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§11. Introduction

This paper may be regarded as a new and fairly self-contained one attached to §§ 24
of [I].(2) These sections are entitled ‘“Terminology and notation”, “The boundary” and
“Fundamental theorems” respectively. The rest of [I] is either contained in a more general
treatment (§ 5, § 9 and parts of § 6), or may be set aside as special cases under additional
hypotheses (parts of §6, § 7 and § 8). In particular the whole idea of “‘dual boundary”
is dispensed with here, though this is not to say it should be abandoned forever. References
to [I] beyond § 4 will be pinpointed.

In sum, the case of a finite number of passable atomic boundary points (briefly:
“exits”’} will be settled here. Namely: all homogeneous Markov chains satisfying Assump-
tions A and B’ [T; p. 25 and p. 50] will be completely analyzed, with regard to the stochastic
behavior of the sample functions as well as the analytical structure of transition probabili-
ties, in fact both at the same time. To be exact, it will also be assumed that:

AssuMPTION C,. AUl ®-recurrent states are merged into one absorbing stafe.
AssuMPTION D. Al exits are distinguishable.

It is important to note the difference between C, above and the erstwhile Assumption C
[I; p. 47] which would require the absence of any []-recurrent state and is a serious restric-
tion. On the contrary, conditions C; and D may be justly regarded as unessential for the
boundary theory; see respectively the discussion at the end of § 15 here and on p. 38 of [I].

A culminating result of the theory has been that of ‘“‘complete construction”, origi-

(1) This research is supported in part by the Office of Scientific Research of the United States Air
Force.

(2) References in roman capitals are listed at the end of the paper; references (1] to [14] are to be
found at the end of [I].
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nated with Feller {9], developed through Neveu {11},(}) and established first by David
Williams [VIII] under substantially the same conditions as Theorem 16.1 here, in a some-
what different form and with a totally different, purely analytic method. This result falls
into two parts. The first, to be called “decomposition™ here, is an analysis of the basic
transition matrix (or its Laplace transform) by decomposing it into several components:
the exits z, the entrances 7, and a connecting matrix M (see § 16 for these symbols). The
second, to be called ‘“‘construction”, consists in showing that any such transition matrix
can be so put together from similar components chosen rather arbitrarily but subject to
certain analytical conditions. Now it should be apparent that the decomposition is in
geheral not unique without further conditions on the choices (such as choosing both the
exits and entrances to be “‘extreme bases” as in Feller’s case), and without uniqueness
the two parts of the theorem are not really in direct correspondence. Thus, if a process is
constructed and then decomposed, the original components used in the construction are
not necessarily thereby vetrieved. To put it in another way, in an arbitrary construction
the various components need not have the meanings attached to those in a meaningful
decomposition, although the corresponding (and cognate) parts look quite like each other
formally. To see that this question is not an academic one, consider the following problem:
from a given process, to construct a new one by stopping it at certain specified exits (see
§ 18 for a precise formulation and solution). Obviously, this problem cannot be solved by
another construction using only the ‘“‘through” exists, because the corresponding entrances
can no longer be chosen arbitrarily. Rather, one must begin with a correct decomposition
of the original process, and then shut off the properly identified entrances.

Such a decomposition will be called “canonical”’ and it will be derived by the most
natural probabilistic considerations.(?) As a matter of fact, the canonical form conceals a
more fundamental resolution into elements which are simpler to define and easier to use.
These are the probabilities g and F* introduced and studied in § 14. Each o? is then linked
to an entrance law #® through a measure E® (Theorem 14.4), the meaning of which is given
in § 17. The canonical decomposition itself, in these two stages, is given in Theorem 15.2.

For a fuller understanding of the stochastic as well as analytic structure of the process,
however, we must consider a third problem, that of ‘‘identification”, to be taken up in

(*) It should be pointed out that Neveu’s results do not seem to include Feller’s since Theorem
4.2.1 of [11] requires, besides “‘absolute dominance”, also e.g. that the cone of entrance laws relative to
II (rather than @ in our notation) be of finite dimension. This is & quite different type of assumption from
those made by all the other authors.

() Observe, nter alia, that in the form given here the substochastic case becomes an easy ex-
tension of the stochastic one, and that each entrance law is generated by an entrance sequence (ex-
cessive measure relative to ®).
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§§ 17-18. Here the major results are given in Theorems 17.1 and 17.3. In confrast to some
prior developments, these no longer appear to be “‘intuitively” obvious”, and yet they
depend crucially on the set-theoretic properties of “boundary times” given in § 12. One
is convinced by the amount of detection needed to identify such simple quantities as
o® and F* that herein lies indeed the strength of the probabilistic versus the analytico-
algebraic method. 7

In §18 algebraic transformations between different decompositions are established
and an example is given to clarify the question of construction discussed above. In § 19
some consequences of the main results are specified ending with a full description of the

sample functions of the process in terms of all the quantities introduced in this paper.

§12. Classification of boundary atoms

In this section properties of individual passable atomic boundary points, to be called
“boundary atoms” for brevity’s sake from now on, will be discussed. No hypothesis beyond
Assumption A (p. 25 of {I]) and the existence of such an atom is needed. These atoms will
be denoted simply by a, b, ... instead of oo% oo’ ..., and the set by A. Correspondingly
we shall write 8%w) for S.«w) (p. 38 of [I]) and “z(f)=a” for “t€S*w)” or “x reaches
the boundary atom o at time ¢”. Furthermore we shall define P%{...} by the condition that
for every 1, €T, j, €I, 1<v<n, we have

Po{x(t,) =j,, L<v<n}=P{a%t,)=j,|A%},

where the right-hand side is defined in the last paragraph on p. 34 of [I]. This uniquely
defines a probability measure on the Borel field §J° generated by the Markov chain
{z;, t€T}. It is “the conditional probability when the process starts at a’’; note the analogy
with the usual P;{...} for ¢€I (p. 24 of [I]). Similarly for conditional expectation E*{...}.
“For a.e. »” will mean for every w except a set N in $}° such that P,(¥)=0 for each
2 in I. It will then follow that we have also P4V)=0 for each @ in A.
Let us define, for s =0
ot () =inf{t:£>5:a(t) €A}, (12.1)

where the inf is taken to be + oo if the set is empty; and
o) = org{).

Thus «, is the “first time after s when the boundary is reached’; it is an optional random
variable; and « is the 7 on p. 25 of [I], the letter 7 (with subscripts) being reserved for a
general time random variable in this paper. Next, we define

8~ 652944 Acta mathematica. 115. Imprimé le janvier 1966
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o®(w)=inf {t:£> 0, 2(t) =a};
K () =Pi{a”<t}; (12.2)
K® @) =P*{«"<1}.

Thus K? and K® are the first entrance time distributions into b, starting at ¢ and a respecti-
vely. Extending a familiar notation in [1], we write i ~ a iff K{(c0) >0; @ ~=b iff K®(c0) >0;(1)
and a~» 3 iff (€Y%, ie., iff £F(1)E0 (see pp.34-5 of [I] for notation). According to § 10 of [I],
£%(-) is either identically zero or never zero; similar properties hold for K{ and K* but the
full strength of this result will not be needed. It is now possible to define the relation ~,
called ‘‘communication”, between any two elements of I U A in the obvious way and deduce
the usual classification (see [1; § I1.10]). We shall give only the few propositions that will
be needed later.

Definition 12.1. The boundary atom a is called recurrent if
P*{8%w) is an unbounded set }=1;
otherwise it is called nonrecurrent.
TurorEM 12.1. If a is recurrent, then for every §>0:
P{S%w) N (8, o)+ O} =1.
Comnwersely if there exists a 6>0 for which (12.2) is true, then a is recurrent.
Proof. Clearly Definition 12.1 implies
PHVS>0:8%w) N (8,00) =B} =1
which implies the first assertion. To prove the converse, let 7,(w)=0 and for n0 define
Tppf{w) =inf {£:¢>7,(w) +0, 2(t) =a}.

By the strong Markov property [1; Theorem I11.9.3] the fields Jr,+s and r.+s are in-
dependent conditioned on 2(7,+d) which is in I with probability one. Also 7,.; is
measurable ,.s and is the first entrance time into a in the post-(r,+d) process.

Hence we have by the Strong Markov property:(?)

() Note that this is not the same definition as on p. 43 of (I].

(2) This will be used so often that we cannot mention it every time, but it must be remembered
that we are invoking here the form for boundary entrances as given in [I; Theorem 4.4], rather than the
usual form as given in (I; Theorem II.9.3). We will indicate this by using the capital S for the former
and the small s for the latter.
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P{r,11< 0|7, oo, To} =P{1,1; < 00 |2(7,)} =P*{SHw) N (§, 00) + D} =1.
Consequently all 7, are finite, 7,, ¥ co and 8¢ is unbounded with probability one.

Tarorsm 12.2. If o is recurrent, then Y is a | l-recurrent class and for every i€¥®
we have Ki(co)=1. Conversely, if there exists a | [-recurrent state i in 1* such that i ~ a then a

8 recurrent.

Proof. Let 1 €1, then £7(#) is positive from a certain ¢ on (in fact for all >0 by § 10 of
{I1). Hence there exists 4 >0 such that

f 653 ) dt>0. (12.3)
0

Using the sequence {7,} defined above, we have
0 [~ o0 o]
fo g (tydt> ZIE{/u[S,- N (T, Tas1)]} > 2_1 fo g (t)dt= + 0.

Furthermore by Theorem 12.1, we have
0=P*{8%n (3,00) = O} > £/(9) [1 — K¥ (o).

But (12.3) implies that £'(8)>0 by the first sentence of the proof, hence Kf (oo} =1,
Since p;(t) > [ &t — s) dK{(s) it follows that

J;) ﬁii(”dt?Kﬂw)J‘o E)dt= + oo;

hence i is recurrent [1; Theorem 11.10.4). For each j in I*, we have ¢ ~ a ~*§; hence I*is one
[I-recurrent class.
Conversely, let :€I° and ¢ be ] [-recurrent. Then

P2{8;is an unbounded set}=1. (12.4)

If Kj(c0)>0, there exist 6>0 such that K{(d)>0. Define a new sequence {z,} as before
but with “a” replaced by “i”. It follows from (12.4) that all 7, are finite and 7, 1 oo with
probability one. We have

Pa{S2 N (v, Tnyy) F 9} = KH(D)

and the events A, in the {---} above are independent by the strongest Markov property
[1; Theorem 11.9.5] applied to the 7’s. Hence by the Borel-Cantelli lemma, infinitely many
of the A’s occur and so 8* is unbounded with probability one.
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COROLLARY. If a is nonrecurrent, and i €X?, then either i is [[-nonrecurrent or i v+ a
(t.e., the negation of i ~sa). Conversely, if there exists an ¢ in 1* such that either i +a or i 48
[ T-nonrecurrent, then a vs nonrecurrent.

However, I* may contain more than one distinet class. Let us also observe that if ¢ is
[I-recarrent and ¢ ~+*A (i.e., Va€A4:i~+a), then ¢ must be ®-recurrent. For if s ~ 4, then
Vj€I we have p;(-)=f;,(-) and consequently []-recurrence of ¢ implies its ®-recurrence.
Conversely, if ¢ is ®-recurrent then it is certainly [ ]-recurrent and 7 +* A by Theorem 3.2
of [I].

Definition 12.2. The boundary atom a« is called sticky iff
P{¥V3>0:5n(0,8)+=0} =1, (12.5)

otherwise it is called nonsticky (it will follow after Theorem 12.5 that the probability above
is then equal to 0).
‘We begin with a simple observation valid for every a.

TraeorEM 12.3. For each a and a.e. w, S*w) 13 a countable set.

Proof. The definition of ‘“reaching the boundary” (pp. 28-29 of {I]) entails that if
t€8%w), then there exists >0 such that (£ —3, t) ¢S%w). Hence every point in S%w) is
isolated on the left, and the theorem follows from a well-known property of the real line.

