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Introduction

In 1973, X. Fernique showed that Dudley’s ‘‘metric entropy’’ sufficient condition for
the-a.s. continuity of sample paths of Gaussian processes, is also necessary when the
processes are stationary ([6], [7], [10]). In this paper we extend the Dudley—Fernique
theorem to strongly stationary p-stable processes, 1<p<2.

Let G be a locally compact Abelian group with dual group I'. We say that a real
(resp. complex) random process (X(9)),c is a strongly stationary p-stable process,
O<p=2, if there exists a finite positive Radon measure m on I' such that for all
t,...,t,€G and real (resp. complex) numbers ay, ..., a, we have

i @y (1)

=1

n p
EexpiRe 2 de(tj) = exp—f dm(y).
r

Jj=1

We associate with (X(#)),ec a pseudo-metric dy on G defined by

"
dy(s, t)= (f |y(s)—y(t)|"m(dy)> P, Vs, t€EG. 0.1)
r

Let K be a fixed compact neighborhood of the unit element of G. Let N(K, dx;¢)
denote the smallest number of open balls of radius ¢, in the pseudo-metric dy, which
cover K. We will always assume that K is metrizable. We can now state our main
result.
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THEOREM A. Let 1<p<2 and q be the conjugate of p, i.e. 1/p+1/g=1. Let
(X(1):e be a strongly stationary p-stable process. Then (X(1)),ex has a version with
a.s. continuous sample paths if and only if

J(d)= f (log N(K, dy; €))"1de < oo, 0.2)
0

Moreover, there exist constants a,(K)>0 and B,(K) depending only on p and K such
that

1p
a,(K) {J (d)+m(T)"P} < {igg P {?é‘,? X1>c }} ©.3)

< B(K) {J (dy)+m(D)"?}.
When p=1

Jm(dx)=f log* log N(K, dy;€)de < 0.4)
0

is a necessary condition for (X(t)),ex to have a version with continuous sample paths
and a lower bound of the form (0.3), with J (dx) replaced by J.(dx) can be obtained.

We have not been able to determine if (0.4) is also a sufficient condition for
(X());e x to have a version with continuous sample paths when p=1. The case p<1 is
trivial since in this case the mere fact that m is a finite measure insures that the process
(X(1).ec has a.s. continuous paths.

In the particular case that m is a discrete measure, it is easy to see that the process
must be of the form

Xt0)=Y a,6,70), tEG 0.5)

yeTr

where {a,},er are complex numbers satisfying L, er|a,/’<» and where {6,} are
i.i.d. complex valued p-stable random variables, i.e. 9, satisfies

EexpiRez0,=exp—|zf, VzEC.
Thus (X(¢; w)),e  is a random Fourier series. In this case the pseudo-metric dy(s, f) is

l/p
dx(s,t)=<2 layl”ly(s)—y(t)l”> , Vs, tEG. (0.6)

ye€T
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Note that 6,=Re 8, is the ordinary canonical real valued p-stable random variable, i.e.
Eexpitd=exp—|tf’, VtER and the above results apply also to the random Fourier
series L,era, 0,y(1), tEG.

We are interested in the general question of the almost sure continuity or, equiv-
alently, of the uniform convergence a.s. of random Fourier series with independent
coefficients. That is, let {§,},er be independent symmetric, real or complex valued
random variables defined on a probability space (Q, &, P), w € Q. When does

Y(0)= D, a,E (@), tEK, ©.7)

yeET

have a.s. continuous sample paths? In [21], under the conditions
SupE|E|’<o and inf E£|>0
ve€T yET

we showed that (Y(¢; w)),e x is a.s. continuous if and only if

Jy(d) = f (log N(K, d; £))*de < »
0
where

12
d(s,t)=<z|ayfz|y(s)—-y(t)|2> , Vs, t€G .

yeT

Theorem A enables us to extend this result to random variables {£,},er which do not
have finite second moments.

THEOREM B. Consider (Y(1)),ex as given in (0.7).
(i) Assume that for 1<p<?2
P{lE|>c}<c™P, Vy€T, Vc>0.

Then J (dy)< is sufficient for the a.s. continuity of (Y(1)),ex, where J, is defined in
0.2) and

lp
d,,(s,t)=<zIay|”|y(s)—y(t)|”> , Vs, t€G.

y€T

Moreover, we can find a constant A,(K) depending only on p and K, such that
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1 1p
{sup P { sup |Y()—¥(s)|>c }} YN {Jq(d,)+ (2 |ay|P> } (0.8)
>0 5, tEK

vyeT
(ii) Assume that there exists a c;>0 and 6>0 such that
P{lg|>c}=0dc? Vy€ET, Yc=cy.

Then for 1<p=<2, J (dy)< is necessary for the a.s. continuity of (Y()),ex and when
p=1, Jo(dy)<= is necessary for the a.s. continuity of (Y()),cx, where I is defined
in (0.4).

When G is a compact group we can replace a, and 8, in (0.3) by absolute
constants independent of G.

THEOREM C. Let G be a compact Abelian group. Consider (X(t)),c ¢ as defined
in (0.5). Let ||X||=sup,e|Z,era, 0, y(1)|. Then for 1<p<2 and dyx as in (0.6),

1

5 E|x|| = f (log N(G, dy; £))"“de+|a,| < B, E|\X||, 0.9)
4 [

where ay is the coefficient. of the character y(t)=1, VtEG, and B, is a constant
depending only on p and independent of the group G. (Inequalities (0.9) are also valid
with Re 8, replacing 6,,.)

It follows from (0.3) that if X, and X, are two strongly stationary p-stable
processes such that

dX](s, t)SdXZ(s, t), Vs, t€K,

then the a.s. continuity of (X5(f)),ex implies that of (X;(1));ck. (This result is made
even more evident when G is compact and K=G by considering (0.9).) This is a rather
surprising result since examples (cf. [8]) have shown that in general such variations of
Slepian’s lemma can not be extended from Gaussian to p-stable processes.

In [21] we expressed the results referred to prior to Theorem B in terms of the non-
decreasing rearrangement of the metric d. Theorems A, B and C can be stated in an
analogous fashion. Note that dx(s, #) given in (0.1) satisfies dx(s, 1)=dx(0,—s). Let
0x(t—$5)=dx(0,1—5) and consider ox(u), u€ K+K, where K+K={s+t:s€K,t€K).
Let u denote Haar measure on G, normalized so that u(K+K)=1. For £>0 let

#o (&) = u({x € K+K : 0,(x) < }) 0.10)



p-STABLE RANDOM FOURIER SERIES 249

and

ox(u) =sup {e>0:u, () <u }. 0.11)

The function o,(u) is non-decreasing on [0, 1] and is called the non-decreasing rear-

rangement of ox(1). By (3.38) there exist constants b(p) depending only on p and D,(K)
depending only on p and K such that for 1<p=<2

D,(K)"'[m(D)"?+] (dy)] < m()"?+1 (oy)

0.12)
<D,(K) [m(I')""+J (dy)]
where we define
! o, (1)
I(c )=J —————du, 0.13)
F AN, € . u<log£@)l/p
U

and set J (dx)=J.(dx) when p=1. Furthermore, when G is compact and G=K then
D,(G) can be taken independent of G and when (X(#)),e is a random Fourier series,
m([)=X,erla,|’. Therefore, (0.3), (0.8) and (0.9) can be written with I,(ox) replacing
J dx).

In Section 1 we clarify what we mean by strongly stationary p-stable random
processes and give a very useful representation for p-stable processes which was first
shown to us by the authors of [17]. Section 2 is devoted to necessary conditons for
continuity. Lemma 2.1 enables us to take all known necessary conditions for the a.s.
continuity of Gaussian processes and obtain related necessary conditions for the a.s.
continuity of p-stable processes. Not only do we extend Fernique’s result, as we have
mentioned in Theorems A, B and C, but we can also extend Sudakov’s result which
applies to non-stationary processes. As an application of the methods developed in
Section 2 we show, in Theorem 2.12, that a contraction from a finite subset of L? into a
Hilbert space has an extension with a relatively small norm to a mapping from L? to H.

In Section 3 we consider sufficient conditions for a.s. continuity. Theorem 3.3 is a
rather surprising result about the weak ” norm of sequences of independent random
variables that seems to be of independent interest. It is used in Corollary 3.5 to obtain a
generalization of Daniels’ theorem on the empirical distribution function to the case
when the random variables are not identically distributed, (see also Remark 3.6). In
Section 4 we indicate how the results mentioned in this introduction can be obtained
from the results of Sections 1, 2 and 3. Finally, in Section S we apply these results to
harmonic analysis following [25], [26] and Chapter 6 of [21].
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1. Representations of stable processes

A real valued random variable @ will be called p-stable of parameter o if V/ER
Eexpift =exp—o°|t)’ (1.1

and a complex valued random variable § will be called p-stable of parameter o if for all
z€C

EexpiRe(z0) = Eexpi(RezU+ImzV) (1.2)
=exp—d’|zf .
where we write §=U+iV, U, V real. By definition these variables are symmetric and in
what follows we will only consider symmetric p-stable random variables and refer to
them simply as p-stable. (In general stable random variables need not be symmetric cf.
[9], Chapter XVII, § 4.)

It is well known that a real valued p-stable random variable can be written as a
product of two independent random variables one of which is Gaussian cf, {9], Chapter
VI, § 2h. This observation plays an important role in our work and also clarifies the
relationship between real and complex valued p-stable random variables.

LEMMA 1.1. Let 6(6) be a real (resp. complex) valued p-stable random variable of
parameter o and let g, g’ be independent normal random variables with mean zero and
variance 0. There exists a positive random variable n(p) independent of g and g’ such
that

0=1(p) g (1.3)

- 9

6 =n(p)(g+ig’) (1.4)

@ s e
where =" denotes ‘‘equal in distribution’’.

Proof. As is well known for each 0<p<1 the function A—e™ is completely
monotone on R*. Therefore there exists a random variable which we will denote by
v(p) such that

Eexp—Av(p) =exp—A4”, Vi=0. (1.5)

For 0<p=<2 we take 7(p)=(2v(p/2))'"2. 1t is easy to check, by taking Fourier trans-
forms, that (1.3) and (1.4) hold.
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Note that 7(2)=V 2 so in the case p=2 we get the standard definition of a real and
complex valued normal random variable. However, only for p=2, are the real and
imaginary parts of 4 independent.

We recall that for 0<p<2 a real valued p-stable random variable of parameter o
satisfies

—1/p

lim A?P{|0|>A} = (c(p)ay where c(p)™'= [f —S—%l;dv] . (1.6)
Ao 0

(This result is contained in [9], Chapter XVII, § 4, however in this special case one can
show directly that

of = limtP(1—g() = lim—2¢7? f (1-cos ) d(1—-F(1))
t—0 1—0 0

=lim2f sinv[tP(1-F(v/)] dv = (C(P)a)”f Si—l:lpvdv
0 0

t—0

where g is the characteristic function and F the distribution function of 6.)
It also follows that for § a complex valued p-stable random variable of parameter o

}im APP(0|> 1) = (c(p) r(p) o) (1.7

where r(p)=(E|g*+g'*P*/E|gl’)'? and g, g’ are i.i.d. real valued mean zero normal
random variables.

It follows from (1.1) and (1.2) that if 6,,...,0, are i.i.d. p-stable real (resp.
complex) valued random variables, and if 4,,...,4,, are real (resp. complex) coeffi-
cients, then

n n Ip
> 6,429, (2 |/1,.|P) : (1.8)
i=1 i=1
Since by (1.6) and (1.7) we know that E|6,|"< for each r<p we have

n r n rip
> 0k = (E6 (2 w") (1.9)
i=1

i=1

E

and

sup A’P {

A>0

i 04,
i=1

>2 } = D 13F supaP{lo,> ). (1.10)
i=1
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Moreover, if 8 is a real (resp. complex) valued p-stable random variable of parameter o,
then

(EION"" = 0d(r,p) (=0d'(r,p)) (1.11)

where d(r, p), (0'(r, p)) depends only on r and p.

