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0. Introduction

The purpose of this paper is to prove some new linear properties of the disc algebra A
and the space H” of bounded analytic functions on the disc. More precisely, results on
absolutely summing operators, cotype, finite rank projections and certain sequence
properties, such as Dunford-Pettis property and weakly completeness, are obtained.

The main motivation for this work were A. Pelczynski’s notes (see [44]), which
contain also most of the required prerequisites. Our work extends [44], since it solves
several of the main problems. It is also of interest in connection with questions raised in
[301, [32], [33], [35], [59]. Besides [44], our references for Banach space theory are [36],
[371, [38], [47]. Basic facts about HP-spaces can be found in [18], [20], [27]}, [53], [54].

In what follows, we will first describe the frame of the work and recall some
definitions. Then we will summarize the several sections of the paper and state the
main results. If « is an operator from a space X into a space Y and 0<p<, we say that
u is p-absolutely summing provided there is a constant A such that

> lux)[P < 2 max {2 [(xox*) P; 2 €X*, [l < 1}

holds for all finite sequences (x;) of elements of X. The p-summing norm 7,(u) of u is
the smallest A with above property. Let I1,(X, Y) be the space of p-summing operators
from X into Y.

For 0<p<1, the spaces I1,(X, Y) coincide and will also be denoted by ITy(X, ¥),
the 0-summing operators from X into Y. Say that u is p-integral, resp. strictly p-integral,
provided u admits a factorization

¥ -y - x —d—y
Sl /; resp. Sl TT
L@ L w e LW —— P
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where u is a probability measure, I the identity map and j the canonical embedding. The
space of strictly p-integral operators is denoted by (X, Y) and is equipped with the
(strictly integral) norm

i) = inf S|/ [|7]|

where the infimum is taken over all factorizations. Say that X has Grothendieck
property provided any operator from X into P is 1-summing, thus B(X, ?)=I1,(X, P).
An equivalent formulation is the equality B(X*, I")=I1,(X*, !'). Grothendieck’s theo-
rem asserts that L'(u)-spaces have Grothendieck property. As pointed out in [44]
(Theorem 3.2), this general result follows easily from the fact that the operator

vwLmie,

where P is a Paley projection, is onto. This shows the usefulness of certain specific
operators arising in harmonic analysis to the general theory. It is shown in [41]
(Theorem 94) that Grothendieck’s theorem can be improved to the equality
B(', Py=TIy(I', ). A way of seeing this (cf. [32], section 2) is to consider the set

A=Z,U{-2% n=0,1,2,...}

and the orthogonal projection
. 2
0:C,— L(-z"}

which is again onto by Paley’s theorem. Now, for p>0, one has the inequality
12 24 P Wp
2 .
¢ a < inf do
”(2 oo ) rea {J; }

from which it follows that Q is p-summing.
Absolutely summing operators on A appear in the study of certain multipliers. For

> a,e”+£(6)
n=1

instance, Paley’s theorem that each (A, I')-multiplier M is [>-summable is equivalent to
the statement M €I1,(A, I*). In this spirit, the reader is referred to [35] for a study of
translation-invariant absolutely summing operators. Our work actually shows that
these results extend to arbitrary operators and that the equality B(A, I")=I1,(4, [')
holds in general.

One of the striking facts about operators on the disc algebra is the following
extension of the coincidence of the notions of p-summing and p-integral operators on
C(K)-spaces (see [44], section 2).
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PROPOSITION 0.1. For 1<p<®, any p-summing operator u on A is strictly p-
integral. Furthermore

, p’
tp(u) < const. ;_—1 7, (1)

Proposition 0.1 extends the LP-boundedness of the Riesz-projection for 1<p<c. It
provides a linear invariant which allows for instance to establish the non-isomorphism
of A and the polydiscalgebra’s. A new proof of Proposition 0.1 based on weighted norm
inequalities can be found in [32] (section 2).

Denote m the normalized Haar measure on the circle IT. If A is a measurable
subset of I1, we shall sometimes use the notation |A| for m(A). If f€ L'(I1), [f means
always [fdm. If H) is the space of integrable functions f on IT such that

fimy= ff(ﬁ) e "m(dh)=0 forn<0

then the duality
(fo)= f fodm

identifies H® to the dual of the quotient space L'/H}. We consider the quotient map
q: L'>L'/H;. This map has several remarkable properties which the reader can find in
[44] (sections 8 and 9). To each x in L'/H(’, corresponds a unique f in L' such that
q(f)=x and ||f]|=|Ix||. This fact defines the minimum norm lifting o: L'/HpL'.

If A is a weakly conditionally compact (WCC) subset of L'/L;, then o(A) is
relatively weakly compact in L'. Recall that A is WCC provided each sequence in A

has a weakly Cauchy sequence. This fact combined with the F. and M. Riesz character-
ization of A* as

A*=LHy@M(IT) (M, = singular measures)

implies that A* is weakly complete and satisfies the Dunford-Pettis property (DPP). It
was unknown whether or not A could be replaced by H*. We answer this affirmative-
ly, by showing that any ultra-power (L'/H;),, of L'/H, is weakly complete and has DPP.
Achieving this requires a local version of the regularity property of ¢ with respect to
WCC-sets. This localization, previously sketched in [7], turns out to generalize J.
Garnett’s theorem that harmonically interpolating sequences in the disc are interpolat-
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ing (see [21]). We will use here a reverse approach (see also the remarks in last section)
deriving the lifting theorem from certain facts on interpolating sequences which are
apparently new. These will be obtained by dualization of certain results on vector-
valued H'-spaces, which are of independent interest.

The fact that the Paley projection P: A—/[* does not factor through an L'(u)-space,
implies, by general results, that A has no local unconditional structure (see [44], section
4). This means that A cannot be obtained as closure of an increasing sequence E, of
finite dimensional subspaces so that sup, unc(E,)<%, where

unc X = inf {unc {x;} ; {x;} is a basis for X}

and

unc {x;} = SUP{ HWEia x| = 1}-

Eiaix,.
i

In particular, A is not an £*-space (see [36] p. 198 for defirition). However, as we
prove, ¢ is the only (infinite dimensional) complemented subspace of A possessing an
unconditional basis and A only admit cy-unconditional decompositions (cfr. [57], [58]).

Say that X is a P;-space (A=1) provided X embeds as A-complemented subspace of
a C(K)**-space. The structure of finite dimensional P;-spaces is not yet understood,
except in the case A is close to 1 (see [60]).

We investigate here finite rank projections in A and show that the range has to
contain [, -spaces of proportional dimension. Besides, any n-dimensional a-comple-
mented subspace of A is a P; for A of the order a-log n. Natural examples, such as the
polynomial spaces Lj, ,  , show that this result is best possible.

The results on the disc algebra presented in this paper use heavily the fact that A is
a log modular algebra. For some of them, also the weak-type property of the Hilbert
transform is involved. At this time, we don’t know of extensions to other natural
spaces, such as the polydisc- and ball-algebra’s or spaces defined by singular integrals.

Let us now outline how the remainder of the paper is organized and indicate the
main results obtained in the different sections.

In the next section, we derive some simple consequences of the weak-type
property of the Hilbert transform. We then apply the classical construction of outer
functions to obtain H” functions satisfying certain prescribed conditions. More pre-
cisely, a Havin type lemma is obtained and certain *‘truncation’ results. The main
result is contained in Proposition 1.7, which will be used several times in the paper.
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Section 2 is devoted to the study of absolutely summing operators on the disc
algebra and H”. The central theorem can be stated concretely as follows

THEOREM 0.2. For each finite sequence (x;),<.<, in L'IH,, there exists a lifting
(fi<ie, in L'(MD), i.e. g(f)=x, for k=1,...,n, such that

where C is a fixed constant.

Theorem 0.2 is equivalent to the Grothendieck property of L'/H}. Two different
proofs of this fact are presented. The first is the so-called extrapolation-method, which
relies on an interpolation enequality for the p-summing norms of an operator on A. The
second, which was suggested in [32], consists in proving that O-summing operators on A
are nuclear. Both approaches have several further consequences for the local structure
of the disc algebra.

In section 3, certain vector-valued H'-spaces are characterized. More precisely,
the following result is proved.

THEOREM 0.3. Let X, (resp. X;) be CV equipped with a weighted I” (resp. 1')
norm. Then the spaces H}((,u x, and HJYOUH}Y, have equivalent norms (up to a fixed

constant).

