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Introduction 

The principal  object  of the following invest igat ion is to s tudy  the Schreier theory o/ 

extensions and  its analogue for a ny  var ie ty  V s of groups or (not necessarily associative) 

l inear  algebras defined by  a fixed (but  arbi t rary)  set S of identical  relations, and  then  to 

show how the Schreier theory can be applied to give various qual i ta t ive  results on exten- 

sions wi th in  such a variety.  

Apar t  from dealing with groups and  algebras separately,  the discussion treats  in a 

unified way extensions wi thin  such varieties as the varieties of (i) all groups, (ii) abel ian 

groups, (iii) groups of fixed exponent  k, (iv) groups of fixed n i lpotency class k, (v) associa- 

t ive algebras, (vi) commuta t ive  and  associative algebras, (vii) Lie algebras, and  (viii) Jo rdan  

algebras, etc; a l though groups and  algebras are t rea ted separately,  there are strong ana-  

logies between the results obta ined for the two cases. 

2-- 652944 Acta mathematica. 115. Imprim6 le janvier 1966 
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In establishing the Schreier theory of extensions lying within a fixed variety Vs of 

groups (or algebras), an essential role is played by the free differential calculus of Fox [6], 

certain "free derivatives" which appeared in [13], and constructions with factor sets (2- 

cocycles) which are analogous to, or generalize, ones used at various times by Eilenberg and 

MacLane (cf. [3], [4] and [14]). This basic theory appears in Chapter I, w 2, and Chap- 

ter II ,  w 2. 

Amongst the applications of the Schreier approach there is firstly a theorem stating 

that  the equivalence classes of split extensions, within a given variety V = Vs, of an abelian 

group M by A E V can be put  into 1-1 correspondence with the set of Zs(A)-module struc- 

tures on M, where Zs(A ) is a certain associative ring depending on A and on V. This is 

Theorem 3.2 of Chapter I. 

Consideration of the ideals of Zs(A), and of split "V-extensions" of abelian groups and 

endomorphism rings, leads naturally to the concept of a "V-envelope" of A E V. This is 

a ring Y together with a structure giving rise to a split V-extension of the abelian group of 

Y by A. Zz(A) is an envelope which has the "universal" property that,  given any V-enve- 

lope Y of A, there exists a unique homomorphism Zs(A ) o y ,  which satisfies a certain 

naturali ty relation. Further, there is a 1-1 correspondence between the ideals of Zs(A) and 

the classes of V-envelopes of A, under a certain equivalence relation on envelopes. These, 

and other, properties of these concepts are discussed in Chapter I, w 4. Zs(A ) and its proper- 

ties are analogous to a functor Gs(A) and its properties which were studied in [13], with 

regard to split extensions within varieties of linear algebras. 

Next, given a variety V of groups (or linear algebras), some results on general V- 

extensions yield, in particular, analogues of theorems of Eilenberg and MacLane [4, 5]: 

Let  A = F/R be a presentation of A as a quotient of a "V-free" group (or algebra) F,  and 

let M be an abelian group (or zero algebra). Then the group of V-extensions of M by A, 

realizing a given action of A on M, is naturally isomorphic to the group of operator homo- 

morphisms R o M  modulo restrictions to R of derivations F o M ,  the isomorphism being 

obtainable by "cup products" with any chosen factor set of the extension R o F  ~A.  (Cf. 

Chapter I, Theorem 5.2 and Chapter II,  Theorem 3.2 - -  algebra extensions are taken to be 

linearly split. Some months after proving these theorems, I received the manuscript of [8] 

by M. Gerstenhaber, which includes an isomorphism of essentially these groups, for (not 

necessarily linearly split) algebra extensions; he sketches an approach different from that  

considered here.) 

If B E V, an analogue of another theorem of Eilenberg and MacLane [5] states that  the 

set of V-extensions of B by A E V, under a certain class of actions of A on B, can be put  

into 1-1 correspondence with the corresponding group of V-extensions of N by A, where N 
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is the centre (or bicentre) of B; the correspondence is obtained by first choosing some 

V-extension of B by  A, and is not natural  in general. (Cf. Chapter I, Theorem 6.1 and 

Chapter I I ,  Theorem 4.1. Hochschild [9, 10] has given this result for associative and Lie 

algebras.) 

Finally, in Chapter I I ,  w 5, there is a result on the embedding of extensions of algebras 

in split extensions. 

I would like to thank Professor J .  F. Adams for some helpful comments, and Professor 

M. G. Barra t t  for an elegant proposition concerning Zs(A ). 

I. Extensions in varieties of groups 

l .  Preliminary notation and definitions 

Let S be any subset of a free group F. A group A is said to satis/y the identical relations 

S if and only if 
r = {1 } 

for every homomorphism r : F -~A. I f  sF denotes the smallest fully invariant subgroup of F 

containing S then this condition is equivalent to the condition: 

r = {1 } 

for every homomorphism r : F -+A. Any set T such that  TF = SF will be called an equivalent 

set of identical relations to S. We shall denote by  Vs the variety of all groups satisfying the 

identical relations S. Thus, if T is an equivalent set of identical relations to S, then Vs = VT. 

The variety Vs could equally well be defined in terms of any free group F '  with the following 

property: For some set T of identical relations equivalent to S, there is a subset {x} of a set 

of free generators of F such tha t  each element of T is a word in the elements of {x}, and 

such that  there exists an injection { x } ~ { x ' }  of {x} into a set of free generators of F'. 

For the sake of brevity, groups in Vs will be called S-groups. An S-group Fs  is said to 

be ]ree if and only if Fz contains a subset X such that  any  mapping of X into an S-group A 

can be extended uniquely to a homomorphism Fs-~A. I f  F '  is any free group, and sF '  is the 

normal subgroup of F '  generated by  

U r 
6~Hom(F,F') 

then Fs = F'/SF ' is a free S-group. A discussion of identical relations in groups, and fully 

invariant subgroups of free groups, is given in [14]. 
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Our basic reference on group extensions, and many  of the results to be considered 

later, will be [14]. An extension of a group B by  a group A is a group E together with an 

epimorphism 
rc : E --> A 

whose kernel is isomorphic to B, and gives rise to a short exact sequence 

1---> B - ~  E-~> A---> I. 

The extension will be called an S-extension (Vs-extension) if and only if E E Vs. Two exten- 

sions 
1-> B--> E-2> A --> I and 1--> B--> E' 2~. A --> I 

are equivalent if and only if there exists a homomorphism v :E -~E '  and a commutat ive 

diagram: 

1-+B/" TI "~A-~ 1; 

"x E, / /  ~" 

is then necessarily an isomorphism: E ~  E ' .  

Let  ~ : A - + E  be a cross section mapping of an extension 

1-+ B--> E--> A-> I, 

i.e. a mapping such tha t  ~ = identity. Define a mapping 

: A -~Aut B, 

of A into the group of automorphisms of B, by: 

~(a) (m)=~am~a 1 [aEA,mEB],  

and define the/actor  set mapping 
F : A  •  -~B 

of ~ (the deviation from multiplicativity of y) by: 

~7~ =Fa. ~ yah [a, bEA]. 

Then, if a.m=~l(a ) (m) [aEA,mEB] and ]c.m=kmk -1 []c, mEB],  

a.(b.m)=Fa.b.(ab.m) [a, bEA; mEB]. (1) 

Further,  F satisfies the "cocycle" condition: 

a'Fo.~Fa.b~=Fa, bFo~.~ [a,b,cEA]. (2) 
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We also have: 

(mya) (n~b)=[m(a'n) Fa.b]~ab [m, nEB; a, bEA]. (3) 

Conversely, given mappings 7: A 4 A u t B  and F:A •  4 B  satisfying conditions (1) 

and (2), one can define an extension of B by  A by letting E be the set of all pairs (m,a) 

[m E B, a EA] with multiplication defined by: 

(m, a) (n, b) = (m(a. n)Fa. b, ab). 

I t  will always be assumed tha t  the functions 7 and F are normalized, i.e. tha t  7(1)=iden-  

tity, and 
I~l. a = Fa. 1 = 1 for a E A. 

(Similarly, cross sections ~ will be assumed to satisfy ~1 = 1.) In  this case, the unit element 

of the previous group E will be (1,1), and the inverse of a pair (m, a) will be 

(m, a) -1 = (•al,.a (a -1 .  m) -1, a - l ) .  (4) 

PROPO SITIOlq 1.1. Two extensions 1 ~ B  4 E  4 A  41 and 1 4 B  4 E '  4 A  41,  given by 

(normalized) maps 7,7'  :A 4 A u t B  and F ,F ' :A  • A 4 B  respectively, are equivalent i /and only 

i/there exists a (normalized) map y~:A 4 B  such that: 

(i) 7'(a)=(~Pa) 7(a) [aEA], 

where (k )  denotes the inner automorphism m ~ k .  m induced by k E B, and 

(ii) F'a.b=~p~(a'yJb) Fa.b~;  1 [a, bEA]. 

