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Introduction

The principal object of the following investigation is to study the Schreier theory of
extensions and its analogue for any variety Vg of groups or (not necessarily associative)
linear algebras defined by a fixed (but arbitrary) set S of identical relations, and then to
show how the Schreier theory can be applied to give various qualitative results on exten-
sions within such a variety.

Apart from dealing with groups and algebras separately, the discussion treats in a
unified way extensions within such varieties as the varieties of (i) all groups, (ii) abelian
groups, (iii) groups of fixed exponent k, (iv) groups of fixed nilpotency class k, (v) associa-
tive algebras, (vi) commutative and associative algebras, (vii) Lie algebras, and (viii) Jordan
algebras, ete; although groups and algebras are treated separately, there are strong ana-

logies between the results obtained for the two cases.
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18 J. KNOPFMACHER

In establishing the Schreier theory of extensions lying within a fixed variety Vy of
groups (or algebras), an essential role is played by the free differential calculus of Fox [6],
certain “‘free derivatives’” which appeared in [13], and constructions with factor sets (2-
cocycles) which are analogous to, or generalize, ones used at various times by Eilenberg and
MacLane (cf. [3], [4] and [14]). This basic theory appears in Chapter I, § 2, and Chap-
ter 11, § 2.

Amongst the applications of the Schreier approach there is firstly a theorem stating
that the equivalence classes of split extensions, within a given variety ¥V =V, of an abelian
group M by A€V can be put into 1-1 correspondence with the set of Zg(4)-module struc-
tures on M, where Z4(A) is a certain associative ring depending on 4 and on V. This is
Theorem 3.2 of Chapter 1.

Consideration of the ideals of Zs(A), and of split ““V-extensions’ of abelian groups and
endomorphism rings, leads naturally to the concept of a “V-envelope” of A€ V. This is
a ring Y together with a structure giving rise to a split V-extension of the abelian group of
Y by A. Z4(A) is an envelope which has the “universal” property that, given any V-enve-
lope Y of A, there exists a unique homomorphism Zg(4)-Y, which satisfies a certain
naturality relation. Further, there is a 1-1 correspondence between the ideals of Zg(4) and
the classes of V-envelopes of A4, under a certain equivalence relation on envelopes. These,
and other, properties of these concepts are discussed in Chapter I, § 4. Z¢(4) and its proper-
ties are analogous to a functor Gg(4) and its properties which were studied in [13], with
regard to split extensions within varieties of linear algebras.

Next, given a variety V of groups (or linear algebras), some results on general V-
extensions yield, in particular, analogues of theorems of Eilenberg and MacLane [4, 5]:
Let A=F/R be a presentation of 4 as a quotient of a “V-free” group (or algebra) F, and
let M be an abelian group (or zero algebra). Then the group of V-extensions of M by A4,
realizing a given action of 4 on M, is naturally isomorphic to the group of operator homo-
morphisms R —M modulo restrictions to R of derivations F—M, the isomorphism being
obtainable by “cup products” with any chosen factor set of the extension R —~F —~4. (Cf.
Chapter I, Theorem 5.2 and Chapter II, Theorem 3.2 — algebra extensions are taken to be
linearly split. Some months after proving these theorems, I received the manuscript of [8]
by M. Gerstenhaber, which includes an isomorphism of essentially these groups, for (not
necessarily linearly split) algebra extensions; he sketches an approach different from that
considered here.)

If BeV, an analogue of another theorem of Eilenberg and MacLane [5] states that the
set of V-extensions of B by A€V, under a certain class of actions of 4 on B, can be put

into 1-1 correspondence with the corresponding group of V-extensions of N by 4, where N
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is the centre (or bicentre) of B; the correspondence is obtained by first choosing some
V-extension of B by 4, and is not natural in general. (Cf. Chapter I, Theorem 6.1 and
Chapter II, Theorem 4.1. Hochschild [9, 10] has given this result for associative and Lie
algebras.)

Finally, in Chapter II, § 5, there is a result on the embedding of extensions of algebras

in split extensions.

I would like to thank Professor J. F. Adams for some helpful comments, and Professor

M. G. Barratt for an elegant proposition concerning Zg(4).

1. Extensions in varieties of groups
1. Preliminary notation and definitions

Let S be any subset of a free group F. A group A is said to satisfy the identical relations

S if and only if
$(8)={1}

for every homomorphism ¢: F —A. If 5F denotes the smallest fully invariant subgroup of F

containing 8 then this condition is equivalent to the condition:
$CF)={1}

for every homomorphism ¢: F —A. Any set, T such that 7F =5F will be called an equivalent
set of identical relations to S. We shall denote by V the variety of all groups satisfying the
identical relations 8. Thus, if 7' is an equivalent set of identical relations to S, then Vg=V,.
The variety Vg could equally well be defined in terms of any free group ¥’ with the following
property: For some set T of identical relations equivalent to S, there is a subset {z} of a set
of free generators of F such that each element of T' is a word in the elements of {x}, and
such that there exists an injection {x}—{z'} of {x} into a set of free generators of F".

For the sake of brevity, groups in Vg will be called S-groups. An S-group Fj is said to
be free if and only if F contains a subset X such that any mapping of X into an S-group 4
can be extended uniquely to a homomorphism Fg—~4. If F’ is any free group, and SF' is the

normal subgroup of F’ generated by

$(S),

¢$eHom(F, F')

then Fg=F'/*F' is a free S-group. A discussion of identical relations in groups, and fully

invariant subgroups of free groups, is given in [14].
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Our basic reference on group extensions, and many of the results to be considered
later, will be [14]. An extension of a group B by a group 4 is a group E together with an

epimorphism
nm:E—-A4

whose kernel is isomorphic to B, and gives rise to a short exact sequence
1>B—>E53>4->1.

The extension will be called an S-extension (Vs-extension) if and only if E€ V. Two exten-

sions
1>B>E3>A4—>1 and 1-B—>E54—>1

are equivalent if and only if there exists a homomorphism 7:E —E’ and a commutative

diagram:
PR
1-B A--1;
N,
\E'//n

7 is then necessarily an isomorphism: E= E’.

Let y: A —~E be a cross section mapping of an extension
1-B>E3 A1,
i.e. a mapping such that 7y =identity. Define a mapping
7:4—~Aut B,
of 4 into the group of automorphisms of B, by:

n(@) (m)=y,my;' [a€A,mEB],

and define the factor set mapping
I''dx4-B

of y (the deviation from multiplicaﬁivity of y) by:
Ya¥o=Lss Ve [a,b€A].
Then, if a-m=n(a) (m) [a€A4,m€ B] and k-m =kmk [k,m€ B],
a-(b-m)=I, , (ab-m) [a,b€EA; mEBRB] (1)
Further, I" satisfies the “cocycle’ condition:

aly Ty oe=I0 sl [abc€EA] (2)
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We also have:

(mya) (mye) =[m(a-n) I'g,]yas [m,n€B;a,bEA] 3)

Conversely, given mappings #: 4 >AutB and I': 4 x 4 -~ B satisfying conditions (1)
and (2), one can define an extension of B by 4 by letting E be the set of all pairs (m,a)
[m€ B, a€A)] with multiplication defined by:

(m,a) (n,b) =(m(a-n)T',, », ab).

It will always be assumed that the functions # and I' are normalized, i.e. that 7(1) =iden-

tity, and
Iy, .=1'y ,=1fora€A.

(Similarly, cross sections y will be assumed to satisfy y, =1.) In this case, the unit element
of the previous group E will be (1,1), and the inverse of a pair (m, a) will be

(m, @) =(Tha (@ -m)™, a™). 4)

ProrosiTioN 1.1. Two extensions 1 > B—E ~A—1 and 1 -B—~E —A —1, given by
(normalized) maps n,n" : A ~Aut B and I',T": A x A — B respectively, are equivalent if and only
if there exists a (normalized) map yp: A - B such that:

(@) 7' (@) =<y, n(a) [a€4],
where (k) denotes the inner automorphism m —k-m induced by k€ B, and
(i) Io, o =4a(@9s) To.p pao  [a,bEA].

The above facts are all standard. It will frequently be convenient to describe any
extension group K as a group of pairs in the above way; in this case, y: 4 —E will always
denote the cross section mapping a —~(1,a).