TrEOREM 12.4. If a s sticky, then for a.e. w, SY{w) is dense in itself.

Remark. In view of the preceding proof this means: for each ¢ in S*w) and 6>0,
we have (¢, £ +6) N 8%w)=+=B. For =0 this reduces to (12.5).

Proof. For each real r and for a.e. @ for which o (w) < oo, we have by (12.5) and the

Strong Markov property:
Vé>0: S%w)N (aw), afw)+d)+ 9.

Hence for a.e. @ this is even true for all «,(w) with rational values of r, simultaneously.

Since every point in 8§%w) is such an a«,(w) by definition, Theorem 12.4 is proved.
CorOLLARY. If a is sticky and
y(t, w) =sup[S*(w) N (0, 1)],
then y(t, w) EBT(Z) — 8% w) where S is the Euclidean closure of S°.

Proof. By definition, y(f, ) €S%w); by the Remark above y(t, ) ¢5%w).
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The next result is a zero-or-one law for the notion of stickiness. It may be remarked
that the so-called zero-or-one law in the theory of Hunt processes is trivially false for

Markov chains in general.

THEOREM 12.5. If a is nonsticky, then for a.e. w, 8%w) does not have a finite point of
accumulation. In particular, the probability in (12.5) is equal to zero.

Proof. Since (12.5) does not hold, there exist 6>0 and ¢>0 such that
P8 N (0,8) 0} =1—¢. (12.6)

Suppose the theorem false and let A, be a set of positive probability such that if w €A,
then 8%w) has a finite point of accumulation. Then there exist £>0, and a subset A, of
A, with positive probability such that if w €A, then 8%w) has a point of accumulation in
(¢, £+38). This implies that 8%w) N (4, ¢ -+48) is an infinite set. Now for each m >1, let

}<T () <Tpe(w) <... <t p(w) <t+0

be all the successive distinct members of the set {a,,(w), »=>0} defined in (12.1), where
N=N(m,w) is a nonnegative integer. For each w in A, we have lim,,_, . N(m, @)=+ oco.
Hence given N, there exist m, and A, < A,, with 2P(A,) > P(A,), such that

Yw€A,;: N(m, w)>N,.
Applying the Strong Markov property to 7,3, ..., Ty, We obtain by (12.6):

P{Trosne1 ™ Tron <0 Tro1 < o0 <Tppon < 00 } <P{S*N (0, 8) +0} =1 —e.

It follows that
P(A;) <2P(A,) <2(1 —&)™.

Since N, is arbitrary, P(A;)=0. This is a contradiction that proves the theorem.

§13. Exit and entrance sequences and laws

This short section contains several more-or-less known propositions in the forms to be
needed later.

Given the countable index set I, let JM(I) be the space of measures on I, namely al

sequences of nonnegative finite real numbers index by I.

Definition 13.1. Given a standard substochastic transition matrix function ¥(-) on

Ix1, an entrance (exit) sequence e relative to ¥ is an element of (I) satisfying

Viz0: ez=eVyu) [e=T()e)
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Here if e={e,} and (V(£)) =(p,,(t)), eV () is the element of M(I) whose j-component [V (t)];
is D ie.py(t) [F(t)e is the element whose i-component is 3 ,p,;(t)e;]; and the inequality is
taken component-wise. We shall use this type of “vector notation” when confusion is
unlikely; but since both subscripts and superscripts will appear as possible components
of vectors we shall revert to an explicit notation whenever in doubt.

Since W(-) is standard, we have lim, op,(f)=1 for every ¢, from which it follows

easily that
e=lim e¥(t) [e=lim¥(t)e],
tio tjo

so that e is “‘excessive” in Hunt’s usage. It is easy to prove that relative to the minimal
solution ®(-) (see p. 23 of [I1), e is an entrance (exit) sequence if and only if
eQ <0 [Qe<0],

where @ is the initial derivative matrix.
We shall state the next two theorems for the entrance case only since the exit case is

entirely similar.

Definition 13.2. An entrance law relative to W is a one-parameter family »(:)=

{n(s), s=>0} of elements of M(I) satisfying the functional equation:
Ys>0,t20: n(s)¥(t)=n(s+t). (13.1)
By {3; Lemma 1], for each § in I, #,() is continuous in {0, c0).

THEOREM 13.1. If ¢ and ¥ are as in Definition 13.1, there exists an entrance law n(-)
relative to W' such that

t
e—e¥(t) =J 7(s) ds. (13.2)
0
Remark. We shall say that the entrance sequence e generates the entrance law #(-).

Proof. This is nothing but a general form of Theorem 6.2 of [I] proved in the same
way, but a sketch will be given. Let

H(t)Z e —e¥(t). (13.3)
It is clear that H(-) 7 and the semigroup property W(s)¥(t) ="¥(s +1) implies
H(s +t)~ H(t)=H(s)¥ (®). (13.4)

By a basic lemma [3; Lemma 2], H has a continuous derivative 7 so that
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H{t)= ftn(s) ds (13.5)

0

which is (18.2); moreover the equation (13.4) may be differentiated with respect to s,
yielding (13.1).
THEOREM 13.2. Let W(-) be as before and let {e(s), s >0} be a one-parameter family of
elements of T(I) satisfying
e(s)T(t) <e(s+¢), (13.6)

def

esze(s) ds < oo, (13.7)
0

Then e is an entrance sequence relative to V', and

lim eW¥(#) =0, (13.8)
t1t oo
or equivalently e =f n(s) ds, (13.9)
0

where 3 is the entrance law generated by e according to Theorem 13.1.

Proof. Integrating (13.6) over s in (0,o0) we obtain

t

el () < fwe(s+ t)ds=e— f e(s)ds<e.
0 0

Hence e is an entrance sequence as asserted, and also (13.8) is true by (13.7). The
equivalence of (13.8) and (13.9) is obvious from (13.2).

It is instructive to compare the results above with the standard potential theory
argument, according to which we should write

fw [e— eV ()] ¥(u) du=ij(t) W'(u) du =fm[H(t+u)—H(u)] du= ft[H(OO) — H(u)]du.
0 0 (1} 0

Therefore in particular
oo

lim tl [H(t+u) — H(u)] du= H(oo) — H(0) =e.

t}o Jo

Under our conditions it is permitted to interchange the limit and integration above
which then becomes (13.9). However, if the same interchange is made a little earlier in

lim —I—J H(t) ¥ (u) du,
tjol Jo
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the result is J. 7(0) ¥(u) du
0

which is in general strictly less than e.

THEOREM 13.3. Let
2 lim [~ Y] 1; (13.10)

t4oo
then z is an exit sequence relative to W'. If e is any exit sequence, then
ez (13.11)

if and only if e<l and limY(t)e=0. (13.12)
t}oo

Remark. By the analogue of Theorem 13.2, the second condition in (13.12) is
equivalent to that e= [J°e(s)ds where e(-) is the exit law generated by e.

Proof. Tt is clear that <1 and lim;+ ¥ (f)z=0, hence (13.11) implies (13.12). Conver-

sely if (13.12) holds, then
[-F()e<[I—-TF)]1

and letting ¢t + co we obtain (3.11). Q.e.d.

When ¥ is the minimal solution ®, then z is L{cc). From the probabilistic point of
view there is an obvious choice of exit sequences relative to ®. They are the L*(cc), a €A
studied in § 4 of [I]. It is the entrance sequences that have to be discovered and this will
be done in Theorem 14.3 below.

§ 14. The basic quantities

From here on Assumptions A and B’ will be in force throughout the paper. In this
section we introduce the new notions which make the present approach possible. The
underlying idea is simple enough: to study the succession of boundary atoms in a sample
function, viewing these as ‘“‘banners” (superscripts from A) under which the ordinary states
(subseripts from I) line up. If all boundary atoms are nonsticky, this is easily carried out,
has essentially been done in § 5 of [I] and will be reviewed in § 19. For a sticky atom the
important thing is to concentrate on the change of banners so that beginning at one of them

“the sample funection is followed through until a new one appears, if ever. Now it turns out
that each portion between change of banners ‘‘possesses finite potentials” (Theorem 14.2)
so that it can be sufficiently well isolated and analyzed before the portions are pieced

together. Special attention must be paid to the case when the banner does not change and
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when it changes suddenly. The first can be treated separately as ‘“traps’’; the second
produces delicate effects which will be stressed at the appropriate places.

Definition 14.1. For each a in A let us define a new optional random variable as

follows:
B%(w) =inf «® () =inf {¢:4> 0, x(t) € A — {a}},
b+a

where &’ is defined in (12.2). Thus starting at @, 5°is the ““first time for change (of banners)”.

Definition 14.2. For each a€A, bEA, a+b and t>0:

def

of () =P{p*>1; x(t) =7},
Fo ) Zpe{a? = o<1},

Thus pf(f) is the probability, starting at a, that no change of banner has occurred up to
time ¢ and that at this time state j appears under the initial banner a; F*(#) is the proba-
bility that a change of banner has occurred before or on time ¢ and that the change is to b
(regardless what banner is flying at #).

We have the obvious relations, if £>0:

AOFT O =P =1, 3 PO =P{p <) (a4.1)

ox(t)+ 3 F(t)=1. (14.2)
b+a

Note that o (0)=gf(0+) but o} (0)<p%(0+) in general since >,P*{z(0)=4}<1. The
limits of (14.2) at either end of (0,cc) are important:

ZF"”(O)=1—H§H Toxt)=1—05(0+); (14.3)
ba=q t}o
ZF(e0)=1~1im | g2 =13 (e). (14.4)

Definition 14.3. The boundary atom is called ephemeral iff g¢(0+)=0; it is called a
trap iff pg(c0) =1,

It is clear how we can eliminate each ephemeral boundary atom by splitting it into
others, but this will not be necessary.

Tarorewm 14.1. If a is sticky and distinguishable from any other boundary atom, then

S F2(0)=0. (14.5)

b+a
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If b is nmonsticky, then
S FY(0)=0. (14.6)

axb
Proof. Tt follows from Definition 14.2 that
F20)=P{V4>0:8°n (0; §) = V}. (14.7)

If a is sticky then by definition, 0 is an accumulation point of 8% w) for almost every w.
Hence by Theorem 4.6 of [I], for almost no w can 0 be an accumulation point of any S%(w)
where b is distinguishable from a. This means F®(0)=0 by (14.7), and the first assertion
of the theorem follows. Next suppose F®(0)>0; choose ¢ with L{(c0)>0, then by the
Strong Markov property,

P{v>0:8°n (%, a®+ 8) B} > L (00) F**(0) > 0.

Thus 8° has a finite accumulation point «® with positive probability and so b must be sticky
by Theorem 12.5. The second assertion of the theorem follows. Q.e.d.
It is clear from the meaning of ¢ that (see p. 40 of {I] for £%):

L) <)) <&0)-
Now let us put

50 10+ fo 19 () gf (¢ — ) d. (14.8)

By the Strong Markov property, this is the probability of transition when the boundary
set A —{a} is taboo; namely when the process is stopped at all boundary atoms except a.

Let us call this stopped process, completed as usual by a new absorbing state 6, the a-
process (see [1; p. 244 ff.]). It is clear that

= i), (0, 5) eExLe,

is a substochastic transition matrix (function) whose stochastic completion is the transition

maitrix of the a-process and that

o <J<IL (14.9)

Moreover, if the process is initially at a it is an open Markov chain whose absolute distribu-
tion is {g%(¢), ¢ >0}. This fact is expressed by the following functional equation

oSN (1) =e*(s +2); (14.10)
which is to be compared with

D)=L s+1),  EENIE)=E(s+1).
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Thus we have interposed, for each a, a new process between the minimal @ and the max-
imal []. Successive interposition will lead from ® to [ ], but that will not be necessary.
The continuity of each ¢f(-) follows from (14.10) by [3; Lemma 1]. Furthermore each
07 (+) has the property of being either identically zero or never zero in (0, o0), by [I; § 10].
If a is a trap, then clearly ¢%(-) =&%(-). If a is not a trap, the following result is essential
(see p. 29 of [1] for Z).

