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Introduct ion  

Let G be a finite group and (~ the group algebra of G over the complex field. If  U is 

a unitary representation of G on a finite dimensional unitary space H, U extends to a 

unique * homomorphism U' of (~ into the full operator algebra of H, and conversely. U 

is multiple of an irreducible representation (or U is a factor representation) if and only if 

the kernel of U' is a (two-sided) prime ideal of (~. I f  U and V give rise to the same prime 

ideal, they are multiples of the same irreducible representation, in which ease we call them 

quasi-equivalent. We denote by  Prim (G) the set of all prime ideals of ~ and by  G the 

family of all quasi-equivalence classes of factor representations of G. Summing up, there 

is a canonical bijection between any two of the following three sets: Prim (G), G and the 

set of all characters of G. 

Let now G be a separable locally compact group. The theory of characters of such 

groups was initiated by  R. Godement (cf. [11], [12], [13]). One major outgrowth of his 

investigations was the recognition of the fact that, in order tha t  one should be able to as- 

sociate with a (in general now infinite dimensional) continuous unitary representation of 

G a character, beside generating a factor in the sense of F. J.  Murray and J.  v. Neumann, 

it must  carry a special property, to be called normalcy in the sequel. In  particular for this, 

in general, irreducibility is neither necessary nor sufficient. The notion of character in- 

spired by  Godement 's  work was formalized in the language of C* algebras by  A. Guiehar- 

det (cf. [14], and [4], w 17, p. 305). We recall (cf. [4], 13.9, p. 270), tha t  we can associate 

with G a C* algebra C*(G) (to be denoted in the following by  (~) such tha t  there is a ca- 

nonical bijection between continuous unitary representations of G and nondegenerate * 

representations of (~. This being so, we call a unitary representation U normal, if (1) The 

ring of operators (v. Neumann algebra) M generated by U is a semifinite factor, (2) I f  (I) 
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is a faithful, normal, semifinite trace on M+, there is an element v in (~+ such that  (I)(U(v)} 

is positive and finite. The character belonging to U is then the function w-->r 

( ~ § cr on ~+. We could first define analogously characters of an arbitrary C* algebra 

(cf. [4], 6.7, p. 120) and call characters of G those of (~ (cf. [14], 17.1.1, p. 305). Quasi- 

equivalent normal representations give rise to proportional characters and conversely (cf. 

[4], 6.7.4, Corollaire, p. 127). Let  G be the set of all quasi-equivalence classes of factor 
n 

representations of G (cf. e.g. [4], 18.6.2, p. 323) and Gnorm the subset of G corresponding to 

normal representations. By what we have just said, there is a canonical bijection between 

Gnorm and the set of all characters of G. 
n n 

I t  follows from results by J. Glimm (cf [4], w 9, p. 168), that  we have Gnorm=G, if and 

only if G is of type I, that  is, if any of its factor representations is multiple of an irredu- 

cible representation. In this case there is a canonical identification between the dual 
n 

(=se t  of unitary equivalence classes of irreducible unitary representations) of G and G, 

and conversely. Let  us add, that  if G is not of type I, again by virtue of a theorem of Glimm 

(cf. e.g. [4], 9.5.6, p. 185) G does not lend itself to an effective parametrization, and seems 

to claim no interest. 

Let  now G be a connected Lie group. I t  is known, that  in important  special cases, 

e.g. if G is semi-simple or nilpotent, G is also of type I. Lacking special assumptions, how- 

ever, it fails to be such already in five dimensions. If G satisfies additional conditions, for 

instance, if it is unimodular or solvable, by extension of the classical argument of Peter 

and Weyl one can show the existence of a separating family of normal representations. 
n 

But not even here have been so far general statements, characterizing the size of Gnorm, 

available. 

The principal result of the present paper (cf. Theorem 1, section IV) is an existence 

theorem for characters which, by aid of C* algebras, we can state in close analogy with 

the situation offerred by finite groups. We recall, that  a closed, two-sided ideal of 

= C*(G) is called primitive, if it is kernel of an irreducible representation. By results due 

to J. Dixmier (cf. [3], p. 100) (1) Any closed two-sided prime ideal of ~ is primitive and con- 

versely, (2) The kernel of any factor representation is primitive. Let  Prim (G) be the set 

of all such ideals of (~. There is an evident surjeetion ~ from G onto Prim (G), assigning 

to l in G the kernel of any factor representation of class I. This being said we show, that  

the restriction ~ o /~  to G . . . .  is a bijeetion with Prim (G). In other words, by what we said 

above, we are led to a canonical bijection between the set o/al l  closed two-sided prime ideals 

o/ ~ and that o/all  characters o /G resp.--Let  us note, that  by virtue of an example due to 

Guichardet (cf. [14], Proposition 2, p. 62) the analogous statement for an arbitrary locally 

compact separable group would be false.--An easy byproduct of our proof is the exi- 
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stence of a separating family of normal representations for any connected Lie group (cf. 

Corollary to Theorem 1). 

Let  us assume next, that  G is simply connected and solvable. Not long ago L. Aus- 

lander and B. Kostant  gave a necessary and sufficient condition in order that  G be of type 

I. For this case they provided an explicite description, involving orbits of the eoadjoint 

representation, of G (cf. for all this [1]). The starting point of our present investigations 

was an at tempt  to extend to an arbitrary solvable group some of their constructions. This 

led us to associate with any such group a family @ of geometrical objects ("generalized 

orbits", cf. [22], Chapter i I ,  p. 512), and with any element O of ~ a unitary equivalence 

class F(O) of factor representations (cf. [22], Theorem 2, p. 551). If G is of type I, all this 

essentially reduces to the description of G given by Auslander and Kostant. For the ge- 

neral case we conjectured previously (cf. [22], p. 463 and [24], p. 78) that, up to quasi- 

equivalence, the set (F(O); OE@} would yield precisely the collection of all normal re- 

presentations of G. This hypothesis is verified in Theorem 3 of this paper (cf. section 6). 

In more detail, given O E ~ ,  let us write l(O) for the quasi-equivalence class of F(O). 
n n 

The the map l: ~ -~  G is a bi]ection between ~ and G~orm. In other words, here we have also 

a canonical bijection between the set of generalized orbits and of characters resp. By virtue 

of our Theorem 1 this implies a bijection between generalized orbits and Prim (G). This 

result, suggested first by  C. C. Moore, we already established in an earlier paper (cf. [24], 

Theorem 1, p. 114). Summing up, in the solvable case one has a geometrieal construction, 

involving the coadjoint representation, for all characters. 

Assume again, that  G is an arbitrary connected and simply connected Lie group. In 

the course of the proof of Theorem 1, we associate with any primitive ideal J a locally 

compact space ~4(J), on which G acts as an abelian group (cf. Proposition 1, section 1). 

Various geometrical properties oI A(J) reflect group theoretic properties of the normal 

representations belonging to J (cf. Proposition 3, section 3 and Proposition 5, section 4). 

If G is solvable, there is a G equivariant projection from the generalized orbit belonging 

to J onto ~4(J), and the former is homeomorphic to a product of A(J)  with a Euclidean 

space. By Theorem 1 and by  what we said earlier, J determines an essentially unique 

character XJ. To form this we have to consider traces on factors which, in general, are not 

of type I. The purpose of Theorem 2 (section 5) is to provide for ZJ a formula, which in- 

volves integration over A(J) of expressions containing only type I traces. This result can 

be used to extend the formula for the characters of type I solvable groups, established by 

M. Duflo (cf. [7]) to more general cases. 

I t  appears, that  Theorem 1 carries over to an arbitrary separable, locally compact 

and connected group. Since, however, this extension would require anyhow the results of 
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this paper, without adding much to their substance, we decided to postpone it to a later 

publication. 

In our proofs we shall make essential use of parts of our earlier papers (cf. [22], [23] 

and [24]); the corresponding results will be explicitely stated at the required place.~-The 

reader is assumed to be familiar with the basic results of G. W. Mackey's theory of induced 

representations (cf. [16]), which we shall often use without special reference. 

The reader is urged to consult carefully the Appendix at the end of this paper, which 

specifies some general assumptions and notational conventions observed throughout. We 

shall refer to it by A + number of the relevant section. 

The results of this paper were announced in [25]. 

Let  G be a connected Lie group with the Lie algebra ~. We shall assume also, that  G 

is simply connected, with the exception of the proof of Theorem 1. g can be arbitrary, 

except in section 6, where it will be supposed to be solvable. 

w  

The purpose of this section is the proof of Proposition 1, which in itself would al- 

ready suffice to establish the canonical bijection, quoted in the Introduction, between the 

set of primitive ideals and of generalized orbits in the solvable case (cf. [24], Theorem 1, 

p. 113 and section 6 below). We shall follow roughly the line of reasoning employed in [24] 

for solvable Lie groups. At most of the essential points, however, the proofs presented here 

substantially differ from those of loc. cit. (compare, in particular, the proof of Lemma 1.1.5, 

1.1.9, 1.1.11 and 1.2.5 below with those of Lemma 4, 7, 8 and 28 resp. in [24]). 

1.1. By the theorem of Ado, we can identify ~ to a subalgebra of the Lie algebra of all 

endomorphisms of a finite dimensional real vector space. We denote by ~ the smallest 

algebraic Lie algebra containing g. We recall (cf. [2], Th~or~me 13, p. 173), that  [~, ~] = 

[~, g]; we shall write b for both sides. Let  0 =exp {~) be a connected and simply connected 

Lie group belonging to ~ (cf. A.1). Then G = e x p  (~) is a closed, invariant and simply con- 

nected subgroup of 0.  We have [0, 0 ]= [G ,  G] =exp (b), and L = e x p  (b) is also a closed, 

invariant subgroup in G. 

LEMMA 1.1.1. Let G be a connected and simply connected Lie group. Its ]irst derived 

group is a closed, invariant and type 1 subgroup. 

Proo]. We recall, that  along with ~, b = [~, ~], too, is an algebraic Lie algebra (cf. [2], 

Th~or~me 15, p. 177). Hence the desired conclusion follows from the following result due 
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to J.  Dixmier (cf. [6], 2.1. Proposition, p. 425): A n y  connected Lie group, which is locally 

isomorphic to a real algebraic group, is o/ type I. Q.e.d. 

The following lemma is routine, but because of the many applications we shall make 

of it later on, we include here a proof.---Let M be a separable locally compact group 

and H a closed subgroup of M such that  [M, M] ~ H. We denote by :~ the annihilator of 

[M, M] in the group X(H)  of characters of H, and form the direct product N = M  • :~. 

We fix a right-invariant Haar measure dx on H and set for any b in M: d(bxb -1) =A(b).dx.  

- - We  denote by ~ the group C* algebra of H and consider the group of its * automor- 

phisms Aut (~) as topologized with pointwise convergence. 

LEM~A 1.1.2. With the previous notations, there is a continuous representation o/ N 

in Aut (~), such that the action o / a  = (b, Z ) E N  on the continuous/unction / with compact 

support on H is equal to x~->)C(x ) ./(b-lxb)/A(b). 

Proo[. Writing a/ for  the last expression, let us show, that  Ila/ll = [l[ll in ~. To this end 

it suffices to settle separately the cases when resp. (1) aEM,  (2) aE:~. Ad (1) If  :rERep (H) 

(A.4), we have 

~(a/)=f/(a-lxa)~r(x).(dx/A(a))=f/(x)~(axa-i).dx=(a-l~)(/) (A.6) 

or ~(a]) = (a-t:r) (]). From here we conclude, tbat  the norm of a] in ~ is equal to 

sup II z~(a])II = sup II (a- '~)~/) I I  = sue II ~,(/)II = I I / I I ,  
~EH ~EH ~reH 

implying the desired result. Ad (2) If ZEX(H)  and ]Gs (A.7 and A.8), we have 

II z/ I I  = sue II =(x/)II = sue II (z=)( / ) I I  = sue II =(/) I I  = II/11. 
~ H  ~ E H  ~ H  

In this fashion, for each a E N  there is a unique isometry w->av (vE~), such that  

f o r / E / : ( H )  ~ ~ we have, if a = (b, Z) EN: (a[)(x) ~[(b-ixb)z(x)/A(b). That  in this manner 

we obtain a representation of N in Aut (~) follows from the fact, that  this is evidently 

true if H is replaced by the dense subalgebra i:(H) (A.7). Finally, to prove the continuity 

of this representation it is enough to observe, that  if a n ~ a in N and /E/~(H), the sequence 

{an/) is carried by  a fixed compact subset of H and converges uniformly to [. Q.e.d. 

COROLLARY. For a=(b, Z)EN and xrE/~ (A.5) let us define (a~r)(x) =-Z(x)xr(b-lxb). 

Then N acts on 121 as a topological trans]ormation group. 

Proo/. We recall (cf. [4], 3.9.9, p. 81), that  i~ A is a C* algebra, M a topological group 

and r N ~  Aut ( A ) a continuous homorrmrph ism then, setting/or ~r E.~ and a E M: ( a~ ) ( v ) =- 
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~(co(a-1)(v)) (yEA), M acts on _4 as a topological trans/ormation group.--We write, if 

a = (b, Z)~N, a'= (b, Z); the map a~a '  is a continuous automorphism of N. In this fashion 

to arrive at the desired conclusion, it suffices to note that,  with the notations of our lemma: 

(ag) (v) ~-~((a')-l(v)) (aeN,  g e/~, v e~) .  Q.e.d. 

Hence, in particular, if (~ and L are as at the start, G acts as a topological transforma- 

tion group on L via the action, which is contragredient to conjugation. 

The following lemma is crucial for the rest of this paper; the groundwork for its 

complex proof was laid by J. Dixmier in [6]. 

L~MMA 1.1.3. With the previous notations, the orbit space fL/~ is countably separated. 

Proo/. This will easily follow from the following result (cf. [23], Theorem, p. 379). 

Assume, that ~ and ~ are algebraic Lie algebras o/ endomorphisms o/ a /inite dimensional real 

vector space, and that ~ is an ideal in ~. Let us put H = e x p  (~ )cex p  (g)=G (A.1). Then 

f-I/G is countably separated. - -  To obtain our lemma, it suffices to replace above G and ~) 

by ~ and b = [~, ~] resp. In fact, if ~ is an algebraic Lie algebra of endomorphisms, so is 

b (cf. [2], Theor~me 15, p. 177). Q.e.d. 

LEMMA 1.1.4. For each gEL,  there is a canonical choice o /a  closed subgroup K~ o/G, 

such that K~ ~ L and that 

(i) There is an irreducible representation o~ K:~, which on L restricts to g and, i/Q is any 

such representation, T (~ ) =ind K r o ~ is a/actor representation, 

(ii) I/xejEL and ~jEJ~s , ~j[L=Trj (j= 1, 2), T(~I) and T(~2) are quasi-equivalent i /and 

only i/ we have K:,, = K,, ,  and G~I= GQ~.--I/ this case T(~I) and T(e~) are also unitarily 

equivalent. 

(iii) We have/or all gEJL, aE~: K~,-~ K:,. 

Proo/. Let g be a fixed element of L; we denote by G~ its stabilizer in G (A.9).--We 

write A for the collection of all those closed, connected subgroups of G, which contain L, 

and to which g admits a (Gn) 0 (A.10) invariant extension. We recall (cf. [22], Lemma 3.4, 

p. 483), that  in A there is a well-defined maximal element H. Before proceeding let us note, 

that  if a is some fixed element of G, upon substituting g by ag (A.6) 1] does not change. 

In fact, in this case we have Ga~ = aG~ a -1 = G~ (since G~ o L), and clearly J4 does not change. 

- - I f  ~kEH is such that  ~klL=g ( k = l ,  2), there is a z eX ( [ I )  with z [ L ~ I ,  and ~=Z~I 

(A.8). This implies at once GQ, = Gq; in other words, there is a unique subgroup lI~ of G, 

such that  if ~e[ I  and ~]L=g, U~=GQ. We have clearly lI,~---Un (ae~).---We denote next  

by B the collection of all those closed subgroups, containing L, of G, to which ~ admits 
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a 11~ invariant extension. We recall (cf. [22], Lemma 3.5, p. 484) that  B, too, has a unique 

maximal clement K~. Since under the substitution ~t-~a7~ (aEO) B does not change, we 

have also K,~u=-K:t, and thus K .  satisfies condition (iii) of our lemma. By [22], Lemma 

3.7, p. 484, it satisfies also (i), and by loe. cir., Lemma 3.8, p. 485, it verifies (ii). Q.e.d. 

Notation 1.1.1. Since K .  is determined by E=~zt ,  we shall write sometimes for it 

K(E), or just K, if E is specified by the eontext.--Similarly, we shall write occasionally 

G(E) for G~.~Observe, that  K(E) ~ G(E). 

Remark. For the benefit of the reader, familiar with our previous paper [22] we men- 

tion, that  if G is solvable with the Lie algebra g, we have K(E)=LOg, where g is an ele- 

ment of 6' subject to the condition, that  the point ztEL, corresponding to the Kirillov or- 

bit L(g I b), lie in E; here Gg is the reduced stabilizer of g. Cf. for all this loc. cit. Proposition 

6.1, p. 503. 

L ~ M A  1.1.5. Let E be a fixed orbit o/ ~ in J~. Putting K = K ( E ) ,  let us set F =  

{e; e E/~, e l L e E }  �9 Then F, as a subspace o/I~, is locally compact and Hauedor//. 

Proo/. (a) We show first, that  E is locally closed in L. This follows from the following 

series of observations. (1) By Lemma 1.1.1 L is of type I and thus it is also postliminaire 

(cf. [4], 9.1. Th~or~me, (i)~ (iii), p. 168), (2) By virtue of (1) L is locally quasi-compact 

and almost Hausdorff (cf. [4], 4.5.7, p. 94 and [10], p. 125), (3) By Corollary to Lemma 

1.1.2, ~ acts as a topological transformation group on L, such that  L /~  is countably se- 

parated (eft Lemma 1.1.3).--From all this, by virtue of a known theorem of Grimm 

(cf. [10], Theorem 1, (3) ~ (2), p. 124) we infer, that  the ~ orbit E in L is open in its closure, 

which is the desired conclusion. 

(b) We observe next, that  F is locally closed in I~. To show this, we shall use the fol- 

lowing result of Dixmier (cf. [6], 4.2. Lemme, (iii), p. 429). Let us suppose, that H is a closed, 

invariant and type I subgroup o/the separable locally compact group G. We assume, that the 

subset A c ~ is locally closed and G invariant. Then, the set G a o/al l  those elements in 

which, when restricted to H, are carried by A, is locally closed in G. Substituting, as we can 

by (a), in place of G, H and A resp. K, Z and E we conclude, t h a t / ~  is locally closed in 

/~. But one shows readily, that  F = ~ E - I n  fact, evidently F ~ ~E- If on the other hand, 

Q is some element o f / ~ ,  e]L is carried by E. Since K ~ G(E) (el. Notation 1.1.1) K leaves 

E pointwise fixed, and thus there is a JtEE such that  Q I L ~ z  (A.5). We know, that  

extends trivially to K (el. Lemma 1.1.4, (i), which implies Q IL =ze, or that  ~ belongs to F.  

(c) Next we recall the following facts; for details ef. [4], pp. 61-62. Given a separable 

C* algebra A, we denote by E(A) the family of all nonempty closed subsets of A. If F E E(A), 
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we put  

ker (F) = A.~F ker (~) = A 

Then (1) The map F~->ker ( F) is a bijection between E(A ) and the set o/all  closed two-sided 

ideals, di//erent /rom A, (2) If  I = k e r  (F) (FEE(A)) ,  there is a canonical identi/ication be- 

tween i and .~ - F, (3) I /  I1, I2 are closed two.sided ideals o / A ,  such that 11 ~ 12, the dual 

o/ the quotient 11/12 is canonically identi/iabls to ] l - i 2 . - - L e t  us put  ~=C*(K) .  Since, 

by  (b), F is locally closed in /~ ,  there are open s u b s e t s / ~  O1~ 02, such that  F = 01 - 0 2 .  

Thus, by what we have just said, we can find closed two-sided ideals ~ D  I 1 ~  12 such that ,  

putt ing B = 11/12, we have /~  = F. 

(d) Let  us show now, tha t  B is postliminaire (cf. [4], 4.3.1 Definition, p. 87). To this 

end it is enough to establish, tha t  if o E/~ (A.5), o(B) contains a nonzero compact operator 

(cf. [4], 4.3.7, Th~or~me, p. 89 and 4.1.10 Corollaire, p. 85). Denoting also by a the repre- 

sentation obtained from a E/~ by  lifting it from B = I1/I 2 to Ix, there is a ~ E F, such tha t  

~111 =o.  In  this fashion it suffices to prove, tha t  we can find a v E ~, such tha t  ~(v) is non- 

zero and compact. We denote by  dy an element of the Haar  measure on L, and set ~ = 

C*(L). One verifies easily, that  ~ carries the structure of a left ~ module, uniquely deter- 

mined by  the condition, that  for any / E E(L) (A.7) and g E ~ we have/q  = ~L/(y)L(y)g" dy, 

where y~->L(y) is the left regular representation of K on the underlying space of ~. Further- 

more, if :~ is some element of Rep (K) (A.4) we have re(/g)=7e(/).~(g) (]E~, gE~).  Let  us 

put  ~IL=~EL.  Since, by Lemma 1.1.1, L is of type I we conclude (el. [4], 9.1. Thdor~me, 

(i) ~ (iv), p. 168), tha t  there is an ]E~O such tha t  z(]) is nonzero and compact. I f  g E ~  is 

such, that  g(/).~(g)=~0, then for v=/gE~,  e(v), too, is nonzero and compact . - -We con- 

clude from all this, tha t  F =JB, as a subspace o/1~ is locally quasi-compact and almost Haus. 

dor//(cf. [4], 4.5.7, p. 94 bottom, and [10], p. 125). 