Consider an extension
1-B—>E—+>4-1

determined by maps 5:4—~AutB andI': 4 x4 —>B. If ¢:G ~4 is any homomorphism of
a group @ into A4, consider the functions

¢*n=nd:G—~>Aut B
and $* T =I(¢ x¢):G xG—>B.

A simple verification shows that ¢*5 and ¢*I" satisfy conditions (1) and (2) above, and so
define an extension ¢*E of B by G.
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If G="F is a free group, such an extension ¢*E must split, i.e. it must have a cross
section which is a homomorphism. In fact, any map x, >y, = (y.,%,) of a set of free genera-
tors {x;} of F into ¢*E can be extended uniquely to a homomorphism p:v - (yp,,v) of F

into ¢*E; since u is a homomorphism one then has

L=y, (u-p,) " T(u,v)pus [u,vEF].

It will be convenient to let
F¢ M F —)B

denote the unique function such that

P¢(xi) = 1’

Ly(uv) =T'g(u) [pu. Ty(v)] Tgu, g0-

Functions of this kind are considered in [15] in the case when B is abelian; analogous
functions are used in [3] and [4].
If Z@ denotes the integral group ring of a group @, and F is a free group on free genera-

tors {x,}, we shall need to consider the free derivatives

=2 . ZF > ZF

ox;

0

of Fox [6]. These are the linear maps given by:
0y(x)) =0y,

O, (uv) =0,(u) +ud,(v) [u,vEF].

The existence and unigueness of the Fox derivatives can easily be established in the following
way:

Let M be an F-module, and consider the corresponding split extension
1-M->E—~F-l.

Given any map h:{x,}>M, let y:F->E be the homomorphism such that y(z,)=

(h(z;),z;). Then, if u€F,
p(u) = (d(u),u)

for some uniquely determined element d(u) of M. Since

p(uv) =p(u)p(v) = (d(u) +u - d(v), uv),

d is a derivation of F into M.
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Further, if d’ is any derivation of F into M such that d’(x,) =h(x;) (all 1), one can define
a homomorphism y': F —~E by: y'(u) =(d'(u),u). Since ¢’ agrees with y on the free genera-
tors x;, it must coincide with ¢, and hence d' =d.

This reproves the well-known result that any map of a set of free generators of F into an
F-module M can be uniquely extended to a deriwation F —~M.

The Fox derivative 0,: F —~ZF is obtained by letting M be the left F-module ZF, and
by taking

h(z;) =9,;.
Given any set § < F, we shall write
o) = U (8.

Finally, if, in the previous extension
1-B—-E-~4-1,
B is abelian, then n:4—-Aut B
is a homomorphism, and we shall let
#:ZA—Hom (B, B)
denote the linear extension of #. For any homomorphism ¢:G -4,
¢ ZG—>ZA

will denote the induced homomorphism of group rings.

2. Identities on factor sets and modules

Let F be a free group on free generators {r;} having a subset 8 defining the variety Vs
of S-groups.

TrEOREM 2.1. If 1 »B—>H A4 -1 is an S-extension with factor set T: A x A =B, then

Ly(8)={1}
for every homomorphism ¢: F —A.
THEOREM 2.2. Let 1 > M -~E —~A —1 be an extension of an abelian group M by an S-

group A, determined by a homomorphism n: A~ Aut M and a factor set cocycle ': A x A ~M.
Then E €V if and only if:

(i) 7¢,0(8")={0}, and
(if) Py(8) = {0},

for one set of identical relations 8' equivalent to S, and every homomorphism ¢: F —A4.

The proofs depend on the following lemma:
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LEMMA2.3. Let 1 > B—>E > A1 be an extension with factor set [': A x A—>B. Let ¢::
F—~E and ¢: F —A be homomorphisms such that $(x,) =(my,dz;). If w€F, then:

(i) Bu) =(X5(u) T(w), $u),
where X3(u) is an element of B which is unity if each m; is unily;

(i) if a: B~>M is an operator homomorphism of B into A-module M, i.e.a homomorphism
such that a(ebe) =(me)-a(b) [e€E, b€ B], then

a(Xg(u)) = > (Py Ogu) - a(m;).

]

Proof. The statements are true for u =z;. Also, since 1 =T4(1) =T'4(z; 'z;), one obtains:
Ty ') =gz, -1.42,

Since 7l = {1}, and 9,(u~!) = —u "' 9,(u), the formula (4) for (m;,¢x;)~! then shows that (i)
and (ii) hold for u=x;1. By considering products w =uv, the lemma is now easily proved
by induction on the length k of words u=axj}...2{* (¢;= £ 1).

Theorem 2.1 follows from this lemma on considering elements « of § and that homo-
morphism <[;:F—>E such that gZ(x,) =(1,¢4x,), when ¢: F —4 is given.

If Bin the lemma is abelian, and « is taken to be the identity (operator) homomorphism
B — B, one obtains the formula:

$(u)=(§(¢*aju)~m,+r¢<u),¢u>.

Since the elements m; of B are arbitrary, it is now easy to deduce Theorem 2.2.
If, further, I'= {0} and %: {z,} - B is given by h(x;) =m,, we obtain the formula:

bu) = (2(,00) - m ).

If one defines d: F —B by:<;_5(u) = (d(u),$u), then d is a derivation (via ¢). Thus the unique
derivation d:F —B extending A is given by:

d(u) = ; (B405%) - b(z)).
If A=TF, and ¢ is the identity map of F, we get
d(w) =; (0;%) - b(y),

and, when B is the left F-module ZF, this is a result of Fox [6].
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Again, if 9: 4B is a derivation, and if k(z;)=2'(¢x;), then, since 9'¢:F B is a
derivation, we obtain a “chain rule of differentiation’”:

o(pu)= Z CAFORACEAR

If A=F'is a free group on free generators {x; }, and Bis ZF’ we obtain the “chain rule” of
Fox [6]:

0 7
o, (Pu) = z;, (¢ 05%) 3712 ().
Now let F’ be any other free group, and let SF” denote the normal subgroup of F*
generated by U  (S). Then an S-group is also an F'-group, and we have:
yeHom(F, F’)
COROLLARY 24. Let 1 -B—~E ~+A—1 be an S-extension given by maps n:A-~Aut B
and I':4 x A >B. If € Hom (F’, 4), then:

(i) TyCF)={1};
(ii) if B s abelian, then 7$, 0(5F')={1}.

3. Classification of split S-extensions of ahelian groups

The results of the next two sections are closely analogous to certain propositions con-
cerning (not necessarily associative) linear algebras, which were considered in [13].

If 8 is any subset of a free group ¥ on free generators {z,}, and @ is any group, let
[0(8)]¢ denote the (two-sided) ideal of Z@ generated by the set

b, 9(8).

$eHom(F, &)
If A is any S-group, let
Zs(A)=ZA[[2(S)]4

Lemma 3.1. If 8 is an equivalent set of identical relations to S, then
Zy(A)=Zg (4).

Proof. For any u€ F and p €EHom(F,F), the “chain rule of differentiation’” of Fox [6],
gives: ,
O5(yu) = 2{: (4 01%) 0;(py).
This shows that
A U pd)E [2(8)]r-

yeHom (F, F)
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The smallest normal subgroup of F containing U  (S)is precisely the smallest

ypeHom(F, F)
fully invariant subgroup 5F of F containing S. We shall now show that [0(°F)]; coincides
with the ideal in ZF generated by the set
As=(1-F)u U 9,9(8),

ye€Hom(F, F)
where 1 —SF={1—u:u€F}.
The fact that 8(SF) is contained in the ideal generated by Ag follows from the formulae:

O (uv) =0, (u) +ud;(v), 0;u1)=—u"10,{u),
and O (uwu1) = (1 —uwu=1)0,(u) +euw® d,(w) [e=+1,6=(e—1)/2],

on regarding SF' as the normal subgroup generated by U  %(S), and making use of

peHom(F, F)

the first inclusion mentioned above. Therefore U  {,2(°F) is contained in the ideal
{eHom (P, F)

generated by Ag, because Ay is invariant under Hom (F, F).