THEOREM 14.2. If a is not a trap, and i €1—Z, then

r;l“:""f 0l (t) dt < oo (14.11)

0

Proof. If i €X—~Z, then i ~A. Since a is not a trap, a~A —{a} so that in any
case i~~A —{a}. Hence there exists b€ A —{a}, and 2>0 with L!(k)>0. Now

of (nh) L2 (h) < P{nh < f*< (n+1) b}
and so i@f (nh)<[LE (B)] 1< co.

Since of (£) fu(R)<gf (t+ 1)
and o7 () is continuous, we have

max of (f)< [olgi?af” (617} of (nh + B).

nh<i<(n+Dh

o] o0
Consequently e = f of (Y dt <[ min f,;(£)] 1 > of (nh+h) < oo
0 otk n=0

and Theorem 14.2 is proved.

The next step is quite similar to the handling of £ in the one-exit nonrecurrent case
given in § 9 of [I]. The present extension to the general situation is made possible by the
interposition of ¢ which behaves as “nonrecurrent” in the sense of the preceding theorem.
Instead of Assumption C of [I; p. 47] the following assumption will be made from now on.

AssumMpTION C. There are no ®-recurrent states.
This will be slightly liberalized towards the end of § 15 to include the case of sub-

stochastic ][, but it is not entirely dispensable without complicating the later results.

THEOREM 14.3. For each boundary atom a, there exists an entrance sequence e relative

to ® having the property that
lim e*®(t) =0.
ttoo
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Equivalently, if n°(-) denotes the entrance law generated by e* (see Theorem 13.1), we have

¢t = fwn“(s) ds. (14.12)

0

Proof. Three cases will be considered though the first two may be combined.

Case 1. a is not a trap. Then by (14.9) and (14.10),

0*(s) D) <@ I°(t) =0*(s +1)

and (14.11) is true. Hence we may take ¥ to be @, e(s) to be g%s), e to be r* and %(s) to
be 7%(s) in Theorem 13.2 to conclude (14.12).

Case 2. a is a nonrecurrent trap. Then g%(-)=&%-) and by the Corollary to Theorem
12.2, each state 7 in ¥ is either [ [-nonrecurrent or i~+a. Since a is a trap this means i +A,
and so by the discussion following the corollary just cited, each 7 in I* which is ] J-recurrent
must in fact be ®-recurrent. This has been excluded by Assumption C,. Hence each ¢ in

I* is [ [-nonrecurrent and so

r“=fw9“(s) ds=fw£“(s) ds < oo
0

0

(see [I; Theorem 6.1}, the 7* here being the ¢* there). The rest is the same as in Case 1.
Thus in both Case 1 and Case 2 the e of the theorem is just the r* of (14.11).

Case 3. a is a recurrent trap. Then I? is a [ J-recurrent class. By a well-known theorem
[1; Theorem I1.13.5], there exists {e(s), >0} such that

f e(s)ds< oo, e(s)II(t)y=e(s+1);

o

and consequently e(s) D(t) <e(s+1).

In fact since all states are stable we may choose any state 0 in 1° and set
€5(8) = 0Po;(8), fo e;(8) ds = o0y

[1; p. 201). Hence Theorem 13.2 is applicable with ¥ =® and this choice of e(s), so
that e® is the sequence with

ef =opgy, JEI-.
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Remark. Tt would be interesting to know whether the case of a recurrent trap indeed
requires special handling as described above; and if so where is this covered up in the
algebraic treatment of other authors.

The next result Theorem 14.4 is one of the two keys to the canonical decomposition.
We need an analytical lemma which is essentially known (see [I; § 9] and Neveu [101); (*)

for a purely analytical proof and general discussion see [1I].

Lemma. Let o be finite, nonnegative, nonincreasing in (0,00) with o(0+) <+ o and
§5 0(8)ds < oo. Let 6(A) be its Laplace transform:

c‘r(l)=j‘ e Mo(t)dt, 0<i<oco.

0

Given also two constants §20, p=>0. Then there exists a nonnegative measure E() on
[0,00) such that for 0 <A< oo:

[0+ pA+26(A)] E() =1, (14.13)

where BQy = f e ME(dt).
{0, o0)

Moreover, E is a finite measure unless § =0, in which case it is infinite but sigma-finite.
1f o is absolutely continuous in (¢, o) for every t >0, then E is absolutely continuous except
for a point mass at O if 6(0) < oo,

Proof. By a particular case of P. Lévy’s representation of infinitely divisible laws
and the associated processes (see Lévy [IV]) there exists an infinitely divisible process
{Y(»), v20} such that if F(v; -) denotes the distribution of ¥ (v), we have

def

P, )= J;o w)e‘“ﬁ‘(v; dt)=E(e ) = exp { —v [pl + f: (e -1) da(s)]}.

def

Putting @A) = A6(2)
we have e"’d”f e‘“F(v; dt) = PRL{CREZagivs ]
10, c0)

Integrating this over v in [0,c0) and setting

()= f e Fv,")dv, (14.14)
10, o0)

(') Neveu’s assertion of a sharper result corresponding to Corollary 1 to Theorem 14.7 below is
without substantiation.
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we obtain f e M E(dt)=[6+pA-+a(A)] ", (14.15)
10,00)

proving (14.13). Letting A 4 0 in (14.14) we see that E([0, cc))=0"1 since limy,o%(1) =0,
proving that E is an infinite measure if and only if §=0, in which case E is still sigma-
finite by (14.14). Finally, it is well-known from Lévy’s theory that if ¢ is absolutely con-
tinuous in (f, oo) for every ¢ >0, then F(v; ) is absolutely continuous except for a mass at
0 equal to F(v; + c0)=e727®" when p=0and ¢(0 +) < oo, and then E({0})=[0+0(0+)]*
by (14.14). The lemma is completely proved.

CoRrROLLARY. Suppose p=0. For (Lebesgue) almost every t>0, we have

f [6+c(t—s)]Eds)=1; (14.16)
0.8

and for every t >0 the inequality *“ <" holds above.
This corollary will be sharpened below; see Corollary 1 to Theorem 14.7.

THEOREM 14.4. For each a, o*(-) and the enirance law 7*(-) generated by the ¢* in
Theorem 14.3 are linked by the following formula, for £220:

0 () = f 7 (t— ) E*(ds), (14.17)
0,21

where E(-) is a probability measure on [0, o), unless a is a recurrent trap in which case it 18
infinite but sigma-finite. Furthermore E°(+) is absolutely continuous except for a mass at 0

in case a is nonsticky.

Proof. Case 1. a is not a trap or a is a nonrecurrent trap. Integrating (14.10) over s

in (0, oo) and noting that e*=7%,

¢ ¢
e — fo of (s)ds= 2 el {f”(t) + fo I (u) o] (t—u) du}. (14.18)

Using the notation (:,-)> for the inner product of vectors, we put
0% (t)E (e, 1 ().
Recalling also (13.2) with e=¢* and ¥'=®@ we may rewrite (14.18) in vector nota-

tion as

~r'q"(s) ds=ftg“(u) [1+6%(t—u)]du. (14.19)

0 0
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def

If we put also @) = (), Pk — ), O<s<t, (14.20)

which is independent of s (see p. 49 of {I]), we have by (14.12)

o™ty = f:o (s), B(t)> ds= f:ﬁ"“ (s+t)di= J’:o 6% (s) ds. {14.21)

Since ¢%-) is continuous and positive unless @ is ephemeral, it follows from (14.19) that
0*(+) is locally integrable. If a is ephemeral then ¢* =0 so that ¢*(+)=0. Hence the Lemma
above is applicable to ¢° with d=1, p=0; the corresponding Z will be denoted by E°.
It follows from the proof of the lemma that E° is a probability measure. Taking Laplace
transforms in (14.19) we have

7R = %) [1 +A6%(2)},
which can be inverted by (14.15) to yield
0%(2) = By ()

From the uniqueness theorem for Laplace transforms, and the continuity of the functions
0%(-) and 7*() in [0, =0), we conclude (14.17) as asserted.

Case 2. a is a recurrent trap.
In this case we have, recalling the handling of this case in Theorem 14.3:

t
¢ = 2 ¢ py(t)= Zi e {fu(t) + fo KB (), of (=) du}-

Proceeding as before, we obtain

f:n“(s) ds = j:ga(u) o (t—u)du (14.22)
which differs from (14.19) only in that the “1” there is replaced by “0”. The Lemma is
applicable as before but with § =0, p=0, and the resulting E° is now an infinite but sigma-
finite measure.

We know that E° is absolutely continuous exeept for a mass at 0 when ¢°(0) < oo;
that this last condition is equivalent to @ being nonsticky will be shown in Theorem 14.6
below.

In order to combine the two cases above we introduce the symbol

e { 0, if ais a recurrent trap; (14.23)

1, otherwise.
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Then we have for each a,

[6°+ 16* (M) B2 () =1;

t
or for almost every & J [1+¢%(t—~s)] E*(ds)=1. (14.24)
1]

CoroLrLARY. For each a,

def

(V=2 ()=o) 1
1s locally integrable.

Proof. We have from (14.19) and (14.22) for every i:

ftni (s)ds = fgi(s) [0*+ o (t ~8)]ds < ft[l + 6% {t—s)]ds< oo

0 0 0

since 0™ is locally integrable.
THEOREM 14.5. For each a,ni(-) is nonincreasing and
¢ ol (00) = G (1), L~ (o)) (14.25)

for every t>0. This number is also equal to g3(oo) unless a is a recurrent trap in which

case 74 () =0, while gi(o)=1 for any trap.

Proof. The monotonicity is an immediate consequence of the defining property of an
entrance law; and the proof of (14.25) is the same as on p. 50 of [I], although the 7 there
need not be the same as here. Both are properties of any entrance law relative to ®. Next
we have from (14.17):

o2 ()= f e (t— 5) E*(ds).
10,81

Letting £ { o an recalling that E* is a probability measure unless @ is a recurrent
trap, we see that the common value in (14.25) is gf(cc) except in that case. It is
clear from (14.4) that g}(co)=1 for any trap a. On the other hand, if @ is a recurrent
trap, then for every : in I°, we have L;(co)=L{(cc)=1 by Theorem 12.3, hence
75(=)=0 by (14.25).

TuarorEM 14.6. The boundary atom a is sticky if and only if

g%(0+) =+ oo,
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Proof. For each 6>¢>0, we have clearly
P2{8° N (&, 8) = O} = {o%(e), L*(6 —¢)) = f(o ]<17"(s —38), L*(0 — &))> E*(ds)

by (14.17). Now by (14.20) and (14.21):

5~¢
ntle—s), LF(O—¢e)) = . (e~ s), 1(E)) dt
5—-&

=f 0% (c—s+t)dt=0"(e—3)— 6™ (0 —s).

0

Hence P{8% (0, 8) + A} =lim [6% (e — 8) — 6°*(8 — 5)] E°(ds). (14.26)

40 J10, e

If 6*(0+)< oo, it follows from this that

1im P#{8° (0, )+ B} =0
50

and so @ is nonsticky by Definition 12.2. If ¢%(0+)= + oo, then E*({0})=0 by the
lemma, it follows from (14.26) and (14.16) that

P{S*n (0,8) =0} = lim 0 (e —s) E*(ds)=1.
0 J10.6
This being true for every §>0, we have (12.5) and so a is sticky. Q.e.d.
Generalizing the definitions in (14.20) and (14.21), we put for a €A, bEA:
def

02 ()= (), P (t—8)), O<s<t;  o®()= f " g () ds. (14.27)

t

It follows by (14.12) that

fo (), P (0)y di = <65, 1 (),

o™ {t) = f B 6% (s+tyds= " (14.28)
° fo <P (8), 1 (8)> ds = (o (8), L (o2)).
Furthermore, for ¢>0:
nE @)= (@), 1= L(eo) + 3 L¥(o0)) =+ 3 o). (14.20)

From here on, as a convention in notation, a Lebesgue-Stieltjes integral such as
§&...dB(s) shall mean [y ... E(ds) for finite t and (g ce ... E{ds) for t= + oo. Further-
more, E(0) will be written for E({0}).