Let T be a set. We will denote by R‘” (resp. C”) the space of all finitely
supported families (a(!)),e 7 of real (resp. complex) numbers. Let 0<p=<2, we will say
that a real (resp. complex) stochastic process is p-stable if there exists a positive
measure m on RT (resp. CT) equipped with the cylindrical o-algebra such that
Va ERD

p
D a@p®)| dm@), (1.12)

tET

E expiE a(®X() = CXP—[

t€T

(resp. Ya €CD)

EexpiRe [2 WX(t)] =exp-J

te€T

p
> a0 )| dm(@). (1.13)

t€ET

Any measure m as above will be called a spectral measure of the process (X(#));er
Clearly if (X(9),er is a p-stable process, as defined above, then Va ER® (resp. CP)
Srera®X(t) is a real (resp. complex) valued p-stable random variable. This is,
perhaps, the more usual definition of p-stable processes.

Now let T be a locally compact Abelian group G with dual group I'. I is called the
character group of G, i.e. y€T is a continuous complex valued function such that Vs,
tEG, y(n|=1 and y(s)y(H)=y(s+1). A real (resp. complex) valued p-stable process
X(D)iec will be called strongly statvionary if it admits a representation as in (1.12)
(resp. (1.13)) where the spectral measure m is a finite positive Radon measure support-
edonT.

A strongly stationary process is stationary, since for (X(f),er real and
ty,.., t,€T and ty+s, ..., 1,+S€T, EexpiLl a;X(t+s)=EexpiLl.a;X(t). This fol-
fows from (1.12). In the complex case we say that (X(#)),er is stationary if for every
ti,....t,€T the 2n dimensional real sequence (ReX(f;), ImX(z)),...,ReX(t,),
Im X(z,)) is stationary. By (1.13) we see that in the complex case also a strongly
stationary p-stable process is stationary. Conversely a stationary Gaussian process is
strongly stationary but we will show later in this section that there are stationary p-
stable processes which are not strongly stationary.
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Let (X(2)),er be a real (resp. complex) valued p-stable process. It follows from
(1.12) (resp. (1.13)) that

1/
X(s)—X(@) = <f|/3(s)—ﬁ(t)|”dm(ﬂ)) p9 (1.14)

(resp. (1.14) with @ replacing 6) where 0 is a real (resp. § is a complex) valued p-stable
random variable of parameter 1. We define a pseudo-metric for these processes by

v
dyls, t)= <f |/3(s)—ﬂ(t)|"dm(ﬂ)> p, Vs, t€T. (1.15)

Clearly, dx(s, t) is a pseudo-metric and by (1.14) and (1.11)
(EIX()—X(O|DVr = 8(r, p)dx(s, t) (resp. 8'(r, p) dx(s, 1)) (1.15")

for 0<r<p. Note that in both the real and complex case dy(s, #) is the parameter of
X(s)—X().

We shall now give some examples of strongly stationary processes. Let (67,,),,51-
be an i.i.d. collection of complex valued p-stable random variables with parameter
equal to 1. Let (a,),er be a family of real or complex coefficients satistying
Y er|a,fP<w. The process

X®= a0y, 1€G (1.16)

yeT

is a strongly stationary, complex valued, p-stable random process on G with spectral
measure

m= > l|alo, (1.17)

y€ET

where 0, is the unit point mass at y €I". For this process we have

\ip
dyls, 1) = (2 la,l |y(t—s)—1|”> : (1.18)

y€T

The process Re X(¢) is a strongly stationary real valued p-stable process. One can also
use (1.12) directly to see that for (a,),er real

Y()= D, a,n(g,Rey+g,Imy) (1.19)
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where {7,} are i.i.d. copies of # given in Lemma 1.1 and {g,}, {g,} are i.i.d. (and
independent of each other) normal random variables with mean zero and variance 1. In
this case the spectral measure m and pseudo-metric dx(s, t) are the same as in (1.17)
and (1.18). For p=2, X(¢) and Y(f) agree with the definitions of complex and real valued
Gaussian random Fourier series (except for a constant multiple) considered in [21].
Also, as in the Gaussian case, one can obtain strongly stationary p-stable random
processes with continuous spectral measure m by the usual procedure of approximating
by integrals with respect to step functions and passing to the limit. In the complex case
such processes are of the form

z= J yM(dy) (1.20)
r

where M is an independently scattered complex valued random p-stable measure. As in
the discrete case the real and imaginary parts of M are not independent. Indeed, for
AET,

M(A) = n(p) (G(A)+iG'(A))

where G(A) and G'(A) are independent Gaussian random variables with mean zero and
variance m(A)*?. For such processes

1/p
dfs, )= < f IV(S)—V(I)I"m(dV)> . (1.21)

In the real case a process similar to (1.20) can be obtained as an extension of (1.19).

Lemma 1.1 can be extended to processes. To do this we need to introduce some
facts on sums of i.i.d. exponentially distributed random variables. Let X be a positive
real valued random variable satisfying P(X>A)=e~*. Let {X,} be i.i.d. copies of X and
define

[=X,+X,+...+ X, (1.22)
By [9], p. 10
A
P[Fj</l]= fo (j—l)!e *dx (1.23)
and for r<pj
E[T)~"] = L(j=rlp) ~jr, (1.24)

()
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The next lemma will be used frequently in what follows.

LLEMMA 1.2. Let p>1, then

Cl < j I'p CZ
Tl\asz sup { = < (1.25)

where c| and ¢, are constants independent of p.

Proof. Let v=2. Then by (1.23) and the fact that #/e/j!<1 we have

. jlevP xj_l ‘
P [Fj< —J—] < j L dx< v
ev’ o U—D!

Thus
*® [+ . /
Esup<—f-) <2e””+2f P (L)"’>A di
j=1 r 2¢lp r
_el/p [2_{'2-[ —d ] 1/p zp

where we substitute A=¢ "y in the integral in (1.26). To obtain the lower bound we use

Joi=1-1p I -
ET)™" = f > —edx = e J' X ——dx
o U-D! o G—D!

As an alternate proof of the right side of (1.25) one can show by martingale
arguments that P(sup; (/T )>c)<l/c.

The next lemma relates the I, to the order statistics of the uniform distribution.
For a proof see [4], Proposition 13.15.

(1.26)

LEMMA 1.3. Let {U},., , be iid. copies of a random variable uniformly
distributed on [0,1]. Let {U*},., ,
« Then for I'; defined in (1.22) we have

T, } @

J
e ={U’~"}~= Cae
{Fn+l j=lyen 7

Our object is to show that p-stable processes can be represented as mixtures of
Gaussian processes. To do this we use a representation of p-stable processes which
was pointed out to us by the authors of [17]. The next lemma is implied in [17] and is

denote the non-decreasing rearrangement of

.....

17848289 Acta Mathematica 152. Imprimé le 29 mai 1984
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included in [18], in which there are additional references and a discussion of the history
of this result. The simple proof that we give was shown to us by J. Zinn.

LEMMA 1.4. Let v be a symmetric real valued random variable with E|v|°<> and
let {v;} be i.i.d. copies of v. Then for 0<p<2

X= @) "y, (1.27)
j=1

is a symmetric p-stable random variable and
lim A?P(|X]| > 1) = EjvP. (1.28)
A—x

If 0<p<1 and v=0 then the expression in (1.27) is a positive p-stable random
variable and (1.28) remains valid.

Proof. We first consider the case when v is symmetric, 0<p<2. Let £>0 be a
random variable satisfying

G)=PE>n=1t7? =1 (1.29)

Let {§} be i.i.d. copies of & such that {£;} and {v;} are independent of each other.
Consider

> gu= > GGEYE Y G W)y, (1.30)
j=1 j=1

Jj=1

where {U}},_, , are as given in Lemma 1.3. It is well known and easy to check that

because {U;} and {v;} are independent and {v;} is i.i.d.,
2 Gy = Uy,
j=1 Jj=1
where {Uf}j=1,...,n is defined in Lemma 1.3. Using Lemma 1.3, (1.29) and (1.30) we get

w32 (52) S0 (130
7 J J
j=1 Ji=1

n

We also have by (1.29) that

lim #P(|&v| >t ) = EJvf’;

t—®©
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therefore it follows from [9], Chapter XVII, § 5 that &v is in the domain of attraction of
a p-stable random variable @ (using the norming constants n'’?). Furthermore by the
argument used to obtain c(p) following (1.6) we see that 6 has parameter
B@)=(EwPlc@)"?. Since lim, .(,./n)'?=1 a.s. by the strong law of large
numbers, we get from (1.31) that (1.27) is also equal to 6 in distribution. Actually (1.27)
converges a.s. To see this fix each realization of {I';} and use the Three Series Theorem
on the resulting sum of independent random variables.

The same proof works when v=0 since, for 0<p<1, (1.31) remains valid.

We proceed to develop the representation of p-stable processes. Let (X(#)),er be
a real (resp. complex) valued p-stable stochastic process admitting (see (1.12) and
(1.13)) a finite spectral measure m. Let MP be the total mass of m (i.e. M=m(R")'”
(resp. M=m(C")'”?) and let v be a renormalization of m so that v is a probability
measure, i.e. v=MPm. Let {Y;} be a sequence of i.i.d. R” (resp. C”) valued random
variables with probability distribution v. Let {I’;} be as defined in (1.22). Let {¢;} be a
Rademacher sequence (i.e. an i.i.d. sequence of symmetric random variables each one
taking on the values *1); let {g;} be an i.i.d. sequence of mean zero Gaussian real
(resp. complex) valued random variables normalized so that

Elg# =1, [resp. ERegf =1], (1.32)

and let {w;} be equal to {a ¢’} where {w;} are i.i.d. random variables each one
uniformly distributed on [0, 277] and a=((27)~' [¥*|cosul’ du)~'?, i.e. {w;} is a normal-
ized Steinhaus sequence. We assume that all the sequences {Y;}, {I;}, {¢}, {gj}, and
{w;} are independent of the others.

PROPOSITION 1.5. Let (X(1);c 1 be a real (resp. complex) valued p-stable process
as defined above. Then for 0<p<2

V() =cp) M 2 T)"rg; Y1), (1.33)
<

where {g;} is real (resp. complex), is equal in distribution to (X(t))ier. If X(O)er is
complex then for 0<p<2

W) = c(p)M D, (T)™Pw, Y(1), tET, (1.34)

Jj=1

is equal in distribution to (X(t));e1- If (X(D),e1 is real then for 0<p<2



258 M. B. MARCUS AND G. PISIER

Z()=cp)M >, (L) e, Y(1), 1€T, (1.34)

j=1
is equal in distribution to (X(t));er.

Proof. The proof follows immediately from Lemma 1.4. Let (X(2)),er be real.
Consider (1.33) with {g;} real. By hypothesis, for ¢,,...,1,€7, and ay, ..., a, real

> ab)

j=1

n p
Eexpi Z aX()= exp—f dm(B).

J=1

By the proof of Lemma 1.4 we have that 7, a, V(t) is a real valued p-stable random
variable with parameter [MPE|L)., Y(tj)l"]”" . Therefore we have by (1.1)

J=17
Z o Y ()

j=1

p

Eexpi E a; V(1) = exp—M°E

J=1
= exp—j

Therefore the finite joint distributions of (X(#)),er and (V();¢r agree and this is what
is meant by saying that the two processes agree in distribution. The proof for (W(f));cr
and for (V(1)),er in the complex case is entirely similar since E|Re w,[P=EReg,f=1
for g, complex.

7

2 o, Y(1)

i=1

14
dm(Y).

We use Proposition 1.5 to justify the following lemma which has probably been
observed elsewhere.

LEMMA 1.6. (a) Let T be an index set. Let (X(t)),etr be a p-stable real (resp.
complex) valued random process, 0<p<2, admitting a finite spectral measure m. Then
we can find probability spaces (Q, 4, P) and (Q', s, P’) and a real (resp. complex)
valued stochastic process (Z)),er defined on (Q, A, PYX(Q', s{’, P’) such that:

(i) The processes (H)).er and (X(1));e 7 have the same distribution.
(ii) For each fixed w€Q, the random process (Z(t;,w, *));e1 is a real (resp.
complex) valued Gaussian process.

