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w 11. Introduction 

This paper  may  be regarded as a new and fairly self-contained one attached to w167 2-4 

of [I].(~) These sections are entitled "Terminology and notat ion",  "The boundary"  and 

"Fundamenta l  theorems" respectively. The rest of [I] is either contained in a more general 

t rea tment  (w 5, w 9 and parts  of w 6), or may  be set aside as special cases under additionM 

hypotheses (parts of w 6, w 7 and w 8). In  particular the whole idea of "dual boundary"  

is dispensed with here, though this is not to say it should be abandoned forever. References 

to [I] beyond w 4 will be pinpointed. 

In  sum, the case of a finite number  of passable atomic boundary points (briefly: 

"exits") will be settled here. Namely: all homogeneous Markov chains satisfying Assump- 

tions A and B'  [I; p. 25 and p. 50] will be completely analyzed, with regard to the stochastic 

behavior of the sample functions as well as the analytical structure of transition probabili- 

ties, in fact both at  the same time. To be exact, it will also be assumed that:  

ASSVMPTION C 1. Al l  ~P.recurrent states are merged into one absorbing state. 

A s s v ~ P T I o ~  D. All  exits are distinguishable. 

I t  is important  to note the difference between C1 above and the erstwhile Assumption C 

[I; p. 47] which would require the absence of any rI-reeurrent  state and is a serious restric- 

tion. On the contrary, conditions C 1 and D may  be justly regarded as unessential for the 

boundary theory; see respectively the discussion at  the end of w 15 here and on p. 38 of [I]. 

A culminating result of the theory has been tha t  of "complete construction", origi- 

(1) This research is supported in pars by the Office of Scientific Research of the United States Air 
Force. 

(~) References in roman capitals are listed at the end of the paper; references [1] to [14] are to be 
found at the end of [I]. 
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nated with Feller [9], developed through lqeveu [11],( 1} and established first by  David 

Williams [VIII]  under substantially the same conditions as Theorem 16.1 here, in a some- 

what  different form and with a totally different, purely analytic method. This result falls 

into two parts .  The first, to be called "decomposition" here, is an analysis of the basic 

transition matr ix  (or its Laplace transform) by  decomposing it into several components: 

the exits z, the entrances 7, and a connecting matr ix  M (see w 16 for these symbols). The 

second, to be called "construction", consists in showing tha t  any such transition matr ix  

can be so put  together from similar components chosen rather  arbitrarily but  subject to 

certain analytical conditions. Now it should be apparent  tha t  the decomposition is in 

general not unique without further conditions on the choices (such as choosing both the 

exits and entrances to be "extreme bases" as in Feller's case), and without uniqueness 

the two parts  of the theorem are not really in direct correspondence. Thus, if a process is 

constructed and then decomposed, the original components used in the construction are 

not necessarily thereby retrieved. To put  it in another way, in an arbi trary construction 

the various components need not  have the meanings at tached to those in a meaningful 

decomposition, although the corresponding (and cognate) parts  look quite like each other 

formally. To see tha t  this question is not an academic one, consider the following problem: 

from a given process, to construct a new one by  stopping it  at  certain specified exits (see 

w 18 for a precise formulation and solution). Obviously, this problem cannot be solved by  

another construction using only the " through" exists, because the corresponding entrances 

can no longer be chosen arbitrarily. Rather,  one must  begin with a correct decomposition 

of the original process, and then shut off the properly identified entrances. 

Such a decomposition will be called "canonical" and it will be derived by  the most  

natural  probabilistie eonsiderations.(~)As a mat te r  of fact, the canonical form conceals a 

more fundamental  resolution into elements which are simpler to define and easier to use. 

These are the probabilities ~a and F ~  introduced and studied in w 14. Each ~a is then llnl~ed 

to an entrance law ~a through a measure E a (Theorem 14.4), the meaning of which is given 

in w 17. The canonical decomposition itself, in these two stages, is given in Theorem 15.2. 

For a fuller understanding of the stochastic as well as analytic structure of the process, 

however, we must  consider a third problem, tha t  of "identification", to be taken up in 

(1) I t  should be pointed out that l~eveu's results do not seem to include Feller's since Theorem 
4.2.1 of [11] requires, besides "absolute dominance", also e.g. that the cone of entrance laws relative ~o 
I I  (rather than r in our notation) be of finite dimension. This is a quite different type of assumption from 
those made by all the other authors. 

(~) Observe, inter alia, that in the form given here the substoehastic case becomes an easy ex- 
tension of the stochastic one, and that each entrance law is generated by an entrance sequence (ex- 
cessive measure relative to r 
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w167 17-18. Here the major results are given in Theorems 17.1 and 17.3. In contrast to some 

prior developments, these no longer appear to be "intuit ively" obvious", and yet  they 

depend crucially on the set-theoretic properties of "boundary times" given in w 12. One 

is convinced by the amount of detection needed to identify such simple quantities as 

~ and F ~ that  herein lies indeed the strength of the probabilistic versus the analytieo- 

algebraic method. 

In w 18 algebraic transformations between different decompositions are established 

and an example is given to clarify the question of construction discussed above. In  w 19 

some consequences of the main results are specified ending with a full description of the 

sample functions of the process in terms of all the quantities introduced in this paper. 

w 12. Classification of boundary atoms 

In this section properties of individual passable atomic boundary points, to be called 

"boundary atoms" for brevity's sake from now on, will be discussed. No hypothesis beyond 

Assumption A (p. 25 of [I]) and the existence of such an atom is needed. These atoms will 

be denoted simply by a, b . . . .  instead of ~ ,  ~b ..... and the set by  A. Correspondingly 

we shall write S~(r for S~,(~o) (p. 38 of [I]) and " x ( t ) = a "  for "tqSa(~o) '' or "x  reaches 

the boundary atom a at time t". Furthermore we shall define Pa{...} by the condition that  

for every t~ET, j~EI, 1 <~v<<.n, we have 

where the right-hand side is defined in the last paragraph on p. 34 of [I]. This uniquely 

~lefines a probabihty measure on the Borel field D ~ generated by the Markov chain 

{xt, t 6 T}. I t  is "the conditional probability when the process starts at a"; note the analogy 

with the usual P~{...) for iEI  (p. 24 of [I]). Similarly for conditional expectation Ea{...). 

"For  a.e. w" will mean for every co except a set 2V in D ~ such that  P~(N) =0  for each 

i in I. I t  will then follow that  we have also Pa(N) =0  for each a in A. 

Let  us define, for s >~0: 
~(co) =i~rf {t:t > s :~(t) ~ A }, (12.1) 

where the inf is taken to be + ~ if the set is empty; and 

~(~)-- ~o(~). 

Thus ~ is the "first time after s when the boundary is reached"; it is an optional random 

variable; and ~ is the v on p. 25 of [I], the letter v (with subscripts) being reserved for a 

general time random variable in this paper. ~qext, we define 

8-- 652944 Acta mathematica. 115. Imprim6 le janvier 1966 
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~ca(co) = inf {t : t > 0, x(t)---a};  

K~ (t) = P,{~~ < t}; (12.2) 

K~ = r ~ { ~  ~ <~ t}. 

Thus  K b and  K ~ are  t he  f irst  en t rance  t ime  d is t r ibu t ions  in to  b, s t a r t ing  a t  i a n d  a respect i -  

vely.  E x t e n d i n g  a fami l ia r  no t a t i on  in [1], we wri te  i ~-~ a iff K ~ ( ~ )  > 0; a ~-~ b iff K~(oo)  > 0;(1) 

and  a ~-, i iff i e I  a, i.e., iff ~ ( t )  ~ 0  (see pp .  34-5 of [I] for nota t ion) .  According  to  w 10 of [I],  

~ - ( . )  is e i ther  ident ica l ly  zero or never  zero; s imilar  proper t ies  hold  for  K~ and  K ~ b u t  the  

full  s t r eng th  of th is  resul t  will  no t  be needed.  I t  is now possible  to  define the  re la t ion  ~'~, 

cal led " communica t i on" ,  be tween  any  two  e lements  of I tJ A in the  obvious way  and  deduce  

the  usual  classif icat ion (see [1; w II .10]) .  W e  shall  give only  t he  few propos i t ions  t h a t  will  

be needed  la ter .  

De]inition 12.1. The  b o u n d a r y  a t o m  a is called recurrent if 

Pa{Sa(co) is an  u n b o u n d e d  set  ) =  1; 

otherwise i t  is cal led nonrecurrenf. 

T~EOREM 12.1. I] a is recurrent, then ]or every 0 > 0 :  

P~176 n (0, ~ )  * O} = 1. 

Conversely i] there exists a ~ > 0  ]or which {12.2) is true, then a is recurrent. 

Proo]. Clearly Def ini t ion 12.1 impl ies  

l~{V~ >o:s~(co) n ( ~ , ~ ) .  O} = 1 

which implies  the  f irst  assert ion.  To p rove  the  converse,  le t  ~o(eo)~0 and  for n>~0 define 

~.+1(~) =inf {t:t >r.(~)+~, x(t)=a}. 

B y  the  s t rong Markov  p r o p e r t y  [1; Theorem II .9 .3]  t he  f ields ~ , + ~  and  ~ , + 0  are  in- 

dependen t  cond i t ioned  on  x(v,~q-O) which is in  I w i th  p r o b a b i l i t y  one. Also ~+~  is 

measurab le  ~ , + ~  a n d  is t he  f i rs t  en t rance  t ime  in to  a in  t he  p o s t - ( v , +  ~) process.  

Hence  we have  b y  the  S t rong  M a r k o v  proper ty : (*)  

(1) Note that this is not the same definition as on p. 43 of [I]. 
(2) This will be used so often that we cannot mention it every time, hut it must be remembered 

that  we are invoking here the form for boundary entrances as given in [I; Theorem 4.4], rather than the 
usual form as given in (I; Theorem II.9.3). We will indicate this by using the capital S for the former 
and the small s for the latter. 
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Consequently all v= are finite, T~ f ~o and S ~ is unbounded with probabili ty one. 

TH:~ORE~ 12.2. I]  a is recurrent, then I s is a y~-recurrent class a n d / o r  every i E I  a 

we have K~ ( ~ )  = 1. Conversely, i] there exists a I-~-recurrent state i in I s such that i ~-~ a then a 

is recurrent. 

Proo/. Let i E I  a, then ~(t)  is positive from a certain t on (in fact for all t > 0  by w 10 of 

[I]). Hence there exists ~ > 0  such tha t  

f[~(t) > (12.3) dt O. 

Using the sequence {v~) defined above, we have 

Furthermore by Theorem 12.1, we have 

O = P ~  ~ n ( ~ , ~ ) =  O} ~> $~(~)[1 - g ~ ( ~ ) ] .  

But  (12.3) implies tha t  ~ ( ($ )>0  by  the first sentence of the proof, hence K ~ ( ~ ) = I .  
t a Since pi~(t) >1 So ~ ( t -  s) dK~(s) it follows tha t  

/o f/ p , ( t ) d t ~  g ? ( o o )  ~ ( t ) d t =  + ~ ;  

hence i is recurrent [1; Theorem II.10.4]. For each j in I s, we have i ~ a ~-*j; hence I s is one 

]-[-recurrent class. 

Conversely, let i E I  ~ and i be ]-~-recurrent. Then 

P~{S~ is an unbounded set} = 1. (12.4) 

I f  K~(c~)>0, there exist ~ > 0  such that  K~(~)>0. Define a new sequence ( ~ )  as before 

but with "a" replaced by  "i".  I t  follows from (12.4) tha t  all ~ are finite and v~ f ~ with 

probabili ty one. We have 

P~(S ~ n (~, ~+~)# O} ~> K~(~) 

and the events An in the {. �9 �9 } above are independent by  the strongest Markov proper ty  

[1; Theorem II.9.5] applied to the ~'s. Hence by  the Borel-Cantelli lemma, infinitely m a n y  

of the A's  occur and so S a is unbounded with probabili ty one. 
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COROLLARY. I f  a is nonrecurrent, and iEI  ~, then either i is r~-nonrecurrent or i ,-~ a 

(i.e., the negation of i ~ a). Conversely, i f  there exists an i in I a such that either i "~ a or i is 

~-~-nonreeurrent, then a is nonrecurrent. 

However, I a may contain more than one distinct class. Let  us also observe that  if i is 

l~-reeurrent and i , ~A  (i.e., V a E A  :i,-~ a), then i must be (P-recurrent. For if i , -~A,  then 

V?'r we have pij(.)~[i~(. ) and consequently [I-recurrence of i implies its (P-recurrence. 

Conversely, if i is (P-recurrent then it is certainly ~-recurrent  and i ~ '  A by Theorem 3.2 

of [I]. 

Definition 12.2. The boundary atom a is called sticky iff 

l~{Va > 0 : S  a N (0, (~)4 O} =1; (12.5) 

otherwise it is called nonsticky {it will follow after Theorem 12.5 that  the probability above 

is then equal to 0). 

We begin with a simple observation valid for every a. 

THEORV.I~ 12.3. For each a and a.e. co, Sa(co) is a countable set. 

Proof. The definition of "reaching the boundary" (pp. 28-29 of [If) entails tha t  if 

t eSa(co), then there exists 6 > 0  such that  ( t -~ ,  t)~S~(co). Hence every point in Sa{co) is 

isolated on the left, and the theorem follows from a well-known property of the real line. 

TH~OI~.M 12.4. I f  a is sticky, then/or  a.e. co, Sa(co) ks dense in itself. 

Remark.  In  view of the preceding proof this means: for each t in Sa(co) and 3>0 ,  

we have (t, t+~)f)sa(co):~O. For t=O this reduces to 02.5). 