(e) Let  :~ be the annihilator of L in X(K).  Since [5 ,  G] =L, as in Corollary to Lemma 

1.1.2, the direct product N = 5 • :~ acts on _~ as a topological transformation group. More- 

over, if ~ is any element in F, we have F =NQ. Therefore, since F is locally quasi-compact 

and almost Hausdorff we conclude (cf. [10], Theorem 1, (3) ~ (6), p. 124; replace G and M 

loe. cit. by  N and F resp.) tha t  the map i: N / N e f F ,  defined by  i(aN~)=a~ (aeN)  is a 

homeomorphism. Hence Nq is closed and F is Hausdorff. Q.e.d. 

Notation 1.1.2. Sometimes it will be necessary to indicate the dependence of F on 

E EL~5; if so, we shall write for it F(E). 

W e s e t  2 =  Us~ i l sF (E)  (cf. [22], p. 489; 2 is denoted loc. cit. by ~) .  

LEMMA 1.1.6. (i) There is an equivalence relation ~. on 2,  such that ~1 is equivalent to 
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~ i/and only i/there is an E E]L/~ with ~1, ~i~ E F(E),  and then Q~ E ~ ,  the closure being taken 

in F(E), (ii) F(E)/Z is countably separated/or any E EL/G. 

Proo/. To establish (i), it is enough to show that  if, with the notations of the previous 

lemma, ~x, ~2 E F and if2 E GQ1 , then G~i = G~2. Let  again ~ be fix in F. We have [N, N] = 

[0, 0] = L c K c N o ,  and thus N o is invariant in N, and N/N o is abelian. We denote b y A  

the closure of the image of G in N/N o and observe, that  the desired conclusion follows from 

i(Am)=Gi(m) (mEN~No). As far as (ii) is concerned, evidently F(E)/Z is Hausdorff, 

hence F(E)/Z is countably separated. Q.e.d. 

Lemma 1.1.5 and 1.1.6 will reappear later in a modified form (of. Lemma 4.1.4 and 

4.1.5 resp.).--We shall see in section 6, that  if G is solvable, there is a natural bi]ection be- 

tween A/F~ and the collection o/all generalized orbits (cf. [22], Chapter II). 

Let  L be a separable, locally compact and type I group, TERep (L) and E a subset 

of L. As above we shall say, that  T is carried by E, i/the complement o / E  is o/measure zero 

with respect to the canonical measure corresponding to T on L. 

LEMMA 1.1.7. With notations as above, suppose that 

T =/A T(~). d/~(2) 

is a direct integral representation o/ T over the standard measure space (A,/~). T is carried 

by E ~  L i /and only i/ the same is true ]or T(,~) almost everywhere with respect to/~. 

Proo/. Cf. [24], Lemma 1, p. 87. 

Let  A be a C* algebra. If TERep  (A) we shall say, that  T is homogeneous, if any sub- 

representation of T has a kernel equal to ker (T) (cf. [8], p. 85). Every factor representa- 

tion is homogeneous. The kernel of any homogeneous representation is primitive (that is, 

equal to the kernal of an irreducible representation).--Given a group H, we shall denote 

by horn(H) the set of all homogeneous representations of C*(H).--We recall (cf. Intro- 

duction), that  Prim (H) stands for the collection of all primitive ideals of C*(H) ([4], 2.9.7, 

p. 49). 

Because of later applications (cf. e.g. Lemma 1.2.5) the following lemma is more 

general, than immediately needed.--G will denote again a connected and simply con- 

nected Lie group. 

LEYIMA 1.1.8. Let G 1 be a closed subgroup, containing L=[G, G], of G. For any 

J e P r i m  (G1) there is an orbit E(J) o / ~  on L, uniquely determined by the property, that i/ 

TEhom (Gi) and ker (T) = J ,  TIL  is carried by E. 
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Proo/. The uniqueness is clear. 

(a) We show first the existence of an E(J) as above for T e F a c  (G1) ( c h o m  (G1)) 

(A.4) and ker (T) = J . - - L e t  us observe first, that  if T jERep (G1) are such, that  ker (T1) = 

ker (T~), then we have also ker (TILL) =ker  (T21L). This is well known, but  can also be 

easily established by a remark of (d) of the proof of Lemma 1.1.5. In  fact, as loc. cit. we 

can consider (~I=C*(G1) as a left ~=C*(L) module, such that  for any ~ e R e p  (G1) we 

have ~(/g) = ~(/) ~(g) (/e ~, g e (~1). Therefore, if / E ker (T i l l ) ,  we have also/(~1 = ker (T1) = 

ker (T2), and thus T~(/) T~(g)-= T2(/g) =-0 (ge~l )  implying T~(/) =0  o r / e k e r  (T~IL), and 

conversely.--Let us observe next, that  if T e F a e  (G~), TIL is carried by an element of 

L/~.  In  fact, the canonical measure of T IL is G 1 ergodic on L and, by Lemma 1.1.3, L/~ 
is countably separated.--We recall ([4], 8.6.8. Proposition, p. 157), that  if A is a separable 

postliminaire C* algebra, T e R e p  (A), # the canonical measure o / T  on ~ and h(#) the closed 

hull o/tt, we have ker (T) =ker  (h(/~)) (cf. (c), proof of Lemma 1.1.5). Let  now T j e F a c  {G1) 

be such, that  ker (T1) =ker  (T~) =J. Since L is of type I (cf. Lemma 1.1.1) we can form the 

canonical measure #j of T~]L. By what we said above we have ker (h(#l)) =ker  (TilL) = 

ker (T2]L) =ker(h(#~)) and hence h(#l)=h(t~). Assume, that  TilL is carried by EjeL/~. 

Since L / 0  is countably separated, it is also T o topological space (cf. [10], Theorem 1, 

(3) ~ (2), p. 124). Therefore, if E 1 :# E2, there is an open subset 0 ~ L  such that  (say) E I ~  0, 

and E ~ = L - 0 .  But  then clearly h(#~) N 0 is empty while h(/~l) fi 0 is nonempty, and this 

contradiction proves, that  E 1 = E~.--Summing up, given J e Prim (G1), there is a uniquely 

determined E(J)eL~G, such that  if T e F a c  (G1) and ker ( T ) = J ,  TIL is carried by E(J). 

(b) Let  now T~hom (G1) be such, that  ker ( T ) = J ;  to prove our lemma, it is enough 

to show, that  T]L is carried by E(J) (as above). Let T=~A T(2).d#(~) be a direct integral 

decomposition of T into factor representations. Since ker (T(2))=-J almost everywhere 

with respect to # (cf. [8], Lemma 1.9, p. 91), by (a) T(2)]L is carried by E(J) almost every- 

where. Since we have also T]L=~A (T(~)]L)'dtt(2), by Lemma 1.1.7 we conclude, that  

TIL is carried by E(J). Q.e.d. 

Notation 1.1.3. If E = E(J)EfL/~, we shall write sometimes K(J),  G(J) and F(J)  for 

K(E), G(E) and F(E) resp. (cf. Notation 1-2). 

Given ~E~ such that  ~IL=~E]L, as in Lemma 1.1.4 we shall write T(~)=ind~.ca ~ 

e Fac(G). Putt ing J (~)=ker  (T(~)), we have J(~)EPrim (G) (cf. [3], Corollaire 3, p. 1 0 0 ) . -  

The main objective o/ section 1 is to establish, that the map Q ~+ J (~ ) (~ E g~) gives rise to a bijec- 

tion between ~/~ and Prim (G). 
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L E ~ X  1.1.9. With the previous notations, assume that ~E~ are such, that J(~)-~ 

J(~)  ( = J ,  say). Then ~ and ~ lie on the same Z orbit 9~ (cf. Lemma 1.1.6). 

Proo/. Let us show first, that  if QEg~ satisfies J (o )=J ,  we have OEF(J). In fact, 

by Lemma 1.1.8 T(o)IL is carried by E(J). On the other hand, i f o I L = ~ E ~ ,  we have 

(A.11) T(O)IL=~IK(~(oIL).d(~. Since the right-hand-side is carried by G~, we have 

o [ L = z E E ( J )  and thus QEF(J). We write K = K ( J )  and F = F ( J ) .  In this fashion, by 

J(ol) = J(0~)=J we obtain ~ ~ F (~ = l, 2). To complete the proof of our lemma, we must 

show, that  the closures of GO~ in F coincide. By (c) of the proof of Lemma 1.1.5 there are 

closed two-sided ideals 17 in C*(K) such that  I1~ Iz and, putting B = I1/I2, we have F= /} .  

This means, that  F is the set {~; ~ E/~, ker (~) ~ I~, ker (~) $ I~}. Noting that  ker (T(o~) I K) ~ Iz, 

let us write T~ for the representations, corresponding to T(Oy), of B; these are clearly 

nondegenerate. Furthermore, by ker (T(~x)) =J(~l) =J(~2) =ker (T(qz)), we have ker (T~) = 

ker (T~). We recall (of. (d), proof of Lemma 1.1.5), that  B is postliminaire. The closed hull 

of the canonical measure corresponding to T'~ on B is equal to the closure G~ of GO~ in F. 

Reasoning as in the previous lemma we conclude therefore, that  ker (T~)=ker (T~) im- 

plies GO~ =Goz , completing the proof of our lemma. Q.e.d. 

L ~ [ ~ A  1.1.10. Suppose, that G is a separable locally compact group. (i) I / K  is a closed 

subgroup, and TjERep (K) are such, that ker (T1)_ker (T2) then, writing V~=indKto T s 

we have ker (Vi)~ker  (V2). (ii) I /  K=G,  S6Rep (G) and W j = S |  i, we getker (Wi)~ 
ker (W2). 

Proo/. For this cf. [24], Corollaries 1-2 to Lemma 15, p. 99. 

LEM~A 1.1.11. Suppose, that the elements ~1, ~ o] 9~ lie on the same ~ orbit. Then we 

have J(Q1)=J(~). 

Proo/. By the proof of Lemma 1.1.9 our assumption implies, that  ker (T(01)IK)= 

ker(T(q2)l-K ) ( K = K ( E )  if el, Q2~F(E)) �9 On the other hand, the representation 

indKto(T(Qg)IK) is quasi-equivalent to T(O~) and hence, in particular, their kernels 

coincide (k= l ,  2). Therefore by (i), Lemma 1.1.10 we conclude, that  J(~a)=ker (T(Q1)) = 

ker (T(Q~))=J(~). Q.e.d. 

1,2. By what we have just seen, the map Q ~-> J(9) (Q E ~) gives rise to an injection of ~ /Z  

into Prim (G). Our next objective will be to show, that the said map is actually a bijection. To 

this end we have to show, tha t  any primitive ideal of C*(G) is of the form J(9) (gE~). 
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As we shall see below (cf. Lemma 1.2.3) this is equivalent to the following: For each 

JEPr im (G) there is a ]actor representation V with ker (Iz)=J,  and such that VIL gives rise 

to a transitive quasi-orbit on ]-,. 

LE~MA 1.2.1. Given J E Prim (G), there is a ~ E F(J) such that J(@) ~_ J. 

Proo/. We write K =K(J)  (el. Notation 1.1.3) and recall, that  F(J)cI~ (cf. Lemma 

1.1.5). 

(a) Suppose, that  TEFac (G), is such, that  ker ( T ) = J .  We set T '=indKr (TIK) 

and show, that  T 'EFac (G) and that  ker (T')=J(Q), where ~ is some element in F(J). 

- -We start by recalling (cf. [4], 8.4.2, Th~or~me, p. 149) that  there is a standard measure 

# on the quasi-dual/~ of K, and a # measurable cross-section ~ ~-> T($) from K into Fac (K) 
n 

(A.4), such that  TIK=~7: T(~).d/~(~). Putting A-~{$; ~EK, T(~)IL is carried by E(J)} we 
n 

show next, that  the complement of A in K is of/~ measure zero. In fact, since ker (T) =J, by 

Lemma 1.1.8, T IL is carried by E(J). On the other hand we have T IL = ~ (T(~)IL). d#(~) 

and hence, by Lemma 1.1.7, T(~)IL is carried by E(J) almost everywhere with re- 

spect to #, which is the desired conclusion.--Let F '  be the image of F i n /~  under the 

canonical injection of ~ in to/~.  We observe, that  A c F' .  In fact, if tEA,  by definition, 

T(~)IL is carried by E(J). Since KeG(J) ,  T(~)IL~n (A.5) (nEE(J)) and thus since 

T(~)EFac (K), T ( ~ ) ~  (QEF(J)).--We recall (cf. [4], 7.3.6, Th6or~me, p. 139) that  the 

image _~l~/~ of /~ under the canonical injection is a Borel set, and that  the said map is a 

Borel isomorphism. F(J) is locally closed in ~ (cf. (b) proof of Lemma 1.1.5) and hence a 

Borel subset in/~.  Using (d) loc. cit and [4], 4.6.2. Proposition, p. 95 (or by direct verifica- 

tion using (e) loc. cit.) we conclude, that  there is a Borel cross section $~->~(~) from F(J) 

into Irr (K). From all this we infer, that  there exist a Radon measure v on F(J), such that  

T IK = j'~(~) ~'(~). dv(~) where ~'(~) is of the form N.  Q(~), and the positive integer N ( ~< + co) 

does not depend on $. The measure v is quasi-invariant with respect to G and, since 

TEFac (G), it is also ergodic. The equivalence relation Z on F(J) (cf. Lemma 1.1.6) is G 

invariant, such that  F(J)/Z is countably separated (cf. (if) loc. cit.). Therefore ~ is carried by 

a Z orbit .,4 c F(J), and thus we can write T IK = ~ Q'(~). d~(~). Putting V(~) =indKt a T(~) 

we get (cf. [16], Theorem 10.1, p. 123) T ' = i n d ~ c  ( T I K ) = ~  V($).dv($). Since V($) is 

unitarily equivalent to V($') if G~=G$', a routine reasoning (cf. e.g. [22], Lemma 2.3.1, 

p. 549) shows, that  by virtue of the G ergodicity of u, T' E Fac (G). This implies, that  

ker (T ' )=ker  (V(~)) almost everywhere with respect to v (cf. [8], Lemma 1.9, p. 91). 

But ker (V(~)), being of the form J(@) (~EF(J)), the same is valid for ker (T'). 

(b) Summing up, we have shown above, that  T' =ind~r (TIK) is a/actorrepresenta- 
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tion o/G, such that ker (T') =J(Q)/or  some ~ in F(J). To complete the proof of our lemma, 

it will therefore suffice to establish, that  ker ( T ) ~  ker (T'). This, however, can be verified 

by a trivial modification of the proof of Lemma 10 in [24] (p. 95) to which the reader is 

referred for further detailsl Q.e.d. 

L]~MMA 1.2.2. Suppose, that F is a central extension by the circle group o/ a direct pro- 

duct o /a  vector group with a/ree abelian group. Let T be the circle group in the center o/ F and 

assume, that the/actor representation V o /F ,  when restricted to T, is a multiple o/ the identity 

map o / T  onto itsel/. Then there is a character Z o/ the center U ~ o/ the centralizer o/ the con- 

nected center o /F ,  such that ker (V)= ker (indv~ t r Z) 

Proo/. Let us write J =ker  (V) and observe, that  if UERep (F) is such, that  ker (U) =J,  

we have also ker (VIT)=ker  (UIT), and thus UIT is a multiple of the identi ty map of 

the circle group onto itself. This being said, the desired conclusion follows from [24], 

Proposition 3, p. 104. Q.e.d. 

LElgMA 1.2.3. For any J in Prim (G) the /ollowing two conditions are equivalent 

(1) There is .a  ~E~, such that J=J (~ ) ,  (2) There is a VEFae (G), such that ker (V )=J ,  

and V IL gives rise to a transitive quasi-orbit on L. 

Proo]. (1) ~ (2) The assumption means, that  J is the kernel of a representation T(Q) = 

indK~a~, where ~ ]L=~EL,  and K = K ~  (cf. Lemma 1.1.4). By (i) loc. cir. we have 

T(~) EFac (G), and T(~)]L is carried by GT~. Hence we can take V=T(Q). 

(2)~ (1) Assume now, that  VEFac (G) is such, that ker ( V ) = J  and VIL is carried by 

G ~ c L .  Let ~e be a projective extension of 7~ to G~, G~ the corresponding central extension 

of G~ by the circle group and r the canonical homomorphism from G~ onto K~/L =M~ (cf. 

for all this [22], pp. 480-481). Then M~ satisfies the condition imposed on F in Lemma 1.2.2. 

Let  9" (T) be the circle group in (Mn) ~ (A.12) (in (Ge) ~ resp.). Given a representation, con- 

stant on T, of G~, we write [U] ~ for the corresponding representation of G~. This being 

so, since VIL gives rise to a transitive quasi-orbit on L, there is a ~EFac (M.), such that  

~l • is the conjugate of the identity map of ffonto itself, and that  V =inda~r c[~e| (~or ~. 

If U ~ is the center of the centralizer of (M~)0, by Lemma 1.2.2 there is a z E X ( U  ~) 

such that  ker (v)=ker (V(z)) where V(Z ) = induce  M~ Z" Clearly g l [ / i s  the identity map 

of ff onto itself. Let  us put  V'=inda~r174162 ~. By the proof of Lemma 3.7 in 

[22] (p. 484), there is a QE~NK~ such that  V'=indK.r  and hence ker (V')=J(~).  

Therefore, in order to complete the proof of our lemma, it is enough to show, that  ker (V) = 

ker (V'). To this end we recall the following well-known statement. Suppose, that G is a 
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separable, locally compact group, H a closed, invariant subgroup and ~ the canonical homo- 

morphism [rom G onto G/H=A. Then, i/ VjeRep (A), ker (Vx) =ker  (V~) is equivalent to 

ker (Vto(I))=ker (V~oq)). By a repeated application of this and of Lemma 1.1.10 one 

concludes at once, that  

ker(V) = ker (ind [7g e (~ (To r ~) = ker (ind [re e | (V(Z)o 9~)]-) = ker(V') 
ant G ant a 

Q.e.d. 

L~,M~A 1.2.4. Suppose, that ]or J e P r i m  (G) there is a ]actor representation V, such 

that ker ( V) ~_J and that V]L gives rise to a transitive quasi-orbit carried by E(J) (c/. Lemma 

1.1.8). Then J is o/the [orm J(~) (~Eg~). 

Proo[. Let us set ker (V)= J1 E Prim (G). We claim, that  E(J)= E(J1). In fact, by as- 

sumption, the quasi-orbit of VIL is carried by E(J). On the other hand, by Lemma 1.1.8, 

it is also carried by E(J1) , and thus E(J)= E(J1). Hence also F(J)= F(Jt). Next we ob- 

serve that  J1, by definition, satisfies condition (2) of the previous lemma; therefore there 

is a ~tEg~ such that  J(~l)=Jt~_J. As in the proof of Lemma 1.1.9 we conclude, that  

Qt E F(J1) -- F(J).  On the other hand, by Lemma 1.2.1 there is a ~2 E F(J) such that  J _ J(Q2). 

Summing up, by what we have just seen, to complete the proof of our lemma it is enough 

to show, that  if Qt, ~EF(J)  are such, that  J(Q1)DJ(Q~), then J(~l)=J(~2). Putting K =  

K(J), let us write again T(Qj)---indKta~j. Our hypothesis implies, that ker (T(Qx))___ 

ker (T(~2)) whence also ker (T(ol)]K ) ~_ ker (T(Qe) IK ). Reasoning similarly, as in the proof 

of Lemma 1.1.9, we deduce from this, that  GQ1 ~_ GQ~, closures being formed in F(J). By 

the proof of Lemma 1.1.6, however, we have then GQI=GQ~ which, by Lemma 1.1.11 

implies, that  J(~l)=J(~2), completing the proof of our lemma. Q.e.d. 

LEMMA 1.2.5. For any element J o[ Prim (G), there is a [actor representation V o[ G, 

such that ker (V) ~_J, and that VIL gives rise to a transitive quasi.orbit, carried by E(J). 

Proo[. We recall (cf. Notation 1.1.3), that  G(J)-G,, (7eEE(J). 

(a) Let TEIrr  (G) be such, that  ker (T)=J; then TIL is carried by E(J)cL .  We 

denote by ~ a fixed element of E(J). Using a reasoning already employed (cf. (e), proof of 

Lemma 1.1.5) we show, that  the map j: ~/~Q~E(J) defined by j(a~Q)=a~ (ae(~) is a ho- 

meomorphism. In fact, L is locally quasi-compact and almost Hausdorff (of. (a), proof Of 

Lemma 1.1.5) and L /~  is eountably separated (Lemma 1.1.3) and thus the desired conclu- 

sion is implied by a theorem of Glimm (cf. [10], Theorem 1, (3) ~ (6), p. 124). Since ~Q is 

closed, and evidently (~oD L, ~/~o is a connected abelian Lie group. Since T E Irr (G)and 
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is G equivariant, T]L is carried by the relative closure of a G orbit in E(J). Therefore 

from now on we can assume to be given the following situation. There is a connected abe- 

lian Lie group A, a continuous homomorphism ~ of G into A such that  ker (q)=G(J) ,  

and that  A' =~0(G) implies ~ = A ;  there is furthermore a Borel injection 7t: A-+Irr  (L) 

with (writing a~ in place of ~(a)~ for aEG and ~EL) art(~)-~(a~) (A.5) and a Borel meas- 

ure ff on A such that  

~'| ~'(~).dff(~) ( + ) T ~ L ~ 
, I  ,4 

where ~'(~) ~ ~(~) (~ E •) (A.5). 