The above facts are all standard. I t  will frequently be convenient to describe any 

extension group E as a group of pairs in the above way; in this case, ~, : A 4 E  will always 

denote the cross section mapping a 4(1,  a). 

Consider an extension 
1 ~ B  -+E 4 A  41  

determined by  maps 7 : A -->Aut B and F : A • A ~ B .  I f  4: G 4 A  is any homomorphism of 

a group G into A, consider the functions 

4"7 =74 : G 4 A u t  B 

and 4 *F =F(4  •  x G 4 B .  

A simple verification shows tha t  4*7 and 4*F satisfy conditions (1) and (2) above, and so 

define an extension 4*E of B by  G. 
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I f  G = F is a free group, such an extension ~b*E must  split, i.e. it must  have a cross 

section which is a homomorphism.  I n  fact, any  map x~ -*ttx~ = (yJx~,x~) of a set of free genera- 

tors {x~} of 2'  into r  can be extended uniquely to a homomorphism/t :v-~(yJv,  v) of 2, 

into r s ince/ t  is a homomorphism one then has 

l=y,u(u.~,~)r [u,v~F]. 

I t  will be convenient  to let 
F~:F-~B 

denote the unique funct ion such tha t  

F,(x~) = 1, 

F~(uv) =F,(u) [r F,(v)] F~.,~. 

Funct ions  of this kind are considered in [15] in the case when B is abelian; analogous 

functions are used in [3] and [4]. 

I f  5G denotes the integral group ring of a group (7, and  2, is a free group on free genera- 

tors {xt}, we shall need to consider the / ree  derivatives 

O ~ = Oxii : Z 2" --> Z F 

of Fox  [6]. These are the linear maps given by:  

~,(xs) ='~s, 

@i(uv)=@,(u)+u~,(v) [u, v6F]. 

The existence and uniqueness of the Fox  derivatives can easily be established in the following 

way:  

Let  M be an 2,-module, and consider the corresponding split extension 

I ~ M - ~ E ~ F  ~ I .  

Given a ny  map  h:{x~}-~M, let ~ : 2 , ~ E  be the homomorphism such tha t  y~(x~)= 

(h(x~), x~). Then, if u e 2,, 
~(u) = (d(u), u) 

for some uniquely determined element d(u) of M. Since 

v2(uv ) =y~(u)y~(v) = (d(u) + u" d(v), uv), 

d is a derivat ion of F into M. 
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Further, if d' is any derivation of F into M such that  d'(x~) =h(xi) (all i), one can define 

a homomorphism ~p':F-+E by: y / (u)= (d'(u),u). Since ~' agrees with ~p on the free genera- 

tors x~, it must coincide with % and hence d ' =  d. 

This reproves the well-known result that  any map o /a  set o//ree generators o / F  into an 

F-module M can be uniquely extended to a derivation F -~M. 

The Fox derivative ~ i :F -~ZF  is obtained by letting M be the left F-module ZF,  and 

by taking 
h(xs) =~j. 

Given any set S_~ F, we shall write 
e(s) = 0 ~,(s). 

t 

Finally, if, in the previous extension 

1 -~B -~E -~A -~1, 

B is abelian, then ~/: A ~A u t  B 

is a homomorphism, and we shall let 

: Z A  -~ Horn (B, B) 

denote the linear extension of 9. For any homomorphism r 

4.  :ZG -~ ZA  

will denote the induced homomorphism of group rings. 

2. Identities on factor sets and modules  

Let F be a free group on flee generators {x~} having a subset S defining the variety Vs 

of S-groups. 

THEOREM 2.1. I] 1 -~B-~E-~A -~1 is an S.extension with/actor set F:A • A -->B, then 

r (s) = {I} 
/or every homomorphism ~ : F ~ A .  

THEOREM 2.2. Let 1 ->M-~E-~A -> 1 be an extension o / a n  abelian group M by an S- 

group A,  determined by a homomorphism ~ : A ~ A u t  M and a/actor set cocycle F: A • A -~M. 

Then E E Vs i/ and only i/: 

(i) ~9~,~(S')= {0}, and 

(ii) r , ( s ' )  = {0}, 

/or one set o/identical relations S'  equivalent to S, and every homomorphism ~ : F ~ A .  

The proofs depend on the following lemma: 
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L ~ M M A 2.3. Let I ~ B -+ E -~> A --> I be an extension wi th /actor  set F:A • A -~ B.  Let r : 

F ~ E and ~ : F - + A  be homomorphisms such that ~(x t )= (mt,r I / u  E F,  then: 

(i) ~(u) = (X~(u) F,(u), Cu), 

where X~(u) is an element o / B  which is uni ty  i /each mi is unity;  

(ii) i / ~ :  B ~ M  is an operator homomorphism o / B  into A-module M ,  i.e. a homomorphism 

such that ~(ebe -1) = (xee). ~(b) [e e E,  b e B], then 

~(X~(u))  = Z ( ~ ,  aju) .  ~(,nj). 
t 

Proo/. The statements are true for u =xi.  Also, since 1 =Fr =F~(xt-lx~), one obtains: 

- - 1  ~ - 1  1 F~(x~l) - ~,,- .~,, .  

Since z l~= {1}, and ~j(u -1) = - u  -1 ~j(u), the formula (4) for (mi,r -1 then shows tha t  (i) 

and (ii) hold for u = x [  1. By considering products w =uv,  the lemma is now easily proved 

by induction on the length k of words u = x[:.., x~  (sj = + 1). 

Theorem 2.1 follows from this lemma on considering elements u of S and tha t  homo- 

morphism ~: F ~ E  such that  ~(xt) = (1,r when r F -~A is given. 

I f  B in the lemma is abelian, and :r is taken to be the identity (operator) homomorphism 

B-~B,  one obtains the formula: 

r = (~  (r ~ju)-mj + l ~  (u),r 
i 

Since the elements mj of B are arbitrary,  it is now easy to deduce Theorem 2.2. 

If, further, F = {0} and h: {x,} ~ B  is given by  h(x,) = m ,  we obtain the formula: 

r = (~(r  mj,r 
t 

I f  one defines d : F  ~ B  by : ~ (u )=  (d(u),r then d is a derivation (via r Thus the unique 

derivation d : F - + B  extending h is given by: 

d(u) = ~ (r  h(xj). 
t 

I f  A = F, and ~b is the identity map of F,  we get 

d(u) = Y (~ju)  " h(xj), 
t 

and, when B is the left E-module Z F ,  this is a result of Fox [6]. 
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Again, if ~':A-->B is a derivation, and if h(xj)=~'(r then, since ~'r is a 

derivation, we obtain a "chain rule ol di//erentiation": 

~'(r u) = ~ (4, ~ju). ~'(~ xj). 
1 

I f  A = F '  is a free group on free generators {x~ }, and B is ZF' we obtain the "chain rule" of 

Fox [6]: 

ax~ ( r 1 6 2  a 

Now let F' be any other free group, and let SF' denote the normal subgroup of F '  

generated by U y~(S). Then an S-group is also an SF'-group, and we have: 
~eHom (F, F')  

COROLLARY 2.4. Let 1--->B->E~A ~1 be an S.extension given by maps ~I:A ~ A u t B  

and F:A • A -~B. I / r  EHom (F ' ,A) ,  then: 

(i) r~(~F ') = {1}; 
(ii) i/ B is abelian, then ~r = {1 }. 

3. Classification of split S-extensions of ahelian groups 

The results of the next  two sections are closely analogous to certain propositions con- 

cerning (not necessarily associative) linear algebras, which were considered in [13]. 

I f  S is any subset of a free group F on free generators {xt}, and G is any group, let 

[~(S)]G denote the (two-sided) ideal of ZG generated by the set 

I f  A is any  S-group, let 

U r a(s). 
~b e Horn (Fo G) 

Zs(A) =ZA/[~(S)]A. 

LEMMA 3.1. I / S '  is an equivalent set o/identical relations to S, then 

Zs(A) =Zs,(A). 

Proo/. For any u E F and ~ EHom(F,F) ,  the "chain rule of differentiation" of Fox [6], 

gives: 
~(~u) = ~. (~, ~,u) a,(~x,). 

This shows tha t  

~( U ~,(S)) _ [~(S)]F. 
~Oe Horn (F. F) 
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The smallest normal subgroup of F containing U ~(S) is precisely the smallest 
~p E Horn (F, F) 

fully invariant subgroup S F  of F containing S. We shall now show that  [~(SF)] F coincides 

with the ideal in Z F  generated by the set 

As = (1 - s Y )  u U ~2, ~(S), 
~pe Horn (F, F) 

where 1 - S F  = {1 - u : u E S F } .  

The fact that  ~(SF) is contained in the ideal generated by A s follows from the formulae: 

~j(uv) = ~j(u) + u~j(v), ~j(u -1) = - u - ~ j ( u ) ,  

and ~ t ( U W e U  - 1 )  = (1 - -  U W e U - - 1 ) ~ j ( U )  "~ EUWe" ~t(W) [e = +__ 1,e '  = (e -- 1)/2], 

on regarding S F  as the normal subgroup generated by U F)V/(S), and making use of 
~a G IIom(F, 

the first inclusion mentioned above. Therefore U C. ~(sF) is contained in the ideal 
~ cHore(F, F) 

generated by As, because A s is invariant under Horn ( F , F ) .  