This fact combined with classical Blaschke product techniques has consequences
for interpolating sequences in the unit disc, which will be used in the next section. One
could use Theorem 0.3, and the method to derive it, to develop the real interpolation
method for H' (and HP) spaces taking values in Lorentz spaces. Theorem 0.3 can
indeed be rephrased in terms of K- or J-functionals (see [2] p. 38, for instance). This
further development is however not worked out in the paper since it seems us a bit
outside its purpose.

The results of section 3 are used in section 4 to derive the following property of the
minimum norm lifting of L'/H,.

THEOREM 0.4. Let (x,),,<, be elements of L'/Hy and assume fi=0(x;) satisfy

() fmaxlk || Zézlkuxkll whenever 2, =0.
k
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Then there are H*-functions (@,),<i<,Such that

@ | loi 'L <1

(iii) |(fk, @) |>s(6) fork=1,..., n.

This fact can be seen as a local version of the lifting property of weakly condition-
nally compact subsets of L'/H; by o.

In section 5, further linear properties of H™ are obtained. We first combine
Theorem 0.4 with results of N. Tomczak-Jaegermann [56] to prove that any finite
dimensional well-complemented subspace of H” contains /] subspaces of proportional
dimension. Theorem 0.4 is then used to extend J. Chaumat’s results (see [15]) on the
Dunford-Pettis property and weakly completeness of L'/H} to the space (H*)*. Our
method uses ultraproduct representation, which in this context seems the most conve-
nient form of the local reflexivity principle.

Section 6 contains further extensions and applications. Results of D. Marshall [39]
allow to generalize part of our work to closed subalgebra’s of L™(IT) containing H~.
Our results on the Grothendieck property solve affirmatively a question of N. Varopou-
los on projective tensor algebra’s. They also turned out to be useful in a recént
construction of Banach spaces in connection with some conjectures of A. Grothen-
dieck on tensor products (see [50]).

Part of the material presented here was already announced in the C.R. Acad. Sci.
Paris notes [4] and [6]. The reader will find a summary in [11].

1. Preliminaries and decomposition lemma

Let us first fix some notation.

D={z€C;|z|<1} is the open unit disc and I1, m the circle equipped with Haar
measure. Denote P, (0<r<1) the Poisson kernel, =R, (resp. #_) the positive (resp.
negative) Riesz projection and 7 the Hilbert transform.

Define for convenience

| fllw=supAml|f|>2] for f measurable on II
>0

Il = 1Ny = inf {lf+h i, hEHR}  for fEL'IT).

The restriction map fi>f]y gives an isometric embedding of A in C(IT).
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Identifying the HP-function with its radial limit, the space H” can be seen as
subspace of LP(IT). If it is not specified otherwise, A- and HP-functions will always be
seen as functions on IT. Through the paper, C will be some numerical constant.

PROPOSITION 1.1. Assume u in M(II). Then
(i) For a<1, R(ux»P,) converges in L*I1) for rzl.

@) |fllw <Cljull, where f=sxﬂ> | RuxP))|.

The reader will find a detailed exposition of these classical facts in [20] (see
Theorem 3.1 p. 57, Theorem 2.1 p. 111).

LEMMA 1.2. If w € LYTI) and 0<a<1, then
a 2 —-a a a
f 10 <l ol 111

Proof. Define A(A)=m[|f|>A] and fix 0<Ay<x. Then, by partial integration
a a N a— a 1 a-—
flfl wﬁiollﬂ)llﬁd{f A@ v A 'di} ol <45 lleolly + 1= 43 HiAlw el
0

Taking then
_ lleoll o LAl

AT

the required inequality follows.
As consequence of Proposition 1.1 and Lemma 1.2, we get

LEMMA 1.3. If fEL'(IT), w €LZ(IT) and 0<a<l, then

J e [ A

Let us recall the construction of an outer function. Assume f>0 a bounded
measurable function on IT and log fin L'(IT). If for z€ D, we define

g(z) =exp { f log f(6) "4z m(de)}
e

e:@

then g is an H”-function and has boundary value f ¢ * 08,
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Next lemma is related to the so-called Havin lemma (see [25]).

LEMMA 1.4. If A is a measurable subset of Il and 0<e<l1, then there are H”-
Sfunctions @ and vy such that

@) lo|+yl<1
(ii) |p(z)—1/5|<efor zEA
(i) [p(2)|<efor zEA
(V) |lplli=<C (log ™ ')*|A|
V) ||1=y|l<C (og e~ "]A|"2.

Proof. Only the L?-boundedness of the Hilbert transform is involved here. Take
first

t=1-(1—-€)x,
and consider the H”-function
f= rei%(logr).
Then |f]=¢ on A and since
I1—f]<|1—7|+{(1~ cos ¥ (log 1))*+ sin2¥(log 1)} "*
<|l—-t|+|#(og )|

we get
. 1
1Al < 1=l +log el < 1+ log L) 41"

Thus if <p=§(1-—f)2, (i1) and (iv) are fulfilled. Take now

x=1—|p| and g=axe'*E9

Then |p|+|g|<1 and one verifies easily that ||l —g[,<C (log 1/¢) |A|"".
Define y=f"g, which satisfies clearly (i), (iii} and (v).

LEMMA 1.5. There is a constant C such that if f is positive measurable on Il and
0<A<x, one can find ¢ € H” satisfying

() [lpllo=3
(i) |o|f<34
Gii) [[1-@lh<CA~"||fllw
(V) (A= fli <C [ rp f-
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Proof. If || f|lw=, there is nothing to prove. Otherwise, the function
r=[max(17'f, ]!
has integrable logarithm and one can consider the H*-function
@ = 7 ¢! log )

Define ¢=1—(1—¢,*=2¢,—¢f for which |p|<3|gp,|. Hence (on II)

lp|f<3tf<3A.

Also
||1—<ir>||1=f!l—ca.|2$2f(1—r)2+2ft%(lOgt)!2
where
J (1-02<m[f>A]
and

f|%(logt)|2$jllogtlz=f <1ogi>2<cr'||f||w.
r>2 A

Because (log x)><x for x>1, it follows that
I1-slh <C2 1l and fi-gl<ca |
f>2]
Finaily
[A-pfll, <4 fHA(|1-qll,
{f>4]

implying (iv).
As a consequence of preceding lemma, we get following Marcinkiewicz decompo-
sition for H” functions.

PROPOSITION 1.6. For given 0<p<vo, there is a constant C, such that if f€ HP
and 0<A<, there is a decomposition in H”

f=fith
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where

) lfil < C)lfl and |f,| < C,|f]
@) [fj]| <C,4

(iii) f ILr<c, Ti@
1>41

Proof. Apply preceding result to the L'-function |f}° replacing A by 17. Let ¢ be
the H”-function obtained in this way. If p = 1, define

fi=fo and f,=f(1-9¢.
For 0<p<1, define first

@ =1-(1-¢"* where k= [—})—]H

and take again fi=fg,, ,=f(1—-¢)).
In what follows, crucial use will be made of the following result.

PROPOSITION 1.7. There is a constant C such that given a positive L'(I1) function
£, [f=1, and 0<6<1, there are positive scalars (¢;) and sequences (8y), (t;) of H”
Sfunctions satisfying following conditions

@ 116l <C

() Llr|=sC

(i) |r)f<c;

(iv) Z¢;llr)l,<sCo6™¢

W [1-20,27<d

Proof. Fix a positive number M=M(5)>1 which will be specified later and define for
i€EZ

A= [M<f<M*).
Clearly |AJ<sM™ [, f<M™. Apply Lemma 1.4 to each set A;, taking e=M~', which
leads to H”-functions ¢;, ¥;. Hence, by (i), (v) of Lemma 1.4,

lyi,—1|<slyp,,—1| becausely, |<lfors=1,2,...



NEW BANACH SPACE PROPERTIES OF THE DISC ALGEBRA AND H*

and thus

}:ul —pilh = Zsul w.ﬂuzsaogME sA <o,

s=1

Therefore, the formula

1= 5(p1]__[ w;?+s

s=8

11

defines an H”-function. Moreover, by (ii) and (v) of Lemma 1.4, and the Cauchy-

Schwartz inequality

v > f l1-z|f<D f 1=Sg|f+ 2 s |1 Visd f
i Ja, i Ja;

i s=28

< 5£+ClogM2 M* Y sla)| |4,

s=8

<5e+ClogM D, s M'™"? 2 (M |A)" (M |4, )"

528

<SM'+ClogM > sM'"™*=CcM™".

