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0. Introduction 
The purpose of this paper is to prove some new linear properties of the disc algebra A 

and the space H ~176 of bounded analytic functions on the disc. More precisely, results on 

absolutely summing operators, cotype, finite rank projections and certain sequence 

properties, such as Dunford-Pettis property and weakly completeness, are obtained. 

The main motivation for this work were A. Pelczynski's notes (see [44]), which 

contain also most of the required prerequisites. Our work extends [44], since it solves 

several of the main problems. It is also of interest in connection withquestions raised in 

[30], [32], [33], [35], [59]. Besides [44], our references for Banach space theory are [36], 

[37], [38], [47]. Basic facts about/4P-spaces can be found in [18], [20], [27], [53], [54]. 

In what follows, we will first describe the frame of the work and recall some 

definitions. Then we will summarize the several sections of the paper and state the 

main results. If u is an operator from a space X into a space Yand 0<p<oo, we say that 

u is p-absolutely summing provided there is a constant ~. such that 

ilu(xi)llP <_ ~p max { E , (  xi, X*)[P; x*~X*, [[x*,[ <~ 1 } 

holds for all finite sequences (xi) of elements of X. The p-summing norm :r,(u) of u is 

the smallest A with above property. Let H,(X, I9 be the space of p-summing operators 

from X into Y. 

For O<p< 1, the spaces lip(X, 19 coincide and will also be denoted by Ho(X, 19, 

the O-summing operators from X into Y. Say that u is p-integral, resp. strictly p-integral, 

provided u admits a factorization 

u j u 
X :- Y = Y * *  X : Y 

S L 
L~O(/x) I :- Lp(/x) L~(p) I = LP(ix) 
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where/~ is a probability measure, I the identity map andj  the canonical embedding. The 

space of strictly p-integral operators is denoted by Ip(X, Y) and is equipped with the 

(strictly integral) norm 

i (u) = inf[ISI111711 

where the infimum is taken over all factorizations. Say that X has Grothendieck 

property provided any operator from X into ! 2 is 1-summing, thus B(X,/2)=III(X, /2). 

An equivalent formulation is the equality B(X*, I~)=II2(X*, 1~). Grothendieck's theo- 

rem asserts that L~(a)-spaces have Grothendieck property. As pointed out in [44] 

(Theorem 3.2), this general result follows easily from the fact that the operator 

--~l, 

where P is a Paley projection, is onto. This shows the usefulness of certain specific 

operators arising in harmonic analysis to the general theory. It is shown in [41] 

(Theorem 94) that Grothendieck's theorem can be improved to the equality 

B(l 1,/2)=ii0(ll,/2). A way of seeing this (cf. [32], section 2) is to consider the set 

A = Z + U  {-2n; n = 0 , 1 , 2  .... } 

and the orthogonal projection 

Q:CA___~ 2 L{-En} 

which is again onto by Paley's theorem. Now, for p>O, one has the inequality 

\ ,,2 f 'an[ 2) <~if~f~J ~ In=~ane-t~~ lPdO}l/P \ 
from which it follows that Q is p-summing. 

Absolutely summing operators on A appear in the study of certain multipliers. For 

instance, Paley's theorem that each (A, P)-multiplier M is/2-summable is equivalent to 

the statement MEH2(A, lJ). In this spirit, the reader is referred to [35] for a study of 

translation-invariant absolutely summing operators. Our work actually shows that 

these results extend to arbitrary operators and that the equality B(A, /1)=1-I2(A, /l) 

holds in general. 

One of the striking facts about operators on the disc algebra is the following 

extension of the coincidence of the notions of p-summing and p-integral operators on 

C(K)-spaces (see [44], section 2). 



N E W  B A N A C H  SPACE PROPERTIES OF  THE DISC ALGEBRA A N D  H ~ 

PROPOSITION 0.1. For l < p <  oo, any p-summing operator u on A is strictly p- 
integral. Furthermore 

p2 
ip(U) <- const. P -  1 :rp(U). 

Proposition 0.1 extends the LP-boundedness of the Riesz-projection for 1 < p <  oo. It 

provides a linear invariant which allows for instance to establish the non-isomorphism 

of A and the polydiscalgebra's. A new proof of Proposition 0. I based on weighted norm 

inequalities can be found in [32] (section 2). 

Denote m the normalized Haar measure on the circle H. If A is a measurable 

subset of II, we shall sometimes use the notation IAI for m(A). IffELl(Fl) ,  f f  means 

always f fdm.  If H01 is the space of integrable functions f o n  H such that 

f(n) = f f ( o )  e-i"~ = 0 for n ~< 0 

then the duality 

(f, w) = ff.wdm 

identifies H ~ to the dual of the quotient space Ll/H~o . We consider the quotient map 

q: L1---~L1/H~. This map has several remarkable properties which the reader can find in 

[44] (sections 8 and 9). To each x in LI/HI o corresponds a unique f in L I such that 

q(f)=x and Ilfli--llxll. This fact defines the minimum norm lifting o: L1/HI~,~,L I. 

If A is a weakly conditionally compact (WCC) subset of Ll/L~o, then o(A) is 

relatively weakly compact in L ~. Recall that A is WCC provided each sequence in A 

has a weakly Cauchy sequence. This fact combined with the F. and M. Riesz character- 

ization of A* as 

A* = L I / H ~ M s ( H )  (M s = singular measures) 

implies that A* is weakly complete and satisfies the Dunford-Pettis property (DPP). It 

was unknown whether or not A could be replaced by H ~. We answer this affirmative- 

ly, by showing that any ultra-power (L1/H~o)~ of LI/H~ is weakly complete and has DPP. 

Achieving this requires a local version of the regularity property of o with respect to 

WCC-sets. This localization, previously sketched in [7], turns out to generalize J. 

Garnett's theorem that harmonically interpolating sequences in the disc are interpolat- 
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ing (see [21]). We will use here a reverse approach (see also the remarks in last section) 

deriving the lifting theorem from certain facts on interpolating sequences which are 

apparently new. These will be obtained by dualization of certain results on vector- 

valued H~-spaces, which are of independent interest. 

The fact that the Paley projection P:A-.-~I  2 does not factor through an Ll(u)-space, 

implies, by general results, that A has no local unconditional structure (see [44], section 

4). This means that A cannot be obtained as closure of an increasing sequence Ea of 

finite dimensional subspaces so that supa unc(Ea)<oo, where 

and 

u n c X =  inf {unc {xi} ; {xi} is a basis for X} 

unc'xi':supIIl +ax I i 
In particular, A is not an LC~~ (see [36] p. 198 for defirition). However, as we 

prove, Co is the only (infinite dimensional) complemented subspace of A possessing an 

unconditional basis and A only admit c0-unconditional decompositions (cfr. [57], [58]). 

Say that X is a P~-space (2/> l) provided X embeds as 2-complemented subspace of 

a C(K)**-space. The structure of fni te  dimensional Pa-spaces is not yet understood, 

except in the case 2 is close to 1 (see [60]). 

We investigate here finite rank projections in A and show that the range has to 

contain /m-Spaces of proportional dimension. Besides, any n-dimensional a-comple- 

mented subspace of A is a Pa for 2 of the order a-log n. Natural examples, such as the 

polynomial spaces L(o ' ~ ...... } show that this result is best possible. 

The results on the disc algebra presented in this paper use heavily the fact that A is 

a log modular algebra. For some of them, also the weak-type property of the Hilbert 

transform is involved. At this time, we don't know of extensions to other natural 

spaces, such as the polydisc- and ball-algebra's or spaces defined by singular integrals. 

Let us now outline how the remainder of the paper is organized and indicate the 

main results obtained in the different sections. 

In the next section, we derive some simple consequences of the weak-type 

property of the Hilbert transform. We then apply the classical construction of outer 

functions to obtain H | functions satisfying certain prescribed conditions. More pre- 

cisely, a Havin type lemma is obtained and certain "truncation" results. The main 

result is contained in Proposition 1.7, which will be used several times in the paper. 
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Section 2 is devoted to the study of absolutely summing operators on the disc 

algebra and H =. The central theorem can be stated concretely as follows 

THEOREM 0.2. For each finite sequence (Xk)l<.k~n in LI/H I, there exists a lifting 

(fk)l<.k<.n in Ll(II), i.e. q(fk)=Xk for k---I . . . . .  n, such that 

sup E ekfk <~C sup E ekxk 
ek= +1 tk= +1 

1 

where C is a fixed constant. 

Theorem 0.2 is equivalent to the Grothendieck property of LI/HIo . Two different 

proofs of this fact are presented. The first is the so-called extrapolation-method, which 

relies on an interpolation enequality for the p-summing norms of an operator on A. The 

second, which was suggested in [32], consists in proving that 0-summing operators on A 

are nuclear. Both approaches have several further consequences for the local structure 

of the disc algebra. 

In section 3, certain vector-valued Hi-spaces are characterized. More precisely, 

the following result is proved. 

THEOREM 0.3. Let Xo (resp. XO be C N equipped with a weighted l ~ (resp. I l) 

norm. Then the spaces Hloux~ and 1 l H'xoOH'x~ have equivalent norms (up to a fixed 

constant). 