Conversely, the. “fundamental identity”
u—1 =; (0;%) (;—1)

of Fox [6] shows that Ag is contained in the ideal generated by; U .9C°F). Hence
€Hom(F, F)
[8(5F)]r coincides with the ideal generated by Ag.
Therefore, since A4 is an S-group, [6(°F)], is generated by the set
pe08)= U $,8),

*
$eHom(F, 4)  weHom(F, F ¢ € Hom (F, A)

ie. [0(°F)],=[0(S)].- The lemma follows.
We remark that Zs( —) is a covariant functor on the category of S-groups and homo-
morphisms.

Now let M be an abelian group, and let
Splitexty (4,M)

denote the set of equivalence classes of split S-extensions of M by A. With the aid of Theo-
rem 2.2(i), it is easy to check that Splitexts (—, M) is a contravariant functor on the cate-
gory of S-groups and homomorphisms.

Given M, and a ring homomorphism a: Zg(4) - Hom (M, M), let {E,} denote the equi-
valence class of split extensions E, of M by A corresponding to the homomorphism of

groups:
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at|A: A~ Aut M,

where 7 denotes the natural epimorphism ZA —Zy(A).

THEOREM 3.2. Let M be an abelian group, and A be an S-group. Then the mapping

oa—>{H,}
defines a 1-1 correspondence:

Hom (Z5(A), Hom (M, M))«> Splitextgs(A4, M),
which is natural with respect to homomorphisms A’ —A of S-groups.
Proof. Given a homomorphism o: Zg(A4)—Hom (M, M), let
n=ar|4:4->Aut M.
Then fi=at: ZA - Hom (M, M),

and hence 7[0(S)],={0}. By Theorem 2.2, this shows that « —~{E,} is a mapping into
Splitextg (4, M).
If §:A— Aut M is a homomorphism defining an element of Splitext (4, M), then, by
Theorem 2.2,
7008 = {0},

and so 77:ZA4 —~Hom (M, M) can be factorized into a composition
ZAS5Zg(A)S Hom (M, M).

Thus the mapping «—{&,} is surjective.
Further, if a,a": Zg(4)>Hom (M, M) are homomorphisms such that

ar|d=a't]|4,
then x =o', because 7 is an epimorphism. Thus the given mapping is injective.
Finally, it is easy to check naturality.

Example 3.3. The split extension of the additive group of any ideal K of Z4(4) by 4,
defined by left multiplication of Zg(A4) on K, is an S-extension.

Example 3.4. If Vis the variety of abelian groups, then Z(A4) is isomorphic to the ring
of integers Z: For, in this case [9(8)], is generated by all elements of the form 1 —aba?,
a—[a,b]=a—1 (a,b€A), ie. [0(S)], coincides with the “augmentation ideal” IA of ZA.
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Example 3.5. Let Vg be the variety of groups of exponent k, i.e. groups A4 such that
a¥=1 for all a€ A. Then Zy(4) is the quotient of ZA by the ideal generated by all elements

of the form
14+a+a2+..a51 (a€A).

Example 3.6. The preceding two examples show that, for the variety of abelian groups
of exponent k, there is an isomorphism of Zg(4) with the cyclic group Z, of order k.

Example. 3.7. Let Vg be the variety of nilpotent groups of class k, i.e. groups A satisfy-
ing
(@1, s Wi 1= (105 -0 B O] =1 (@,€4).
By considering &, 4[%;, ..., %1, One sees that here the relation
[ay,....a]=1 (a,;€4)
is satisfied in Zg(4).
Further, M. G. Barratt has kindly shown me a proof that, for this variety,

Zs(A)=ZA|(1A)-.

4. Properties of the functor Zs (A)

Let A be an S-group, and let M be an abelian group with an 4-module structure given
by a homomorphism 7: 4 - Aut M such that the corresponding split extension of M by 4
is an S-extension; it will be convenient to call such a module (M, ) an S-module for 4.

Let L=Ly:Y - Hom,(Y,Y) denote the homomorphism defined by left multiplication
of a ring ¥ on itself, where Hom, (¥, Y) is the ring of endomorphisms of the abelian group
of Y. Then Example 3.3 above states that (Zs(4),Lz|4) is an S-module for 4, with a simi-
lar property for any ideal K of Zg(A4).

If (M,n) is any S-module for 4, let Y,,=Hom (M, M). If 6: A—~Y is any homomor-
phism of 4 into the group of units of a ring ¥ with identity, let 6: Z4 —~Y denote the linear
extension of ¢. Then:

(Ln)” =L#: ZA —>Hom, (Y, ¥).
Hence: (L) " [(S)]a =LA[0(S)4 = {03.
Therefore, by Theorem 2.2,
(Yy, L) =(Hom (M, M), Lz)
is also an S-module for 4.

Suppose that one now introduces the following definition: An S-envelope (V g-envelope)
of 4 is a pair (¥, f), consisting of a ring ¥ with identity and a homomorphism : 4 —Y of 4
into the group of units of ¥, such that (Y, LB) is an S-module for 4.Then (Z5(4), t|4) is

an S-envelope of 4, which has the following ‘“universal” property:
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THEOREM 4.1. Given any S-envelope (Y, ) of A, there exists a unique ring homomor-
phism v:Zg(A)~Y such that yt|A=.

Since the propositions of this section are all closely analogous to ones concerning
linear algebras [13], and since their proofs can be obtained by directly paraphrasing the cor-
responding proofs in [13], only Theorem 4.7 will be proved here.

The proof of Theorem 4.1 (which is analogous to Theorem 6.4 of [13]) is based on the
following lemma. (whieh is analogous to Theorem 5.2 of [13]):

LeMmwma 4.2, 4 pair (Y, ), consisting of a ring Y with identity and a homomorphism f3:
A —Y of A into the group of units of Y, is an S-envelope of A if and only if

BLo(8)1.={0}.

This lemma is proved with the aid of Theorem 2.2(i) which is analogous to Theorem
4.5 of {13] {cf. Chapter II, Theorem 2.2(i}).

The S-envelope (Z4(A4),7|A) has the property that v(4) generates Zs(A). Further,
every S-envelope (Y, ) contains a minimal S-envelope (¥, 8), where Y is the subring of Y
generated by $(4). Suppose that one calls two S-envelopes (¥, f)and (Y’, 8) of A equivalent
if and only if their minimal subenvelopes (Y},8) and (Y., f) are isomorphic, under an iso-
morphism ¢: Y- Y, such that ¢8=4". Then we have:

Prorosition 4.3. Every S-envelope of an S-group A is equivalent to an S-envelope of A
of the form (Hom (M,M),u).
(Cf. Theorem 5.5 of [13]—in fact, an S-envelope (Y, f) is equivalent to

(Hom, (Y, Y), Lf).)

The ring Z4(A) has the following further “classifying” property with respect to S-
envelopes of 4:

TurorEM 4.4. If K is a (fwo-sided) ideal of Zs(A) and 7y is the natural epimorphism
Z(A)—~>Zs(A)[K, then the mapping
K~ (Zs(A)|K, mgr|A)

induces a 1-1 correspondence between the ideals of Z5(A) and the equivalence classes of S-enve-
lopes of A.
(Cf. Theorem 6.6 of [13].)

Next we point out that the properties of Zg(A4) given in Theorems 3.2 and 4.1 are equi-

valent and suffice to characterise the pair (Zs(4),7|A) axiomatically: For this purpose,
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call an S-envelope (W, u) of A universal if and only if it has the property that, for every S-
envelope (Y, ) of 4, there exists a unique homomorphism »: W —Y such that »u =pg. Thus,
by Theorem 4.1, (Z4(A4), 7| A) is a universal S-envelope of 4.

ProprosiTiON 4.5. Every universal S-envelope (W, u) of A is minimal, i.e. W,=W. Any
two unsversal S-envelopes (W, u,) and (W, us) of A are eqivalent under a unique isomorphism
e: W, —>W, such that sy, =u,.

(Cf. Theorem 6.2 of [13].)

THEOREM 4.6. Let u: A —W be a homomorphism of an S-group A into the group of units
of a ring W with identity, such that u(A) generates W. Then (W, u) is a universal S-envelope of
A if and only if, for every abelian group M, if a: W —Hom (M, M) is a ring homomorphism,

the mapping )
oo—>(M,apn

induces a 1-1 correspondence:
Hom (W, Hom (M, M)) —Splitextg (4, M).
(Cf. Theorem 6.5 of [13].)