9 — 652944 Acte mathematica. 115. Imprimsé le janvier 1966
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We proceed to derive mew basic relations for ¢® and F**, a €A, bEA ~ {a}. Note

that some results may be vacuously true for an ephemeral o or & trap. We begin with
t

P{f* <t x(f*=b}=LIt)+ f Fob(t—s)dL{ (s). (14.30)
0

We observe that the probability on the left side above is equal to
Pi{o= <t a(f%) = b} + P{a < f* < 1; 2(f) = b}.

The first term is L{(f) by definition, and the second is by the Strong Markov prop-
erty equal to

Pi{a <t a(a) =a; f2<t; x(f%) =b} = ftF{ﬂ“<t—u; z(f%) =b} dP{ax <u}
)

¢
=f Fo° (t —u) dLf (u).
)
Hence (14.30) is proved.

Next, we have

P{s <t <stt; a(f) =b} = S B{s < f als) = i) Ri{6*<t; x(§*) = b}.
Using Definition 14.2 and (14.30), this is
F (s +) = F(5) = (g*(s), L' (9> + f: (™ (8), 1(u)> F (8 — w) du. (14.31)
Let us introduce the further notation
()= (g (), LP (o)) (14.32)

Since each g(-) is continuous and the right side above is dominated by <&%(f), 1) which

converges uniformly in every finite interval it follows that g®(-) is continuous.

-TarorEM 14.7. We have, for every t>0:

Eo(t) =1 —g%(t); (14.33)

Eo(t) F®(c0) =p™(t) + F(t); (14.34)

Fo ()= f t [Fo(co) — g™ (¢ —s)] dE*(s). (14.35)
0

Proof. ¥From (14.17) and (14.32) we have
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t
o® ()= J o (¢t —s) dE(s). (14.36)
0
In particular, by (14.24), and the uniqueness of Laplace transforms:
t
o™ (t) = f 0% (t—s) dE*(s) =1 — 8*E*(t)
0

first for (Lebesgue) almost every ¢ but then for every £>0 since both extreme terms above
are continuous in (0,o0). Formula (14.33) is thus a sharp form of (14.24). Now letting ¢ t oo
and then replacing s by ¢ in (14.31), we obtain

Fet(o0) = F(0) =g (1) + ¢ (1) F*(co)
This is (14.34) on account of (14.33). It is also (14.35) on account of (14.36).
COROLLARY 1. Vi>0: [{[6*+ 0% (t—s)]dE*(s)=1.
COROLLARY 2. F®(-) is absolutely continuous.

Equation (14.34) becomes perhaps more interesting if it is divided through by F*(oo),
supposed to be positive; showing then that the resulting right side does not depend on b
and defines the basic measure E%(-). A similar relation involving an arbitrary j may be

recorded as follows:

4 )
B = J'O 05 (5) ds+iZQi (t)fo fii(8) ds B Ea{ﬂ[Sj N (0, oz A ﬂa)]} .

f“ o (5) ds IS N (0,491

(]

This is proved by integrating the equation

t
e* (s T 1) =0"(s) D)+ fo <e*(s), I*(u)> @* (¢ ~u) du

over ¢ It would be interesting to understand the meaning of this “equilibrium property”
of E%(-) with respect to j in I as well as to b in A.
An interesting consequence of (14.35) is its limit as ¢} O:

Fob(0) = B4(0) [ F%(o0) — 6%(0)]. (14.37)
THEOREM 14.8. For any a=b, we have o

o®(0) < F(c0) <1. (14.38)

9* — 652044 Acta mathematica. 115. Imprimé le janvier 1966
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Proof. Integrating (14.31) over s in (0, c0), we obtain
t t
F (o) t—j P (s)ds = (e LP (1)) +f a®(u) F®( —u) du,
0 )
or using (14.28) to transform the first term on the right side,
t
F(oo)t= f {0 () +[1+ 0% ()] F*(t —u)} du.

0

Dividing through by ¢ and letting #| 0, observing that 0®°(-) is nonincreasing we
infer (14.38).

COROLLARY. Bim [9% (£) — 6™ ()] < oo. (14.39)
t40

Combining Theorems 14.6 and 8 we conclude that the matrix (6°(0)), (a, b)€A X A,
has finite elements off the diagonal while a diagonal element is finite or infinite according
as it corresponds to a nonsticky or sticky atom. This simple result used to be an obscure

point in previous investigations ([7], [10], [VIII]).

§15. Canonical decomposition

As explained above the quantities g* and F° serve the purpose of separating the
banners from each other as long as possible; now it is necessary to link them together.
The leading formula, which is the second key to the canonical decomposition, the first

being Theorem 14.4, is given below.
TaEoOREM 15.1. For each a, we have
&t)=of (t)+b§a f:&;” (t—s)dF™(s), jeEL. (15.1)
Remark. This equation need not be valid for an arbitrary §; for example if jEIP\I°
and a~*b; then the left member is 0 but the right member is positive.
Proof. The meaning of (15.1) is obious: we rewrite it in terms of random variables:

Po{a(t) =) = P{f >t x(t) =j} + 3 PP <t f €S alt) =1}

Let us observe at once the notational quirk which necessitates the use of “g* €8, or more
clearly perhaps: “V§>0: 20 (8% f°-+5)+ Q" instead of the obvious “z($%)=b" because
the latter would have the wrong meaning when $*=0. The rigorous proof of the preceding
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equation is of course, as always, done by invoking the Strong Markov property, but since
Theorems 4.3 and 4.4 of [I] were formulated a little too narrowly for the present purpose
we shall indicate the minor modifications needed.

1°. The cited theorems were stated for t* which is the first time the boundary is reached
if it is reached at the atom a, otherwise equal to -+ co. However, the same results hold if
this is replaced by any optional random variable v such that x(r)=a where 7 <+ oo,
By definition then there exist ,<<t and 1, 1 T such that the jump chain y, =x(r,) starting
at time 7,{ =7,(w)) reaches @ at time 7. The proofs given for the cited theorems are valid
if this {y,} is used there instead of the jump chain starting at time 0.

2°. The cited theorem did not deal with the situation where the given {x,} starts at a
boundary atom and is an open Markov chain. However, nothing in the proofs, as revised
in 1° above, is changed on the set {r >0} (in which case the chain starts in effect at an
ordinary state as far as 7 is concerned).

3°. Thus we are left with that case {r=0} under the initial condition say (0)=a.
This is settled by the following simple lemma.

LemMaA 1. For each A in ° (the Borel field generated by {x.}) we have
P{0€S% A} =F20)P*(A).

Proof. The meaning of this is again clear: on the set {0 E@’-} the process acts as if it
started at b (rather than a). To prove it we define for each positive integer m:
Tn(@)=Inf{t:t>m ™ 2(f, w) = b};

then 7,4 0 on {0€8%. If 0<g<i. then since {0€S%} €y, for each m, we have by
the Strong Markov property:

P{0€ 8% 7, <& 2(t) =j}= J‘ £ (t—s)dP*{0€S% 1, <}
0
Letting m 1 oo we obtain
P{0€S% a(t) =} =P {0 € S} & (1) = F**(0) & (1).

This being true for every ¢>0, and {O€§}EA$=1 &m—1, the lemma follows.
Theorem 15.1 is now proved by applying the amendments 1°, 2°, 3° to 5° Thus,
the typical term in the sum at the beginning of the proof is further split into

Pe{Be=0€.8% x(t) =4} + PH{O < < t; o(8%) = b; x(t) = 5}

= F(0) & (1) + f( 0 ﬂg," (t—s) F®(ds).
' Q.ed.
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Taking Laplace transforms in (15.1), we obtain

Em=gm+ 3 OE0, 152

where )= f Me““f"(t) dt, §“(1)=f°°e-“ga(t) dt,
0

0
FooQy= f we_“ dFe(t).
0

Putting #2(1)=0 for each a€A, and introducing the matrix

FOHE (F2(1), (a,b)€AxA
as well as the vectors £(1), etc. where £(1) = {£(1), a € A}, we may write (15.2) in matrix

notation as follows:

[~ P2 = (). (15.3)

Note that the vectors as well as matrices above are indexed on the finite set A of super-
scripts, the subscripts j in I* being understood.

The next task is that of solving for £ from (15.3) and that is done by the lemma below.
Although it is but a special case of a ‘‘recurring theorem’’ (see Taussky [VI])in its definitive

form, we shall spell out a constructive proof using the theory of Markov chains.

LeMMA 2. Let P=(p,), (a, b)EA X A, where A is a finite set, be a substochastic matriz.
A necessary and sufficient condition that I —P be invertible is: there does not exist a subset
C of A such that P|¢ ( =the restriction of P to C % C) is stochastic. The inverse has nonnegative

elements when it exists.

Proof. Consider the stochastic completion P of P by & (see [I; pp. 22-23]). Unless P
is stochastic, P is on the enlarged index set A=Au {#}. A discrete parameter Markov
chain with minimial state space A and one-step transition matrix P will have ¢ as an
absorbing state, and any state @ such that a ~»¢ will be inessential, hence nonrecurrent.

Case 1. P+ P. Suppose the condition of the lemma holds, then every state exceptd
is nonrecurrent. For if there were any recurrent state distinct from ¢, there would be a
recurrent class € such that 9 ¢C, thus P|c=13|c would be stochastic, contrary to hypo-

thesis. Hence for any a and b in A we have, in familiar notation:
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-]

def

— S(n)

Sep == Zopab < oo,
7=

Since F5 =pSy for every a and b in A, we have
Sip= D, Py < oo, (15.4)
n=0

Let 8 denote the matrix (s,,), (@, b)) €A X A. It is easy to verify that
(I-P)S=I1=8(I-P), (15.5)

the second equation being of course also a consequence of the first. Hence I —P has the
inverse 8>0.

Case 2. P=P. Then under the condition of the lemma every state in A is nonrecurrent
with respect to P by the same argument as before, and so (15.4) is still true. The rest is
the same as before.

The suificiency of the condition is proved.

Now suppose the condition of the lemma is not fulfilled, namely that there exists a
subset C of A such that P|¢ is stochastic. Then define the vector w={w,, a €A} as follows:
w,=1 or 0 according as ¢ €C or ¢ €A - C. Clearly we have w+0 and (I ~P)w=0 so that
I—P is not invertible.

Remark. The “‘sufficiency” part of the lemma and its proof above can be extended
to an infinite index set A, but the resulting “inverse” in the sense of (15.5) is not a true
inverse operator because the usual multiplication of infinite matrices, even when it is
defined, is not necessarily associative. Thus (I —P)z =y is not equivalent to or even implies
x=(I—P)"ly. An appropriate extension may be needed for the boundary theory with
infinitely many atoms.

We are now in position to formulate the theorem on canonical decomposition.

