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Introduction

Let G be a finite group and & the group algebra of ¢ over the complex field. If U is
a unitary representation of G on a finite dimensional unitary space H, U extends to a
unique * homomorphism U’ of & into the full operator algebra of H, and conversely. U
is multiple of an irreducible representation (or U is a factor representation) if and only if
the kernel of U’ is a (two-sided) prime ideal of &. If U and V give rise to the same prime
ideal, they are Iﬁultiples of the same irreducible representation, in which case we call them
quasi-equivalent. We denote by Prim (@) the set of all prime ideals of & and by G the
family of all quasi-equivalence classes of factor representations of ¢. Summing up, there
is a canonical bijection between any two of the following three sets: Prim (G), @ and the
set of all characters of G.

Let now G be a separable locally compact group. The theory of characters of such
groups was initiated by R. Godement (cf. [11], [12], [13]). One major outgrowth of his
investigations was the recognition of the fact that, in order that one should be able to as-
sociate with a (in general now infinite dimensional) continuous unitary representation of
G a character, beside generating a factor in the sense of F. J. Murray and J. v. Neumann,
it must carry a special property, to be called normalcy in the sequel. In particular for this,
in general, irreducibility is neither necess'ary nor sufficient. The notion of character in-
spired by Godement’s work was formalized in the language of C* algebras by A. Guichar-
det (cf. [14], and [4], § 17, p. 305). We recall (cf. [4], 13.9, p. 270), that we can associate
with ¢ a O* algebra O*‘(G) {to be denoted in the following by &) such that there is a ca-
nonical bijection between continuous unitary representations of G and nondegenerate *
representations of (5. This being so; we call a unitary representation U normal, if (1) The

ring of operatkors (v. Neumann algebra) M generated by U is a semifinite factor, (2) If ®
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is a faithful, normal, semifinite trace on M+, there is an element v in &+ such that ®(U(v))
is positive and finite. The character belonging to U is then the function v+—>®(U(v))
(< +o0) on G+ We could first define analogously characters of an arbitrary C* algebra
(cf. [4], 6.7, p. 120) and call characters of G those of & (cf. [14], 17.1.1, p. 305). Quasi-
equivalent normal representations give rise to proportional characters and conversely (cf.
[4], 6.7.4, Corollaire, p. 127). Let @ be the set of all quasi-equivalence classes of factor
representations of & (cf. e.g. [4], 18.6.2, p. 323) and ém,m the subset of G corresponding to
normal representations. By what we have just said, there is a canonical bijection between
émm and the set of all characters of G.

It follows from results by J. Glimm (cf [4], § 9, p. 168), that we have énol,m=&, ifand
only if G is of type I, that is, if any of its factor representations is multiple of an irredu-
cible representation. In this case there is a canonical identification between the dual G
(=set of unitary equivalence classes of irreducible unitary representations) of G and (},
and conversely. Let us add, that if G is not of type I, again by virtue of a theorem of Glimm
(cf. e.g. [4], 9.5.6, p. 185) G does not lend itself to an effective parametrization, and seems
to claim no interest.

Let now G be a connected Lie group. It is known, that in important special cases,
e.g. if G is semi-simple or nilpotent, G is also of type I. Lacking special assumptions, how-
ever, it fails to be such already in five dimensions. If G satisfies additional conditions, for
instance, if it is unimodular or solvable, by extension of the classical argument of Peter
and Weyl one can show the existence of a separating family of normal representations.
But not even here have been so far general statements, characterizing the size of Ev’nom,
available.