Proof. For each real r and for a.e. co for which at(co) < cr we have by  (12.5) and the 

Strong Markov property: 

V 6 > 0 :  S~(co) n (~(co), a , (co)+~)#O.  

Hence for a.e. co this is even true for all ~(co) with rational values of r, simultaneously. 

Since every point in S~(co) is such an at(co) by definition, Theorem 12.4 is proved. 

COROLLAaY. I f  a is sticky and 

r(t, co) = sup [8a(co) n (0, t)], 

then ~(t, co)ESa(co) -Sa(co) where S a is the Euclidean closure of S a. 

Proof. By definition, 7(t, co)ESa(co); by the Remark above T(t, co)~sa(co). 
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The next result is a zero-or-one law for the notion of stickiness. I t  may  be remarked 

tha t  the so-called zero-or-one law in the theory of Hun t  processes is trivially false for 

Markov chains in general. 

T~/~OR;E~I 12.5. I] a is nonsticky, then/or a.e. o9, Sa(og) does not have a/inite point o/ 

accumulation. In  particular, the probability in (12.5) is equal to zero. 

Proo/. Since (12.5) does not hold, there exist ~ > 0  and ~ > 0  such tha t  

Pa(Sa f~ (0, ~ ) 4  0} = 1 --e. (12.6) 

Suppose the theorem false and let Ao be a set of positive probabili ty such that  if o9 EA 0 

then Sa(og) has a finite point of accumulation. Then there exist t ~>0, and a subset A1 of 

A0 with positive probabil i ty such tha t  if o9 EA 1 then Sa(w) has a point of accumulation in 

(t, t+c3). This implies tha t  Sa(o9) f) (t, t§  is an infinite set. :Now for each m~>l, let 

t <Tml(O) ) <Vm2(O9 ) < ... <TmN(O9 ) < t §  

be all the successive distinct members of the set {~n/m(og), n>~0) delined in (12.1), where 

N =N(m, o9) is a nonnegative integer. For each o9 in Ax, we have limm_.~N(m, o9) = + ~ .  

Hence given N o, there exist m o and As c A1, with 2P(A~)~>P(A0, such tha t  

VogeA~: N(mo, o9) >No. 

Applying the Strong Markov property to Tmox .... .  zmoN,, we obtain by (12.6): 

P{Tmo, n+ l  --7Jmon < ~lTmol <""  < Tmon < oo } < p a { s a  n (0, ~) =~0} = 1 --8. 

I t  follows tha t  
P(A1) ~< 2P(A2) < 2(1 - e) No. 

Since N o is arbitrary, P(Aj)=0 .  This is a contradiction tha t  proves the theorem. 

w 13. Exit and entrance sequences and laws 

This short section contains several more-or-less known propositions in the forms to be 

needed later. 

Given the countable index set I, let ~ ( I )  be the space of measures on I, namely al 

sequences of normegative finite real numbers index by  I. 

De/inition 13.1. Given a standard substoehastic transition matr ix  function ~F(.)on 

I • I, an entrance (exit) sequence e relative to ~F is an element of ~ ( I )  satisfying 

Vt>~0: e~>e~F(~) [e~>~F(t)e]. 
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Here if e--{et} and (u/(t))=(V,j(t)), ehv(t) is the element of ~(I)whose ]-component [exF(t)], 

is ~ e , v , j ( t  ) [T(t)e is the element whose /-component is ~jV,j(t)ej]; and the inequality is 

taken component-wise. We shah use this type of "vector notation" when confusion is 

unlikely; but  since both subscripts and superscripts will appear as possible components 

of vectors we shall revert to an explicit notation whenever in doubt. 

Since xF(.) is standard, we have limt,0V,t(t)=l for every i, from which it follows 

easily that  
e = lira eqqt )  [e = lira "fCt) e], 

t~o t~o 

so that  e is "excessive" in Hunt ' s  usage. I t  is easy to prove that  relative to the minimal 

solution dp(. ) (see p. 23 of [I]), e is an entrance (exit) sequence if and only if 

e Q < O  [qe <0], 

where Q is the initial derivative matrix. 

We shall state the next  two theorems for the entrance case only since the exit case is 

entirely similar. 

De/ in i t ion  13.2. An entrance law relative to ~F is a one-parameter family ~7(')= 

{~(s), s >~0} of elements of Wl(I) satisfying the functional equation: 

Vs>0,  t>~0: ~(s )~ ' ( t )=r l ( s+t ) .  (13.1) 

By [3; Lemma 1], for each ] in I, ~?j(.) is continuous in [0, oo). 

THEOREM 13.1. I /  e and  ~F are as in  De]ini t ion 13.1, there e~cists an  en t rance lawr l ( .  ) 

relative to ~F such that 

- eU/(t) = Jo~(S) de. (13.2) e 

R e mark .  We shall say that  the entrance sequence e generates the entrance law ~(. ). 

Proo]. This is nothing but  a general form of Theorem 6.2 of [I] proved in the same 

way, but  a sketch will be given. Let 

H (t) ~re - &F(t). (13.3) 

I t  is clear tha t  H ( - ) /  and the semigroup property W(s)~F(t)=~F(s +t)  implies 

H(s  + t) - H(t )  = H(s)tF(t) .  (13.4) 

By a basic lemma [3; Lemma 2], H has a continuous derivative ~7 so that  
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H(t) = f:~(s) ds (13.5) 

which is (13.2); moreover the equation (13.4) may be differentiated with respect to s, 

yielding (13.1). 

THEOREM 13.2. Let ~F(.) be as be]ore and let {e(s), 8 >0 )  be a one-parameter ]amily o] 

elements o] ~( I )  satis]ying 
e(s)vF(t) <~ e(s + t), (13.6) 

edej f~ e(s) ds < oo. (13.7) 

Then e is an entrance sequence relative to ~ ,  and 

lira e~F(t) = 0, (13.8) 
t t c r  

or equivalently e = f o W(s) ds, (13.9) 

where ~ is the entrance law generated by e according to Theorem 13.1. 

Proo]. Integrating (13.6) over s in (0, oo) we obtain 

e~F(t) <~ e(s + t) ds = e - e(s) ds <~ e. 

Hence e is an entrance sequence as asserted, and also (13.8) is true by (13.7). The 

equivalence of (13.8) and (13.9) is obvious from (13.2). 

I t  is instructive to compare the results above with the standard potential theory 

argument, according to which we should write 

Therefore in particular 

lira [H(t + u) - H(u)] du = H ( ~ )  - H(O) = e. 
~So F 

Under our conditions it is permitted to interchange the limit and integration above 

which then becomes (13.9). However, if the same interchange is made a little earlier in 

lim 1 l ~' t~o t ,]o H(t) ~ ( u ) d u ,  
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the result is f :  ~(0) ~ (u )  du 

which is in general strictly less than e. 

TH~.OREM 13.3. Let 
zdeflim [1 - xF(t)] 1; 

t~,oo 

then z ks an exit sequence relative to ~ .  I f  e is any exit sequence, then 

(13.1o) 

e<.z (13.11) 

4] and only if  e <~ 1 and lira ~( t )  e = 0. (13.12) 
t ~oo 

Remark. By the analogue of Theorem 13.2, the second condition in (13.12) is 

equivalent to tha t  e =  ~ ~  where e(. ) is the exit law generated by e. 

Proo/. I t  is clear that  z ~< 1 and hint ~ ~ F  (t) z = 0, hence (13.11) implies (13.12 ). Conver- 

sely if (13.12) holds, then 
[I-XF(t)]e < [ I -  ~F(t)] 1 

and letting t ~ oo we obtain (3.11). Q.e.d. 

When ~ is the minimal solution (b, then z is L(oo). From the probabilistic point of 

view there is an obvious choice of exit sequences relative to (P. They are the L~(c~), aEA 

studied in w 4 of [I]. I t  is the entrance sequences that  have to be discovered and this will 

be done in Theorem 14.3 below. 

w 14. The basic quantifies 

From here on Assumptions A and B' will be in force throughout the paper. In  this 

section we introduce the new notions which make the present approach possible. The 

underlying idea is simple enough: to study the succession of boundary atoms in a sample 

function, viewing these as "banners" (superscripts from A) under which the ordinary states 

(subscripts from I) line up. If  all boundary atoms are nonsticky, this is easily carried out, 

has essentially been done in w 5 of [I] and will be reviewed in w 19. For a sticky atom the 

important thing is to concentrate on the change of banners so that  beginning at one of them 

t h e  sample function is followed through until a new one appears, if ever. Now it turns out 

that  each portion between change of banners "possesses finite potentials" (Theorem 14.2) 

so tha t  it can be sufficiently well isolated and analyzed before the portions are pieced 

together. Special attention must be paid to the case when the banner does not change and 
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when it changes suddenly. The first can be treated separately as " t raps";  the second 

produces delicate effects which will be stressed at  the appropriate places. 

Definition 14.1. For each a in A let us define a new optional random variable as 

follows: 
fla (co) = inf ~ (co) = inf {t: t > O, x(t) E A - {a}}, 

b ~ a  

where ~ is defined in (12.2). Thus starting a t  a, ~ is the "first t ime for change (of banners)". 

Definition 14.2. For each aeA ,  beA,  a # b  and t~>0: 

~ (t) ~fP~ {fla > t; x(t) = j}, 

Thus ~( t )  is the probability, starting at  a, tha t  no change of banner has occurred up to 

t ime t and tha t  at this t ime state ~ appears under the initial banner a; /v~(t)  is the proba- 

bility tha t  a change of banner has occurred before or on t ime t and tha t  the change is to b 

(regardless what banner is flying a t  t). 

We have the obvious relations, if t > 0: 

e , ( t ) ~ ' E d ( t ) = P ' { f l ' > t } ,  ZPoo( t )= l~{ f lo<t} ;  (14.1) 
b~:a 

o, (t) + ~ F~(t) = 1. (I4.2) 

Note tha t  ~ ( 0 ) = o ~ ( 0 + )  but  Q~(0)~<~,(0+) in general since ~ j l~{x(0 )= j}~< l .  The 

limits of (14.2) at  either end of (0, c~) are important:  

• a b ( 0 )  = 1 - lim ~ e ,  (t) = 1 - 0f (0 + ); (14.3) 

F a b ( c ~ )  = 1 - l i r a  4 0$(t) = 1 - e , ( ~ ) .  (14.4) 
b~-a t ~  

De]inition 14.3. The boundary a tom is called ephemeral iff Q$(0+)=0;  it is called a 

trap iff ~ (  ~ ) = I. 

I t  is clear how we can eliminate each ephemeral boundary a tom by splitting it into 

others, but  this will not be necessary. 

T ~ O X E M  14.1. 1] a is sticky and distinguishable ]rom any other boundary atom, then 

Y Fo~(o) = o. (14.5) 
b::~a 
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I f  b is nonsticky, ~hen 
F~b (0) = 0. (14.6) 

a * b  

Proof. I t  follows from Definition 14.2 that  

F~(0) = P{V~ > 0 :S  b fl (0; 8) 4 O}. (14.7) 

If a is sticky then by definition, 0 is an accumulation point of Sa(o~) for almost every r 

Hence by Theorem 4.6 of [If, for almost no r can 0 be an accumulation point of any Sb(r 

where b is distinguishable from a. This means F~(0 )=0  by (14.7), and the first assertion 

of the theorem follows. Next suppose F~(0)>0;  choose i with L~(oo)>0, then by the 

Strong Markov property, 

P,{V~ >0  :S ~ N (~a, ~a+ 8 ) ,  O} >~L~(oo) Fab(O) >0.  

Thus S b has a finite accumulation point a ~ with positive probability and so b must be sticky 

by Theorem 12.5. The second assertion of the theorem follows. Q.e.d. 

I t  is clear from the meaning of 0 ~ tha t  (see p. 40 of [I] for ~):  

Now let us put  
~(t) <q~ < ~Ct). 

p,3 Ct) ~f l~sCt) + [~ z? (u) q~ it. - u) du. 
do 

(14.8) 

By the Strong Markov property, this is the probability of transition when the boundary 

set A -  {a} is taboo; namely when the process is stopped at all boundary atoms except a. 

Let  us call this stopped process, completed as usual by a new absorbing state 0, the a- 

process (see [1; p. 244 ft.]). I t  is clear that  

I]~f(p~(.)), (r215 ~, 

is a substoehastie transition matrix (function) whose stochastic completion is the transition 

matrix of the a-process and that  
~P <FI"<I-I.  (14.9) 

Moreover, if the process is initially at a it is an open Markov chain whose absolute distribu. 

tion is {•(t), t >0}. This fact is expressed by the following functional equation 

e~(s)l-I~(t) =O~(s +t); (14.10) 
which is to be compared with 

~(s)r ~(s)[-[(t)=~'(s+t). 
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Thus we have interposed, for each a, a new process between the minimal (I)and the max- 

imal ]-~. Successive interposition will lead from (I) to l-I, but  tha t  will not be necessary. 

The continuity of each Q~(. ) follows from (14.10} by [3; Lemma 1]. Furthermore each 

0~(") has the property of being either identically zero or never zero in (0, oo), by [I; w 10]. 

If  a is a trap, then clearly Q~(- ) ~ ( .  ). If  a is not a trap, the following result is essential 

(see p. 29 of [I] for Z). 

THEOREM 14.2. I / a  is not a trap, and i E I - Z ,  then 

r~ - Jo ~ (t) dt < oo. (14.11) 

Proo]. I f  i E I - Z ,  then i ~-~A. Since a is not a trap, a~-~A-  {a} so that  in any 

case i~-"A-{a} .  Hence there exists b E A - { a } ,  and h > 0  with L~(h)>0.  Now 

~ (nh) L~ (h) ~ Pa{nh < fla ~ (n + 1) h} 

o~ 

and so ~ 1 ~  (nh) <~ [L~ (h)]-I < ~ .  