Conversely, the "fundamental identi ty" 

u - 1  . ~  (Oju) ( x s - 1 )  
1 

of Fox [6] shows that  A s is contained in the ideal generated by U C. ~(SF).  Hence 
~G Hom(F. F) 

[~(SF)]p coincides with the ideal generated by A s. 

Therefore, since A is an S-group, [~(SF)] A is generated by the set 

U @, U v,,o(,s)= U ,h,~(s), 
r Horn(F, A) ~GHom(F, F) @EHom(F, A) 

i.e. [~(SF)] A = [~(S)]~. The lemma follows. 

We remark that  Z s ( - )  is a covariant functor on the category of S-groups and homo- 

morphisms. 

Now let M be an abelian group, and let 

Splitexts (A,M) 

denote the set of equivalence classes of split S-extensions of M by A. With the aid of Theo- 

rem 2.2(i), it is easy to check that  Splitexts ( -  ,M) is a contravariant functor on the cate- 

gory of S-groups and homomorphisms. 

Given M, and a ring homomorphism a: Z s ( A  ) ~ Horn (M, M), let {E~} denote the equi- 

valence class of split extensions E~ of M by A corresponding to the homomorphism of 

groups: 
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a r iA  :A -~ Aut M, 

where r denotes the natural epimorphism ZA -+Zs(A). 

THEOREM 3.2. Let M be an abelian group, and A be an S-group. Then the mapping 

~{E~} 
defines a 1-1 correspondence: 

Hom (Zs(A), Horn (M, M)) r Splitexts (A, M), 

which is natural with respect to homomorphisms A' -~A o/S-groups. 

Proo/. Given a homomorphism ~r Zs(A) ~ Horn (M, M), let 

= ~ r l A  :A -~Aut M. 

Then ~ = ~r: ZA ~ Horn (M, M), 

and hence ~[~(S)]A= {0}. By Theorem 2.2, this shows that  ~r is a mapping into 

Splitexts (A, M). 

If ~ : A -+ Aut M is a homomorphism defining an element of Splitexts (A, M), then, by 

Theorem 2 .2 ,  
~ [ ~ ( S ) ] .  = { 0 } ,  

and so ~ :ZA -+ Hom (M, M) can be factorized into a composition 

ZA ~>Zs (A)-~ Hom (M, M). 

Thus the mapping cr is surjeetive. 

Further, ff ~,~': Zs(A ) ~ H o m ( M ,  M) are homomorphisms such that  

~]A =~'~IA, 

then ~ = ~', because r is an epimorphism. Thus the given mapping is injective. 

Finally, it is easy to check naturality. 

Example 3.3. The split extension of the additive group of any ideal K of Zs(A) by A, 

defined by left multiplication of Zs(A) on K, is an S-extension. 

Example 3.4. If Vsis the variety of abelian groups, thenZs(A) is isomorphic to the ring 

of integers Z: For, in  this case [~(S)]A is generated by all elements of the form 1 - a b a  -1, 

a - [a, b] = a - 1 (a, b e A), i.e. [~(S)]~ coincides with the "angmentat/(m/deal" 1.4 of ZA. 
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Example 3.5. Let Vz be the var iety of groups o/exponent k, i.e. groups A such that  

a k = 1 for all a EA. Then Zs(A ) is the quotient of ZA by the ideal generated by  all elements 

of the form 
l +a+a~+...a k-1 (aEA). 

Example 3.6. The preceding two examples show that,  for the variety of abelian groups 

o/exponent lc, there is an isomorphism of Zs(A) with the cyclic group Zk of order k. 

Example. 3.7. Let Vs be the variety of nilpotent groups o/class k, i.e. groups A satisfy- 
ing 

[al ..... ak+l]-- [[al ..... a~],ak+l]=l (a~eA). 

By considering ~k+l[Xl, ..., xk+l], one sees tha t  here the relation 

[al ..... a k ] = l  (ateA) 
is satisfied in Zs(A). 

Further,  M. G. Barra t t  has kindly shown me a proof that,  for this variety, 

Zs(A) =ZA/(IA) k. 

4. Properties of the funetor Zs (A) 

Let A be an S-group, and let M be an abelian group with an A-module structure given 

by  a homomorphism ~ :A-~  A u t M  such tha t  the corresponding split extension of M by  A 

is an S-extension; it will be convenient to call such a module (M, 7) an S-module for A. 

Let  L = L r :  Y-~ Hom~ (Y, Y) denote the homomorphism defined by  left multiplication 

of a ring Y on itself, where Homa ( Y, Y) is the ring of endomorphisms of the abelian group 

of Y. Then Example  3.3 above states tha t  (Zs(A),LzlA) is an S-module for A, with a simi- 

lar property for any ideal K of Zs(A ). 

If  (M,~) is any S-module for A, let YM=Hom(M,M). I f  a:A-~Y  is any homomor- 

phism of A into the group of units of a ring Y with identity, let e: ZA --> Y denote the linear 

extension of o. Then: 
(L~) ̂  = / ~ :  ZA -~ Hom~ ( YM, YM). 

(L~) ^ [~(S)]A = L ~ [ ~ ( S ) h  = {0 }. Hence: 

Therefore, by  Theorem 2.2, 
( Y~, Lrq) = (Horn (M, M), L~) 

is also an S-module for A. 

Suppose tha t  one now introduces the following definition: An S-envelope (Vs-envelope) 

of A is a pair ( Y, fl), consisting of a ring Y with identity and a homomorphism fl: A -+ Y of A 

into the group of units of Y, such tha t  ( Y, L~) is an S-module for A. Then (Zs(A), v I A) is 

an S-envelope of A, which has the following "universal" property: 
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THEOREM 4.1. Given any S-envelope ( Y, 8) o /A ,  there exists a unique ring homomor. 

phism ~, :Zs(A ) ~ Y such that ~7:[A =8. 

Since the propositions of this section are all closely analogous to ones concerning 

linear algebras [13], and since their proofs can be obtained by directly paraphrasing the cor- 

responding proofs in [13], only Theorem 4.7 will be proved here. 

The proof of Theorem 4.1 (which is analogous to Theorem 6.4 of [13]) is based on the 

following lemma (which is analogous to Theorem 5.2 of [13]): 

L]~MMA 4.2. A pair (Y,/~), consisting o /a  ring Y with identity and a homomorphism fi: 

A --> Y of A into the group o/units o / Y ,  is an S-envelope o /A  i/and only i/ 

8 [ ~ ( s ) h  = {0}. 

This lemma is proved with the aid of Theorem 2.2(i) which is analogous to Theorem 

4.5 of [13] (ef. Chapter II,  Theorem 2.2(i)). 

The S-envelope (Zs(A),T]A) has the property that  ~(A) generates Zs(A ). Further, 

every S-envelope (Y,/~) contains a minimal S-envelope ( Y~, fl), where Y~ is the subring of Y 

generated by fi(A). Suppose that  one calls two S-envelopes (Y, fl) and ( Y', fl') of A equivalent 

if and only if their minimal subenvelopes (Y~,fl) and (Y'~,, fl') are isomorphic, under an iso- 

morphism ~:YZ-~Y~,, such that  ~fl =fl'. Then we have: 

PROPO SlTIO~ 4.3. Every S-envelope o/an S-group A is equivalent to an S-envelope o] A 

o/the/orm (Hom(M,M),~). 

(Cf. Theorem 5.5 of [13]--in fact, an S-envelope (Y, fl)is equivalent to 

(Horn a (Y, r), Lfl).) 

The ring Zs(A) has the following further "classifying" property with respect to S- 

envelopes of A: 

THEOREM 4.4. I / K  is a (two-sided) ideal o/Zs(A ) and ~ is the natural epimorphism 

Zs(A) ~Zs(A)/K, then the mapping 

g ~ (Zs(A)/K, uKTIA ) 

induces a 1-1 correspondence between the ideals o] Zs(A ) and the equivalence classes o/S-enve- 
lopes o/ A. 

(Cf. Theorem 6.6 of [13].) 

Next we point out that  the properties of Zs(A ) given in Theorems 3.2 and 4.1 are equi- 

valent and suffice to characterise the pair (Zs(A),vlA) axiomatically: For this purpose, 
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call an S-envelope (W, ~u) of A universal if and only if it has the property that,  for every S- 

envelope ( Y, fl) of A, there exists a unique homomorphism ~: W ~ Y such that  ~/~ =ft. Thus, 

by Theorem 4.1, (Zs(A), T IA ) is a universal S-envelope of A. 

PROPOSITION 4.5. Every universal S-envelope (W, /~) o /A  is minimal, i.e. W,  = W. Any 

two universal S.envelopes ( W1, /~1) and (W2,/~2) o/ A are eqivalent under a unique isomorphism 

E: W1-->W 2 such that e#a=#2. 

(Cf. Theorem 6.2 of [13].) 