TeEorEM 15.2. If all boundary atoms are distinguishable then for every A: 0 <A< oo,
the matriz I— F(3) in (15.3) has a nonnegative inverse so that we have

EQ)=[1~F@) o) =11 - P B(4) 7} (4), (15.6)
where E(2) is the diagonal matriz with entries {E%(4), a €A},

Eo3)= f we““dlf}’“(t), 7*(A) = f oae—'“na(t) dt,
0 0

and E* and v® are given in Theorem 14.4.
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Proof. Fix a A and apply Lemma 2 with P=F(1). Suppose that there exists C<A
such that F’(l)lc is stochastic then there exists C,<C such that F(1)|c, is the one-step
transition matrix of a discrete parameter Markov chain where state space €, is a recur-
rent class. Since (1) has zero elements on the diagonal, C, must contain at least two

states, thus

PP ()=1, aeq,. (15.7)
be€Cy—-{a}

Furthermore, since >0, F®(1) < F%(co) and Dy4q F¥®(o0)<1, (15.7) is possible for

each a if and only if

P (1) =F®(0)=F"®() and 3 F*(0)=1.
b+a

It follows then by (14.4) that ¢%(-)=0 and consequently (15.1) is reduced to
ty= 3 FP0)E (), a€l,,
beC a}

for each £>0 and j€®. This means the matrix (F**(0)), (a,b) € C,x,, with F*(0)=0
for each a, is the one-step transition matrix of a discrete parameter recurrent Markow
chain and that {&(t),a€C,} for fixed ¢ and j is a harmonic (regular) function on C,

relative to this matrix. Such a function must be a constant, namely:

E@)=§@), jeI. (15.8)
It follows that 1= Y &)= Z[ & ().
jels jels

Hence I’<I* and so I=1 for every a and b in Cy, since a and b are interchangeable above.
Thus (15.8) is true for every j in I*=I and every ¢, and so @ and b are indistinguishable
by definition (see [I; p. 44]), contrary to hypothesis.

We have thus proved that the condition of the lemma is fulfilled for F(4) for each
4>0, and therefore I — (1) is invertible. This proves the first equation in (15.6); the second
follows from (14.17). Theorem 15.2 is completely proved.

It is instructive to compare this proof with that of Theorem 5.5 of [I] to see where
progress has been made.

Before proceeding further we will stop for a minor generalization in order to include
the case where [] is substochastic (see pp. 23-24, 25-26 of [I]).(*) Instead of Assumption
C, in § 14 we make the following slightly weaker one.

AssumpTION C,. There is at most one ®-recurrent state (and this is then necessarily

D-absorbing).

(*) It is not clear why the substochastic case causes trouble in Williams [VIII].
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This state is to be denoted by 6 and not included in I, and I,=IU {0} is to be the
state space if 0 is present under C,. We have [I; (2.7)]

fioEOa fﬂiEO: fﬂﬂEl, LGEO (159)

It follows that 0 does not belong to I~ Uaea I? provided that P{x(0) =6} =0; in other words,
with probability one 0 does not appear before the boundary is reached. It may belong to
some I* and not to others. If it belongs to I then a cannot be recurrent. For such an 0,
we have by (14.10):

t

g5 (s +8)=05(s)+ 2 0f(s) fio(?) +f [Z ot () I (u)] 05 (¢ —w) du.
ielg 0 Liely

It is seen at once that the first sum above is equal to zero, and in the second the

summation may be replaced by €I, on account of (15.9). Since a is not recurrent

1= [T of(t)dt< oo for every 1€I*— {6}, it follows by integrating the equation above

that
¢

fo Lo (5 ) ~ )] ds = f o () g (1 u) du.

0

Since g§(-).7, the limit d°*% lim g3 (1) (15.10)
tt oo
exists and the equation above reduces to

d“t=ftg$(u) du 1+ o*(t — u)] du. (15.11)
0

Comparing this with (14.19), we see that we should set

na(-) = de (15.12)
in order that (14.19) may be valid for 0 as well as the other states in I*. With this
definition (14.17) is valid as follows:

t
06 (t) =f 75 (¢t — 8) E®(ds) = d°E*(t). (15.13)
0
Now (15.1), {15.2) and (15.3) are valid for the subscript 6 as well as the others in I%.
Finally (14.29) becomes
e @) =d®+c*+ 3 o™ (t).
el beA

1€k

If a is recurrent then 6 ¢I° and we may set d*=0.
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Briefly, the above discussion goes to show that if there is only one ®-recurrent state,
or more generally if all ®-recurrent states are merged into one absorbing state, it acts
like an atom in the recurrent part of the boundary as to be expected from the Martin
theory.

Assumption C, is justified as follows. A ®-recurrent state belongs to the set Z of
states from which with probability one the boundary will not be reached at all [I; Theorem
3.2], so that after entering such a state the process is controlled by ® above. Such states
form a stochastically closed set which splits into possibly infinitely many disjoint ®-
recurrent classes. Each class may be treated as the 6 above as an atom on the recurrent
part of the boundary; or in the informal language used before, as a banner trap under which
the states of that class line up according to the law of transition @. By merging all these
classes into one single trap 6 in Assumption C,, we are just stopping the process at the
recurrent part of the boundary—not so much because it can be totally ignored but because
its behavior from there on is well known and may be separated from the rest of the study

in the name of convenience.

§16. Construction

We shall lead up to the so-called ““construction theorem’ by reviewing the components

and steps, suitably algebraicized, which enter into the canonical decomposition (15.6).

Let @ be given satisfying Assumption A and let ®(-) be the minimal solution associated
with it. Put

zdgL(oo)=tl%m [ - (@) 1 lim —-Ad@NL; (16.1)

z is an exit sequence relative to ® which is maximal in the sense of Theorem 13.3.

Let A be a finite index set; for each @ in A let z* be an exit sequence relative to
® such that

z= > 2% (16.2)
acA
Let 2(A) 11— ad()] 22
It follows from Theorem 13.3 that
lim AD(R) 22 =0. (16.3)
ilo

For each @ in A let ¢* be an entrance sequence relative to ®. This means in

terms of Laplace transforms:
Vi=0: = e*AD(1).
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Assume that h'tln e AD(4) =0 (16.4)
iAlo

and define the entrance law 7* as follows:

def

74A) = ket (I ~ AD(A)], (16.5)

where £ is a positive constant to be fixed later. We set also

€

ke = A (A), 1 — 2> (16.6)
which does not depend on 4; and

def def

(A= P(A), 2%,  A%(A) = A" (A). (16.7)

Now we agssume that, for each a and 0<] < co:

4%() < o0; (16.8)
and for a+b: 4% (00) ' lim 4% (1) < co. (16.9)
At oo

For each pair ¢ and b, a%b, we choose a constant Q5* guch that
4% (c0) <A®QF° < oo (16.10)
Let Q3*=0 for each a, and
def a ab
A, ={a€A:ci+2 Q8" =0}
b
def{O if aer,

and 0% =
1 if ecA-—A,

Now fix the constant k® for each @ so that

Keg+ kS QP =00 (16.11)

[

Write Q% for £°Q4° and let Q be the matrix (%), (e, b) € A x A. Furthermore, put

def 1

Er()= FraE) (16.12)
and FHZE W) (16.13)

Py o, P By QP-4 (1), a==b. (16.14)
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Let F(A) be the matrix (F®(1)). If there exists a subset C of A such that (F(0))lc
is stochastic, then we decree that all indices in C be identified. When this has been
done 7— F(4) will be invertible by Lemma 2 of § 15. Let D(3) be the diagonal matrix
with entries (4°(A),a€A) and let I be the diagonal matrix with entries (6%, a €A).

Finally, we put
def

EQ I - P o) =L — FON ™ B(A) 7(2)
=[1 - POYI T + DO 4(8) = M(A) (), (16.15)

where 3 (A= (lfl‘“’(l)), (a,b) € Ax A is the matrix defined below:

M E - PN+ DA (16.16)
and Nw=de+ 3 e0En=-8@+ 3 = #0100, (16.17)

TaEOREM 16.1. The ﬁ(l) sa constructed is the Laplace transform (resolvent) of a
stochastic transition matrix function [](f):

= f: e *T1 () .

Conversely, under Assumptions A, B', C, and D every such 11 may be constructed in the
manner described above.

Proof. The “converse” part, somewhat vaguely stated here, is just an algebraic re-
statement of Theorem 15.2 and Theorem 5.1 of [I] with 2% =L%*(c0).

The proof of the “direct”” part will be sketched. It is merely a matter of algebraic
verification based on the resolvent equations, and is quite similar to pp. 67-68 of [I].
Dropping the “”” on Laplace transforms, we need to verify (8.26) of [1], i.e.

(A—p) M(2) O, p) M(p) = M(p) — M(4)
or equivalently, since, U(4) being the matrix (u®(2)),
(A—p) O, p) =B(u)—BA)=U@R)—U(u)
(see (8.25) of [I] and the equations preceding it), that
MA)[U@A)— U] M(u) = M(u)— M) (16.18)

Since M(A)~! exists by (16.16), this in turn is equivalent to
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U(3) — U() = M) M () — MW M ()= MR — M(p) ™. (16.19)
Now by simple inspection, one sees that
M) =[{I+DMII-FA]=I-Q+TA). (16.20)
For, on the diagonal, F(1) and £ are both zero while D(1) is by definition the diagonal
part of U(A); off the diagonal, the second equation in (16.20) reduces to
I+ DMIFA)=Q—TU(A)

which is just (16.14). Since  —Q does not depend on 4, (16.19) follows from (16.20) and so
the resolvent equation for [ [(1) is verified (see the calculation after (8.26) in []).
To verify “stochasticity’ (the ‘norm condition’), we write

I=MA)MQA)=MA)[I-Q+UMA));
hence by (16.11) and (14.29) (Laplace-transformed):

1=I1=MA)[I1-Q1+U@Q)1]
=M(A)[c+UQ)1]=M(A)In(A), 1) =<A&(2), 1). (16.21)

This is necessary and sufficient for [](-) to be stochastic. Theorem 16.1 is completely
proved.

CoroLLARY. To construct a substochastic [ I(-), choose any d§ >0 for each a and choose
k* so that instead of (16.11), we have

(d§ + e+ 3 Q5%) = 6°.
b

Apart from this no change is needed in the procedure. Conversely every substochastic [](-)
can be constructed in this manner; and it will be strictly substochastic if and only if d*>0

for some a.

The idea of the above extension to the substochstic case is of course a trivial and
familiar one: one first constructs the stochastic completion by adjoining a new index to I,
and the restriction of the completion to I will be the most general substochastic case.

There is another complement, the so-called ‘“‘extension to the boundary” discussed
by previous authors. The idea is to construct a Markov chain z* on the enlarged state space
F*®TUA with correspondingly enlarged transition matrix function [T*(+) in such a way
that if in this process “the time spent in the boundary set A be deleted”, the resulting
shrunk process will be the given (or constructed as the case may be) z, I, [ ]. This idea goes
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back to Lévy and has been developed by Neveu and Williams. The algebraic part was
already indicated by Feller and in the one-atom case by Reuter. We shall show here how
the construction of the latter authors can be extended to our case by a simple modification
of Theorem 16.1. This is effected by a more general application of the Lemma of § 14,
which is indeed a kind of analytical shadow of Lévy’s idea of alloting time to fictitious
states. The development of this paper makes it clear that this allotment may be done for
each boundary atom separately.

Let k denote a general element of I* defined above. For each a in A, choose a number

[Tt

p* 20 and introduce the new quantities (dropping as before):

def
25 = 6%,

def

N5 (A) =

Thus ¢%, ¢ and 4™ are not affected for a=b, but if we denote new quantities by

pa 6ab_

affixing “*” to the corresponding old ones, we have

wr Ay =u™(A) + p*2,

so that U*(A)=U()+pAl,
Gn* (2), 1> = an(R), 1>+ p2,
*a — 1
B =i ey

M*(A) =M@+ pAl,

O* (4, p)=0(A, u) + pI.
It follows from (16.19) that

0 (1) = U* () = (= ) ©° (A ) = UR) = Uu) + p(A—pu) I
= MG~ M) pG- ) =M Q) - M)

which is the new (16.19) needed for the verification of the resolvent equation. The sto-
chasticity is verified exactly as before in (16.21) with the appropriate quantities starred.