(b) Moreover, if T is a locally compact Abelian group G and if (X{(t)),er is
strongly stationary, then we can find (H)er as above verifying the additional
condition: For each fixed @ €Q, the process (#t,w, )er is a stationary real (resp.
complex) valued Gaussian process.
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In other words any p-stable process (resp. any strongly stationary p-stable pro-
cess) with a finite spectral measure has a version which is a “‘mixture’’ of Gaussian
(resp. stationary Gaussian) processes.

Proof. This all follows immediately from Proposition 1.5. Let {I;}, {¥;} and {g;}
be as in Proposition 1.5. We can assume that {¥;} and {I';} are defined on a probability
space (R, o, P) and that {g;} is defined on a probability space (Q', &', P’). By Proposi-
tion 1.5 the process

At 0,0) = c(P)M Y, [{0) P Y1, 0) gl (1.35)
j=1

satisfies (a) parts (i) and (ii). Furthermore, if (X(¢));er is strongly stationary then
v=M"Pm (see remarks preceding Proposition 1.5) is concentrated on the characters of
G. Therefore, for w fixed, {Y{t,w)} is a sequence of characters on G so that
(Zt; w, )),eris stationary for each fixed w. (Actually, 2(t; w, -) is a Gaussian random
Fourier series of the form (1.16) with p=2.) This settles both the real and complex case.
Note however that in (b) if (X(9),er is a real valued strongly stationary p-stable
process we still use complex valued normal variables {g;} and replace (1.35) by

Ht;0,0' )= c(p)M Y, (T(@) 7 Re Y1, 0) g (1.36)

j=t

With this definition it is clear that, for w fixed, (¥(t;w, -)),er is a stationary Gaussian
process of the form (1.9) with p=2.

Remark 1.7. We will show that J (dy)< is not a sufficient condition for continu-
ity of stationary p-stable processes. In the process of doing this we will exhibit
stationary p-stable processes which are not strongly stationary. For simplicity we will
consider the real case. The complex case is entirely similar. It is clear from (1.12) that a
real valued p-stable process (X(f)),er is stationary iff the measure m is stationary in
LP,i.e.iff [|Z,c; olf) B(t+7)P dm(B) does not depend on 7. (Incidentally, by (1.15) and
(1.15") applied to X,era(t) X(¢+7) instead of X(r)—X(s) we see that for 0<p<2, a p-
stable process (X(#)),er is stationary iff it is stationary in L? for some (equivalently all)
g<p. Compare this to the fact that a Gaussian process is stationary iff it is stationary in
L%)

We shall consider the following example. Let G be a compact group and let
(Y()),er be a stationary, mean zero, Gaussian process on G. Let (Y{();er be i.i.d.
copies of Y and consider, for 1<p<2,
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X0 =c) D, T) "y, tEG. (1.37)
j=t
Thus X(¢) is a p-stable process (it is precisely of the form (1.34')) and it is stationary
since the expression [ L7, a;8(1;+7)F dm(p), in this case, is exactly E|L]_ o, Y(,+1)f.
Let || ||l denote the sup-norm on G. It follows from Lemma 1.2 and (1.24) that

¢p E|| V)| < E[|X || < c,, E[| Y]], (1.38)
for constants ¢, and ¢,>0. By (1.15)

dx(s, £) = (E|Y(s)— Y(O)P)'P = 0 (E| Y(s)—- Y())' > = d s, 1)

where the middle equality is a well known property of Gaussian random variables. This
enables us to see that (X(£)),eq, although stationary, is not strongly stationary, since
by the Dudley-Fernique theorem (Y(f)),ec has a version which is a.s. bounded (or
continuous) iff

f (log N(G, dy; £))de < (1.39)
0

whereas by Theorem A, if (X(£)),ec were strongly stationary then it would have a
continuous version iff

f (log N(G, dy; €)1 de < o (1.40)
0

where 1/g+1/p=1. It is easy to see using Remark 4.3 and by § 1, Chapter VII, {21] that
one can take for Y certain random Fourier series with decreasing coefficients such that
(1.40) holds but (1.39) does not. This shows two things. That (X(#)),e constructed as
in (1.37) with this Y is not strongly stationary and that J (dx)<w is not a sufficient
condition for a stationary p-stable process to have a version with continuous paths.

Finally, as another ’application of the representations of stable processes given in
Lemma 1.4 and Proposition 1.5 we give an alternate proof of Lemma 1.1 (in the real
case). By Lemma 1.4 a real valued p-stable random variable, 0<p<2, can be represent-
ed as

I ® 12
2 (Fj)_l/pgj 2 (Z (rj)_yp) g (1.41)
Jj=1 j=1
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where {g;} are i.i.d. copies of g as given in Lemma 1.1. Furthermore, by checking the
Laplace transforms of (1.41) we see that

wpl2) =2, 3 ()%
=1

for some constant 4, depending only on p.

Remark 1.8. In some cases we can ogtain Lemma 1.6 directly without having to
appeal to the representation given in Proposition 1.5. Let 6y,..., 8, be i.i.d. real valued
p-stable random variables with parameter 1 and let x;,...,x, be in R7. Then the
process

X®0=>, 6,x(1), t€T (1.43)
=1

is clearly p-stable with spectral measure

Now let (y,...,1,) be i.i.d. random variables each with the same distribution as 5(p)
(see Lemma 1.1) and let (g, ..., g,) be i.i.d. real Gaussian random variables where g,
has variance 1. We may as well assume that (y,,...,7,) is defined on some space
(Q, o, P) while (gy, ..., g,) is defined on (Q’, o', P’). Then the process

Aty 0,0')= D glw)nfw)x(H, 1€T
i=1

has the same distribution as (X(¢)),cr since by (1.2) or (1.5), (8);<, has the same
distribution as (7, g.);<.. The complex case is entirely similar except that we use (1.4).

This same remark applies to infinite sums of the form (1.43) provided we know that
the sum converges a.s. for each ¢ € T. Therefore, it applies to random Fourier series
such as (1.16) and, in fact, we have already shown this for real p-stable random Fourier
series in (1.19).

We will use the following notation with regard to metric entropy. Let (7, d) be a
complex space equipped with a pseudo-metric d. We will denote by N(T, d;¢) the
smallest number of open balls of radius ¢ in the pseudo-metric d which covers 7. We
introduce the function o(7, d; n) which is defined, for each integer n, by
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o(T,d;n) =inf {e>0|N(T, d; e} < n}. (1.44)

Let p, g be such that 1<p, g<® and 1/p+1/g=1. It is easy to check that

- o(T,d;n)

1=z n(logn)'? (4

J (log N(T, d; €))de < o iff
0

Actually, a simple calculation shows that

(log N(T, d; €))"9de= Z (log n)"[o(T, d;n—1)—0(T, d ; n)]
o

n=1

= > o(T, d;n)[(log (n+1))"4—(log n)"4].

n=1

Therefore, there exist constants a,>0 and b, depending only on p such that if 1<p<o

2 oL, dinm) _ o f  (l0gN(T, d;0)de
0

log (n+1))"7
1n(log(n+1)) ) (1.46)
o(T,d;n)
<b —_—
g 2‘, n(log (n+1))"?
Similarly, it follows that

N . e O 0T, d;n) 147
J(;log logN(T, d;e)de < o iff g—nlog(rﬁl) (1.47)

and an inequality such as (1.46) can also be obtained. This result is used in the case
p=1. We will use the following notation

J (d)= f (l0gN(T, d;€))"“10gN(T, d;€))de, 2<q< o, (1.48)
0

Jw(d)=f log*log N(T, d ;&) de. (1.49)
0

Remark 1.9. In (1.47) if d is translation invariant, i.e. s, t€T and s+, t+7€T
imply d(s+7, t+7)=d(s, 1), the function o(T, d; n) is equivalent to o(1/n) where o(u) is
the non-decreasing rearrangement of d(t+u, t). This function plays a major réle in [21].
In this paper we find it useful to consider o(T, d; n) since we also obtain results when d
is not translation invariant.
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2. Lower bounds for p-stable processes

Let (Q, o, P) and (Q’, &', P’) be probability spaces and let (2(t)),c r be a p-stable real
or complex valued stochastic process on (Q, &, P)x(Q’, o', P') satisfying (ii) in Lemma
1.6.

For all 5, ¢t in T we denote d(s, ¢) the parameter of the p-stable process Z(t)—s),
so that we have (in the real case)

EexpilM(At)—(s)) = exp—dP(s, D [AP, VAER, 2.1
and also, by (1.15"), Vr<p

(E|20)-2s)N'" = 8(r, p) d(s, 1)

where o(r, p)>0 depends only on r and p. This shows that d is a pseudo-metric on T.

We also introduce the ‘‘random pseudo-metric”’ d,,, defined for each w€Q as
follows: for each s and ¢ in T, we will denote by d,(t, s) the parameter of the Gaussian
variable #(t; w, -)—(s;w, ). In the real (resp. complex) case this is simply

d (s, 1) = GE, |20 - A",
(resp. d, (s, 1) = J(E,, |20~ 2s))'"™).
Now, since (#(t;w, *)),er is a Gaussian process we have, in the real case,
E, expiMt;w, 0" )—Hs; 0, w')) =exp —|l|2d§,(s, 1), VAER. 2.2)
To simplify notation we write

o(n)=o(T, d;n)
and
Ou(n) =o(T, d,,;n)
(see (1.44)).
The next lemma is the crucial result of this section.

LEMMA 2.1. There is a subset Qy,cQ with P(Q5)>1/2, such that for each v € Q,,
we have:

o(n)

a,(n) Bﬂ(P)W’

Vnz1, 2.3)

where B(p)>0 is a constant depending only on p and 0<p<2.
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The proof of Lemma 2.1 is based on the following simple estimate:

LEMMA 2.2. With the above notation we have for each s and t in T and all >0,
alp 1

P{weE Q:dw(s,t)SSd(s,t)}Sexp—% (%) o 2.4

where a=2p/(2—p), 0<p<2, so that l/a=1/p—1/2.

Proof of Lemma 2.2. Let A={w € Q:d,(s, )<ed(s,t)}. By (2.1) and (2.2) we have
for each A€ER
E, exp—A2di(s,t) =exp—|A) d°(s, t).

Setting x=A2d%(s, 1), this is

) =exp—x"?, x=0. Q.5
t
Therefore by an exponential Chebysev inequality applied to x(d(s, 1)/d(s, t)) we get

P(A) < infexp—(x"?—¢%x).

x20

This expression is minimized by x=(p/2¢%)**> P and we get (2.4). The same proof
works in the complex case when (2.1) and (2.2) are suitably modified.

Remark 2.3. Note that for a p-stable process we see by (2.5) that
(d(s, Dld(s, ,))221,@/2) where v(p/2) was defined in Lemma 1.1. The distribution
function of ¥(p/2) is known, see [9] Chapter XVII, § 6.