THEOREM 4.6. Let/~ : A ~ W  be a homoomorphism o/an S-group A into the group o/units 

o/a ring W with identity, such that p(A ) generates W. Then (W, ~u) is a universal S.envelope o/ 

A i /and only i / , /or every abelian group M, i/r162 W ~ Horn (M, M) is a ring homomorphism, 

the mapping 
-~(M, ~p) 

induces a 1-1 correspondence: 

Horn (W, Horn (M, M)),-,Splitexts (A, M). 

(Cf. Theorem 6.5 of [13].) 

Finally, if B is any group, let Bs denote the largest quotient group of B which is an S- 

group, i.e. Bs = B/SB where SB is the normal subgroup of B generated by U r 
r 

THE ORE M 4.7. The natural epimorphism B ~ B s  induces a natural isomorphism: 

ZB/[~(SF)]s ~Zs(Bs). 

This is analogous to Corollary 8.4 of [13]--a direct proof is as follows: 

Proo/. The natural epimorphism ~ : B ~ B s  induces an epimorphism ~. :ZB-~ ZBs,  

which sends [9(SF)] s onto [~(sF)]ss , since any homomorphism r  ~ B s  can be lifted to a 

homomorphism vd:F-+B such that  Q~0 =r Further, ~* induces an epimorphism 

~. : ZB/[~(SF)]B ~ ZBsI[~(SF)]Bs =Zs(Bs). 

To show that  r is also a monomorphism, recall that  Ker 0* is generated by { u -  l : u  ESB} 

(cf. [6], say). Further, the proof of Lemma 3.1 shows that  [~(SF)] s is generated by the set 

(1 -SB) U U y~,~(S); 
1pE Horn ( F , B )  
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hence Ker ~,___ [~(sF)] B. Then, since ~, sends [~(SF)] s onto [~(SF)]ss, if Q,xE[~(SF)]ss, then 

~, x =~,  y, where y E [8(SF)] B. 

Hence: x - y E Ker Q, _ [~(sF)]B, i.e. x e [~(SF)] B. 

Therefore ~)', is a monomorphism. 

5. General S-extensions 

Any equivalence class of extensions 

1 - ~ B - ~ E ~ A  -~1 
determines a homomorphism 

0 : A -~Aut B 

of A into the group of automorphisms of B modulo inner automorphisms. Let 

extw (A, B) 

denote the set of equivalence classes of S-extensions of B by A which determine the homo- 

morphism 0. 

Suppose that  1-~B-+E-~A-~1 is an S-extension of B by A determining 0, which is 

given by maps ~ :A -~Ant B and F:A • A -->B. L e t / : A '  -->A be a homomorphism of S-groups. 

Consider the induced maps 
/*~ =~/:A '  ~ Aut B 

and /*F = F ( / x / )  :A' x A' -~B. 

With the aid of Section 2, and a somewhat tedious inductive proof, one has: 

PROPOSITION 5.1. The mapping 

(~,r) -~(/*~,/*r) 
induces a mapping 

/*: ext~ (A, B) -~ extrs*~ (A', B), 

which is a 1-1 corespondence i/ / is an isomorphism. 

Now let (M,~) be an S-module for A. Then, by Theorem 2.2(ii) or more directly, it 

follows that  the set of equivalence classes of S-extensions of M (with the A-module struc- 

ture ~) by A forms an abelian group 

Ext~ (A,M) {or H i  ( A , / ) } .  

I f / : A '  -->A is a homomorphism of S-groups,then the mapping F -~/*F induces a homomor- 

phism 
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/* : Ext~ (A, M) -~ Ext,*" (A', M), 

which is an isomorphism if / is one. 

Now let 1 ~B-~E-~A-~1  be an arbitrary (but fixed) S-extension of a group B b y A ,  

with factor set F. Let  
Ophom E (B, M) 

denote the abelian group of operator homomorphisms B--> M, i.e. homomorphisms ~ such 

that  
cr -1) = (ge). g(b) [e E E, b E B]. 

This group has a subgroup 
Derive (B, M) 

consisting of all restrictions d lB of derivations d:E-~M (via g). 

THEOREM 5.2. I / ~ e O p h o m s  (B,M), then the mapping ~-~(~F:A • A-~M} induces a 

monomorphism 
T Ophoms (B, M) �9 ~ ~ , ~  ->Ext~ (A,M), 

which is independent o/the/actor set F chosen/or E. 

I / E  is a/ree S-group, then T is an isomorphism. 

When S= (1), this theorem reduces to one of Eilenberg and MacLane [5], [15]. 

If M is an S-module under trivial action by A, one obtains the group 

Ext~ (A, M) 

of equivalence classes of central S-extensions of M by A. Then E also acts trivially on M, 

and an operator homomorphism B -+M is a homomorphism which sends every commutator 

[e, b] (e E E, b E B) to zero�9 Further,  a derivation is now just a homomorphism. Hence, in 

this case, there is a monomorphism 

Hom (B, [E, B] --> M, 0) --> Ext~ (A, M), 
Hom (E, M)]B 

which is an isomorphism if E is a free S-group. (When S = (1 }, this reduces to a corollary 

of Eilenberg and MacLane [5].) 

Finally, when S defines the variety of abelian groups, and E =F~ is a free abelian 

group, Theorem 5.2 reduces to another theorem of Eilenberg and MacLane [4], [5]: 
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Horn (B, M) 
ExtAb,l(A, M) ~ Horn (F~, M) I B" 

Theorem 5.2 will be deduced from some further propositions: 

Suppose that  A also acts on a (not necessarily abelian) group N by means of a fixed 

map v :A-+ AutN arising from some S-extensions of N by A. 

Define an extended operator homomorphism B ~ N  to be a map :r ~ N  such that: 

(i) ~(ebe -1) = ~r [(de). ~(b)], and 

(ii) ~(be) = :r a(e) [e E E,b E B]. 

h $ Let Op om~(B,N) denote the set of extended operator homomorphisms B-~N.  This 

set has the subset Deriv(E,h r) of all derivations E~2V, i.e. maps d satisfying d(uv)= 

d(u)[~ru.d(v)]; the set of restrictions to B of derivations E-~N will again be denoted by 

Derive (B, hr). 

Now let 0 :A -+ Aut N be the homomorphism induced by v :A -+ Aut N. If r162 E 

Ophom~ (B,1V), let N ~ = I m a ]  B. 

THEOREM 5.3. (i) 1] ~EOphom*E(B,N), then ccF:A •  de/ines an element o/ 

ext~ (A, N~). 

I] E is a free S-group, then every element o/extas (A,N)  can be de/ined by a/actor set o/the 

/orm ~[' as above. 

(ii) Suppose that v : A - + A u t N  is a homomorphism. Then, i/ dEDeriv(E,N), dF: 

A • A ~ N  de/ines the split extension class in ext~ (A,Na). Conversely, i] ~EOphom~ (B,/V) 

is such that :oF de/ines the split extension class in extas (A, N~), then a I B E Derive (B, N). 

In  each case, the class defined by ~F is independent o/the/actor set F chosen/or E. 

The proof is analogous to an argument of Eilenberg and MacLane (cf. [14], for example): 

Proo/. (i) Suppose that  the given factor set F:A • A -~B corresponds to a cross section 

function ~,:A-+E. Let ~E0phom~ (B,N). Then it is easily verified that  :oF and the map 

v~ :A ~ Aut N~, given by: v~(a) = <~r v (a) I N~, determine an element of ext a (A, N~). 

To show that  this element lies in extes (A,N~), let E~ be the extension group of pairs 

(n, a) [n ENd, a E A] defined by v~ and ~F. Let ~: 2'-~E be a homomorphism such that  

~(x~)=(m~, Cx~) [m~EB, Cx~EA], 

and let a .~:P-+E~ be the homomorphism such that  ~.~(xt)=(:cm~,r If uEF,  and 

r = (W~(u),r it is easily shown by induction that  r162 ~(u)= (:r Cu). 
3- -  652944 Acta mathematica. 115. Impr im6 le janvier  1966 
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For  u E S, these formulae show tha t  E~ is an  S-extension of N~ by  A. 

Now suppose tha t  E is a free S-group of the form F's = F' / sF ', where F' is free on free 

generators {x~ }. Let  o : F ' ~  A be the composition of the natura l  epimorphism F' ~F's with 

: F~ ~ A. I f  A :  A • A -~ hr is the factor  set of an S-extension of 57 by  A in which A acts on 

hr by  the map v, consider the funct ion AQ: F' ~hr such that :  

AQ(x~) = 1, AQ(uv) = A~(u) [eu-A~(v)] AQu. or. 

Then, by  Corollary 2.4, A~(SF ') = {1}, and so AQ defines a funct ion An :F~ ~ h r  satisfying: 

A.(uv) =An(u) [~u-A~(v)] A~u,~. 

Then a = An is an extended operator  homomorphism B ~hr ,  and, since 

Fa. b = ~a~bY~ -1 (a, b E A), 

- 1  one has ~r ~ =l~a(a'/~b) Aa. b/Ua.b, 

where # = ~7 : '4 ~ h r. This expression for ~r leads to the relation 

v~(a) v~(b) =<~Fa.b> "pa(ab) [a,bEA] 

in Aut  hr. Hence ~ and ccF define an extension of the entire group hr by  A which is equiva- 

lent to tha t  defined by  v and A. 