(b) Here and in Lemma 4.2.1 we shall use the following elementary result. Suppose, 

that A is a connected abelian Lie group and A'  a connected dense subgroup. There is a closed, 

connected subgroup Hi such that 241 " A ' =  A ,  and putting ,,4'1 = A'  N ,,41, A'l is a countable 

dense subgroup o] A1. 

(e) We apply now (b) to A and ~4' as at the end of (a). We write ~ = ~4/A1 and denote 

by o~ the canonical homomorphism from A onto !~. If to' =oJoq, co' is a homomorphism of 

G onto ~. Putting S =ker  (w'), S is a closed subgroup of G, such that  S/G(J) is discrete and 

= A/A1 is isomorphic to G/S.--This being so, we are going to show, that  there is a 

T 1 E Irr  (S) with T =indzf  ~ T 1. In fact, let us denote by ~) the spectral measure, defined on 

the Borel sets of A and taking its values in [R(TIL)] ~ (A.2, A.12), corresponding to the 

decomposition ( + ). If Q is its direct image, via w, on !~ = G/S, (T, Q) constitutes a transi- 

tive system of imprimitivity based on G/S, and hence there is indeed a T 1 E Rep (S) such 

that  T =indsr G T1 (cf. [19], Theorem 6.6, p. 291). Moreover T 1 fi Irr  (S), since, by assump- 

tion, T E Irr  (G). 

(d) Writing ~ = k e r  (T1)ePrim (S), we form E(y)EL/~ (replace in Lemma 1.1.8 G 1 

through S). We claim, that  E(~)=E(J).  In fact, by T = i n d s c a  T1 we have T[L= 

S~,,s~(Tx[L)'d~ (A.11). Since T[L is carried by E(J) so is, by Lemma 1.1.7, TilL. The 

latter is carried, however, also by E(~), since ~ = k e r  (T1); hence E ( ~ ) = E ( J ) . - - L e t  us 

put  H = S  o (A.10). Since, if VjERep (S) and ker (V1)=ker (V2) we have also ker (VIlH)= 

ker (V2]H), we can speak of the closed two-sided ideal : / o f  C*(H), which is the restriction 

of ~ to H; we shall denote it also by ~IH. Next we show, that there is a a E Prim (H), such 

that ~)ca and E(a)=E(J) (el. Lemma 1.1.8). To this end we recall (el. [8], p. 97, top), 

that  we can find a Borel measure v on Prim (H) and a v measurable cross-section r 

Prim (H)-+hom (H), such that  

T l l H =  e(~). dv(~) (ker (Q(~t)) =~) 
rim(H) 
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Also (el. loc. cir. Lemma 3.4, p. 99), denoting by h(v) the closed hull of v and by ker (h(v)) 

the intersection of the corresponding primitive ideals, we have :I =ker  (TIlH) = ker (h(v)). 

Since at the same time 

Tl'L=fp:m~(H)(~(~)'L)'d~(2) 

and, by what we saw above, T1]L is carried by E(J) ,the desired conclusion follows from 

Lemma 1.1.7. 

(e) Let  UEIrr  (H) be such, that  ker (U)=a .  We claim, that  UIL is a multiple o/some 

element ~ o/E(J). In fact, U [L is carried by E(a)= E(J). Since H = (G(J))0, the action of 

H on E(J) is trivial; whence the result. 

(f) For more details about the following cf. [24], p. 103.--Let P(H) be the Set of all 

continuous positive definite functions on H. We denote by P~ the subset of P(H) composed 

of all those elements, which give rise to a unitary representation of H the kernel of which 

contains J.  Let  EP~ be the set of all extremal elements of P~. We define analogously 

EP~cP(S). This being said let q be a positive definite function belonging to U and such 

that  ~(e)=l .  Then q~EEP~ and there is an element o~EEP~ such that a)lH=q~ (cf. [24], 

Lemma 19, p. 103). Denoting by Z the unitary representation o /S  determined by oo, there is 

a countable subset B c  S such that Z IL=Z~B bU (cf. [24], Lemma 20, p. 104). 

(g) Setting V'=indst ~ Z we are going to show next, that  (1)ker (V ' )~  J ,  (2) V' [L is 

carried by C ~ c L  where 7e is as in (e) above. Ad (1) toEP~ yields ker ( Z ) ~ = k e r  (T1). 

Since, by (c) above, T = i n d s t a  T1, and since ker ( T ) = J ,  the desired conclusion follows 

from Lemma 1.1.10, (i). Ad (2) This follows at once from V' IL = ~ / s  ~(Z IL). dv (A.11) and 

from Z I L ~  ~esb~z (A.5 and (f) above). 

(h) Reasoning as in (d) above, by considering a direct integral decomposition of V' 

into homogeneous representations over Prim (G) we conclude, that  there is a U E hom (G), 

such that  ker (U) @ J and U I L is carried by G:~. Let  U = ~ T(2)" da(~t) be the central de- 

composition of U. We have ker (U)~ker  (T(~)) almost everywhere with respect to a (ef. 

[8], Lemma 1.9, p. 91). Hence, again by the reasoning of (d), there is a )~0EA such that  

if V=T(~t0), we have VEFae (G), ker ( V ) ~ J  and VIL is carried by G~zc E(J). In other 

words, V satisfies the conditions of our lemma. Q.e.d. 

We sum up the results of the previous discussion in the following 

PRO:POSITIO~b7 1. Given QEg~ such that ~IL=~EL let us write 

J(q) = ker ( ind e) E Prim (G) 
~ t Q  

Then (i) The map J: A->Prim (G) is sur]ective, (ii) We have J(el)=J(q,) i/and only i / e l  
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and ~ lie on the same Y. orbit in 9~ (c/. Lemma 1.1.6) (iii) For a fixed J E P r i m  (G) let us set 

,~(J) = {~; ~ E I4, J(Q) =J} .  Then .4(J), as a subspace o/the dual o /K(J )  (cf. Notat ion 1.1.3) 

is locally compact and Hausdor]/. Given a/actor representation V o/G with a kernel equal to 

J, there is an (up to equivalence) unique Radon measure/~ on F(J), quasi-invariant arm er- 

godic with respect to the action o/G, such that V[ K ( J ) ~  S~(,)~" d/~(e). 

Proo/. Ad (i) Follows from Lemma 1.2.4 and 1.2.5, Ad (ii) Follows from Lemma 1.1.9 

and 1.1.11, Ad (iii) Follows from Lemma 1.1.5 and (a) of the proof of Lemma 1.2.1. Q.e.d. 

w 

The purpose of this Section I I  is to construct a normal representation (cf. Introduc- 

tion or II .3  below) the kernel of which coincides with a given primitive ideal J (cf. Propo- 

sition 2). We shall accomplish this in the following manner. I t  results from our previous 

considerations (cf. (a) of the proof of Lemma 1.2.5 or II .2  below) that  E(J) carries a G in- 

variant  Radon measure ~o. Forming U = inds t o (j'Ee(~) Z" d~o(~)), we shall show first, that  

U is a representation with trace, or tha t  there is a faithful, normal, semifinite trace r on 

[R(U)] + such that,  writing (~=C*(G), the family of operators {A; A =U(a) ,  aE(~+ and 

r < + ~ }  generates R(U) (cf. Lemma 2.3.4). Using this the desired normal representa- 

tion will be obtained through central decomposition of U; it will have the form of the 

direct integral in (iii), Proposition 1, provided # Joe. cit. is a G invariant  Radon measure 

on •(J)  (cf. Lemma 2.3.5 and Lemma 2.3.6).--In order to establish the s tatement  con- 

cerning U, we shall have to include i:(G) (A.7) in a larger * invariant  subalgebra B of (~, 

the elements of which admit  restrictions to closed subgroups, containing L, of G. B will 

play an important  role in Section V too; cf. for this Theorem 2 . - - I n  the first par t  of this 

section we give the construction of B, in the second we shall obtain a realization, appro- 

priate for our purpose, of a representation quasi-equivalent to U (as above), and most of 

the third part  will be taken up with the construction of a trace on [R(U)] + and its direct 

integral decomposition resp. 

2.1. We continue to assume, that  G is a connected and simply connected Lie group; 

we recall, that  L=[G, G] is a closed, invariant  subgroup of type I (cf. Lemma 1.1.1) of G. 

We put H = G/L, and denote by  yJ the canonical homomorphism from G onto H. 

If  R is the right regular representation of L on the underlying space of ~=C*(L),  

we have for any lEL and vE~: IIR(1)vll = IIvH.~Let us consider now the family ~ of 

all those continuous maps / from G into ~ for which (1) /(Ix)=R(l)/(x) for any 1EL and 

xEG, (2) The map (H=G/L) xLF->/(x) is of a compact support on H; we denote by supp (/) 

7 -  742901 Acta mathematica 133. Imprim5 lc 40ctobre 1974 
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the support o/ the latter on H.- -We  shall say, that  the sequence {/n}c B converges t o / E  B, 

if there is a fixed compact subset C of H, such that  supp (/n)c C for all n, and i f /n  tends 

to / uniformly on G.--Given /E C(G), and a fixed element x of G, we denote by :~(/)(x) 

the map l~->/(Ix)=/~(1) (/eL); we have 7 ( l ) ( x ) e s  The map x~->:~(/)(x) (xEG) 

belongs to B and thus we can identify l:(G) to a submanifold Bo of B. - -Let  us show, 

that  B0 is dense in B. To this end, let ~ be the Lie algebra of G and ~ a complementary sub- 

Space to [~, g] in ft. If H ' i s  the image of [~ through the exponential map, H' is a closed 

submani/old o/ G such that the map (I, h)~-->lh (IEL, hEH') /tom L • onto G is a homeo- 

morphism. We denote by ~ | I:(H') the linear space of all continuous maps, of a compact 

support, of H '  into ~. Then the map/~>/ I  H'  (/E B) is a linear space isomorphism from B 

onto ~ |  C(H'); we shall denote it by 2. Hence the desired conclusion is implied by the 

observation that,  since IS(L) is dense in ~, given g E ~ |  there is a sequence {gn) c / : (G) ,  

such that  the members of {2(9:(g~))} are carried by a fixed compact set C~H' ,  and such 

that  2(ff(gn))-~ g uniformly on C. 

Notation 2.1.1. Keeping H' (as above) fixed we shall write sometimes g/or 2-1(g). 
Let dg and dl be elements of the right-invariant Haar  measure on G and L resp., and 

dh an invariant measure on H = G/L, such that  dg =dh.dl.--Observe that, if /E B and 

U E Rep (G), putting F(x) =--- U(/(x)) U(x), we have F(lx) =- F(x) (l EL, x E G). In fact, 

U(/(lx)) = U(R(1)/(x)) = U(/(x)) (U(l))* 

implying the desired conclusion.--In the following we continue to write mostly C*(G) = (~. 

LEMMA 2.1.1. Given/EB, there is an element/' o/ C*(G), uniquely determined by the 

property, that/or any continuous unitary representation U o/G we have 

U (/') = fH U(/(x)) U(x). dh 

and the map/~->/' (/E B) is a continuows injection o/ B into C*(G). 

Proo/. Uniqueness is clear.---In the following we shall denote for a while by II/111 

the norm of the element/Egg, while II II s tands for the norm in 

For /E~ let us put [l]=$.lll(x)ll .dh. We claim, that  if /EI:(G), we have II1111<[1]. 
To show this we observe, that  if UERep (G), then 

u(/) = f .  u(7(/) (x)) u(x).  dh ( + ) 
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In fact 

Thus I]u(/)ll <~n H:~(/)(x)[{ .dh=[[] for any UERep (G) and hence also I{/ll~<[]].--Given 

/E s  ~0~ B, let us denote by T'/the corresponding element of (~; T'  is an iniection 

of Bo into (~. We claim, that  T' can be extended to a continuous linear map T from B 

into ~ .  In fact, g iven /EB,  let us put  ll/lloo=sup~a H/(x)ll. To arrive at the desired con- 

clusion, it clearly suffices to observe that, for any ]E ~o, IIT'/]{~<[/] ~<h (supp ([))ll/lI~o. 
For the same reason, by (+ )  above we can also conclude, tha t  for any ]EB, U(Tf)= 
SH U(/(x)) U(x).dh. To complete our proof it is therefore enough to show that,  if for ]E B 

we have T f=0 ,  then a l s o / = 0 .  In  fact, we can take then in the statement of our lemma 

[ ' =  T/ . - - I f  T / = 0 ,  replacing above, with Z arbitrary in X(G) (A.8), U by  zU we obtain 

easily, that  U(/(x))-0 on G for all UEl~ep (G). Therefore to arrive at our goal it  will suf- 

fice to prove that  if, for a fixed vE~, we have U(v)=-O for any U e R e p  (G), then v=0 .  

Let us choose an arbitrary u EL and put  U =indL ~ a zr. We have then U I L = ~ ha" dh (A.11), 

whence (h~)(v)~0 almost everywhere in hell,  and thus v =0.  Q.e.d. 

Remark 2.1.1. By virtue of the previous lamina we can assume ]tom now on, that 

(s ~ ) B0~ B c ~  (=c*(a)) .  

Remark 2.1.2. Given a closed, but not necessarily connected subgroup M, containing 

L, of G, we can form analogously, by replacing above G through M, a linear variety 

BM~C*(M). We shall use Lemma 2.1.1 for this case in section 5. 

Let  us put  d(ala -1) =A(a).dt (aEG). We recall (cf. Lamina 1.1.2), that  there is a con- 

tinuous homomorphism a~->A(a) of G into Aut (~) such that  if / e t ~ ( L ) c ~ ,  we have 

(A(a)]) (l)~l(a-lla)/A(a). Let us dendte by b-->L(l) the left regular representation of L 

on the underlying space of ~. One verifies easily the following relations: (i) A(1) =L(I) R(I), 

(2) A(z)L(1)=L(zlz-1)A(z) (zEG, IEL), (3) If ~, fle~, R(l)~.L(l)fl=o~.fl (IEL). Let  ], 

gab and xEG be fixed, and let us put  G(y)==-[(xy-1)A(xy-1)g(y) (yEG). By the previous 

remarks one shows readily, that  G(ly)=-G(y) (IEL, y eG), and thus we can form 

fFf(xy-~) g(y)" + ) A(xy -1) dh 
t 

LE~MA 2.1.2. ~ is a subalgebra o/(~ and, i / / ,  geE, x~(/g)(x) is given by (+) above. 
Proo/. Denoting by k(x) the expression in (+) ,  a simple computation, using the rela- 

tions 1-3 above, shows that  k: G-~ ~ belongs to ~. We shaft complete our proof by veri- 
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lying, that  U(k)= U(/) U(9 ). We have, since U(A(a)v)= U(a) U(v) U(a -1) (aeG, ve~) 

U(k(x)) = ~ U(/(xy-1)) U(A(xy -~) 9 ( y ) )  �9 dh 

whence 

V(k):fHC(]~(x))V(x)*dh~fH(~HV(/(xY-1))V(xy-1)V(g(Y))~f(Y)'dh)dh'~V(/)V(~) 
Q.e.d. 

In  the following, whenever necessary to distinguish the * operations on ~ and ~ resp., 

we shall write v s for v* (v e ~). 

L ~ M A  2.1.3. We have B * = B  and, i//EB, ]*(x)--A(x)(/(x-1))  s (xeG).  

Proo/. Let us write F(x)=-A(x)(/(x--l)) s ( x e G ) .  I t  is clear, that  F: G-+~ is continuous, 

and that  []Fl[ is of a compact support on H. Observing, that  A(1)R(l-1)=L(1), 
A(x) R(x-llx) = R(1)A(x) and (L(1)o~)~= R(1)(a s) (/EL, xeG, aes it is easily shown, that  

F(lx)-~R(1)F(x) (lfiL, xfiG). Hence FEB, land to finish the proof of our lemma, it is 

enough to show, tha t  U(F) = (U(/))*. But 

= ( f  U(/(x-1))U(x-1)'dh)*=(f U(/(x) U(x)'dh)*=(U(/)) * 

or U(F)= (U(/))*, which is the desired conclusion. Q.e.d.  

2.2. The purpose of this second par t  of section 2 is Lemma 2.2.1. For the proof of 

Proposition 2 a weaker result would suffice (cf. Remark  2.2.1 below), but in order to speed 

up things and to keep measure-theoretic considerations, irrelevant in the given context, 

to a minimum, we prefer to use stronger tools from the theory of C* algebras. 

Let  E be some orbit of G on L, which we shall keep fixed. If  ~ is an element of E, 

as we saw earlier (cf. (a) of the proof of Lemma 1.2.5) G / ~  is a connected abelian Lie 

group, and the natural  bijection between G/O~ and E = ~ r  is a ~ equivariant homeomor- 
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phism. Hence we conclude, tha t  E carries a ~ invariant  Radon measure co. This being so, 

we wish to preface Lemma 2.2.1 by  a series of observations, which are mostly reminders 

of results from the theory of C* algebras to be used in the sequel. Below we shall assume, 

tha t  dim (oz)-= + oo (0zEE) and shall leave to the reader the modifications necessary to 

settle the remaining cases. 

(1) Since E is locally closed in L (el. (a), proof of Lemma 1.1.5), it is of the form F fi 0, 

where F is closed and 0 is open in L. Let  us add, tha t  since E is a ~ orbit, these can be also 

assumed to be ~ invariant. In  fact, we can suppose from the start, tha t  E = F and replace 

then 0 by  UaehaO.--Hence there are ~ invariant  open sets L ~ 0 1 ~ O  2 such tha t  

E = 0 1  - 0 2 .  

(2) We observe next, tha t  if 0 is ~ invariant  and open, and I is a closed, two-sided 

ideal such that  0 = i  (cf. loc. cit.), then I, too, is ~ invariant. In  fact to this end it isenough 

to note, tha t  if ~' is closed in L, and aE~ ,  then ker (hE)=a.ker (F). Let  I k be ideals in 

such tha t  0 a = i k  (k=l ,  2). Putt ing D=I1/I=, we have D = E .  From what we have just 

said we conclude, that  I k is ~ invariant,  giving rise to an action of ~ on D and D; the lat- 

ter is identical with the induced action of ~ on E c ~ .  

(3) We recall, tha t  a separable C* algebra A is o/ a continuous trace (cf. [4], 4.5.4, p. 94] 

i / ~  is Hausdor/l and given ~roE.~, there is a pEA,  such that ~(p) is a projection o/rank one 

/or all 7~ in a neighborhood o/~o. We claim, tha t  D (as above) is o/a continuous trace. In  fact, 

since b = E, and E is homeomorphic to the group space of a connected abelian Lie group, 

b is certainly Hausdorff.  This implies, tha t  D is postliminaire (cf. e.g. [4], 9.5.2, p. 185). 

We recall next  (cf. [4], 4.4.4. Lemme, p. 91) tha t  any postliminaire C* algebra contains a 

nonzero closed two-sided ideal o /a  continuous trace; let K be such with respect to D. If  ze0 

is arbi t rary in b let QoE/~, a E ~  be such, tha t  go=aQo. By assumption, there is a pEK,  

such tha t  r is a projection of rank one if Q is close to Q0 inside the open subse t /~  of b .  

But  then, setting q=ap, the same will be true of g(q) for all ~ in a neighborhood of ~0, 

completing the proof of our statement.  

(4) Let  ~ be a Hilbert space Such tha t  dim (~)) = + c% T a locally compact space and 

A(T)  the family of all continuous maps, vanishing at  infinity, of T in C(~) (A.13). We can 

turn A(T)  in a C* algebra through pointwise multiplication and by defining, f o r / E A ( T ) ,  

its norm through supt~r I[/(t)ll. This being so, we recall the following result (cf. [4], 10.9.6. 

Corollaire, p. 219). Suppose, that T is o /a  finite dimension, and that Ha(T, Z) =0. I / A  is a 

C* algebra o / a  continuous trace, such that ~ = T, and that any irreducible representation o/ 

A is infinite dimensional, then A is * isomorphic to A(T).  - -  We conclude from this, tha t  

there is an open subset 0 C E = D, such tha t  c o ( E -  O) = 0, and if D' is the closed, two- 

sided ideal of D w i t h / ) '  = O, D' is * isomorphic to A(O). In  fact, we can certainly choose 
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an O, as just indicated, such that  it be homeomorphic to R n, Then the corresponding 

D'  will satisfy all the conditions with respect to A above since we assume, that  

dim (:z) = + c~ (re E E). 

(5) Recalling, tha t  D = 11/12 (el. (2) above), we denote by  I c  11 the complete inverse 

image of D'  in ~. We show next, that  there is a cross section ~: O ~ I r r  (L), such that,  with 

notations as in (4), A(O) = {:z ~->Q~(v); v E I}. In  fact, given w E D', let us denote byre ~->a(w, 7r) 

the map O-->C(~), representing w by virtue of the * isomorphism of (4) between D'  

and A(O). We set a~(w)=a(w, re), and observe that  for each 7~E O, the map w~-->a(w, re) 

is an irreducible * representation of D'  on ,~. We write a~ for as lifted to I .  Next  we recall 

(cf. [4], 2.10.4. Proposition, p. 52), tha t  if A is a C* algebra, I a closed two-sided ideal o[ A 

and a an irreducible * representation o] I, there is a unique * reprezentation ~ o /A ,  such that 

] I = a. This being so, we extend a'~ first to I and then to ~. Denoting by ~ the representa- 

tion so obtained, the map ree->Q.~ from 0 into I r r  (L) obviously has the required properties. 

(6) Denoting by  U(~) the unitary group of ~ with the strong topology, we are going 

to show, that  the map (1, re)~-->~:~(l) [tom L • 0 into U(~) is continuous (A.14). In  fact, the 

map (v, re)~-->Q~(v) from I • 0 into C(~) (A.13) (the latter being taken in the uniform to- 

pology) is clearly continuous. Next  we note, that  the right regular representation R of L 

on ~ leaves any closed two-sided ideal invariant. Let  u, v be a fixed pair of elements in I .  