This fact combined with classical Blaschke product techniques has consequences 

for interpolating sequences in the unit disc, which will be used in the next section. One 

could use Theorem 0.3, and the method to derive it, to develop the real interpolation 

method for H l (and H p) spaces taking values in Lorentz spaces. Theorem 0.3 can 

indeed be rephrased in terms of K- or J-functionals (see [2] p. 38, for instance). This 

further development is however not worked out in the paper since it seems us a bit 

outside its purpose. 

The results of section 3 are used in section 4 to derive the following property of the 

minimum norm lifting of L~/H~o . 

THEOREM 0.4. Let (Xk)l<~k<~ n be elements o f  L1/H~ and assume fk=o'(xk) satisfy 

(i) J / max' k lfkl a Xk llxkll w h e n e v e r  ~ k ~ O .  
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Then there are H~176 (Cpk)l~k~. such that 

(iii) I(fk, q~k)l>e(6)  f o r k = l  . . . . .  n. 

This fact can be seen as a local version of the lifting property of weakly condition- 

nally compact subsets of L1/H~ by a. 

In section 5, further linear properties of H ~ are obtained. We first combine 

Theorem 0.4 with results of N. Tomczak-Jaegermann [56] to prove that any finite 

dimensional well-complemented subspace of H ~ contains l d subspaces of proportional 

dimension. Theorem 0.4 is then used to extend J. Chaumat's results (see [15]) on the 

Dunford-Pettis property and weakly completeness of LI/H~ to the space (H~) *. Our 

method uses ultraproduct representation, which in this context seems the most conve- 

nient form of the local reflexivity principle. 

Section 6 contains further extensions and applications. Results of D. Marshall [39] 

allow to generalize part of our work to closed subalgebra's of L~(II) containing H ~176 

Our results on the Grothendieck property solve affirmatively a question of N. Varopou- 

los on projective tensor algebra's. They also turned out to be useful in a recent 

construction of Banach spaces in connection with some conjectures of A. Grothen- 

dieck on tensor products (see [50]). 

Part of the material presented here was already announced in the C.R. Acad. Sci. 

Paris notes [4] and [6]. The reader will find a summary in [11]. 

1. Preliminaries and decomposition lemma 

Let us first fix some notation. 

D = { z E C  ;]z[<l} is the open unit disc and H, m the circle equipped with Haar 

measure. Denote Pr (0~<r<l) the Poisson kernel, ~ = ~ +  (resp. ~_)  the positive (resp. 

negative) Riesz projection and ~ the Hilbert transform. 

Define for convenience 

Hfllw = sup2rn[]j~ >~.] for f measurable on H 
2 > 0  

] l f ] ] ,  = IIfI]L,/H, = inf {[]f+h ]l,, h E H0 I} for f E  L'(H). 

The restriction map f~3qrl gives an isometric embedding of A in C(H). 
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Identifying the /-F-function with its radial limit, the space H p can be seen as 

subspace of Le(YI). If it is not specified otherwise, A- and/-F-functions will always be 

seen as functions on H. Through the paper, C will be some numerical constant. 

PROPOSITION 1.1. Assume/u in M(II). Then 
(i) For a< 1, ~(tt~Pr) converges in L~(I-I)for r-.1. < 
(ii) I[fllw <<-Cl~ull, where f=sup  I~(,u-~Pr)]. 

r< l  

The reader will find a detailed exposition of these classical facts in [20] (see 

Theorem 3. I p. 57, Theorem 2.1 p. 111). 

LEMMA 1.2. I f  toEL~(H) and 0~<a<l, then 

-< I,', -o  l lo l , :  

Proof. Define A(2)=m[IJ]>~.] and fix 0<2o<OO. Then, by partial integration 

Taking then 

the required inequality follows. 

A(~ v ~0)~ ~-~ d~) II~oll~ ~ ~ II~olh + ~ ~- i  IIJ~lw II~oll~, 

I1~'11~ IlYqlw 
] ' 0 - -  II'oll, 

As consequence of Proposition 1.I and Lemma 1.2, we get 

LEMMA 1.3. I f fELl(II) ,  ~oeL+(rI) and 0~<a<l, then 

f I~t-(f)l ~c~ <~,l_-~Ca IIt~ Iltoll: I~1,  

Let us recall the construction of an outer function. Assume f > 0  a bounded 

measurable function on II and log f i n  Li(FI). If for zED, we define 

f ei~ g(z) = exp log f(0) ~ m(dO). 
e - z  ) 

then g is an H~-function and has boundary value f e  i ~ecIogD 
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Next  lemma is related to the so-called Havin lemma (see [25]). 

LEMMA 1.4. I f  A is a measurable subset o f  H and 0 < e < l ,  then there are H ~- 

funct ions q9 and ~0 such that 

(i) I~l+lWl~<l 
(ii) I~(z)-l/51~< e for z E A  

(iii) [~p(z)I---<e for z E A  

(iv) II~oll,~<c (log e-l)2lAI 

(v) III-w112<-c (log e - i )  IAI i/2. 

Proof. Only the L2-boundedness of the Hilbert transform is involved here. Take 

first 

and consider the H~-function 

r = 1 - - ( 1 - - e ) Z A  

f =  r e i~(l~ 

Then 13q=e on A and since 

I 1-3~ ~< I 1 - rl + {(1 - cos ~e(log r)) 2 + sin 2 Y((log r) ) 1/2 

we get 

~< I I - r l + l ~ ( l o g  r)l 

/ I x , 

Thus if q0=l(1--f) 2, (ii) and (iv) are fulfilled. Take now 

u =  1-iqo I and g=~ce  i~(l~ 

Then Iqol+lg[~<l and one verifies easily that IIl-gll2~<C(log l/e)IAI ~/2. 

Define v/=f .g ,  which satisfies clearly (i), (iii) and (v). 

LEMMA 1.5. There is a constant C such that i f  f is positive measurable on II and 

0 < 2 < ~ ,  one can f ind  cp E H  ~ satisfying 

(i) 11~011~<3 
(ii) Iq~ If~<3;t 

(qi) IIl-~ll~<cA-I Ilfllw 
(iv) I1(1-~)f111 ~<c Str>ajf. 
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Proof. If [IfHw=~, there is nothing to prove. Otherwise, the function 

r =  [ max (2-If, 1)] -I 

has integrable logarithm and one can consider the H~-function 

= T e i ~(Iog r). 

Define ~=l--(1--~l)2=2~l--~q 2 for which 1~1<~31~0,1. Hence (on FI) 

Also 

where 

and 

Iq~lf<~ 3rf  <~ 3k. 

I[1-q~lt, = f ll-~o,12 ~z f (1-r)2+2 f l ~e(logr)t 2 

f( 1-r )  z ~< mlf>2]  

Because (log X)2~X for x>  1, it follows that 

II1-~011, ~< c,~ -~ Ilfllw and 

Finally 

IIl '~lh ~ c&- '  fry>a f" 

9 

f = f l + f 2  

/- 

II(1-~o)f[I,~4~ f+A[[1-~[l, 
JOe>).] 

implying (iv). 

As a consequence of preceding lemma, we get following Marcinkiewicz decompo- 
sition for/-P' functions. 

PROPOSITION 1.6. For giuen 0<p<o% there is a constant Cp such that i f  f E H  p 

and 0<2<oo, there is a decomposition in H p 
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where 

(i) Ifll ~< CplJ] and If2] ~< CplJq 

(ii) If~l -< cp 

(iii) f IAI~ <- c, ft~ >~ 0q'. 

Proof. Apply preceding result to the Ll-function ~ replacing 2 by ;t p. Let q9 be 

the H~176 obtained in this way. If p/> 1, define 

f l= fq0  and f2=f(1-q0). 

For 0 < p <  I, define first 

q~, = 1-(1-qr k where k =  [ 1 ] + 1  

and take again f i = f  q~l, fz =f( l-cpl ). 

In what follows, crucial use will be made of the following result. 

PROPOSITION 1.7. There is a constant C such that given a positive Ll(1-l) function 

f ,  f f=  1, and 0<8<1,  there are positive scalars (ci) and sequences (Oi), (ri) of  H ~ 

functions satisfying following conditions 

(i) IlOell~ ~ c 

(ii) E kil ~ c 

(iii) [ri[f~< c i 

(iv) Z c;Ik;ll~ ~ c a  - c  

(v) f [1-E O~[f<~ b 

Proof. Fix a positive number M=M(6)> 1 which will be specified later and define for 

iEZ  

A i = [M / ~<f< M~'+']. 

Clearly [Ail<~M-ifAif<~M-i. Apply Lemma 1.4 to each set Ai, taking e=M -~, which 

leads to H~-functions ~Pi, ~Pi. Hence, by (i), (v) of Lemma 1.4, 

1~0~+ s -  11 ~< sl~Pi+ ~- 11 because [~Pi§ ~< 1 for s = 1,2 ... .  
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and thus 

IIl-~i+~lh ~ slll-~,+~llz~< ClogM sIAi+s[ 1;2 < oo. 
s = l  s = l  s = l  

Therefore, the formula 
oo 

~; = 5 ~0; I-I V:;'+, 
s=8 

defines an H~ Moreover, by (ii) and (v) of Lemma 1.4, and the Cauchy- 

Schwartz inequality 

(vi) ~fAll--~,lf<~/fAI]--59~ilf+~SfA, II--w,+,lf 
~ 5 e + C l o g M  Z M'+'2 slAill/2lA,+,l ''2 

i s>~8 

<~ 5e+ClogM E s M '-'2 E ( Mi Ia;I) ';2 ( M;+' Ia;+,l) ''2 
s~>8 i 

<~ 5 M-I + C l o g M  E s M l-s/2 = C M -l. 
s>~8 

Further 

(vii) flril ~< 5 M i+8 

since by Lemma 1.4(iii) we get on the set Aj forj~>i+8 

~r;I ~< 5 M j+' l~X-i ~ 5M j+l E j - i  = 5 M i+1 

while f~r/l~<5f<~5 M i+8 on LIj<i+ s A~. 