(ii) Let  E be an  arb i t rary  S-extension of B by  A again, and suppose now tha t  v : A 

Auth r  is a homomorphism.  I f  d:E-->hr is a derivation, then, since 

1 ~ -1 a.b=~a~'~,~b (a, bEA), 

one has dFa. ~ = d@a) [a" d@b)] d@~) -1. 

Therefore v~ and dF define an extension of hr~ by  A equivalent  to the split extension defined 

b y  v. Conversely, suppose tha t  v~ and ccF define the split extension class in ext~ (A,hr~). 

Then there exists a map ~:A-~hr~ such tha t  

v~(a) = <~l)a> v(a) lhr~: 

and a f t ,  b = yJ.(a �9 ~ )  ~ [a, b E A]. 

Since v~(a)= <:r v(a) lhr~ also, ~.  = u@a)ka where k~ is an element of the centre of hrs. 

Using this fact  and the expression for :oF, one obtains a derivation d:E-->hr by  setting 

d(m,a) = :r [mEB, aEA]. Then ~] B =d]  B. 
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Finally, a simple calculation involving Proposition 1.1 shows that,  in all cases, the 

extension class defined by ccF is independent of the factor set F chosen for E. 

In order to deduce Theorem 5.2, now suppose that  (/Y, v) is the S-module (M, 9) for A. 

Then there is a monomorpbism of abelian groups 

~:Ophom~ (B, M)-~ Ophom* (B, M) 

given by (v:r (m,a)=~(m) [mEB, aEA]; to see that  v is injective, one can consider the 

epimorphism 
res: Ophom* (B,M) -> OphomE (B,M) 

given by restriction, which satisfies 

res o ~ = identity. 

If  ~COphomE (B,M), then 9~ coincides with 9, and the (additive) map ~-~(~F}= 

{(v:c)F} sends ~ to an S-extension of the entire group M by A: 

To show this, consider the function F~ : F - ~ B  (4 E Hom (F, A)) of Section 1. In the gen- 

eral case when N is not necessarily abelian, it is easily verified by induction that  

for any fl E Ophom* (B, N). 

Therefore, by Theorem 2.1, 

f l o F ~  = (flF)~: F -~ N 

( ~ r ) , ( s )  = ~l"~(s)  = {0}; 

hence, by Theorem 2.2, ~I ~ defines an S-extension of M by A. 

Bearing these facts in mind, the proof of Theorem 5.3 (ii) now shows that  the map 

~-~(~F} induces a homomorphism 

T' : OphomE (B, M) --> Ext~s (A, M), 

whose kernel is Deriv~ (B,M). When E is a free ,q-group, Theorem 5.3(i) implies that  T' is 

an epimorphism. This proves Theorem 5.2. 

I t  can be deduced from Theorem 5.2 that  Ext~s (A,M) is a covariant functor of the 

S-module (M,9). Also, it is readily verified that  the monomorphism T of that  theorem is a 

natural transformation of functors. 

6. Reduct ion to ahelian kernels  

Consider an arbitrary (but fixed) extension 

I ~B-~GZ> A -+1 

determining a homomorphism 0 : A -~ Aut B. If Zs denot~es the centre of B, let 
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?r 
1 -~Z~-~E-->A -+1 

be any extension of ZB by A determining the homomorphism 0: A ~ Aut ZB induced by 0. 

Let  G |  denote the subgroup of all pairs (g,e)EG • E such that  ag=~e, and let N be 

the normal subgroup of all pairs (z,z-1), z E ZB. If 

GE = G | E l i ,  

Eilenberg and MacLane [5] show that  one obtains an extension 

I ~ B ~ G E - + A - ~  I, 

in which B maps into G~ by b-~ (b, 1)N and GE maps onto A by the common projection, 

which determines the given homomorphism 0. They prove that  the map E -~ GE induces a 

1-1 correspondence: 
Ext  ~ (A, Z~) *-~ ext ~ (A, B), 

(which is not natural in general). 

As a corollary to their theorem, we obtain: 

THeOReM 6.1. I /  there exists an S-extension 

determining the homomorphism 

I ~B-~G-5~ A - ~ I  

O:A-+ A u t B ,  

then the mapping E ~ G E induces a 1-1 correspondence: 

Extas (A, Z~) ~ ext~ (A, B). 

By using the previous result of Eilenberg and MacLane, this theorem can be deduced 

with the aid of Section 2. Since an analogous theorem (Theorem 4.1) in Chapter I I  is proved 

in a similar way by a method analogous to that  of Eilenberg and MacLane, this approach 

will be omitted here. 

As an alternative method, one can use the analogue of an approach used by MacLane 

[16] for associative rings: 

Following Baer [1], consider the graph ~) of 0 :A-~ AutB,  defined to be the subgroup 

of all pairs (x, r162 A • Aut B for which ~r E O(x). Define an epimorphism 

with kernel Z~ by: g -~ (ag, (g} I B). 
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Given another S-extension 1 -+B -+ G' -~ A -~1 determining 0, let (G, G') be the subgroup 

of all pairs (g, g')E G • G' such that  y~g =y~'g/E ~, and let K be the normal subgroup of 

all pairs (b, b) [b E B]. If 
E(G,G') =(G,G')/K, 

then the monomorphism b-+(1, b)K of Zs into E(G, G') and the epimorphism (g, g ' )K ~(~g = 

a'g' of E(G, G') onto A define an S-extension 

Furthermore, the action of A on Zs in this extension is that  determined by O, since the 

extensions G and G' determine 0. 

We now prove that  the mappings E-~ G~ and G' ~E(G, G') define inverse mappings: 

Ext~ (A, ZB) r extOs (A, B). 

In order to do this, observe that  a typical element of E(G, GE) can be written in the 

form (g, (g, e) N) K, where g E G, e E E, and that  this form specifies e E E uniquely. An equi- 

valence homomorphism E(G, GE)->E is then obtained by mapping (g, (g,e)N)K to e. 

Conversely, a typical element of GE(a.o') can be written in the form (g,(g,h)K)N, 

where g E G, h E G', and this form specifies h E G' uniquely. The mapping (g, (g, h) K) N ~h  

then defines an equivalence homomorphism from Gs(a. a') into G'. 

II. Extensions in varieties of linear algebras 

1. Preliminary definitions and discussion 

All algebras considered will be, not necessarily associative, linear algebras over a 

/ixed commutative ring K with unit. Since most of the concepts of Chapter I, w 1, have 

obvious direct translations within the category of algebras and homomorphisms of algebras, 

we shall avoid repetition and take as understood such concepts as S-algebra (where S is a 

subset of a free (non-associative) algebra), extension, S-extension, the variety Vs o/S-algebras, 

and so on; since the following sections will deal exclusively with algebras, no confusion 

should arise from the use of notations identical with those used in Chapter I. 

In order to discuss S-extensions, we require the notion of an S.bimultiplication a of an 

S-algebra A: 

This is a pair of linear maps a--~ aa, a-~ aa of A into itself with the following property: 

if A is the quotient of the "/ree product" of A with the free algebra on (a} (i.e. the quotient 

of the free algebra on the set A (J (~} given by the relations identifying the sub-algebra 
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generated by  the set A with the algebra A) given by  the relations identifying aa  and aa  

(a EA) with the images of a under the given maps, then A is an S-algebra. 

(The notion of a bimultiplication was introduced by Hochschild [9], and used by  Mac- 

Lane [16], in the case when S defines the variety of associative algebras. When S defines 

the variety of Lie algebras, an S-bimultiplication is just a self-derivation of the algebra 

considered.) 

For each element c in an S-algebra A, an inner S-bimultiplication/~c is defined by  the 

mappings a -+ ca, a -~ ac. The set of inner S-bimultiplications of A forms a submodule/~(A) 

of the module M(A) of all S-bimultiplications of A (under the point-wise operations). 

Leg 7: A -~E be a cross section mapping of an S-extension 0 -~B-~E--> A -~ 0. Since B is 

an ideal in E,  for each e E E, ~ ] B E M(B) and, if ~e =~e '  then/~e-/~e. E #(B). Hence the map- 

ping a-->jUra induces a mapping 

0 :A ~M(B)/#(B), 

which is linear, since, for a, bEA,2EK, 7(a+b)-7(a) -7(b)  and 2y(b)-7(,~b)EB. If B is a 

zero algebra, i.e. all products are zero, this gives a linear map 0 :A -~ M(B), which makes B 

into an "S-bimodule" for A (an idea introduced by  Eilenberg [3], for the case of algebras 

characterized by  multilinear identities, and considered further in [11], [12], [17] and [13]): 

An S-bimodule for A is a module M together with linear maps R, L :A  ~ M a p ( M ,  M) 

such tha t  the corresponding split extension of M (as a zero algebra) by  A is an S-extension. 