Since p~ (t)/~ (h) ~< e~ (t + h) 

and Ca ( . )  is continuous, we have 

max e~ (t) ~< [ min  ]l~ (t)]- 1 e~ (nh + h). 

Consequently r~ = ~ o  e~ (t) dt < [ mi ,  1,, (t)]-' ~ ~ (nh + h) < 
O ~ ' t g h  n=0 

and Theorem 14.2 is proved. 

The next  step is quite similar to the handling of ~ in the one-exit nonrecurrent case 

given in w 9 of [I]. The present extension to the general situation is made possible by the 

interposition of Q which behaves as "nonrecurrent" in the sense of the preceding theorem. 

Instead of Assumption C of [I; p. 47] the following assumption will be made from now on. 

ASSUMrTIO~ C o. There are no dP- recurrent states. 

This will be slightly liberalized towards the end of w 15 to include the case of sub- 

stochastic l~, but  it is not entirely dispensable without complicating the later results. 

T H e O r e M  14.3. For each boundary atom a, there exists an entrance sequence e a relative 

to (I) having the property that 
lira ea ~P ( t ) = O. 
ttcr 
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Equivalently,  i/ ~a(.)  denotes the entrance law generated by e a (see Theorem 13.1), we have 

e ~= f / ~ ( s )  ds. (14.12) 

Proo]. Three cases will be considered though  the first two m a y  be combined. 

Case 1. a is not  a trap.  Then by  (14.9) and (14.10), 

0~(8) r <~(s)l-I~ =r +t) 

and (14.11) is true. Hence we m a y  take ~F to  be r  e(s) to  be e~(s), e to  be r ~ and ~(s) to 

be ~a(s) in Theorem 13.2 to conclude (14.12). 

Case 2. a is a nonrecurrent  trap.  Then ~ ( . ) = ~ { . )  and by  the Corollary to  Theorem 

12.2, each state i in I a is either 1-I-nonrecurrent or i~,~a. Since a is a t rap  this means i ~ A ,  

and so by  the discussion following the corollary just  cited, each i in I a which is I~-recurrent  

mus t  in fact be q~-recurrent. This has been excluded by  Assumption C 0. Hence each i in 

I ~ is I ] -nonrecurren t  and so 

f f r a = 0 ~ (s) ds = ~" (s) ds < 

(see [I; Theorem 6.1], the r a here being the ga there). The rest is the same as in Case 1. 

Thus  in bo th  Case 1 and Case 2 the e a of the theorem is just  the r a of (14.11). 

Case 3. a is a recurrent  trap.  Then I ~ is a J-i-recurrent class. By  a weft-known theorem 

[1; Theorem II.13.5], there exists (e(s), s > 0 }  such t h a t  

f ie(s) <~ ,  e(s) e(s t); ds 1-I(t) 

and consequent ly  e(s) ep($) <.< e(s + t). 

I n  fact  since all states are stable we m a y  choose any  state 0 in I a and  set 

ej(s) = opoj(S), f/ej(s) d s =  op~j 

[1; p. 201]. Hence Theorem 13.2 is applicable with u /= ( I )  and  this choice of e(s), so 

t h a t  e a is the sequence with 

ej--0P0~, jE  
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Remark. I t  would be interesting to know whether the case of a recurrent trap indeed 

requires special handling as described above; and if so where is this covered up in the 

algebraic treatment of other authors. 

The next  result Theorem 14.4 is one of the two keys to the canonical decomposition. 

We need an analytical lemma which is essentially known (see [I; w 9] and Neveu [10]); (i) 

for a purely analytical proof and general discussion see [II]. 

L~MV~A. Let a be finite, nonnegative, nonincreasing in (0, o c) with a(0+)~< + ~  and 

~ a(s) ds < c~. Let  ~(2) be its Laplace trans/orm: 

fo o 0 ( ~ )  = e -at a(t) dr, 0 < ~ < ~ .  

Given also two constants ~ >~0, p >~0. Then there exists a nonnegative measure E ( .  ) on 

[0, ~ )  such that /or 0 < ~ < ~ : 

[0 +p~  + ~a(~)] ~(~) = 1, (14.13) 

where ~(~) = ffo.o.) e-~tE(dt)" 

Moreover, E is a finite measure unless ~ =0, in which case it is infinite but sigma-finite. 

I / ( r  is absolutely continuous in (t, c~ ) ]or every t > O, then E is absolutely continuous except 

/or a point mass at 0 i/  a(O) < ~ .  

Proo]. By a particular ease of P. Ldvy's representation of infinitely divisible laws 

and the associated processes (see Ldvy [IV]) there exists an infinitely divisible process 

{Y(v), v~>0} such that  if F(v; �9 ) denotes the distribution of Y(v), we have 

P(v;~)~' fEo.~)e-~tF(v;dt)=E(e-~(~))=exp{-v [p~ + f/(e-~S-1)d~(s)]}. 
Putt ing ~(2) ~ ~d(2) 

we have e-~V~ e-UF(v; dt) - e -v{~+~i+~n 
j [O,~) 

Integrating this over v in [0 ,~ )  and setting 

E("  ) ~ JEfo, o~) e-~€ ) dv, (14.14) 

(1) ~ e v e u ' s  assert ion of a sharper  resul t  corresponding ~o Corollary 1 to Theorem 14.7 below is 
wi thout  substant ia t ion.  
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we obtain  ft0.~c)e-UE(dt) "~- [~ -~0~ -~ ?~(~)]-1 (14.15) 

proving (14.13). Let t ing ;t ~ 0 in (14.14) we see tha t  E([0, oo))=5-1 since lima~o~(2)=0, 

proving tha t  E is an infinite measure if and only if (~=0, in which case E is still sigma- 

finite by  (14.14). Finally, it  is well-known from L4vy's  theory  tha t  if a is absolutely con- 

t inuous in (t, ~ )  for every  t > 0, then  F(v; �9 ) is absolutely continuous except  for a mass at  

0 equal to  _~(v; + oo ) = e -~(~ when p ~ 0 and a(0 + ) < ~ ,  and then  E({0}) = [(~ + a(0 + )]-t 

by  (14.14). The lemma is completely proved.  

CO~OLT.ARY. Suppose p=O. For (Lebesgue) almost every t > 0 ,  we have 

fto.t [(~ + a(t - E(ds) = 1; 8)] (14.16) 

and/or every t > 0  the inequality "~<" ho/ds above. 

This corollary will be sharpened below; see Corollary 1 to Theorem 14.7. 

THEORV,~ 14.4. For each a, ~ ( . )  and the entrance law ~ ( . )  generated by the e a in 

Theorem 14.3 are linked by the ]oUowing /ormula, /or t >~O: 

= fto.t!~a (t - s) Ka (ds), (14.17} 0~(t) 

where Ea( �9 ) is a probability measure on [0, ~ ) ,  unless a is a recurrent trap in which case it is 

inlinite but sigma-/inite. Furthermore Ea(  �9 ) is absolutely continuous except ]or a mass aS 0 

in case a is nonsticky. 

Proo]. Case 1. a is not  a t rap  or a is a nonrecurrent  t rap.  Integrat ing (14.10) over s 

in (0, oo) and noting tha t  e ~ - - r  ~, 

e ~ - ; Q ~ ( s ) d s = ~ e ~ { l , j ( t ) q - ; l ~ ( u ) ~ ( t - u ) d u } .  (14.18) 

Using the no ta t ion  ( . , . )  for  the inner p roduc t  of vectors,  we pu t  

a aa ( t )  de f ( e a ,  la (t)>. 

Recalling also (13.2) 

t ion as 

with e =  e a and ~r we m a y  rewri te  (14.18) in vector  nota- 

('r +  <t-u)l du (1419) 
3o J0 
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I f  we put  also Oa~(t)~r(~a(s),l~(t-s)), 0 < s < t ,  (14.20) 

which is independent of s (see p. 49 of [I]), we have by  (14.12) 

Since O~(-) is continuous and positive unless a is ephemeral, it follows from (14.19) tha t  

o~( . )  is locally integrable. I f  a is ephemeral then e ~ = 0  so tha t  o~a(") ~0 .  Hence the Lemma 

above is applicable to o ~ with ~ = 1, p =0; the corresponding E will be denoted by  E ~. 

I t  follows from the proof of t h e / e m m a  tha t  E ~ is a probabili ty measure. Taking Laplace 

transforms in (14.19) we have 

~(~) = ~~ [1 + ~ ( ~ ) ] ,  

which can be inverted by  (14.15) to yield 

~(~) =/~(~)~(~). 

From the uniqueness theorem for Laplace transforms, and the continuity of the functions 

~a(. ) End ~?a(. ) in [0, ~ ) ,  we conclude (14.17) as asserted. 

Case 2. a is a recurrent trap. 

Ill this case we have, recalling the handling of this case in Theorem 14.3: 

Proceeding as before, we obtain 

f~ ,f(s) ds = f~a(u)  o~( t -u )  du (14.22) 

which differs from (14.19) only in tha t  the ' T '  there is replaced by "0". The Lemma is 

applicable as before but  with (~ = 0, p = 0, and the resulting E ~ is now an infinite but  sigma- 

finite measure. 

We know tha t  E ~ is absolutely continuous except for a mass a t  0 when o~(0)<  ~ ;  

tha t  this last condition is equivalent to a being nonsticky will be shown in Theorem 14.6 

below. 

In  order to combine the two cases above we introduce the symbol 

6 a = I 0, if a is a recurrent trap; (14.23) 

L 1, otherwise. 
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Then we have for each a, 

or for almost  every  t: 

[6~ + t ~  0.)] ~" 0.) = 1; 

f ~ [ l  + = I. o ~ ( t - - s ) ]  E~(ds) (14.24) 

COROLLARY.  ~ o r  each a, 

n~(" )%':~ ~ (") = <r  ), ~> 1 
is locally integrable. 

Proo[. We have f rom (14,19) and  (14.22) for  every  t:  

f•,7: ~s=jo + o ~ -  as-<j0 + r  ds< 
g t  

(8) (8) (t 8)1 [1 (t 8)] 

since o ~ is locally integrable.  

T H E O R E ~  14.5. For each a ,~$ ( . )  is nonincreasinq and 

def  a 
ca = V, (oo) = <Va (t), 1 - L(r162 (14.25) 

for every t> O. This number is also equal to ~ (c~) unless a is a recurrent trap in which 

case ~7.( r162 while ~ , ( r 1 6 2  /or any trap. 

Proo]. The monotonic i ty  is an  immediate  consequence of the defining proper ty  of an  

entrance law; and the proof of (14.25) is the same as on p. 50 of [I], a l though the ~ there 

need no t  be the same as here. Bo th  are properties of any  entrance law relative to  qP. Nex t  

we have f rom (14.17): 

e~ (t) = fco,~ ~*(t-s)E~(dO" 
Lett ing t ~ cr an  recalling tha t  E a is a p robab ih ty  measure unless a is a recurrent  

trap,  we see tha t  the common  value in (14.25) is e . ( ~ )  except  in t ha t  case. I t  is 

clear f rom (14.4) t ha t  Q , ( ~ ) =  1 for a n y  t rap  a. On the other  hand,  if a is a recurrent  

t rap,  then for every  i in P ,  we have L i ( ~ o ) = L T ( ~ ) = l  by  Theorem 12.3, hence 

~ ( ~ ) = 0  by  (14.25). 

Trrv, OR~M 14.6. The boundary atom a is sticky i /and  only i/  

o~(0 + ) =  + ~ .  
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Proo/. For  each (3 > e > 0, we have clearly 

P~{Sat3(e'~)#:O}=<ga(e)'La(3-~)> = fo. o <~a(e-s)'La(J-e)> Ea(ds) 

by (14.17). Now by  (14.20) and (14.21): 

<~/a(e-- 8), L " ( 0 -  e)> = <~?a(e-s), la(t)>dt 

= O~176 

I fence Pa{Sa n (0' (~) # O} = lifo fo .  o [~ (14.26) 

I f  a a a ( 0 + ) < ~ ,  it  follows from this t ha t  

lim Pa { Sa f) (0, ~) # 0 }  = 0 
~ o  

and so a is nonst icky by  Definit ion 12.2. I f  a ~ ( 0 +  ) =  + ~ ,  then  Ea ({0} )=0  by  the 

lemma, it  follows from (14.26) and (14.16) tha t  

/3 (0, 3) # O} = lim f o~(s -  s) Ea(ds) 1. 
~ o  d[o.~l 

This being t rue  for eve ry  6 >0 ,  we have (12.5) and so a is sticky. Q.e.d. 

Generalizing the  definitions in (14.20) and  (14.21), we p u t  for  a E A ,  b e A :  

Oab(t) ~f <~a (s), P(t - s)>, 

I t  follows by  (14.12) t ha t  

a ab (t)= f ~  0 ab(s + t) ds = 

Fur thermore ,  for  t > 0: 

f 0 < s < t; a ab (t) ~f 0 ab (s) ds. (14.27) 

; <~)a(S), lb(t)> d$ = <e a, P (t)>, 

f ;  @~(0, Z~(s)> & = @a(0, Lb(~)>. 

~/, (t)= <~f(t), 1 - L ( ~ ) +  ~ L~(~)> =ca+ ~ aa~(t). 
b~A beA 

(14.28) 

(14.29) 

From here on, as a convention in notat ion,  a Lebesgue-Stiel t jes integral such as 

~. . .  dE(s) shall mean  ~0.t~ ... E(ds) for finite t and ~0.~). . .  E(ds) for t =  + ~ .  Fur ther-  

more, E(0) will be wri t ten for E({0}). 