Finally, if B is any group, let Bg denote the largest quotient group of B which is an S-
group, i.e. Bg= B/SB where 5B is the normal subgroup of B generatedby U  ¢(8).

¢$eHom (F, B)

TaEoREM 4.7. The natural epimorphism B— By induces a natural isomorphism:
ZB|{o(°F)]s=~Zs(Bs).
This is analogous to Corollary 8.4 of [13]—a direct proof is as follows:

Proof. The natural epimorphism g:B—>Bs induces an epimorphism g,:ZB—~ZB;,
which sends [9(°F)]; onto [0(°F)]z,, since any homomorphism ¢: F'— B can be lifted to a
homomorphism y: F —B such that gy =¢. Further, ¢* induces an epimorphism

0+: ZB[[6(*F)]s ~ Z Bs|[0(°F)]ps=Z(Bs).

To show that gx is also a monomorphism, recall that Ker g, is generated by {u—1:4€5B}
(cf. [6], say). Further, the proof of Lemma 3.1 shows that [6(°F)]; is generated by the set

(1 _SB) U U )1/)*3(8);

yeHom(F,B
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hence Ker g, S [0(°F)]z. Then, since g« sends [0(5F)]; onto [0(5F)]p,, if 04z €[0(°F))g,, then
0x =0+ Y, Where y €[O(°F)]5.

Hence: x—y€Kerpos S[0(°F)]5, ie. x€[3(5F)]p.

Therefore g’y is & monomorphism.

5. General S-extensions
Any equivalence class of extensions

1-B—->E—-A4-1
determines a homomorphism e
0:4—->Aut B
of A4 into the group of automorphisms of B modulo inner automorphisms. Let

extd (4, B)

denote the set of equivalence classes of S-extensions of B by 4 which determine the homo-
morphism §.

Suppose that 1 >B—E >4 —1 is an S-extension of B by A determining 6, which is
given by maps#7: 4 —~Aut Band[: 4 x4 —-B. Let f: A’ - A be a homomorphism of S-groups.

Consider the induced maps
ffp=nf:4"~>Aut B

and f=T(fxf:A"xA'=B.
With the aid of Section 2, and a somewhat tedious inductive proof, one has:
ProrosiTIiON 5.1. The mapping
.1) > (f*n.f*T)

f*:extd (4, B) > exts? (4’, B),

induces @ mapping

which is a 1-1 corespondence if f is an isomorphism.

Now let (M,n) be an S-module for 4. Then, by Theorem 2.2(ii) or more directly, it
follows that the set of equivalence classes of S-extensions of M (with the 4-module struc-
ture ) by A forms an abelian group

Extl (4, M) {or H%(4, M)}

If f: A’ — A is a homomorphism of S-groups,then the mapping I' - f*I" induces a homomor-
phism '
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f*:Extl (4, M)—Ext§"(4’, M),

which is an isomorphism if f is one.

Now let 1B —~E > 4 -1 be an arbitrary (but fixed) S-extension of a group Bby 4,

with factor set I'. Let
Ophom, (B, M)

denote the abelian group of operator homomorphisms B~> M, i.e. homomorphisms a such

that
o(ebe™ )= (me) - a(b) [e€E,bEB].

This group has a subgroup
Deriv; (B, M)

consisting of all restrictions d|B of derivations d: E~M (via 7).

THEOREM 5.2. If « €Ophom;, (B, M), then the mapping a —{al': 4 x A —M} induces a

monomorphism
_Ophomg (B, M)

: (4, M),
Derivy (B, M) — Exti (4, M)

which is independent of the factor set I" chosen for E.

If E is a free S-group, then T is an isomorphism.

When 8= {1}, this theorem reduces to one of Eilenberg and MacLane [5], [15].

If M is an S-module under trivial action by 4, one obtains the group
Ext5(4, M)

of equivalence classes of central S-extensions of M by A. Then E also acts trivially on M,
and an operator homomorphism B —M is a homomorphism which sends every commutator
[¢,b] (e€ E,b€ B) to zero. Further, a derivation is now just a homomorphism. Hence, in

this case, there is a monomorphism

Hom (B, [E, B]— M,0)
Hom (E, M)|B

—Extg (4, M),

which is an isomorphism if E is a free S-group. (When § = {1}, this reduces to a corollary
of Eilenberg and MacLane [5].)

Finally, when S defines the variety of abelian groups, and E=F, is a free abelian
group, Theorem 5.2 reduces to another theorem of Eilenberg and MacLane [4], [5]:
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Hom (B, M)

Exbaverlds M) > 5o 7, 3| B

Theorem 5.2 will be deduced from some further propositions:

Suppose that 4 also acts on a (not necessarily abelian) group N by means of a fixed
map v:4 — Aut N arising from some S-extensions of N by 4.

Define an extended operator homomorphism B—>N to be a map «: E —N such that:

(i) ofebe~t) =w(e) [(me)- a(b)], and
(ii) o(be) =o(b) a(e) [e€E,bEB].

Let Ophomy(B,N) denote the set of extended operator homomorphisms B->N. This
set has the subset Deriv(#,N) of all derivations E—~N, i.e. maps d satisfying d(uv)=
d(u) [mu-d(v)]; the set of restrictions to B of derivations E —~N will again be denoted by
Derivy (B,N). ‘

Now let 0:4—>AutN be the homomorphism induced by »:4—>Aut N. If «€
Ophom3 (B, N), let N,=Ima«|B.

TueoreM 5.3. (i) If «€Ophomg(B,N), then al':A xA—> N defines an element of
extd(4,N,).

If E is a free S-group, then every element of ext% (4, N) can be defined by a factor set of the
form oI’ as above.

(ii) Suppose that v:A—>Aut N is a homomorphism. Then, if d€Deriv(E,N), dI:
AxA—~N defines the split extension class in ext? (4,N,). Conversely, if « € Ophom} (B, N)
is such that oI defines the split extension class in ext® (4,N,), then oc| BE Derivy (B,N).

In each case, the class defined by ol is independent of the factor set I" chosen for E.

The proof is analogous to an argument of Eilenberg and MacLane (cf. [14], for example):

Proof. (i) Suppose that the given factor set I': 4 x A —~ B corresponds to a cross section
function y: 4 — E. Let « € Ophom}, (B, N). Then it is easily verified that «I’ and the map
V1A - Aut N,, given by: v,(a) =<a(y,)>v(a)|N,, determine an element of ext? (4,N,,).

To show that this element lies in ext? (4,N,), let E, be the extension group of pairs

{(n,a) [nEN,, a€A] defined by v, and «I'. Let q'_> :F = E be a homomorphism such that

$(x)=(my, ¢x)) [m,€B, $z,€4],
and let oc*qZ:F -FE, be the homomorphism such that oc*c_ﬁ(xi)=(onm,,¢xi). If u€F, and

b(u) = (Wx(u),du), it is easily shown by induction that o, </:(u) = (a Wp(u), du).
3 — 652944 Acta mathematica. 115. Imprimé le janvier 1966
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For u €8, these formulae show that E, is an S-extension of N, by A4.

Now suppose that E is a free S-group of the form Fg=F’/SF’, where F’ is free on free
generators {x; }. Let o: F' —~ A4 be the composition of the natural epimorphism F’ -~ Fg with
m:Fs—A. If A:A x A~ N is the factor set of an S-extension of N by 4 in which 4 acts on
N by the map », consider the function A,: F' —N such that:

Agzi) =1, Ag(uv) =Ay(w) [0 Ae()] Agu, ev-

Then, by Corollary 2.4, A,(*F’)={1}, and so A, defines a function A,: Fs— N satisfying:

| Anfur) = Anfu) [0 Aa(®)] Ao
Then «=A, is an extended operator homomorphism BN, and, since

Lo y=Veysva ' (a,bEA),
one has aly o =ta(@ ) A vtass
where yu=ay:4 — N. This expression for «I" leads to the relation
V(@) a(b) = <ol ») valab) [a,b€A]

in Aut N. Hence v, and «I" define an extension of the entire group N by A which is equiva-
lent to that defined by » and A.
(ii) Let E be an arbitrary S-extension of B by A again, and suppose now that v: 4 —~

Aut N is a homomorphism. If d: £ - N is a derivation, then, since

Coo=vaysyar (a,bEA),

one has al'y s %d(ya) [a-d(yy)] d(yas) "

Therefore v, and dI" define an extension of N, by 4 equivalent to the split extension defined
by v. Conversely, suppose that v, and ' define the split extension class in ext} (4,N,).