The principal result of the present paper (cf. Theorem 1, section IV) is an existence
theorem for characters which, by aid of C* algebras, we can state in close analogy with
the situation offerred by finite groups. We recall, that a closed, two-sided ideal of
& =C*(0G) is called primitive, if it is kernel of an irreducible representation. By results due
to J. Dixmier (cf. {3], p. 100) (1) Any closed two-sided prime ideal of (% is primitive and con-
versely, (2) The kernel of any factor representation is primitive. Let Prim (G) be the set
of all such ideals of &. There is an evident surjection ¢ from & onto Prim (@), assigning
to [ in G the kernel of any factor representation of class [. This being said we show, that
the restriction 1 of § to &nom is a bijection with Prim (G). In other words, by what we said
above, we are led to a canonical bijection between the set of all closed two-sided prime ideals
of & and that of all characters of G resp.—Let us note, that by virtue of an example due to
Guichardet (cf. [14], Proposition 2, p. 62) the analogous statement for an arbitrary locally
compact separable group would be false—An easy byproduct of our proof is the exi-
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stence of a separating family of normal representations for any connected Lie group (cf.
Corollary to Theorem 1).

Let us assume next, that @ is simply connected and solvable. Not long ago L. Aus-
lander and B. Kostant gave a necessary and sufficient condition in order that G be of type
I. For this case they provided an explicite deseription, involving orbits of the coadjoint
representation, of ¢ (cf. for all this [1]). The starting point of our present investigations
was an attempt to extend to an arbitrary solvable group some of their constructions. This
led us to associate with any such group a family © of geometrical objects (“‘generalized
orbits”, cf. [22], Chapter II, p. 512), and with any element O of © a unitary equivalence
class F(O) of factor representations (cf. [22], Theorem 2, p. 551). If G is of type I, all this
essentially reduces to the description of G given by Auslander and Kostant. For the ge-
neral case we conjectured previously (cf. [22], p. 463 and [24], p. 78) that, up to quasi-
equivalence, the set {F(0); O€S} would yield precisely the collection of all normal re-
presentations of (. This hypothesis is verified in Theorem 3 of this paper (cf. section 6).
In more detail, given Q€S, let us write {(Q) for the quasi-equivalence class of F(Q).
The the map [: &~ Gisa bijection between & and &Wm. In other words, here we have also
a canonical bijection between the set of generalized orbits and of characters resp. By virtue
of our Theorem 1 this implies a bijection between generalized orbits and Prim (). This
result, suggested first by C. C. Moore, we already established in an earlier paper (cf. [24],
Theorem 1, p. 114). Summing up, in the solvable case one has a geometrical construction,
involving the coadjoint representation, for all characters.

Assume again, that (f is an arbitrary connected and simply connected Lie group. In
the course of the proof of Theorem 1, we associate with any primitive ideal J a locally
compact space A4(J), on which G' acts as an abelian group (cf. Proposition 1, section 1).
Various geometrical properties of 4(J) reflect group theoretic properties of the normal
representations belonging to J (ef. Proposition 3, section 3 and Proposition 5, section 4).
If G is solvable, there is a G equivariant projection from the generalized orbit belonging
to J onto A4(J), and the former is homeomorphic to a product of A(J) with a Euclidean
space. By Theorem 1 and by what we said earlier, J determines an essentially unique
character y,. To form this we have to consider traces on factors which, in general, are not
of type I. The purpose of Theorem 2 (section 5) is to provide for y; a formula, which in-
volves integration over A4(J) of expressions containing only type I traces. This result can
be used to extend the formula for the characters of type I solvable groups, established by
M. Duflo (cf. [7]) to more general cases.

It appears, that Theorem 1 carries over to an arbitrary separable, locally compact

and connected group. Since, however, this extension would require anyhow the results of
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this paper, without adding much to their substance, we decided to postpone it to a later
publication.

In our proofs we shall make essential use of parts of our earlier papers (cf. [22], [23]
and [24]); the corresponding results will be explicitely stated at the required place.—The
reader is assumed to be familiar with the basic results of G. W. Mackey’s theory of induced
representations (cf. [16]), which we shall often use without special reference.

The reader is urged to consult carefully the Appendix at the end of this paper, which
specifies some general assumptions and notational conventions observed throughout. We
shall refer to it by 4 + number of the relevant section.

The results of this paper were announced in [25].

Let G be a connected Lie group with the Lie algebra g. We shall assume also, that ¢
is simply connected, with the exception of the proof of Theorem 1. g can be arbitrary,

except in section 6, where it will be supposed to be solvable.