9 -- 652944 Acta mathematica. 115. I r a p r i m 6  le j a n v i e r  1966 
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We proceed to derive new basic relations for ~a and F ab, a E A, b E A - { a } .  Note  

tha t  some results m a y  be vacuously  t rue for an ephemeral  a or a t rap.  We begin with 

Pi {~a <~ t, x(fl ~) = b} = L~ (t) + f :  F ~b (t - s) dL~ (s). (14.30) 

We observe tha t  the probabi l i ty  on the left  side above is equal  to 

The  first t e rm is L~ (t) by  definition, and the second is by  the Strong Markov prop- 

e r ty  equal to 

;o  P,{o~<t;x(~)=a;~"<, t ;x(~a)=b} = Pa{tSa<<-t-u;x(t~")=b}dP,{~<<-u } 

f :  F a~ (t - u) dL? (u). 

Hence (14.30) is proved.  

Next ,  we have 

P~{s </5 ~ < s + t; x(fl a) = b} = ~ P~{s < fl~; x(s) = i} p,{/~a ~< t; x(fl a) = b}. 
i 

Using Definit ion 14.2 and (14.30), this is 

Foo(8+t)-F.b(s)=<r176 + f: (14.31) 

Le t  us introduce the fur ther  no ta t ion  

Qab (t) ~f <e a (t), L b (~ )> .  (14.32) 

Since each Qa(. ) is continuous and the right side above is dominated  by  <~a(t), 1> which 

converges uniformly in every  finite interval  it follows tha t  ~ ( .  ) is continuous. 

THEOREM 14.7. We have,/or every t>O: 

Z~(t) = 1 - e~(t); (14.33) 

E~(t) F ~ ( ~ )  = ~ ( t )  + F~(t): (14.34) 

(t) = f~  [F ab (oo) - a ~ (t - s)] d~ a (8). (14.35) F~b 

Proof. From (14.17) and (14.32) we have 
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f l  o~b(t - s) dEa(s). (14.36) eab(t) 

In particular, by (14.24), and the uniqueness of Laplace transforms: 

first for (Lcbesgue) almost every t but  then for every t > 0 since both extreme terms above 

are continuous in (0, ~ ). Formula (14.33) is thus a sharp form of (14.24}. Now letting t t c~ 

and then replacing s by t in (14.31}, we obtain 

F~b( ~ ) - Fob(t) = ~b( t )  + qa~(t) F ~ (  ~o ). 

This is (14.34) on account of (14.33). I t  is also (14.35) on account of (14.36). 

C OR O L LARy 1. V t > 0: SO ~ [O ~ + o ~ ( t -  s)] dE a (s) = 1. 

COROLLARY 2. Fa~( " ) is absolutely continuous. 

Equation (14.34) becomes perhaps more interesting if it is divided through by Fab(oo), 

supposed to be positive; showing then that  the resulting right side does not depend on b 

and defines the basic measure E~(-). A similar relation involving an arbitrary } may be 

recorded as follows: 

fo fl ~ Q?(s)ds+ e~(t) ],j(s)ds Ea{/~[Sj0(0,~tAfla)]} 

E"(t) = f o e ?  (s) ds Ea {#[Sj 0 (0, fiR)I} 

This is proved by  integrating the  equation 

e ~ (s + t) = e a (s) r  + f~ <e ~ (s), 1 ~ (u)> r ( t -  u) du 

over t. I t  would be interesting to understand the meaning of this "equilibrium property" 

of Ea( �9 ) with respect to ~ in I as well as to b in A. 

An interesting consequence of (14.35) is its limit as t * 0: 

Fab(0) = Ea(O) [Fad(co)  --o'ab(o)]. (14.37)  

THEOREM 14.8. For any a # b ,  we have 

&b(O) ~< F ~ ( ~ )  ~< 1. (14.38) 

9* -- 652944 Acta rnathematica. 115. Imprim~ le janvier 1966 
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Proo]. Integrating (14.31) over s in (0, o~), we obtain 

or using (14.28) to transform the first term on the right side, 

( ~ )  t = f :  {o ~ (u) + [1 + a ~ (u)] F ~b (t - u)} F~b du. 

Dividing through by t and letting t ~ 0, observing that  aab( �9 ) i s  nonincreasing we 

infer (14.38). 

COROLLARY. liln [~. (t) -- a~ ($)] < ~o (14.39) 
~0 

Combining Theorems 14.6 and 8 we conclude that  the matrix (o~(0)), (a, b)eA • 

has finite elements off the diagonal while a diagonal element is finite or infinite according 

as it  corresponds to a nonsticky or sticky atom. This simple result used to be an obscure 

point in previous investigations ([7], [10], [VIII]). 

w 15. Canonical decomposition 

As explained above the quantities ~a and F ~ serve the purpose of separating the 

banners from each other as long as possible; now it is necessary to link them together. 

The leading formula, which is the second key to the canonical decomposition, the first 

being Theorem 14.4, is given below. 

THEOREM 15.1..For each a, we have 

~?(~)=e?(t)+ ~ ~ ( t - s ) d f ' b ( ~ ) ,  / e I  a. (15.1) 
b4.a 3o 

Remark. This equation need not be valid for an arbitrary j; for example if j E Ib\I ~ 

and a ,-~ b; then the left member is 0 but  the right member is positive. 

Proo/. The meaning of (15.1) is obious: we rewrite it in terms of random variables: 

b ~ a  

Let  us observe at once the notational quirk which necessitates the use of " ~  eS  b'', or more 

clearly perhaps: "V~ > 0: S o fi (/~,/~ + 6) 4 O" instead of the obvious "x(/~) = b" because 

the latter would have the wrong meaning w h e n / ~ =  0. The rigorous proof of the preceding 
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equation is of course, as always, done by  invoking the Strong Markov property,  but  since 

Theorems 4.3 and 4.4 of [I] were formulated a little too narrowly for the present purpose 

we shall indicate the minor modifications needed. 

1 ~ The cited theorems were stated for ~a which is the first t ime the boundary is reached 

if it is reached at  the a tom a, otherwise equal to + c~. However, the same results hold if 

this is replaced by any  optional random variable 7 such tha t  x(v)=a where 7 <  + ~ .  

By definition then there exist 70 <T and 7~ ~ 7 such tha t  the jump chain Zn =x(7~) starting 

at  t ime 70(=7o(eO)) reaches a at  t ime 7. The proofs given for the cited theorems are valid 

if this (Z~} is used there instead of the jump chain starting at  t ime 0. 

2 ~ The cited theorem did not deal with the situation where the given {xt} starts at  a 

boundary a tom and is an open Markov chain. However, nothing in the proofs, as revised 

in 1 ~ above, is changed on the set {v>0} (in which case the chain starts in e//ect at  an 

ordinary state as far as T is concerned)- 

3 ~ Thus we are left with tha t  case {v=0)  under the initial condition say x(0)=a.  

This is settled by the following simple lemma. 

LEMMA 1. For each A in ~o (the Borel field generated by {xt}) we have 

P{O e s~; A}  = ~ b ( 0 )  P~(A). 

Proo/. The meaning of this is again clear: on the set {0ES b} the process acts as if i t  

s tarted at  b (rather than a). To prove it we define for each positive integer m: 

7m (o~) = inf {t : t > m-l ;  x(t, co) = b}; 

then 7m ~ 0 on {0ESo}. I f  0 < e < t .  then since {0ES b}E~, ,  for each m, we have by  

the Strong Markov property:  

P~ 7m< e;z(0  = j }  = ~ (t-- 8) alP"{0 e S~; 7~ < 8}. 

Letting m ~' ~ we obtain 

r ' { o  e s~; x(t) = j} = r - { o  e s ~ ~ (0 = ~'~ (o) ~ (t). 

This being true for every t > 0 ,  and {OES b) E^ ~=1 ~m--', the lemma follows. 

Theorem 15.1 is now proved by applying the amendments  1 ~ 2 ~ 3 ~ to fla. Thus, 

the typical term in the sum at  the beginning of the proof is further split into 

PO{~o = o ~ s~ x(t) = i} + P~{O < ~ < t; ~(~o) = b; x(t) = j} 

= Rag(O) ~ (t) q- v,I'o,t] ~ (t, -- 8) Fab(ds). 
Q.e.d. 
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where 

Taking Laplace transforms in (15.1), we obtain 

(~) = ~ (~) + 5 $ ~  (4) ~ (4), 
bg=a 

f~e  TM ~a(t)dt, ~a(x) = ;~162 ~a(t)dt, 
. I o  j 0  

(15.2) 

1 ~ab(4) = Jo e-~t dF ~b (t). 

Putting ~ ( ~ ) -  0 for each a EA, and introducing the matrix 

PC4)~fC~ab(~t)), Ca, b) e A •  

as well as the vectors $(4), etc. where $(4)= {~a (~), a E A}, we may write (15.2) in matrix 

notation as follows: 
[I - lO(~)] ~(4) = ~(4). (15.3) 

Note that  the vectors as well as matrices above are indexed on the finite set A of super- 

scripts, the subscripts j in I a being understood. 

The next  task is that  of solving for $ from (15.3) and that  is done by the lemma below. 

Although it is but  a special case of a "recurring theorem" (see Taussky [VI])in its definitive 

form, we shall spell out a constructive proof using the theory of Markov chains. 

L~MM.~ 2. Let P = (p~), (a, b)EA • A, where A is a finite set, be a substochastic matrix. 

A necessary and su]/icient condition that I - P  be invertible is: there does not exist a subset 

@ o / A  such that P I c ( = the restriction o / P  to @ • @) is stochastic. The inverse has nonnegative 

elements when it exists. 

Pro@ Consider the stochastic completion P of P by  v~ (see [I; pp. 22-23]). Unless P 

is stochastic, i5 is on the enlarged index set )~ = A  U {#}. A discrete parameter Markov 

chain with minimial state space A and one-step transition matrix P will have v~ as an 

absorbing state, and any state a such that  a ~ O  will be inessential, hence nonrecurrent. 

Case 1. P # P .  Suppose the condition of the lemma holds, then every state except 

is nonrecurrent. For if there were any recurrent state distinct from ~, there would be a 

recurrent class E such that  0~C, thus PIc=-P[c would be stochastic, contrary to hypo- 

thesis. Hence for any a and b in A we have, in familiar notation: 
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Oo 

def ~" ~(n) 

8ab ~ - 2 0 ~ a b  < (~.  

Since ~(n) paO =P(a~ for every a and b in A, we have 

~ _(n) 

~ 0  
(15.4) 

Let S denote the matrix (sa~), (a, b)EA • A. I t  is easy to verify tha t  

( I - P )  S = I = S ( I - P ) ,  (15.5) 

the second equation being of course also a consequence of the first. Hence I - P  has the 

inverse S ~> 0. 

Case 2. P = P .  Then under the condition of the lemma every state in A is nonrecurrent 

with respect to P by  the same argument  as before, and so (15.4) is still true. The rest is 

the same as before. 

The sufficiency of the condition is proved. 

Now suppose the condition of the lemma is not fulfilled, namely tha t  there exists a 

subset C of A such that  P I c  is stochastic. Then define the vector w=(w~, aEA} as follows: 

w~=l  or 0 according as aE(~ or aEA--(~. Clearly we have w=~0 and ( I - P ) w ~ - O  so tha t  

I - P  is not invertible. 

Remark. The "sufficiency" par t  of the lemma and its proof above can be extended 

to an infinite index set A, but the resulting "inverse" in the sense of (15.5) is not a true 

inverse operator because the usual multiplication of infinite matrices, even when it is 

defined, is not necessarily associative. Thus ( I - P ) x  =y is not equivalent to or even implies 

x = ( I - P ) - l y .  An appropriate extension may  be needed for the boundary theory with 

infinitely many  atoms. 

We are now in position to formulate the theorem on canonical decomposition. 

T ~ o ~  15.2. I / a l l  boundary atoms are distinguishable then/or every 2: 0 <2 < oo, 

the matrix I-1~(~) in (15.3) has a nonneqative inverse so that we have 

~(~) = [ I -  p(~)]-l~(~) = I S -  p(~)]- l~(~)  ~ (~), (15.6) 

where J~(~) is $he diagonal matrix with entries (~a(~), a e ) , } ,  

I~176 dEa(t), ~a(~) _~ f~ ) dt, ~(~) 
JO .1o 

and E a and ~a are given in Theorem 14.4. 
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Proof. Fix a ~ and apply Lemma 2 with P =  ~(~). Suppose tha t  there exists C= A 

such tha t  ~(~)[c is stochastic then there exists C o c C such that  ~(~)[Co is the one-step 

transition matr ix  of a discrete parameter  Markov chain where state space C o is a recur- 

rent  class. Since ~(~) has zero elements on the diagonal, C 0 must  contain at  least two 

states, thus 
~ab(~)= 1, aECo. (15.7) 

b r Co - ~a]-  

Furthermore,  since X>0,  ~ab(~)---<Fab(~) and ~b.alVab(~)<~l, (15.7) is possible for 

each a if and only if 

P ~  (X) = F ~b (0) = F ~ ( ~ )  and ~ F ~ (0) = 1. 
b=~ a 

I t  follows then by (14.4) that  ~ ( - ) ~ 0  and consequently (15.1) is reduced to 

~(t)-- Y~ F ab(0) ~ (t), a eC0, 
b G Co - ( a )  

for each t > 0  and ~E |  ~. This means the matr ix  (Fab(0)), (a,b)ECo• o, with F~ 

for each a, is the one-step transition matr ix  of a discrete parameter  recurrent Markow 

chain and tha t  {~(t) ,  a ECo} for fixed t and ~ is a harmonic (regular) function on C o 

relative to this matr ix.  Such a function must  be a constant, namely: 

~ ( t )= ~ (t), i ~ P .  (15.8) 

I t  follows that  1 = ~. $~(t)= ~ ~ (t). 