Then R(1)uEI 1 (1EL) and thus R(l )u .vEI .  We conclude from this, tha t  the map [ of 

L • 0 into C(~), defined by  /(1, re)-~(u).Q.~(1).e.~(v)=-Q~(R(l-1))u.v) is continuous. 

Given an element :z0E O, a compact neighborhood I~ of re0, and a pair, A, BeC(~), by (5) 

we can find u,.v E I such that,  on U, Q~(u)-=A, ~=(v)=-B. Hence the desired conclusion fol- 

lows by observing, t ha t  if {Vn} and V in V(~) are such that,  for any A, BeC(~) ,  A U n B  

tends uniformly to A UB, then Un~ U strongly. 

(7) From what we have just seen we conclude, tha t  the map from ~ x 0 into B(~), 

sending (v, :z) into ~n(v), is also strongly continuous. 

(8) We can assume, tha t  there is a o) measurable field {~;  7r E E} such that  ~ is an 

irreducible representation of class re on ~ and that,  on O, ~ is as above. 

We denote by  C~(~) the set of all Hilbert-Schmidt operators on ~ and, given A E B(~), 

we write [A] for its Hilbert-Schmidt norm ( ~ + ~ ) . - - A s  in II .1 we set H = G / L  and de- 

note by  dh a Haar  measure on H . - - L e t  us consider now the Hilbert space ~_0 correspond- 

ing to all those maps A from G x E into C,(~), for which A(Ix, re) - A ( x ,  re)(~(l))* for any 

IEL, xeG, reEE, and such tha t  [A(x, re)], as function on (G/L)• E, is dh.do)measurable, 

and 

fH [A(x're)]2dh'd~~ + o o .  

• 
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Given a EG, we denote by V(a)the unitary operator on ~0, which corresponds to the sub- 

stitution xF->xa; the map a~-> V(a) is a continuous unitary representation V of G on ~0.--  

Putt ing H = ~ ~do) and m ~- dim (~) (Te E E) one sees at once, that  V = m(indL t o l]) (A.15). 

I f / E  B (cf. 2.1) the function (x, ~)F->[~(/(x))] (~< + ~ )  is measurable with respect to 

dh.d~o. In fact, by (7) above, (x,~)~->~(/(x)) is strongly continuous from G• O into 

B(~), and thus (x, ~)F->[~(/(x))] is lower semicontinuous on H • O . ~ W e  set (/E B) 

I I / I I ~ = I  [~(/(x))] ~dh'dw (<~ + ~ )  
Jg  • 

write B ' = { / ; / E B ,  II/II~< + ~ } ,  and define ~F: B ' -~H(V)=~0 (A.2) by 

' r ( / )  = ( e A / ( z ) ) ;  x e G, ~ e E} .  

LEMMA 2.2.1. With notations as above, ~I~(B ') is dense in H( V). 

Proo/. Let H '  be the transversal, modulo L, in G of II.1, and let ~ be the image of dh 

on H'. We set ~)=L~(E)| and observe, that  there is a canonical isomorphism be- 

tween H(V) and L~(H')Q][). We also note, that  if BE/=vQq; (cf. Notation 2.1.1), then 

]l/ll~= ]]~[[2(SE[~(v)]2de~ This being so, the desired conclusion follows from the fact (cf. 

(5) above), that  ~) is spanned by its elements of the form {Q~(v); ze E E} (v E I). Q.e.d. 

Remark 2.2.1. One could prove Proposition 2 below, goal of section 2, by knowing 

only, tha t  ~F(B') contains a nonzero element. This is true if we have a vE~ such that  

SE[~(v)] 2. d~o < + ~ .  In fact, then, for g E I:(H'), we obtain ] = v | g E B' and ~( / )  # 0. One 

can construct a v E ~ of the indicated sort as follows. With notations as before, since D is 

of a continuous trace (cf. (3) above) there is a w E D+ such that  7e~->Tr (~(w)) is a not iden- 

tically vanishing continuous function on E (cf. [4], 4.5.2, p. 93). We can also assume, that  

it is zero outside a compact neighborhood of some element ~0 of E (cf. [4], 10.5.6. Corol- 

laire, p. 20i)~ This being, so, it is enough to choose a vEs  over w�89 (cf. (2)). 

2.3. LEMM~ 2.3.1. For/E B c  C*(G) we have II/[[~ = II]*[[~ ( ~< + ~) .  

Proo/. We recall (cf. Lemma 2.1.3), that  /*E B and /*(x)=A(x)((/(x-1))s). Therefore, 

for any 7~EE, xEG: 

[g(/*(x))] = [g(A(x)(/(x-i)))] = [(x-in)(/(x-I))] (A.6) 

and thus, by the G invariance of deo, 
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II/*][~ = fH(/z[(x-~)(/(x-~))]~deo)dh= fE(~  [~(/(x':))]~dh)dw 

l "  

= |  [~(f(x))J2dh.deo=lf/l[~ (< § ~ )  
d t t  •  

Q.e.d. 

We observe, that  on (~ there is a canonical conjugation g~3 ,  continuing that  of 

s We put gt = (~), _ (g,) (g E (~). 

LEMMA 2.3.2. With notations as in 2.2 and above, i/ /EB' and gEB we have/gEB', 
and ~F (/g ) = V (gt) ~F (]). 

Proo[. We start by showing, that  given a compact subset K c H, there is a constant 
C > O, depending only on K, such that i / /E  73', g E ~ satis/y supp (]), supp (g)~ K, then we 
have [[/g[f~,<~CHg[[~[I/[[~.--To this end we note first, that  if D is a Hilbert space then 

(1) For any A, BEB(~) (A.13) [AB]<~[A]HB[I, (2) If A: H~B(~) is norm continuous and 

of a compact support, putting A = SH A(y)" dy we have [A] ~< ~,  [A(h)]-dh (<<. § c~). Hence, 

by Lemma 2.1.2, if k=h (supp (/)), for any ~EE:  

[~((/g) (x))] ~< f [~(/(xy-~))] II g(Y)II dh 

By virtue of our assumption clearly supp (/g) c K .  K -- K s, and hence 

I'/g "~ = f ~ ( f  [~((]a)(x))]~ dh)deo<~ C'Z(,,gl]~o)~,,/,,~ 

or Jl/gll <oiIIgll )ll/ll  where C=k.(h(KS)) ~ proving our statement.--If,  in our lemma, 

g E s we have (]g) (x) -~ Sa g~(a)/(xa), da, whence clearly ]g E B' and ~F([W) = B(gt)~Ir(/).-- 
If  g is arbitrary in B, let (gn)c B0 be such, that  there is a compact subset K c H  with 
supp (gn), supp (g), supp ( / ) o K  and that  I]g-gnll~o. By Lemma 2.1.1 we have then 

gn~g in ~ and hence also g ~ g t .  Therefore lim,..,+~F(]g,~) = F(g~)/F(]) in H(Y)JOn the 

other hand, by what we saw above 

and thus finally u~(lg)=lim,~._,+ ~F(]gn) = V(gt)UE(]) (1 E B', g e B). Q.e.d. 
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LEMMA 2.3.3. There is a sequence (g,)~ B', such that, /or any/EB' ,  ~F(/g,)-~F(/) in 

H(V). 

Proo/. We show first, that  if vE~ is such, that  SE[~r(~)]2d~o< + ~ ,  then for any 

E I~(H') we have (v | E B' (cf. Notation 2.1.1). In fact setting, for w E ~, w r = (~)* =w*, 

we get for a n y / E B :  /t(x)=-A(x)((/(x-1))r). Denoting again by d~ the image of dh on H' ,  

we obtain thus for /=v|  

[I /t [ ]2  fH [~~ [(h-13"~)(?~)]2d~ = I' ~ "2(fE [i7/:(v)]2 d~ (~-~- oo), 

proving our assertion.--Writing, for ~ E s V(~) = j',, ~(h) V(h) d~, we have clearly 

V(v | V(v) V(cf). This being said we observe, that  to establish our lemma, it is enough 

to construct a sequence ( v , ) c  ~ such that  V(vn) tends strongly to the unit operator and 

j'~ [~r(v)]2d~o < + oo. In fact, if ( ~ ) c  s is a sequence, such that  V(~)-~uni ty  strongly, 

we can then set g~-~ (v~ | ~ and note, that  by Lemma 2.3.2 and by what we said above 

XF(]gn)= V(vn)V(cfn)~(/) tends to ~F(/) in H(V) for any /EB'.---With the notations of 

2.2 we have V = m ( i n d L , v l I ) ,  where H = ~ . d w .  Since clearly a I I = I I  (A.6), VIL 

is a multiple of 11 and hence it is enough to find a sequence ( v ~ ) ~ ,  such that  

~E[~(~n)]e'dw < + ~ and ~n(Vn) tends to the unity strongly, almost everywhere on O with 

respect to dw. But for this it suffices to recall (cf. (4) loc. cir.) that  if A: O->C(~) is con- 

tinuous and of compact support, there is a w E ~, such that  A(ze)~-~(w) (ze E O). Q.e.d. 

Given a unitary (Hilbert) algebra A (cf. [5], p. 70), for any x E A we denote by  V~ the 

bounded operator on the completion of the underlying pre-Hilbert space of A, uniquely 

determined by VxY =yx (y EA). We recall, that  the right ring ~q(A) of A is the v. Neumann 

algebra generated by the operators (V~; xEA). 

LE~MA 2.3.4. With the notations o/Lemma 2.2.1, we can define the structure o] a unitary 

algebra ~ on ~F(B'), such that R(V) =~(E)  and V(B)D{Vz; xEE).  

Proo/. Given /, gEB'  let us set (/,g)=(~(/),~'(g)). By Lemma 2.3.1, (B')*=]~ ' and 

(], g) = (g*, ]*). If h E B', Lemma 2.3.2 implies, that  

(/h, g) = ( ~ ( / h ) ,  ~F(g)) = ( V ( h t ) T ( / ) ,  qC(g)) = (~F(/), V((h*)t)~r(g)) 

= ( tF( / ) ,  ~ ( / h * ) )  = (/ ,  gh*).  

Let us consider now the factor algebra ~ = B ' / k e r  (~)~~F(B') .  The map 1~+/* of B' 

onto itself gives rise to an involutive antiautomorphism of E (to be denoted in the same 

manner), such that  with the inner product (,) induced by that  of H(V) we have for any 
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x, y; z E E: (xy, z) = (x, xy*) and (x, y) = (y*, x*) . - -By Lemma 2.3.3, the set {xy; x, y E E} 

is dense in E. I f  x, y EE, and x = ~ ( / )  (/EB'), we have Vxy= V(/t)y; hence, for any fixed 

x E E the map y~->yx of E into itself is continuous, completing the proof, that  E constitutes 

a unitary a l g e b r a . ' W e  have just seen, that  V(B)~{V~;xEE}  whence, using ~ = ( ~ ,  

B'" B c  B' and the proof of Lemma 2.3.3 (or quite simply the commutat ion theorem, cf. 

loc. cir. p. 71, bottom) we get R(V)=~(E) .  Q.e.d. 

LEMMA 2.3.5. Let 0 be an orbit o/F~ on 9~ (c/. Lemma 1.1.6). There is a positive, G in- 

variant Radon measure on O, uniquely determined up to a positive constant/actor. 

Proo/. With notations as in Lemma 1.I.6 we assume, tha t  0 = G~, closure being taken 

in F. Let  us set A =N/NQ and recall (cf. (e), proof of Lemma 1.1.5), tha t  the map i: A-> F 

defined by i(aNQ)=ao (aEN) is an N equivariant homeomorphism. If  A' is the image of 

G in A, we have A =.4 '  and i(A)~-O. Hence if 7 is a Haar  measure on A, i . ( 7 )=v  is a 

positive, G invariant  Radon measure on O. Conversely, let # be such a measure and sup- 

pose, that  # =i.(7'  ). Then 7'  is a positive, A' invariant  Radon measure on A and hence 

there is a constant c >0  such tha t  7' =c7, and therefore also ~ =cv. Q.e.d. 

Let  J be a fixed element of Prim (G); below we shall ~ i t e  E = E ( J ) ,  F = F ( J ) ,  K =  

K(J) (cf. Notation 1.1.3) and set O = A ( J )  (E F/Z; cf. Proposition 1). 

As already mentioned earlier (cf. the introduction to section 2), we shall say, that  

T E R e p  (G) (A.4) is a representation with trace, if R(T) (A.2) carries a faithful, normal, 

semifinite trace (I), such that  the set (T(a); aE(~ +, r  + ~ }  generates R(T). I/,  

in addition, T EFac ( G), we shall call T a normal reprezentation. 

Notation 2.3.1. We shall write Facn (G)/or the subset, composed o/all  normal representa- 

tions, o/ Fae (G). 

We recall (cf. (a), proof of Lemma 1.2.1), that  there is a Borel cross section 

~: F-~  I r r  (K). 

L~.MMA 2.3.6. With notations as above, let/~ be a positive G invariant Radon measure 

on 0 (c/. Lemma 2.3.5), and let us put 

Then T is a normal representation with ker ( T ) = J ,  and there is a q)E B+( = • N (~+), such 

that 0 < T(q~) and T(qJ) is o~ a/ ini te  trace. 
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Proo/. We infer at  once from (a), proof of Lemma 1.2.1, that  T E F a c  (G), and ker ( T ) =  

J.  Hence, in order to establish our lemma, what  we have to show here is, tha t  T is normal. 

(a) Let again ~o be a ~ invariant  Radon measure on E (cf. II.2). Fixing a Borel cross 

section z: E - > I r r  (L), let us set [ I=~(~) .deo(~) .  Let ~' be a Haar  measure on A =  

N//VQ (cf. Lemma 213.5) and T=i.(~'), Putt ing Y = ~ ( ~ ) - d ~ ( ~ )  we claim, that Y =  

indLcK II.  In  fact, let us define P: F-~E by P(Q)=~IL (QEF); clearly P is continuous. 

Furthermore,  if (r is some element of F, ~ =P(a)  and :~ the annihilator of L in X(K) (cf. (c), 

proof of Lemma 1.1.5), the map ~ - > ~  is a homeomorphism between :~ and p- l(~) .  Thus 

we can write ~=~eE~udw(~), where ~ is :~ invariant  on F and carried by P-~(z) ( ~ E ) .  

We recall, tha t  if Y(~]) = ~ ~(~)d~(~), then Y(~) =indL r K ~(~) (cf. [20], Lemma 1, p. 325). 

Moreover (cf. [17], Theorem 2.11, p. 204 and [16], Theorem 10.1, p. 123) the field ~ >  Y(~) 

is ~o measurable and 

Y= f~e(~)'dv(~)= f Y(v)'d~(v)= f~ (ind~(v))'d~~ ~t~ 
proving our assertion. 

(b) We write A=~' /Z  and, if ~ A ,  we denote by O;. the corresponding Z orbit. By  

the proof of Lemma 2.3.5, there is a Radon measure v on A, and for each 2~A, a G in- 

var iant  Radon measure ~ ,  carried by Ok, on F, such that  ~=~A~dv(~). Therefore, 

putt ing Z(2)= ~ ~(~)-dv~(~) we obtain, similarly as in (a), that  

Y= ~ ( ~ ) ' d ~ ( $ ) =  f~ Z(2)'dv(~). 

Let us write now U = indL ~ a YI and U(2) = indgr a Z(~); then by Y = indL ~ K H (cf. (a)) we 

conclude, tha t  

U =  ind Y =  [ ~  U(~)-dv(~). ( + )  
KeG ,}A 

Let us note, tha t  by  virtue of our construction, there is a ~1 EA such that  U(~I)= T 

(the latter as in the statement of our lemma). 

(c) We claim, that the decomposition (+) is central. This we infer from the following 

result of E. Effros (implied by [8], Theorem 1.10, p. 91). Let (Z, ~) be a standard measure 

space, ~-> T(~) an a-measurable field o//actor representations on Z, such that ker (T(~I))= 

ker (T(~e)) only /or ~1=~2. Then the direct integral ~e Z T(~).do~(~) is centraL--To obtain 

the desired conclusion, it is enough to recall, tha t  ker (U(2))~J(~o) (~ E Ok) and thus, by 

Lemma 1.1.9, ~14=2~ implies ker (U(21))=~ker (U(~2)). 

(d) We observe next, tha t  i/there is a 20EA such that U(2o)EFaen (G) (cf. Notat ion 
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2.3.1 above), then we have U(2)EFac (G) /or a/1/tEA. To see this, let us form the direct 

product N=~• I f  a=(b,)~)Ef and TERep(G) ,  we set (aT)(g)=z(g)T(b-lgb) 
(g E G), in which fashion we get a left action of f on Rep (G). Similarly, we let N act on the 

left on Rep (K) . - -We define t:X(G)~:~ by tO[)--)~lK and write (a=(b,z)El~): ~(a)= 
(b, t(z))EN. Let  us observe, tha t  since N acts on F as an abelian group, it preserves Z 

orbits and hence acts transitively on A=F/Z.  This being so we claim, tha t  (aU)(2) = 
U(j(a)2) (2EA). In  fact, since U(2)=ind~t~Z(2) (cf. (b)) we have clearly aU(2)= 
indgt  ~(j(a)Z(2)). Putt ing b =~(a) and b2 = u, the image of d~ ,  under the action of b on F, 

is a multiple of d~ .  In  this fashion, in the sense of unitary equivalence 

bZ(2)= f ;  b~(~) .dv~(~)= f ;  9(b$) .dv~(~)= f ;  ~(~) .dv~(~)= Z(u) 

Hence finally 

aU(2) = ind (~(a) Z(2)) = ind Z(~(a) 2) = U(~(a) 2) 
K t a  K t o  

proving our s ta tement . - -Assume now, tha t  20 is as at the start  of (d). Given 2EA, by  

virtue of what we have just seen, there is an aE2~, such tha t  U(2)=aU(2o). On the other 

hand, lett ing/V act on (~=C*(G) as in Lemma 1.1.2, there is an a ' E ~  with (aU(2o))(/)- 
U(~o)(a'/) (/E(~). Hence if U(20)EFaen (G), we have also U(2)EFaen (G) /or all 2CA, as 

claimed above. 

(e) From here we complete the proof of Lemma 2.3.6 as follows. Replacing in Lemma 

2.3.4 EEL/~ through EEL/O (A.15) we observe, tha t  V=m'indLtaII =m. U. Onthe  other 

hand we showed loc. cit., tha t  there is a unitary algebra ~, such tha t  ~ ( ~ ) = R ( V )  and 

V(B)D{Vx; xEE}. Therefore, if (I) is the natural trace on [~(~)]+ (cf. [5], Definition 2, 

p. 88), V is a representation with the trace (I). If  (I)' corresponds to (P on [R(U)] +, U will 

then be a representation with the trace (I)'.--Since the decomposition U = SeA U(2). dv(2) 

(cf. ( + )  in (b)) is, by (c), central, we have also (dropping the prime) (I)= SA ~ (I)adv(2), where 

(I)~ is a faithful, normal, semifinite trace on [R(U(2))] + such that ,  if A E[R(U)]+ and A = 

~h A(2)'dv(2), we get (I)(A)=~A Oa(A{2))-d~(2) (~< + ~ )  (el. [5], Th~or~me 2, (iii), p. 200). 

Let  a E B + = B (1 (~+ be such, tha t  0 < (I)(U(a)) < + co; for instance, take b E B' with U(b t) 4 0 
and set a=bt.(bt) *. What  we have just seen evidently implies, tha t  there is a ~EA satis- 

fying 0<r + ~ ,  and therefore U(5)EFaen (G) (cf. [4], 6.7.2. Proposition, 

p. 127). Hence we can apply (d) above with 20 =~ and conclude, tha t  U(2)eFaen (G) for 

all 2EA, and thus, in particular (eft the end of (b)) T=U(2~)EFacn (G).--Let  us show 

finally, tha t  there is a q~ E B + = B N (~+, such that 0 < T(q~) and that T(q)) is of a finite trace. 
By what  we have just seen we can find VEFacn (G), ~E/~ and a E B  + such tha t  T ( / ) -  
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V(o:(/)) (/E(~) and that  V(a) is of a finite positive trace. Hence it suffices to verify, that  

for any fl E f we have fl(B +) _~ B+; in fact, we can take then ~0 = (~-1) (a). Clearly, it is enough 

to show, that  fl(B) -~ B. Suppose, that  fl = (b, Z), and let us denote by A(b) the automor- 

phism of ~ corresponding to bEG (cf. Lemma 1.1.2). For a fixed ] f ib  we set F(x)= 

y.(x). A (b) ((/(b-lxb)) (x E G). By observing, that  A(b) R(b-lib) = R(l) A(b) one verifies easily, 

that  x~-->F(x) belongs to B. We denote by F the corresponding element of (~ (cf. Lemma 

2.1.1) and claim, that  F=fl/ .  If UERep (G), we have U(flF)=(z(b-IU))(/) (A.6, A.8). On 

the other hand, since U(A (b) v) -~ (b -1 U) (v) and (Z U) (v) ~ U(v) (v E ~) 

U(F) = fH U(F(x)) U(x). dh = fH V(A(b)(/(b-Xxb))) (ZU)(x).  dh 

~ (Zb-~U) (/(x)) (zb- lV)  (fix)). dh = (zb-~U) (/)= V(fl/) 
JH 

completing the proof of our lemma. Q.e.d. 

We sum up the previous discussion in the following 

PROPOSITIO~ 2. Suppose, that G is a connected and simply connected Lie group, and 

J some element o /Pr im (G). There is a normal representation the kernel o/which is J. 

Proo/. This follows at once from Lemma 2.3.6. Q.e.d. 