Then there exists a map y:4 —N, such that
va(@) =<{yo) v(@)| N
and al's s =va(@ ys) o [a,bEA]L

Since v,(a) =<{a(y,)) v(a)| No. also, y,=a(y,)k, where k, is an element of the centre of N,.
Using this fact and the expression for al’, one obtains a derivation d:E >N by setting
d(m,a) =a(m)y, [m€ B,a€A]. Then o| B=d|B.
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Finally, a simple calculation involving Proposition 1.1 shows that, in all cases, the
extension class defined by ol is independent of the factor set I' chosen for E.
In order to deduce Theorem 5.2, now suppose that (N, ) is the S-module (M, %) for 4.

Then there is a monomorphism of abelian groups
7:0phomy, (B, M)~ Ophomj (B, M)

given by (ta) (m,a) =a(m) [mE€B, a€A]; to see that 7 is injective, one can consider the
epimorphism

res: Ophom} (B, M) Ophom (B, M)
given by restriction, which satisfies

res o 7 =identity.

If «€Ophomy (B, M), then #,, coincides with 7, and the (additive) map a—{ol'}=
{(vo)I'} sends « to an S-extension of the entire group M by A:
To show this, consider the function I'y: F - B (¢ € Hom (F, A)) of Section 1. In the gen-
eral case when N is not necessarily abelian, it is easily verified by induction that
pol'y=(pT)s: F >N
for any B € Ophomj (B,N).
Therefore, by Theorem 2.1,

(aD)g(8) =al'¢(S) = {0};
hence, by Theorem 2.2, «I" defines an S-extension of M by A.

Bearing these facts in mind, the proof of Theorem 5.3 (ii) now shows that the map

a->{al'} induces a homomorphism
T’ :Ophomg (B, M)~ Ext% (4, M),

whose kernel is Derivy (B, M). When £ is a free S-group, Theorem 5.3(i) implies that 7" is
an epimorphism. This proves Theorem 5.2.

It can be deduced from Theorem 5.2 that Ext} (4, M) is a covariant functor of the
S-module (M,y). Also, it is readily verified that the monomorphism 7' of that theorem is a

natural transformation of functors.

6. Reduction to abelian kernels

Consider an arbitrary (but fixed) extension
1-B->G>4-1

determining a homomorphism 0: 4 - Aut B. If Z, denotes the centre of B, let
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1-Z,~E5> 41

be any extension of Z; by A determining the homomorphism §: A - Aut Z; induced by 6.
Let G® E denote the subgroup of all pairs (g,¢) €@ x E such that og =ne, and let N be
the normal subgroup of all pairs (z,271), z € Zg. If

G:=G®E|N,

Eilenberg and MacLane [5] show that one obtains an extension

1> B—>Gg>A—1,

in which B maps into Gz by b— (b,1) N and Gz maps onto 4 by the common projection,
which determines the given homomorphism §. They prove that the map E — G induces a
1-1 correspondence:

Ext® (4, Z;) < ext® (4, B),
(which is not natural in general).

As a corollary to their theorem, we obtain:
THEOREM 6.1. If there exists an S-extension

1-B~>G3>4-1

determining the homomorphism L
6:4 - Aut B,

then the mapping E — Q5 induces a 1-1 correspondence:
Ext%(d, Zg) < exth (4, B).

By using the previous result of Eilenberg and MacLane, this theorem can be deduced
with the aid of Section 2. Since an analogous theorem (Theorem 4.1) in Chapter II is proved
in a similar way by a method analogous to that of Eilenberg and MacLane, this approach
will be omitted here.

As an alternative method, one can use the analogue of an approach used by MacLane
[16] for associative rings:

Following Baer [1], consider the graph O of §:4 — Aut B, defined to be the subgroup
of all pairs (#,a) €A x Aut B for which « € 0(x). Define an epimorphism

p:G—>0
with kernel Z; by: g~ (0g,{¢)> | B).
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Given another S-extension 1 >B—> G 5 4 -1 determining 6, let (¢, G’) be the subgroup
of all pairs (g, ¢') €G x G’ such that yg=y'g’ €0, and let K be the normal subgroup of

all pairs (b,b) [b€ B]. If
E(G7 GI) = (G’ G’)/K:

then the monomorphism b —+(1,b) K of Zzinto E(G,G’) and the epimorphism (g,9') K —og =
a'g’ of B(Q,Qd') onto A define an S-extension

1-Z;~>EG,G)~>A—1.

Furthermore, the action of 4 on Z, in this extension is that determined by 6, since the
extensions G and G’ determine 6.

We now prove that the mappings E — G, and G' -~ E(Q, @) define inverse mappings:
Eth (4, Zp)« extg (4, B).

In order to do this, observe that a typical element of E(@,G5) can be written in the
form (g,(g,e) N) K, where g€G,e€ E, and that this form specifies ¢ € £ uniquely. An equi-
valence homomorphism E(G,@g)—E is then obtained by mapping (g, (g,e) N)K to e.

Conversely, a typical element of Gp ¢ can be written in the form (g,(g,h) K)N,
where g€G, h€G', and this form specifies #€GQ’' uniquely. The mapping (g,(g,h) K)N —h

then defines an equivalence homomorphism from G, ¢ into G.

II. Extensions in varieties of linear algebras

1. Preliminary definitions and discussion

All algebras considered will be, not necessarily associative, linear algebras over a
fized commutative ring K with unit. Since most of the concepts of Chapter I, §1, have
obvious direct translations within the category of algebras and homomorphisms of algebras,
we shall avoid repetition and take as understood such concepts as S-algebra (where S is a
subset of a free (non-associative) algebra), extension, S-extension, the variety Vg of S-algebras,
and so on; since the following sections will deal exclusively with algebras, no confusion
should arise from the use of notations identical with those used in Chapter I.

In order to discuss S-extensions, we require the notion of an 8-bimultiplication ¢ of an
S-algebra A4:

This is a pair of linear maps @~ oa, @ - ac of A into itself with the following property:
if A is the quotient of the “free product” of A with the free algebra on {6} (i.e. the quotient
of the free algebra on the set 4 U {¢} given by the relations identifying the sub-algebra
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generated by the set 4 with the algebra A4) given by the relations identifying oa and ao
(¢ € A) with the images of a under the given maps, then 4 is an S-algebra.

(The notion of a bimultiplication was introduced by Hochschild [9], and used by Mac-
Lane [16], in the case when S defines the variety of associative algebras. When S defines
the variety of Lie algebras, an S-bimultiplication is just a self-derivation of the algebra
considered.)

For each element ¢ in an S-algebra 4, an inner S-bimultiplication u, is defined by the
mappings a — ca, a —~ ac. The set of inner S-bimultiplications of A forms a submodule y(4)
of the module M(A) of all S-bimultiplications of 4 (under the point-wise operations).

Let y:4 —~E be a cross section mapping of an S-extension 0 >B—~E 5 A—0. Since Bis
an ideal in E, for each e€ K, u.| BE M(B) and, if e =ne’ then y—u,. € u(B). Hence the map-
ping a —> u,, induces a mapping

6:4~M(B)ju(B),

which is linear, since, for a,b€A4,A€K, y(a+b) —y(a) —y(b) and Ay(b) —y(Ab)EB. If Bisa
zero algebra, i.e. all products are zero, this gives a linear map 6:4 — M(B), which makes B
into an “S-bimodule” for A (an idea introduced by Eilenberg [3], for the case of algebras
characterized by multilinear identities, and considered further in [11], [12], [17] and [13]):

An S-bimodule for A is a module M together with linear maps R, L: 4 - Map (M, M)
such that the corresponding split extension of M (as a zero algebra) by 4 is an S-extension.
(It will be convenient to let Map(X,Y) denote the set of linear maps XY, while

Hom (X, Y) will denote the set of (algebra) homomorphisms X —~Y.)