Hence Ibc I a and so I a = I  b for every a and b in Co, since a and b are interchangeable above. 

Thus (15.8) is true for every j in P = P  and every t, and so a and b are indistinguishable 

by  definition (see [I; p. 44]), contrary to hypothesis. 

We have thus proved tha t  the condition of the lemma is fulfilled for P(X) for each 

>0,  and therefore I -  P(~) is invertible. This proves the first equation in (15.6); the second 

follows from (14.17). Theorem 15.2 is completely proved. 

I t  is instructive to compare this proof with tha t  of Theorem 5.5 of [I] to see where 

progress has been made. 

Before proceeding further we will stop for a minor generalization in order to inchide 

the case where ~ is substochastic (see pp. 23-24, 25-26 of [I]).(1) Ins tead of Assumption 

C O in w 14 we make the following slightly weaker one. 

ASSUMPTION C 1. There is at most one r state (and this is then necessarily 

r 

(1) I t  is not clear why the substochastic case causes trouble in Williams [VIII]. 
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This state is to be denoted by  0 and not included in I, and I0 = I U {0} is to be the 

state space if 0 is present under C1. We have [I; (2.7)] 

/~o-=0, /o~-O, loo-1, Lo-O. (15.9) 

I t  follows tha t  0 does not belong to I - (J a~AV provided tha t  P{x(O) =0} =O; in other words, 

with probabili ty one 0 does not appear before the boundary is reached. I t  may  belong to 

some I a and not to others. I f  it belongs to V, then a cannot be recurrent. For such an 0, 

we have by  (14.10): 

I t  is seen at  once that  the first sum above is equal to zero, and in the second the 

summation may  be replaced by  i f i I ,  on account of (15.9). Since a is not recurrent 

rg = ~ ~g ( t )dt  < ~ for every i E V - { 0 } ,  it follows by integrating the equation above 

that  

f~@(s+t)-e$)]ds= fla~(u)Q$(t-u)du. 

Since q$(. ) S ,  the limit d ade=f lira Q~(t) (15.10) 
t t r 1 6 2  

exists and the equation above reduces to 

j ~t 

dat = q$ (u) du [1 + o~a(t - u)] du. (15.11) 
0 

Comparing this with (14.19), we see that  we should set 

~ ( .  ) ~ ' d  a (15.12) 

in order that  (14.19) may  be valid for 0 as well as the other states in I a. With this 

definition (14.17) is valid as follows: 

~$(t) = (tzl~(t - s) Ea(ds)  = daEa(t). (15.13) 
do 

Now (15.1), (15.2) and (15.3) are valid for the subscript 0 as well as the others in V. 

Finally (14.29) becomes 
Z ~?~ (t) = d a + c a + Z o~b (t). 

i * I  0 beA 

I f  a is recurrent then 0 ~I a and we may  set da=O. 
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Briefly, the above discussion goes to show tha t  if there is only one (P-recurrent state, 

or more generally if all (p-recurrent states are merged into one absorbing state, i~t acts 

like an a tom in the recurrent par t  of the boundary as to be expected from the Martin 

theory. 

Assumption C1 is justified as follows. A (p-recurrent state belongs to the set Z of 

states from which with probabili ty one the boundary will not be reached at  all [I; Theorem 

3.2], so tha t  after entering such a state the process is controlled by  (P above. Such states 

form a stochastically closed set which splits into possibly infinitely many  disjoint (P- 

recurrent classes. Each class may  be treated as the 0 above as an a tom on the recurrent 

par t  of the boundary; or in the informal language used before, as a banner t rap under which 

the states of tha t  class line up according to the law of transition (P. By merging all these 

classes into one single t rap 0 in Assumption Cx, we are just stopping the process at  the 

recurrent par t  of the boundary- -no t  so much because it can be totally ignored but  because 

its behavior from there on is well known and may be separated from the rest of the s tudy 

in the name of convenience. 

w 16. s  

We shall lead up to the so-called "construction theorem" by  reviewing the components 

and steps, suitably algebraicized, which enter into the canonical decomposition (15.6). 

Let Q be given satisfying Assumption A and let (P(.) be the minimal solution associated 

with it. Pu t  
z ~fL(c~ ) = lim [I  - (P(0] 1 lira [ I  - 2 ~  (~)] 1; (16.1) 

z is an exit sequence relative to (P which is maximal  in the sense of Theorem 13.3. 

Let  A be a finite index set; for each a in A let z ~ be an exit sequence relative to 

(P such tha t  
z = • z a. (16.2) 

aeA 

Let  za (2) a~ [I  - 2~(~)] z a. 

I t  follows from Theorem 13.3 tha t  

lira 2~(2) z a = 0. (16.3) 
a~0 

For each a in A let e ~ be an entrance sequence relative to (P. This means in 

terms of Laplace transforms: 

V2 >/0: e a >~ e~2~(~t). 



ON THE BOUNDARY- THEORY FOR MARKOV CHAIIqS.  II 

Assume that  lira e ~ ) ( 4 )  = 0 
~40 

and define the ent rance  law Ua as follows: 

~(4) ~ k%~ ~6(4)], 

where k a is a positive constant to be fixed later. We set also 

which does not depend on 4; and 

Now we assume that,  for each a and 0 < 4  < ~ :  

and for a=#b: ~ ( ~ ) ~ t l i m  ~ab(4)< ~ .  

For each pair a and b, a # b ,  we choose a constant g2~ b such that  

Let  ~ =  0 for each a, and 

and 

b 

barriO if aEA0, 
t 1 if a E A - A  o. 

Now fix the constant k a for each a so that  

b 

Write ~ab for k a ~  b and let ~ be the matrix (~a~), (a, b) fi A x A. Furthermore, put  

s (2) ~et 1 
~ + ~ (~) 
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(16.4) 

and ~a(2) ~f ~ (~) ~ (2); 

(16.5) 

(16.6) 

(16.7) 

(16.8) 

(16.9) 

(16.10) 

(16.11) 

(16.12) 

(16.13) 

~ ( 4 )  ~fO; ]'~ab (4) %r ga (4) (~aO -- ~ab (4)), a r  (16.14) 
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Let ~(2) be the matrix (Fab(2)). If there exists a subset C of A such that  (~(0))lc 

is stochastic, then we decree that  all indices in C be identified. When this has been 

done I - t~ (2)  will be invertible by Lemma 2 of w 15. Let 1)(2) be the diagonal matrix 

with entries ( ~ ( 2 ) , a E A )  and let 1 be the diagonal matrix with entries (Sa, aEA). 

Finally, we put  

(2) d_,f [ I  - .c~(2)] -1 ~(2) = [ I  - i1'~(2)]-1 .~(2) ~(2) 

= [Z - ~r -~ [ I  + 1 ) (~ ) ] -  ~ ,~(2) = M ( 2 )  ~(2) ,  (16 .15)  

where M(2)= (Maa(2)), (a, b )EAxA is the matrix defined below: 

and 

~(2)~'[I  - P(;t)] -~ [I + b(2)]-~; 06.16) 

1F~i(2)a--~)(,~,) q" Z ~a(2)~aO!.)=~(2)§ Z Z ~(2)'21~rab(;t)~b(2) �9 (16.17) 
a e A  a e A  boA 

Tr~oR~.v[ 16.1. The rI(J~) so constructed is the Laplace transjorm (resolvent) o] a 

s$ochastic transition matrix /unction 1-I (t): 

~I (;t) = f :  e -~' 1-I (0 dr. 

Conversely, under Assumptions A, B', C O and D every such I-I may be constructed in the 

manner described above. 

Proof. The "converse" part, somewhat vaguely stated here, is just an algebraic re- 

statement of Theorem 15.2 and Theorem 5.1 of [I] with za=La(oo). 

The proof of the "direct" part will be sketched. I t  is merely a matter of algebraic 

verification based on the resolvent equations, and is quite similar to pp. 67-68 of [I]. 

Dropping the . . . . .  on Laplace transforms, we need to verify (8.26) of [I], i.e. 

(2 -/~) M(2) (9 (2, #) M(#) = M(/~) - M(2) 

or equivalently, since, U(2) being the matrix (u~(2)), 

(2 -~)  (9(2, t') = (9(~) - (9(2) = U(2) - U(~) 

(see (8,25) of [I] and the equations preceding it), tha t  

M(2) [ U(2) - V(#)] M(/~) = M(/z) - M(2). (16.18) 

Since M(2) -1 exists by (16.16), this in turn is equivalent to 
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U(2) - U(/t) = M(2)-X[M(/~) - M(2)] M(/~)-1 = M(2)-1 _ M(/~)-L (16.19) 

Now by simple inspection, one sees that  

M(2) -1 = [1 + 0(2)] [ I  - F(2)] = 1 - ~ + U(2). (16.20) 

For, on the diagonal, /~(2) and ~ are both zero while D($) is by definition the diagonal 

part  of U(2); off the diagonal, the second equation in (16.20) reduces to 

[ I  + 0(~)] F(~) = ~ - U(~) 

which is just (16.14). Since 1 - Q  does not depend on 2, (16.19) follows from (16.20) and so 

the resolvent equation for ]-~(2) is verified (see the calculation after (8.26) in [I]). 

To verify "stochasticity" (the "norm condition"), we write 

I=M(,t)M(, t)  -x = M ( 2 ) [ 1 - ~  + U(2)]; 

hence by  (16.11) and (14.29) (Laplace-transformed): 

1 = I 1 = M().) [11 - ~ 1 + U().) 1 ] 

=M(~) [c  + U(~) 1] = M ( ~ ) 0 ~ ( ~ ) ,  1) = ( ~ ( ~ ) ,  1>. (16.21) 

This is necessary and sufficient for I-I(') to be stochastic. Theorem 16.1 is completely 

proved. 

COROLLARY. To construct a substochastic I1(" ), choose any d~ >~0 /or each a and choose 

k a so that instead o/(16.11), we have 

k'(d~ + c~ + S t ~ ) = O  ~. 
b 

Apart ]rom this no change is needed in the procedure. Conversely every substochastic YI(" ) 

can be constructed in this manner; and it will be strictly substochastic i / a n d  only i] da> 0 

or some a. 

The idea of the above extension to the substochstie case is of course a trivial and 

familiar one: one first constructs the stochastic completion by adjoining a new index to I, 

and the restriction of the completion to I will be the most general substoehastie case. 

There is another complement, the so-called "extension to the boundary" discussed 

by previous authors. The idea is to construct a Marker  chain x* on the enlarged state space 

I* d--_aI U A with correspondingly enlarged transition matrix function 1-I*(" ) in such a way 

that  if in this process " the time spent in the boundary set A be deleted", the resulting 

shrunk process will be the given (or constructed as the case may be) x, I, 1-I. This idea goes 
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back to L~vy and has been developed by  ~eveu  and Williams. The algebraic par t  was 

already indicated by  Feller and in the one-atom ease by  Reuter. We shall show here how 

the construction of the latter authors can be extended to our case by a simple modification 

of Theorem 16.1. This is effected by  a more general application of the Lemma of w 14, 

which is indeed a kind of analytical shadow of I ~ v y ' s  idea of alloting t ime to fictitious 

states. The development of this paper  makes it clear tha t  this allotment may  be done for 

each boundary a tom separately. 

Let  k denote a general element of I* defined above. For  each a in A, choose a number  

pa >10 and introduce the new quantities (dropping " ^ "  as before): 

a de f  ab Zb ~(~ 

de f  

Thus c a, a ab and u ab are not  affected for a4= 5, but  if we denote new quantities by 

affixing "*"  to the corresponding old ones, we have 

u*~(~) = u~(~)  + f L  

so tha t  U* Of) = U(~t) + p ) J ,  

< ~ *  (~), 1> = <~(~ ) ,  1> + f L  

1 
E*"O.) = (y, + p,,;~ + u~(,~), 

I t  follows from (16.19) tha t  

M* (4) -1 = M(2) -1 + pM, 

0 " ( ~ , ~ )  = O ( L ~ ) + p l .  

u* (4) - u* (~) = (4 - ~) o*  (4, ~) = u(z)  - u (~ )  + p(z  - ~) x 

= M(~)-I  _ M(~) - I  + p ( ~ _  ~) I = M* (4) -1 - M* (~)-1, 

which is the new (16.19) needed for the verification of the resolvent equation. The sto- 

chasticity is verified exactly as before in (16.21) with the appropriate quantities starred. 

I t  should be  pointed out tha t  unless one begins with the canonical decomposition, the 

extended process constructed above will not yield the correct information on the boundar 3 

behavior of the original process. For instance, the transition of the new states in A among 

themselves will not be controlled by  the jump matr ix  (F~(o~)), as it should be, but  rather  

by ~ which may  not be the same mat r ix  when the decomposition is not  canonical. This 

leads to the subject mat te r  of the next  two sections. 
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w 17. Etude apprefeadle 

In  this section we begin by giving probabilistic meanings to the quantities, E ~, o ~,  

a~= b, which were derived analytically in w 14. Using these we shall be able to analyze 

in more depth the functions Fa~ �9 ) and in particular their limit values F~(0) and F~(oo). 

These results are also requisite for the problems dealt with in the next  section. 

A fundamental new random variable, NOT an optional one, will now be introduced. 