(I t  will be convenient to let Map(X, Y) denote the set of linear maps X ~ Y ,  while 

Horn (X, Y) will denote the set of (algebra) homomorphisms X ~ Y.) 

Define the bicentre K c of an algebra C to be the set of all b E C such that/z~ = 0, i.e. 

bx=xb=O for all xEC. (This term has been used by  MacLane [16] for associative rings.) 

Then, in the general case, the above mapping O:A -~M(B)//~(B) defines operations of A on 

K B which turn it into an S-bimodule for A. 

Henceforth, unless otherwise stated, we shall consider only extensions which are 

linearly split, i.e. which admit  a linear cross section mapping. (If one considers extensions 

by  algebras which are free as modules, e.g. if K is a field, then this is no restriction.) In  this 

case, if 7 :A -~E is a linear cross section of an extension 0 -~B-+E-~  A -~ 0, we obtain a pair 

of linear mappings 
R, L:A  -~ Map (B, B) 

by setting 

Ra(m)=my~=m.a, La(m)=~am=a.m [aEA,mEB]. 

Al~o we obtain a bilinear/actor set mapping 

F:A x A - ~ B  
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as the deviation from multiplicativity of 7: 

I~a. b =~Tb--~'ao (a, bEA). 

Since 7 is linear, F is normalized, i.e. l~a,0 =l~0, a=0  (aEA). 

We have: (m + ~2a) (n § ~b) = (ran + a. n + m. b + Fa, b) + ~a~. 

Conversely, given linear mappings R,L: A -~Map (B, B) and a bilinear mapping F: A x A -~B, 

one can define an extension of B by A by letting E be the module of all pairs (m, a) [m E B, 

a EA] with multiplication defined by: 

(m,a) (n,b)=(mn §  § m.b § Fa.b, ab ). 

Furthermore, this extension is equivalent to any extension giving rise to the given map- 

pings in the above manner. I t  will frequently be convenient to describe any extension alge- 

bra E as an algebra of pairs in this way; then ~ : A -+E will always denote the cross section 

a--> (O,a). 

THEOREM 1.1. Two extensions E and E' o/ B by A, given by mappings R ,L ,R ' ,  L': 

A-+ Map (B, B) and F,F': A • A--->B respectively, are equivalent i /and only i/there exists a 

linear mapping ~v : A ~ B  such that: 

(i) Ra=R~§ , La=La§ (aEA), 

where Rm and Lm denote the right and left multiplications de/ined by m E B, 

(ii) F~,~, =Fa,b +(~v) (a,b), 

where (SyJ) (a, b) =La(~Vb) --~ab + R~(~va) +~Pa~b [a, b E A]. 

Proo/. Suppose that  ~:A -+E and y ' :A ~ E '  are linear cross sections to which the given 

mappings correspond. If there exists an equivalence homomorphism T: E ~E ' ,  then fl = 

T~,:A-~E' is a new cross section of E'-+A, and one can define a linear mapping ~v:A-~B 

of the required kind by: 
~l)a=~?a--~a (aEA). 

Conversely, if there exists a linear mapping ~p: A -+B satisfying the given relations, then 

the mapping m +~a--~ m +7~--~Va defines an equivalence homomorphism T:E-+E' .  

COROLLARY 1.2. (Eilenberg [3].) The set o/equivalence classes o/(linearly split) exten- 

sions o] a zero algebra M by A, corresponding to given mappings R ,L  : A ~ M a p ( M , M )  is in 

1-1 correspondence with the set o/bilinear mappings A • A ~ M  modulo "coboundaries" i.e. 

mappings o/the/orm &p as above, 
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Let 0 -~B-~E -~A -~ 0 be an extension with factor set F. Any algebra homomorphism 

r G -~A gives rise to an induced factor set 9b*F =F(r  • 9b) :G • G-~B which defines an exten- 

sion ~*E of B by  G in conjunction with the mappings q~*R = Rr r =LC:G ~ Map (B, B). 

I f  G = F is free, this extension must  split, i.e. it must  have a cross section which is a homo- 

morphism. In  fact, any mapping xi-~ (y~, xt) of a set of free generators (x~) of F into r 

can be extended uniquely to a homomorphism v --> (~0v, v ) of $' into ~*E, and one has r = 

-($~0. I t  will be convenient to let 
F ~ : F ~ B  

denote the unique linear mapping such that:  

r~(x,) = 0, r~(uv) = Cu.  r~(v) + r~=. ~v + r~(u)  �9 Cv + r~(u)r~(v).  

(When B is a zero algebra, such a function is defined in [3] for polynomials which are multi- 

linear in the free generators.) 

Finally we mention some further concepts to be used later. For any algebra A, G(A) 

will denote the tensor algebra K §  on the module A * = A |  where A'  is the 

opposite algebra to A, i.e. the module A with multiplication anti-isomorphic to tha t  of A. 

I f  F is the free algebra on a set (xt}, we shall make use of the linear mappings 

Dr: F ~ G(F) 

given by: D~(xj)=Oij, D~(uv) =D~(u)|247 Di(v)| 

where, if a is an element of an algebra A, a and a '  will denote the elements (a,O) and (O,a) 

respectively of A* = A @ A'.  I f  T is any subset of F, let 

D(T) = U D~(T). 
i 

These maps, which are analogous to the Fox derivatives, arise conceptually in the 

following way: 

By an argument  similar to one used in Chapter I, w 1, one can prove that  any map el a 

set o/ / tee generators o /2 '  into a bimodule M / o r  F can be uniquely extended to a derivation 

F -+ M. 

Now let M be the bimodule G(F) for F defined by: 

u . m = m |  m . u = m |  [uEF, mEG(F)]. 

Letting h(xs)=~j, we obtain a unique derivation D ~ : F ~  G(F) such tha t  D~(xj)=~j, and 

D~(uv) = u" D~(v) + D~(u)" v = Dt(v) | u' + D~(u) | v. 

(The mappings D~ were introduced in [13].) 
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If r :A -+B is a linear mapping, 6 ,  :G(A) -~ G(B) will denote the homomorphism induced 

by 6. Also, if R,L:A  ~ M a p ( B , B )  are given linear maps, 

<R ]L> :G(A) -~ Map (B, B) 

will denote the (unique) homomorphism extending the map R ] L: A* -~ Map (B, B) given by: 

R IL(a,b) = Ra +L~. Here Map (B, B) is regarded as an associative algebra with respect to 

the particular multiplication o given as follows: if r162 fl: B-~B are maps, ~ofl: B ->B is the 

composition B G B  ~B .  

Finally, we remark that  we shall regard modules as zero algebras whenever this is con- 

venient .  

2. Identifies on factor sets and bimodules 

Let S be a subset of a free algebra 2' on a set {x~}. Let  0 -+B-~E 2~ A -~ 0 be an exten- 

sion of an algebra B by an S-algebra A, given by mappings R, L:A-->Map(B, B ) a n d  a 

factor set F:A • A -+B. 

T~EOREM 2.1. I /  E is an S-algebra, then 

r ,  (s) = {0} 
/or every homomorphism r F -+A. 

TI~EOR]~M 2.2. I] B is a zero algebra, then E e  Vs q and only i/: 

(i) <R]L>q~,D(S') = {0}, and 

(ii) Fr (S') = {0}, 

/.or one set S' o/ identities equivalent to S, and every homomorphism r F-+A. 

Part  (ii) of Theorem 2.2 was given essentially by Eilenberg [3] in the case of multi- 

linear identities; part  (i) appeared essentially in [13]. These propositions can be deduced 

from a lemma: 

L E M M A 2.3. Let ~ : F  ---> E and r  --->A be homomorphisms such that ~(x,) = (m,,r I /  

u E F, then: 

(i) r = (X~(u) +r~(u),  Cu), 
where X~(u) is an element o / B  which is zero i/each m, is zero; 

(ii) i/o~:B ~ M  is an operator (algebra) homomorphism o / B  into a bimodule M / o r  A, 

i.e. a homomorphism such that 

o~(em)=ge.o~(m), o~(me)=o~(m).zee [eeE, meB], 
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then ~(X~ (u)) = ~ ((R'IL'}r  :r 
i 

where R',L' :A---> Map (M,M) are the maps defining the bimodule structure o /M.  

In  view of the close analogy with Chapter I, proofs of most propositions in Chapter I I  

will be omitted. For propositions, such as the previous lemma, concerning arbitrary ele- 

ments u of F, it is sufficient, by linearity, to consider monomials u. One can then use an 

inductive method as follows: 

After verifying a statement for the free generators x~, one supposes it true for any 

monomial u = x~,.., xik (bracketed in some order) of degree ]c < n. 

Then one proves the statement for any product w = uv of degree n. 

Let M be a bimodule for an algebra A, and let r  Given a n y m a p h :  

(x~}-~M, a method similar to one of Chapter I shows that the unique derivation d:F ~ M  

(via r extending h is given by 

d(u) = ~ (( R IL}r h(x~). 