528
Further
(vii) flz] <5 M+
since by Lemma 1.4(iii) we get on the set A, for j=i+8
fle]<SM* ) i<SMt e =5 M7

while flr|<Sf<SM™® on U, A,
Also, by Lemma 1.4(iv)

i) D M|zl =5 D, Mi|lgll, < ClogM)* >, M| < C (log M)™.

For t=0,1,2,...,7, write for convenience i=t provided i=¢ (mod 8).
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Iteration of Lemma 1.4(i) shows then that

(ix) 2l <5 |o H v <5.
_}>l

i=t i=t

Define for each ¢

B,=UA, and 75,= 212.

i=t i=t

Thus
) |Indl-=<25

From Lemma 1.4(iii) and (iv), we get clearly

fll ntf@{f |1=gl 2, Amf}

jxi

<o3 [ etz S [ e S ol

i=tJA; ist j<i-8 j=i+8

<c> | 17, f+CM“62M‘]A]+C(logM)22M'“ > 1A

i=tJA, Jj=i+8
Hence, by (vi)

(xi) EJ |1—n,|fsCM“+CM’6+C(logM)2M"":CM“‘.
t JB,

Define the H*-functions 6; as follows

0,=(~n,,)0-1,)...(-n) it i=¢<7
0,=1 if i=7.

Consequently
7
>oi=>q[la-n)
=0 u>t
and therefore

7
1~> g,2=[]a-n).
t=0
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By (ix)

(xii) X]r,|<40
and from definition and (x)
(xiii) ||6/|=<26.

7
f 1= g, f=fH|1—n,|fsc2f =
' 1=0JB,

(xi) shows that (v) will be satisfied for M~6~".
Taking ¢;=5 M'*®, conditions (iii) and (iv) follow from (vii) and (viii).
So this completes the proof.

Since

2. Absolutely summing operators and the cotype property
For completeness sake, we recall the following fact (cf. [44], Theorem 2.3) concerning

the decomposition of an absolutely summing operator T on the disc algebra A.

PROPOSITION 2.1. Assume T p-summing (p<1) on A. Then T has a decomposition
T=T\+T,, where the components T, T, fulfil the following conditions:

(i) er(Tl)”+ﬂp(T2)"SnP(T)”‘
@i1) np(T,) is realized by a Pietch measure on the circle T1 belonging to L'(m).

Moreover
7 T)<sa,T) for0<qgsw.

(iii) There is a sequence of operators S,,: CA1)—A, such that (T>S,) converges in
T,-norm to an operator T, satisfying T> = T»j where j: A—C(I1) is the injection.

Proof. Since p=1, the A. Pietch factorisation theorem (cf. [47]) provides a Radon
probability measure x4 on IT such that

IT@N <7, (Dllell,,, for p€A.

LP(u)

Let du=h dm+du, be the Lebesgue decomposition and L=U;_, K,, K, compact, a K-
subset of IT so that m(L)=0 and u,(L)=||u|-
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By classical results from peak-set theory (see [20], p. 203, Lemma 4.5), it is
possible to find a sequence (y,) in A satisfying the conditions

(iv) |[¢all=1
(v) (y1) converges pointwise to 0 on the set L
(vi) () converges to 1 a.e. (with respect to m).

Since in particular (y,) converges in L”(u), one can define
T(p= klim T(py,)

and
T,=T-1,.
Clearly
IT@I <7Dl 20d IT@I<TD@lpq,,

from where ().

A similar reasoning actually shows that 7,(T;) is realized by an m-regular meas-
ure. Also, from definition, it follows immediately that

7w (T)) < Jrq(T) forall 0<g< .
Denote for each n=1,2, ...,
R, : C(IT) - C(K,) the restriction operator
and
E,:C(K,) — A a norm-preserving extension (cf. [44], Theorem 2.1).

If one defines S,=E,R,, it is easily verified that the sequence (7,S,) converges in -
norm to an extension 75 of 5.
Remarks. (1) The first component T; can be extended to H”, defining

T(p= liml T,(@*P,).
r2

It is indeed clear that the limit exists. This extension will be useful in what follows.
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(2) In case T is 0-summing, one applies Proposition 2.1 with p=1. Thus T, and T,
are again 0-summing. Now, for each n, the operator 7,5, will therefore be nuclear (see
[32], Theorem 5) and therefore also T, and 7.

Let us now state our first main result.

THEOREM 2.2. Let p=2 and Y a Banach space such that any bounded operator
Jrom Cinto Y is p-summing, i.e. B(C, Y)=II,(C, Y). Then also B(A, )=II,(A, Y).
(I1, can be replaced by I,, taking Proposition 0.1 in account.)

Theorem 2.2 will be obtained from an extrapolation technique, which was already
previously used in [43], [34] and G. Pisier’s proof that the quotient-of L! by a reflexive
subspace verifies the Grothendieck theorem [48].

The main ingredient is an interpolation inequality on the p-summing norms, which
will be presented in the next sub-section.

2.1. An interpolation inequality

Our purpose is to show the following fact:

PROPOSITION 2.3. Assume 1<p<x and T p-summing on A. Let p<q<% and 6
such that

Then for all 0<¢<0, one has an inequaliry
i(D<C@,q, YT, (D)'?
where, more precisely, C(p, q, ¢)=C(p)(0—¢).

This result turns out to be sharp, as will be clear from a discussion below.

The proof of Proposition 2.3 depends on the foliowing preliminary decomposition
property.

LEMMA 2.4, There is a constant C>1 such that under the hypothesis of Proposi-
tion 2.3 and for given 0<0<1, the operator T has a decomposition T=I+R, where

(i) 1 is strictly g-integral and

iq(I) < Cp(0_¢)—1 S~ Cl-9p ||T]|¢JIP(T)1—¢
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(i) ||R||<C||T]| and m,(R)<C 8P, (T).

where C, is the norm of the Riesz-projection regarded as an operator in L.

Proposition 2.3 is then obtained by an iteration procedure. Starting from Ry=T7,
consider successive decompositions R,=I,.,+R;, according to Lemma 2.4,
We see that for 6 small enough

7 (R)—0 and i(I)<C,(0—¢) 0" N(C YT (1) 0.
Specifying 0=(C)?1~9 leads to the estimation

iD= ; i, (1) < C,(0-¢)" QO TP, (1)~

and thus
i(D< C(p) (6—¢) I T|P7,(D)'~*
ds required.

Proof of Lemma 2.4. First one can identify T with the component T, in decomposi-
tion 2.1. Indeed, since 7> is defined on C(IT), Holder’s inequality yields immediately
(cf. [48], p. 75) that

i(T) <i(T) <||T)°n(T)' ° < 2/|T|°x,(D)'~°.
Thus T extends to H* and there exists f€ L\ (IT), [ f=1, such that
IT@N < 2,(Dll@ . gy fOr o€ H”.

Let (c;), (6,), (7;) be the sequences obtained by application of Proposition 1.7 to the
function f, taking 0 as in Lemma 2.4. Define

Ip= T(wE Oit,?) and R=T-I
which makes sense by (i), (ii) of Proposition 1.7. Also ||R|| < C||T||. Since

P 1/p
IR(@|| < 7,(D {J lpl? 1—2 0,7 fdm}
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estimation (v) of Proposition 1.7 combined with (i) and (ii) of Proposition 1.7 show that

7 (R)< C6"n (T)

Remains to verify (i). Extend I to C(IT) by the formula

)= T(Z TR, (0,1, (p))

i

which clearly makes sense if ¢ has finite spectrum. Now

f (2 z,.%(e,.z,.@) F

(@] = sup
F

I(dem

f <z zigz+(e,.zi<;a)> F=1lim f > 6,7, 0F. (1, F)
r-l

defining for convenience R_=R_xP,.

for F € L(IT) satisfying

< || ()| forallp€H".