Tt should be pointed out that unless one begins with the canonical decomposition, the
extended process constructed above will not yield the correct information on the boundary
behavior of the original process. For instance, the transition of the new states in A among
themselves will not be controlled by the jump matrix (¥%(cc)), as it should be, but rather
by Q which may not be the same matrix when the decomposition is not canonical. This

leads to the subject matter of the next two sections.
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§17. Ewude approfondie

In this section we begin by giving probabilistic meanings to the quantities, £, ¢,
a=+b, which were derived analytically in § 14. Using these we shall be able to analyze
in more depth the functions F®(-) and in particular their limit values F**(0) and F%(co).
These results are also requisite for the problems dealt with in the next section.

A fundamental new random variable, NOT an optional one, will now be introduced.

Deﬂnitiod 17.1. For each boundary atom a, let

yH(@) =sup {S%(w) N (0, %(w))}-
This is the “last exit time from a before switch (changing banners)”.
Clearly we have, uéing the definition in (14.23):
Pyt <+ oo} =4

1f a is nonsticky, y* is just one of the sequence of times, finite in every finite interval, when
the process reaches the boundary at a. If a is sticky, it follows as in the Corollary to Theorem

12.4 that y*€.8%—§° so that in particular the process is by definition neither at @ nor indeed
at any other boundary point. Intuitively, z(y*—0) is at an “inaccessible boundary” not
definable by means of the jump chain alone. Its behavior is best understood by analogy
with the last exit time from an instantaneous state (see [1; Addenda] and [2]). A more
comprehensive new boundary theory must surely cover this situation but for our present
purposes it is opossible to circumvent this difficulty. The basic nature of y° is clearly re-
flected in the theorem below.

TurorEM 17.1. We have for each a and a=+b:
Po{y° <t} = E°(); (17.1)
Po{y? <f°; y*€ ds; B*€ di; x(8%) =b} = Eds)0(t —s) dt. (17.2)

Remark. The meaning of the differentials will be explained in the proof. Note also that
in (17.2), since §*>0, “x(f*) =b" is well-defined, but later when 8* may be zero we must

write “8°€8%” instead, as in the proof of Theorem 15.1.
Proof. We begin with the relation, valid for each t>0:
Pe{y® >t} =S P> & a(t) = 4; &, < oo; () =a}. (17.3)
i

For we have y*<f? and on the set {§*>¢}, if ;= + oo then 8% N (¢, co) =0; while if o, < 00
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and x(a;) = @, then o, = and 8°n (¢, %) =9O. Hence either case implies y*<¢. This proves
(17.3). Using {14.33), the right member of (17.3) may be written as

<e*(t), L*(o0)> =g™(t) =1 — E*(t), (17.4)
proving (17.1). A similar argument establishes the more specific relation

Po{yf<s <t < <t'; (B =b} = (o(s), L(t — )~ L°(t —s)>

= J. gt (s —w), LP(t' ~s)— LP (¢t — s)) dE*(u), (17.5)
0
the second equation by (14.17). Since the last-written integrand above is

t—s -8
f (s —u), lb(v)>dv=ft 0% (s ~u+v)dv = o™ (t' —u) — o (t — u)
t t~s

-8

by (14.20) and (14.21), the last member in (17.5) reduces to

E*(du) f 6% (r — u) dr.
(R Y]

0.5)
It follows that for 0<<s<s' <t<?,

PHs<yt<s <t< i<t x(f*) =b} = E*(du) f 6% (r — u)dr,
) it.t)

(s. 8"

which is what is meant by (17.2).

COROLLARY 1. We have
t
Pe{yt < g <t a(f7) =b} = f [0 (0) ~ o (¢~ &)] dB®(s); (17.6)
[\]

Pefys =< t; f*€.8%) = B*(t) [F** (o) — 0*(0)]. 17.7)

Proof. 1t follows from (17.2) and Fubini’s theorem on product measure that the
left member of (17.6) is equal to
f E*(ds) 6°®(t — s) ds
0.5

[s.t)

which is the right member of (17.6). Now we have by Definition 14.1 and (14.35) that
. t

Pe{ge<t; B € 8%} = Fo ()= f [F®(o0) — o™ (t — )] dE*(s). (17.8)
0

Subtracting (17.6) from (17.8) we obtain (17.7). Q.e.d.
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It is essential to understand the meaning of the probability in (17.7). How is p*=8°
possible? This happens if and only if

Vo>0: 84n(p*—0,p1+0; SNy +0)+0,

(a situation envisaged in the Remark on p. 39 of {I}). If a is nonsticky, then x()y®)€8%

if @ is sticky, we have already noted that x(*) €8°— 9 In either case the second relation
above is possible only if & is sticky, by Theorem 12.5. Needless to say all the assertions
above are true with probability one only. We have incidentally discovered an important
number, now to be defined.

Definition 17.2. For a=b, let
4 = F*(00) —a*(0). (17.9)
COoROLLARY 2. If a is not a recurrent trap, then for every b=a,
A% =P*{y*= € 8°|°}. (17.10)
In particular, d®=0 for every a if b is nonsticky.

Proof. If a is not a recurrent trap, we know from Theorem 14.4 that £%(co)=1. Letting
t+ oo in (17.7), we obtain

A =Po{y" =< c0; f*€ §%}.
Substituting this back into the right member of (17.7), and comparing with (17.1), we
obtain (17.10).

CoROLLARY 3. For every a and b, a b, we have

Fab (t)

e =1i .
1o B (5)

17.11)

Proof. Observe first that E%(¢) >0 for £>0, from Corollary 1 to Theorem 14.7. We have
by (14.34) and (14.36)

1

3
F"b(oo)=Ea(t){foa“b(t—s)dE’“(s)+F“°(t)}.

Letting ¢ | 0 the corollary follows, since o®(t) 70%(0).
CoROLLARY 4. For every a+b, and on the set {y*<t}, we have

Pt <% < oo; (%) =b|y*} =0c®(t—»"); (17.12)
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Pe{y® <2 < oo; (%) =b|y*} =0™(0); (17.13)
P{g"€8°|p*} = F (o0); (17.14)
Pe{fe= + ooy} =gl (o). (17.15)

Proof. By (17.2)

Pyt <s<t< f% x(f%)=b}= Jwa“"(t ~u) dE*(u).
0

This being true for fixed ¢ and arbitrary s<t, we have (17.12). Next, we write for each
t=0:
Fo (o) =Pe{fe<t; f°€ ;?’} +Pe{yt <t <% (fY) =b} + Po{t<p% x(f*) =b}. (17.16)

The first term on the right side is F°(t); the second is by (17.2) equal to

J'to“” (¢ — 8) E%(ds);
0

hence the third is equal to

Fe®(co)— Fab(t)— fto"’(t-—s) E®(ds) = [1 — E=(t)] F®®(o0)
0

by (14.35). This means, by (17.1):
Pe{ye>; g€ 8% =Pe{y > 1} P{f* € 5%}

so that there is independence and (17.14) follows. From this (17.15) follows by (14.4).
Finally subtracting (17.10) from (17.14) we obtain (17.13) which is a limiting form of (17.12).

The next theorem is the completed version of Theorem 5.3 in [I}. The proof there is
analytic and leaves one important point unsettled, concering L*(0 + ), which is specifically
mentioned on p. 42 of (I]. The difficulty is resolved here since the relevant sample func-
tion behavior has now been clarified and the new proof, given in perhaps excessive detail
here owing to past failure, is probabilistic. We put F%(0) =0 for each a below.

TuEOREM 17.2. For each a and b in A and 0 <t < + oo the limils below exist:

L () di‘lifn CE(s), LP (t—s)>, (17.17)
s}o
I (1) “i‘n:n Co®(s), LP (t—8)>; (17.18)
8}0
and we have Lo () — Lo (¢) = Fo(0) = L®(0 +) > [ (0 +) =0. (17.19)

Furthermore, if a s sticky, then
Lo 8y = L0 (1) =6, (17.20)
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Proof. For convenience’ sake, let us state the following lemma which is trivial to prove

as soon as it is formulated but useful also in other similar circamstances.
Lemma. Let {A;, s=0} be a family of seis in &, and A also in F. Suppose that there
exists o sequence of sets 2, in §§ such that Q, 7 Q and such that
ANQ,=ANQ,

whenever s <g, where &, \0, then
lijlm P(A,)=P(A).
s40

To prove Theorem 17.2 we prove first (17.20). If a is sticky, for each >0 and
a.e. w, there exists an integer n, such that:
Vrzng o (w)<t, z{oa—)=a.

Let ny(w) be the least such integer and put s,(w)= asw—. Then s,(w) is a random

variable satisfying for a.e. w:

() 0 < 55 () <,
(i) %(sy (w)) =a,
(i) 1y S (w) N (0, sy () = B.

The last as a consequence of Definition 12.2 and Theorem 4.6 of [I].

def

Let Q. ={w:sy(w)>n""},
A's’(}g{s<ﬁ“; w0, <t; o, €8?), $>0,bEA
We have A7 nQ,=QNQ, whenever s<n™%; hence by the Lemma above

lim P*(A]) =P*Q)=1.
{0
Now by definition we have

P(AS) = Co%(s), Lt~ s)),
and consequently we have proved that L**(t)=1. Since

2 L®(t) < lim ¢p(s), 1> <1,
beA s}o

this implies L® (t)=0 for b+a. Since &*(-)>¢%(-), the first equation in (17.20) now
follows. We have proved (17.17)-(17.20) for a sticky a.
From now on in this proof let ¢ be nonsticky. Let
def o -

A={w:0€8(w)}, A'=Q\U A"

ceA
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On A, 8*>a>0 a.e. and if s<a(w), then a,(w)=a(w). Hence if Q, ={w: a(w)>n""},

we have

QNA NAI=Q,nA NAS
whenever s<n~'. Hence as before

lirln PA 0 A =P*(A’ n AD).
sl0

Since a is nonsticky, under P* we have o®>0 as well as >0 on A} for s> 0, so that
P2A’ 0 AS) =P (AS) = (" (5), L° (t— s)>.
Together with the preceding relation this proves
L (5 =P*(A' n A)).

Next, let Mﬁqg{as <t x(os) =b}, 8>0.
Then we have by definition

(E4s), LP(t—s)> =P*(M7) = ZAP“(N N M) +PHA" 0 M)

Since A’ N (MNAD <A’ n{f*<s} D as s} 0, we have
Yim PY(A’ 0 M?)=1lim P*(A’ 0 A?),
]

s}l0 s
hence the last term above converges to L*® () as just shown. For each sticky c, we have
by Lemma 1 of §15:

lim P2(A° N M2) = F*(0) lim P (M?) = F*(0Q) L°(t) = F**(0) 6,
s40 slo
the second equation above being an application of (17.17) and the third of (17.20)

both with a=c. Combining these, we obtain

Lo @ty=3 F°(0) 0%+ L®(t) = F**(0) + L ().
ceA

This proves the first equation in (17.19); to prove the second, we observe that by
definition
Lty <P*{8°n (0,t) =9}
and consequently L®(0+ )< F®(0)<L*(0+). The rest follows. Q.e.d.
The following result is an essential sharpening of the preceding theorem and is
also the major step towards the identification problem in the next section. It seems

to depend almost precariously on the finer properties of boundary atoms.
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TarorEM 17.3. For each a, we have

i L E @ L () g,

o 7 (s) (17.21)
and if 8°=1, for 0 <t< + oo
o 1=KEs), L)y
lslﬁ). TG ey~ LT (17.22)
For each c=a and 0<t< + co:
<& (s), Lo ()
= % (c0) — ; 17.23
I (e, Lo(oayy T ()T (17.29)
in particular lim F6), L(=) = F%(c0). (17.24)

sio 1 =<8 (s), L*(o0))

Proof. We have by (15.1):
<E%s), Lo (1)) = o™ (s), Lo (8)> + bga f , <& (s —w), L°(t)) dF* (). (17.25)

The first term on the right is equal to

fs@“(s —u), L)) dE*(u) = fs[a‘“'(s —u)— (s —u+t)]dEa).
0 0

Recalling (17.11), we have as s 0:
F®(s)~ E°(s) d®. (1)
Substituting the last two equations in (17.25), we have as s 0:

<E(s), L°(8)> ~ B*(5) {0*(0) — 0™ (t) +b§ad“b1§“ ()}

But by Corollary 2 to Theorem 17.1, d*®=0 unless b is sticky, and if so L (t)=4"
by (17.20); hence
d* if ac,

Z dabLbc(t) = Z dababc___{ ]
b¥a 0 if a=ec

b+a

Consequently if a=¢, we have by (17.9):
<EMs), L)) ~ B*(s) {0 (0) ~ 0% (1) + d*} = B*(s) {F*(o0) — 0™(t)}.  (17.26)

(*) u(s)~v(s) means lims | o u(s)/v(s) = 1.