If  M is the bimodule G(A) on which A acts by 

a.m=m| m . a = m |  [aEA,mEG(A)], 

we get d(u) = ~ h (x~) |162 
t 

(For m, w E G(A), it is easily shown by induction (considering w) that  ((R ]L)w)m = m| 

Now let Fo be the subset of F consisting of polynomials which, for each x~, are homo- 

geneous of the same degree n~ in x~ in each term. Then any map of (xt} into a bimodule M 

for F can be uniquely extended to a "derivation" Fo~M,  i.e. a mapping d such that 

d(uv) =u.d(v)+d(u).v. If  we consider the "derivation" u-~ (degu)u of Fo into G(F), and 

the derivation of F into G(F) extending the map x~ -~ xi, we obtain "Euler's relation": 

~x~| (ueFo). 
i 

Again, ff D':A -+M is a derivation, we obtain a "chain rule o] di//erentiation": 

D'(r = ~ ( ( RIL)  ~. D~u)D'(r 

When A = F '  is a free algebra on free generators {x~}, and M is G(F'), this gives the "chain 

ru /e~ ' :  

Dxi(r ) = ~ Dx;(r |162 
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Next, if F '  is another free algebra, let SF' denote the ideal of F' generated by U~yJ(S) 

[~p EHom (F,F ' ) ] .  

COROLLARY 2.4.  Suppose EE Vs, and CEHom(F ' ,  A). Then: 

(i) r , ( s F  ') = {0}; 

(ii) i/ B ks a zero algebra, then 

( R ]L~r ') = {0}. 

When S is given, the maps D, provide a mechanical means for computing defining 

conditions for S-bimodules [13], while the inductive specification of the maps Fr of Section 1 

provides a mechanical means for computing defining conditions for "S-2-cocycles" (cf. 

Eilenberg [3]). 

In connection with eohomology, we remark that  an S-algebra A has a universal S- 

envelope or "enveloping algebra" Gs(A), defined to be the quotient of G(A) by the ideal 

generated by the subset U ~ r  D(S) [r E Horn (F, A)], with properties directly analogous to 

those of the funetor Zs( - ) (cf. [13]). As remarked in [13], the enveloping algebras of associa- 

tive and Lie algebras have been used to define homology and cohomology groups for such 

algebras. I t  was suggested by  Jacobson in [12] that  one might do the same for Jordan 

algebras. In general, the eohomology groups H~(Gs(A),M) of the "supplemented" algebra 

Gs(A), in the sense of Cartan-Eilenberg [2], provide an exact connected sequence of eova- 

riant functors of the S-bimodule M for A, which are zero for n/> 1 when M is A-injective. 

Similar remarks apply to the homology groups of Gz(A). However, classically the second 

cohomology group provides a classification of extensions by A realizing a given module 

structure. In general, the second cohomology groups of Gs(A) would not do this. For exam- 

ple, if Vz is the variety of zero algebras, Gs(A)~-K for all A. 

In a similar way one might ask whether there exists a cohomology theory for S-groups, 

which is characteristic of the variety of S-groups. In this case, one type of answer would be 

obtained by considering ordinary cohomology groups of the rings Zz(A). However, again, 

the second cohomology groups would not always provide a classification of S-extensions: 

For example, for the variety of abelian groups, Zs(A)~Z for all A. 

Thus this approach has certain limitations, perhaps. 

However, Gerstenhaber [8] has sketched a eohomology theory for S-algebras which 

does include (not necessarily linearly split) S-extensions of algebras. With regard to both 

approaches, if is of interest to remark that  the classification properties of Gs(A), and 

standard module theory, show that  the category o/ S-bimodules /or A always contains "su//i- 

ciently many" injectives and Tro]ectives. A similar remark applies to categories of S-modules 

/or S-groups. 
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3. General  S - e x t e n s i o ~  

By Section 1, any equivalence class of S-extensions 0-~B--*E--*A ~ 0 determines a 

linear mapping O:A-*M(B)/ff(B). Let 

ext~ (A, B) 

denote the set of equivalence classes of S-extensions of B by A which determine 0. 

Suppose that  0 -~B --*E -~A ~ 0 is an S-extension of B by A determining 0, which is 

given by maps R, L: A -~ Map (B, B) and a factor set F: A • A ~B .  Let /: X --*A be a homo- 

morphism of S-algebras. Consider the maps /*R = R/, /*L = L/:  A-~ Map (B, B) and 

I*F =F( /x  1):A x .,,I -~B. 

PROPOSITION 3.1. The mapping ( R, L, F)--* (/* R,/*L,/*F) induces a mapping 

/* : ext~ (A, B) --* extrs *~ (~, B). 

1 / / i s  an isomorphism, then/* is a 1-1 correspondence. 

Now let (M,R, L) be an S-bimodule for A. The maps R, L :A-+Map (M, M) define 

a linear mapping ~/of A into the module of S-bimultiplications of M. By Theorem 2.2(ii), 

one sees that  the set of equivalence classes of S-extensions of M by A determining ~/forms 

a module 
Ext~ (A, M) {or H~ (A, M}. 

If / :.4 -*A is a homomorphism of S-algebras, then the mapping F ~ / * F  induces a homomor- 

phism 
/* : Ext~ (A, M) -~ Extrs*n (A, M), 

which is an isomorphism if / is one. 

Corresponding to any algebra A, there is a natural bimodule, the regular bimodule A o 

for A, defined to be the module A with the bimodule structure given by the right and left 

multiplication maps R, L:  A ~ Map (A, A). Suppose, for a moment, that  K is a field and that  

the regular bimodule A o for an S-algebra A is always an S-bimodule (e.g. this is always so 

if K is infinite). Then we remark that  Exts (A, Ao) has an interesting alternative interpreta- 

tion as the module of "infinitesimal deformations" of A in Vs, in the sense of Gerstenhaber's 

theory of "de/ormations o/algebras" [7]. We shall not go into this statement further, since, 

for general S, it is at least alluded to in [7], while, for particular choices of S, it is explicitly 

proved by Gerstenhaber. (It can be proved with the aid of Theorem 2.2(ii).) 

Now consider an arbitrary (but fixed) S-extension 0 oB--*E -~A ~ 0 with factor set F. 

Let M be an S-bimodule for A defined by a fixed map ~/as above. Consider the module 
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Ophoms (B, M) 

of operator homomorphisms B-~M, i.e. algebra homomorphisms such that  

a(eb) =zee. :r 

This module has a submodule 

g(be)=~(b).~e [eEE, bEB]. 

Derivs(B,M) 

45 

consisting of all restrictions d IB of derivations d:E ~ M  (via ~). 

T~EOREM 3.2. I /  ~E0phomE (B,M), then the mapping ~-~(~r • induces a 

monomorphism 
Ophom~ (B, M) --> Ext~ (A, M), 

T : Derivs (B, M) 

which is independent o/the ]actor set F chosen/or E. 

I] E is a ]ree S-algebra, then T is an isomorphism. 

(Some months after proving this theorem, I received the manuscript of [8] by M. 

Gerstenhaber, which includes an isomorphism of essentially these groups, for not neces- 

sarily linearly split extensions. He sketches an approach different from that  considered 

here.) 

If A acts on M by zero homomorphisms, then M will lie in the bicentre of any extension 

of M by A. Conversely, if M lies in the bicentre of an extension of M by A, then a.m =m.a = 

0 for aEA, mEM. 

Hence there is a fixed module 
Ext~ (A,M) 

of bicentral S-extensions of M by A, i.e. S-extensions whose bicentres contain M. In this 

case, an operator homomorphism B -~M sends E B  U BE to zero, while a derivation E -+M 

sends all products to zero. Hence, in this case, there is a monomorphism 

Horn (B, EB U BE---> M, O) 
-> Ext~ (A, M), 

Hom (E, M) IB 

which is an isomorphism if E is a free S-algebra. 

Theorem 3.2 can be deduced from some further propositions: 

Suppose that  A also acts on an algebra N (not necessarily a zero algebra) by means 

of a fixed linear map v:A -+M(N) arising from some S-extension of N by A. 

Define an extended operator homomorphism B ~ N  to be a linear mapping ~ : E - + N  

such that  
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:r = co(b) :r + ~r ~(eb) = :r a(b) +~e. ~(b) [e E E, b E B]. 

Let Ophom~ (B,N) denote the set of extended operator homomorphisms B-->N. Also, let 

Deriv* (E,N) be the subset of Ophom~ (B, N) consisting of extended derivations E ~ N ,  

defined to be linear mappings d : E - ~ N  such that  

d(uv) = d(u) d(v) + =u. d(v) + d(u) "."rv; 

the set of restrictions to B of extended derivations will be denoted by Deriv* (B, N). (If N 

is a zero algebra, an extended derivation is just a derivation.) 

Now let O:A~M(N)/Ia(N) be the linear mapping induced by r : A ~ M ( N ) .  If  ~E 

Ophom~ (B,N),  let N~=Im otl B. 

THEOREM 3.3. (i) I /  ~EOphom~ (B,N), then :r •  ~ N  defines an element o/ 

exts a (A, N~). 

1 / E  is a/ree S-algebra, then every element o/extOs (A, N) can be defined by a/actor set o/ 

the/orm ~F as above. 