Also, by Lemma 1.4(iv) 

(viii) ~ M;ll~,.Ih = 5 ~ M;ll~illl ~ C (logM)Z ~ MqA;I ~ C (log M) z. 

For t=0, 1,2 . . . . .  7, write for convenience i=t provided i=t (mod 8). 
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Iteration of Lemma 1.4(i) shows then that 

(ix) ~] 17,1 ~ 5 ~ I~,11-[ Iw, I ~ 5. 
i=--t i=--t j=-t 

j>i 

Define for each t 

Bt=UA, and r/,=Er ~ 
i~t i~-t 

T h u s  

(x) 11~,11~25 

From Lemma 1.4(iii) and (iv), we get clearly 

s [ l - - T ] t { f ~ E  { fA  ' ' - - ~ ' f - I ' E l  'TJ'2f } 

~<6 ~ fa ]l-r,]f+25 E M'+' { _<~i_ fa ]lpi]i-'+ E ]lq~,]],} 
i imt j 8 i j~i+8 J 

<~Ci~ s {1-ri{f+CM-6EM'IAiI+C(I~163 E 
"=" i i=--t imt 

Hence, by (vi) 

(xi) •f• [1-q,[f~< C M-' +C M-6+C (IogM)Z M -6 -- C M-'. 
l 

Define the H=-functions 0; as follows 

0i= (1- r/,+ 0 (1-~/t+z)... (l-r/v) 
Oi=l if i~-7. 

if i - t<7 

Consequently 
7 

E o ,  e, = 
t=O u>t 

and therefore 
7 

I - g  = 1-I(l-.,) 
t=0  

Ia, I. 
j>>-i+8 
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By (ix) 

(xii) Elr,.l~40 
and from definition and (x) 

(xiii) 110;11~<267. 

Since 

f ~  7 f 1--~OiT~ f~Itll--r]tlf<~Ct~=ofBIl--r]t[f. 
(xi) shows that (v) will be satisfied for M~c~ -j . 

Taking ci=5 M '§ conditions (iii) and (iv) follow from (vii) and (viii). 

So this completes the proof. 

13 

2. Absolutely summing operators and the cotype property 

For completeness sake, we recall the following fact (cf. [44], Theorem 2.3) concerning 

the decomposition of an absolutely summing operator T on the disc algebra A. 

PROPOSITION 2.1. A s s u m e  T p-surnming (p<. 1) on A. Then T has a decomposit ion 

T= TI + T2, where the components  T1, 1"2 fulfil the fol lowing conditions: 

(i) zcv(Tly' + grp(T2)P ~rtp(T) p, 

(ii) ~rp(Tj) is realized by a Pietch measure on the circle H belonging to Ll(m).  

Moreover 

~rq(T~) <<. rCq(T) forO < q <~ oo. 

(iii) There is a sequence o f  operators S ,  : C(FI)---~A, such that (T2Sn) converges in 

Jrp-norm to an operator ]'2 satisfying T2 = TzJ where j : A---~C(FI) is the injection. 

Proof. Since p~> 1, the A. Pietch factorisation theorem (cf. [47]) provides a Radon 

probability measure/~ on 1-I such that 

IIT( )II for  EA. 

Let dt~=h dm+dl~s be the Lebesgue decomposition and L=U,~ t K,, K, compact, a Ko- 

subset of I-I so that m(L)=0 and/~s(L)=lLu~ll. 
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By classical results from peak-set theory (see [20], p. 203, 

possible to find a sequence (~0k) in A satisfying the conditions 

(iv) II 0kll  l 
(v) (~PD converges pointwise to 0 on the set L 

(vi) (~Pk) converges to 1 a.e. (with respect to m), 

Since in particular (~/'k) converges in LP(g), one can define 

and 

Clearly 

T~(O = lira T(tp~p k) 
k ----> 0o 

Lemma 4.5), it is 

T2= T - T  1. 

II [ILp h and [IZ2( 0)ll ) 

from where (i). 

A similar reasoning actually shows that ~rp(Ti) is realized by an m-regular meas- 

ure. Also, from definition, it follows immediately that 

.7"tq(Ti) ~ ,7l(q(T) for all 0 < q ~< ~.  

Denote for each n=  I, 2 . . . .  , 

R,, : C(H) ~ C(Kn) the restriction operator 

and 

E ,  : C ( K , ) - + A  a norm-preserving extension (cf. [44], Theorem 2.1). 

If  one defines S,=E,d~n, it is easily verified that the sequence (T2Sn) converges in ~rp- 

norm to an extension/~2 of  T2. 

Remarks. (I) The first component  Tt can be extended to H =, defining 

T1(9) = lim Tl(q~-~Pr). 
r - - } l  

< 

It is indeed clear that the limit exists. This extension will be useful in what follows. 
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(2) In case T is 0-summing, one applies Proposition 2.1 with p = 1. Thus T1 and T2 

are again 0-summing. Now, for each n, the operator T2Sn will therefore be nuclear (see 

[32], Theorem 5) and therefore also 7~2 and T2. 

Let us now state our first main result. 

THEOREM 2.2. Let p ~ 2  and Y a Banach space such that any bounded operator 

from C into Y is p-summing, i.e. B(C, Y)=FIp(C, Y). Then also B(A, Y)=lip(A, Y). 

(lip can be replaced by Ip, taking Proposition O. 1 in account.) 

Theorem 2.2 will be obtained from an extrapolation technique, which was already 

previously used in [43], [34] and G. Pisier's proof that the quot ientof  L 1 by a reflexive 

subspace verifies the Grothendieck theorem [48]. 

The main ingredient is an interpolation inequality on the p-summing norms, which 

will be presented in the next sub-section. 

2.1. An interpolation inequality 

Our purpose is to show the following fact: 

PROPOSITION 2.3. Assume l < p < ~  and T p-summing on A. Let p<q<oo and 0 

such that 

Then for  all 0<~<0,  one has an inequality 

iq(T) <~ C(p, q, ~9) II~ql~ 

where, more precisely, C(p, q, ~)=C(p)/(O-@). 

This result turns out to be sharp, as will be clear from a discussion below. 

The proof of Proposition 2.3 depends on the following preliminary decomposition 

property. 

LEMMA 2.4. There is a constant C>I  such that under the hypothesis o f  Proposi- 

tion 2.3 and for given 0<t~<l,  the operator T has a decomposition T=I+R, where 

(i) I is strictly q-integral and 

iq(1) <~ Cp(O-~)) -1 ~-c(I-~)/p ii ql  



16 J. BOURGAIN 

(ii) IIRII~cI[~I and y[p(R)~C f~l/p~p(T). 

where Cp is the norm of the Riesz-projection regarded as an operator in L p. 

Proposition 2.3 is then obtained by an iteration procedure. Starting from Ro=T, 

consider successive decompositions Rk=Ik+~+Rk+~ according to Lemma 2.4. 

We see that for ~ small enough 

Jrp(R,) ~ 0 and iq(lk) ~ Cp(O-~))-If~-c(I-r f~(I-~)*) k-1 IlZll@~rp(T) l-~. 

Specifying 6=(2C) -~ leads to the estimation 

and thus 

iq(T) <. E iq(lk) <~ Cp (0-~)-!  (2c)C21lTll~p (T)I-~' 
k 

iq(T)~ C(p) (0 -~ )  -jlITII~gT) 1-r 

as required. 

Proof of Lemma 2.4. First one can identify T with the component T~ in decomposi- 

tion 2.1. Indeed, since T2 is defined on C(H), H61der's inequality yields immediately 

(cf. [48], p. 75) that 

i q( Z2) <~ i q( T2) <~ II f211~176 ~< 2llTllSr g T) '-~ 

Thus T extends to H ~ and there exists f E  LI+(H), S f  = I, such that 

[IT(q~)ll<-:rgT)llq~llL,~dm) forq06H | 

Let (ci), (0i), (ri) be the sequences obtained by application of Proposition 1.7 to the 

function f,  taking 5 as in Lemma 2.4. Define 

T(q~.EOi~ ) and R = T - I  

~ m 

I(q~) = 

which makes sense by (i), (ii) of Proposition 1.7. Also []RI[ ~< CI[T[[. Since 

IIR(cp)II<~p(T) lq~l p l-~,Oir~ l fdm I 
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estimation (v) of Proposition 1.7 combined with (i) and (ii) of Proposition 1.7 show that 

~p(R) ~< c~ vOrp(T) 

Remains to verify (i), Extend I to C(H) by the formula 

which clearly makes sense if ~ has finite spectrum. Now 

for FE Ll(II) satisfying 

fq3Fdm I ~IIT(~)II for a l l ~ E H  | 

Also 

f(Ezi~+(OiricP))F=limfEOirig~(ri F) 
defining for convenience ~_=~_-x-P,. 