Also

Fixing r<1, application of the Holder inequality leads to

f S |¢|mc<r,.m|s{2 f e I P, ||}{ f |«p|q(2c,. ||)}

By definition of @, we get

q = (ﬁq’>a+(l—£q’)p' where a =p(p—1+—9—>_l.
a a ¢

So, applying the Holder inequality for sequences, we get the estimation IUXV on the
first factor of the preceding inequality, where

U={ZJ'Ici-lg’z"_(tif)lacilr,.|}¢/a and
' —pla
V= {zf lci—lar_(.ril;v)lp'ciltil}l/q [ '

2—-848288 Acta Mathematica 152. Imprimé le 17 Avril 1984
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To estimate U, apply first Lemma 1.3 with w=|t}, which gives
R a < C 1-a a
I —(tiF)l lfil S1"a il lle: Fll%

Thus, using (ii) and (iv) of Proposition 1.7

‘o (1—aYa)o ]
v<({&) (E c.-ur,-n,) (2 ||t,.n|,)

C o _coa-
<(7S ) “oem-opeg
—-Qa

<C (0p)¢9 é—C(0—¢)lp”TH¢
0-9¢)

< p¢(0__¢)—16-—C(1—¢)/D "T”¢

The L?—L”" duality shows that
R vy’
{2 f |c:'%-<nf’>l"c.-lr,~|} o
@)

over the sequence () fulfilling

2 [ LR P)rf

2 f &P (e; e < 1.
Since

ngi%'(rin!tfl=[(z Ts'@:-(ciki’)>F

we obtain estimation by
<z, { j

T(Z T, R(E; |TiD)
By Proposition 1.7 (i), (iii) and the M. Riesz theorem

] ,E A7)

2 T, R.CleD

p |l
g

‘r<c f NI AL a2

<cSa mcimr
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= CCP Z C; f (& Iz

=CC,

.
Consequently
VS(CC, a (DY~ < (CC,m (T)'°.

By completion, I extend to C(IT) and

1/q
i< UV (Z nr,-m)
AL
< Cp(0—¢)" o~ Cl-¢¥p {vilie np(T)""’

as desired.

2.2, Consequences

Let us first proceed with the proof of Theorem 2.2. Denote y.(T) the factorization
constant of the operator T through an L*(w)-space. By Proposition 2.3, we get for
TEM,A, Y)

C
7D <iD <L LTI 2D
for p<q and ¢<0. Since 6—1 for g—x

C
'}’w(T)< (p) "T"q) (T)l ¢ *
If now Y satisfies the hypothesis B(C, Y)=IL,(C, Y), we get also
n (N <C(Y)y(T) for a fixed constant C(Y).

Hence

C
(D)< (—C(—:";dfﬂ) "Izl

proving the equivalence of operator- and p-summing norms for finite rank operators
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from A into Y. Since A has the bounded approximation property (in fact A has a basis
[3]), we conclude that B(A, Y)=I1,(A, Y).
If we choose in (*)

m(TY\-!
—1-(10g ™ )
¢ (°g 17Tl

we find

n (1)

LD =<CPE)||T||log—2—.

Y (@) ||IT||log I
Hence

THEOREM 2.5. If TEII,(A, Y), then T has an extension T to C(1) satisfying

7(T)

ITl|< C@)||T|l1og -
Il

Since always
7,(T) < ||T}| (rank T)'?

for finite rank operators, the following corollary is immediate:

COROLLARY 2.6. (i) A rank n operator T on the disc algebra has an extension T to
€M) satisfying ||T||<C2) (og n) ||T|.

(ii) If X is an n-dimensional subspace of A complemented by a projection P, then X
is a P;-space with A<C(2) (log n) ||P||.

This result, answering affirmatively problems raised in {46] and [59], is best
possible as we will indicate at the end of this section.

Combining Theorem 2.2 with Grothendieck’s fundamental theorem B(C, [')=
II(C, ") and a result due to Maurey (see [40}), the following consequences are
derived.

COROLLARY 2.7. B(A, IY)=I1,A, '), or equivalently, A* verifies the Grothen-
dieck theorem.

COROLLARY 2.8. If cq is not finitely representable in Y, then B(A, Y)=I1,(A, Y)
Sfor some p<«. In particular, if Y is a cotype 2 space, then B(A, Y)=TI,(A, Y).
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Let us recall that ¥ has cotype g(2<g<®) provided

f 12 el de>y<2 Hy.-uq)

holds for some constant y>0 and for all finite sequences (y,) in Y.
(As usually, (¢;) denotes the Rademacher sequence.)

Proof of Theorem 0.2. Consider elements (x,),,, in L'/H} and the operator
T: Al given by T(@=((@, x;));<1<,. Clearly

2 & Xy

By the extension property for 2-summing norm and Corollary 2.7, there exists an
operator T:C(IT)—!' satisfying Tj=T, where j:A—C(IT) is the injection, and
|IT||sm(T)=nT)<C||T||. Denote u, € M(IT) the kth component of (7)*. Then

2 Exlhy

Moreover, if for k=1,...,n we consider %, in L'(IT) representing x, it follows that
(ur—%) LA, thus pu,—% is in Hg and in particular g<<m.

The following observation, due to Figiel and Pisier (cfr. [19] and the remarks at the
end of [58]) is well known. We include its proof for selfcontainedness sake.

IM<2 sup

g =11

<M= Tl

sup
= %1

£,

PROPOSITION 2.9. Any space X with the Grothendieck property, isomorphic to its
direct sum (L;_, X), in I'-sense, is of cotype 2.

Proof. If A denotes the Cantor group, then L)(A) verifies the Grothendieck
theorem. For 'EGL}((A) and § a finite set of positive integers, denote é(S) the corre-
sponding Fourier-Walsh coefficient of £. Fix a sequence (x7) in X* satisfying

1”2
<Z l(xﬁ x) |2) <||x|| for all xEX.

Then the map a:L}—F defined by a(§)=({£{i}, x¥)) is norm-1 bounded and hence

m{a)=<C(X). Given an arbitrary (finite) sequence (x;) in X, it follows thus

C(X)f uz &x;|| de= z lloCx; @ €)]| = 2 |(x, x|
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[]Zex

by an appropriate choice of the x}
The reader is referred to [57] and [58] for the following facts:

Hence, in particular

172
de=C(X)™! (Z le.-l!z)

PROPOSITION 2.10. (i) For 1<<p<o, the space HP is isomorphic to its direct sum
o H),.

(ii) The disc algebra A is isomorphic to (E,_, A), .

Combining Corollary 2.7 and Proposition 2.10 (ii) we get
COROLLARY 2.11. The dual of the disc algebra A* is a space of cotype 2.

By arguments of local reflexivity, Corollaries 2.7 and 2.11 remain valid if A is
replaced by H™. Since it is not known if H” has the bounded approximation property,
extension of Corollary 2.8 to H” is not clear. However, the result holds assuming that
Y has the bounded approximation property.

Next results are formal consequences of the cotype 2 and Grothendieck property.

COROLLARY 2.12. (i) cg is up to isomorphism the only complemented subspace of
A possessing an unconditional basis.

(ii) If ¥ X; is an unconditional decompaosition of A (resp. H), then L X; is a co-
sum (resp. [”-sum) (cf. Proposition 2.10).

Corollary 2.8 allows to improve Theorem 2 of [30] as follows

COROLLARY 2.13. Given a reflexive subspace X of A*, there exists an embedding
B:X—C(D* such that moreover j*B(x)=x for x€X, where j: A—C(Il) is again the
injection.

Proof. By Lemma 3 of [30], a reflexive subspace X of A* does not contain l,‘,’s
uniformly and hence X* has a finite cotype. Therefore, by Corollary 2.8, denoting
i: X—A* the injection, i*|4=T is p-summing and thus p-integral for some p<. Thus T
factors through an L*(u)-space and can be extended to C(IT). Let T be this extension.
Since Tj=T, it follows that i=j*8 where § is the restriction of (7)* to X.

Further results concerning projections in the spaces L'/H}, A and H™ will be
presented in section 5.
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2.3. An alternative approach

If X is a Banach space, the Grothendieck property of X* is a formal consequence of the
fact that each 0-summing operator from X in Hilbert space is nuclear, thus the equality
Iy(X, P)=N(X, ). We give a direct proof of this fact, without using the theory of
operator ideals. Denote by v, the nuclear norm.

PROPOSITION 2.14. If X satisfies Iy(X, P)=N(X, ?), then X* verifies Grothen-
dieck’s theorem.