10 — 652944 Acta mathematica. 115. Imprimé le janvier 1966
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Next, putting e=c¢ and t= + oo in (17.25), we have
E%(s), L (o0)> = fo 0 (s —u) dE*(u) +b§a fo CE (s —u), L*(o0)) dF* (u).

The first term on the right side is equal to 1 —§*E°(s) by Corollary 1 to Theorem 14.7.

Hence as s | 0 we have as before:

1—(£%(s), L (o0)> ~ E%(s) [6° ~ D, d® L% (o0)]= E*(s) 6%

b+a

This proves (17.21), and together with (17.26) proves (17.23). If =1 a similar argu-

ment yields
1—<E%(s), LA (t)> ~ B () [1 + 0% (8)].

Hence (17.22) follows from this and (17.21).

Remark. (17.24) may be written as

. P {x(“s) = C}
=P () = 4}

5>0

= F*o(c),

or even more suggestively as

ool =t} F(w0)
s Pola(a) =} F* ()

provided F*(o0)>0. Is either of these relations “intuitively obvious’?

§18. ldentification

In this section we consider the following problem. Given []=(p;;(+)), how to “find”
the quantities L?, &2, F, ¢%, €, E%, 7%, o, introduced earlier in the paper? These have all
been defined in terms of the process {z,}, but how can they be expressed, or at least, deter-
mined by means of [ [? The words “‘expression” and ““determination” are of course them-
selves subjeet to interpretation but our results below will be stated in specific ways. This
problem, to be called that of “identification’, has its proper interest, but we shall also
use its solution to answer the questions raised in § 11, concerning the tracking down of
the canonical decomposition and the construction of stopped processes.

Let A be a set in the Borel field §° generated by {r,, 0<t< co}. Since the basic proba-
bility measure P on $° is uniquely determined by its values on cylinder sets of the form
{x(t,) =4, 0<n<I}, £,20, §,€L it is determined by ][] and the initial distribution of the
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process. In particular, P,{...} for each i€l is determined by [] alone. However, many in-
teresting sets A must in practice be defined in terms of a “nice version” of {w;} (see [1;

§ I1.71); hence the following simple observation is necessary.

Lemwma. Let two arbitrary stochastic processes {x,;} and {%} defined on the probability

triple (Q, §, P) be standard modifications of each other, then the Borel fields ° and g" gen-
erated by them are identical provided they be both augmented (by all P-null sets).

Proof. If A€F®, it is well-known that there is a countable set {t,}, €N, such that
A€F{x(t,), n€N}. For each n, P{x(t,)=%(,)} =1 and so P{Vn€N:a(,)=%(t,)}=1. It
follows that A differs from a set in {%(t,), €N} by a null set, hence A € and the proof
is finished.

As a consequence of the lemma, quantities such as those mentioned above are deter-
mined by [] in the sense that for two processes having the same transition matrix [],
these quantities have the same values. However, even in the simplest cases involving no
boundary, an explicit expression may be hard to come by, for example the taboo probability
oPo,(t} used in the proof of Theorem 14.3. Here indeed lies the great advantage of the
probabilistic method, by relying on the sample functions of the process rather than its
transition matrix. However, we are now pushing matters in the opposite direction.

To recapitulate from the beginning of the story (see [I; §§ 2—4]), @ is the initial deriva-
tive matrix (p; (0)), supposed to be conservative; given @, ®(-) can be constructed by a
purely analytic iteration procedure (given 25 years ago by Feller) as the minimal solution
of the Kolmogorov differential equations, both backward and forward. @ also determines
(it is trivially equivalent to) the jump matrix P=(r,) where ;= (1—6,,)¢,,¢; . Now it is
necessary to confront the boundary. Under Assumption B, that the passable part of the
boundary be atomic, each boundary atom @, a €A, corresponds to an essentially uniquely
determined atomic almost closed set 4% of I, and we have (cf. [1; § L.17]):

Li(co)=lim P;{X,—~a}=Em Y P,
n-—>00 n-»c0 jeds
where {y,} is the jump chain whose probability behavior is controlled by its transition
matrix P. The above is substantially Feller’s definition of a sojourn solution [6]. There

is another way of identifying {L% o), a€A}: they are the extreme points of the cone of

solutions of the equation:
Qe=0

with e <1; see the discussion around Theorem 4.2 of {I]. This is also due to Feller.
Next, £* may be identified by Theorem 4.5 of [I]:
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& ()= Lim p, 5 (1) (18.1)
[ Aads

with probability one, for each § and £>0. The preceding formula, like the one above for
L#(0), uses the jump chain and its boundary behavior. This seems inevitable as somehow
the fact of approaching the boundary at a specified atom must be expressed, nevertheless
there is the question of the “neatest” way of doing so. One may remark in passing that the
Martin boundary theory (see [8]) yields a similar but less precise expression for L® as

follows:
§ r(n)
L?(oo)= hm n=0 n
L§(o0) 1,0 § m
n=0 O

where 0 is some fixed state.
Given £* and [] the probability measure P*{...} on the Borel field §{x;, ¢>0} is uni-
quely determined, since if 0 <¢, <...<#,, and j,€I we have

1-1
Po{a(t,) =jn, L<n <L} =&} (£) Hlp,v (B2 — 1)

This may be extended to include the sets {x(0)=j}, since
P{z(0) =7} = liz Pe{z(t) =j}.
Analytically, the identification given for {£% a €A} is sufficient to yield the fol-
lowing useful uniqueness theorem (cf. Reuter [14]).

THEOREM 18.1. Suppose that there is a decomposition of the form
4
[Tey=o@) + ZA Ly“(t-s) dL(s), (18.2)
ace

where [1, ®, L have previous meanings; and either for eack a, y* is measurable and =0,
or for each a, § e *|y2(t)|dt< oo for A>0. Then we have for each a and almost every t:

y* () = £°(¢).
If m addition y*(-) is right or left continuous, then there is equality above for every i.
Proof. Taking Laplace transforms, we have

z?w>=fu(z)+b€zAL? A (2. (18.3)
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The alternative condition on the y*s ensures that the Laplace transforms of the con-
volution in (18.2) is the product indicated under the sum in (18.8), if we observe
that 0<[](¢)— ®()<1. Now substitute %, for ¢ in (18.3) and let X,—>a as in (18.1).
As a consequence of Theorem 4.1 of [I], we have

lim L} (2)=0", lim £, ;(2)=0;
@ X, 4

this together with the Laplace transform of (18.1) yields at once
B (1=0+3 g ()= (1.

The assertions of the theorem follow from the uniqueness theorem for Laplace trans-
forms and the continuity of & (-). Q.e.d.

Given £ and L*(c), a€A, the other quantities can be expressed purely ana-
lytically without further intervention of the boundary. This will be exhibited, repeating

previous formulae to avoid excessive cross references, in the following summing-up.
TareorEM 18.2. (1) a is not a recurrent trap: 6°=1.
LA @) =[1 - D@)] L (oo);

e 1= (80, IO
L o) = e ), (o)

E%(-) is the unique solution of the integral equation

Yi>0: ft[6“+ o%(t—s)]dE*(s)=1;
0

o CE(s), L(0))
By =l 4 e 9), (o0

a+b;

bty 1 (o)l EOLTOD
O T R e ey

e?(s>=5f<t)—b§afo £ —s)dF®(s) if jeI’,
-0 it jers

e = f 0% (t) dt;
0

)= e T~ D)
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(2) a 15 a recurrent trap: §*=0.

L*(t) as above;

e = f oDo(t)dt, O fized in 1, jET%
0

7°(t) as above with the e just defined;
o ()= (), L(0));

E°(-) as above;

°=¢&% F®(-)=¢%(-)=0; a=b.

As illustrations, the preceding theorem enables us to solve the following problems.
The point is we can go from one set of analytical data to another without introducing new

quantities.

Problem 1. Given a process constructed by Theorem 16.1, with 2°=L%o0), a €A; to
find its canonical decomposition as given in Theorem 15.2.

The solution is immediate since the construction produces &, a€A, as well as [],
from which we determine §* by putting 6°=0 if and only if

<&%(s), 1 —L¥e0)) =0,

otherwise §°=1. Now in either case of Theorem 18.2, we obtain ¢°% E%, 5? F®, thus retriev-

ing the canonical decomposition (15.6).

Problem 2. Given L?(co) and £%(-), a €A, constructed or otherwise; to find the transition

matrix of the process stopped at A,, a subset of A.

If {x(f)} is the original full process, the stopped process {Z(f)} is defined as follows.
Recalling the definition of o® in §13, we put ob1=infsca, %, and

z(t) i 0<t<at,
z(t) = .

6 it t>aty
where 6 is the adjoined absorbing state. For A, =A —{a}, the stopped process is just the
a-process defined near the beginning of § 14, with the transition matrix [[* given there.
The general solution to Problem 2 should now be obvious. First we find ¢* and F® by
Theorem 18.2; then we set
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~ .
B¢+ 5 | B(t—s)dF®(s), a€A,
beA, JO
or its Laplace transform

é“(z)=gaa>+bezA Fo ()8 1), a€A,.

Let the restriction of F(4) to A, x A, be F, (%), then I—F (1) is invertible as in the
proof of Theorem 15.2. Hence we may solve for é :

EA) =T~ By (W1 o (A
and Ow=om+ > *méw

neA,

is the Laplace transform of the required stopped transition matrix (without completion).

The procedure given in Theorem 18.2 is somewhat tedious to follow in practice (see
the Example at the end of this section). Quicker results can be obtained by uncovering a
certain linear transformation which reduces a given decomposition to the canonical form.
In what follows we shall again omit the “~” on Laplace transforms.

THEOREM 18.3. Let 0 <A< oo; and
§(A)=M(A)n(2),
where MA)=[I-Q+UM]?

18 any construction given by the first part of Theorem 16.1; and let M , ﬁ, Q, U be any other one.
Then there exists a constant invertible matrix C such that

7(-)=0n(). (18.4)
Proof. We have MA)nA) =ER) =M A)p(A). (18.5)
Recalling the resolvent équation, valid for 0 <A <oo, 0<py<oo:
(A —=p)n(2) D) =7(re) —7(2)
for 7, and a similar one for 7, we obtain from (18.5)

M) [ye) =] = BLA) () — (A ]-
Cancelling against (18.5), we have ‘
M(Dnlp) =M. (18.6)

This being true for every 1>0, x>0, we may fix any A=1,>0 above and put
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C'= M (ho) ™ M (o)
to conclude (18.4).

In Theorems 18.4 and 18.5 below we shall assume that the set of |A| vectors
{n*u), a € A}, each regarded as an element of the vector space TM(I) mentioned in De-
finition 13.1 above, is linearly independent for some value of u: 0<u< oo, Then it
follows at once from the resolvent equation for each #%(-) that it is linearly independent
for every such value of . Under this assumption the equation (18.6) implies that we

have for every 4, 0 <A< oco: )
M@A)M(A)=C,

where C is as in (18.4).
THEOREM 18.4. If I—C) is invertible for some Q) in Theorem 18.3, then it is invertible
for every Q and we have )
C=I-Q)I-Q) (18.7)
This situation oblains if and only if all boundary atoms are nonrecurrent.