(ii) I] d E Deriv* (E,N), then dF : A • A ~ N  defines the split extension cla~s in ext~ 

Conversely, i / ~  E Ophom$ (B, N) is such that :oF defines the split extension class in extes (A, N~), 

then :r I B e Deriv* (B, N). 

In  each case, the class defined by ccF is independent o/the/actor set F chosen/or E. 

(If the factor set F corresponds to a linear cross section $ :A --->E, and cr Ophom~ (B, N), 

one considers the extension of N~ by A defined by aF and v~ :A -~ M {N~), where v~(a) is the 

bimultiplication/~(r~) + ~(a) I N~ (a E A).) 

I t  can be deduced from Theorem 3.2 that  Ext~ (A,M) is a covariant functor of the 

S-bimodule (M, R, L). Also, the monomorphism T of that  theorem is a natural transforma- 

tion of functors. 

4. Reduct ion to  zero algebra kernels  

Let O:A-->M('B)/I,(B ) be a linear map arising from some S-extension 

O -+ B -+ G 2~ A -+ O. 

Given such an arbitrary (but fixed) extension, consider any S-extension 

O ~ K B -> E -+ A -+0 

of the bicentre Ks of B by A determining the linear map 0 :A -+M(Ks) induced by 0. 
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Let  G | E denote the subalgebra of all pairs (g, e) 6 G • E such that  ag =ge,  and l e t  zV 

be the ideal of all pairs (/c,-It), k6KB. I f  

one obtains an S-extension 
G~ = G | E/N,  

O~B->GE~A---~O, 

in which B maps into GE by b-+ (b ,0 )+N and GE maps onto A by  the common projection. 

T ~  E 0 RE M 4.1. Assuming that there exists an S-extension 0 ~B---> G -~A ~ 0 determining 

the linear map O:A--->M(B)/#(B), the mapping E ~GE induces a 1-1 correspondence: 

ExtOz (A, K~) ~ ext~ (A, B). 

(References to previously known cases of this theorem appear after the proof below.) 

Proo]. The argument  below is analogous to one of Eflenberg and MacLane [5]: Let  

? : A ~ G  and ~o:A-+E be linear cross sections defining factor sets F:A •  and f2: 

A • A--> K~ respectively. Then ~):a-+ (?a,0~a)+ ~V is a linear cross section of GE, with cor- 

responding factor set 

F: (a,b) ~ (I~a.b,~a.b) + N=(Fa.b +~2a.b,O) + N. 

Further,  if b 6 B, then 

~[(b,O)+N]=(?~b,O)+N, [(b,O)+N]2~=(b?~,O)-t-N, 

and so the action of A on B in this extension gives rise to the map 0. 

Next  we show that  every S-extension 0 of B by  A determining 0 is equivalent to one 

of the form GE: Since 0 determines 0 there exists a linear cross section ~ : A --> ~ inducing the 

same mappings A -> Map (B, B) as ? : A -~ G. I f  F: A • A -~B is the factor set of ~, it follows 

from the definition of factor sets tha t  Fa. b and I~a. b (a,b CA) define the same right and left 

multiplication maps of B; hence they differ by  an element of the bicentre of B. Thus there 

exists a bilinear mapping ~ : A • A ~ KB such tha t  

Fa. ~ =Fa. b +f2a, b (a, b6A).  

I f  ~ 6 Horn (F,A), a simple inductive proof shows tha t  then 

F~--F~ + ~ :  F -~B. 

Therefore ~r = [ I~-Fr  = {0}, 
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by Theorem 2.1, and so, by Theorem 2.2, ~ is the factor set of an S-extension of Ks  byA.  

Further  the equation F = F  + ~  now shows that  E ~ G~ induces a surjective mapping 

Extas (A, Ks) ~ extes (A, B). 

Lastly it must be shown that  the mapping is injective: Let  E and E be two S-extensions 

of Ks  by A determining 0 such that  Gs and G~ define equivalent extensions under an equiv- 

alence isomorphism v:Gs ~ GZ. Suppose that  ~', ~:A ~ GE, GZ are linear cross sections of 

GE and G~ respectively, such that  $ and ~ induce the same mappings A -+ Map (B, B). Then 

(for aEA) T~ and Sa lie in the same coset of B, so that  

�9 $a=$~+ ~o (~oeB), 

and also they induce the same linear maps B-~B. Hence the rule a-~yJa defines a linear 

mapping y3: A -~ K B. 

Let  ~ and ~ be factor sets of E and E respectively, corresponding to linear cross sec- 

tions co and H, and suppose that  

$a=(~'a,W,~)+N, Sa=(y~,H,)+N (aEA). 

Then CaSh =[(ro.b +~o,b, O) +-,v] + Sob, 

and, by applying T, one finds that  ~ = ~  +&p. Thus E and ~' are equivalent extensions. 

This completes the proof. 

Theorem 4.1 was proved by Hochschild [9] and [10] for associative and Lie algebras, 

by considering factor sets alone. For associative rings, such a result has also been established 

by MacLane [16], without requiring that  the extensions be linearly split. MacLane's 

approach can be used to immediately provide a similar result in the case of any subvariety 

of the variety of associative algebras, without requiring that  extensions be linearly split. 

His method can also be used to obtain an analogous reduction in the case of any subvariety 

of the variety of Lie algebras, without requiring extensions to be linearly split: 

Suppose that  S defines a subvariety of the variety of Lie algebras. If B is an S-algebra, 

then M(B) ~ Deriv (B, B), which is a Lie algebra under the bracket operation on derivations 

and has /x(B) as an ideal. In this case an S-extension O~B-+G-~-A-~O determines an 

algebra homomorphism 
0 :A ~Der iv  (B, B)/Ia(B ), 

and here S-extensions will not be required to be linearly split. Define the graph 0 of 0 to 

be the subalgebra of all pairs (x, ~} EA • Deriv (B, B} for which ~r E O(x). Then the mapping 
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g -~ (ag,/zgJ B) defines an epimorphism ~v: G-~ @ with kernel KB. One can now proceed af- 

ter the manner of MacLane [16] (cf. Chapter I ,  w 6). 

As in the case considered by  MacLane, one can observe tha t  the mapping (x, ~) -+ x 

defines an epimorphism ~ : 0 - + A ,  whose kernel is isomorphic to #(B) (given a homomor- 

phism 0 :A ~Der iv (B ,  B)/#(B)) .  I f  KB = (0}, B is isomorphic to ju(B) and one obtains a Lie 

algebra extension 
O ~ B - ~ O  q_> A-->O 

determining 0. By the above discussion, any Lie extensions of B by  A determining 0 will 

then be equivalent to | (By [5], analogous remarks apply to S-groups.) 

In  general, Theorem 4.1 has the corollary: 

COROLLARY 4.2. I 1 K s =  (0}, and there exists an S.extension determining the linear 

map O:A-+M(B) /#(B) ,  then all such extensions o] B by A are equivalent. 

5. Splitting algebras 

Define a splitting extension of an extension 0 -~B-->E ~ A  -~ 0 with given linear cross 

section $ :A-~E  to be a split extension 

such tha t  B and E are snbalgebras o f /~  and E respectively and such that  ~ : A - + E ~  E is 

a linear cross section of E->A.  

THEOREM 5.1. Every extension 0 -+ B -~ E ~ A ~ 0 has a splitting extension 0 -+ B -~ E 

A ---> 0 in which B = Ao 0 B, where A o is a zero algebra isomorphic to the underlying module o / A .  

I /  B is a zero algebra, E is associative and A - B = { 0 }  or B . A = { 0 } ,  then E has an 

associative splitting extension o I this kind. 

Proof. The argument is analogous to Artin's proof of the existence of splitting groups 

for group extensions [18]: 

Let B = A o |  where Ao is the underlying module of A and is regarded as a zero 

algebra, and 0 ->B~E-->A-~  0 is some extension with linear cross section ~, :A-+E and 

corresponding factor set F:A • A -~B. 

Let  A act linearly on B by  using the action defined by  7 on B, and by  letting 

a .b=ab-Fa .~ ,  b .a=O (aEA,bEAo) .  

These operations and the mapping in :A • A ~ B  - B define an extension 0 ~ B  ~ E  -+A ~ 0, 

4 -  652944 Acta mathematica. 115. I m p r i m ~  la j a n v i e r  1966 
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such t h a t  E conta ins  E monomorph ica l ly  as  a suba lgebra  and  such t h a t  ~, :A -~E is a l inear  

cross sect ion of E - + A  under  this  inclusion. Fu r the rmore ,  this  extens ion splits,  since 

I ~ = -5~ ,  where ~:Ao-+B is the  inclusion ma pp ing  of A 0. 

I f  B is a zero algebra,  E is associat ive  and  B . A  = {0}, the  fact  t h a t  F is an  associat ive  

2-cocycle impl ies  t h a t  E is associat ive.  (If A . B =  {0}, an  associat ive  sp l i t t ing  extens ion 

is ob ta ined  b y  le t t ing  a.b=O, b .a=ba-Fo.a(a  6 A, b 6 Ao).) 
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