Remark 2.3.1. The following observation will be useful in Section 5 (for the reasonings 

employed below cf. [4] 6.6, p. 125). Suppose, that VjEFac (G), (I)j is a normal trace on 

[R(Vj)] + such that (I)l(Vl(a))=-~(V2(a)) (aeB  +) and that, /or some bEB +, we have 0<  

r V~(b)) < + o~. Then V1 and V~ are quasi-equivalent.--Let us start by noting that, if 

mj is the ideal of (~ corresponding to Vj and 11j=m~, we have 1tl N B=11~ N B (cf. [4], 

6.1.2, p. 112). In fact, a E ~  belongs to 111 N B if and only if aEB and ~P1(Vl(a*.a))< § ~;  

but then also ael12 N B, and conversely. Let us put B1 =uj  N B- If A t is the unitary algebra 

corresponding to m~, the image of B1 in Aj is dense (]=1, 2). In fact, if A =A 1 (say), 

is the completion of A and ~) the closure of the image of B1 in ~, then D is nonzero, and 

invariant under the left and right actions by elements of B. Hence, since V1EFac (G), 

we have ~ =~ .  Summing up, there is an isometry from the completion of A 1 onto that  of 

As, making correspond to each other left actions of B. Thus V1 is quasi-equivalent to Vs. 

Q.e.d. 

Remark 2.3.2. Let G be as above. We write Ca for its left regular representation on the 
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Hilbert  space L2(G) of all square integrable functions with respect to a right invariant  Haar  

measure on G, and set R ( I ~ ) =  1/(G); then lt(G) is the left ring of G. The purpose of the 

following observations is to sketch a proof, on the basis of our preceeding considerations, 

tha t  ll(G) is semi/inite. We recall, tha t  due to a theorem of J .  Dixmier (cf. [6], Th~or~me, 

p. 423) the analogous s tatement  is valid for any separable, locally compact and connected 

group. 

Let  I~L be the left regular representation of L; we have l~G=indL~ ~I~L. We note, in- 

cidentally, tha t  L=[G, G] is unimodular; in fact, if L = e x p  (b) (A.1), the radical of b is 

nilpotent. Let  # be the Plancherel measure of L and 7~: L ~ I r r  (L) a Borel cross-section. 
G Putt ing II  =SL 7e($)-d,~(~), we have I:L ~ 11 (A.5), and hence, if V= indLt  a I I ,  also 1 2 ~  V. 

In  this fashion it is enough to establish, that  R(V) is semifinite. - -  (~ acts on L as an abelian 

group, such tha t  S=L/G is countably separated (cf. Lemma 1.1.3). Hence we can write 

#=Sz#~.dv(s) where, up to a set of v measure zero,/z s is a-finite, is carried by sES and, 

if a#=5(a)# (aE~), also au~=t~(a)/~. Therefore, in particular, #~ is equivalent to a 

= S ta(~) "d/~ (~) and V(s) =indL t a II (s). I t  invariant  Radon measure on s. Let  us set l](s) | 

is implied by  Lemma 2.3.4 that,  if s does not belong to a set of v measure zero, V(s) is 

a representation with trace and thus, in particular, R(V(s)) is semifinite. Since I I =  

S~ II (s)" dr(s), we have also V = S~ V(s). dr(s). The latter decomposition is central; in fact, 

to see this, it suffices to note, that  V(s)lL~II(s), and that  S~I](s).dv(s) is certainly 

central. Thus finally, the semifiniteness of R(V) is implied by [5], Corollaire 2, p. 206. 

Q.e.d. 

w 

The purpose of the next two sections is to show, tha t  any normal representation, up to 

quasi-equivalenee, is uniquely determined by its kernel (cf. Proposition 4, section 4). In  the 

present section 3 we shall t reat  separately a special case of interest, where the desired 

conclusion is implied by standard results. 

LEM~A 3.1. The/ollowing properties o /JEPrim (G) are equivalent: (1) Jr] VEFae (G) 

and ker ( V ) = J ,  then V is o[ type I, (2) There is an irreducible normal representation o/ 

kernel J. 

Proo/. (1)-~ (2) By Proposition 2, there is a UEFacn (G) with ker (U)=J. Our as- 

sumption implies, that  U is of type I ;  hence, to satisfy (2) it is enough to take WEIr r  (G) 

such tha t  U ~ W (A.5). 

(2) ~ (1) Here we employ the following well-known assertion (implied by  [4], 4.1.10. 
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Corollaire). I / A  is a C* algebra and ze E I r r  (A) is normal, then ker (~) = ker (~') (7~'E I r r  (A)) 

implies z~ ~ 7# (A.5). By virtue of this we obtain the desired conclusion using a reasoning 

due to J.  Dixmier (cf. [3], Remarque, p. 100). Let  us assume, tha t  VEFac (G) is such, that  

ker (V) = J .  Suppose, tha t  V = ~z V(x).d/~(x) is a decomposition of V into a direct integral, 

over the standard measure space (X, #), of irreducible representations. Then (cf. loe. cit.) 

ker (V(x))~ker ( V ) = J  almost everywhere with respect to/~. By assumption, there is an 

irreducible normal representation W with ker (W)= J .  What  we said above implies, tha t  

V(x) ,,, W up to a set of # measure zero. Hence V ~ W and V is of type I .  Q.e.d. 

We shall say, that J E P r i m  (G) is o/ type I, i/ J satis/ies one o/ the two conditions o/ 

Lemma 3.1. Incidentally, from what we saw above is clear, tha t  if J is such, any two nor- 

mal representations of kernel J are quasi-equivalent.--Our next objective is a charac- 

terization of such ideals (cf. Proposition 3 below). 

We observe, tha t  if EEL/~  is fixed, and ~EF(E) ,  G~ (A.9) does not change; hence 

we may  write GQ~II(E). This being so we recall (cf. [22], Lemma 3.7, p. 484) that  

K(E) (G(E)) o (cf. Notation 1.1.1) is an open subgroup o/ I~(E). Denoting its index by 

n(E) ( <~ + oo), i/ ~ E F(E), T(~) =indz(E)~ a ~ eFac  (G) (cf. Lemma 1.1.4, (i)) is o/type I i/ 

and only i / n ( E ) <  + oo.--Given J E P r i m  (G) we set n(J)=n(E(J))  (cf. Notat ion 1.1.3). 

If  G is solvable, the integer n(J) can be described as follows. In  this case we have 

a canonical bijection between points of Prim (G) and generalized orbits (cf. [24], I I I .6 ,  

p. 85 and loc. cit. Theorem 1, or Section VI below resp.). Let J E P r i m  (G) and O b e t h e  

corresponding generalized orbit. Let  g be the Lie algebra of G, and g an arbi trary element 

of the projection of O into g'. Then n(J) is equal to the index o/ the reduced stabilizer Gg 

(cf. [24], 3.3, p. 83) in Gg. 

We assume now again, tha t  G is an arbi trary connected and simply connected Lie 

group. Given J E P r i m  (G) we recall, tha t  A(J)={~;  ~E9~, J ( e ) = J }  (el. Proposition 1). 

Observe, tha t  G acts on A(J)  as an abelian group (cf. e.g. Lemma 1.1.6). 

PROPOSITION 3. JEPrim (G) is o/ type I i/ and only i/ (1) G acts transitively on 

A(J),  (2) n(J) is finite. 

Proo/. Let us assume first, that  J is of type I. We form, as in Lemma 2.3.6, the re- 

presentation 

T =  ind qd#(q) = T(e) .d#(o ) 
K(J) I' a \ d  A(]) / (]) 

We know (cf. loe. cit.) that  TEFac  (G) and ker (T)=J .  Since T(el)~ T(e2) if and 



112 L. P U K A N S Z K Y  

only if GQI=G~2 (cf. Lemma 1.1.4, (ii)) by a routine reasoning (cf. e.g. [22], Lemma 2.3.2, 

p. 550) we conclude, that  if T is of type I, A(J) must be a G orbit. But then, for any 

E ~4(J), T ~ T(~); hence T(~) is itself of type I, implying n(J) < + ~.--Conversely,  if 

J E P r i m  (G) satisfies the two conditions of our lemma, then T(~) is of type I for ~E A(J) 

and, as above, Facn(G)E T ~- T(~). In other words, T(~) (Q E A(J)) is normal and of type 

I which, by our definition, yields the desired conclusion. Q.e.d. 

We shall discuss the implications of assuming only, that  A(J) is a G orbit, in Pro- 

position 5.4.3 below. 

w  

The main objective in this section is to show, that  if G is connected and simply con- 

nected, V~EFaen(G) and ker (V1)=ker (V2)=J  (say), then VI ~ V2 (cf. Proposition 4). 

This implies easily the analogous result for a not necessarily simply connected, connected 

group (cf. Theorem 1). By what we saw in section 3, we can assume, that J is not o/type I. 

4.1. We put E ~-E(J), fix an element ~ E E and recall the following (for more details, 

cf. [22], start of Section 3, Chapter I, p. 480-481). Let  ~ be a projective extension of 

to G., giving rise to a continuous cocycle :r (~(gl/1, g212)---:c(gl, g2); gl, g2EG.; 11, 12EL). 

We put Ge-~G e and note, that  G e can be realized as the set ((a, u); aEG~, uET} with the 

multiplication (a, u)(b, v)=(ab, uv~(a, b)) and the product topology. The subset ((l, 1); 

IEL}, to be denoted again by L, is a closed, invariant subgroup of G e. Let us set M~ =Ge/L 

and denote by (1) the canonical homomorphism Ge-~M~. Since G is connected and simply 

connected, we have 
1 ' T central M .  ~ Z �9 1 

where Z is direct product of a vector group with a free abelian group. Below we shall put 

F =M~. 

Given a subgroup H 1 of a group H, we denote by C(H1) the centralizer of H 1 in H. 

Putt ing FI=C(F0) and U=C((F0) ~) (A.10, A.12) we have U = F I ' F 0  (cf. [22], proof of 

Lemma 6.5, pp. 502-503). Let  us select a maximal abelian subgroup H of F 1 and set E = 

Fo-H. 

LEMMA 4.1.1. With the above notations we have (i) E=C(H),  (ii) E is the direct product 

o / F  o and o / a  ]ree abelian group A. 

Proo/. Ad (i) We have evidently E=C(H)  and thus it is enough to establish 

the opposite inelusion.--If 7EC(H), since H0=(F0) ~, we have yEU.  Let us write 
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7 =y i ' 70  (71 E Fi, 70 E F0). Since H ~  Fi = C(F0), 71 commutes with H and hence, since H is 

maximal abelian in F1, ~'l E H or ~, E H .  D 0 = E . - -No te  that,  in particular, E is closed in F. 

Ad (ii) Since H o =H N F0, it suffices to show, that  H = H  0 • A . H  being abelian, for this it is 

enough to establish, that  H/(H)o is free abelian. We have 

H/H o = H/(H N Fo) = HF0/F 0 = E/Foc r / r 0  

whence the result follows by observing, that  F/F 0 is free abelian. Q.e.d. 

COROLLARY. E is o~ type I. 

In  fact, by (ii) above it suffices to remark, that  F0 is a connected nilpotent Lie group. 

In  the following we shall associate with a given E EL/~ a closed subgroup D of G, 

satisfying K ( E ) c D c I I ( E ) c G ( E )  (for II(E) el. I I I  above). As the subsequent lemmas 

will show, D shares all the useful properties of K(E) and, in certain respects, it is more 

advantageous (cf. e.g. Lemma 4.1.3 and Remark  5.2 below). The reason for which, how- 

ever, we prefer in our main statements K(E) (cf. Proposition 1 and Theorem 2) is the lack 

of a possibility to make the choice of D canonical. 

Below we shall write F, K, 1I and G i for F(E),  K(E),  II(E) and G(E) resp . - -Let  T 

be the central 1-torus in G ~. With the previous notations we set De=(I)-i(E) and D= 

De/TcG. D is a closed subgroup of G such that  K ~ D ~ U .  To see this it is enough to re- 

call, tha t  U ~ c H c F i ~ U ,  and tha t  Ut=~9-1(U)/T (cf. [22], p. 483, bottom) and K= 

(1)-I(U~)/T (cf. loc. cit., proof of Lemma 3.6, p. 484). 

LEMMA 4.1.2. Assume, that (~ is a/actor representation o /D  such that its restriction to 

L is carried by E. Then (~ is o/type I. 

Proo/. Since DcG1, the action of D on E is trivial, and thus alL is quasi-equivalent 

to a ~'EE. Replacing, if necessay, a by  aa  (aEG) we can assume, tha t  ~ '  = ~  (~ as previ- 

ously). Let  us put  (P l=q) ID e and ~ = ~ e I D  ~. Denoting by  9" the lotorus in F, there is a 

/~EFac (E) such that  #] 9" is a multiple of the conjugate of the identi ty map of 9" onto it- 

self, and that,  with notations similar to those of Lemma 1.2.3, a = [ ~ |  (#o(Iai)]~. Hence 

to complete our proof it is enough to recall, tha t  E is of type I (cf. corollary of the previous 

lemma). Q.e.d. 

We set F' =((~; aEb, (~lL~Te', ~' any in Z}. 

LE~MA 4.1.3. For any (~ in F', its stabilizer in G is equal to D. 

Proo/. Since [~, ~] = L c  D, D is an invariant subgroup of ~. Replacing, if necessary, 
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by ba (bE~) we can assume from the beginning, tha t  ~ l L ~ t  (as previously), and then 

it is enough to show, tha t  a ~ = a  (for some aEG) implies aED.- - I f  a ~ = a ,  thenaJt=zt ,  or 

a ~ G  r In  the following, whenever convenient, we shall write for (9, 1), (e, u)EG e, g or u 

resp. (g~G1, uET). There is a #EI r r (E) ,  such tha t  # I T  is a multiple of the conjugate of 

the identi ty map of T onto itself, and that  a(d)=~te(d)| (dED). Put t ing ~ =  

qg((a, 1))~1 ~, we are going to show, tha t  ~,# =# .  To this end it suffices to prove that ,  if we 

write U =~t~(a) | I ,  we have (a~) (d) = U*, (~d(d) | (y#) ((P(d))- U (d E D). In  fact, if again 

(I)1 = ~ 1 D  e, ~t~ =~el D e, we obtain then 

a = [ ~ |  (~or ~, a~ -- U*. [~ i |  (@'/~)or "" U, 

whence, since a~ ~ (r, we conclude, tha t  F# ~/x (A.5).--Let d be fix in D. Then 

(ac;) (d) = a(a -l 'da) = zt~( (a -1 .da, 1)) | 1)). 

Since (a-Xda, 1) =(a,  1)-X.(d, 1)(a, 1).u (uET), we obtain, that  

(a~)(d) = ~ ( ( a ,  1)-~-(d, 1)(a, 1 ) ) | 162  1)-~.(d, U(a, U) 
= U*-(~(d)  | ( ~ )  (r  U, 

where U=~e(a)|  as claimed above . - -We show next, that  7 # = #  implies tha t  y E E .  

In  fact, by E =C(H)  (Lemma 4.1.1, (i)) there is a z EX(H) such tha t  # I H ~ Z. Since ~# = #  

we have also FZ =Z. For a fixed hEH, let us write y-lh~, =uh (uET); we have to prove, tha t  

u = l .  But (identifying T to the circle group) we get: z(h)=(~z)(h)=z(7-Xh?)=~tg(h), 

giving the desired conclusion.--Summing up, we have shown, tha t  a a = a ,  imphes that  

aEG~, and if ~ =(I)((a, 1)), then 7 ~ E .  Hence (a, 1)~(I)-~(E)=D e and a~D, completing the 

proof of our lemma. Q.e.d. 

L~M~A 4.1.4. With the above notations F', as a subspace o] ~), is locally compact and 

Hausdor]]. 

Proo/. At many  points this will be similar to tha t  of Lemma 1.1.5. We show first as 

a t  loc. cit. (a), (b), tha t  F" is locally closed in D. Putt ing ~) ~ C*(D) we conclude as in (c), 

loc. cit., tha t  there are closed, two-sided ideals ~)~ I ~  I~ such that ,  if M = I1/I ~, we have 

= F ' . - - W e  prove next, that  M is of type I or, what amounts to the same, tha t  if 

(~'~Fac (/1) satisfies ker (a')~I~, then a' is of type I. We recall (cf. [4], 2.10.4, p. 52), 

tha t  there is a unique a e F a c  (D) such that  a[I~=a ' and in this case R(a)=R(a'). This 

being so it is enough to show, tha t  a l L  is carried by E. In  fact then, by  Lemma 4.1.2, a, 

and hence also a' ,  is of type I. Let  a=~xa(x)d/x(x) be a decomposition into a direct in- 

tegral of irreducible representations over the standard measure space (X, #~,. There is a 
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subset  T/ of X with  # (T / )=0 ,  such t h a t  if xE T/, ker(a(x)) - - k e r  (a) (cf. [3], p. 100), hence 

also ker(a(x))D 12. There is also an ~ 1 c  X, # (T / l )=0  such tha t  a(x)]I 1 ~ 0 if x EX-~11 .  

In  fact,  otherwise there  is a nonzero project ion P with Pa(I1)=Pa'(I1)=0.  Since F ' =  

{~; (~E/), ker  (8 )~I~ ,  ~112~0} we conclude, t h a t  up to a set  of measure  zero, a(x)EF'; 

in which case also a(x) iL~ze 'EE.  Thus, on account  of L e m m a  1.1.7, alL  is carried by  E.  

- -  We write ~ '  for the annihi la tor  of L in X(D) ,  and form the direct  p roduc t  _h r' = G x 9:" N '  

acts as a topological t rans format ion  group o n / )  (cf. Corollary of L e m m a  1.1.2). We claim, 

that F' is an N'  orbit. To this end it suffices to show, t ha t  if a, fl E F '  are such, t ha t  ~ I L  ~ fl I L, 

then  there is a ~ E ~  with fi=qJa (A.8). Le t  us write J~' for the  subset  of /~,  which on ff 

reduces to the  conjugate  of the ident i ty  m a p  of ft. Put t ing,  for ~/E ~ ' , / ( r / )  = [~r~ | (~o (Pl)]- 

we can find y, (5E~' such t ha t  :r fl=/(6). Also, one sees a t  once, t ha t  if ~" is the an- 

nihilator of f f i n  X(E),  there is an isomorphism ~: 9 : ' ~  ~", such t h a t  ~/(~/) =](~(q~)~7) (q~E ~'). 

I n  this fashion it is enough to establish tha t ,  b y  mult ipl icat ion,  :~" acts t rans i t ively  on ~ ' ,  

B y  L e m m a  4.1.1., (ii) we have  E = F  0 • A, and F 0 is of the form F~ • A, where A is a vector  

group, and  F0 central extension b y  the  circle group of a vec tor  group and, if d im (F) > 1, 

d im [F0, F0] =1 .  Hence  to obta in  the desired conclusion it is enough to recall, t h a t  if 

zEX(F0)  is identical ly one on the center of F0, and ~E1 r then  ~ =ze . - -Summing  up, 

~ '  = M  is locally compact  and a lmost  Hausdorf f  (since M is of type  I) and N '  acts t ran-  

si t ively on F ' .  I n  this fashion we can complete the proof of our l emma by  reasoning as in 

(e) of the proof of L e m m a  1.1.5. Q.e.d. 

L E M ~ A  4.1.5. (i) There is an equivalence relation Z'  on F', such that ~1 is equivalent to 

~2 i /and  only i /~IE G~2. (ii) F' /Z '  is countably separated. 

Proo/. One can proceed in the same fashion, as in the proof of L e m m a  1.1.6, and 

therefore we omit  the details. 

4.2. We continue to keep fixed a J E Pr im (G), which is not  of type  I ,  and set  E = E(J). 

D will correspond to E in the following as in 4 .1 . - -Observe ,  t h a t  now D ~= G. 

LEMMA 4.2.1. Suppose, that the normal representation V o/ G is o/kernel J. There is 

a unitary representation W o /D,  such that V is quasi-equivalent to indD ~ a W. 

Proo/. (a) Since F' =~I, and M is of type  I (cf. the proof of L e m m a  1.1.4 above),  we 

can find a Borel cross section (~: F ' - ~ I r r  (D). Proceeding as in (a), proof of L e m m a  1.2.1, 

we conclude, t ha t  there  is a Borel measure  2 on F', which is quasi - invar iant  and ergodie 

with respect  to G, such t ha t  V I D = S~' a ' (x) ,  d~(x), where a'(x) ~ a(x). Imi t a t ing  the reason- 

ing of (a), proof of L e m m a  1.2.5, we can assume the  following situation: (1) 2 is carried b y  
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the E, orbi t  A c  F ' ,  (2) J4 is the under ly ing space of a connected abelian Lie group; there 

is a continuous homomorph i sm ~: G ~ A ,  wi th  ker  ( ~ ) = D ,  such t ha t  j4'=q~(G) implies 

~4' = I4, and aa'(x) =a'(q~(a)x) (aEG, xE A). In  the following we write ax for ~(a)x. 
(b) We have, by  (a), V I D = ~  a'(x).d).(x), and the direct  integral  is clearly central.  

For  vFEX(A), let us put  V(yO=~y~(x)'I,'d),(x); then  V(~)E(R(VID))~R(V).  We de- 

fine ~p'EX(G) by  ~0'(g)---~o(~(g)) (gEG). This being so we observe, t ha t  V(g)V(~)V(g -~) = 
V(g) v(~). 

(c) Let  us denote  by  C the annihi la tor  of  D in X(G). Put t ing  C' ={v2'; y~EX(A)} we 

claim, t ha t  C'  is dense in C. In  fact,  otherwise there is a g E G - D  such t h a t  1--~o'(g)~- 

~o(~0(g)) (yJ E X(A)), whence ~0(g) = e and g E ker(~) = D, giving a contradiction.  