Fixing r<  1, application of the HOlder inequality leads to 

By definition of 0, we get 

q'=(~q')a+(1--~q')p' where a = p ( p -  1 + ; ) - ' .  

So, applying the HNder  inequality for sequences, we get the estimation Ux g on the 

first factor of the preceding inequality, where 

} 11q'- ~la 

2-848288 Acta Mathematica 152. Imprim6 le 17 Avril 1984 



18 J. BOURGAIN 

To estimate U,  apply first Lemma 1.3 with w=lri[, which gives 

f I ~'-(~,~1 ~ 13,1 ~ ~ I1~,11',-~ I1~, ~1: �9 

Thus, using (ii) and (iv) of Proposition 1.7 

( c y'o ~"'-~176 

( c y'aa_c,(,_o),o 
~< \ ~ ---2-d/ Ilelff, 

<~ C- (OP)~ O-cto-~),p tlTIt~ 
(o-~)  ~ 

~<p~(0-~)-I~  -cO-~p IITII ~ 

The L P - L  p' duality shows that 

I I/p" 

over the sequence (~i) fulfilling 

Since 

we obtain estimation by 

_ I~ / ~ / ~  

By Proposition 1.7 (ii), (iii) and the M. Riesz theorem 
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Consequently 

/" 

CCp. 

v <~ (cc. ~.(r))~'("q'-~'~ <~ (cc~ ~(~)'-*. 

By completion, I extend to C(H) and 

UV (~ -C(I-O)/p 

c~(o_~)., ~-c.-.)~ 11711' ~(r)  ~-' 

as desired. 

19 

2.2. Consequences 

Let us first proceed with the proof of Theorem 2.2. Denote y~(T) the factorization 

constant of the operator T through an L~(~)-space. By Proposition 2.3, we get for 

T E IIp(A, Y) 

~,| ~< iq(T) ~< ~ [Irll ~ ~,(T) ~-' 

for p < q  and ~<0.  Since 0--->1 for q-->~ 

(*) 

If now Y satisfies the hypothesis B(C, Y)=YIp(C, Y), we get also 

~tp(T)~<C(Y)F| for a fixed constant C(Y). 

Hence 

ytp(T) <~ ( C(~C(P).) I/q~ HT H. 

proving the equivalence of operator- and p-summing norms for finite rank operators 
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from A into Y. Since A has the bounded approximation property (in fact A has a basis 
[3]), we conclude that B(A, Y)=Hp(A, Y). 

If  we choose in (*) 

we find 

/ ~p(T) \ - I  

~p(T) 
r~(T) ~ C(p)IITI[ log IITll " 

Hence 

THEOREM 2.5. I f  TE IIp(A, II), then T has an extension 7" to C(II) satisfying 

%(I) 
IITII ~< C(p)HTlilog IITII 

Since always 

y/'2(T) ~ [[T[[ (rank T) v2 

for finite rank operators, the following corollary is immediate: 

COROLLARY 2.6. (i)A rank n operator Ton the disc algebra has an extension T to 

C(H) satisfying IITI[~<C(2) (log n) IIT[t. 

(ii) I f  X is an n-dimensional subspace o f  A complemented by a projection P, then X 

is a Pa-space with 2~<C(2) (log n) IlPl[. 

This result, answering affirmatively problems raised in [46] and [59], is best 

possible as we will indicate at the end of this section. 

Combining Theorem 2.2 with Grothendieck's fundamental theorem B(C, P)= 

H2(C, I l) and a result due to Maurey (see [40]), the following consequences are 
derived. 

COROLLARY 2.7. B(A, ll)=H2(A, lZ), or equivalently, A* verifies the Grothen- 

dieck theorem. 

COROLLARY 2.8. I f  CO is not finitely representable in Y, then B(A, Y)=Hp(A, Y) 

for  some p<oo. In particular, i f  Y is a cotype 2 space, then B(A, Y)=H2(A, Y), 
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Let us recall that Y has cotype q(2~<q<oo) provided 

f [ '~ eiYi[lde>~7(~ HyiHq) .Iq 

holds for some constant y>0 and for all finite sequences (Yi) in Y. 

(As usually, (el) denotes the Rademacher sequence.) 

Proof of.Theorem 0.2. Consider elements (Xk)j~<k<~n in LllHlo and the operator 

T:A---,IIn given by T(cp)=((q0,xk))~<k~< ~. Clearly 

'llql<~2 sup I[~ ekxk 

By the extension property for 2-summing norm and Corollary 2.7, there exists an 

operator T:C(I-I)-->II~ satisfying Tj=T, where j:A--->C(FI) is the injection, and 

11 ll < 2( = 2(T) <CllTll. Denote/zkEM(H) the kth component of (~*.  Then 

ek = --.I 

Moreover, if for k= 1 ... . .  n we consider -~k in L~(II) representing xk, it follows that 

(~k-~) • thus ~k--J?k is in H~ and in particular ~k<<m. 

The following observation, due to Figiel and Pisier (cfr. [19] and the remarks at the 

end of [58]) is well known. We include its proof for selfcontainedness sake. 

PROPOSITION 2.9. Any space X with the Grothendieck property, isomorphic to its 
direct sum (g~j JOz in ILsense, is of cotype 2. 

Proof. If A denotes the Cantor group, then L~(A) verifies the Grothendieck 

theorem. For ~EL~(A) and S a finite set of positive integers, denote ~(S) the corre- 

sponding Fourier-Walsh coefficient of ~. Fix a sequence (x~ in X* satisfying 

I<x:,x>l   <llxll for all xf iX.  

Then the map a:Llx---~l 2 defined by a(~)=((~{i}, x*)) is norm-1 bounded and hence 

zq(a)<~C(X). Given an arbitrary (finite) sequence (x~) in X, it follows thus 

C(X)f[l~ixilld~>>'~lla(xi| x'>l" 
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Hence, in particular 

by an appropriate choice of the x~. 

The reader is referred to [57] and [58] for the following facts: 

PROPOSITION 2.10. (i) For l<<.p<~, the space lip is isomorphic to its direct sum 

(ii) The disc algebra A is isomorphic to (~'n~l A)c o" 

Combining Corollary 2.7 and Proposition 2.10 (ii) we get 

COROLLARY 2.11. The dual o f  the disc algebra A* is a space o f  cotype 2. 

By arguments of local reflexivity, Corollaries 2.7 and 2.11 remain valid if A is 

replaced by H ~. Since it is not known i f / -~  has the bounded approximation property, 

extension of Corollary 2.8 to H | is not clear. However, the result holds assuming that 

Y has the bounded approximation property. 

Next results are formal consequences of the cotype 2 and Grothendieck property, 

COROLLARY 2.12. (i) Co is up to isomorphism the only complemented subspace o f  

A possessing an unconditional basis. 

(ii) I f  E Xj is an unconditional decomposition o f  A (resp. H~), then E Xj is a Co- 

sum (resp. l| (cf  Proposition 2.10). 

Corollary 2.8 allows to improve Theorem 2 of [30] as follows 

COROLLARY 2.13. Given a reflexive subspace X o f  A*, there exists an embedding 

fl :X--->C(II)* such that moreover j*iff(x)=x for xEX,  where j:A-->C(1-I) is again the 

injection. 

Proof. By Lemma 3 of [30], a reflexive subspace X of A* does not contain lln's 

uniformly and hence X* has a finite cotype. Therefore, by Corollary 2.8, denoting 

i:X--*A* the injection, i*[A=T is p-summing and thus p-integral for some p<oo. Thus T 

factors through an L ~ ) - s p a c e  and can be extended to C(FI). Let/~ be this extension. 

Since ~ = T ,  it follows that i=j*fl where fl is the restriction of (~* to X. 

Further results concerning projections in the spaces L~/H~ A and / /~ will be 

presented in section 5. 
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2.3. An alternative approach 

I fX is a Banach space, the Grothendieck property of X* is a formal consequence of the 

fact that each 0-summing operator from X in Hilbert space is nuclear, thus the equality 

IIo(X, 12)= N(X, /2). We give a direct proof of this fact, without using the theory of 

operator ideals. Denote by v~ the nuclear norm. 

PROPOSITION 2.14. I f  X satisfies rio(X, 12)=N(X,/2), then X* verifies Grothen- 
dieck' s theorem. 

Proof. Let TEB(X*, /2n) be induced by the sequence (xi)l<_i<_n in X. Take elements 

(Xjg)I<~j.<~N in X* satisfying sups:_+ I lie ejXT[ [ ~<1. Consider a matrix (a~i)l<~i<~n" I<~j~N such 

that supj r.i[ao[2~l and denote M:l~N----)12,, the corresponding operator, for which 

tlMII~ < 1. Consider the composition 

2 T* R I M  2 
In---> X---> l~---, ! n 

where R(x)=((x, X:>)I~<N. Because B(l~,12)=IIo (l 1,12) (see introduction) the hypothesis 

g i v e s  

v~(MR) <<. C(X) IlRII ~<2C(X) 

and thus 

trace (MRT*) <~ vl(MRT*) <~ 2C(X)IITII. 