Proof of Lemma 2.1. Fix an integer n and let >0 be such that o(n)>0. This means
that

N(T,d;d)>n. (2.6)
We claim that there exist at least n+1 elements ¢4, ..., 1,+; in T such that
dit, )=, VisiFksn+l. 2.7

To see this let M(6) be the maximal number of points say #,,..., %) in T such that
d(t;, t)=90, 1<iFk<M(d), (these points are not necessarily unique). Then by the
maximality of M(3), T is covered by M(J5) open balls of radius & centered at
1y, ...y tarsy.- Thus N(T, d; 8)<M(S) and so by (2.6) we get M(8)=n+1.
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By Lemma 2.2 we know that there is a constant K depending only on p such that
for all 1<ifk<n+1 and all £>0,

P{0€ Q|d,(1, 1)) <ed(t, 1)) <exp—. 2.8)
&

This clearly implies by (2.7) that for all 1<i+k<n+1 and all £>0,

P{w€ Q|d (1, 1,) < ed) <exp- .
&€

Obviously, this implies

P{a)e Q

inf d (1, 1)< ed} <n? exp——I%. (2.9)

I<ikk<n+1 €

Suppose there exists an w such that o,(n)<ed/2. This means that the set T can be
covered by n open balls of radius £4/2 in the d,, pseudo-metric. Obviously, we can find
two distinct points amongst {fy,...,¢,+1} lying in the same ball of radius &6/2.
Therefore,

inf d,(t,t)<ed.

t<i*ksn+1

Thus we have the inclusion

{w o,(n)< %} c {w

P { W

and finally, since d<o(n) is arbitrary,
P { w

By (2.10) we have that for each >0 and each integer n=1

rlo

inf  d, 1)< sé},

Isi®k<n+1

and so, by (2.9)

a,(n< ﬂ} < n*exp— LS
2 &

0, (n) < iz—")} <ntexp-X, 2.10)
£

Ba(n)
Tu(m) < 2(log(n+1)"e

} < nzexp—éé log(n+1)

<n¥(n+1)"%F°
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Therefore,

P(U{w
n=1

and it is clear that we can find a >0, depending only on p, so that the right side of
(2.11) is less than 1/2. This completes the proof of Lemma 2.1 since we can take

Bo(n) }
Iu(n) = 2(log (n+1)"e

Bo(n) }) < S 2-Kig" 211
0“’(")<2(1og(n+1))”“ <,,§=:2" @1

Q=N {w
n=1

and B(p)=P/2.

We will also use the following variant of Lemma 2.1:
LLEMMA 2.4, In the above notation let t,,...,t, be arbitrary points in T. There
exists a subset Q,=Q with P(Q,)>1/2 such that for all w€Q, and all i, kE{1,...,n},
dit, t)

d iy = ’
Wt 12 ¥P) G

2.12)

where y(p)>0 is a constant depending only on p. (If n=1 we will consider both sides of
(2.12) equal to zero.)

Proof. By Lemma 2.2 we have that for all £>0
2 K
P< U {w|dw(t,., 1) <ed, tk)}) <n’exp——,
i,k<n £

where K is a constant depending only on p. Therefore we can find a y>0 sufficiently
small so that

n*exp (— LY (log n)) <L
s 2

for all n=2 and we get

P<U{w
1<i,k<n

This proves the lemma since we can choose such a y depending only on p.

Our first application of the preceding lemmas is a generalization of Slepian’s
lemma to the p-stable case. A number of people have observed that Slepian’s lemma
does not go over directly to p-stable processes (although we remarked following

dt,, t
d(t, tk)sL‘l’j)}) <L
(logn)"® 2
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Theorem C that it does for strongly stationary p-stable processes). Nevertheless, we
can obtain interesting generalizations by comparing general p-stable processes with
Gaussian processes.

THEOREM 2.5. Let T be a finite set of cardinality n, and let (X(1)),er and
(Y(1),er be two stochastic processes, real or complex, such that (X());er is p-stable,
0<p=<2 and (Y(1));e is a Gaussian process (i.e. p=2). For each s, t€T, we denote by
dy(s, 1) and dx(s, 1) the parameters of Y(s)— Y(t) and X(s)—X(t) respectively. Assume,

dis, ) <dx(s,t), Vs, t€T. (2.13)

Then, for each r<p, there exists a constant B,, , depending only on r and p such that

1r

1/r
(E sup }Y(s)—Y(t)I’) <B, (log n)Vp=11 (E sup |X(s)—X(t)Q’) } (2.14)
s,teT 5, 1E€ET
In the real case, if 1<p<2, we also have

Esup Y()<B, ,(logn)"”~"?E sup X (). (2.15)
teT tET

Furthermore when p=2 (2.14) holds for 0<r<2.

Proof. Recall that the Sudakov version of Slepian’s lemma (see [10], [1]) is simply
(2.15) with p=2 and B, ;=1. Our proof is based on this result. In the real case, by
symmetry, we have

E sup Y(¢) = IE sup |Y(s)—Y(1)| (2.16)
teT s,t€T

and similarly for (X(¢)),er. By a well known result of Fernique and Landau and Shepp
(see e.g. [10]) we know that for any Gaussian process (¥(#));er and any 0<r<o,

1r
g sup |[Y(1)—Y(s)| < <E sup |Y(t)—Y(s)|’)
A s, 1ET

r s, 1€ET
2.17)
<A, E sup |Y(1)—Y(s)|
s, tET

where A,>0 is a constant depending only on r. Therefore, if (Y(r));e7 and (X().er
are two Gaussian processes satisfying (2.13) we can use (2.15), (2.16) and (2.17) to

obtain
1r

r
(E sup |Y(t)—Y(s)|'> < A? <E sup |X(t)—X(s)|'> . (2.18)
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We will now prove Theorem 2.5 in the real case, the complex case follows by looking at
the real and imaginary parts separately. We use Lemma 1.6 (a) and assume that
(X(®));er is defined on (Q, o, P)X(Q', of',P’) and that for v €Q fixed, the process
(X(t; @, ));er is a Gaussian process on (Q’, o', P’). Denote by d,(s, ) the parameter
of the Gaussian variable X(¢; w, -)—X(s;w, ). Then by Lemma 2.4 we can find a set
Q,c=Q with P(Q2,)>1/2 such that for all w in Q, we have

d(s, ) =y(p)(logn)~Vdx(s,1), Vs, tET.
By (2.13) we have that for all w in
d(s, ) = y(p)(ogn)~Vdy(s,t), Vs, t€T.

Now, since both processes (Y(9)),er and (X(t;w, -));er are Gaussian processes we
apply (2.18) to obtain

1/r
(E sup IY(t)—Y(s)l’) < (log n)"*y(p) ' AXE, |X(; 0, )=X(s;0, )N, (2.19)

for each w €Q,. We raise both sides of (2.19) to the rth power, take the expectation
with respect to 2, and then take the rth root to obtain

1r

r
(-I—E sup |Y()— Y(s)|’) < (log )" y(p) ™' A? <E sup |X (t)—X(s)|’> .
2 s€T s, tET

This is exactly (2.14) withB, ,=2"y(p)'A%. (In the complex case use 2B, ,.) Inequal-
ity (2.15) is obtained by using (2.16) in (2.14) with r=1.

The preceding result was used in the Gaussian case by Sudakov to prove the next
statement in the particular case p=2. For p<2, Theorem 2.6 is the first non-trivial
necessary condition for the a.s. continuity or boundedness of a general p-stable process
of which we are aware.

THEOREM 2.6. Let T be a compact metric space and let (X(1)),ct be a p-stable
stochastic process, real or complex, with 0<p<2. Let dx be as above and let g be the
conjugate of p, i.e. llg+1/p=1.

G) If X(0));eT has a.s. continuous sample paths then, necessarily

lim e(log N(T, d,; &))" =0. (2.20)
el0

(i) If (X(1));e 1 has a.s. bounded sample paths then necessarily
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sup e(log N(T, dy; €))7 < ; (2.21)
>0
moreover, for each r<p
1r
sup e(log N(T; dy; €)' < C, (E sup |X (t)—X(s)l’) 2.22)
e>0 s,tET

where c,, . is a constant depending only on p and r.

Proof. As in the proof of Theorem 2.5 we use Lemma 1.6(a) and assume that
(X(9),er is defined on (Q, £, P)X(Q', o', P') and that for each w €Q, (X(t;, *)eT
is a Gaussian process. By Fubini’s theorem if (X(#)),er has a.s. continuous sample
paths then there exists a set Q,<=Q with P(Q,)=1 such that for w €Q, the process
(X(t;w, *));er is an a.s. continuous Gaussian process with respect to (Q', &', P'). We
apply Sudakov’s theorem, i.e. (2.20) and (2.21) with p=g=2 (cf. [10]), to this process
and obtain that for w € Q,,

lim e(log N(T, d,,; €))'"* =0
el0

or, equivalently

lim o,(n) (log n)"* =0.

n—w

Using Lemma 2.1 we get

lim o(n) (logn)?=0
or, equivalently (2.20).
The argument for the first part of (ii) is similar to the above argument. It remains to
prove (2.22). This is known in the Gaussian case, ([10], p. 83). For any Gaussian
process (Y(t)),er we have

sup e(tog N(T, dy; €)' < CE sup |Y(s)— Y(1)|
s, 1ET

e>0

where C is an absolute constant. We apply this inequality, for each w €Q, to the
Gaussian process (X(t; w, -));er and obtain

sup e(log N(7T, ow;e))”zs CE, sup | X(t;w, 0" )-X(s;0,0"))|

e>0 s, tET

1/r
< CA,(EW, sup |X(t;w,w’)—X(s;a),w’)|’>

$,tET .
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where A, is given in (2.17). Equivalently, this is

1/r
sup o, (n) (log < CA,(E(U, sup [ X (1w, 0" )—X(s; 0, ' )|') .
n>0 S, tET

Finally, we have by Lemma 2.1

E E, sup X(t;w,0')-X(s; 0,0’ )| = (—1—)’[ dP(w) (supaw(n) (log n)m)
S.1ET CA,J ), n>0

1 {Bp) g}
= > (CA, snlilos o(n)(log n) ") ,

and this immediately implies (2.22).
COROLLARY 2.7, Let (64,...,0,) be a p-stable sequence in R" (i.e. (0()),e 7 is a

p-stable stochastic process with T={1,2, ...,n}). Then for r<p

Esup|0}=D,, inf (E|6,—6,)" (logn)" (2.23)
J

I<i+ksn
where D, , is a constant depending only on p and r.

Proof. We use (2.22). By (1.15') the pseudo-metric for this process, can be
expressed as

d(i, k) = 8(r, p) " (E0i—0H"".

Now, if d(i, k)=6 then N(T, d;0/2)>n. Therefore by (2.22) and (2.16)

Esup|6] = (c, ) (logn)"6.
J

The result follows since we can take d=inf,_,,,d(, k).

Remark 2.8. The lower bound in (2.23) is best possible to a constant multiple. Let
1<p<? and let (¢4,...,£,) be i.i.d. symmetric Bernoulli random variables each one
taking on the values 279, (1/p+1/g=1). Let {(&1,...,€,)};=, be i.i.d. copies of

(€, ...,&,). Consider

6y, .-, 8,)=0(r,p) ™" D, ([) P, ... 5).

Jj=1
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1t follows by Proposition 1.5 that (@,,...,60,) is a p-stable sequence in R". By (1.15'),
Vi%j=1,...,n

(E|6,—8,]D"" = (Elei—efP)'P = 1

and by Lemma 1.2 and (1.24)

E sup |8,|~E sup ~ (log )"

1sk<n t<k<n

2 ip
J

j=1

where {r;}7,_, are independent Rademacher random variables and the final estimate
follows from the fact that
P [i Tk 5z ] ~ ¥
:1/p €
=1 J
for A sufficiently large and ¢ a constant. (See Lemma 3.1 below.)

On the other hand if (8., ..., 0,) are i.i.d. p-stable random variables, normalized so
that (E|9;—6;|n'""=1, it is elementary to check that

E sup |8~ n'".

igksn
In this case (2.23) is very weak.
The next theorem is an extension of Fernique’s lower bound for a.s. continuous
stationary Gaussian processes to strongly stationary p-stable processes, 1<p<2.

THEOREM 2.9. Let G be a locally compact Abelian group with dual group T and
let KcG be a fixed compact neighborhood of 0 in G. Let (X(t)),ec be a strongly
stationary p-stable random process with associated pseudo-metric dy. We assume that
dx is continuous on GXG.

Let 1<p<2. If (X(D)iecc has a.s. locally bounded paths, or equivalently, if
(X(1)ex has a.s. bounded paths, then necessarily

Jdy= f (log N(K, dy; ) de < 0, 2.24)
0
where l/p+1/q=1. Moreover, for each r<p, we have
ir
Jldy<F, (K) (E sgg |X(t)—X(s)|’> (2.25)
s, t

where F, (K) is a constant depending only on p,r and K.