(d) We write again (~ =C*(G), and consider the homomorph i sm of L e m m a  1.1.2, of 

X(G) into Aut  ((~). Nex t  we remark ,  t ha t  (V(v2))*. V(a)V(v/)~V(v2'a ) for a n y  v /EX(A ) 

and  a E (~. In  fact,  f ixing ~0 E X ( ~ ) ,  it is enough to show this for a = / ,  where / is integrable 

with respect  to a right invar ian t  H a a r  measure  dg. By (b) above we have  ( V(v2))*- V(g) V(~) = 
y/(g) V(g), and thus 

(V(~))*. V(/). V(y~)= fc/(g ) (V(y~))*. V(g). V(y~). dg = fayI(g)/(g) V(g). dg= V(v/'/) 

proving  our assertion. 

(e) Le t  us pu t  1~I = R(V). Since V EFacn  (G), in part icular ,  M is a semifinite factor; 

we denote  by  (I) a faithful,  normal ,  semifinite t race on M+. We claim, that ]or any Z E C, 
r (ae@+). I n  fact ,  since by  (d), (V(yJ))*. V(a). V(yJ)=V(~'a) (~EX(A), 
a E G) and since V0p) E M (cf. (b)), our  s t a t emen t  is certainly valid if Z E C'.  B y  C'  = C (cf. (c)) 

and by  the no rma lcy  of (I) this yields (I)(V(za))<~r and thus  also ~(V(za))-  
~P(V(a)) for all XE C and aE(~+. 

(f) For  the  following cf. [5], Ch. I,  w 6, 2, pp. 85-89. Le t  us pu t  m = { A ; A E M ,  

(I)(A*-A) < + c~}.m can be endowed with the s t ructure  of a un i t a ry  algebra such tha t ,  for 

X E I~, (X, X) = (I)(X. X*). We denote  the t t i lber t  space, which is its completion,  b y  ~). Le t  us 

pu t  n = {a; a E (~, (I)( V(a* .a)) < + c~ }; n is a two-sided ideal in (~. Wri t ing  ~' = { V(a); a E 1t} c [), 

we have  ~-'=~. I n  fact,  by  V((~)~'c~)' ,  ~ ' V ( ( ~ ) c ~ ' ,  if P is the project ion on ~-, since M 

is a factor,  P is equal  to zero or one. But  the assumption, that V is normal, clearly implies 
P ~: 0 . - - L e t  g~->L(g) (g E G) be the  left regular  representa t ion  of G on (~; we have  V(L(g) v) = 
V(g) V(v) (v E ~) and thus  L(g)11 c 11. Hence there  is a un i t a ry  representa t ion  V' of G on D, 

uniquely  de te rmined  by  V'(g)(T)=V(g)T (TED');  V' is quasi-equivalent  to V . - - ~ s o  

b y  {e), there is a un i t a ry  representa t ion  W of C on ~ such tha t ,  ifyJ E C, W(y~) (V(v)) = V(v2v ) 
(v E n). One verifies easily, t h a t  V'(g) W(y~) V'(g -1) =y)(g) W(v2) (g E G, v 2 E C). 
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(g) Using the previous observations we complete the proof of our lemma as follows. 

We put  G = G/D and, if g E G, we denote its image in G by ~. Since G is the dual of C, there 

is a spectral measure ~ on G such tha t  W(~J)=S-dy~(h).dD(h) (yJEC). By the last rela- 

tion of (f) we conclude, that  if E is some Borel subset of G, we have V'(q) O(E) V'(g -1) = 

~(E~). In  other words, (V', ~)  constitutes a system of imprimit ivi ty based on G/D, and 

hence (cf. [19], Theorem 6.6, p. 291) there is a WERep (D), such tha t  V'=indDto W. 

Since (cf. (f)) V ~ V', W satisfies the condition of our lemma. Q.e.d. 

For the notion of a multiplicity free representation cf. [4], 5.4.5, p. 108 and 13.14, 

p. 250.--We shall say, that  WERep (D) is G invariant, if a W ~  W (A.5) for all aEG. 

LEMM), 4.2.2. (i) W, as in Lemma 4.2.1, can be chosen G invariant and multiplicity/ree, 

(ii) I / W  and W' satis/y the conditions o/(i) and indDtc W~indDcG W', then W.~ W'. 

Proo/. Ad (i) Let  W be as in Lemma 4.2.1. Putt ing Wl=~f fW.dg ,  we have aWl~ 

W1 (a E G) and ind~ r a W = ( + ~ )  (indD ? o W). Thus replacing W by W 1, we can assume, tha t  

W is G invar iant . - -We claim, tha t  in this case there is a G invariant, multiplicity free 

representation U of D such that  W is a multiple of U. In  fact, puttingindD r a W = T E Fae (G) 

we get, as in (a) of the proof of Lemma 4.2.1, since G#D,  

( + ~ )  W = T ID = J,4 (~'(x). d2(x) 

where ~ is a G quasi-invariant and ergodic. On the other hand, since F' =.~I, and M is of 

type I (cf. the proof of Lemma 4.1.4) there is a Borel measure ~u on F ' ,  and a/~-measurable 

function x~-~n(x) (xEA) taking its values in the set of positive integers (~< + c~) such 

that  W=S~,  n(x).a(x).d/u(x) (cf. e.g. [4], 8.6.6. Th~or~me, p. 156); hence 2 is carried by 

A, and there we can assume ~ =/z. Since W is G invariant  and )~ ergodic, there is a positive 

integer N (~< + ~ )  such that  n(x):-N almost everywhere with respect to 4. We put  U = 

.~  a(x).d~(x). Clearly U is G invariant,  multiplicity free and W=/Y �9 U . - - I n  this fashion 

we can satisfy condition (i) of our lemma by  replacing W through U. - -Ad (ii) Assume 

now, tha t  W and W' satisfy the conditions in (i) and tha t  indD ? c W ~ indD t a W'. Then we 

have 
( +  ~ )  W =  (ind W) ID~ (ind W ' ) ] D =  ( §  ~ )  W' 

DCG ~?G 

and thus ( + ~ )  W ~ ( + c~) W'. Since W and W' are multiplicity free, we can conclude 

from here, tha t  W ~  W' ([4], 5.4.6. Proposition, p. 108). Q.e.d. 

We write 2~ for the direct product ~ • X(G) and consider again N '  = 0 • D:' as in the 
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proof of Lemma 4.1.4. Putting, for ZEX(G), ~(Z)=zID, and for (a ,z)e]~,  i ( a , z ) =  

(a, T(Z)) EN', j is a surjective homomorphism. In this fashion ~ acts on b ,  and F '  is an _~ 

orbit (cf. loc. cit.). Since [,~, 2~]=[~, ~ ] = L c D c ~ ,  (aeF' )  we have fo---A (say), and 

A =]~/A is abelian. Let a be now fixed in F'. We observe, that  the map aA~-->aa (aE_N) 

gives rise to an 2~ equivariant homeomorphism between A and F '  (cf. loc. cit. and (e), 

Lemma 1.1.5).--Let A be as in (a), Lemma 4.2.1, and assume that  a, as above, is in A. 

Putt ing ~={~;  ~E/~, ~A-----A}, we have also E={cr ote_~, a a e A } . - - W e  denote by Gnorm 

the image o/Facn (G) in G (for the latter cf. [4], 18.6.2, p. 323). Setting again, if VERep (G) 

and ~ = (b, Z) E_N, (~V) =z(b V), since (a' V) (v) = V(zrl(v)) (a' = (b, ],), v E (~), we get cor- 

responding actions of .~ on G . . . .  and Prim (G).--Similarly, we can let N act on Rep (D). 

L]~MMA 4.2.3. With the previous notations, we denote by ~ the set o/all  G quasi-orbits 
n t ~  

on A, and write G~={I; IEG=orm , ker (1)=J}. Then (i) E acts on 71~ and Gj, (ii) There is an 

E equivariant injection ~: Gj~  ~ .  

Proo/. Ad (i) Given a Radon measure/x on A and a e ~, we define a# by ~ / ( a x ) .  d#(x) = 

~A/(x)'d(a#)(x) (/eC(A)).  Since G e E ,  and ~ acts on A as an abelian group, clearly 
n 

E maps ~ into itself.--We show next, that  E leaves Gj invariant. To this end it is 

enough to establish, that  if VEFacn (G) is such, that  ker (V)-~J, and if aE~,  then 

ker (aV) = ker (V). By Lemma 4.2.1, we can assume V =indD ~ ~ W, whence aV =indD ~ ~(aW). 

By virtue of Lemma 1.1.10, (i), it suffices to prove that  ker ( aW)=ker  (W). Let  M 

be as in the proof of Lemma 4.1.4, and let us denote by T, T' the representations of M 

corresponding to W and aW resp. Assuming, as we can by the previous lemma, that  W is 

G invariant, the canonical measure 2 of T on 211 = F '  is G ergodic and is carried by A ~  F' 

where . ,4~F'/Z' depends on J only (cf. [4], 8.6.8, p. 157). Hence the closed hull of ~t isequal 

to A. The canonical measure of T' is just the action of a on ~; since a leaves A invariant 

the closed hull of this measure, too, coincides with A. In this fashion ker ( T ) = k e r  (T') 

(cf. loe. eit.) and hence also k e r ( W ) = k e r  (aW), proving our statement.---Ad ( i i )Let  l 

be some element of G~. By the lcrevious lemma, there is a G invariant and multiplicity free 

W~Rep (D), up to unitary equivalence uniquely determined by the condition, tha t  the 

quasi-equivalence class of indD ~ a W be 1. The canonical measure class of the representation, 

corresponding to W, of M is a G quasi-orbit on . , 4~]~=F'  and is well determined by l; 

we write for it ~(1) (~ :/tl). The map l~->~(1) from G~ into ~ is clearly injeetive and, by 

what we saw in Ad (i) above, it is ~ equivariant. Q.e.d. 

4.2.4. For any element o/G~om, its stabilizer in 2~ is closed. 

Proo/. We shall base this on the following two results, the first one of which is clas- 
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sical. (1) Let  E be a countably separated Borel space, G a separable locally compact group, 

acting on E such that,  for each fixed xEE,  the map a~-~ax (aEG) is Borel. Then G x (A.9) 
n n 

is closed. (2) Gnom, as a subspace of the Borel space G is standard and thus, in particular, is 

countably separated. (This is implied by a recent result due to H. Halpern; cf. [15], Theorem 
n 

3.)--This being so to complete our proof it is enough to show, that  for any 1 fix in G~o m, the 

map a~-~al (aE-~) is Borel. Let V be some element of Fac (G) (cf. [14], p. 135), and p 

the canonical projection from Fac (G) onto G. The map a~->aV is evidently Borel, hence 

so is a~->~l=p(~V) (~e_~). Q.e.d. 

PROPOSITION 4. Let G be a connected and simply connected Lie group, and V 1, V 2 

normal representations o/G,  such that ker (V1)=ker (V~). Then V 1 is quasi-equivalent to V s. 

Proo/. We assume, that  J and ~ 4 c F '  are as before, and that  ker ( V j ) = J  (?'= 1, 2). 

- - We  start by observing, that  there is a unique element m E ~ such that  Em= E (A.9). 

In fact, with the notations of the remarks preceeding Lemma 4.2.3, putting F =E/A 

( c  A =]~/A), there is a F equivariant homeomorphism between F and A. In this fashion 

we can derive our claim from the fact that,  on F, any Borel measure, quasi-invariant with 

respect to F, is equivalent to the Haar measure (cf. [18], Lemma 7.3, p. 145).--With our 

previous notations our proposition states, that  Gj contains only one element. Let  l EGj 

and # =~(l); by Lemma 4.2.3, (ii) it is enough to show, that/z =m. By our previous remark, 

this will follow from E~ = E. By Lcmma 4.2.4, E1 = E N ~1 is closed in E. The ~ equivari- 

ante of ~ implies E z = El. On the other hand, evidently G ~ E~, A ~ E~ and GA = E. Thus 

finally GA _ Ez -~ E, providing Ez = E. Q.e.d. 

Remark 4.2.1. Observe, that  by what we have just seen, if 2 is an (evidently essentially 

uniquely determined) G invariant Radon measure on A, then ff~ a(x).d2(x)ERep (D)in- 

duces in G a normal representation of kernel J .  

T~EOREM 1. Let G be a connected Lie group. Then the map/F-~ker (1)/rom the set o/all  

quasi-equivalence classes o/ normal representations into the space o/pr imi t ive  ideals is a 

bijection. 

Proo/. We start by recalling, that  if G is a locally compact group, H a closed, invariant 

subgroup of G, r the canonical homomorphism from G onto G/H, VjERep (G/H), V~ = 

Vjo(I), then ker (V1)=ker (V~) is equivalent to ker (V~)=ker (V~).--Let now G be as in 

our theorem, G' the universal covering of G, (I) the canonical homomorphism from G' 

onto G and F = k e r  ((I)). Given VERep (G) we shall write V'=Vo(I)ERep (G'). We con- 

clude from our starting remark, that  given J EPrim (G), there is a unique J '  El)rim (G') 

such that,  if TERep  (G), ker ( T ) = J ,  then ker ( T ' ) = J ' ,  and conversely, if UERep (G 
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satisfies ker (U) = J ' ,  then we have U =  V' (VERep (G)) with ker (V) = J . - - L e t  dg and dg' 

be right invariant  Haar  measures on G and G' resp., such that,  if d 7 is the normalized in- 

variant  measure on F, we have dg '~dT .dg .  Let us put  ~ = C * ( G )  and ~ '=C*(G' ) .  This 

being said we claim, tha t  for any T E R e p  (G) we have T ( ~ ) = T ' ( ~ ' ) .  In  fact, given 

/E ~(G'), let us denote by  T(/) the element of C(G), corresponding to x~->Z~r/(~,x) (xeG');  

we have T('~(/))=T'(/) .  Since ~(I:(G'))= s this implies T(F~(G))=T'(I:(G')),  and thus 

finally, since T((~), T'((~') are norm closed 

T((~) = T(s = T'(F~(G')) = T'(ff~'), 

proving our assertion, We conclude from this, tha t  we have V E Facn (G) if and only if 

V' EFacn(G'). In  fact to this end it is enough to recall (cf. [4], 6.7.2. Proposition, p. 127), 

that ,  for any locally compact group G, VEFacn (G) is equivalent to the existence of a 

nonzero operator A E V(G) such tha t  A*.A is of finite t race . - -Le t  now J be an element 

of Prim (G). Since G' is simply connected, by  Proposition 2 there is a WEFacn (G') with 

ker ( W ) = J ' .  V~hat we said above implies, tha t  we can find VEFacn (G), such tha t  W = V', 

and thus ker ( V ) = J .  Hence the map l~-~ker (l) [rom G . . . .  into Prim (G) is sur]ective.-- 

If  VjEFacn (G) and ker (V1)=ker (V~)=J,  then ker (V1)=ker (V~) and hence, by  Pro- 

position 4, V'I ~ V' 2. But  then also V1 ~ V~, completing the proof of our theorem. Q.e.d. 

The following corollary has been known so far only if either G is unimodular (implied 

by [4], 18.7.9, Corollaire, p. 326) or if G is solvable ([22], Corollary 7.2, p. 594). 

COROLLARY. Let G be a connected Lie group. I / b  is di//erent / tom the unity, there is a 

normal representation o /G,  which on b assumes a value di f ferent /rom the unit  operator. 

In  fact, by  the theorem of Gelfand and Raikov, there is a U E I r r  (G) such tha t  U(b) ~ I .  

By Theorem 1 we can find a TEFacn  (G) with ker ( T ) = k e r  (U). In  this case, however, the 

kernels of these representations, viewed as homomorphisms of G into unitary groups, too, 

must  coincide, and hence T(b) is different from the unit  operator. 

Remark 4.2.2. We wish to note here the following implication of the above results. 

Let  us assume again, tha t  G is connected and simply connected, and let J be some ele- 

ment  of Prim (G). By Proposition 2, there is a TEFacn  (G) with ker (T) = J ,  and such tha t  

for some ~ E B  N (~+=B + (cf. 2.1) T(~) is nonzero and of a finite trace. If  U~- T, U(~)is 

an operator of the same kind. But, by Proposition 4, T is determined up to quasi-equi- 

valence by  its kernel. Hence we can conclude, t h a t / o r  any V E Facn (G) there is a qJ E B +, 

such that V(q~) is nonzero and o / a / i n i t e  t race.--Let (I) be a faithful, normal ,semifinite 

trace on R(V). Then the map v ~ (I)(V(v)) ( <~ + ~ )  (v E (~+), up to a positive multiplieative 
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constant, is uniquely determined by J =ker  (V). We shall denote it by Z~, and call the charac- 

ter belonging to J E P r i m  (G) (cf. [4], pp. 126-7). Let us observe, that  by Remark 2.3.1 and 

by what we said above, if Z~,(v)-Z~..(v) (vE B+; Jz, J~ fix in Prim (G)), then Jz =J2.--We 

recall finally, that  if G is solvable, by [22], Theorem 4 (p. 593), the Planeherel measure is 

carried by G . . . . .  and there is a set E ~  Gno m of Planeherel measure zero, such that  for any 
e~  

VEFacn (G), the class of which belongs to G . . . .  - E ,  there is a continuous positive defi- 

nite function ~ of compact support, such that  V(~) is nonzero and of a finite trace. 

4.3. We recall (cf. Proposition 3), that  VEFaen (G) is of type I if and only if, putting 

J =ker(V),  .,4(J) is G transitive and n(J)< + oo. The following proposition characterizes 

the situation arising upon dropping the second assumption on J.  

PROPOSITION 5. Let G be a connected and simply connected Lie group. The ]ollowing 

conditions bearing on the element J o] Prim (G) are equivalent (1) .4(J) is transitive with re- 

spect to G, (2) For any ~ E .,4(J), ind~r t G ~ is a normal representation. 

Proo]. (1)~ (2) We write K ~ K(J ) . - -Le t  us put, as before, T(Q)=indKt c Q (~ E A(J)). 

If/z is a G invariant Radon measure on A(J), by Lemma 2.3.6: T = S~r T(q).d/~(q) E Facn(G). 

If G acts transitively on A(J) we have, for any QEA(J), T(~) ~ T, and thus indKtv 

is a normal representation.--(2)~ (1) We start by observing, that  if T(~)EFaen (G) for one 

~) E A(J), then the same holds true for all ~ in Jd(J). In fact, in this case even T(a) EFacn (G) 

for all aEF(J)  (cf. Notation 1.1.3). To see this we form again the direct product 2~= 

• X(G), and let it act, similarly as in Lemma 4.2.3, on Rep (G) and Rep (K). To obtain 

the desired conclusion it suffices to note, that  F(J) is an ~ orbit (el. (e), Lemma 1.1.5) 

and that  aT(~)=T(a~) (QEg/).--We are going to prove now, that  T(~)EFaen (G) (for a 

single ~ E ~4(J)) implies, that  G acts transitively on A(J), in the following fashion. As- 

sume, that  ~)1, Q2 E A(J). By what we said above, we have then T(Q1), T(Q2)EFacn (G) and 

also ker (T(~I)) =J(~h) = J  =J(~2) =ker  (T(~2)). Hence, by Proposition 4, T(t)l) ~ T(Q2), 

which, however, implies that  G~I =G~2 (cf. Lemma 1.1.4, (ii)), or that  Jd(J) is a G orbit. 

Q.e.d. 

w 

Let G be again a connected and simply connected Lie group. If every normal repre- 

sentation of G is of type I, by Proposition 2 and Lemma 3.1, G itself must be of type I. 

Hence in order to form the character 2~J belonging to J E P r i m  (G) (el. Remark 4.2.2) we 

have to consider traces on factors which, in general, are not of type I. The purpose of this 

section is to find for ~fJl B+ an expression in terms of type I traces (cf. Theorem 2 below). 

- - We  recall (cf. lee. cir.) that  Z~,I B+ =ZJ~I B+ implies J~=J2. 
8 ~ -  742901 Acta mathematica 133. Imprim$ le 7 0 c t o b r r  1974 
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LEMMA 5.1. Assume, that J and D are as in 4.2. There is a closed subgroup S o~ G, such 

that D c S c G  and S/D is discrete, and a unitary representation W o/ D with the/ollowing 

properties (i) Putting V=indDta W, we have VEFacn (G) and ker (V) - - J .  (ii) W is multi- 

plicity/ree and sW,,, W (sES), (iii) Writing U=indDtsW, R(V) is tensor product o] R(U) 

with the/ull ring o/a Hilbert space. 

Proo/. (a) Let  A be as in the proof of Proposition 4. By choosing an origin for the ac- 

t ion of F as loe. cit. we can assume, tha t  A itself is a connected abelian Lie group. As in 

Remark  4.2.1 we form the representation Z =S~a(x)'d2(x); by what  we said loe. cit. 

indDt a Z E F a c n  (G) is of kernel J ,  and clearly 2 is just the Haar  measure on A. We havea  

homomorphism ~: G-->A such tha t  k c r ( ~ ) = D ,  qJ(G)=A' implies A ' = A ,  and aa(x)= 

a(T(a)x) (aEG, xEA); we write ax in place of q~(a)x in the sequel.--As in (b), proof of 

Lemma 1.2.5, we observe, that  there is a closed, connected subgroup A1 of A, such tha t  

A "  A1 = A, and A1 N A'  = A'I is countable and dense in 241. Let us put  S =~-1(A'1). S is 

dosed, contains D, S/D is discrete and ~ = A / A I = G / S .  Let # and h be Haar  measures 

on A and ~ resp. such tha t  d~t =d#.dh. For p E~,  we write tt~ for the translate of # carried 

by the eoset p; then 7~ = S~p~,. dh(p). Putt ing 

T(p) = f ~  a(x). dtt,(x), 

we have (cf. [17], Theorem 2.11, p. 204) 

f: T(p)'dh(p)= fea(x).dl~(x)= Z. 
Since clearly aT(p) = T(ap) (aEG, p E ~ ) ,  setting W =  T(0), where 0 is now the neutral  

element of ~ ,  we conclude (cf. [16], Theorem 10.1, p. 123) tha t  

indZ  = f ~  ( ind T(p)). dv(p) ~ ind W. 
DtG J ~  DtG D~G 

Hence, putting V =indD t v W, we get V 6 Facn (G) and ker (V) =J. Since W is multiplicity 

free and clearly s W ~  W(sES), it satisfies conditions (i)-(iii) of our lemma. Hence it re- 

mains only to verify condition (iii). 
| (b) Putt ing U = indDts W, we obtain V = indst ~ U and V]S= ;~lshU" dh. 