Def in i t ion  17.1. For each boundary atom a, let 

r~ = sup {s~(~)  n (0, fl-(o))}. 

This is the "last exit time from a before switch (changing banners)". 

Clearly we have, using the definition in (14.23): 

P~ < + ~ }  = 0  ~. 

If a is nonsticky, 7 a is just one of the sequence of times, finite in every finite interval, when 

the process reaches the boundary at a. If  a is sticky, it follows as in the Corollary to Theorem 

12.4 that  7 ~ E S  a - S  a, so that  in particular the process is by definition neither at a nor indeed 

at any other boundary point. Intuitively, x(7~-0)  is at an "inaccessible boundary" not 

definable by  means of the jump chain alone. Its behavior is best understood by  analogy 

with the last exit time from an instantaneous state (see [1; Addenda] and [2]). A more 

comprehensive new boundary theory must surely cover this situation but  for our present 

purposes it is opossible to circumvent this difficulty. The basic nature of 7 ~ is clearly re- 

flected in the theorem below. 

T ~ o R ~ M  17.1. W e  have ]or each a and  a~ :b :  

Pa{7~ ~<t} =Ea(t ) ;  (17.1) 

Pa(Ta <fl~; 7 ~ E ds; fia E at; x(fl ~) = b} = Ea(ds)Oab(t - s) dr. (17.2) 

Remark .  The meaning of the differentials will be explained in the proof. Note also that  

in (17.2), since fl~>0, "x(fl a) = b "  is well-defined, but  later when/~a may be zero we must 

write " f l~ES b'' instead, as in the proof of Theorem 15.1. 

Proo]. We begin with the relation, valid for each t 1>0: 

Pa (Ta > t) = ~ pa {~a > $; x(t) = i; o~ t < ~ ; x(act) = a) .  (17.3) 
i 

For we have 7a~<fla; and on the set {fla>t}, if gt-- + ~ then S a N (t, oo) =O; while if ~ <  
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and x(~t) ~= r then ~t=~ a and S a ~ (t, ~a) = 0 .  Hence either case implies y a ~t. This proves 

(17.3). Using (14.33), the right member of (17.3) may be written as 

<r  L a ( ~ ) >  = 0 ~ ( t )  = 1 - ~~  (17.4)  

proving (17.1). A similar argument establishes the more specific relation 

pa {ra < s < t < ~ a  < t ';  x ( ~  a) = b}  = (Qa  ( s ) ,  L b (t'  - s )  - L b (t - s ) )  

= f~  (~la(s - u), Lb(t ' -- S) -- Lb(t -- s)} dEa(u), (17.5) 

the second equation by {14.17). Since the last-written integrand above is 

<7" ( s  - u ) ,  1 b ( v ) )  g v  = 0 "b (s  - u + v )  d v  = o "b (t '  - u )  - o ~b (t  - u )  
- - 8  - - $  

by (14.20) and (14.21), the last member in (17.5) reduces to 

f t  l~a(du) f Oab(r--u)dr. 
O.s) d [t , t ' )  

I t  follows that  for 0 < s < s' < t < t', 

which is what is meant  by (17.2). 

COROLLARY 1. We have 

P~{7 ~ < ~-<< t; ~ @ )  = b} = f l  [r - o ' ~ ( t -  s)] ~E ~ (s); 07.6)  

1 ~ {7  ~ = ~ < t; #" e S ~} = ~ ~  (t) [Fa~ ( ~ )  - o ~b (0)].  (17.7)  

Proof. I t  follows from (17.2) and Fubini's theorem on product  measure tha t  the 

left member of (17.6) is equal to 

fto.,)E~(d~) ft~.,)O~(t- s) as 

which is the right member of (17.6). Now we have by Definition 14.1 and (14.35) that  

Pa{~6~<.t; f l"e~}=F"b(t)= [ F a b ( ~ ) - o a b ( t - s ) ] d E " ( s ) .  (17.8) 

Subtracting (17.6) from (17.8) we obtain 07.7). Q.e.d. 
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I t  is essential to understand the meaning of the probability in (17.7). How is ?a =fl~ 

possible? This happens if and only if 

(a situation envisaged in the Remark on p. 39 of [If). If  a is nonsticky, then x(y~)ES"; 

if a is sticky, we have already noted that  x@ a) 6 S ~ - S ~. In either case the second relation 

above is possible only if b is sticky, by  Theorem 12.5. :Needless to say all the assertions 

above are true with probability one only. We have inoidentally discovered an important 

number, now to be defined. 

Defini t ion 17.2. For  a # b, let 

dob=P~(~) -a~(0). (17.9) 

COROLLARY 2. 1[ a is not a recurrent trap, t hen /or  every b # a ,  

I n  particular, d a~ = 0 / o r  every a i f  b is nonsticky. 

07.10) 

Proof. If  a is not a recurrent trap, we know from Theorem 14.4 that  E : ( ~ )  = 1. Letting 

t t c~ in (17.7), we obtain 

Substituting this back into the right member of (17.7), and comparing with (17.1), we 

obtain (17.10). 

COROLLARY 3. For every a and b, a # b ,  we have 

d~b -- ,. F ~  (t) - - u m  
t~o E (t)" 

(17.11) 

Proo]. Observe first tha t  E~(t) >0  for t >0,  from Corollary 1 to Theorem 14.7. We have 

by  (14.34) and (14.36) 

1 t + F ~ (t)l. F'b(~ )=E--~) {foo~(t- s) dE~(s) J 
Letting t ~ 0 the corollary follows, since o~(t)Zoo(0).  

COROlLArY 4. For every a # b ,  and on the set {Ta<t), we have 

r~{t < ~  < ~ ;  x@) =b ly o} =o~(t-yo): (17.12) 
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l~(ra < ~  < ~ ;  x@) =b IF a} =o~(0). (17.13) 

~{~a ~,~ i ~,o} = ~ a ~ ( ~  ); (17.14) 

pa{~a = + ~ [~a} = Q~ (~).  (17.15) 
Proo f .  By (17.2) 

{~a <<. s < t < fla; x(~a) = b} = f ~  a ab (t - u)  d E  a (u) .  pa 

This being true for fixed t and arbitrary s <t,  we have (17.12). Next,  we write for each 

t>~0: 

F a ~ ( ~ ) = P a { ~ a < t ;  ~ a e S ~ } + r ~ { r a < t < ~ a ;  x @ ) = b } + r a { t < ~ , a ;  x @ ) = b } .  (17.16) 

The first term on the right side is Fab(t); the second is by (17.2) equal to 

:(ra~(t s) ~(ds); 

hence the third is equal to 

F ab ( ~ )  - F ab (t) --  f ~  o ~b (t --  s) E a (ds) = [1 - E ~ (t)] F ab (cr ) 

by (14.35). This means, by (17.1): 

1)a ( r  a > t; fla e S 0} = r '  ( r  a > t} 1)a(~ a e S 0} 

so that  there is independence and (17.14) follows. From this (17.15) follows by (14.4). 

Finally subtracting (17.10) from (17.14) we obtain (17.13) which is a limiting form of (17.12). 

The next  theorem is the completed version of Theorem 5.3 in [I]. The proof there is 

analytic and leaves one important  point unsettled, concering L~(0 +),  which is specifically 

mentioned on p. 42 of [I]. The difficulty is resolved here since the relevant sample func- 

tion behavior has now been clarified and the new proof, given in perhaps excessive detail 

here owing to past failure, is probabilistic. We put  F ~ (0 )=  0 for each a below. 

T~]~ORV.~ 17.2. F o r  each a a n d  b i n  A a n d  0<t~< + ~ the l i m i t s  below ex is t :  

L a~ (t) ~flim ( ~  (s), L b (t - s)>, 
s,~ o 

L ab (t) ~f lim <ga (s), L b (t - s)>; 
s~0 

a n d  we  have  

F u r t h e r m o r e ,  i /  a is  s t i cky ,  then  

L ab (t) - L ~b (t) = F ab (0) = L ~b (0 + ) >i L ab (O + ) = O. 

L ~ (t) --= L ~ (t) -~ 8 ~6. 

{17.17) 

(17.18) 

(17.19) 

(17.20) 
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Proof. For convenience' sake, let us state the following ]emma which is trivial to prove 

as soon as it is formulated but  useful also in other'similar circumstances. 

LE~MA. Let {As, s~>0} be a /ami ly  o/sets in ~, and A also in ~. Suppose that there 

exists a sequence o] sets ~ in ~ such that ~ / z  ~ and such that 

As rl~ = A  n ~ 
whenever s < E,, where e~'~ O, then 

lim P(A~) = P(A). 
s4o 

To prove Theorem 17,2 we prove first (17,20). If  a is sticky, for each t > 0  and 

a . e .  r there exists an integer n o such that: 

u ~-,(~o) <t ,  x ( ~ - , ) = a .  

Let  no(w ) be the least such integer and put  So(W ) = zr Then s0(o ) is a random 

variable satisfying for a.e. ~o: 

(i) 0 < So(CO) <t, 

(ii) x(s o (~)) = a, 

(iii) U S~(r n (0, s0(w))= O. 
b4=a 

The last as a consequence of Definition 12.2 and Theorem 4.6 of [I]. 

Let  ~n ~f {r : s o (r > n-l}, 

A~a-e=f{s<fla; as<~t; aseS~}, s>~O, b e A  

We have A~ f l ~ n = ~  f3~2n whenever s < n - l ;  hence by the Lemma above 

lim Pa(A~) = pa(~) = 1. 
S~0 

Now by definition we have 

Pa(A~) = <Ca(s), L~(t - s)>, 

and consequently we have proved that  L~  (t) ----1. Since 

ljab(t) <~ lira <Ca(s), 1> ~< 1, 
beA s~0 

this implies L~b(t)~0 for b # a .  Since ~=~(.)~>Qa(.), the first equation in (17.20)now 

follows. We have proved (17.17)-(17.20) for a s?~ieky a. 

From now on in this proof tet a be nonsticky. Let  

A~176 A'=~\U,_'X ~. 
y e a  
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On A', ~ > / ~ >  0 a.e. and  if s < ~(eo), t hen  ~8(eo) = ~((o). Hence  if f ~  = {~o : ~(eo) > n- l} ,  

we have  
a,~ n~' n A ~ = ~  n~' n,~ 

whenever  s < n  -~. Hence  as before 

nm P ( A '  n A~) = P ( A '  n A~). 
s~0 

Since a is nons t icky,  under  P~ we have  a a >  0 as well as ~ > 0 on A~ for s > 0, so t h a t  

p ( A '  A ~ = n , ) = P ( A ~ )  (ea (s), Lb (t -- s)) .  

Together  wi th  the  preceding relat ion this proves  

Next ,  le t  

Then  we have  by  definit ion 

Zab(t) =P(A'  n J~). 

.~b def 
s =  ~o:,<~t,x(o~s)=b}, s > 0 .  

(~(8) ,  Lb( t -  8)) -- P (M~) -- ~ P ( A ~  n M~)+P(~' n M~). 
t e a  

Since 4 '  n (Mb\A~) c A  ' n { ~ < s ) ~ O  as s ~ 0, we have  

lira Pa(/V n M ~ ) =  lira Pa(A ' n A~), 
sJ, O s40 

hence the  last  t e rm  above  converges to L ab (t) as just  shown. For  each s t icky c, we have  

b y  L e m m a  1 of w 15: 

lira p a  (A c (I M s  b) = S ac (0) l i r a  pc  ( M  b) ~ •ac(0 ) Lcb(t) = j~,ac (0) (~cb, 
s~o 8J, o 

the  second equat ion  above  being an  appl ica t ion  of (17.17) and  the  th i rd  of (17.20) 

bo th  wi th  a = c. Combining these, we ob ta in  

L ab (t) = ~ ~ac (O) (~cb .~ j~ab (t) = F ab (0) "~ j~ab (t). 
ceA 

This proves  the  first  equat ion  in (17.19); to p rove  the  second, we observe  t h a t  b y  

definit ion 
L a~ (t) < pc {Sb n (o, t) :~ 0}  

and  consequent ly  L ab (0 § ) ~< F ab (0) ~ L a~ (0 § ). The  rest  follows. Q.e.d. 

The  following resul t  is an  essential  sharpening of the  preceding theo rem and is 

also the  ma jo r  s tep towards  the  ident i f icat ion p rob lem in the  nex t  section. I t  seems 

to depend a lmos t  precar iously  on the  finer proper t ies  of b o u n d a r y  a toms.  
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THEOREM 17.3. For  each a, we have 

lira 1 - < ~  (s), L"(oo )> = ~ ;  
~r E~(s) 

(17.21) 

and i] e} a = l ,  /or O < t <~ + c~ : 

1 .  <~a(s), L~(t)> 
= 1 + o ~  (t).  (17.22) 

For  each c # a  and  0<t~< + oo: 

lira <~(s ) 'LC( t )>  = F a r  
.~0 1 -  <~(s), L~(~r 

(17.23) 

in  part icular lira <~(s ) ,  L~(co)> 
~0  1 - <$a(s), La(oo)> - Far (17.24) 

Proo]. We have by  (15.1): 

<~a (s), L c (t)> = <Qa (S), L ~ (t)> + b4=a ~ f [  <~b (8 -- U), L c (t))  d F  a~ (u). (17.25) 

The first t e rm on the right is equal  to 

f [  <Va (s - u),  L~(t)> dE~(u) = f ~ [ o ~ ( s  - u)  - o~ ( s  - u + t)] dE ' (a ) .  