But clearly 

N 

trace (MRT*) = ~ a# ( x i, xT) 
i=l j = l  

and for a suitable choice of (a0), it follows 

Proposition 2.14 has no converse as will be indicated at the end of this section. The 

following theorem, which was conjectured in [32] (cf. Theorem 1), provides a different 

proof that A* has Grothendieck property. 
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THEOREM 2.15. A O-summing operator from the disc algebra into an arbitrary 

Banach space is nuclear. 

Besides the lemma's  presented in section 1, the proof  of  Theorem 2.15 requires some 

further observations.  

LEMMA 2.16. Assume TE 1-10(H ~176 Y) and (ri) a sequence o f  H~-functions such 

that 

For each i, define the operator Ti by T,(qg) = T(rig). 

Then 

(i) ~ fftp(Ti) ~ II I ,111|  ,,03 (O<P ~<1) 
(ii) The serie E Ti converges in II,(/-/~, Y) (p>O). 

Proof. It i s  clear that (ii) follows from (i), replacing the r i by  sums of the ri on 

consecutive blocs. 

In order to verify (i), take for each i a system (q0;, D in H ~ such that 

X I( ~Di, k'X* ) l  p ~  I for  x* e (/-F)*, IIx*ll ~ 1. 
k 

and 

k 

Then, for some sequence (Qi) of  positive numbers  such that II(oi)llm_p,~l and for some 

x* (~ (H~) *, Ilx*ll < I. 

X ' T t p ( T i ) ~ { ~ i O i X k  IlTi(~~ '' 
O lip X* I Ti~gi, k, ) l p 

Li, k 
r i X* 
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If g is a function on II  and 0 El I ,  let go be the translate, i.e. go(~)=g(O+Ip). 
Next lemma goes back to [1] and was in slightly different form also used in [35] and 

[32]. The author is grateful to S. Kisliakov for an alternative proof. 

LEMMA 2.17. Assume TEl-Iv(A, Y). Then: 
(i) The functions ~,(0) = T(~(Pr, o)) converge in LPr(H)for r--> 1, for p< 1. 
(ii) If F(O)=sUpr<l II~r(0)ll, then F verifies the weak type inequality 

IIFIIw~<C(p):rp(~ (O<p< 1). 

Proof. Fix O<p< 1. The Pietch theorem yields a Radon probability measure  ~ on 

the closed unit ball of  C(Y[)* such, that for ~ EA 

[[T(qg)l[<~ygp(T)(f Ix*(cp) lPg-2(dx*)} lip. 

Given x* E C(H)*, denote x~' the image measure of x* for the map t~(-t).  Observe that 

X*(~(Pr, o))=[~(x~*Pr)](O). For 0 E H  and 0~<r, s < l ,  it follows 

II ~r(O)-~s(O) II p ~< = ~ ( ~ /  [~((x~(*P,)-(x~(*P)) (O)IPQ(dx*) 
J 

and 

[[~r__~S[[Lpg~ys S i 1lip II~((x~* Pr)-(xr* P ,) )ll~( dx*) ) . 

Thus (i) follows from Proposition 1:I and the Lebesgue dominated convergence theo- 

rem. Further 

sup II~,(0)ll' ~< ~,(~ [ sup I~(xt.P r) (O)['O(dx*) 
r < l  . )  r 
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and hence, taking 

(,0 m X[F;~,l l  

fP'~o<~,trrf/(supl~txt.e)W)l)"o)r 
By Proposition I. 1 and Lemma 1.2, we can estimate for fixed x* 

f (suPl~(x'~*P)(O)])Pto(O, dO ~< l_~2p ][to,]l-' ]1 sup ]~(/~'-x-P,,] ]]~v 

~< l~cp II~oll[ -p . 

Hence 

and finally 

&P IIr ~ ~r~(T~-~Cp I1~o11] -p 

completing the proof. 

To prove Theorem 2.15, we proceed again by decomposition. Fix 0 < p < l .  We 

show that for each 6>0 there is a constant K~<o0 such that any TEHp(A, Y) decom- 

poses as T=N+R, where 

(i) NEN(A, Y) and vl(N)~<K~p(T) 

(ii) ~p(R)<6 �9 ~p(T). 

Fixing 0 < 6 <  1 and iterating, an estimation vl(T)<<.C:tp(T) then follows. 

By the second remark after Proposition 2.1, we can assume that ~(T)  is realized 

by an m-regular Pietch measure on II and hence is defined on H ~176 

Consider again a Radon probability measure f~ on the unit ball of C(II)* for which 

ItTt~ll~<~p(~{f Ix*(~Qtd~*)} '/" forq0EA. 

Denoting Ix*] the variation of the measure x*, consider following measure on II 

= f Ix*l Q(dx*). 

Thus/~ is positive and ILull~<l. Let dl~=fdm+dlus be the Lebesgue decomposition. 
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Fixing 6 > 0 ,  apply Proposition 1.7 to f ,  giving the sequences (ri), (0i) in H = and 

(ci)~>O. 
If for each i, we define the operator T,.(cp)=T(Oi~cp), Lemma 2.16 implies 

<<. 

If F,~(O)=SUPr<l [[Ti(~(Pr.-o))1[, application of Lemma 2.17 gives 

IIf,llw ~< c(p) ~,(T,). 

Take 2i=ci~rp(T)/6 and apply Lemma 1.5 to Fi to obtain an H*~ Ki such that 

II~/IL ~< 3 

F, I~,1 ~ i  

IIl-~,lh ~o.~-' IIF;llw. 

Define now 

N~O = L(~i'ci 0 

N = E N i  
i 

R = T - N .  

For 0 ~ r < l ,  consider the operator Si,,(cp)=Ti(~(rixiO.P ) on C(H). 

Since 

(ri ~i ~*P,  = f (ri ~i (~ (~)) P,, _,pm(d~O) 
J 

we get 

IIS,,,(011 ~ f I(r,x,O(w)lllT,(~(e,-~))ll ~ f I~(w)l(Ir,~,,I F,) (~)- 

Hence 

~(T) 
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Also, for O<~r, s < l  

~,(Si. r-  Si, s) <~ f I(r/xi) (W)l II T,<~(P,, _~,))-  T , ( ~ ( e  s, - ~))11 

f I~,(,p)l Fi (~) )  1 - p  IITA~(P~._w))- T,(~(e,,_w))ll, C 

I- ]]T,(~(P,, w))- Ti(~(Ps, ~0))[I p ~.CA~ ~p 

J 

and Lemma 2.17 implies the convergence of (Si, r) in HI(C(II), Y) for r-->l. Since the 

Si. r are clearly nuclear, the limit operator Si will also be nuclear and 

Pl(Si) = J[l(S i) ---g-c, llrilh 

Since Si extends Ni, we obtain N E N(A, Y) and 

1/I(N) ~ ~ /  ~p(T) ~.~ v,(N,) <- T / _ ,  c, IIr,lh -< C~-C-'~p(T). 

So it remains to estimate :tp(R). Let for convenience r/= 1 -  E 0i ~ u r 

Take a sequence 0Pk) in A such that  

(i) ll~2kll| ~ 1 

(ii) J I'Pkl d~-- ,o  

(iii) ~ k ~ l  m-a.e. 

Consider for each k the operator Rk(cp)=R(q~v/k). Then 

IIRk(OII = I[T((1-~-~ 0,. q ~i) ~Wk)l[ = lim IlT(OT*Pr) q~Wk)[I 
r---~ I < 

and 
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Hence 

where the second factor is dominated by 

l ,f ( It/, -x-Pr) ,~k[ d/~. 

Since lim IIR-RklI--0, we get 
k--~oo 

Taking previous estimates in account, we see that the latter quantity is bounded by 

~< 6 + c ~  c, Ill-~,ll, 

~ < ~ + c ~  ~ IIFillw 

<~+C(p)6. 
This establishes Theorem 2.15. 

Theorem 2.15 permits to distinguish the disc algebra from certain other translation 

invariant spaces. Recall that a subset A of Z is a Ap-set provided L ~ and LP-norms are 

equivalent on linear combinations of the characters e int with n E A. Combining Theo- 

rem 2.15 with Lemma 1 of [30], following result is derived. 

COROLLARY 2.18. Assume A c Z  such that A n Z_ is a Ap-set for some p > l .  Then 

the space CA, closure in C(II) of  the polynomials f=E,,eA c~ e i~t, is not a quotient of  

the disc algebra. 

2.4. Remarks 

(1) In proving the interpolation inequality in Proposition 2.3, the norms rtp(T) and :rq(T) 

were computed using different measures. It may be possible to derive the result from 

weighted norm inequalities on the Hilbert transform, using less the algebra structure. 
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(2) It is shown in [13] that the spaces L~0,1 ..... ,} of polynomials of degree ~<n 

embed uniformly complementedly in A. Hence, previous results localize to these poly- 

nomial spaces. It is also proved in [13] that the Banach-Mazur distance 

d(l~+l,L(o,l ..... ,))~<Clogn, while for an arbitrary finite subset A of Z, one always has 

that L A is only a P~-space for ~. of  order log IA[, So Corollary 2.6 is sharp. Other 

examples of complemented subspaces of A are those obtained by spline interpolation in 

[3]. 
(3) Assume A ~ Z  such that Z+=A and AflZ_ is a Hadamard lacunary set. From 

the result on the disc algebra, it is then straight forward to show that also B(CA, It) = 

I'I2(CA, ll).  On the other hand, as we explained in the introduction, the orthogonal 

projection from CA o n  L 2 is 0-summing and onto. Consequently, the previous A n Z  

property does not imply nuclearity, even in case of translation invariant spaces. The 

reader will find related results in [32], section 3. 

