, 8>: f: 0> =8(0,1»:.1) - 8(0.5.—1):
hence

11_?%' <<S1 g, 8>, .f’ O> = 8(0,0.1) - 8(0.0. -1) +0= <0’ f’ 0> = <£1_1)1?(l) <S, g, £>r f’ O>y

even though {8, ¢, ¥y> =0 and

dim ({0} N spt<S, ¢, y>) <O
for all y€R.
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