Recall ing (17.11), we have as s ~ 0: 

F ~" (s) ~ E a (s) d ~ .  (1) 

Subst i tu t ing the last  two equat ions in (17.25), we have as s ~ 0: 

<~(s) ,  Lc(t)> ,-, Ea(s) {aa~(0) - a~(t)  + ~ d~LbC(t)}. 
b4:a 

But  by  Corollary 2 to Theorem 17.1, d~b=0 unless b is sticky, and if so Lbc(t)=~bc 

by  (17.20); hence 

dabLt~(t ) =  ~ dab(~bc = if a # e ,  
bg=a b #=a i f  a = e .  

Consequent ly  if a4=c, we have by  (17.9): 

< ~ a ( s ) , L C ( t ) > " E a ( s ) { a a b ( O ) - a a c ( t ) + d ~ } = E a ( s ) { F a c ( ~ ) - o ~ ( t ) } .  (17.26) 

(1) u(s) ~v(s) means liras ~ 0 u(s)/v(s) = 1. 

10-  652944 Acta mathematica. 115. Imprim6 le janvier 1966 
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Next,  putt ing a =  c and t = -~ cr in (17.25), we have 

<~'(s),L'(~)>= f:a~(s-u)dE'(u)+~.o: 
The first te rm on the right side is equal to 1 -  5~E a (s) by Corollary 1 to Theorem 14.7. 

Hence as s ~ 0 we have as before: 

1 - ( ~  ( s ) ,  L a ( ~ ) )  ~ E "  (s)  [6  ~ - ~ .  d a b L  ba ( ov  )] = E a (s )  5 a. 
b~a 

This proves (17.21), and together with (17.26) proves (17.23). I f  ~a_ 1 a similar argu- 

ment  yields 
1 - <~' (~), L ~ (t)> ,-, ~;~ (8) [1 + o ~ (t)]. 

Hence (17.22) follows from this and (17.21). 

Remark. (17.24) may  be writ ten as 

po {~(~)  = ~} 
l i r a  = F ' ~  ( ~ ), 
8J, o 1 -  Pa{x(as)---- a} 
$ > 0  

or even more suggestively as 

h. Pa(x(o~s)=b} F~ 
m - -  

~ 0  l~{x(~s) = c} ~ ( o ~ )  
S:>O 

provided F ~  Is  either of these relations "intuit ively obvious"? 

w 18. I d e n t i f i c a t i o n  

In  this section we consider the following problem. Given ]-~ = (Pu(")), how to "find" 

the quantities L ~, ~a, Fab, ~a, e~, Ea, ~a, 0 ~,  introduced earlier in the paper? These have all 

been defined in terms of the process {xt}, bu t  how can they be expressed, or a t  least, deter- 

mined by  means of l-I? The words "expression" and "determination" are of course them- 

selves subject to interpretation but  our results below will be stated in specific ways. Th i s  

problem, to be called tha t  of "identification", has its proper interest, but  we shall also 

use its solution to answer the questions raised in w 11, concerning the tracking down of 

the canonical decomposition and the construction of stopped processes. 

Let  A be a set in the Borel field D ~ generated by  {xt, 0 ~< t < oo }. Since the basic proba- 

bility measure P on D ~ is uniquely determined by  its values on cylinder sets of the form 

{x(tn) =j~, O<~n<l}, tn>~O, jnEI, i t  is determined by  ]-I and the initial distribution of the 
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process. In particular, Pt{...} for each i EI is determined by 1-[ alone. However, many in- 

teresting sets A must in practice be defined in terms of a "nice version" of {xt} (see [1; 

w H.7]); hence the following simple observation is necessary. 

L~M.~ .  Let two arbitrary stochaztie processes {xt) and {~t} defined on the probability 

triple (~, ~, P) be standard modi/ieations o/ each other, then the Borel /ields D ~ and ~e gen- 

erated by them are identical provided they be both augmented (by all P-null sets). 

Proo]. If  A E ~  o, it is well-known that  there is a countable set {tn}, heN, such that  

Ae~{x(tn), neI~}. For each n, P{x(tn)=2(t~)}=l and so P{VneN:x(tn)='2(tn)}=l. I t  

follows that  A differs from a set in ~{2(tn), neN} by a null set, hence A e ~  0 and the proof 

is finished. 

As a consequence of the lemma, quantities such as those mentioned above are deter- 

mined by YI in the sense that  for two processes having the same transition matrix ]-~, 

these quantities have the same values. However, even in the simplest cases involving no 

boundary, an explicit expression may be hard to come by, for example the taboo probability 

oPo~(t) used in the proof of Theorem 14.3. Here indeed ties the great advantage of the 

probabflistie method, by relying on the sample functions of the process rather than its 

transition matrix. However, we are now pushing matters in the opposite direction. 

To recapitulate from the beginning of the story (see [I; w167 2-4]), Q is the initial deriva- 

tive matrix (p[j (0)), supposed to be conservative; given Q, O(. ) can be constructed by a 

purely analytic iteration procedure (given 25 years ago by Feller) as the minimal solution 

of the Kolmogorov differential equations, both backward and forward. Q also determines 

(it is trivially equivalent to) the jump matrix P=(rtj) where r~j= (1 -Stj)y~jqt -1. Now it is 

necessary to confront the boundary. Under Assumption B, that  the passable part of the 

boundary be atomic, each boundary atom a, a EA, corresponds to an essentially uniquely 

determined atomic almost closed set A a of I, and we have (cf. [1; w 1.17]): 

L7 (c~) = lira P, {Z~--> a} = lira ~ r~;', 
n--~oO n - - ~  ] E A a  

where {X~} is the jump chain whose probability behavior is controlled by its transition 

matrix P. The above is substantially Feller's definition of a sojourn solution [6]. There 

is another way of identifying {La(oo), aEA}: they are the extreme points of the cone of 

solutions of the equation: 
Qe=O 

with e ~< I; see the discussion around Theorem 4.2 of [I]. This is also due to Feller. 

Next, ~a may be identified by Theorem 4.5 of [I]: 



1 5 2  t ~ a t  L ~  o ~ r N o  

~ (t) = lim PzJ ($) (18.1) 

with probability one, for each j and t>0.  The preceding formula, like the one above for 

La(oo), uses the jump chain and its boundary behavior. This seems inevitable as somehow 

the fact of approaching the boundary at  a specified atom must be expressed, nevertheless 

there is the question of the "nearest" way of doing so. One may remark in passing that  the 

Martin boundary theory (see [8]) yields a similar but less precise expression for L ~176 as 

follows: 
(n) 

~ rtz. ~ 
L ~ ( o o )  lira ~=o 
L~(oo) x,-~= ~ (") 

L r0xa 
n=0 

where 0 is some fixed state. 

Given $~ and ~ the probability measure P~{...} on the Borel field ~{xt, t>O} is uni- 

quely determined, since if 0 <tl<.. .  <t~, and j~eI we have 

1-1 
P={x(t , )  ---- ~ . ,  1 < n ~< t} = ~?. (t,) YI p~ , j , , ,  (t.+, - t~). 

This may be extended to include the sets {x(O)=j}, since 

l ~  {z(0)  = j} = n m  P~ {x(t) = j}.  
t~0 

Analytically, the identification given for {$=, a E A} is sufficient to yield the fol- 

lowing useful uniqueness theorem (cf. Reuter [14]). 

T ~ o ~ E ~  18.1. Suppose that there is a decomposition o/ the form 

fo 1-I(t) = r  + ~, ~ ( t  - s) dr,,  (s), (18.2} 
aeA 

where [I, alp, L have "previous meanings; and either /or each a, ya is measurable and >1 O, 

or/or each a, S~ e-U [Ya(t) l dt < oo ~or 2 > O. Then we have/or each a and almost every t: 

y= (t) = ~ (t). 

11 in addition ya(. ) is right or left continuous, then there is equality above /or every t. 

Proof. Taking Laplace transforms, we have 

~,j(4) = Lj(4) + ~ Lib (4) ~ (4). (18.3) 
b~A 
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The alternative condition on the ya's ensures that  the Laplace transforms of the con- 

volution in (18,2) is the product indicated under the sum in (18.3), if we observe 

that  0<~[ ( t ) - ( I ) ( t )< I .  Now substitute Zn for i in (18.3) and let Z,-->a as in (18.1). 

As a consequence of Theorem 4.1 of [I], we have 

lim L~,~ (,%) = 6 aa, lira [x~J (t) = O; 
g --~ a gn.'-> a 

this together with the Laplace transform of (18.1) yields at  once 

$? (4) = 0 + E ~'~9] (4) = 9~ (4). 
b 

The assertions of the theorem follow from the uniqueness theorem for Laplace trans- 

forms and the continuity of ~ ( .  ). Q.e.d. 

Given ~a and La (~ ) ,  a E A, the other quantifies can be expressed purely ana. 

lyrically without further intervention of the boundary. This will be exhibited, repeating 

previous formulae to avoid excessive cross references, in the following summing-up. 

THEO~E~ 18.2. (1) a is not a recurrent trap: 5a= 1. 

L ~ (0 = [1 - 0 ( 0 ]  L ~ (oo); 

I + a~(t)-- lira I - <~(s), L"(t)> 
�9 40 1-<~(s) ,La(oo)> ' 

Ea( �9 ) is the unique solution o~ the integral equation 

S: u [ ~ + ~ f f - s ) ] d E ~ ( s ) = l ;  

Fab(~)=l im  <~a(s)'L~(c~)) a#b;  
~ o  1 -  < ~ ( s ) , L ~ ( o o ) >  ' 

0 ab  ( t )  = E ab ( c o  ) - -  J i m  <~a ( s ) ,  L b ( t )>  
, ,o 1 -  <~(s), La(c~)> ' 

e? (t) = ~? (t) - Z ~ ~ (t - s) d~ o~(s) q 
b # a  do 

= 0  i /  

~oo e ~ (t) dr; e a 
d o  

a#b;  

j E I a, 

jr 

~ (t) = ~ ea[I- r  
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(2) a is a recurrent trap: ~a=O. 

La(t) az above; 

e?=foOPOj(t)dt, 0 fixed in I a, jrila; 

~la(t) a8 above with the e lust de/ined; 

o~a(t) = <~a(t), L ~ ( ~  )> ; 

Ea( . ) as above; 

~a=~a; F a b ( . ) ~ a ~ ( . ) ~ 0 ;  a ~ b .  

As iUnstrations, the preceding theorem enables us to solve the following problems. 

The point is we can go from one set of analytical data to another without introducing new 

quantities. 

Problem 1. Given a process constructed by Theorem 16.1, with za=La(~) ,  ariA; to 

find its canonical decomposition as given in Theorem 15.2. 

The solution is immediate since the construction produces ~ ,  ariA, as well as i-I, 

from which we determine ~ by putting ~a = 0 if and only if 

<~(s), 1 -La(~)> ~-0, 

otherwise 8~ = 1. Now in either case of Theorem 18.2, we obtain ~ ,  E a, ~ ,  F ~, thus retriev- 

ing the canonical decomposition (15.6). 

Problem 2. Given L~{cr and ~ ( .  ), ariA, constructed or otherwise; to find the transition 

matrix of the process stopped at A,, a subset of A. 

If  {x(t)} is the original full process, the stopped process {~(t)} is defined as follows. 

Recalling the definition of cr ~ in w 13, we put  ~ ' = i n f a e A , ~  a, and 

e(t)__{~(t) if 0<t<~  ~,, 
0 if t > etA,; 

where 0 is the adjoined absorbing state. For  A, = A -  {a}, the stopped process is just the 

a-process defined near the beginning of w 14, with the transition matrix 1-I ~ given there. 

The general solution to Problem 2 should now be obvious. First we find ~ and F ~ by 

Theorem 18.2; then we set 
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or its Laplace transform 

~(~)=r247 ~ ~(2)~b(2), aeA1. 
bcA~ 

Let the restriction of P(2) to A 1 x A I be P~ (2), then I -  ~1 (2) is invertible as in the 

proof of Theorem 15.2. Hence we may solve for ~: 

~(2) = i x -  p~ (2)]- '  b (2); 

and H(2)---r247 ~ La(2) ~a(2) 
aeA1 

is the Laplace transform of the required stopped transition matrix (without completion). 

The procedure given in Theorem 18.2 is somewhat tedious to follow in practice (see 

the Example at the end of this section). Quicker results can be obtained by uncovering a 

certain linear transformation which reduces a given decomposition to the canonical form. 

In what foUows we shall again omit the " ^ "  on Laplace transforms. 

T~EORE~ 18.3..Let 0 < 2 <  ~ ;  and 

~(2) =M(2)~(2), 

where M(2) = [ I  - ~2 + U(2)] 4 

is any construction given by the first part o~ Theorem 16.1; and let ]~I, ~, ~ ,  ~ be any other one. 

Then there exists a constant invertible matrix C such that 

~(') =C~(.). (18.4) 

Proo/. We have /(2)y(2) =~(2)=M(2)~(2). (18.5) 

Recalling the resolvent equation, valid for 0 <2 < ~ ,  0 </~ < ~ :  

(2 -~)~(2) ~(~) =~(~) -~(2) 

for 7, and a similar one for ~, we obtain from (18.5) 

M(2) It/(#) -~7(2)] = ~r(2) [~(~) - ~(2)]. 

Cancelling against (18.5), we have 

MB)~(~) =M(~)~(~). (18.6) 

This being true for every 2>0, tu>0, we may fix any 2=2o>0 above and put 
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to conclude (18.4). 

I n  Theorems 18.4 and 18.5 below we shall assume tha t  the set of IAI vectors 

{~a(/z), a E A}, each regarded as an element of the vector space 7~/(I) mentioned in De- 

finition 13.1 above, is linearly independent for some value of/~: 0 < # <  co. Then it 

follows at  once from the resolvent equation for each ~a(. ) tha t  it is linearly independent 

for every such value of p. Under this assumption the equation (18.6) implies tha t  we 

have for every ~t, 0 < ~ < cr : 

~I().)-IM(~) = C ,  
where C is as in (18.4). 