18—848289 Acta Mathematica 152. Imprimé le 29 mai 1984
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In the case p=1, if (X(1)),ex has a.s. bounded paths then necessarily

J.(dy) =I log* log N(K, dy;€)de < . (2.26)
[}

Moreover, for each r<1 we have
1r
Jdy)<F, (K) (E Slé?( |X(t)—X(s)|'> 2.27)
s, t

where F, (K) is a constant depending only on r and K.

Proof. In the case g=p=2, (2.25) is due to Fernique. Assume now that 1<<p<2 and
consider (X(9)),ec as given in the hypothesis of this theorem. By Lemma 1.6 (b) we
can consider that (X(#)),e is defined on a product space (Q, &, P)x(Q', ', P') and
that for each fixed w €Q the process (X(#; w, -)).ec is a stationary Gaussian process.
Continuing the above notation, we have by Fernique’s lower bound for stationary
Gaussian processes (cf. [10] p. 83, [9] p. 48), there is a constant S such that

@

o,(n)

G2, <P E, su o, 0 )-X(s;0,0")
21 n(log (+1)" P oy X |

1r
< i A, <Ew, sup X (0,0 )~-X(s;o, w’)l’)

where we also use (1.46) and (2.17). We now apply Lemma 2.1 to the process
X(t; w,w')),ex- We can find a set Q,=Q with P(Q,)>1/2 so that for v €,

' ir
4 y, ")— ,, 814 . 228
Zﬂ(p)Z n(log(n+1))”" < Bk A, (Ew SS'%II)( X(to,0')-X(s,0,0 )I) (2.28)

n=1

If we raise (2.28) to the rth power and integrate over Q; we obtain

1/r
A, 2 (E sup | X (O)—X(s) ) .
Zﬂ(p ; n(log(n+1))l/p ﬂ t,seg I I
Using (1.46) and the comment immediately following (1.47) we get (2.25) and (2.27).
The fact that (2.24) and (2.26) hold is implicit in the above proof. Fernique’s result

implies that

i 9 (n) < 3.8, w,
4 (log (n+1)"? B



p-STABLE RANDOM FOURIER SERIES 273

hence we can find an w € Q; for which this holds. Then Lemma 2.1 implies that

> o
=i nQog(n+1)"”
and this is equivalent to (2.24) (or (2.6) when p=1) by (1.45) and (1.47).

Remark 2.10. We recall that the Fernique-Landau-Shepp result on the integrabil-
ity of semi-norms of Gaussian random variables has an extension to the p-stable case.
In particular, let (X(#)),cr (T is any set) be an a.s. bounded p-stable process. Then

sup c’P ( sup | X(0)—X(s)|>c ) <
s, tET

c>0

and, a fortiori
E sup [ X()—X(s)|'<®, Vr<p.
s, t€T

Moreover, there is a constant A(r, p) depending only on r and p such that if M is either
sup;, e 7| X(#)—X(s)| or sup,erX(¢) we have for each r<p,

1/
(sup PP{M>c }) "< A(r, p) (EMD'. (2.29)

>0

We refer the reader to [2] for details.
Finally we note that when G is compact we can improve Theorem 2.9.

COROLLARY 2.11. Let G be a compact group with the Haar measure of G equal to
1. Then under the hypotheses of Theorem 2.7

® ir
f (log N(G, dy;¢))""de < F, [E ( sup |X(9) —X(s)l’)
0 5, tEG
and

® \r
f log"log N(G, dy;e)de < F, ,E ( sup |X (o) —X(s)|’)
0 5,t€EG

where F, , and F, , are constants depending only on p and r and not on G.

Proof. This is an immediate consequence of the proof of Theorem 2.9 and the
corresponding result in the Gaussian case (cf. [21], p. 11).
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The last result of this section, an application of these methods to functional
analysis, concerns extensions of nonlinear contractions on finite subsets of L”.

THEOREM 2.12. Assume 1<p<2. Let (S, 2, u) be a measure space and T a finite
subset of LP(S,Z,u) of cardinality n. Let H be a Hilbert space and let ®:T—H be a
contraction, i.e.

[|P($) =D slls—tﬂu,w, Vs, t€T. (2.30)

Then there exists an extension ®: L?(u)—H of ® such that

@)= DDy < ¢, (logm)"|ls—1] Vs, t€ L(u), (2.31)

Ly’
where 1/a=1/p—1/2 and c, is a constant depending only on p.

Proof. By classical results (cf. e.g. [5]) there exists a p-stable process (X(2)),, P

such that the associated metric dx(s, #) satisfies
dx(s,t)=||s—t||L,,w, Vs, t€ L’ ().

Using Proposition 1.5 it is easy to show this. Without loss of generality we may assume
that  is a probability measure on S. We define for ¢t € L”(u),

X0 =c@)o D, gT) "Pult)
j=1

where u()=t(u;) and {u;} are i.i.d. S valued random variables with P(u;€ A)=u(A),
VA EX. The remaining terms are the same as in (1.34). It follows from (1.15) that, with
u(s)=s(u), Vs € LP(u),

1/p
dX(s,t)=< Iu(s)—u(t)lpdﬂ(u)) = |ls=2ll p,,)-

By Lemma 1.6 we can assume that (X(¢)) is defined on (Q, &, P)x(Q', A', P')

and that for each w €Q, (X(¢;w, - ))

1€ L)

1 1 1 {4 [
e 1rg 1S @ Gaussian process on (Q', o', P’). Let

d,(s, 1) be the parameter of X(s; w, -)—X(t, 0, -), i.€.,
d (s, D) = (aE,|X(s; 0, )—-X(t; @, )2, (2.32)

where a=1/2 in the real case and a=1/4 in the complex case.
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By Lemma 2.4 there is a set Q,cQ with P(Q,)>1/2 such that, for each w €Q;, we
have
||s-—t||L,,w) <y(p)'logn"*d (s, 1), Vs, t€T,

and, consequently, by (2.30)
|®(s)— POy <y(p) ' (logn)"*d (s, 1), Vs, tET. (2.33)
For each w €Q, and t €T we define the function
D, X(t; 0, ) =D@) (2.34)
and observe that by (2.33) and (2.32)
|®,X(s; 0,  )=P, Xt 0, Dy = {|@()— P4
< y(p)"' log m)"*||X (s; 0, )~ X(t; w, Meegpy

Thus &, is a contraction on a subset of the Hilbert space L(Q', P’, f') with values in
a Hilbert space H. By a well known result (cf. [30], Theorem 11.3) ®,, can be extended
to a contraction on the whole space, i.e. ®,:L%(Q’', ', P')—H such that

1®,()— @, @)l <y @) Qogn)"*|ju=vll 5, Vi, vE LK, ', P).
Therefore, we have by (2.32)
|®,(X(s; 0, - )-@, X0, Wy <y(E) ' (logn)"d,(s,1), Vs, 1€ L°(u).
We define
d(1)=PQ)" L @, (X(1; 0, ) dP(w),

so that we have, by (2.34) that ®(f)=®(¢), VtE T and

|D(1)—D(s)|| ;< y(p) ' (logn)"*4E,, d, (5, 1)
for all s, ¢ € L?(u). Furthermore by (1.15')

dy(s, t)= 6(1,p)"'E, E,|X(s)— X(0)|
=8(1,p)7'E,[6(1,2) ' d (s, )] = ¢, E, d, (s, 1),

where ¢,>0 is a constant depending only on p.
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Therefore, we finally have
|B($)—®@)||; <y () ' (logn)"*(2c,) " dy(s, ), Vs, 1€ L"),

which gives the desired result.

3. A sufficient condition for a.s. continuity

In this section we show that the “‘entropy condition” (i.e. J,(dx)<) is sufficient for
the a.s. continuity of the sample paths of a strongly stationary p-stable process,
1<p<?2. The idea of the proof is different from that of Section 2. In Section 2 we
considered p-stable processes as mixtures of Gaussian processes. Here we will consid-
er them as mixtures of certain Rademacher series which have tail behavior on the order
of magnitude exp—dc? as c—>x, (>0, 1/p+1/g=1). Since g>2 such series are ‘‘better
behaved’’ than Gaussian variables which, of course, have tail behavior on the order of
exp—dc? as c—>. It seems to us that it is necessary to use Rademacher rather than
Gaussian series in what follows.

We will need several preliminary results which are of independent interest. We
begin by recalling some standard notation. Let 0<p< and let I be an index set. We
denote by [, (I) the space of all families (a;);e; of complex numbers such that

supt’ card {i€]:|a|>t} <o
>0

and we define

1/p
Haierllp, » = (sup ¥ card {i EI:|a|>1 }) .
t>0

It is well known that for p>1, the functional ||-||,, » is equivalent to a norm on I, ()
with which [, ..(I) is a Banach space. The space [, .(N).is often referred to as ‘‘weak
I,”’, (N denotes the integers).

For any family (a;);e; of complex numbers tending to zero at infinity, we can
define a sequence (a}),en Which is the non-increasing rearrangement of (laj);e;. It is
well known and easy to check that

@D;e, ”p,m = Sli?n””a:‘. 3.1

We note for further use that, obviously,

lo) <18, Vi€l implies [[@)],,<[IB)ll,, - (.2)



p-STABLE RANDOM FOURIER SERIES 277

Let @: R, —R_ be an increasing convex function with ¢(0)=0. For any probabil-
ity space (R, &£, P) we denote by LY(dP) the so called *‘Orlicz space’’ formed by all the
measurable functions f: Q—C for which there is a ¢>0 such that

[o(12)ar <.

We equip this space with the norm

Al = inf{c> 0:Eg (lﬂ-)s 1}.

C

Throughout this paper we will denote by y, the function

Pq(x) =exp|x]7-1.

The Orlicz space L¥dP) will be used repeatedly.

Let {¢;};c; be a Rademacher sequence on some probability space. It is easy to
check that for p<2, I, ()cl(I). Therefore, if (a);e; is in I, »(I), the series
S=X,e;a;€ converges a.s.

We can now state the first lemma.

LEMMA 3.1. If (a);er belongs to 1, (I), 1<p<2, then S belongs to LY(dP) and
we have

k; l”(af)iGI”p,W s ”S”% s kp”(ai)iEI ”p,w (3.3)
where k, is a constant depending only on p.

This lemma is rather elementary. A proof is given in [25] and the result is
mentioned in [28]. Quite possibly it was recorded earlier but we have not found such a
reference. Since this result is important in what follows we will include the proof given
in [25].

Proof. Clearly we may assume that I=N and (jax)xen is non-increasing. We first
show the right side of (3.3). Assume that sup, n'?|a,|<1 and let S,=X_, a, ¢ Then for
all c>0

P(IS|>2¢) < P(IS.| > ©)+P(S—S,| > ©).

We pick c=qn”">2}"=, k™Y, 1/p+1/g=1, so that P(S,|>c)=0. By a well known esti-
mate for subgaussian series (cf. [16], p. 43) we get
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2 -1
P(S-S,|>c)< 2exp{—~cz- (Z |ak|2) }

k>n

2 -1
$2exp{——c2—<z k‘””) }
k>n

sZexp{——q(—qz_—zln}

for all integers n. From this it is easy to see that
ISl < &,

for some constant k, depending only on p. The right side of (3.3) follows by homogene-
ity.

To prove the left side of (3.3) we first note that X;_, ¢,=n with probability 27",
Therefore

n q
ﬂZ €
k=1
E exp — Ze
n

n

for B=(1+log2)"4. It follows that

n

Zsk

k=1

> ﬂ-lnl/p (3_4)
Ya

where 8 depends only on g (or p). We also have that

ko n
2 a.&ll = Z ag &
k=1 Y k=1 ¥y
1 n
= | > el inflay (3.5)
2 k=1 quSn
=p""'n"Pa*

and this completes the proof of the lemma. Note that the first inequality in (3.5) follows
by convexity. The second inequality follows from the fact that

n q n
2 a, & 27! (ixzflad) 2 &
k=1

k=1

q

Eexp = E exp
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which is a consequence of the contraction principle in the complex case (cf. [21], p. 45)
and the last inequality follows from (3.4).
The second lemma is a well known variant of Dudley’s theorem (cf. [22]).