' Define the bicentre K, of an algebra C to be the set of all b€C such that u; =0, i.e.
br=zb=0 for all x€C. (This term has been used by MacLane [16] for associative rings.)
Then, in the general case, the above mapping 6: 4 —M(B)/u{B) defines operations of 4 on
K5 which turn it into an S-bimodule for 4.

Henceforth, unless otherwise stated, we shall consider only extensions which are
linearly split, i.e. which admit a linear cross section mapping. (If one considers extensions

by algebras which are free as modules, e.g. if K is a field, then this is no restriction.) In this

. . . . . £ . .
case, if y: 4 —~F is a linear cross section of an extension 0 ~B —E — A — 0, we obtain a pair

of linear mappings
R,L:A—~>Map(B,B)
by setting

R (m)=my,=m-a, L(m)=ym=a-m [a€A,mEBRB]
Algo we obtain a bilinear factor set mapping

I"4xA-~B
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as the deviation from multiplicativity of y:
LVeo=veVo—Vw (a,b€A).
Since v is linear, I" is normalized, ie. T, ; =I') . =0 (a €4).
We have: (m+v,) (mty,)=(mnta-n+m-b+T, ;) + Y.

Conversely, given linear mappings R,L: A —~Map (B, B) and a bilinear mapping I": 4 x 4 ~ B,
one can define an extension of B by 4 by letting E be the module of all pairs (m,a) [m€B,
a € A] with multiplication defined by:

(m,a) (n,b)=(mn+a-n+m-b+1, ,,ab).

Furthermore, this extension is equivalent to any extension giving rise to the given map-
pings in the above manner. It will frequently be convenient to describe any extension alge-
bra E as an algebra of pairs in this way; then y: 4 —~F will always denote the cross section
a—(0,a).

TrEOREM 1.1. Two extensions E and E' of B by A, given by mappings B, L,R’, L’:
A—>Map(B,B) and I')I': 4 x A ~B respectively, are equivalent if and only if there exists a
linear mapping yp: A — B such that:

(i) Re=R,+R,, L,=L,+L,, (a€A),

where R, and L, denote the right and left mulliplications defined by m€ B,
(i) T2 =Ta.0 +(dy) (a,b),

where (Oy) (,0) =Lu(ys) —Yar + Bo(a) + a9, [a,bEA].

Proof. Suppose that y: 4 —E and y': A - E’ are linear cross sections to which the given
mappings correspond. If there exists an equivalence homomorphism 7:E —E’, then =
ty:A-E' is a new cross section of E' >4, and one can define a linear mapping y:4—+B

of the required kind by:
Yo=Ya _ﬁa (a€4).

Conversely, if there exists a linear mapping y: A — B satisfying the given relations, then

the mapping m +y,—m+y, —y, defines an equivalence homomorphism 7: E ~E'.

CoroLLARY 1.2. (Eilenberg [31.) The set of equivalence classes of (linearly split) exten-
stons of a zero algebra M by A, corresponding to given mappings R,L: A —>Map(M,M) is in
1-1 correspondence with the set of bilinear mappings A x A M modulo “‘coboundaries’ i.e.
mappings of the form dy as above.
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Let 0>B—E —A4 -0 be an extension with factor set I". Any algebra homomorphism
¢:@ —~A gives rise to an induced factor set ¢*I"' =I'(¢ x ¢) : G x G ~B which defines an exten-
sion ¢*E of B by @ in conjunction with the mappings ¢* R = R4, $*L =L¢:G —>Map (B, B).
If G=F is free, this extension must split, i.e. it must have a cross section which is a homo-
morphism. In fact, any mapping z; ~ (., ;) of a set of free generators {x;} of F into ¢ E
can be extended uniquely to a homomorphism » > (y,,v) of F into ¢*E, and one has ¢*T" =

—dy. It will be convenient to let
r - F—-RB

denote the unique linear mapping such that:
l"d,(x,) = O, P¢(uv) = ¢u . P¢(U) + de' év + F¢(u) . ¢U + F¢(H)P¢(’U).

(When B is a zero algebra, such a function is defined in [3] for polynomials which are multi-
linear in the free generators.)

Finally we mention some further concepts to be used later. For any algebra 4,G(4)
will denote the tensor algebra K +>,X% A* on the module A*=A4A®A’, where A’ is the
opposite algebra to A4, i.e. the module A with multiplication anti-isomorphic to that of 4.
If F is the free algebra on a set {z,}, we shall make use of the linear mappings

D, F—-G(F)
given by: Dy(x;) =0y, D(uv) =Dy(u)®@v+ Di(v)@u,
where, if @ is an element of an algebra 4, @ and a’ will denote the elements («,0) and (0,a)
respectively of A*=A®A’. If T is any subset of F, let
D(T) = liJ DyT).

These maps, which are analogous to the Fox derivatives, arise conceptually in the
following way:

By an argument similar to one used in Chapter 1, § 1, one can prove that any map of a
sel of free generators of F into a bimodule M for F can be uniquely extended to a derivation

F—-M.
Now let M be the bimodule G(F) for F defined by:

wm=mu, mu=mQu [uEF mEG(F)].
Letting h(x,) =4,;, we obtain a unique derivation D;:F - G(F) such that D(x;)=d,;, and
D (uv)=u- D)+ Dyu)-v=D,(v)@u + D,(u)®@v.
(The mappings D, were introduced in [13].)
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If ¢: A - B is a linear mapping, ¢, : G(4) - G(B) will denote the homomorphism induced
by ¢. Also, if R,L: A —Map (B, B) are given linear maps,

{(R|Ly:G(4) - Map(B, B)

will denote the (unique) homomorphism extending the map R|L:A* - Map (B, B) given by:
R|L(a,b)=R,+L,. Here Map(B, B) is regarded as an associative algebra with respect to
the particular multiplication o given as follows: if «, 8: B—>B are maps, aof: B—~B is the
composition BB Lp.

Finally, we remark that we shall regard modules as zero algebras whenever this is con-

venient.

2. Identities on factor sets and bimodules

Let 8 be a subset of a free algebra F on a set {x,}. Let 0>B—~FE 5 A -0bean exten-
sion of an algebra B by an S-algebra A4, given by mappings R, L:A—~Map(B, B) and a
factor set I: 4 x 4 —B.

TreorEM 2.1. If E is an S-algebra, then
T4 (8)={0}

for every homomorphism ¢: F —A.

THEOREM 2.2. If Bis a zero algebra, then E €V if and only if:
(i) <R|L>¢,D(8") = {0}, and
(ii) Ty (8) = {0},

for one set S’ of identities equivalent to S, and every homomorphism ¢: F —A.

Part (ii) of Theorem 2.2 was given essentially by Eilenberg [3] in the case of multi-
linear identities; part (i) appeared essentially in [13]. These propositions can be deduced
from a lemma:

LeMma 2.3, Let $:F—>E and ¢: F —A be homomorphisms such that qZ(x,) = (m;,px,). If
u€F, then:

(i) (u)=(X5(x) +Ty(x), du),
where Xz(u) is an element of B which is zero if each m, is zero;

(ii) ¢f a: B—~M is an operator (algebra) homomorphism of B into a bimodule M for A,
t.e. @ homomorphism such that

a(em) =me-a(m), o(me)=o(m) -we [e€E,m€B],
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then o«(Xg(u)) = IZ(<R' |Z" ¢, Du)a(m,),

where R',L": A -~ Map (M, M) are the maps defining the bimodule structure of M.

In view of the close analogy with Chapter I, proofs of most propositions in Chapter II
will be omitted. For propositions, such as the previous lemma, concerning arbitrary ele-
ments u of F, it is sufficient, by linearity, to consider monomials «. One can then use an
inductive method as follows:

After verifying a statement for the free generators z;, one supposes it true for any
monomial ¥ =, ...z, (bracketed in some order) of degree k <n.

Then one proves the statement for any product w =wuv of degree n.

Let M be a bimodule for an algebra A, and let ¢ €Hom (F,4). Given any map h:
{;} >M, a method similar to one of Chapter I shows that the unique derivation d: F —~M
(via ¢) extending % is given by

d(u) = Z (KR |L>¢¢Diu)h(xi)'
If M is the bimodule G(4) on which 4 acts by
a-m=m®a, ma=mRa [a€A,mEGA)],

we get d(w) =3 h (@) ©4.Di(u).

(For m,w€G(A), it is easily shown by induction (considering w) that ((R|L)w)ym =m®@w.)