Proof. Let TE B(X*, ) be induced by the sequence (x), ., in X. Take elements
(e in X* satisfying sup, _,,||Z g;x}{| <1. Consider a matrix (@), ;<,, 1gjen SUCh
that sup, Ei‘aUFSl and denote M:[\— the corresponding operator, for which
lIM|}<1. Consider the composition

poxip e
where R(x)=({x, x})),¢;<y- Because B(I',)=I1y(I',P) (see introduction) the hypothesis
gives
v,(MR) < C(X) |R]| <2C(X)

and thus

trace (MRT*) < v,(MRT*) <2C(X)||T||.
But clearly

n N
trace (MRT*) = 2 Z a;{ x,xf)

i=1j=1

and for a suitable choice of (a;), it follows
12
2lTEni=2 (2 | (xox2) r) <2cm|7)).
j J i

Proposition 2.14 has no converse as will be indicated at the end of this section. The
following theorem, which was conjectured in [32] (cf. Theorem 1), provides a different
proof that A* has Grothendieck property.
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THEOREM 2.15. A 0-summing operator from the disc algebra into an arbitrary
Banach space is nuclear.

Besides the lemma’s presented in section 1, the proof of Theorem 2.15 requires some
further observations.

LEMMA 2.16. Assume TETI(H™,Y) and (r;)) a sequence of H”-functions such
that

< ®,
@

“ e

For each i, define the operator T; by T{p) = T(z;¢).

Then
(@) Z m(T) <||Ztd || 7 (1) (O<p<l)
(ii) The serie X T; converges in I1,(H”, Y) (p>0).

Proof. It is clear that (ii) follows from (i), replacing the z; by sums of the 7; on
consecutive blocs.
In order to verify (i), take for each i a system (g; ) in H” such that

D@ px*)P<1 for x*EH)*, || <1.
k

and

S N T, P ~ 7T
k

Then, for some sequence (g;) of positive numbers such that [|(¢))||«.-»=<1 and for some

X EH™Y, [e*|<L.
l/p
2 7, (T) ~ {Z 9.’2 | Td@;..) “p}
Tk
1/p
<D {2 | (el 7@, x*) |”}
ik

T, x*
=m,(D) {Z ol Tx* "p<; <¢i,k’m>

e




NEW BANACH SPACE PROPERTIES OF THE DISC ALGEBRA AND H* 25

\ip
<D (E oillzix* up)
<m(D D, ||z |

<z(T) HZlm

]

If g is a function on IT and G €I, let gy be the translate, i.e. go(y)=g(0+y).
Next lemma goes back to [1] and was in slightly different form also used in [35] and
[32]. The author is grateful to S. Kisliakov for an alternative proof.

LEMMA 2.17. Assume TETIILA, Y). Then:
(i) The functions §E(0)=T(R(P, o)) converge in LiII) for r—1, for p<1.
(ii) If F(@)=sup,«1 ||.0)||, then F verifies the weak type inequality

IFlly< C@)7(T) O<p<l).

Proof. Fix 0<p<1. The Pietch theorem yields a Radon probability measure Q on
the closed unit ball of C(ID* such. that for g €A

1/
Tl <7z, (T {j |x* (@ |Pg(dx*)} ".

Given x* € C(IT)*, denote x} the image measure of x* for the map r—(—1). Observe that
xX*(R(P,, ))=[R(x}*xP)]1(6). For OEII and 0=<r, s<1, it follows

[RECIIZCIN s, (TY f |R((xF%P )~ (x}*P ) ()P Q(dx*)
and

1/,
||§,—§s||ﬂ; < np(T){ J llgi((xT*P,)—(x;"*P:))ll;Q(dx*)} 4 .

Thus (i) follows from Proposition 1.1 and the Lebesgue dominated convergence theo-
rem. Further

sup |£(6)|P < m,(TY f sup |R(xxP,) () dx*)
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and hence, taking

O = X(Fzi)
p
j FPo<n/(Ty f j (sup |R(x}*P,) (G)I) w(0) Q(dx*) m(do).
By Proposition 1.1 and Lemma 1.2, we can estimate for fixed x*
14
[ (suptatarxr @1 J wiorao <2 ol 7 l1sup <
C _
s-l_—pllwlll ’.
Hence
|4 c 1-p
2 ljoll, < 7,07 5= [l
D
and finally

Aol < (75) " 5.

completing the proof.

To prove Theorem 2.15, we proceed again by decomposition. Fix 0<p<l. We
show that for each 6>0 there is a constant Ks<o such that any T€II,(A, Y) decom-
poses as T=N+R, where

() NEN(A, Y) and v (N)<K, 7,(T)
(i) 7,(R)<b - 7,(T).

Fixing 0<d<1 and iterating, an estimation v,(7)<C x,(7) then follows.

By the second remark after Proposition 2.1, we can assume that y(7) is realized
by an m-regular Pietch measure on IT and hence is defined on H”.

Consider again a Radon probability measure Q on the unit ball of C(IT)* for which

p
IT(Pll < 7 (D { f |x* (@I”Q(cix*)} for p € A.
Denoting |x*| the variation of the measure x*, consider following measure on I1
u= f |x*| Q(dx*).

Thus u is positive and ||ju||<1. Let du=fdm+du, be the Lebesgue decomposition.
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Fixing 0>0, apply Proposition 1.7 to f, giving the sequences (z;), (8) in H™ and
(c)=0.

If for each i, we define the operator T{@)=T(6;1;¢), Lemma 2.16 implies
> n(T)<Cn, (D).

If F(@)=sup,, |[TA(R(P, _y)||. application of Lemma 2.17 gives
WF{lw= C@)7(T).
Take A,=c;7,(T)/0 and apply Lemma 1.5 to F; to obtain an H"-function K; such that

lledl <3
Flx| <4,

"1_":'”1 SCA.‘—' |-

Define now
N{@=TLr;x;p
N=> N,
R=T-N.

For 0=<r<1, consider the operator S, (@=T(R(r;»,@*P) on C(II).

Since
(5%, %P, = f @D P, _midy)
we get
I1S; (@Il < f |(z; 2, @ W I TAR(P, _ I < f lp)| (|7, %] F) ().
Hence
7(8,) < e Fll <A lefh = 222 ¢ e
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Also, for 0=r, s<1
my(S;,~S; )< f (z,2) W I TARP, _ N—-T(REP, )
=C f e ) Fp) P TARP, _ )~ T(RP, _)IP

<Cil™* f ITARP, )~ T(RP, NIF

and Lemma 2.17 implies the convergence of (S;,) in I1,(C(II), ¥) for r—1. Since the

§; . are clearly nuclear, the limit operator S; will also be nuclear and

vi(S)=m,

ezl

Since S; extends N;, we obtain NEN(A, Y) and
(1)
P

vi( ¢ilizlly < Co™C~lm, (D).

So it remains to estimate 7,(R). Let for convenience 7=1-X 0,7 x,.

Take a sequence (y,) in A such that

ORRIAIRS
(D) | [y, du,—0

(i) y,—>1 m-ae.

Consider for each k the operator R, (@=R(¢y,). Then
IR =171~ 3, 6,2} %) gyl = lim [T xP,) o)

and

4,
T %P,) eyl < 7 (T) { J | {1 %P) @y, x* ) I”Q(dx*)} ’

(”*P)'/)k p p
P * PdQ .
ﬂm{”< “lloreB) woxt| ‘ llG73¢P,) x| }
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Hence
(R < np(Dlri_Ell{f (%P, wkx*”PQ(dx*)} 1p
2
where the second factor is dominated by
im [ (%) .
2

Since I{u’g [IR—R,]|=0, we get

R) < lim,(Ry) < { f 1= 6,7x%) fdm} ().
Taking previous estimates in account, we see that the latter quantity is bounded by

[ n-SosirscS [ i-siiis

<O+CY cll1-x/,

0
<0+C F,
<O+C 2 Il

<0+C(p)o.

This establishes Theorem 2.15.

Theorem 2.15 permits to distinguish the disc algebra from certain other translation
invariant spaces. Recall that a subset A of Z is a A,-set provided L' and LP-norms are
equivalent on linear combinations of the characters ¢™ with n € A. Combining Theo-
rem 2.15 with Lemma 1 of [30], following result is derived.

COROLLARY 2.18. Assume AcZ such that ANZ_ is a A,-set for some p>1. Then
the space Cp, closure in C(I1) of the polynomials f=X, ¢ A ¢, €™, is not a quotient of
the disc algebra.

2.4. Remarks

(1) In proving the interpolation inequality in Proposition 2.3, the norms 7,(T) and 7(7)
were computed using different measures. It may be possible to derive the result from
weighted norm inequalities on the Hilbert transform, using less the algebra structure.



30 J. BOURGAIN

(2) It is shown in [13] that the spaces Ly, _, of polynomials of degree <n
embed uniformly complementedly in A. Hence, previous results localize to these poly-
nomial spaces. It is also proved in [13] that the Banach-Mazur distance
d(y,., Ly, ... )<Clogn, while for an arbitrary finite subset A of Z, one always has
that LY is only a P;-space for 1 of order log |A|. So Corollary 2.6 is sharp. Other
examples of complemented subspaces of A are those obtained by spline interpolation in
[31.