LEMMA 3.2. Let (T, d) be a compact metric space and assume that for 0<q<<o,

J(d)= f (log N(T, d;£))"“de < oo.
0

Then any random process (X(1)),e7 in LY(dP) satisfying
HX(t)—X(s)“wq <d(s,1), Vs, t€T, (3.6)
has a version with continuous sample paths and

E sup [X(9)-X(0)| < D (d)+d)

where d=supsy,€Td(s, t) and D, is a constant depending only on q.

We refer the reader to [21], p. 25 where a proof of this result is given for g=2. The
case g>0 is entirely similar since (3.6) implies

P [ X(;z—ft\’)(’) > u] <2e7M, Wu>0.
s,

For a more general discussion see {26], [12]. The following is the major new step in
proving sufficient conditions for continuity of strongly stationary p-stable processes. It
should also be of independent interest.

THEOREM 3.3. Let {Z,} be a sequence of independent positive random variables.
Then for any 0<p< and all ¢c>0

P{(Z M- >} <A supt D P(Z,>1) 3.7)
>0 n

where 2=262.

Proof. It is enough to show (3.7) with p=1. The general case follows by applying
(3.7) with p=1 to the sequence {Z}. Let

A= sup tvz PZ,>1)

>0 T
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and assume that A<]. For a fixed ¢>0 we will show
P{{Z}h,»>c} <ic™! (3.8)

and, by homogeneity, this will conclude the proof of the theorem. Thus it remains to
show (3.8). Let

Un = Zu I{Z,,sc}
Vn = Zn 1{Z,,>c)

so that Z,=max (U, V,). Using the representation
HZ}ho = supt X 125
>0 .o

it is easy to see that

IKZ My, « < IHUM, o HIH VA, -
Therefore
P{KZ M, »> 2¢c} < P{UM o > }+P{{V o >¢ )

< c“’EII{U"}lﬁ‘,+P{su1') vV, + 0} (3.9)
n=
< cEUYE .+, P(Z,>c).
n=}

We now estimate the first term in the last line of (3.9). Let {U,} be an independent
copy of {U,} defined on (Q', #,P’) and let E' denote expectation with respect to this
space. Note that since

IiP’(U;>t)stiP(Zn>t)
n=1

n=1

we have

SUP1 3, 1y, < Sup ~rZ<1w,>»—P'<U;>t»+r2P<Zn>r>]

>0 n=1 n= n=1

< sup [t 2 Iy, >y =P U, >t ))] +A.

N et
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Using this we get

2
EH{Un}”Z,w =F (SIE(E” Z 1(U >t})
® 2
<E (su(;)) [r > (g oy —P'(U,>1 ))]+A) (3.10)
> =1
2
<2E(%25’[ St E s | 4

since A<1. By convexity we can majorize the last term by

2
2EE’ (sup [ 2 (0=l >,})]> (3.10)

>0

Now let {¢,} be a Rademacher sequence independent of {U,} and {U,}. By symmetry
(3.10°) is equal to

® 2
2EE’ (s\:(])) [: > el sy =1 w;>r>)]> +2
t
2
<4E[supt2£ 1w>,,] +4E' [suptZe 1(U>,,:| +2 @11
n=1

>0 o

2
<8E[supt 25 L >,}:| +2.

>0 T

We use the following elementary lemma to estimate the last expression.

LEMMA 3.4. For any sequence {u,} of positive numbers we have

[supt zs t, >,)] < SZuﬁ

'>onl n=1

8

Proof of Lemma 3.4. There is nothing to prove unless u,—0 so assume that this is

the case. Let {u¥} be a non-increasing rearrangement of {u,}. Let 7: N->N be a
permutation such that u,,=u}. We have

supt Es L >n —supuk 2 Extny- (3.12)

>0 =

Let

k
S, = “752 En)
n=1
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and

k

— *

= D Uty
n=1

Following the argument used in the proof of Kronecker’s lemma we have

k
Sk=u,’f2 (T,—T,_)u*"

T,— ukz T (u*,) —ur™)

n=1

< Tk+uk2 sup |T,| (u¥;] —u*™").

n= 1 1<n<
Therefore
sup |S,] < 2sup T}
k=1 k=1
so that

2 2
E(sup Sk> < 4E (sup |Tk|> . (3.13)

k=1 k=1

It is obvious that T, is equal to Z¥_, u*¢, in distribution. Hence by Levy’s inequality
(cf. [16], p. 12) we have

Esup|T,f <2Z u*Z—ZZu (3.14)

n=1 n=1

Finally, (3.12), (3.13) and (3.14) give LLemma 3.4.

Completion of proof of Theorem 3.3. Let us denote by E, expectation with respect
to {e.}. Let (Q, %, P) denote the probability space of {Z,} and let E denote the
corresponding expectation operator. For a fixed w € Q we have by Lemma 3.4

2
E, (suptzs I(U(w)>,)> \82 V().

>0 o) n=1

Therefore,

L

EE, (supt 2 & Ly (w)>t)) (Z UZ(“”)
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¢ (3.15)

Combining (3.9) and (3.10), and evaluating (3.10) by (3.11), Lemma 3.4 and (3.15) we
obtain

POz >200 <2220 2 L < aige
' c ct

for c=1 and of course it is also true for c<1. This gives (3.8) with 1=262, concluding
the proof of the theorem.

The next corollary strengthens Theorem 3.3. It also generalizes a well known
result on empirical distribution functions which is sometimes referred to as Daniels’
theorem (¢f. [27]).

COROLLARY 3.5. Let {Z,} be a sequence of independent positive random varia-
bles. Assume that L,_, (Z =)< for all t>0. Let

2 iz

Z*=sup 1 ———.
>0
> PZ,=1)
n=1
Then for all ¢>0
cP(Z*>c)<A (3.16)
where A=262.

Proof. Note that

>0

N N
sup ¢ z liz5q= supt Z Iz
k=1 >0 =y

and, similarly

N N
supt > P(Z,>1)= supt ; PZ,=1).

>0 3T
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Using these two equalities in (3.7), in the case p=1, we get

>0 T >0 -

N N
cP {supt D Izsg>c } <Asupt > P(Z,=1) 3.17)
1 1
where 1=262. Let

N -1
o) = <Z Pz, zz)) :
k=1

This function, ¢(f), is non-decreasing, left continuous and has right hand limits.
Therefore we can find a sequence of functions {¢,(¢)} such that ¢,(f) is continuous,
strictly increasing in ¢ and is increasing in n, ¢,(0)=0 and lim,_,. @,.()=¢(#), V1>0.
By (3.17) with ¢,(Z,) replacing Z, '

N N
cP {supt; Ly 2o > ¢ } <2 sup ; Plo,Z)=1]. (3.18)

>0

We have
N N
supt z Ple(Z) =t]= sup@,s) Z Ple,(Z) =@, (s)]
>0 k=1 >0 k=1

N
= sup @,(s) ZP{Zk =5} =<1,
5>0 k=1

and similarly

N, N
supt > 1 0= sup@,(s) >, I ;..
p ; [#.Z021) S>0P‘P 2:1 [Z>s]

>

Using these two relations in (3.18) we get

N
cP {supt 2 I[%(Zk);,] >c } <A. (3.19)
k=1

>0

Now, since @,(s) increases monotonically to ¢(s),

5>0

N N
lim cP [sup ©,(5) 2 Liz29>c¢ ] =cP [sup (p(s)E Iiz59>¢ ]
n—w s>0 k=1 k=1

Using this in (3.19) we have
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N
2 I[Zkas]
k=1

cP | sup i ———>c | <A
s>0
> PZ,s]
k=1

and since this holds for all N we get (3.16).

Remark 3.6. Daniels’ theorem states that for {Z,},_, , i.i.d. with continuous

.....

distribution function,

Plsup—=t— sc =L wve=1. (3.20)
C

Assume that Z,=0, n=1, ..., N. If we replace Z, by Z,! in Corollary 3.5 and take the
sup over all >0, we get

(3.21

where {Z,},<n are not necessarily identically distributed. Therefore, in some sense,
(3.21) is a robust form of the upper bound in Daniels’ theorem.

{While making final revisions of this paper prior to publication we discovered that
(3.21) was proved by van Zuijlen [31], using completely different methods from ours.
Furthermore, it is easy to see that (3.21) implies our Theorem 3.3. Nevertheless our
proof seems to be more elementary than the one in [31]. Recently, Joel Zinn has found
a new and simple proof of Theorem 3.3.)

COROLLARY 3.7. Let 0<p<o and let {X;} be an i.i.d. sequence of random
variables. Then if E|X\[°’< the sequence {j~"?X;} is a.s. in I, »(N) and we have

P "X}, » > c} SAEWX,P. (3.22)
A fortiori, for 0<r<p

EWXH] ' < h, (EIX, )P (3.23)

where hy, , is a constant depending only on p and r.
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Proof. The first inequality follows immediately from Theorem 3.3 and the well
known observation that

EP(J ”plX‘>C)<2P(|X1‘>JUPC)<E‘X \,,, Ve> 0.

Jj=1 Jj=1

The second inequality is a consequence of the classical identity

EM = I P(M >c)dc. (3.24)
0

The next corollary is an immediate consequence of Theorem 3.3.

COROLLARY 3.8. Let 0<p<x and let T be an arbitrary set. Let {&,},er be a
Samily of independent random variables such that

P(&,|>c)<c™, Vy€T, Ve>0. (3.25)

Let {a,},er be complex numbers such that L,crla,f<®. Then {a,&},er is a.s.
in I, »(I') and we have

P({a, &Y e oll,,» >€¢)<A D, laf, Ve> 0.
yET

Remark 3.9. (i) It is an elementary consequence of the Three Series Theorem that
{a,&}yer is a.s. in [, () for each ¢>0 but that {a,&,},cr is not necessarily in
[,(I). The preceding corollary is a refinement of these observations i.e. {a,&,},¢r is
n “‘weak [,”’.

(if) Theorem 3.3 and its corollaries are not valid if we drop the assumption of
independence of the random variables. This is rather obvious except in the context of
the last corollary. This point puzzled us for some time until W. Beckner kindly showed
us a counter example.

(iii) Corollary 3.8 can be obtained as a direct consequence of Doob’s inequality. It
is easy to see that

u« £)>1)
M, = E t>0
yerl P(a,&|>t)

is a martingale. By Doob’s maximal inequality we have

P (sup M,> ") < sup EM, = > la. (3.26)

yET
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Also, by (3.25)

£ D Lo o < M,
y€T
Using this in (3.26) we immediately obtain

P({a, &) ve o > )< D, la,f.
y€TI
This alternate proof has the additional advantage that it yields Corollary 3.7 with a
constant equal to 1 instead of 1. We suspect that there is also a simpler proof of
Theorem 3.3 based on martingale methods but we have not been able to find one.
We can now prove a sufficient condition for a.s. continuity of strongly stationary
p-stable random processes.

THEOREM 3.10. Let 1<p<2<q<x where 1/p+1/q=1. Let G, T', K, (X(#));ec and
m be as in Theorem A and let dx and J (dx) be as given in (0.1) and (0.2). If J (dx)<
then (X(f)),e x has a version with continuous sample paths. Moreover, we have

E sup [X()-X()] < ¢,(K) (U (d)+m(D)'?) (3.27)

where c,(K) is a constant depending only on p and K.