(4) It should be mostly interesting to determine for what spaces X it is true that any 

operator from A into X can be extended to C(II). This property is obviously true for 

X=l | and, by our results, i fX has a finite cotype (the extreme case in the other sense). 

The case X=B(I 2,12) is unsettled and a positive solution will have applications in 

operator theory. 

3. An interpolation result for vector valued H~-spaces 

The purpose of this section is to characterize certain spaces H~. Our motivation for 

studying such spaces was to simplify earlier work on the minimum-norm lifting 

L ' / H ~ L !  by using the interpolating sequence theory. The results presented in the 

first paragraph can be extended in the frame of the Lions-Peetre interpolation theory. 

There are also possibly other applications than those considered here. 

3.1. Characterization of certain vector-valued H a functions 

Our purpose is to prove Theorem 0,3. In what follows, Proposition 1.7 will be again 

important. 

We first show the following extension of Proposition 1.6. 

LEMMA 3.1. Given f E  Ll+(1-I) and 6>0, there exists f E Lt+(rI) and 9 E H | satisfy- 

ing the following conditions: 

(ii) Ilfll,<-.c6-cllfll, 



(iii) 

(iv) 
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fn I1 -q~lfdm<~61lfll, 
given FEH l, there is a decomposition Fcp=FI+F2 in HI, where 

tF, I ~<f and IIFzlh ~< c (  It~. 
JiI 
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If we let 

then obviously 

and 

Notice that by (iii) of Proposition 1.7 

IF~l <~ C g and 

where 

riF= F] +F ~ 

IIF~lh ~ c~e I ~  
I r f l  >~ cl] 

F,= E OiriF ~ and f2= E OiTif ~ 

Thus the decomposition Fq~=FI +F2 satisfies (iv)�9 

Let us now fix some terminology. 

Proof. Apply first Lemma 1.7 and put q0=E 0i~ and f = E  girl[. Then (i), (ii), (iii) 

hold�9 

Next, apply for fixed iEZ Lemma 1.6 to the H ~ function ~'iF, taking ;t=ci. This 

gives a decomposition in H ~ 



32 J. BOURGA~ 

IfXo, X1 are linear subspaces of a vector space X and II 
respectively, we equip 

and 

with the norm 

I10, II Ill norms on Xo, X1 

X o f~ X 1 with the norm Ilxll~0, x, = max (llxll0, llxlh) 

X otJX I= {xEX,  x=xo+x I for some xoEXo, x lEXi}  

Ilxllxoox= inf (llxollo+llxlll0. 
X = X 0 + X  I 

Fix a positive integer N and e>O. 

Let  Xo be C N equipped with sup-norm and XI obtained by defining on C N the 

n o r m  

II(z~ ..... zN)ll~ 

We will use the following simple fact: 

k 

LEMMA 3.2. For given x=(zl . . . . .  ZN) E C N, define x' =(z[ . . . . .  z'N) by 

{ z'k = zk if  Izkl ~> 211xllxoo x, 

z'k 0 otherwise. 

Then IIx'lh.<211xllxoo~. 

Proof. Let  X=Xo+X I where Xo=(Zl, o . . . . .  ZN.0), 

Ilxllxoox=llxollo+llxdl,. If  Izkl~211xllxooX,, then clearly 

and hence 

x~=(Zl,i . . . . .  ZN, ~) are such that 

Izk. 11 ~ Iz~l-lz~.ol ~ Izkl-Ilxollo ~ Izkl--IlxllxoU ~, ~ �89 IZ~I 

IIx,ll, ~ ' T ~  Izkl, IlxllxouX, 

proving the lemma. 

I f X i s  a Banach space, denote for l<~p~<oo by / -F  x the subspace of  L~ of func t ions f  

such that f (n)=0  if n<0.  
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Let  us prove Theorem 0.3. 

PROPOSITION 3.3. The norms o f  the spaces HloUHlxt and HIxouX~ are equivalent 

up to a f ixed constant (which does not depend on N or e). 

Proof. The H1 ~ U H)x~ norm clearly dominates the HlxouX~ norm, since if ~o+ ~1, then 

f ll~r176 llSgo(ei~ l[Sgl(ei~ 

=11~o11%+11~111,,,,. 

Conversely,  assume ~=(F1 . . . . .  FN) in H~roUX and define f b y  

f(o) = Eli(F1(0) . . . . .  eN(O))llxoox, for o ~ n .  

Fixing 6>0 ,  take f and ~ as in Lemma 3.1. For  k = l  . . . . .  N, let further 

Fkcp=Fk, o+Fk, 1 

IIFk, llh ~C f IFkl. 
J[lFkl ~>f] 

be an HLdecompos i t ion  satisfying 

[Fk, o]<~f and 

Define ~0=(F1,0 . . . . .  FN, 0) and ~1 =(F1,1 . . . . .  FN, i)- Then by Lemma 3. I (ii) 

I1~o11~ ~ = f max I&,ol <~ Ilflll ~< 2c6-C)1~11,,,oO~, 

and using Lemma 3.2 

It~IItM; = e ~ IIFk, .tl, ~< C f e ~ lYklZ[iF, l~a 
k k 

<<. 2of II(fl  . . . . .  fDI Ixo  o x,. 

Finally, by Lemma 3.1 (iii) 

][~-(~o+OllZ,Xoo~ = f ll-~l llW, ..... F~)llxoo X =-~ f ll-~olf 

~< 6 II~ll,%ox,. 

3-848288 Acta Mathematica 152. Imprim6 le 17 Avril 1984 
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For ~>0, denote ~ the ball with midpoint 0 and radius Q in From the nlooxi. 
preceding, it follows that ~1 is contained in 

{~ ~HI HI ~2c~-C+2c} +flt~" x0 u x, :llr 

Choosing 6<I ,  we conclude that 

II~ll.~, u. ,  ~< const, t[~[In, �9 
X 0 X 1 X 0 0 X I 

Dualization of Proposition 3.3 (in which one can obviously replace H l by H01) leads to 

oo 

PROPOSITION 3.4. The norms o f  the spaces Lx.o/~nLx;/~ and Lxonx;/~ are equiv- 

alent up to a f ixed  constant.  

We denote here by ~ the subspace of Lcs of those elements which have H ~ 

components. 

3.2. Application to interpolating sequences in the disc 

Proposition 3.4 can be applied to obtain certain P. Beurling type functions. 

Consider the following vector-valued interpolation problem. Let N be a fixed 

positive integer and ~ ,  ~2 . . . . .  ~fN (finite) subsets of the open disc D. Let further for 

each k= 1 . . . . .  N a complex valued function Vk on ~k be given. Consider 

~ = ( ~ l  . . . . .  ~N) suchthat ~kEH ~ and ~kl~k=V~ (*) 

Let now X be C N equipped with an unconditional norm. Define 

ax = inf IIr 

where the infimum is taken over all �9 satisfying (*). 

Let Bk be the Blashke-product of the points in ~fk. If qb is a particular solution of 

(*), the general solution becomes 

tlJ=0pl . . . . .  ~0 u) where ~k=~k+Bk'Wk and w k E H  ~. 

By unconditionality of X, this fact leads to the formula 

a x = \B  1 .... BN 

If Xo, X1 are as above, Proposition 1.4 leads to the following result: 
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PROPOSITION 3.5. Oxonx~<.Kmax (axo, Ox~), for some numerical K. 

This property can be restated as follows. 

COROLLARY 3.6. I f  ~o, ~1 are solutions o f  (*), then (*) has a solution ~ for 

which 

Thus in solving (*), information on 1 ~- and/ l-est imations can always be combined. 

In particular, one has 

COROLLARY 3.7. Assume ~1 ..... ~N subsets o f  D for which there exist H ~- 

functions qgl .. . . .  Cpu satisfying 

(i) ~k(Z)= 1 for  each z E ~ and k= I . . . . .  n 

(ii) lIE I~l  [l~ ~<M- 

Then there exist also H~-functions v/l,..., v/N fulfilling (i) and moreover 

(iii) II ,kl/  <g for  each k = l , . . ~ , n  

(iv) Ilr  IV, hi < KM. 

Recall that a sequence (z,) in the open unit disc is b-interpolating (5>0) provided 

to each 5-bounded sequence (an) of  complex numbers corresponds some cp E H ~~ with 

Ilqgll~<~l and Cp(Zn)=an for each n. A result of L. Carleson asserts that a sequence (zn) is 

interpolating if and only if the sequence is uniformly separated, i.e. 

H Iz l inf d(z,, z,~) > 0 where d(z, w) = l - s  
m n * m  

(see [141). For  zED,  denote 5z its Dirac measure. The sequence (z,) is called a 

Carleson sequence provided the measure ~=E(1-1z ,  I)5~o is a Carleson measure on D 

(see [20], p. 31 for definition). The constant of the Carleson sequence (z~) is the 

Carleson norm of  ~. 