(3) Assume AcZ such that Z, A and ANZ_ is a Hadamard lacunary set. From
the result on the disc algebra, it is then straight forward to show that also B(Cy, )=
I1,(Ca, I'). On the other hand, as we explained in the introduction, the orthogonal
projection from Cn on L3, is O-summing and onto. Consequently, the previous
property does not imply nuclearity, even in case of translation invariant spaces. The
reader will find related results in [32], section 3.

(4) It should be mostly interesting to determine for what spaces X it is true that any
operator from A into X can be extended to C(IT). This property is obviously true for
X=I and, by our results, if X has a finite cotype (the extreme case in the other sense).
The case X=B([2,?) is unsettled and a positive solution will have applications in
operator theory.

3. An interpolation result for vector valued H'-spaces

The purpose of this section is to characterize certain spaces Hy. Our motivation for
studying such spaces was to simplify earlier work on the minimum-norm lifting
LY/H}~L' by using the interpolating sequence theory. The results presented in the
first paragraph can be extended in the frame of the Lions-Peetre interpolation theory.
There are also possibly other applications than those considered here.

3.1. Characterization of certain vector-valued H' functions

Our purpose is to prove Theorem 0.3. In what follows, Proposition 1.7 will be again
important.
We first show the following extension of Proposition 1.6.

LEMMA 3.1. Given fEL'.(IT) and 6>0, there exists f €L} (I1) and ¢ € H* satisfy-
ing the following conditions:

M |lelle<C
() |IAL=Cs Al
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@iii) [u|l-@lfdm=d|fll,
(iv) given FEH', there is a decomposition Fo=F,+F, in H', where

IFI<f and |Fll<C f .

lIF1=f1

Proof. Apply first Lemma 1.7 and put ¢=% 6,77 and f=ZX c;|r]. Then (i), (i), (iii)
hold.

Next, apply for fixed i€Z Lemma 1.6 to the H' function 7;F, taking 1=c;. This
gives a decomposition in H'

t,F=F}+F,
where

F)<Ce, and [F}l,<C f 1
[lEFl1=c))

Notice that by (iii) of Proposition 1.7

f A<|  IelIF
[lF=¢] F1=n

If we let

F,=) 6nF and F,=) 6,5,F
then obviously
|F1! < CZ clz)-
and

IFl <D, CliFl,<C f

]

(Z |r.-|) 7

Thus the decomposition Fo=F,;+F, satisfies (iv).

Let us now fix some terminology.
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If Xy, X, are linear subspaces of a vector space X and || |lo, || ||1 norms on X, X;
respectively, we equip

X, 1 X, with the norm |jx{ly, 1 x, = max (||x(l,, lixl|,)
and
X, UX,={x€X,x=xy+x, forsome x,€X,,x €EX,}

with the norm

“x”xo vy, = inf (Ieolly + 14 ll,)-
X = Xg¥+X;

Fix a positive integer N and £>0.

Let X, be CV equipped with sup-norm and X, obtained by defining on CV the
norm

s eer 2l = £ 2, I24)
k

We will use the following simple fact:
LEMMA 3.2. For given x=(z,, ..., zn) ECY, define x'=(z}, ..., zx) by

=z if |z|= 2”"”)(0 U X,
;=0 otherwise.

Then IIX'IhSZIIXIIX(,uxl-

Proof. Let x=x,+x, where xy=(z; g,...,2x0)» *=(2;1..-»2y,;) are such that

Il x, =lbrollo+Ibxilly- If |2=2llxl]x,yx,» then clearly
|2k, 1l 2 l2id =24, ol 2= lzil = [Ixollo = |Zk|"||x“xD ux, =3 |zl
and hence
el x, > lbell =2 2l

proving the lemma.
If X is a Banach space, denote for 1<<p<w by H% the subspace of L% of functions f
such that An)=0 if n<0.



NEW BANACH SPACE PROPERTIES OF THE DISC ALGEBRA AND H* 33

Let us prove Theorem 0.3.

PROPOSITION 3.3. The norms of the spaces H{'YOUHJ,(I and H’IYOUXI are equivalent

up to a fixed constant (which does not depend on N or ¢).

Proof. The Hy UH} norm clearly dominates the Hy ,y norm, since if £+&, then

| = [ Ve [ e

=Mallyy +lIEM: -
X X

Conversely, assume £=(F,, ..., Fn) in H}(OU X, and define f by
J@) =2|(F/ ), ..., FN(0))”X0UXI for J€II.

Fixing 6>0, take f and ¢ as in Lemma 3.1. For k=1, ..., N, let further
Fip=F, +F, ,

be an H'-decomposition satisfying

Fod<f and |IF, I <C f .
[|Fk13f]

Define §=(F, ,,...,Fy ) and &=(F, ,,...,Fy ). Then by Lemma 3.1 (ii)
||§0||H)1(0=fme|Fk,0|$||f“1<2C5_CH§I|H;(OUXI
and using L.emma 3.2
[Elly, =& IF, i< C f e 2 Il xgeys
! k k

SZCJ|l(F1,...,FN)||X0UXI.
Finally, by Lemma 3.1 (jii)
e~ oty |, = j 1=l IF s Py, = f [1~glf
<OlEl, .-

3—848288 Acta Mathematica 152. Imprimé le 17 Avril 1984
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For ¢>0, denote %, the ball with midpoint 0 and radius ¢ in H}(OU x,- From the

preceding, it follows that 9, is contained in

{CEH,'(O U Hy 8l | $2C6'C+2C} +B;.
X~ X
Choosing é<1, we conclude that

“C“H}\’ U H)( < const. “C“H}\’ouxl
0 1

Dualization of Proposition 3.3 (in which one can obviously replace H' by H,) leads to

PROPOSITION 3.4. The norms of the spaces L . .NL%. . and L7
0

X;/9 x;nxys A€ €qUuIv-

alent up to a fixed constant.

We denote here by J the subspace of Ly of those elements which have H”

components.

3.2. Application to interpolating sequences in the disc

Proposition 3.4 can be applied to obtain certain P. Beurling type functions.

Consider the following vector-valued interpolation problem. Let N be a fixed
positive integer and &, &,, ..., €y (finite) subsets of the open disc D. Let further for
each k=1, ..., N a complex valued function y, on &, be given. Consider

®=(¢,...,py) suchthat ¢, €H” and ¢J& =y, "
Let now X be CV equipped with an unconditional norm. Define
Oy = inf||<I>||H;
where the infimum is taken over all @ satisfying (*).

Let B, be the Blashke-product of the points in &,. If ® is a particular solution of
(*), the general solution becomes

W=(y,,....,p5) where y,=¢+B, v, and o E€H".

By unconditionality of X, this fact leads to the formula

o
np

If Xo, X, are as above, Proposition 1.4 leads to the following result:

Oy =

L31%
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PROPOSITION 3.5. GX*nX.SKmax (UX,, OX.), for some numerical K.
0 1 (] 1

This property can be restated as follows.

COROLLARY 3.6. If ®,, ®, are solutions of (*), then (*) has a solution ® for
which

1@« <K|@y,. and [l
Iy N [

N

<K[®l
N

Thus in solving (*), information on /*- and I'-estimations can always be combined.
In particular, one has

COROLLARY 3.7. Assume &,,..., &y subsets of D for which there exist H”-
functions @, ..., oy satisfying

() @u2)=1 foreachz€& and k=1,....n
) (IZ1gu <M.

Then there exist also H”-functions v, ...,y fulfilling (i) and moreover

(iii) ||yull-<K for each k=1,....n
@) |2 il [l<KM.

Recall that a sequence (z,,) in the open unit disc is d-interpolating (6>0) provided
to each J-bounded sequence (a,) of complex numbers corresponds some ¢ € H* with
llolle=<1 and ¢(z,)=a, for each n. A result of L. Carleson asserts that a sequence (z,) is
interpolating if and only if the sequence is uniformly separated, i.e.

—w

inf [ | dz, z,)>0 where d(z, w)= —
—2

M pm

(see [14]). For z€D, denote §, its Dirac measure. The sequence (z,,) is called a
Carleson sequence provided the measure u=Z(1—|z,))d,, is a Carleson measure on D
(see [20], p. 31 for definition). The constant of the Carleson sequence (z,) is the
Carleson norm of u.