Proof. We may assume (multiplying (X(9),eg, if necessary, by m(I)~'7) that m
is a probability measure on I'. Let {Y;};> be an i.i.d. sequence of random variables
with values in T such that the probability distribution of Y; is equal to m. Let {I';};=1
and {w;};>, be as in Proposition 1.5. We take {I';};=1, {¥j}=1 and {w;};=1 to be
independent of each other and define them all on the probability space (Q, &, P). Let
{¢;};=1 be a Rademacher sequence defined on a different probability space
(Q', ', P'). The random process

Wt 0,0') = cp) D, e T; "(@) wiw) Yt 0), tEG (3.28)

j=1

has the same distribution as (X(#)),e . This follows from Proposition 1.5 since (3.28)
and (1.34) are clearly equal in distribution.
We introduce the random metric J,,, defined for each fixed w €EQ by

0,(s,8)= ||{Fj(w)‘””wj(a))(Yj(s;a))— Yj(t;w))}j;,Hp,w, Vs, tEG.

19—848289 Acta Mathematica 152. Imprimé le 29 mai 1984
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Since |w; Y)|<1 we have, by (3.2), that

sup. 8,5, 1) < 2T #|eof}l, . <l {T7"7}l) - (¢.29)
s, t

and by (1.25) and (3.23)
E sup 0,(s,t)<ma,=B,. (3.30)
5, t€EG

Since Y; takes values in I, it is clear that 0,(s, )=0,(0,7—s) and, similarly,
dy(s, )=dx(0,t—s). To simplify the notation we set o,(t—s)=0,(s,#) and
ox(t—s)=dx(s, t). Now, for fixed w €EQ, consider W(s;w, ®')—W(t, w, ') as a Rade-
macher series. By Lemma 3.1, we have

|W(s; w, -)—W(t; 0, ')”w., < k,0,(s,1), Vs, t€G. (3.31)
Therefore, by Lemma 3.2 and (3.29)

E, sup |W(t,o, - )-W(s;0, - )| <k, Dq[Jq(dw)Htll{F;””}II,,,w] (3.32)

s, tEK

where, as in (0.2), we have defined

J0,)= f (log N(K, 0,,;€))“de.
0

Taking the expectation of (3.32) with respect to (2, , P) and using (3.30) we get

E sgg |W(t)—-W(s)| < k, D [E, ] (6,)+B,]. (3.33)
s, 1
To complete the proof of this theorem we will need the following lemma which will be

proved after Remark 3.12.

LEMMA 3.11. Let &, be a random, translation invariant, pseudo-metric on G. Let
O(s, t) be the pseudo-metric defined by

(s, )=E,d,(s5,0, Vs, t€G.
Then

E,J8,)<A/K) [Jq(6)+Ew sup 3,5, )], (3.34)

where A(K) is a constant depending only on q and K.
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Completion of proof of Theorem 3.10. Note that by Lemma 1.2, (3.2) and (3.23)
os, )=E,0,(s, 1)
<E {f;’? TP I P w Y (s)— Y,v(t))},-;lli,,,m} (3.35)
< ap(n/Z)hp, 1dx(s, 1)=y, dyls, 1).

Therefore, by (3.30) and (3.35) we get

J ) +E, sstlég O,(s,t)sy,J (d)+B,. (3.36)
Finally, note that if J (dx) is finite then by Lemma 3.11 and (3.36), J,(d,,) is finite a.s.
with respect to (Q, £, P). It follows from (3.31) and Lemma 3.2 that there exists a set
Qc=Q, P(Q)=1, such that for each w €Q, W(t;w, -) has a version with continuous
sample paths with respect to (Q', &', P’). Therefore, by Fubini’s theorem (V(#));ex
has a version with continuous sample paths. Furthermore, by (3.33), (3.34) and (3.36)
we have

E sup [W()-W(s)| < k, D[A,(K)x, I (dy)+(A,(K)+1)B,)]

s, tEK

< C,(K) [/ (dy)+1].

Since (W(9),ex and (X(#)),e ¢ have the same distribution this completes the proof of
Theorem 3.10. (The reader will recall that we have normalized so that m(I')=1.)

Remark 3.12. By (3.27) and (2.29)

U,
<Sup P { sup X (9)-X®)|>c }) "<ALp) C,(K) U (d)+m@D)'P).  (3.37)

>0

This can also be proved by considering (W(),ex instead of (X(#)),ex and using an
inequality of Hoffmann-Jgrgensen (cf. [13]). In fact, it is also possible to slightly modify
the proof of Theorem 3.10 and obtain the improved result (3.37) directly.

Proof of Lemma 3.11. We use an idea which first appeared in [20] in a similar
context. Since our argument is essentially the same as that of {21], Chapter II, Lemmas
2.3 and 3.6, we will not give too many details (see also [11]). Note that the fact that the
pseudo-metrics d,(s, f) are translation invariant is essential in this proof.

First we will obtain (0.12). Consider ox(u)=dx(0, u) as defined prior to (0.10) and
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o(u) as defined in (0.11). Clearly, we can find a number b(p)>0 large enough so that
u~'(log b(p)/u)~ V7 is non-increasing on [0, 1]. Now, exactly as in the proof of (3.30),
Chapter 11, [21], we can find a constant D,(K)>0 depending only on b and X such that

Dp(K)_l Ls"ég dX(s,t)+Jq(dX)] = IP(UX)-’-ssxlér;( dy(s, 1)

(3.38)
< D,(K) [Ss’gg dy(s, t)+Jq(dX)]

where I,(0x) is defined in (0.13). This immediately gives (0.12) since
sup;, ;e x dx(s, H<2m()'?.

Recall that following (3.30) we defined o0,,(4)=03,(0, ). As we just did for o{u),
we define g (u) by (0.11). We now use (3.38) with o,, and 4, instead of ox and dy and
obtain

D,,(K)"[ sup 0,(s, t)+Jq(6w)] < I”(O"'Hssxlég 0,(s, 1)

5, t€EK
(3.39)
< D(K) [ sup d,(s, t)+Jq(6w)].
5, tEK
We also define o(1)=06(0, u) so that, by the hypothesis of this lemma
o(u) = Eo,(u).
We have, by Lemma (2.3), Chapter 11, [21], that
E,1,(0,) <1,0). (3.40)

We can now obtain (3.34) since by (3.39), (3.40) and (3.38) with ¢ and 0 instead of ox
and dx, we get

r
E,J(d,)<D/K)|E,L(0)+E, sup 0,(s, t)]
L s,1€EK

<D/(K)|I(0)+E, sup O,(s,t)
p P @ s,t€EK

SDf,(K) Jq(6)+ sup O(s,t)+E, sup (Sw(s,t)]
L s, 1EK 5,1€EK

< 2DX(K) [Jq(6)+Ew sup dw(s,t)],

where at the last step we use the obvious inequality, sup; ,exd(s, )<
Ew sups,IEKaw(s’ t)-
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Aside from the representation of X(¢) by W(#), none of the steps in the proof of
Theorem 3.10 require that the process is exactly p-stable. To demonstrate this we will
prove Theorem B, (i) in which the independent random variables {&,} need not be
stable.

Proof of Theorem B, (i): This proof is similar to the proof of Theorem 3.10 but
somewhat simpler since in this case, we can obtain an easier proof of Corollary 3.8
using Remark 3.9, (iii).

Let {e,},er be a Rademacher sequence defined on a probability space
(', o', P’). Without loss of generality, we can replace Y(¢) given in (0.7) by

Yt0,0')= >, a,e(0)E @), (€K,
yeT

defined on (QXQ’, X sf', PxP'). By Lemmas 3.1 and 3.2 we have

E, sup |[Y(t;w, - )-Y(s;0, )| < kp D, [Jq(éw)+ sup J,(s, t)]
5, tEK s, tEK

where
6(0(5: t) = ”{ay ‘;:y(w) (V(S)—V(t))}yer”p, .
By Corollary 3.8 and (3.24) we have

E,00,(s, )< b,dys, 1)
where b, is a constant depending only on p. Also by (3.2)

sutp 0,(s,)<2|{a, &},ecll, »

and by Corollary 3.8
lp
Esupd,(s,1)<C (2 lay'p)
s, t

where C is constant. Finally, arguing as in Lemma 3.11 we get

1ip
E,J0,)<AUK) {Jq(Ew 8,0+ <Z IaYIP) }

y€T

1p
<b, AYK) {Jq(dy)+ (Z Iay|”> } :

y€T



292 M. B. MARCUS AND G. PISIER

The proof of Theorem B, (i) can now be completed exactly as in the proof of Theorem
3.10 taking into account (2.29) (see also Remark 3.12).

Remark 3.14. The only place that the nature of K came into the proof of Theorem
3.10 or the proof of Theorem B, (i) was in (3.38). This is because the inequalities in
(3.38) involve u(K), w(K+K) and w(K+K+K+K), (where K+K+K+K={s+t+u+uv:
SEK, tEK, u€K, v€K}), and in general these three sets have different 4 measure. If
G is a compact group we take K=G and of course K+ K=G and K+K+K+K=G so this
problem does not arise. Therefore, for example, we can replace A,(K) in (0.8) by A, a
constant depending only on p and independent of G.

Remark 3.15. Let {x;} be a sequence in an arbitrary Banach space. By an argument
similar to that of Lemma 1.2 one can show that L7 ¢ l"j'”"xj converges a.s. iff

L7 ¢ j’””xj converges a.s. This reduces the study of p-stable processes to series of the
latter form. As an example of this we can obtain an interesting relationship. To be
specific, let v={uv(r), t€[0,1]} be a real valued stochastic process with continuous
sample paths satisfying sup,eo, 1] Elv(1)P<o. Let m denote the measure induced by v
on C[0, 1] and let {v;} be i.i.d. copies of v. Then L2 ¢, "7v(r), t€[0, 1], converges
uniformly a.s. iff the p-stable process with m as its spectral measure has a version with
continuous sample paths.

4. Proofs of Theorems A, B and C

In this section we briefly mention how the results of Sections 2 and 3 are put together to
prove Theorems A, B and C. We also mention some other results which follow easily
from these theorems and some results in [21].

Proof of Theorem A. The fact that J,(dx)< is a necessary and sufficient
condition and that J.(dx)<<> is a necessary condition for X to have a version with
continuous sample paths follows immediately from Theorem 2.9 and Theorem 3.10. To
obtain the lower inequality in (0.3) we have by (3.27) of Theorem 3.10 that

E sup X (0)] < EIX (0)|+C,(K) (J (dy)+m(T)"?). @.1)

Furthermore by (1.11)

E|Xo|=6'(1,p) m(I)"7. 4.2)
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Using (4.1) and taking Remark 2.10 into account we get the lower inequality in (0.3).
The upper inequality in (0.3) follows from (2.25) of Theorem 2.9, (4.2) and Remark
2.10.

Remark 4.1. The reader probably has noticed that the choice of the compact set K
does not affect the qualitative results in this paper. Indeed, let (X()),ec be any
stationary process (i.e. a process such that (X(¢)),e¢ has the same distribution as
(X(t+5)),ec for each s€G). If K, and K, are two compact subsets of G with non-
empty interiors, then (X()),¢ K, has a version with continuos sample paths iff

(X(0),¢ K does. This is obvious since each of the sets K, and K, can be covered by

finitely many translates of the other. Consequently, if G is the union of a countable
sequence of compact sets, then (X(1)),cx has a version with continuous sample paths
iff the entire process (X(#));e ¢ does also. Of course, this applies in the most important
cases such as G=R".

Proof of Theorem B. Part (i) was proved at the end of Section 3. Part (ii) follows
from Theorem 2.9, applied in the case when the spectral measure m is discrete, and a
comparison theorem from [14]. To be more specific suppose that (¥(#)),ex is a.s.
continuous, then by a result of Ito and Nisio (cf. Theorem 3.4, p. 95, {15)),
Zyera, &, y(t), tEK, must be a.s. convergent in C(K) in any chosen ordering. Let
{6,},er be i.i.d. complex valued p-stable random variables. Since we assume in (ii)
that

igf P{E|>c} (P{l6,)>c )

is bounded below for ¢ sufficiently large, it follows from Theorem 5.1 [14] that the
series L,era, 0,y(1), tEK converges a.s. in C(K) and this implies, by Theorem 2.9
that J,(dx)<w=, and when p=1, J.(dx)<o. (Even though Theorem 5.1 [14] is written
for real valued random variables it is also valid for complex valued random variables.
Also, clearly, we could have used it to prove Theorem B, (i) as well.)