(A.11). We claim, that  the last decomposition is central. To this end it is enough to show 

the same for ;~sh(U[D).dh. By sW,,, W ( s E S ) w e  have VlD=;es1DaW.da~ W; hence 

the desired conclusion follows by  observing, that  clearly ;~is h W. dh(=Z) is central. 

(c) The subsequent analysis, in view of applications in the next  lemmas, is somewhat 

more detailed, than  needed to complete the proof of our lemma. In  order to realize g = 
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indsl, G U, we construct a Borel cross section ~: ~-> G and an open subset O c ~ ,  the com- 

plement of which is of Haar measure zero, such that  ~10 be continuous, as follows. Since 

is a connected abelian Lie group, there are one-parameter subgroups {gk(t); t E It, 1 ~</c < n} 

{g~(~); vET, 1 <~l<~m} (T=circle group) of ~ ,  such that  putting t=(tl, t 2 ..... t , )EIt  ", ~= 

(~1, ~2 .. . .  , Tin)ET ~, the map (t, v)~->gl(ti)g2(Q) ... g~(tn)g'l(vOg2(~) ... g'~(Vm) is a homeomor- 

phism. We denote by o~ and ~ the canonical homomorphisms G ~  and It->T resp. Let  

{%(t); tEIt, 1 <k<n} ,  {e~(t); tEIt, 1 <~l<~m} be one-parameter subgroups of G, such that  

w(eg(t)) =-gg(t) (1 <.k<n) and (o(e;(t))=-g;(cf(t)) (1 <l<~m). We identify T to [0, 1] modulo 1, 

and define y~: T~[O, 1] by y)(~) =~ if 0 < v < l ,  and y~(v) =0  otherwise. Let  ~: ~ -~G be such 

that  
~](t, ~) = ei(ti) e~(r,~) ... en(t,) e'l(y~(Vl)) e~(~f(V~)) ... e~(y~(Vm)). 

Clearly, ~/is Borel and eoo~ =identi ty.  We set 

O={( t ,~) ;O<Tk <l ,  l~</r 

Then O is open in ~ such that  h ( ~ - O )  =0, and ~]O is continuous. For later use observe, 

that  dh I O=dt .d~ (dt=dtldt ~ ,.  dt,, dv=d~id~ 2 ... dv,~). (2) Let  us put  T=~(~) ;  then any 

aEG can be written uniquely as st (sES, tET).  Given aEG and hE!~ we write hh=hw(a); 

hence if tE T, ~](h).t=y(h , t).~(hi) (},(h, t)ES). Observe, that  if sES, tE T, then 

~(h) s it = [~(h). s(~(h)) -i-~,(h, t)]~(hi). 

For notational convenience, we shall write in the/ollowing sometimes h in place o/~(h) E T 

( c G) and thus, in particular, h5/or ~(hco(a)) (a E G). (3) Let  us set #(h, t) = U(?(h, t)) (h E~, 

tET).  From what we have just seen we conclude, that  V = i n d s t z  U can be realized on 

H(V) =H(U) |  by 

(V(st)[)(h) =- (h-~U)(s)/~(h, t)/(hi) (weS,  te T; /OH(V))  

(d) The following reasoning is inspired by [19], pp. 288-290.--By (b) the decompo- 

sition Y l S = S~ ( h - l v ) ' d h  is central. Therefore, if A E (R(V))', we can write by virtue of 

it: A = S~ A(h).dh, where A(h) E (R(U))' almost everywhere. Hence if t E T is fixed and 

]EH(V), we have (~A V(t)/)(h)~-tt(h, i).A(h)/(hi) on the one hand; on the otherl this is 

identical to (V(t) A]) (h) ~#(h, t) A (hi)/(hi) for almost all h E ~ In this fashion A(hi) ~ A(h) 

and, in view of the aribtrariness of tE T, there is a A E(R(U))' such that  A(h) - A .  In other 

words (R( V))' = (R(U))' | I and hence R(V) = R(U) | B(L~(~)) (A.i3i completing the proof 

of Lemma 5.1. Q.e.d. 

Let  dx, ds be right invariant Haar measures on G and S resp., such that  dx = ds.dh. 
9 -  742901 Acta mathematica 133. lmprim~ le 4 0 c t o b r e  1974 
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We write (~ =C*(G), ~ =C*(S) and consider as in 2.1, the variety B~  (~. We observe, tha t  

B l S c B s = ~  (cf. Remark 2.1.2) and that  B + l S ~ B ~ + . - - S i n c e  VEFacn(G), R(V) 

is a semifinite factor and hence, by (iii) of the above lemma, so is R(U). 

LEM~A 5.2. Assume, that V and U are as in Lemma 5.1. Let ~ be a/aith/ul,  normal, 

semi]inite trace on [R(U)] +. There is a trace ~ o/ the same kind on [R(V)] +, uniquely deter- 

mined by 

O(V(~))=f~js~F((hV)(q~lS))-dh (~EB+). 

Proo/. Uniqueness is clear, since there is a q E B +, such that  0 <(I)(V(q))< + ~ (cf. 

Remark 4.2.2).--We recall (cf. (c. 2), proof of the previous lemma), that  h (E~)  can stand 

also for ~(h) EG. 

(a) Given q E B  and h, t fix in ~ ,  let us put F(x)=-(h-lU) (~(h-Xxt))U(x) (xES). One 

verifies at once, that  F(lx)~F(x)  (IEL, xES). We set Y~=S/L, and denote by dl, da 

Haar measures on L and Y~ reap., such that  ds =dl.da By what we have just said we can 

form S~(h-lU)(q)(h-lxt))U(x).da-K~(h,t) (say). We observe, that  the map (h, t)~-> 

Kr t) is continuous from 0 x 0 into B(H(U)), the latter being taken in the uniform 

topology (cf. loc. cir. (c.1)).--We denote by ~ the linear variety in H(V)=H(U) |  

composed of all those continuous maps from ~ into H(U), which are of a compact support 

contained in O. We are going to show that,  for a n y / E  V, (V(q~)/)(h)=S~K~(h, t)/(t).dt. 

In  fact, let us suppose first that  qEB0 ( ~  s el. Remark 2.1.1). Writing dh also for 

~.(dh) on T = ~ ( ~ ) ,  we have $aq(g)'dg=~s• In this fashion, by (c.3)in the 

proof of Lemma 5.1, we obtain 

( V (q~) /) (h) = f s• Tq)(st) ( V (st) /) (h) " ds " dt = f S• TqJ(st) (h- I U) (s) l~(h, t) /(hl) " ds " dt 

= f r ( f s q ( s t )  U(hsh-1)'ds) lx(h,t)/(ht) dt 

Writing d(g o �9 9) = A(9o) dg, since [G, G] = L = S, we have also d(hsh-1) = A(h) (is (h E G). 

Hence the substitution s ~ h - l s h  yields 

(V(q~)/)(h)=(A(h))-l( fr( fsqg(h-lsht)U(s) 'ds)l~(h,t) /(ht) 'dt  

Recalling, that  ht = 7(h, t). ]d (lot. tit. (c. 2)) and ~u(h, t) =- U(r(h, t)) (loc.cit (c.3)), we obtain 

through the further substitution s ~  s(~(h, t)) -1 
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(V(~f)/)(h)=(A(h))-~(fr(fscf(h lsht) U(s)'ds) [(hg)'dt) 

= (A(h))~(f~(fs~(h-'st)U(s).ds)/(,).dt)=fH(h,t)/(~).dt 

where, noting tha t  d(hlh -1) = A(h).dl, with notations as at  the start  of 2.1, we have 

H(h, t ) - -(A(h))   (fs ,h ~st) U(s) .ds)-(A(h))-i( f~(f  ~(h-~tst) U(l).dl) U(s)) .d(~ 

=- f , : ( f  ~(lh%t)(h-~U)(l)'dl) U(s))da-- f (h-~U)(Y~(qJ)(h-'~)) U(s)'da-K~(h,t). 

If  ~ E B is arbitrary,  we can find a sequence ( ~ }  ~ B0 such tha t  supp (~0n) is carried 

by a fixed compact subset C of G/L and ~ - ~ n - ~ 0  uniformly (cf. loe. cit.). This implies, 

by what  we saw above, at  once 

(F(~) / ) (h)- -  f Kr t)/(t).dt (]E*~), 

where Kr t) =- ~z (h-l U) (q)(h-lst)) U (s) . da, as claimed before. Q.e.d. 

(b) From now on we shall assume, tha t  ~ E B +. Let  e E H(U) be fixed. We assert, tha t  

the ]unction (h, t)~-~(K~(h, t)e, e) is positive de]inite and continuous on O • O. To see this, 

we select a ~E l:(O) (A.7), set [=e |  and observe, tha t  

f~ (K~(h, t) e, e),~(h) 2(t). ( v ( ~ ) / , / ) =  x~ dh. dt O, 

which implies the desired conclusion.--Note that,  in particular, Kr h)>~ 0 (h E 0). 
(e) We recall, tha t  writing B for the full ring of L~(~), we have R(V)=  R(U)| B (cf. 

Lemma 5.1, (iii)). Hence, since VEFaen (G) along with R(V), R(U) is a semifinite factor. 

Let  ~F be a faithful, normal, semifinite trace on R(U). We are going to show, tha t  there is 
a trace ~) of the same kind on R(V), such that 

~9(V(q~))= f ~(K~(h,h)).dh (<~ + ~;~oEB+). 

We start  by recalling (cf. [5], Corollaire, p. 85), tha t  there is a family (ej; ~EI}cH(U) 
with qP(A)=Y,~el(Aej, ej) (A E[R( U)]+). We can assume S ~ G. Let {~; n=l, 2 .... }~ E( O) 
be a complete orthonormal system in L~(~), and v2j.,=ej| . We denote by  �9 the faith- 

ful, normal, semifinite trace defined on [R(V)] + by r (A~j.n,~oj..) and show 

below, tha t  it meets our condition. We write I = (0, 1), and recall (el. (c. 1), Lemma 5.) tha t  
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~ O  is homeomorphic to R " •  ~ such that  dhiO=dt.dv. For }El  fixed, let us put 

Ks(h, k)=-(Kr ]c)es, es). Since (cf. (b) above) (h, k)~->Ks(h, k) is positive definite and con- 

tinuous on O x O, by the theorem of Mercer 

fo Kj(h'k)2~(h)~"(k)'dh'dk= foKj(h'h)'dh< + ~" 
n = l  x O  

Hence we conclude that  

+(V((p))-n. j~ ( V (qg) ?l/)J" n' 'l/)]' n) : '~J ( $ 1  /~ s(t'i(h'~)~n(h)~n(~)'dh'd]~) 

- <, , , :  f , z  ,<,(,,, ,,) . <,,,) 

Since Ks(h,h)~(K~(h,h)e~,es), we have ~4Ks(h,h)-U~(Kr (I)(V(~))= 

S~(K~(h ,h) ) .dh  (~ + ~) .  
(d) We observe next, that  if go E ]g, then q iS E Bs c ~ = C* (S) and K~(h, h) = (h- 1 U) (rp I S). 

In fact, since (cf. (a)) 

= f z  (h-lU) (q)(h-~st)) U(s). da Kr t) 
we have (cf. Remark 2.1.2) 

= .f~ (h 1V)(~(h-lsh)) g(s). da= .(~ (D-~U)(~(s))(h-~V) (s). da= (h-~U)(~lS) Kr h) 

Hence, by the last relation of (c) we obtain finally 

r = f. ~F((hU)(~IS)" dh 

completing the ~proof of Lemma 5.2. Q.e.d. 

Below we shall write Tr ( ) for the faithful, normal, semifinite trace, with the standard 

normalization, on the full ring of a Hilbert space. 

Remark 5.1. We shall use later the following byproduct of the previous proof. Assume, 

that M and N are closed, but not necessarily connected subgroups o] G such that M ~ N ~ L. 

We suppose also; that..(ind~t M a)=f lEIr r  (M), and that f l lN= S~MlX pa~'dp (A.11)iscentral. 

Then ]or any gE B~ 

JMf iy Tr((p~ ( <~ § ~)" Tr (fl(g)) = 
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We write Xj(v) = ~(V(v)) (v E (~+; J = ker (V)) (cf. Remark  4.2.2). Below D, A and 2 are 

as in (a), proof of Lemma 5.1. 

LEMMA 5.3. Assuming suitable normalization o/~, we have 

= (Tr(a(q0iD)) -d2(a)  @eB+). Zs(9~) J~ 

Proo/. (a) We write again ~ =C*(D) and @ =C*(S). Since S/D is discrete (cf. Lemma 

5.1), we can identify ~ to a closed subalgebra of S . - -Le t  us denote by C the annihilator 

of D in X(S). C is compact, and we write d Z for the normalized invariant  measure on C. 

We consider, as in Lemma 1.1.2, the representation Z~->A(z) of C in Aut ((~); we recall, 

tha t  T(A(z)v)=(zT)(v) (TERep  (S), vE~, zEC). Let us put  P=~cA(Z)'d z. P: |  
is continuous, such tha t  P[~) is the identi ty map; moreover P ( @ + ) = ~ +  and, if ~EBs,  

P ~ = ~ I D e B D .  
(b) Assuming, that  U and ~F are as in Lemma 5.2, we show next, that  viz(U(v))- 

viz(U(Pv)) (vE@+), In  fact, since U=indDtz W, we have z U ~  U (ZE C), hence 

~F(U(A(z)v ) =_c()c)~F(U(v)) (vE| 

Obviously c(z1)c(z2)=c(z I'Z~) and c(z ) > 0  on C and thus, by the compactness of C, e(Z)- 1 

and therefore also ~F(U(A(z) v) -xF(U(v)) (v E ~+, Z E C). Fixing v E ~+, if e is arbi trary in 

H(U), we have (U(A(z)v)e, e)>~0. Hence (ef. (c), Lemma 5.2) 

(yES+), 

proving our asscrtion.--Note,  tha t  in particular, if ]EB~ we have (cf. (a))~F(U(/))= 

vlP(U(/ID)). Hence, by Lemma 5.2, we conclude, tha t  

=(I)(V(~c))= f ~((hU)(~]D).dh (<~ + ~) (cfEB+). Zj(~) 

(c) Let  us put  11t+ =(v;  vE~ +, O~vF(U(v))< + ~ ) ,  and denote by  ~ the weak closure 

of all finite linear combinations of (U(v); veto+).  We claim, that  ~=R(UID ). In  fact, 

let P be the largest projection of ~.  Since ~ is a two-sided ideal in R(U ] D), it is enough to 

show, tha t  P is the unit  operator. We have evidently s. n t+c  m + (s E S) and thus P belongs 

to the center of R(U). Hence, by UEFac (S), it suffices to prove P 4 0 ,  or tha t  11t + con- 

tains an element v E~) + such that  ~F(U(v))>0. By Remark  4.2.2 there is a ~cE B + with 

0<xF(V(~)) < + ~ and therefore, by the last relation of (b) above, we can find a h EG 
satisfying 0 </F((h U) (~ ] D)) < + ~ .  Setting v = h -1. (~ ] D) E ~)+, we obtain in this fashion, 
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that  O<~F(U(v))< + ~ . - - L e t  us put  M=R(UID ) and Z=~FIM. From what we have 

just seen we conclude, tha t  Z is a semifinite trace on M. 

(d) Since D is invariant  in S, there is a representation s~-> co(s) of S in Aut (M) such 

tha t  co(s)(A) ~- U(s)A U(s -1) (A EM). Evidently Z(eo(s)(A)) -~Z(A) (A EM+). Observe, tha t  

also o~(s)(U(v))=-U(s.v) (v E~+) . - -We recall, that  U ID ~ W (cf. (b), Lemma 5.1). Putt ing 

N=R(W), let i: M-~N be a * isomorphism such tha t  i(U(v))-W(v) (vED). There is a 

faithful, normal, semifinite trace Z '  on N+ satisfying Z'(W(v))=-Z(U(v)) (vE,~+). I f  we 

define o)'(s)EAut (N) by ~o'(s)(i(A))-i(og(s)(A)) (AEM), we have also Z'(eo'(s)(A))- 
Z'(A) (sES; AEN+). 

_ (e) With the notations of (a), proof of Lemma 5.1, W-~A,  a(x).d/u(x) (a(x) EIrr  (D)), 

where A1 is the closure of the image of S in J4, and/u is an S invariant  Radon measure on Az. 

Since this decomposition of W is central, we can write at  the same time Z' =~,  Zx.d/u(x), 
where Z~ is faithful and normal on the full ring of the representation space of a(x) (cf. 

[5], Th6orbme 2, (iii), p. 200). By replacing/u through an equivalent measure/u'  we can 

achieve, that  Z~ has the standard normalization. In  fact, let e be an abelian projection in 

N, the central cover of which is equal to the unit operator. Writing e=S~ , e(x).d/u(x), 
a(x) --Zz(e(x)) is/u measurable and positive almost everywhere; hence it suffices to define 

/U' by d#'(x)=a(x).d/u(x).--This being so we claim, that /U'  is a constant multiple of/u. 

To see this it is enough to prove, that /u '  is S invariant. This follows at once by  observing, 

tha t  for all sES and AEN+, if A - ~ ,  A(x).d/u'(x), we have 

fATr(A(x)).dtz'(x)=Z'(A)= Z'(og'(s) (A)) = f~Tr,A(s-l.x)).d/u'(x). 
Summing up, assuming, tha t /u  is suitably normalized, we have shown 

W(U(qJID))=Z'(W(cpID))=fA, Tr(a(~vID)).d/u(a)< + ~ (~EB+). 

(f) Let hEG and pE~=G/S its canonical image. We write again (el. loc. tit) tup for 

the measure on ~4, which is the translate, carried by  the coset p, of/u. By what we have 

just seen, we conclude, tha t  ~e'((hU)(~0l D))=  SA Tr (a(q~lD)).d/u~(a). On the other hand, if 2 

is an appropriately normalized G invariant  Radon measure on A, we have 2 = j'~/up, dh(p) 
(cf. loc. cit.). Hence finally, by  the end of (b) above 

for all q0 E ]~+, completing the proof of Lemma 5.3. Q.e.d. 
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We set E=E(J)EL/~,  K=K(J)  (el. Notation 1.1.3) and form again F={@; @E/~, 

e]LeE} (cf. Lemma 1.1.5) and F ' = { a ;  aeD, a i L e d ,  ~ any in E)  (cf. Lemma 4.1.4). 

We observe, that  given a E F' ,  there is a ~ E F such that  a I K ~ ~. In fact, reasoning as in 

(a), proof of Lemma 1.2.1, we can write alK=~O'(~).dT(~ ), where w is quasi-invariant 

and ergodic with respect to D. But D acts trivially on F since GQ~ll (eeF) and D ~ I I  

(cf. the remarks before Lemma 4.1.2). Hence z is concentrated in one point of F, proving 

our assertion. Since ~ is uniquely determined by a, we can define p: F ' ~ F  by p(a) =~ 

( a l g a e ) .  

LEMMA 5.4. With notations as above, the map p: F'-~F is G equivariant, continuous 

and open. 

Proo]. The G equivariance is elear.--As in (e), proof of Lemma 1.1.5, we denote by 

:~ the annihilator of L in X(K), and form the direct product N = ~ • 3:. Let ~ be fix in F. 

We recall (el. loe. cir.) that  the map i: N/NQ-~F defined by i(aNQ)=a~ (aelV) is a homeo- 

morphism between /V/NQ and Fc_~.---As in the proof of Lemma 4.1.4, we write :~' for 

the annihilator of L in X(D) and set N'  = 0  • :~'. Let  a be fix in F ' .  Then the map i': 

N'/~V',~ F' defined by i'(aN',)=aa (a EN') is a homeomorphism between N'/N', and F ' c / ~  

(cf. loc. cir.). For ~ E :~' let us set y(~0) = ~ I K E :~, and define the homomorphism h: N'-~ N 

by h((a, W))=(a, y(~0)). Let  aEF' be arbitrary and assume, that  above @=p(a). We put  

A' =N'/IV,, A =N/1VQ; these are connected abelian Lie groups. If aEN' ,  we have p(aa)= 

h(a)p(a)=h(a)~, and thus there is a continuous snrjective homomorphism q: A'-+A, 

such that  q(aN~)=h(a)N o (aeN'). Hence q is open. Observing, that  the diagram 

A I 3' . ~  F 

"L I" 
A i " F  

is commutative, we conclude finally, that  p, too, is open. Q.e.d. 

We set GI=G(E ) and write M=K(G1)ocD. M is open in D; in fact, Mo=Do=(G1)o. 

We denote by E the annihilator of M in X(D). We recall, that  GQ----II (~eF),  and that  

M c  D c l l .  