A sequence in D is known to be Carleson iff it is finite union of  interpolating 

sequences. If  (z,) is interpolating, then, by a result of P. Beurling, there is a sequence 

(q~) in H ~ satisfying 

(i) lie [q~[ II~<o~ 
(ii) qOm(Z~)=5,~,, (Kronecker 's  symbol). 
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For an explicit formula for the functions tp~, see [28] (Theorem 1). In the next section, 

we will make use of the following consequence of Corollary 3.7. 

COROLLARY 3.8. Given M<oo there is Ml<oo such that if ~1,@2 .. . . .  ~N is a 

partition of  a Carleson sequence of  constant M, then there exist H~-functions 

qh, cp2 . . . . .  q~N satisfying 

(i) Cpk(Z)= 1 for each z E ~k and k= 1,2 . . . . .  N 

(ii) II~kll~<g for each k = l , 2  . . . .  N 

(iii) IIr~ I~kl II=~<M~- 

The important thing is that K does not depend on M. A slightly weaker version of 

previous result was obtained in [8] by different techniques. 

4. Properties of the minimum norm lifting 

Let us repeat that the minimum-norm lifting o:  LI/H~,,~,L 1 maps x ELt/H~ on the 

unique f E  L I satisfying Ilxll=l l, and q(f)=x. 

If  AcL1/HIo is a WCC set (see introduction), then o(A) is relatively weakly 

compact ([44], Theorem 7.1). The purpose of this section is to prove a local version of 

this property. The following result implies Theorem 0.4. 

THEOREM 4.1. For each 6>0  there exists 61>0 such that given Ll(Fl)-functions 

fl,f2 . . . . .  fn satisfying the following conditions: 

(i) ]]q(fm)]l>(1--6 2) ][f,,,]l' for l<~m<~n 

(ii) j" maxm,~.m [fm[~C6E,~m Ilfmll, whenever ~rn~0, 

then there are H~-functions g~, g2 . . . . .  gn such that 

(iii) Igd+lg2l+...+lg~l<.l pointwise on FI, 

(iv) (fm, g,~)=ffmg,n=6~llf,.lllfor l<.m<-n. 

Condition (ii) of  Theorem 4.1 also means that the fm have mass at least C611fmll, on 

disjoint subsets of H (cf. [17], Proposition 2.2). We will derive Theorem 4.1 as a 

consequence of Corollary 3.8. The author obtained the result previously by a more 

direct method. 

Next lemma, based on an argument of successive extractions, is left as an 

exercice. 
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LEMMA 4.2. Given •>0, n>0 ,  there exists r/=r/((9, n)>0 such that i f  (am)l<~m<~n are 

positive functions in L1(FI) and 

f max am >~ Q ~ ]lCtmlh, 
m m = l  

one can f ind a subset S o f  {1,2 . . . . .  n} and a system (Am)m E S of disjoint measurable 

subsets o f  H satisfying 

(i) Ilamlh 
(ii) IAmam~(Q/2)llamlh foreach m E S  

(iii) f maXmes(t2mXil\am)<~;g f maXmesa m. 

Another elementary fact needed for the proof of Theorem 4.1 is the following 

approximation principle. 

LEMMA 4.3. To each e>0 corresponds ~,=y(e)>0 such that for  positive, disjointly 

supported L l(FI)-functions at, a2 . . . . .  an o f  norm 1, there exist functions a~, a~ . . . . .  a'~ 
such that 

(i) Nam-a'~ll,<e for each m 

(ii) the functions a'm are obtained by taking disjoint convex combinations o f  the 

Poisson-kernels Pzk, for  some y-interpolating sequence (zk) in D. 

Recall that 

pz(o)= l - l z l  2 
leiO-zl 2" 

Sketch o f  proof  o f  Lemma 4.3. If  we define for fixed e>0 and positive integer K for 

k=0,  1,2 . . . . .  e - l K - 1  

Z k = ( 1 - - 1 )  e i~ w h e r e  Ok = 2~e k ,  

then (zD is a v-interpolating sequence, where y does not depend on K. Also 

1 and I z - w l < K  IlPz-Pw[[l - d(z, w) <- const, e iflz I = Iwl = 1 -  -~ 

Choose now K sufficiently large to ensure in particular that arn~am-X-Pr for each 

m--1,2 . . . . .  n, taking r=  l - 1 / K .  The functions a "  are then obtained by replacement of 
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the Poisson-integrals by convex combination of the Pz,. Since the a m were assumed to 

be disjointly supported, it is clear that one can choose these combinations to be 

disjointly supported on the sequence (zk). 

Proo f  o f  Theorem 4.1. We show that for some 61>0 one has for a~ . . . . .  anEC 

f mamX lamfm +hml >I" ~1 Z laml IVmlll (*) inf 

where the infimum is taken over all systems (hm)l<m<~n with h m E 111o . The proof is then 

concluded by a Hahn-Banach extension argument. Notice that the a m in (*) can be 

taken positive. Let K be the numerical constant appearing in Corollary 3.8 and put 

t=I/2K. Take F=~(e) as in Lemma 4.3 and let M < ~  be such that y-interpolating 

sequences are Carleson sequences of constant at most M. Denote M1 be constant 

associated to M by Corollary 3.8. Defining p=Cr ,  x=6,  it follows from (ii) of Theorem 

4.1 and Lemma 4.2 that there exist a subset S of { 1,2 .. . . .  n} and disjoint measurable 

subsets (Am)m~ s of FI satisfying 

(i) X S o~ m Ibemll,>~r/X~.=, a m I]fm]], 

(ii) fAmlfml~(C/2) 6llfmll, for each m E S  

(iii) J" maxm~s(a,. [fm[ gn \a . )  ~<u ~ maxs am ]fm[" 

Application of Lemma 4.3 gives a Carleson sequence (zD of constant M and 

disjoint subsets (Vm)me s of the index set. such that 

(iv) 

where 

(v) 

II IfmlXa=--~mll,<~ IlfmXa..ll, (m E S) 

flm~-Wm'COnVex hull (Pzk;kE Vm) where ~m=llfmZAml[1. 

Defining @m: {Zk'~ k ~.. Vm} for rn E S, we can choose H~176 (~m)m ~ s fulfilling 

the conditions of Corollary 3.8. 

By (i) of Theorem 4.1, there are norm-I H~-functions Vim SO that 

(vi) <fro' ~m)=(1 _r 

First, one deduce easily from (vi) that 

[ max lamfm + hm[>>- ( max lam[fm [+ h m ~pm[--36 Z am [[fm[ll" 
3 3 s s 
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Then, by (iii) of Corollary 3.8 and (iii) 

Earn f ~fmlqgm s 

Since, by (i) of Corollary 3.8 

= IV.zAmlI, 

we deduce from (iv) and (ii) cf. Corollary 3.8 

f a t  fro[ cp~ (!-eK)llfmZ, AJll >. 
m 

Hence, combining inequalities, it follows 

ES am l f am IfmJ qJrn -;r Es am [Ifmlh. 

for mES 

for mES. 
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fl 'mCmX l 'O     X. 
then also 

( 
M, / max Ja m If,.J+h,. ~g.,[ >t (1-eK) E am JJf,.zAmll,--xM, E am [[fro[J, 

J s s s 

and hence, using (ii) and (i) 

M, f maxlamfm+hm' (- a-' M,-3aM,) ,amllfm",, 
s 

f maxlamfm+hml>~I(4-~l -4)  6~am,]fml],. 
m 

Since Mj is a numerical constant, we can take C=20M~ and let 6~=r/6. 

So we obtain (*) and Theorem 4.1 is proved. 

Theorem 4.1 implies clearly the following property. 

COROLLARY 4.4. To each 6>0 corresponds 61>0 such that if x~,x2 ..... xn in 
L I/HI o satisfy 
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Thus if the minimum-norm lifting of a sequence (Xm) in L1/HIo is a Rademacher 1 l- 

sequence in LI(H), then also (Xm) has this property in L~/H~o . Previously, only a weaker 

subsequence version was known to be true. 

Remarks.  (1) With some additional work, one can replace 6 2 by 6 in (i) of Theorem 

4.1. For what follows, this is however of no relevance. 

(2) Assume xt,x2 . . . . .  Xn a sequence in LI/HI O. It follows from the results of section 

2 that there exist functions fm ELl(H) such that 

q(fm)=Xm and f { ~ e m f m l  d e < ~ C f  l ~ e m x m l d e .  

Unfortunately this procedure does not provide a pointwise lifting, which we need to 

prove certain results. We don't know if minimum-norm lifting preserves the Rade- 

macher means. 

5. Further results on projections and topological properties of H ~ and duals 

In this section we present consequences of the result on minimum norm lifting (Theo- 

rem 0.3. Theorem 4.1), proved in section 4, for finite rank projections in H ~176 and 

weakly compact subsets of (H~~ *. 

5.1. Finite dimensional complemented subspaces of H ~ 

As a first application of Theorem 0.3, we show that complemented subspaces of the 

disc algebra contain large l~-subspaces. This completes results obtained in section 2. 

THEOREM 5.1. Given M < ~ ,  there exist ~=6(M) and ~.=2(M) such that each n- 

dimensional norm-M complemented subspace E o f  H ~ has a subspace F satisfying 

(i) dim F=m>-6n 

(ii) d(F, Ira) <<. 2. 