Now let F, be the subset of F consisting of polynomials which, for each z;, are homo-
geneous of the same degree n; in z, in each term. Then any map of {z,} into a bimodule M
for F can be uniquely extended to a “derivation” F,—M, i.e. a mapping d such that
d(uv) =u-d(v) +d(u)-v. If we consider the ‘“‘derivation” u - (degu)u of F, into G(F), and

the derivation of F into G(F) extending the map x;->x,, we obtain ““Euler’s relation’:
Ei:x,- ® Dj(u) =(degu)u (u€F,).
Again, if D': A —~M is a derivation, we obtain a ‘““chain rule of differentiation’:
D’(¢u) =12(<R |L> ¢, D) D' ($ay).

When A4 = F’ is a free algebra on free generators {z;}, and M is G(F"), this gives the “‘chain
rule”:
Dzi(‘ﬁu) = ; D:,;(‘ﬁxi) ®¢*Di(u)
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Next, if F' is another free algebra, let F’ denote the ideal of F' generated by U,y(S)
fy€Hom (F, F')].

CoROLLARY 2.4. Suppose E€V, and ¢ EHom (F’, A). Then:

(i) T, F") = {0};

(ii) ¢f B is a zero algebra, then

(R|Ly$:DEF) {0},

When 8 is given, the maps D; provide a mechanical means for computing defining
conditions for S-bimodules [13], while the inductive specification of the maps I'y of Section 1
provides a mechanical means for computing defining conditions for *‘S-2-cocycles™ (cf.
Eilenberg [3]).

In connection with cohomology, we remark that an S-algebra A has a universal S-
envelope or “enveloping algebra” Gg(4), defined to be the quotient of G(4) by the ideal
generated by the subset U, ¢« D(S) [¢ €Hom (F, 4)], with properties directly analogous to
those of the functor Zs( —) (cf. [13]). As remarked in [13], the enveloping algebras of associa-
tive and Lie algebras have been used to define homology and cohomology groups for such
algebras. It was suggested by Jacobson in [12] that one might do the same for Jordan
algebras. In general, the cohomology gfoups H™Gs(A4), M) of the “supplemented”’ algebra
Gs(4), in the sense of Cartan—Eilenberg [2], provide an exact connected sequence of cova-
riant functors of the S-bimodule M for A, which are zero for n>1 when M is A-injective.
Similar remarks apply to the homology groups of G(4). However, classically the second
cohomology group provides a classification of extensions by A realizing a given module
structure. In general, the second cohomology groups of G4(4) would not do this. For exam-
ple, if Vis the variety of zero algebras, G5(4)= K for all 4.

In a similar way one might ask whether there exists a cohomology theory for S-groups,
which is characteristic of the variety of S-groups. In this case, one type of answer would be
obtained by considering ordinary cohomology groups of the rings Z4(4). However, again,
the second cohomology groups would not always provide a classification of S-extensions:
For example, for the variety of abelian groups, Zs(4)=Z for all 4.

Thus this approach has certain limitations, perhaps.

However, Gerstenhaber [8] has sketched a cohomology theory for S-algebras which
does include (not necessarily linearly split) S-extensions of algebras. With regard to both
approaches, if is of interest to remark that the classification properties of Gg(4), and
standard module theory, show that the category of S-bimodules for A always contains ““suffi-
ciently many’ injectives and projectives. A similar remark applies to categories of S-modules

for S-groups.
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3. General S-extensions

By Section 1, any equivalence class of S-extensions 0 ~B—E —+A4 —0 determines a
linear mapping 6:4 —~M(B)/u(B). Let

ext? (4, B)

denote the set of equivalence classes of S-extensions of B by 4 which determine 6.

Suppose that 0 >B—~>E—~4 -0 is an S-extension of B by A determining §, which is
given by maps R, L: 4 —Map (B, B) and a factor setI': 4 x 4 ~B. Let f: 4 ~A4 be a homo-
morphism of S-algebras. Consider the maps f*R=Rf, ffL=Lf: A—~Map(B,B) and
Pr=I(xf):Ax4d->B.

ProrosiTiON 3.1. The mapping (R, L, ') > (f* R, f*L, f*T") induces a mapping
f*:ext? (4, B) > ext{® (4, B).
If f is an tsomorphism, then f* is a 1-1 correspondence.

Now let (M, R, L) be an S-bimodule for A. The maps R, L: A —~Map (M, M) define
a linear mapping # of 4 into the module of S-bimultiplications of M. By Theorem 2.2(ii),
one sees that the set of equivalence classes of S-extensions of M by 4 determining # forms
a module

Ext% (4, M) {orH%(4,M}.
If f: A —~A is a homomorphism of S-algebras, then the mapping I' > f*T" induces a homomor-
phism
f*:Extl(4, M)—>Ext5" (4, M),
which is an isomorphism if f is one.

Corresponding to any algebra A, there is a natural bimodule, the regular bimodule A,
for A4, defined to be the module A with the bimodule structure given by the right and left
multiplication maps R, L: 4 —~Map (4, A). Suppose, for a moment, that K is a field and that
the regular bimodule 4, for an S-algebra A is always an S-bimodule (e.g. this is always so
if K is infinite). Then we remark that Extg (4, 4,) has an interesting alternative interpreta-
tion as the module of “infinitesimal deformations” of A in Vg, in the sense of Gerstenhaber’s
theory of “‘deformations of algebras’ [7]. We shall not go into this statement further, since,
for general 8, it is at least alluded to in [7], while, for particular choices of §, it is explicitly
proved by Gerstenhaber. (It can be proved with the aid of Theorem 2.2(ii).)

Now consider an arbitrary (but fixed) S-extension 0 ~B—~E % A~ 0 with factor set I'.
Let M be an S-bimodule for A defined by a fixed map # as above. Consider the module
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Ophomg (B, M)
of operator homomorphisms B—M, i.e. algebra homomorphisms such that
ofeb) =me-a(b), a(be)=a(b) me [e€EE,bERB].

This module has a submodule
Deriv, (B, M)

consisting of all restrictions d|B of derivations d:E —~M (via n).

TEHEOREM 3.2. If « €Ophomy (B, M), then the mapping o.—>{al: 4 x A >M} induces a

monomorphism
7. Ophomg (B, M)

7
Derivy (B, ) Xtk (4, M),

which is independent of the factor set I chosen for E.
If E is a free S-algebra, then T is an isomorphism.

(Some months after proving this theorem, I received the manuscript of [8] by M.
Gerstenhaber, which includes an isomorphism of essentially these groups, for not neces-
sarily linearly split extensions. He sketches an approach different from that considered
here.)

If 4 acts on M by zero homomorphisms, then M will lie in the bicentre of any extension
of M by A. Conversely, if M lies in the bicentre of an extension of M by 4,thena-m=m-a=
0 for a€A, meM.

Hence there is a fixed module

Ext§ (4, M)
of bicentral S-extensions of M by A, i.e. S-extensions whose bicentres contain M. In this
case, an operator homomorphism B —M sends EBU BE to zero, while a derivation £ —~M

sends all products to zero. Hence, in this case, there is a monomorphism

Hom (B, EB U BE— M, 0)
Hom (E, M)|B

—Ext§ (4, M),

which is an isomorphism if ¥ is a free S-algebra.

Theorem 3.2 can be deduced from some further propositions:

Suppose that 4 also acts on an algebra N (not necessarily a zero algebra) by means
of a fixed linear map »: A —M (N) arising from some S-extension of N by 4.

Define an extended operator homomorphism B->N to be a linear mapping «:F—>N
such that



46 J. KNOPFMACHER
a(be) =a(b) x(e) + a(b)-me, a(eb)=afe)a(b) +me-a(b) [e€E,bEB].

Let Ophom} (B, N) denote the set of extended operator homomorphisms B —~N. Also, let
Deriv* (E,N) be the subset of Ophom} (B, N) consisting of extended derivations E —N,
defined to be linear mappings d: E ~N such that

d(uv) =d(u)d(v) +7u-d(v) + d(u)-7v;

the set of restrictions to B of extended derivations will be denoted by Derivy (B, N). (If N
is a zero algebra, an extended derivation is just a derivation.)