LEMMA 5.5. Let a be/ix in F' and set Q =p(a). Then (i) The map ~e-~(~ (~EE) is a bi- 

jection between ~ and p-l(Q), (ii) p-l(~) is the closure o/ l la  in F'. 
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Proo]. We shall use the notations of 4.1 assuming that  g, at the start of loc.cit, is 

such, that  a l L ~ z . - - W e  recall (cf. the proof of Lemma 4.1.4) that  (1) Denoting by ~ '  

the subset of ~ composed of all those elements, the restriction of which to ~is  a multiple of 

the conjugate of the identity map of ~ onto itself and, setting/(~) = [ ~  | (~o(P~)] ~ (~ ~ ' ;  

7~ =he{ D, d)~=(I)l D~), the map ~e->/(~) is a bijection between ~ '  and the set of all aEF'  

with alL~re  , (2) Writing :~" for the annihilator of ff in X(E), there is an isomorphism 

z: :~'-~:~" such that  7~/(~])=/(~(q)~) (~E~').---Let us denote by ~ the collection of all 

those elements of X(U~), which on ~ restrict to the conjugate of the identity map f f~  ft. 

Since evidently U ~ E  ~, given ~E~' ,  there is a q~EO with ~ I U r  we put  cf=X(~)). 

Setting u~ = ~eIK, (I)z = @IK e and, for ~ E ~, q(~) = [n~(~o O~)] ~ ([ ] ~ interpreted similarly 

as above), clearly the map v/~->g(~) is an injection of ~ into F. Since/ (~)IK ~ g(~t(~])), we 

have P(/O?)) =9(X(~)), or 
t 

~ :~ A~ ~ 

Let  us denote by ~1 the annihilator of F 0 U s in X(E); one sees at once, that  ~(E)= El. 

We write, as in the proof of Lemma 4.1.1, H = (F0) ~ • A, and denote by A I the subgroup of 

A such that  U~=(F0) ~ • 1. Let  E2 be the annihilator of A 1 in X(A). The map ~0~->~lA 

(~EEi) is an isomorphism from E1 onto ~2. We conclude from this that,  if ~E/~' and co= 

).(~), the map ~ - > ~  (~ E El) is a bijection between ~1 and ~t-l(o). In  fact, by Lemma 4.1.1, 
A 

E = F 0 • A~ and hence we can ~ i t e  v as outer Kronecker product ~o • Z (no E Fo, Z E X(A)).--  

This being said let us show, that  p-l(~) is an E orbit. In fact, if q', a" E F'  are such, that  

p (a ' )=p(a" )=~  then, in particular, a ' l L ~ ,  a " l L ~ ,  and thus we can find ~', ~"E~ '  

with a'=/(~]'), (Y'=/(~"). Hence g(A(~'))=p(/(~'))=p(/(~]"))=g(AOf' ) providing ~(~')= 

A(~"). Let ~pEE1 be such, that  ~"=y~ ' ,  and assume ~p=z(~) (~EE). Then q~a'=q)](~')= 

/(T(~)~') =/(~")=a",  proving our assertion. If ~ a = a  for some ~ ,  and ~=](~), we have 

/(~(~)~)) =~/(~) =~(~ =(~ =/(~), whence z(~)~ =~, v((~) = 1 and ~ = 1. Summing up, we have 

completed to prove, that the map q~e->q)a (ep E ~) is a bi]ection between ~ and p-l(0 ) (~ =p(~)), 

which is statement (i) of our lemma.--We have clearly 1~(%~p-1(~) and, since p: F' -~F  

is continuous, also l~(~p-l(Q). In this fashion, to establish (if) it is enough to show that,  

always with the notations of 4.1, putting ~=d)-~(F~)/T we have ~a~p-~(~).  Assume, 

that  a=/(~)  (~ E~'). By the proof of Lemma 4.1.3, if a ~  and 7=(b((a, 1)), we have a~= 

/(~)) (A.5). On the other hand, for each ~, ~ F 1 there is a ~v E ~ such that  ~]  =~r~. Hence, 

to complete our proof, it suffices to show, that  {~v; ~' ~ F~} is dense in ~ .  If not, there is 
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an e ~ E - (U ~. F0), satisfying ~v(e) ~ 1 (~ E F~), which is equivalent to say, tha t  e commutes 

with F~. Since E=H.Fo ,  we can put e=h.7o(hEH,  7oeFo). Then h commutes with F~ 

and hence, by H ~ Fx = C(F0), also with F 0. In  this fashion, h is in the center of F o. F~ = U 

and e ~ U ~ , Fo, giving a contradiction. Q.e.d. 

Remark 5.2. Using the previous lemma, one can easily show the following. Let  

J E P r i m  (G) and .4E F ' /Y /b e  as e.g. in Lemma 5.3. Then J is o/type I (cf. w 3) i /and  only 

i /G  acts transitively on .4. (One should compare this with Proposition 3). 

For .4(J) below, cf. Proposition 1; for K(J), cf, Notation 1.1.3. 

THEOREM 2. Let J be an arbitrary element o /Pr im (G), I / #  is a properly normalized G 

invariant Radon measure on .4(J) (c/. Lemma 2.3.5), we have 

XJ(~)= fA Tr(Q(~IK(J)).d#(9) (~EB+). 
(~) 

Proo/. Below we shall write mostly 14 = .4(J), K =K(J);  on the other hand we replace, 

in Lemma 5.3, .4 through .4'. We recall, that  by loc. cit. 

Z:(~0)= f~,Tr(~(~0ID))-d~(~) (~0EB+), 

where )[ is a G invariant Radon measure on .4'E F'/Y,' (cf. Lemma 4.1.5). 

(a) We claim, that  p( .4 ' )= .4(J ) .  To this end let us show first, that  p( .4 ' )EF/E or, 

that  p(.4') is of the form G~ (cf. Lemma 1.1.6). If aE.4 ' ,  we have .4' =Ga; hence, putting 

~ p((~), G ~ p ( . 4 ' ) .  On the other hand we conclude from Lemma 5.5, that  .4' is the com- 

plete inverse image of p(.4'). Since, by Lemma 5.4, p is an open map F'-->F, proving 

/ jd tx  G~ PL ), and hence p(.4,)E F/F~. To show, that  p( .4)= .4(J) we recall (cf. the proof of 

Lemma 4.1.4), that  if V EFac (G) satisfies ker (V)=J ,  then V I D = ~ a ' ( x ) . d T ( x )  ((~'(x)~ x), 
| p and thus V ] K(J)  = S~(,4')~ (Y)" d~(y) (~'(y) ~ y), whence the desired conclusion follows by 

Proposition 1, (iii). 

(b) Let  ~ and M be as in Lemma 5.5. We denote by dy~ the normalized Haar measure 

on ~ and observe, that  there is a G invariant Radon measure # on .4 = .4(J) such that,  for 

all ] E 1:(.4'), ~A'/(a). d~(a) = ~(~/(Fa).d~p))dtt(~ ). Reasoning, as in (b), proof of Lemma 

5.3, we note, that  ~ Tr ((yJa) (~1D)).d~p = Tr (a(~] i ) ) .  Hence we conclude that  ZJ(~) = 

~Tr( f l (q~l i ) ) .d t t (~  ) (~0EB +) where, for each ~E.4, fiE/ll is subject to the condition, 

�9 that  f lIK ~ ~.--With the notations as just employed, we shall have completed the proo/o/  

our theorem by showing, that Tr (fi(~01M)) ~ T r  (~(~01K)) (~0 E B+). 

(c) We claim, that  there is a closed subgroup M 1 of G, with K~CMI~M,  and an 
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E Ms such that  (i) fl =indM, t M g, (if) If ~ is the annihilator of K in X(Ms) , p0~ =ZvC~ (p E M) 

and the map P~->Zv gives rise to an isomorphism between M/M I and ~. In fact (1) With 

notations as in 4.1, let us put  A = U r  zt~=Jte]M, (Ias=(I)]Me. We have then M =  

(I)-S(A)/T, and analogously as at loe. cir., with an appropriately chosen TEA, f l= 

[~r~| ~. (2) A is of the form F 0 • A, where A is discrete abelian, and F 0 is central 

extension of a vector group with the circle group. Therefore, if A 1 is a maximal abelian 

subgroup of A, there is a ~/EX(As) such that  ~ = ind , ,  ? A ~/. We have furthermore for any 

yEA, 7T=~v,T, and the map ~ > ~ r  gives rise to an isomorphism between A/A s and the 

annihilator of A s in X(A). (3) We recall, that  if H is any locally compact group, 

H 1 a closed subgroup of H and V1ERe p (Hs), VERep (H), then (indH~tH Vs)| V = 

ind,,tH(Ws| ). Therefore putting Ms=gP-~(As)/T, .x~=~e]is, ~4=OP]Me and 

~=[~t~| (~]ogP4)] ~, we obtain fl =indM~t ~ a, proving (i). (4) As in the proof of Lemma4.1.3 

we see, that  if aE~l 1 and ~ =r 1))EA1, then a~=[~ |  (7~OCa)]-. From this, by what 

we saw in (2), we conclude that,  for pEM, pg =Zr~, and the map P~+Z~ gives rise to an 

isomorphism between M/M1 and ~ X(M), proving (if). 

(d) Let  us put  ]=qzIME]g+~. By Remark 5.1, if dv is a suitably normalizedinvariant 

measure on M/Ms, we have 

Tr (fl(/)) = fM/~, Tr ((pa) (/[ Ms))" dv(p). 

Therefore, denoting by d~ the image of dv on ~, we obtain 

Tr (fl(/)) = f~, Tr  ((ya) filMs))- d~. 

(e) We set 9 = / I M  E B~. By Remark 2.1.2 if dw is a properly chosen invariant measure 

on M1/L , a(g)=SM, JLa(g(X))a(x)'dw(x). To simplify notations in the following, given 

~v E ~ ( c  X(M1) ) we denote in the same fashion the corresponding element of X(M1/K ). Let 

du be the measure, dual to dr2, on MI/K, and let dy be the invariant measure on K/L satis- 

fying dw = du. dy. If e is a fixed element of H(a), the function G(u) = ~ KIL (a(9(xY))a(xY) e, e) . dy 
is continuous and of a compact support on M1/K , and we have 

((v2a) (g)e' e)= f M, l~v2(u)G(u)'du>~O (~E~). 

Therefore 
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(f) Let {ej} be a complete orthonormal system in H(~). Given, that  g= rIM1, we 

obtain by virtue of (e) from the last equation of (d) 

Tr (fl(/)) = ~ f 9  ((v/~)(g)e"e')'dY)= ~ (ot(f[K)e,,e,)= Tr (9(/[K)) 

since clearly ~[K =Q. 'Subst i tu t ing  / = ~ [ M  (~ E B +) we obtain the last relation of (b), and 

hence the proof of Theorem 2 is complete. Q.e.d. 

w 

In this last section we shall assume, that  G is a connected, simply connected and solv- 

able Lie group with the Lie algebra ~. For more about the background of the following 

summary el. [24J, Introduction, p. 74 and 3, p. 80.--Given g E g' (=dual  of the under- 

lying space of ~) we denote by Gg the reduced stabilizer of g (cf. loc. cit. 3.3.a), p. 83). 

Putting (Gg)0=ex p (9g) (A.1, A.10) there is a ):gEX((Ga)o) such that  dxa=i(ff]gg). We set 

G~={Z;zEX(Gg ), ZI(Gg)0~Xg), ~ =  [Jg~g. Gg and recall (cf. loc. cit. 3.6, p. 84), that  one 

can define an equivalence relation ~ on ~ as follows. Let 5 and L = [5, 5] = (G, G] be as 

in 1.1. Writing L = exp (b), we have b = [g, g~. Given E EL/5, we denote by ~ its complete 

inverse image, via the Kirillov isomorphism between b'/L and L (loc. cir. 3.1.a)), in ~'. 

We have K(E)=GoL (cf. Notation 1.1.1), where g is arbitrary in ~.  Putting K=K(E)  
O 

we set K={Z;  xEX(K), z ] K 0 - 1 ) .  Then ~ ( ~ ) =  LJg~G a can be endowed with the struc- 
O 

ture of a bundle over ~,  with K as structure group (loc. cir. 3.5.a), p. 84). This being so 

there is an equivalence relation ~ on ~, such that  Pz-P= (6) if and only if there is an 

E EL/5 with ~ (as above) containing both Pl and P2 and Gpz = Gp2, the closure being taken 

in ~(~) . - -We put S = ~ / ~  and call its elements the generalized orbits o/ G.--Given 

O E| we can associate with it a unitary equivalence class F(O) of factor representations 

of G in the following steps. Assume, that  again ~ = I.J E~s F(E) (ef. Lemma 1.1.6). (1) We 

recall (]oc. cir. 3.3.c), p. 83), that  there is a map ~[: ~ 2  such that  ~(P) iL = ~(p) (p E ~) 

where, if p = (g, Z), e(p) is the image of g lb in L, and F(p)=indKr ~ ( p ) E F a c  (G)(K-~K(E), 

if p E ~ as above) is unitarily equivalent to a holomorphicaUy induced monomial repre- 

sentation (that is a unitary representation of the form ind (D, P); cf. [22], Theorem 1, 

p. 512) (2) There is an, essentially uniquely determined positive G invariant Radon measure 

dv on O (el. [24], 3.6, p. 85), (3) If p~->T(p)EF(p) (pE O) is Borel measurable, F(O)isde- 
n 

fined as the unitary equivalence class of ~o ~ T(p).dv(p).--Let us define the map l: S-~G 

by /(O)=quasi-equivalence class of F(O) (OES), and let us set J(O)=ker (l(O)). The 

principal result of [24] (el. Theorem 1, p. 114) states, that  O~J(O)  is a bisection between 

$ and Prim (G). Below (cf. Theorem 3) we show, that  O-~l(O) is a bijeetion between S 
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e~ 

and G=o~r~ (for the latter cf. 4.2) whence the previous result, by virtue of Theorem 1, fol- 

lows easily. In fact, let us put  5(1)=ker (l) (IEG); we have 

s......< 
Prim (O). d ~ 

To obtain the stated conclusion, it suffices to recall, that  by ioc. tit. d l~o~m is a bijection 
n 

between Gno~m and Prim (G). 

e~ 

THEOREM 3. With notations as above, the map l: S-~G is a bijection between the set S 

o/ all generalized orbits and Gnorm. 

Proo/. Let  us choose a primitive ideal J E P r i m  (G). Writing K=K(J)  (cf. Notation 

1.1.3) and A = A(J) ~ / {  (cf. Proposition 1) we recall (cf. Lemma 2.3.6), that  if ~: A-+Irr  (K)) 

is a Borel cross section and ju a G invariant Radon measure on A (cf. Lemma 2.3.5), then 

T = ind t)(~) �9 d/z(~) ( E Fac (G)) 
g't  G \ J A  

is a normal representation of kernel J .  We are going to construct an O E S, such that  T 

belongs to the quasi-equivalence class l(O), as follows. We set E=E(J)EfL/~ (cf. Lemma 

1.1.8) and form the corresponding ~ c  g' as above. Putting F=F(E)  (cf. Notation 1.1.2) 

and writing ~ for 21~(~ ) we recall that  (1) 2 is a continuous, open map from ~ ( ~ )  onto F 

(cf. [24], Lemma 6, p. 91), (2) We set GI=G(E ) (cf. Notation 1.1.1) and form, asin Lemma 

5.5, M=K(Gt)o. Then, for gEs arbitrary a n d / = g [ b ,  we have M=Q~(G~)oL, and ~(Pl)= 

~(p~) if and only if Mpl =Mp~, (3)). is equivariant with respect to ~ • K (loc. cit. 3.3.c), 

p. 82)--We show next, that  2 gives rise to a bijection between ~ ( ~ ) / ~  and F/Z (cf. 

Lemma 1.1.6). To this end, it is enough to see, that ,~(Gp)=G,~(p). But since Gp is M in- 

variant, and ~ open, we have ~(Gp)D G~(p), whence the stated conclusion is clear.--Let 

O E S be such, that  ~(O)= A (as above), and dv a positive, G invariant Radon measure on 

O. If v* is a finite measure equivalent to v, then ,~.(v*) is equivalent to/z. In fact, thereis 
O 

a closed, connected subgroup ~ G • K, such that  M ~  ~ and 0 = ~p (cf. [22], (d)in the 

proof of Proposition 7.1, p. 541). Moreover, O is homeomorphic to ~ / ~  and v is image of 

a ~ invariant measure on ~/~p (cf. loc. cit. Proposition 1.1, p. 515). Hence it suffices to 

observe, that  A is  homeomorphic to O / ~ , M  and # :is the image of a ~ invariant meas. 

ure.--Observe, that  from what we have just seen we can conclude, that  v=~,4v:'d/~(~), 

where vr is carried by 2-1($) (~ E A). L e t  T be as at the start of our proof. Setting Z(~) = 
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indKt a @($) (~ e A) we have T =  S~Z(~)'d#(~). Let us put  T(p) =Z(]t(p)) (p e 0); observe, 

that  T(p) E F(p), and therefore T' =,~o T(p).dv(p) belongs to F( O). We claim, that  T' ~ T. 

In  fact, since ~o G T(p).dv:(p)~Z(~), by v=SAv;'dtt(~) we obtain (cf. [17], Theorem 2.11, 

p. 204) 

T'= T(p)'dv(p)= f; (feo T(P)'d':(P)) T 
proving our assertion. Summing up, given J e Prim (G), and T E Faen (G) with ker ( T ) =  J ,  

we have found an O e S, such that  the quasi-equivalence class of T is equal to l(O). 

Since, by Proposition 4, the assumptions T~ E Faen (G) and ker (T1 )=J  imply T~ ~ T, we 

can conclude, that  /(S)~G . . . .  . --If ,  in our previous reasoning, in place of AEO~/Z 

we start w i th  OeS,  we shall obtain, that  I(O)EG n . . . .  and hence /(S)=(~aorm.--In this 

fashion, to complete the proof of our theorem, it suffices to show, that  l(01)= 1(02) im- 

plies O1=O2. Let  us put  ~(Ok)=Ake~/Z, and suppose, that  A~=A(Jk) (JkePrim (G), 

k=l ,  2). If TkeFacn (G) is such, that  ker (Tk)=Jk (k=l,  2) then, by what we saw above, 

Tk is of the quasi-equivalence class l(Ok) ( k = l ,  2). Therefore, by assumption, T I ~  T2, 

and hence J1 =ker  (T1) =ker  (T2) =J~, and thus also A1 = A2 and 01 = 0~. Q.e.d. 

Appendix: Some general assumptions and notational conventions 

(1) Given a Lie algebra ~ (defined always over the real field and finite dimensional), 

exp (9) will denote a connected and simply connected Lie group with the Lie algebra 9" 

If G=exp  (0) and ~ is some subalgebra of 9, exp (~)) will stand for the connected subgroup, 

determined by ~, of G. 

(2) All unitary spaces considered are assumed separable. If W is a unitary representa- 

tion of a group or a * representation of a C* algebra, H(W) denotes its representation space 

and R(W) the weak closure of the collection of all linear combinations with complex coef- 

ficients of operators of W. -When quoting the literature, we shall often leave to the 

reader to translate results concerning representations of C* algebras in the group repre- 

sentation context. 

(3) If W is a * representation of a C* algebra, it will be assumed to be nondegenerate, 

and thus R(W) always contains the unit operator. 

(4) All locally compact groups and C* algebras are supposed to be separable. If G is 

such a group or A is a C* algebra, we shall write l~ep (G), Irr  (G) and Fac (G) (Rep (A), 

I r r  (A) and Fac (A) resp.) for the set of all concrete representations, irreducible representa- 

tions and factor representations resp. The few exceptions, when we use these symbols 

in the sense of [4] to designate the related Borel spaces, will be specially noted. 
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(5) Whenever convenient, we shall use the same symbol for a concrete representation 

and its unitary equivalence class. Thus if T 1 and T 2 are concrete representations, T 1 = T 2 

indicates, in general, only their unitary equivalence (unless specified otherwise by the 

context). Should the necessity arise to emphasize, that  we are claiming only uni tary equi- 

valence, we shall write T 1 ~ T2.--Quasi-equivalence of T 1 and of T~ will be denoted by  

T 1 ~ Ts.--Analogous conventions will be observed for * representations of C* algebras. 

(6) If  G is a group and H an invariant  subgroup of G, given r~ERep (H) (ef. (4) above) 

and a E G, aTr stands for the representation of H defined by (a~)(h)--x~(a-lha) (h E H). 

(7) I f  T is a locally compact space, I~(T) denotes the family of all continuous complex- 

valued functions with a compact support  on T. 

(8) Given a group G, we write X(G) for the group of all continuous homomorphisms of 

G into the circle group.---For ~ E Rep (G) and X E X(G), Z~ stands for the tensor product of 

with the one dimensional representation Z. 

(9) I f  the group G acts on the set X as a transformation group, given p E X, we shall 

denote by G~ or by Stab~ (G) the stabilizer of p in G. 

(10) Given a topological group G, we write G O for the connected component of the 

identity. 

(11) We shall often use the following relation. Assume, tha t  G is a locally compact 

separable group, K a closed invariant subgroup of G and T E R e p  (K). Then, in the sense 

of unitary equivalence 

(ind T) [K = ~T.  de, 
K?a /K 

where da is a Haar  measure on G/K, a: G/K-~G an arbitrary Borel cross section and 

(aT) (]c) =- T((a(a))-lka(a)) ((; E G/K). 

(12) Given a group G, G ~ denotes its center. Same for algebras. 

(13) Given a Hilbert  space H, B(H) stands for the ring of all bounded operators and 

C(H) for the collection of all completely continuous operators. 

(14) We use always the same symbol for a unitary representation of a group and for 

the corresponding representation of the group C* algebra. 

(15) For a unitary representation U, U denotes its conjugate. 
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