Remark 4.2. In [21] we consider series of the form
Y) =D a6 &y, 1EK (4.3)

where {¢,} is a Rademacher sequence and {&,} are complex valued random variables
not necessarily independent but with {e,} and {&,} independent of each other. In this
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case if we add the hypothesis sup, E|&,[°<w our proof shows that the series in (4.3)
converges uniformly a.s. and we get an expression like (0.8) for the same dy as in
Theorem B but with the left side replaced by (E sup, ,cx |Y()—Y(s)P)"”. This follows

because ||{a, & |y @)~ 1]}, . <(|a,P|E,P ly ()~ 1P)"".

Remark 4.3. Exactly as in Chapter 7, § 2, [21] we can prove the following: Let
(X(0),e7 be a strongly stationary, real or complex valued p-stable process, 1<p=<2.
Then (X(#));e ¢ admits a version with paths bounded on the whole of G if and only if

Jo (log N(G, dy;e)"de < = , (4.4)

1/p+1/g=1. Moreover if (4.4) holds then the paths of (X(1));ec must be a.s. almost
periodic functions on G.

Remark 4.4. Let G=I'=R" and consider the random Fourier series

> a6,e™7, 1€ [-1,17, 4.5)
k=1

where {8} are i.i.d. real or complex valued p-stable random variables, Then for

1<p<2
© < Z {ak,p)
2 A =n

o 4.6
n(log (n+1))”” = (4.6)

is sufficient for the uniform convergence a.s. of the series (4.5), where || denotes the
Euclidean norm on R”, This result follows because, exactly as in Chapter 7, § 1, [21],
we can show that (4.6) implies J (dx)<«, l/p+1/g=1.

Now let G be the circle group and consider

> a,6,¢", 1€ [0,2nl. 4.7)

k=1

The expression given in (4.6) but with A,=k is a sufficient condition for the series in
(4.7) to converge uniformly a.s. for 1<p<2. The new element here is that the result
holds for p=1. The proof is rather technical and we will not give it at this time. Now let
|ax| in (4.7) be non-increasing. In this case the series in (4.7) converges uniformly a.s. iff
(4.6) holds (with A,=k), 1=<p<2. This is proved by the same method used in {19] in the.
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case p=2 except that we must use the version of Slepian’s lemma for strongly
stationary p-stable processes mentioned right after the statement of Theorem C.

It appears that Theorems 1.2 and 1.4, Chapter 7, [21] should also generalize for
1=p=<2. However, at this writing, we have not yet done this.

Proof of Theorem C. Let us denote by u normalized Haar measure on G and let y,
denote the identity clement in I'. We first observe that

I/p Ip
(2 |ay|"> < f <E|a,|”|ym—l|"> du(?)
¥+ G \r#*7

<sup{dys,t): s, tEG }.

Therefore, if e<(X layl”)””, we must have N(G, d,; €)>1 and consequently

y¥+yy

1/p
(log2)" (Z layl”) <J(dy). (4.8)

baa?

We can now obtain the left side of (0.9) by using (4.8), (0.8), Remark 3.14 and the
following elementary inequality:

E sup |X()—X(s)|= E sup X(t)—f X (s) dus)
5 tEG (€G G

> 4,0,y

ban?)

=E

On the other hand it is obvious that

E sup |X(s)—X()| < 2E||X||
5, tEG

so that the right side of (0.9) follows immediately from Corollary 2.11.

5. Applications to harmonic analysis

Using some of the results of the preceding sections we will show that for 1<p<2 the
space of all p-stable a.s. continuous random Fourier series can be identified with the
predual of a certain space of multipliers. Since our methods are similar to those used (in
the case p=2) in [24], in Chapter VI of [21], in [25] and in {26] we will not give too many
details.
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Let G be a compact Abelian group with discrete dual group I'. We denote by u the
normalized Haar measure on G. Recall that, by definition, a ‘‘pseudo-measure” fis a
formal Fourier series f=%,erf(y)y such that sup,er|f(y)|<e. Let I1<p<oco. We
denote by F, the space of all pseudo-measures f such that T, e |f(y)P<e and equip
this space with the norm

I 5, = ( > If(y)l”) g

v€

Let ¢, denote the Orlicz function
Pa(x) = x(1+log (1+x))"9.

The functions ¢, and v, (Which was defined prior to Lemma 3.1), are in duality, in the
sense that L"* is the dual of L%, and the corresponding norms are equivalent. For
1<p<2 and 1/p+1/g=1, we will denote by A(p, ¢,) the space of all functions f in F,
which can be written as

=D h, %k,
n=1
with
> Wl Il < .
n=1
We define

”f” A(p, q)q) = lnf{Zl ”hn“Fp “kn“npq}

where the infimum runs over all such representations.
Let (6,),er be an i.i.d. sequence of p-stable random variables with parameter 1,
defined on (Q, &, P). We denote by €% the space of all fin F, such that the series

Yyer f@) 6,7 is a.s. continuous, (0<p=<2). If p>1 we equip this space with the norm

> w6,y

yET

[f1,=E

C(G)

where || [|c(c) is the standard sup-norm on the space of continuous functions on G. It is
not hard to see that (C?, [ ] ,) is a Banach space. If p=1, we define

el
C(G)

> e,y

YET

[[f]]l=supcP{

0
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The space C. ; equipped with this ‘‘norm’’ is a quasi Banach space. If p<1, it is easy to
see that f belongs to C% iff £ ¢ |f (¥)<=, so this case is trivial.

Let f be in F,. For tEG, let f, be the translated function, i.e. fi(x)=f(t+x). We
introduce the pseudo-metric 4/ defined by

lp
dl(s.0) =l f~fllf, = ( D for Iy(s)—y(t)l") :

y€T

To simplify the notation we will write
Ep,r(f)zj (log N(G, d!;¢))"" de+|f (0)].
0

We can now state the main result of this section.

THEOREMS5.1. Let fbe in F,, 1<p<2<q<x, 1/p+1/g=1. The following properties
are equivalent:

(1) fbelongs to C

(i) E,, ()<=,
(iii) f belongs to A(p, @,).

Moreover, [ f1,, Ifll . gy and E, (f) are all equivalent quasi-norms.

Proof. We only sketch the proof of the equivalence of the three functionals under
consideration. By Theorem 2.1 in [26], we can immediately deduce that

”f” A, @,) s dp Ep.q(f)

for some constant d,. From Theorem C, we have

— B, (ISIf1, < G E, (f)

p

for some constant C. Therefore, it remains only to show that
L1, < Gl ap, )

for some constant Cj,. This is an immediate consequence of the following lemma.

LEMMA 5.2. If h€ F, and k€ L** then h%k€ C%_ and moreover



298 M. B. MARCUS AND G. PISIER
LhxKl, < Colihll [l

for some constant C;, depending only on p.
To prove Lemma 5.2 we will need the following lemma.

LEMMA 5.3. Let (¢,),er be an i.i.d. sequence of Rademacher random variables
defined on some probability space (Q',d',P’). Let (a,),er belong to |, (). Then
for almost all ' €Q’ the function Zye ra, ey(w')y is in Lw"(dy). Moreover,

E, 2 a, sy(w')y

y€T

= rq“(ay)ye I‘“p, o

Va
Sor some constant r,.

The proof of Lemma 5.3 is quite similar to that of Lemma 1.3, Chapter VI, [21] but
using Lemma 3.1 instead of the corresponding result for p=g=2.

Proof of Lemma 5.2. We begin by recalling that (6,),cr has the same distribution
on Q as (gfw’) 0, (w)),er has on QXQ', (WEQ, w' €Q’). Let a,w)=0,w) h(y).
Since h€EF,, by Corollary 3.8, (a,(w)),er€lp, «(I') @ a.s. Therefore, by Lemma 5.3
the function

H, (0=, a(0)&0) )

y€T
belongs QX Q' a.s. to the space Lw"(d,u). Moreover, we have

”Ew,w' Hw,w’”wq = Cl(q)“h”Fp (51)

for some constant Ci(g). By a well known duality argument, since k belongs to
L% and H, , belongs to L% a.s., the function H, ,. %k belongs to C(G) almost surely

and furthermore
”Hw,w' * k”C(G) = CZ(q) ”Hw,w’ ”'/’q ”k” ?, (52)
for some constant C5(q). Therefore, by (5.1) and (5.2) we have

E|H, , *klce =< Ci(q Cyq) “h”Fp ||k||¢q-

This completes the proof of Lemma 5.2 and consequently of Theorem 5.1.
When p and g are no longer assumed to be conjugates we can extend Theorem 5.1
as follows:
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THEOREM 5.4. Assume 1<p<2, 1/p+1/q=1 and q<r<x. Let f be in F,.

(i) Then f belongs to A(p,9,) iff E, (f)<» and moreover, there is a constant
C,,, depending only on p and r such that

Cor By (SNl 4, 00 <Cp E, (f ). VFEAD, @)

(i) The space A(p, ¢,) coincides with the interpolation space [A(p, ¢,),Fplo.1
obtained by the Lions-Peetre interpolation method (cf. [3]) where 0 is defined by the
relation 1/r=(1—0)/q+6/=. Moreover, the corresponding norms are equivalent on

A, @)-

In the particular case p=g=2 Theorem 5.4 is proved in detail in [26]. Now that we
have established Theorem 5.1 the general case 1<p<2<g<r can be proved by a trivial
modification of the arguments of [26].

Remark 5.5. Using the ideas of [25] and [26] relating interpolation spaces and the
functionals E, ,(-), along with the preceding results, it is not hard to prove the
inclusions

[Cell.s.’ Cg.s.]o,l < Cg.s. < [Fl’ C?zx.s.]ﬂ

where [ , ]o denotes the complex interpolation functor and 1/p=(1-0)/1+0/2, 1<p<2.
We do not know if C?, (or equivalently A(p, ¢,)) coincides with a suitable interpola-

tion space either between F, and C?_ or between C. and C .

Remark 5.6. (i) It would be quite interesting to find a direct proof of the fact that
the functional E, , is equivalent to a norm if 1/p+1/r<1 and 1<p=2. It is not hard to
see that this is no longer the case if 1/p+1/r>1. However, we conjecture that E, , is
equivalent to a norm when 1/p+1/r<1 and p>2. (Unfortunately we can not find a
substitute for Theorems 5.1 and 5.4 in this case.) Note that for p>2, 1/p+1/g=1, it is
rather clear that ||-||,(, %) and E, (-) are no longer equivalent functionals. This can be
seen by considering lacunary series.

(ii) By a well known comparison principle (cf. [14]) we know that if 1<p;<p,=<2

[f1,,<C@,.pIIf],, YfECY,
where C(p;, p») is a constant depending only on p, and p,. By Theorem 5.1 this implies

Ep,,qz(f)s Cl(pl’pZ)Epl,ql(f) 5.3)
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where 1/p;+1/q,=1, VUp,+1/g,=1 and C'(p,,p;) is a constant depending only on p,;
and p,. However, we know of no direct proof of (5.3).

@(iii) It is natural to raise the following question: Problem: Is (5.3) true if
2<p,<p,<==? In particular, is E. {(f) dominated by a multiple of E, ,(f)?

Remark 5.7. Let (0,),er be as above. By exactly the same proof as the proof of
Corollary 1.10, Chapter VI, [21], we can show that for each p, 1<p<2, there is a
number 8,>0 such that: For any finite subset AcT of cardinality n, we have

> 4,0,y

vEA

E

>3, " (log '~ 3 || (5.4)

C(G) y€EA

On the other hand it follows easily from the results of Section 3 that
2 0/( eik!
k=1

for some constant C, independent of n. Therefore the left side of (5.4) is essentially
minimal when (y), e 4 are consecutive integers.

E <C, n'? (log (n+1))"

G
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