Proof. By (16.6)-(16.9) we have (3*u), 1> < oo for each u > 0. Using the resolvent
equation for %® we have for each 1>0:
u™(A) = An(w), 2% + (e — D) <), AQ@A) 2

hence lim; ;o u%*(4) =0 for each a and b by (16.3), namely lim; ;o U(A) =0. Since M(1)~*=
I-Q+U(4) we obtain ‘ ,
lim M) =I-Q. (18.8)
140
It follows from a well-known proposition of finite matrix theory that (18.8) implies

lim M(2) = (I — Q)™

ajo
in the sense that the existence of one member of the equation implies that of the

other and also the equality of both. Hence if I—Q is invertible, then

lim M(2)=1lim M(1) C'=([-Q) ¢
ijo alo

which implies that I~ is invertible and
(I-Q) ' =(I-Q)tc?

proving (18.7). On the other hand, for the canonical Q =(F%®(co)), I — £ is invertible unless
there exists A,< A such that Q| ,, is stochastic. This is the case if and only if the boundary
atoms in A, are recurrent. Thus 7 —Q is invertible if all the boundary atoms are non-
recurrent.
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TaeoreM 18.5. If all boundary atoms are nonsticky, we have
C=(I~Q+U(co))(I—Q+ U(oo))™.
This is proved in a similar way as the preceding theorem. We now give an example

to show the possibility of distinet decompositions mentioned in § 11.

Example. Let A={a,b}; given z* and z° with 2%+2°=2, suppose that 7% 7® are lin-
early independent and such that

#=0,  w(oo)=too,  uteo)=},
=1, w??(c0) =0, uPP(00) < oo
Q@=1, Q*=0,

These choices are consistent with the conditions of construction; in particular the numerical
values of u®(co) and ¢® may be fixed by a proportional constant factor.
‘We have
1+u™(2) —1+u®(d
I_me=( @) ())_

0 1+ %% (2)

M@A)=[I-Q+ U@ = (E“M) EBEQEB@N) - (A)])

0 E*(A)

where E°(A)=[1+u“(A)]* for c=a,b. Thus

EE(Aywe ) E*(A)u®(A)+E*A) E®*(2) [1 - u™ ()] u® (1)).
0

M) UA)= ( E*(A) ™ ()

Noting that

GO 2 M=) < (), 2> = %M‘” (A) A7 u(A) =27 M(2) u(d) |,

we can compute from the preéeding matrix to obtain

fi _SE @A), 2> w(oo)+u(o0)
itw 1—(E%(A), 2% 1+ %% (o)

u<l,

K€ (4),2%

lim =2 —"—=(

At o0 1- <§b (2'), zb>

. 0 01
Thus the canonical Q:(Fab(oo)) is (O Z) not the constructed Q=(O O)'
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Theorem 18.4 is applicable and we obtain

-l 6T -6

b

=+ A-wg’, =1
The canonical decomposition is therefore
[CT~Q+UENI™ On(d) =L — Q-+ TW] ().

These computations can also be made directly by Theorem 18.2.

§19. Complements

The first complement concerns nonsticky atoms, for which many of the results and
their derivations can be simplfied. While our general discussion includes both sticky and
nonsticky atoms it is worthwhile to examine for a little the simpler case where the intuitive
meaning is more easily recognized and the analysis follows a smoother pattern. Indeed
the sticky case may be regarded as a suitable limiting phenomenon, closely related to the
passage of compound Poisson laws to an infinitely divisible law, which deserves further
investigation (cf. in this connection a conjecture of Reuter [14], since proved by Kingman
[II1]).

There are several ways of direct handling of a nonsticky atom a. One is to begin with
the Lemma in § 14 and observe the special form of E%(-) as indicated in Theorem 9.1 of [I].
A more instructive approach, however, is to begin with the basic interpretation of E%(-)
given in (17.1). Recall from Theorem 12.5 that if ¢ is nonsticky and the process starts at a,
then the successive times at which it is reached is a sequence of optional random variables

0=1,<1,<73<..,,

the number of which being finite or infinite with probability one according as @ is non-
recurrent or recurrent, by Theorem 12.1. As usual we define all the non-existing v’s as + oo.

It is clear from the meaning of L*® in Theorem 17.2 that L(0 +) =0 for a nonsticky a,
and that L®(-) is a probability distribution function if and only if a is a recurrent trap.
If we write L% for the n-fold convolution of L% with itself, with L% =¢ the unit mass

at 0, we have by the Strong Markov property:
Pz, <P <Tp,y; TSt} =LM9(¢)[1 — L*(c0)].
Now it follows from (17.1) that

E“(t)=§ol’“{rn<ﬂ“<r,.ﬂ, rn<t}=,§oﬂ"’“(t> [1— L% (o0)]. (19.1)
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It is clear that E%(t) is just the expected number of times of reaching a in time .
[When a is sticky, E%() can be shown to be the expected “local time at o, but this inter-
pretation seems less convenient than that given in (17.1).] Letting ¢ | 0 in Corollary 1

to Theorem 14.7, we obtain
E*0)[6*+06%(0)]=1

1

80 that Ea(0)=1—L‘w(°°)=m

It is easy to express F* in terms of L%

t
Fo(ty=Leo(t) + f Fo(t—s)dL*(s), a=+b,
[}

or in terms of Laplace transforms:

ab
i (A)= ] fzfi“zl) . (19.2)

L“b(oo) _L“b(oo)
1—L%(c0)  E%0) °

In particular F®(co)=

On the other hand, we have by (17.19), (14.35) and (17.9):
Fo(0)=L»(0+)= E*(0) [F**(c0) — 0™ (0)] = E*(0) d*.

Next we have, by (17.18), (14.17), and (14.27),
8 t
Z“”(t)=li?1 f (s — u), L*(8)> dE*(u) = E*(0) f 8% (s) ds.
${0 JO 0

Recalling (5.7) on p. 40 of [I], in our present notation:

£ () =P {a> 0;2(0) =5},

t
it is clear that or ) =_7 (t)+f o1 (t —s) dL*(s).

0
Namely, (i(¢) represents the probability, starting at @, of z(f)=¢ without having
reached any boundary atom before time f, while g{ (#) that of the same without reach-
ing any boundary atom except a. In Laplace transforms, the equation above is
0

T Zmgy (19.3)

e*(A)=
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Substituting (19.2) and (19.3) into (15.2), we obtain

ta _ 1 > ab £b . 19.4
A= LM(Z){5°<A)+M§MZ W EA (19.4)

or clearing of fractions:
Em=tw+ 3 LM EW,
which is (5.20) of [I].

It now follows from

EBR) aray_ parpag VL) o BHO) g
i@ 6%(A) = £ () 77 (A) ————I_LM(Mn(i) Tgmgy T ®
that () =E*(0) ().

Thus {° is the part of g* = E® % #® which arises from the mass of E? at 0. The possibility of
using ¢, which has an easy meaning, rather than 7, accounts largely for the simplicity of
the nonsticky case.

The general reduction sketched above shows the sense in which the development in
§ 14 is an essential extension of the “first approach” in {I, § 5] to the case where some atoms
may be sticky.

The second complement concerns the “last exit time from a before time 7, as dis-
tinguished from the “last exit time from a before switch” introduced in Definition 17.1.

Definition 19.1. For each a and ¢ =0:
y3{w)=sup {8*(w) N [0, t]} =sup {s : 0 < s <t; (s, ) =a}.

This is the obvious extension of the last exit time from an ordinary state ¢ before
time ¢ ([1; p. 261] and [2]); see also Corollary to Theorem 12.4.
We have then

Pe{yi<s<t<p% x(t)=f}=§ef(3) fult—s)
= f:an(s—u) fiy(t~s) dE"(u)=J.01]}’(t—u) dE*(uw). (19.5)

Summing over §: Py <s<t<p}= f ne(t —u) dE*(u).
[

Thus we have in density form, for 0<u<i:

Pe{y €du; t < f°} =3 (¢t — w) dE° (w),
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and Pe{ys edu; i < B% alt) =i} = P W pafe e dus < 6.
e —u)
Putting s=¢ in (19.5), we obtain
t
0= [ -0

0

this then is the meaning of the fundamental formula (14.17).
It is interesting to compare this with Theorem 17.1 by calculating the following
more specific probabilities:

Po{yf <s<t< % a(t) =7; o < u; 2(;) = b}
=§e?(s)fu(t—s)L?(u—t)=f:n7(t—r)b§’(u—t)dE“(r);
P{yi<s<t<pf%a(t)=j o=+ oo}
=S a @ fyt=) D= Lo = [ 7 0=n 1= L= D1aE0).

Summing over j, we have if ¢<w:

Pe{y? <s<t<f% o <u; x(oy) = b}
= fs [6®(t—7)— o™ (u—1)]dE*(r) = fs fu-r 6°° (v) dv dE° (1),
1] 0 Jt-r

or in density form, valid for each @ and b (not necessarily distinet):

Pa{t < §% % €ds; o € du; 2(or,) = b} = E*(ds) 6°° (u) du.
We have also

P{yi<s<i<f% o= +oo}=f 7% (o) dB®(r) = *E°(s).
0

These results explain quantitatively the second sentence of [1].

Finally, we shall give a description of the boundary behavior of sample functions in
the general case discussed in this paper, namely under A, B’, C, and D. This will be
seen to be the completed version of the description given on pp. 45-46 of [I] for the case
where all boundary atoms are nonsticky. A comparison of the two will show again how the
present approach does complete the previous one.

Beginning at time §,=0 with the banner (boundary atom) z,, let the successive times
for changing banners be §,<f, <...<f,<... where the sequence is terminated at the first

B which is + oo, or continued indefinitely if they are all finite. Note that each 8, may equal
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fria With positive probability. Let the successive banners be zy, 2y, ..., Z,, ... 80 that any
two consecutive ones are distinct and that between time £, and 8, ,, it is the banner z, which

is flying. The time-atom process

(«80’ Bus -oes B )

20y Z1s vevs Zny oo

with state space Ax(0,c0) is a Markov process characterized as follows:

{zn+1 =b Zo, cery Bp-1 zn:a}’:Fab(t);
ﬁﬂ+l< ¢ ﬁoy ooy ﬂn——li ﬂﬂ.
21y veer Rp~1y A — @
PiBny=rtoo| }= 2 ().
{ﬂ o ﬁp-”,ﬂn-lyﬂn 9*

The process {z,, n>0} is a discrete parameter Markov chain with (F®(cc)), (a, b)€EA X A,
where F%(o0)=0 for each a, as transition matrix. The banner process, defined on [0, co)
to be at z, in the time interval [8", f"*!), is a semi-Markovian process (see Pyke [V]).
Between each change of banners, namely in each time interval (8, f,.,), the ordinary states

% line up under the banner z, with the following probabilities:

20) cv3 Zn-1, % =404

BorosBr1, fn=35

}=g§'(t—s), 0<s<t.

P {x(t) =it <PBui

Summing over ¢, we have

20, vy -1y R =@

=pi(t—s), 0<s<t
0 ** > ﬂn—l; ﬂn= 8} *

P {t < Bas1

We have therefore
P{B.<t<Bur1;2e=t, 1 <k<m|z,=a,}

=(Fux Py ., x Fan-1o) ()= 5 (F%%x% .. % Fon-19nx Fontntl) (t)
an+1+an

t
= f 0% (t— 8) d(F%% 3 ... % Fon—19) (s);
Q0

and consequently

] 4
Pefeity=i}= S 3 og%a—s)d(F%*...*Fa»—wn)(s),

i
n=0 a,....0n

where for n=0, the last written convolution is g(+) as usual. This is the precise
meaning of the canonical decomposition in the first equation of (15.6). The meaning

of the second equation has just been given above.
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