The reader will find the proof of follwowing general lemma in [10] (p. 116). 

LEMMA 5.2. Given e>0, there exists 6=6(e) such that if  xl ,x2 . . . . .  xn are norm-1 

vectors in a Banach space X and * * * X* Xl,X2 . . . . .  x~ norm-I in satisfying 

(i) (xk, x~)=e (l~<k~<n) 
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(ii) IIr  kx ll <l for  all ek=+l ,  

then there exists a subset  D o f { l , 2  . . . . .  n} with 

(iii) card (D)>~6n 

(iv) (e/2) maxn lakl ~< II~k~oakx~ll ~< 2 maxn lakl. 

In particular, * * [Xl, x2 . . . . .  x ~  contains l~'s  o f  proportional dimension. 

(The space X in Lemma 5.2 can be assumed real or complex.) 

In fact, Theorem 5.1 extends a result which was previously obtained for finite 

dimensional Pz-spaces (see [12]). Also here, we use the same approach. Recall that :r~ n) 

denotes the 2-summing norm computed with respect to n vectors. 

P r o o f  o f  Theorem 5.1. Denote i: E - ~ H  ~ the injection and P: H~---~E the projec- 

tion. It is clear, using local reflexivity, that we can assume P* ranging in LI/H~. 

By the ideal property and N. Tomczak-Jaegerman's result [56], one has 

M V ~  et~)(i) >I IIPII Jt2(i) >I : t z ( I d E )  = ~k/'~n. 

Therefore, one can find vectors tpl, tp2 ... . .  q0n in E satisfying 

i1%112) >i X/-2-MX/--n-n sup Z I( %,x  ) l )  , 

where the sup is taken over all norm-1 vectors x in L~/H~o . Notice that this supremum 

equals 

Take norm-1 vectors x j , x z  . . . . .  Xn in E* such that 

I1%11 = ( %,xk> (1 <~k<~n). 

Denote fkELl(H) the minimum-norm lifting of P*(xk)ELI/H~o . There is a sequence 

cry, a2 ..... on of positive scalars satisfying 

4 = 1  and Z O k ( % ' f k ) =  (Z11%112~ '/z" Z 
\ / 
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Hence 

V-2-M | 

and thus 

f'max ~""~(2 ~ ~")'~O ~ ~ 
from where 

f max [fk[ ~____~n l~k<-~ 2M z" 

Thus there is a set J c{1 ,2  . . . . .  n}, card (J)>~n/4M ~ and disjoint subsets (Ak)ke~, of 1-I 

with 

fA 1 [ fk[>~-~  for kEJ. 
k 

Thus Theorem 0.4 applies and yields H~-functions (gk)keJ fulfilling 

~ lgk l~< l  and (A,  gk)=61 (kEJ). 
J 

Defining X'~=P(gk), we get 

I for 
and 

(x~,x'~) =6t  for  kEJ. 

So Lemma 5.2 concludes the proof. 

5.2. Weakly completeness and Dunford-Pettis property 

Our next purpose is to extend weakly completeness and Dunford-Pettis property of 
L1/Hlo (cf. [44], chapter VII) to the odd duals of H ~. 

There are different ways to proceed. We will use here the ultraproduct technique. 
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Recall that i fX is a Banach space, I a set and ~ an ultra-filter on I, the ultra-power X~u 

is defined as the quotient of the /=-sum (E/X)= by its subspace 

N~={(xi)iel; lim0~ Ilxill=0). We recall also that X** is isometric to a 1-complemented 

subspace of some ultra-power of X. The reader is referred to [55] for more details. 

THEOREM 5.3. Any ultrapower o f  L1/Hl o is weakly complete and has DPP. 

So, by previous observations 

COROLLARY 5.4. (i) H = and its duals are DP-spaces. 

(ii) The odd duals o f  H ~ are weakly complete. 

The reader is also referred to [9] for further related results (see remarks below). 

If (L1/H~)~ is an ultrapower ofLI/H 1 and (LI)~t the corresponding ultrapower of 

LI(1-I), we can consider the natural extensions of q and a to these ultrapowers 

q~: (LI)~t---~(LI/H~)~ and o~: (LI/HI)~,,,'*(L1)~I 

It is then clear that o~ is a minimum-norm lifting of q0~. 

Since any ultra-power (L~)0u of L ~ is an Ll(g)-space and hence satisfies the 

properties considered in Theorem 5.3, it will suffice to prove that o~ maps WCC sets 

onto WCC sets. Thus (cf. [16], [51]). 

PROPOSITION 5.5. Assume (~k) a sequence in (L1/Hlo)~ such that the sequence o f  

liftings O~(~k) is equivalent to the usual ll-basis in (L l)~t. Then (~k) has a subsequence 

(~'k) which is equivalent to the ll-basis in (LJ/HIo)~. 

Proof. We show that (~k) is an/l-sequence in the Rademacher sense. 

The argument is routine. 

Denote for convenience ~k=OOu(~D. Thus 

~k(i) = o(~k(i)) 

where 

Assume 6>0 such that 

for each i E I 

(~k(i))iEl represents ~k in (LI/H~)~z. 
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For fixed 2>1, one can choose for each n = l ,  2 .. . .  some element UE ~/satisfying 

for all scalars c~, c 2 . . . . .  Cn, whenever iE U. Hence. for iE U 

and we see that for an appropriate 6~>0, also 

de>~6, Zlc,lll,k(i),l. 

Therefore 

completing the proof. 

A slight modification of the preceding argument shows in fact that for fixed 

~E(L1/Hto)~ the set {~E(Lt)0u;qk(O=~, IIr is weakly compact in (Ll)0u. On the 

other hand, one verifies easily that an element of (H| * has not necessarily a unique 

norm-preserving extension to an element of (L~) *. However 

COROLLARY 5.6. For each ~E(H~) *, the set {~E(L~)*;q**(~)=~, II~ll=ll~ll} is 
weakly compact. 

Proof. The ultraproduct representation allows to embed (H=) *, (L=) * in respec- 

tive ultrapowers (LI/H~o)~, (Ll)~ for the same ultrafilter 0//and so that moreover the 

scheme 

q * *  

L~(13)* = (H~),  

eL 1 
q. 

(L b~ ~ (L VH~Ie 
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is commutative. From the preceding observation, it follows that {i(~);q**(~)=~, 

I1r is a weakly compact subset of (Ll)~z. Hence the assertion follows. 

Remark. Using fully Theorem 4.1, the reasoning in Proposition 5.5 shows that any 

/l-sequence in (L~/Hlo)~t has a subsequence with linear span complemented in (Ll/Hlo)~. 

In [9], it is shown that/ l-sequences in (H~) * have complemented subsequences with 

biorthogonal functionals lying in H ~. As a consequence, any non-weakly compact 

operator on H ~ fixes an l~-copy and, in particular, 1 ~~ embeds in each infinite 

dimensional complemented subspace of H ~ The proof of this fact is rather long and 

technical and will not be presented here. 

6. Further remarks 

(1) Several of the previous results go through for closed subalgebra's B of L~(II) 

containing H ~. Indeed, by the Douglas property, each finite subset of B can be 

approximated by elements of/~- H ~, for some Blaschke product b with/3 E B (see [39] 

or [20], p. 378). 

For instance, this fact allows to prove that B(B, I~)=Hz(B,/I) and B* is of cotype 2. 

(2) The Grothendieck property of A* can be rephrased in terms of tensor-algebra's 

(see [22], p. 308 for definitions). It is equivalent to the fact that the projective tensor 

algebra A ~ A  is closed in C(I-I)~C(II). Indeed, the dual statement means that given 

T E B(A, A*), there exists/~ E B(C, C*) such that T=j* Tj, where j is the embedding. This 

solves a question raised by N. Varopoulos. 

(3) The results of section 2 were used in a more recent construction, due to G. 

Pisier, of a Banach space X for which the two tensor-products X ~ X  and X|  coincide 

(see [50]). More precisely, one uses the existence of an embedding T of 12 in L1/H 1 such 

that T* is 1-summing and the liftability of finite sequences in L1/H I to L~(1-I), preserv- 

ing the Rademacher mean. 

(4) Besides the spaces CA considered at the end of section 2 and remark 1, we 

don't know of other extensions of our results. Natural candidates are the polydisc- 

algebra's, the ball-algebra's and the spaces of continuously differentiable functions, on 

the Banach-space structure of which not much seems to be known. 

(5) Taking in Theorem 0.4 fm=Pz~, i.e. the Poisson kernels of points zm in D; one 

obtain essentially J. Garnett 's theorem that the notions of harmonically interpolating 

sequence and interpolating sequence coincide (see [21 ]). The author proved previously 

Theorem 4.1 by a constructive argument, in particular not relying on factorization. 



46 J. BOURGAIN 

(6) Finally, let us notice that apparent ly  no example  is known of a subset  A of  Z for 

which CA fails Dunford-Pet t is  p roper ty .  

A d d e d  in proof.  More  recent ly ,  it was shown by tl~e author  that bounded linear 

opera tors  f r o m / / ~  into a Banach  space with co type  p roper ty  factor  through L =, also 

without  approximat ion  hypothesis .  This fact  solves the prob lem related to Corol lary 

2.8, in section 2 of  the paper .  
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