A sequence in D is known to be Carleson iff it is finite union of interpolating
sequences. If (z,) is interpolating, then, by a result of P. Beurling, there is a sequence
(p,) in H” satisfying

@D |2 |@n]|<o0
(i) @n(2,)=0,,, » (Kronecker’s symbol).
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For an explicit formula for the functions ¢,, see [28] (Theorem 1). In the next section,
we will make use of the following consequence of Corollary 3.7.

COROLLARY 3.8. Given M<® there is M<% such that if €,,€,,...,Cx is a
partition of a Carleson sequence of constant M, then there exist H”-functions
@1, P25 ..., QN satisfying

(i) @2)=1 for each zEC, and k=1,2,...,N
() |lgil-<K for each k=1,2,..,N
i) 1% gl <M.

The important thing is that K does not depend on M. A slightly weaker version of
previous result was obtained in [8] by different techniques.

4. Properties of the minimum norm lifting

Let us repeat that the minimum-norm lifting o: L'/Hj»L' maps x€L'/H; on the
unique f€ L' satisfying ||x||=||f]l; and g()=x.

If AcL‘/H(‘, is a WCC set (see introduction), then o(A) is relatively weakly
compact ([44], Theorem 7.1). The purpose of this section is to prove a local version of
this property. The following result implies Theorem 0.4.

THEOREM 4.1. For each 8>0 there exists 6,>0 such that given L'(IT)-functions
Fisfas - [ satisfying the following conditions:

@ NaEDI>A=M) |Ifmlly  for 1<msn
(i) [ max,, A, |fm[ZCOZA,, || fmlli whenever 1,20,
then there are H”-functions g, g>, ..., g, such that
(iii) |gi|+]|g2l+. .. +|gnl=<1 pointwise on I1.
AV)  {fonr 8m) = [ fin 8m=01||fmll1 for 1<m=n.

Condition (ii) of Theorem 4.1 also means that the f,, have mass at least Co||f.||: on
disjoint subsets of IT (cf. [17], Proposition 2.2). We will derive Theorem 4.1 as a
consequence of Corollary 3.8. The author obtained the result previously by a more
direct method.

Next lemma, based on an argument of successive extractions, is left as an
exercice.
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LEMMA 4.2. Given 9>0, x>0, there exists n=n(g, #)>0 such that if (a,,),<m<n are

positive functions in L'(IT) and

n
f maxa,=¢ D, la,ll,
m

m=1

one can find a subset S of {1,2,...,n} and a system (A,))mes of disjoint measurable
subsets of 11 satisfying

(1) Z:mES “amlllzn >:::ln=l ”am”]
(i) [, a,=@?)|a,l, foreach meS
(iii) [ max,, (e, X )<% [ max,esa,,

Another elementary fact needed for the proof of Theorem 4.1 is the following
approximation principle.

LEMMA 4.3. To each £>0 corresponds y=y(¢)>0 such that for positive, disjointly
supported L(I)-functions a,,a,, ...,a, of norm 1, there exist functions o}, a5, ..., a.,
such that

@) |lam—an|1<e for each m
(ii) the functions a,, are obtained by taking disjoint convex combinations of the
Poisson-kernels P, , for some y-interpolating sequence (z;) in D.

Recall that

Py =L

,eie_zl2 .

Sketch of proof of Lemma 4.3. If we define for fixed >0 and positive integer K for
k=0,1,2,...,e7'K—1

z,;(l—%) ¢’ where 0k=2n£%,

then (z;) is a y-interpolating sequence, where y does not depend on K. Also

|P,—P||, ~ d(z, w) < const. ¢ iflzl=|w|=1—% ~and |z—w|<%.

Choose now K sufficiently large to ensure in particular that a,,=a,, %P, for each
m=1,2,...,n, taking r=1—1/K. The functions «;,, are then obtained by replacement of
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the Poisson-integrals by convex combination of the P,,. Since the a,, were assumed to
be disjointly supported, it is clear that one can choose these combinations to be
disjointly supported on the sequence (zz).

Proof of Theorem 4.1. We show that for some 6,>0 one has for a;, ...,a,EC

inf f max[a,f, +hyl =8, 3 a1l *)

where the infimum is taken over all systems (k,),<.<, With A,,€ H}. The proof is then

concluded by a Hahn-Banach extension argument. Notice that the a,, in (*) can be
taken positive. Let K be the numerical constant appearing in Corollary 3.8 and put
e=1/2K. Take y=y(¢) as in Lemma 4.3 and let M<o be such that y-interpolating
sequences are Carleson sequences of constant at most M. Denote M, be constant
associated to M by Corollary 3.8. Defining o=C9, x=9, it follows from (ii) of Theorem
4.1 and Lemma 4.2 that there exist a subset S of {1,2,...,n} and disjoint measurable
subsets (A,,),,cs of IT satisfying

(l) Z:S am”‘fmnlzn 2:nm=l am”fm”l
(i) [, IfI=(C2)0|f,ll, for each mES

(lll) -f maxmes(am lf‘m| Xn\Am)s" I maxS am |fm|

Application of Lemma 4.3 gives a Carleson sequence (zx) of constant M and
disjoint subsets (V)¢ of the index set, such that

(IV) ” |fm|XAm—ﬂm|l1<£|LmeAm||1 (mes)
where

(V) B,€w, convex hull (P, ;kEV,) where w,=|If, x4 I,

Defining €,,={z;;k€V,,} for mES, we can choose H”-functions (¢,,)es fulfilling
the conditions of Corollary 3.8.
By (i) of Theorem 4.1, there are norm-1 H”-functions vy, so that

(Vl) <fm’ WM>=(1_62)“fm”]

First, one deduce easily from (vi) that

fmax Iamfm+hml>fmax @l | 0l =36 2, a1, -
s s
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f ol @
Am

Jﬂm D = “meAm”l for m€S

Then, by (iii) of Corollary 3.8 and (iii)
PR | [ATRES
A S

Since, by (i) of Corollary 3.8

—uM, D, ap Il
N

we deduce from (iv) and (ii) cf. Corollary 3.8

f ol O
Am

Hence, combining inequalities, it follows

=(1=eK){[fuxa [l for mES.

M, f max|a, o+ 9l = (1=2K) 2 aylfyita =M, 2 2l
S R
and hence, using (ii) and (i)

M, f max |a,, f,,+h,|= (%6—%M,—36M,) 2 @y || F ol
N

| marianssnd=n( 5 ~4)0 S a,lflh
1 m

Since M, is a numerical constant, we can take C=20M, and let 6,=750.
So we obtain (*) and Theorem 4.1 is proved.
Theorem 4.1 implies clearly the following property.

COROLLARY 4.4. To each 6>0 corresponds 6,>0 such that if x,,x2,
LYH} satisfy

f “2 £,C,,0(x,)

de=06 Q) eyl Vie,)
1
then also

de =3, D, e lIx,,

|, V(c,)-

39

I 7]
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Thus if the minimum-norm lifting of a sequence (x,,) in L'/H} is a Rademacher ['-
sequence in L'(TT), then also (x,,) has this property in L'/H}. Previously, only a weaker

subsequence version was known to be true.

Remarks. (1) With some additional work, one can replace 62 by ¢ in (i) of Theorem
4.1. For what follows, this is however of no relevance.
(2) Assume xy, x5, ..., X, a sequence in L'/H}. It follows from the results of section

2 that there exist functions f,, € L'(IT) such that
q(f,)=x, and f ”2 L d£SCf HZ EmXom
1

Unfortunately this procedure does not provide a pointwise lifting, which we need to
prove certain results. We don’t know if minimum-norm lifting preserves the Rade-
macher means.

de.

5. Further results on projections and topological properties of H* and duals

In this section we present consequences of the result on minimum norm lifting (Theo-
rem 0.3. Theorem 4.1), proved in section 4, for finite rank projections in H* and
weakly compact subsets of (H™)*.

5.1. Finite dimensional complemented subspaces of H*

As a first application of Theorem 0.3, we show that complemented subspaces of the
disc algebra contain large [-subspaces. This completes results obtained in section 2.

THEOREM 5.1. Given M<®, there exist 0=0(M) and A=A(M) such that each n-
dimensional norm-M complemented subspace E of H” has a subspace F satisfying

(i) dim F=m=6n
() dF,I)<A.

The reader will find the proof of follwowing general lemma in [10] (p. 116).