THEOREM 18.4. I /  I - - ~  is invertib~ /or some ~ in Theorem 18.3, then it is invertible 

/or every ~ and we have 
c=(z-~)(1-fi)-~. (18.7) 

This situation obtains i /and only i /all  boundary atoms are nonrecurrent. 

Proo/. By (16.6)-(16.9) we have <~a(p), 1> < oo for each/~ > 0. Using the resolvent 

equation for ~ we have for each ~ > 0: 

uab(~) = ~ < ~ ( ~ ) ,  zb> + (/~ - ~) <~(/~), )tr zb>; 

hence lima $ 0 uab(A) = 0  for each a and b by  (16.3), namely lima ~ 0 U(A) = 0. Since M(A) -1 = 

I -  g~ + U(~) we obtain 
lira M(2) -~ ~- I -  ~ .  (18.8) 
at0 

I t  follows from a well-known proposition of finite matr ix  theory tha t  (18.8) implies 

lira M(t )  = (1 - ~ - ~ ) - 1  

in the sense tha t  the existence of one member  of the equation implies tha t  of the 

other and also the equality of both. Hence if I -  ~ is invertible, then 

l i]~ M(~) : l i ra  M(~)  0 -1 : ( l  -- ~ ) - 1  C-1 

which implies tha t  I - ~  is invertible and 

proving (18.7). On the other hand, for the canonical ~ = (Fa~ I - ~  is invertible unless 

there exists A 0 :  A such tha t  ~ [ ~, is stochastic. This is the case ff and only if the boundary 

atoms in A o are recurrent. Thus I - G  is invertihle if all the boundary atoms are non- 

recurrent. 
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THEOREM 18.5. I/all boundary atoms are nonsticky, we have 

C = ( I - ~  + 8(r -~'~ + V(cx~)) -1. 

This is proved in a similar way as the preceding theorem. We now give an example 

to show the possibility of distinct decompositions mentioned in w 11. 

Example. 

early independent and such that  

Let A = ( a ,  b}; given z ~ and z ~ with z'~+z~ suppose that  ~ ,  ~o are lin- 

c.=O, u~(~)  = + ~ ,  u~(~)  =�89 
c o = 1, u~(~)  =o, Uob(~) < ~ ;  
~ o  = 1, ~b, =0. 

These choices are consistent with the conditions of construction; in particular the numerical 

values of ua~ and c o may be fixed by a proportional constant factor. 

We have 

I - t 2 +  u ( i ) = ( 1 + u ~ ( 1 )  - 1 + u ~ ( t ) ~ .  
0 1 "~- U bb (i)  f 

M ( 1 ) = [ I - ~ +  U(1)]-I=(Eao (t) E'Z(t) EbO')[1--uab()')]) 
Eb(t) 

where EC(2) = [1 +uC~ for c=a, b. Thus 

M()O u~h~ .... = ~/E~(1)u~ "E"(;OU"b(;O+~(1)~(1)[1--u~b('l)]Ubb(;O) 
E b ( t )  u ~b (~) 

Noting that  

( ~  (1), z~  = ~ M "~ (i) (~c (t), z ~} = ~ M ~ (4)t -1 u c~ (1)= 1-1M(i) u(~)[% 
C C 

we can compute from the preceding matrix to obtain 

lira (~(2) '  zn} uab(c~)+&b(c~) 
~ 1_ <~(i),z~ > 1+ ub~(~) u < l ,  

l i r a -  <~b(1),Z a) = 0 .  
a f~  1 -- <$b(t), Z~> 

Thus oanooioal O)no  oonstruoted O--(: :) 
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Theorem 18.4 is applicable and we obtain 

b, b. 

The canonical decomposition is therefore 

[C(I - ~ + U(~t))] -a C~/(X) = [I  - ~ + ~7(~t)]-x ~()t). 

These computations can also be made directly by Theorem 18.2. 

w 19. Complements 

The first complement concerns nonsticky atoms, for which many  of the results and 

their derivations can be simplfied. While our general discussion includes both sticky and 

nonsticky atoms it is worthwhile to examine for a little the simpler case where the intuitive 

meaning is more easily recognized and the analysis follows a smoother pattern.  Indeed 

the sticky case may  be regarded as a suitable limiting phenomenon, closely related to the 

passage of compound Poisson laws to an infinitely divisible law, which deserves further 

investigation (cf. in this connection a conjecture of Reuter  [14], since proved by  Kingman 

[III]).  

There are several ways of direct handling of a nonsticky a tom a. One is to begin with 

the Lemma in w 14 and observe the special form of Ea( �9 ) as indicated in Theorem 9.1 of [I]. 

A more instructive approach, however, is to begin with the basic interpretation of Ea( �9 ) 

given in (17.1). Recall from Theorem 12.5 tha t  if a is nonstieky and the process starts at  a, 

then the successive times a t  which it is reached is a sequence of optional random variables 

0 = T  0<T I < T  2<.. . ,  

the number  of which being finite or infinite with probabili ty one according as a is non- 

recurrent or recurrent, by  Theorem 12.1. As usual we define all the non-existing , ' s  as + oo. 

I t  is clear from the meaning of L aa in Theorem 17.2 tha t  L~a(0 + ) = 0  for a nonsticky a, 

and tha t  La~( �9 ) is a probabili ty distribution function if and only if a is a recurrent t rap.  

I f  we write L ~maa for the n-fold convolution of L m with itself, with L r176 =e  the unit  mass 

a t  0, we have by  the Strong Markov property: 

Pa{Tn </5 a < Tn+l; Tn ~< t} =Ltm~ [1 -L~162 )]. 

Now it follows from (17.1) tha t  

Ea( t )=  ~ p a { r . < f l " < r . + a , r , , ~ < t ) =  ~ L ' " m ( t ) [ 1 - L ~ ( o ~ ) ] .  (19.1) 
n=O n=O 
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I t  is clear that  Ea(t) is just the expected number of times of reaching a in time t. 

[When a is sticky, Ea(t) can be shown to be the expected "local time at a",  but  this inter- 

pretation seems less convenient than that  given in (17.1).] Letting t r 0 in Corollary 1 

to Theorem 14.7, we obtain 
Eo(O) [~a +o~(0)] = 1 

1 
so that  E a (0) = 1 - L ~a ( ~ ) :  5~ + o~ (0)" 

I t  is easy to express F ~b in terms of Lab: 

(t) -- L ab (t) + f l  Fab (t - s) d L  a~ (s), a ~ b, F~b 

or in terms of Laplace transforms: 

Lab(2) (19.2) p~b (~t) = 1 - s  

In  particular F a b ( ~ )  l _ L a a ( ~ )  Ea(O ) . 

On the other hand, we have by  (17.19), (14.35) and (17.9): 

F ab (0) = L ab (0 + ) = E a (0) [F ~b (~o) - o ab (0)] = E a (0) dab. 

Next  we have, by  (17.18), (14.17), and (14.27), 

/~b (~) = lira ( ~ ( s - u ) , L b ( t ) ) d E ~ ( u ) = E " ( O )  Oab(s)ds. 

Recalling (5.7) o n  p. 40 of [I], in our present notation: 

~'g (t) %fI '~ {~ > 0; x(t) = i},  

it  is clear tha t  O~ (t) = ~ (t) + ~ (t - s) d L  ~ (s). 

Namely, ~'g(t) represents the probability, starting at a, of x ( t ) = i  without having 

reached any boundary atom before time t, while Q~ (t) tha t  of the same without reach- 

ing any boundary atom except a. In Laplace transforms, the equation above is 

~a(~) (19.3) 
b~(~)-- 1 - / ; ~ ( ~ )  
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Substituting (19.2) and (19.3) into (15.2), we obtain 

1 { ~ ( ~ ) +  Z L~ 
(19.4) 

or clearing of fractions: 

which is (5.20) of [I]. 

I t  now follows from 

~a(~) = ~(z)  + Y L .~(~) $' (z), 
b~A 

~(2) =~(~)=$~(~)~(~) 1-L~(r162 E~(0) 
1-L~(z) 1-L~(~) ~(~) ~_L~(~)~(~) 

tha t  ~ (  . )= Ea(O) ~'( " ). 

Thus ~ is the par t  of ~a = Ea ~e ~a which arises from the mass of E a a t  0. The possibility of 

using ~, which has an easy meaning, rather  than  ~?, accounts largely for the simplicity of 

the nonsticky case. 

The general reduction sketched above shows the sense in which the development in 

w 14 is an essential extension of the "first approach" in [I, w 5] to the case where some atoms 

may  be sticky. 

The second complement concerns the "last  exit t ime from a before t ime t," as dis- 

tinguished from the "last exit t ime from a before switch" introduced in Definition 17.1. 

Definitiou 19.1. For each a and t>~0: 

~? (~) = sup { s  ~(~) n [0, t]} = sup {s: 0 < s < t; ~(s, ~ )  = a}. 

This is the obvious extension of the last exit  t ime from an ordinary state i before 

t ime t ([1; p. 261] and [2]); see also Corollary to Theorem 12.4. 

We have then 

P~ < s < t < ~~ x(0 = j} = Y. o~ (~)/,J(~- ~) 
1 

(t--u) dE"(u). (19.5) 

Summing over i:  I~{7~ ~<s~<t<fla} = ~ v ) . ( t - u ) d E a ( u )  �9 

Thus we have in density form, for 0~<u~<t: 

i ) •  t z  {~,~ e du; t < ~ }  = ~ ( t -  ~) dE ~ (u), 
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and ~.yt e du;  t < ~';  x( t )  = j}  = ~l~ (t - 

Putting s = t  in (19.5), we obtain 

e? (0 = f~v? ( t -  u) dE~(u); 

this then is the meaning of the fundamental formula (14.17). 

I t  is interesting to compare this with Theorem 17.1 by calculating the following 

more specific probabilities: 

e~ < s < t < fla; z(t) = ]; at < u; x(~t) = b} 

= ~ e? (~)/~(t- ~) L~ (~- 0 = f ~  ( t -  r) L~ (~- 0 dE ~ 

P ~ { r ? < 8 < t < ~ ;  x(t)=]; ~ - -  + ~ }  

/: -- ~ 0~ (s) ]~j(t- 8) [ 1 -  L j ( ~ ) ]  -- ~](t-r)[1-Lj(u-O]dEa(r). 

Summing over j, we have if t ~u :  

P'~{7~ < s < t </~'~; ~ t<u ;  x( . t )=b} 

= ; [(~ab(t-r)-o~b(u-r)] dE'(r) = ; ft:f O~b(v) dv dE~(r), 

or in density form, valid for each a and b (not necessarily distinct): 

pa { t < fl~; ~,? E ds; o~t E d u  ; x(  o:~ ) = b} --- E a ( ds  ) 0 '~b ( u ) du .  
We have also 

These results explain quantitatively the second sentence of [I]. 

Finally, we shall give a description of the boundary behavior of sample functions in 

the general ease discussed in this paper, namely under A ,  B', C1 and D. This will be 

seen to be the completed version of the description given on pp. 4..5-46 of [I] for the ease 

where all boundary atoms are nonstieky. A comparison of the two will show again how the 

present approach does complete the pre~ous one. 

Beginning at  time fl0 =0 with the banner (boundary atom) Zo, let the successive times 

for changing banners be fl0 ~</~1 ~.. .  ~<~ ~<... where the sequence is terminated at the first 

r which is + c~, or continued indefinitely if they are all finite. Note that  each ~ may equal 
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fi~+l with positive probability. Let  the successive banners be z0, z 1 . . . .  , zn, ... so tha t  any 

two consecutive ones are distinct and tha t  between time fin and fin+l it is the banner zn which 

is flying. The t ime-atom process 

o, 8x . . . . .  8~, 

with state space A x (0, oo) is a Markov process characterized as follows: 

FISh§  ~ 80 . . . . .  8n-1, fin 

P /~n§ = + o~ I f i l  . . . .  f i n - l ,  fin = e * ( ~  

The process {zn, n >~ 0} is a discrete parameter  Markov chain with (Fab(oo)), (a, b)e A • A, 

where F ~ ( c ~ ) = 0  for each a, as transition matrix. The banner process, defined on [0, o~) 

to be at  zn in the time intervM [fi~, fin+x), is a semi-Markovian process (see Pyke IV]). 

Between each change of banners, namely in each time interval (fi~, fib+l), the ordinary states 

i line up under the banner z~ with the following probabilities: 

P x(O-- i , t<f i~§ 8o . . . . .  8n-~,Sn = =O~(t--81, O < 8 < t .  

Summing over i, we have 

. . . .  zn-x, z n = a l = ~ ( t _ 8 / ,  O < 8 < t .  
P 

We have therefore 

P(fin ~< t < fin+l; zk--ak, I<~k<~nlzo=ao} 

= Faoa,-)eFa,,~,+...~Fa,,-x~)(f, ) -  ~ (Fa.a'-)e...~Fa"-la"-',Fo~a"+')( 0 
a ~ +  1 4 : a n  

~ e ~ ( t -  s) d(F~,~ ~ ... ~ F ~ - ~ )  (~); 

and consequently 

P~' {~(0 = i} = 2 oP (* - 8) d(F ~ ~ ~... ~ F~-I o~) (~1, 
~ = 0  ax, .... an 

where for n = 0 ,  the last writ ten convolution is e(" ) as usual. This is the precise 

meaning of the canonical decomposition in the first equation of (15.6). The meaning 

of the second equation has just been given above. 
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