Now let 6:4 ->M(N)/u(N) be the linear mapping induced by v:A4->M(N). If o€
Ophom}, (B,N), let N,=Im o|B.

TueoreM 3.3. (i) If a€Ophom} (B,N), then al: A xA—>N defines an element of
extd (4,N,).

If E is a free S-algebra, then every element of ext%(A4,N) can be defined by a factor set of
the form ol as above.

(ii) If d € Deriv*(E,N), thendl": 4 x A —N defines the split extension class in extd(4,N,).
Conversely, if « € Ophom§£ (B, N) is such that oI defines the split extension class in ext} (A,N,),
then a| B€ Derivy (B, N).

In each case, the class defined by ol is independent of the factor set I' chosen for K.

(If the factor set I' corresponds to a linear cross section y : 4 - E, and « € Ophom}, (B, N),
one considers the extension of N, by 4 defined by oI and v,: 4 - M (N,), where »,(a) is the
bimultiplication g, +v(@)| N, (a€A4).)

It can be deduced from Theorem 3.2 that Ext} (4, M) is a covariant functor of the
S-bimodule (M, R, L). Also, the monomorphism 7T of that theorem is a natural transforma-
tion of functors.

4. Reduction to zero algebra kernels

Let 6: A4 ~M(B)/u(B) be a linear map arising from some S-extension
0->B—G>4-0.
Given such an arbitrary (but fixed) extension, consider any S-extension
0-K;~E5 A0

of the bicentre K of B by A determining the linear map 6: 4 —M (K ) induced by 6.
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Let G® E denote the subalgebra of all pairs (g,e) €G x E such that 6g =ne, and let. N
be the ideal of all pairs (k, —k), k€K . If

G;=G®E|N,
one obtains an S-extension

0~»B->Gz—~>A-0,
in which B maps into Gy by b— (b,0) +N and G maps onto 4 by the common projection.

THEOREM 4.1. Assuming that there exists an S-extension 0>B—>G >4 -0 determining

the linear map 0:4 —M(B)/u(B), the mapping B -Gy induces a 1-1 correspondence:
Extd (4,Ky)—extd (4, B).
{References to previously known cases of this theorem appear after the proof below.)

Proof. The argument below is analogous to one of Eilenberg and MacLane [5]: Let
y:4—~G and w:4—F be linear cross sections defining factor sets I': 4 x4 -B and Q:

A x A— Ky respectively. Then y:a — (y,,0,) -+ N is a linear cross section of G, with cor-
responding factor set

f: (a7b) e (Fa, b’Qa. b) +N=(Fa.b+Qa, b:O) +N

Further, if b€ B, then
?a[(bs 0) +N] = (YGb? O) +X, [(b: 0) +N]'}-’a = (bya: 0) +XN,

and so the action of 4 on B in this extension gives rise to the map 6.
Next we show that every S-extension G of B by 4 determining 6 is equivalent to one

of the form G: Since G determines  there exists a linear cross section y:A-> @ inducing the
same mappings A —~Map(B,B) as y: 4> G. If I':4 x A B is the factor set of y, it follows

from the definition of factor sets that I, , and f‘a, » (@,b€A) define the same right and left
multiplication maps of B; hence they differ by an element of the bicentre of B. Thus there
exists a bilinear mapping Q: 4 x 4 - K such that

l—‘a, b =Fa. b +Qa, » (a0 €4).
If $€Hom (F,A), a simple inductive proof shows that then

Therefore 04(8) =Ty —T41(8) = {03},
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by Theorem 2.1, and so, by Theorem 2.2, Q is the factor set of an S-extension of Kz by 4.

Further the equation I'=I" +Q now shows that B - @ induces a surjective mapping
Ext? (4, K ) — ext? (4, B).

Lastly it must be shown that the mapping is injective: Let E and £ be two S-extensions
of K; by A determining 6 such that Gz and G’z define equivalent extensions under an equiv-
alence isomorphism 7:G;— G Suppose that ¢, {:4 - G, G5 are linear cross sections of
@z and G respectively, such that ¢ and { induce the same mappings 4 —Map (B, B). Then
(for a € 4) 77, and £, lie in the same coset of B, so that

TCa=§a+ Ya (I/JaEB)!

and also they induce the same linear maps B->B. Hence the rule a -1y, defines a linear
mapping p: 4 —> K.
Let Q and Q be factor sets of E and E respectively, corresponding to linear cross sec-

tions w and @, and suppose that
Ca=(7a’wa)+N’ Eaz('ya’a’a)‘i'N (a€d).

Then é-a Cb = [(Fa. b +Qa. b O) +N] + Caba

and, by applying 7, one finds that Q=0 +6y. Thus E and E are equivalent extensions.
This completes the proof.

Theorem 4.1 was proved by Hochschild [9] and [10] for associative and Lie algebras,
by considering factor sets alone. For associative rings, such a result has also been established
by MacLane [16], without requiring that the extensions be linearly split. MacLane’s
approach can be used to immediately provide a similar result in the case of any subvariety
of the variety of associative algebras, without requiring that extensions be linearly split.
His method can also be used to obtain an analogous reduction in the case of any subvariety
of the variety of Lie algebras, without requiring extensions to be linearly split:

Suppose that S defines a subvariety of the variety of Lie algebras. If B is an S-algebra,
then M (B) < Deriv (B, B), which is a Lie algebra under the bracket operation on derivations
and has u(B) as an ideal. In this case an S-extension 0 >B— G 5 40 determines an
algebra homomorphism

0: 4 »Deriv (B, B)/u(B),

and here S-extensions will not be required to be linearly split. Define the graph @ of 6 to
be the subalgebra of all pairs (z,«) €A x Deriv (B, B) for which « € f(x). Then the mapping
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g (09, p,| B) defines an epimorphism ¢ :G — @ with kernel K. One can now proceed af-
ter the manner of MacLane [16] (cf. Chapter I, § 6).

As in the case considered by MacLane, one can observe that the mapping (z,a) >
defines an epimorphism g¢:® -4, whose kernel is isomorphic to u(B) (given a homomor-
phism 6: 4 —>Deriv (B, B)/u(B)). If Kz={0}, B is isomorphic to x(B) and one obtains a Lie
algebra extension

0-B-0%4-0

determining 6. By the above discussion, any Lie extensions of B by 4 determining 0 will
then be equivalent to 0. (By [5], analogous remarks apply to S-groups.)
In general, Theorem 4.1 has the corollary:

CoroLLARY 4.2. If Kz={0}, and there exists an S-extension determining the linear
map 6:A —M(B)|u(B), then all such extensions of B by A are equivalent.

5. Splitting algebras

Define a splitting extension of an extension 0 -B—~E —»4 -0 with given linear cross

section y: 4 —E to be a split extension
0>B—>E—~A4-0

such that B and E are subalgebras of B and & respectively and such that y:4 ~E< Eis
a linear cross section of K —A4.

THEOREM 5.1. Every extension 0B —~E —~A—0 has a splitting extension 0—~B ~E —
A0 in which B=A4,® B, where 4, 1s a zero algebra isomorphic to the underlying module of A.
If B is a zero algebra, E is associative and A-B={0} or B-A={0}, then E has an

associative splitting extension of this kind.

Proof. The argument is analogous to Artin’s proof of the existence of splitting groups
for group extensions [18]:

Let B=A,® B, where A, is the underlying module of 4 and is regarded as a zero
algebra, and 0>B—~E —~A->0 is some extension with linear cross section y:4 —~FE and
corresponding factor set I 4 x4 —B.

Let A act linearly on B by using the action defined by y on B, and by letting

ab=ab-L,, b-a=0 (a€4,bEA,).

These operations and the mapping I': 4 x 4 >B< B define an extension 0 >B—~F -4 -0,

4 — 652944 Acta mathematica. 115. Imprimé le janvier 1966
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such that & contains £ monomorphically as a subalgebra and such that y:4 —E is a linear

cross section of £ —~A under this inclusion. Furthermore, this extension splits, since

I'= —0f, where 7:4,—B is the inclusion mapping of 4,.

If Bis a zero algebra, E is associative and B-A = {0}, the fact that I is an associative

2-cocycle implies that & is associative. (If 4-B={0}, an associative splitting extension
is obtained by letting a-b=0, b-a=ba - (@ €A, bEA,).)
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