LEMMA 5.2. Given >0, there exists 0=0(¢) such that if x1,xs,...,x, are norm-1
vectors in a Banach space X and xt,x3, ..., x} norm-1 in X* satisfying

1) {xp,x5)=¢ (1<k=<n)
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(i) ||Eexxk||<1 for all g==*1,
then there exists a subset D of {1,2,...,n} with

(iii) card (D)=dn
(iv) (e/2)maxp|ay <||Zreparxi|| <2maxp|ay.

In particular, {x{,x3, ..., xt] contains s of proportional dimension.

(The space X in Lemma 5.2 can be assumed real or complex.)
In fact, Theorem 5.1 extends a result which was previously obtained for finite
dimensional P;-spaces (see [12]). Also here, we use the same approach. Recall that ("

denotes the 2-summing norm computed with respect to n vectors.

Proof of Theorem 5.1. Denote i: E—»H™ the injection and P: H”—E the projec-
tion. It is clear, using local reflexivity, that we can assume P* ranging in L'/H}.

By the ideal property and N. Tomczak-Jaegerman's result {36], one has
MV'2 7(i) = ||P|| 7,(i) = 7,(1d) = V1 .

Therefore, one can find vectors ¢y, @3, ..., @, in E satisfying

172 12
(Enfpan) >V%sup(2|<cpk,x>|2) ,

where the sup is taken over all norm-1 vectors x in L'/H;. Notice that this supremum

(o)

Take norm-1 vectors x;, X, ..., x, in E* such that

equals

]

ledl =@, x,) (A<k<n).

Denote f; € L'(IT) the minimum-norm lifting of P*(x;) € L'/H;. There is a sequence

01,0y, ..., 0, of positive scalars satisfying

20%€=1 and 20k<¢krfk>=<2”¢k“2) .
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Hence
1”2 N 1”2
f (2 w) <Z o lf,f) > ﬁ”M l (2 |¢k{2) )
and thus
1”2
(max Ifkl)m(z o Ifkf) = \/\szM
from where
f lgllfl:n Ifu = 2M2

Thus there is a set J<{1,2,...,n}, card (J)=n/4M? and disjoint subsets (A e of II
with

1
L Lfk|>4—M—2 for kKEJ.
k
Thus Theorem 0.4 applies and yields H”-functions (g;) ¢ s fulfilling
Dlgd<1 and (f,g)=6, (KEJ.

7

Defining x;=P(g,), we get

<P for fej=1

©

K
2 Ex X
J

and
(xpxt) =0, for k€J.

So Lemma 5.2 concludes the proof.

5.2. Weakly completeness and Dunford-Pettis property

Our next purpose is to extend weakly completeness and Dunford-Pettis property of
L'/H} (cf. [44], chapter VII) to the odd duals of H™.

There are different ways to proceed. We will use here the ultraproduct technique.
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Recall that if X is a Banach space, I a set and % an ultra-filter on I, the ultra-power X
is defined as the quotient of the [“-sum (Z;X). by its subspace
Noy={(x);ep; limy ||x]j=0}. We recall also that X** is isometric to a 1-complemented

subspace of some ultra-power of X. The reader is referred to [55] for more details.

THEOREM 5.3. Any ultrapower of L'/H(‘, is weakly complete and has DPP.
So, by previous observations

COROLLARY 5.4. (i) H® and its duals are DP-spaces.
(ii) The odd duals of H” are weakly complete.

The reader is also referred to [9] for further related results (see remarks below).
If (L'/H}),, is an ultrapower of L'/H} and (L')q, the corresponding ultrapower of

L'(IT), we can consider the natural extensions of g and ¢ to these ultrapowers
qo: (LYg— (LYHY, and oy (L'HYg~ (L),

It is then clear that g4, is a minimum-norm lifting of gq,.

Since any ultra-power (L')g, of L' is an L'(u)-space and hence satisfies the
properties considered in Theorem 5.3, it will suffice to prove that o, maps WCC sets
onto WCC sets. Thus (cf. [16], [51]).

PROPOSITION 5.5. Assume (&) a sequence in (L'/H(',)m such that the sequence of

liftings 0q,(Ey) is equivalent to the usual I'-basis in (L')a,. Then (§) has a subsequence
(€4) which is equivalent to the I'-basis in (L'/Hp),,.

Proof. We show that (&) is an ['-sequence in the Rademacher sense.

The argument is routine.
Denote for convenience {;=04(&;). Thus

&) =o(§(i)) for each i€1
where
(§,());e; represents & in (LI/H(I))%

Assume >0 such that

52 led < 2' || o7 2 lcl-
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For fixed A>1, one can choose for each n=1,2,... some element U € U satisfying

chﬁk chCk

n

2 Cy Ck(i)

k=1

A < <A

for all scalars ¢, c», ..., c,, Wwhenever i€ U. Hence. for i€ U

J

and we see that for an appropriate 8,>0, also

J

de =176 ) le) €]

E &, ¢, 0(E(D)
k=1

D e & || de =6, D [l 1§
k=1

Therefore

de=0, > | &l

J

n
2 A
k=1

completing the proof.

A slight modification of the preceding argument shows in fact that for fixed
EE(LYHY), the set {LE(LYasquD)=E, |ILI=IIE|l} is weakly compact in (L')q. On the
other hand, one verifies easily that an element of (H”)* has not necessarily a unique

norm-preserving extension to an element of (L*)*. However

COROLLARY 5.6. For each EE(H™)*, the set {LE€(L™)*;q**(©)=&, ||ClI=1I&ll} is

weakly compact.

Proof. The ultraproduct representation allows to embed (H™)*, (L™)* in respec-
tive ultrapowers (L'/H}),, (L"), for the same ultrafilter % and so that moreover the

scheme

(L") ————= (L'/H}),,
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is commutative. From the preceding observation, it follows that {i({);g**({)=&,
llElI=]I&]|} is a weakly compact subset of (L')4. Hence the assertion follows.

Remark. Using fully Theorem 4.1, the reasoning in Proposition 5.5 shows that any
['-sequence in (L'/H}),, has a subsequence with linear span complemented in (L'/H}),,.
In [9], it is shown that {'-sequences in (H™)* have complemented subsequences with
biorthogonal functionals lying in H*. As a consequence, any non-weakly compact
operator on H” fixes an ["-copy and, in particular, [* embeds in each infinite
dimensional complemented subspace of H”. The proof of this fact is rather long and
technical and will not be presented here.

6. Further remarks

(1) Several of the previous results go through for closed subalgebra’s B of L*(IT)
containing H”. Indeed, by the Douglas property, each finite subset of B can be
approximated by elements of 5-H*, for some Blaschke product b with € B (see [39]
or [20], p. 378).

For instance, this fact allows to prove that B(B, ")=II,(B,!") and B* is of cotype 2.

(2) The Grothendieck property of A* can be rephrased in terms of tensor-algebra’s
(see [22], p. 308 for definitions). It is equivalent to the fact that the projective tensor
algebra A®A is closed in CAT)®C(T). Indeed, the dual statement means that given
TEB(A, A*), there exists T€ B(C, C*) such that T =j*Tj, where j is the embedding. This
solves a question raised by N. Varopoulos.

(3) The results of section 2 were used in a more recent construction, due to G.
Pisier, of a Banach space X for which the two tensor-products X®X and X @X coincide
(see [50]). More precisely, one uses the existence of an embedding T of I in L'/H" such
that 7* is 1-summing and the liftability of finite sequences in L!/H' to L!(IT), preserv-
ing the Rademacher mean.

(4) Besides the spaces C, considered at the end of section 2 and remark 1, we
don’t know of other extensions of our results. Natural candidates are the polydisc-
algebra’s, the ball-algebra’s and the spaces of continuously differentiable functions, on
the Banach-space structure of which not much seems to be known.

(5) Taking in Theorem 0.4 f,,=P, , i.e. the Poisson kernels of points z,, in D; one
obtain essentially J. Garnett’s theorem that the notions of harmonically interpolating
sequence and interpolating sequence coincide (see [21]). The author proved previously
Theorem 4.1 by a constructive argument, in particular not relying on factorization.
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(6) Finally, let us notice that apparently no example is known of a subset A of Z for
which C, fails Dunford-Pettis property.

Added in proof. More recently, it was shown by the author that bounded linear
operators from H” into a Banach space with cotype property factor through L™, also
without approximation hypothesis. This fact solves the problem related to Corollary
2.8, in section 2 of the paper.
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