§1

The purpose of this section is the proof of Proposition 1, which in itself would al-
ready suffice to establish the canonical bijection, quoted in the Introduction, between the
set of primitive ideals and of generalized orbits in the solvable case (cf. [24], Theorem 1,
p. 113 and section 6 below). We shall follow roughly the line of reasoning employed in [24]
for solvable Lie groups. At most of the essential points, however, the proofs presented here
substantially differ from those of loe. cit. (compare, in particular, the proof of Lemma 1.1.5,
1.1.9, 1.1.11 and 1.2.5 below with those of Lemma 4, 7, 8 and 28 resp. in [24]).

1.1. By the theorem of Ado, we can identify g to a subalgebra of the Lie algebra of all
endomorphisms of a finite dimensional real vector space. We denote by { the smallest
algebraic Lie algebra containing g. We recall (cf. [2], Théoréme 13, p. 173), that [g, g]=
[g. a); we shall write D for both sides. Let @ =exp () be a connected and simply connected
Lie group belonging to § (cf. A.1). Then G'=exp (g) is a closed, invariant and simply con-
nected subgroup of G. We have [G, G]1=[G, G} =exp (D), and L=exp () is also a closed,

invariant subgroup in G.

Lrmma 1.1.1. Let G be a connected and simply connected Lie group. Its first derived
group is a closed, invariant and type 1 subgroup.

Proof. We recall, that along with g, d=[g, g], too, is an algebraic Lie algebra (cf. [2],

Théoréme 15, p. 177). Hence the desired conclusion follows from the following result due
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to J. Dixmier (cf. [6], 2.1. Proposition, p. 425): Any connected Lie group, which is locally
tsomorphic to a real algebraic group, is of type I. Q.e.d.

The following lemma is foutine, but because of the many applications we shall make
of it later on, we include here a proof.—Let M be a separable locally compact group
and H a closed subgroup of M such that [M, M]< H. We denote by F the annihilator of
[M, M] in the group X(H) of characters of H, and form the direct product N=M x F.
We fix a right-invariant Haar measure dx on H and set for any b in M: d(bxb~)=A(b) dx.
—We denote by §) the group C* algebra of H and consider the group of its * automor-
phisms Aut (§) as topologized with pointwise convergence.

Lemwma -1.1.2. With the previous notations, there is a continuous representation of N
in Aut (), such that the action of a =(b, x)EN on the continuous function f with compact
support on H is equal to x> y(x)- f(b—2xb)]A(D).

Proof. Writing af for the last expression, let us show, that [|af|| =||f|| in §. To this end
it suffices to settle separately the cases when resp. (1) a€M, (2) a€F. Ad (1) If z€Rep (H)
(A.4), we have

alaf) = L]‘(a“xa) () - (de] Ala)) = Lz‘(x)n(am“) o=@ () (A6)

or n(af)= (¢ ') (f). From here we conclude, that the norm of af in § is equal to

sup || z(af) || = sup | (@”m) (f) || = sup||a(H}| = | £1],

e neH neH

implying the desired result. Ad (2) If x€ X(H) and fEL(H) (A.7 and A.8), we have
27| = sup || a2 || = sup |l (x=) (|| =supllah || = (Al
neH neH

neH

In this fashion, for each a€N there is a unique isometry v—av (v€§), such that
for fEL(H)= § we have, if a=(b, y)EN: (af) (x) =f(b~"wb) y(x)/A(d). That in this manner
we obtain a representation of N in Aut () follows from the fact, that this is evidently
true if H is replaced by the dense subalgebra C(H) (A.7). Finally, to prove the continuity
of this representation it is enough to observe, that if a,~ain N and f€ L(H), the sequence

{a,f} is carried by a fixed compact subset of H and converges uniformly to f. Q.ed.

CoroLLARY. For a=(b, y)EN and n€H (A.5) let us define (an)(x) = y(x)m(b- ab).
Then N acts on H as a topological transformation group.

Proof. We recall (cf. [4], 3.9.9, p. 81), that if 4 is a C* algebra, M a topological group
and w: N-Aut (4) a continuous homomorphism then, setting for 1€ A and a € M: (am)(v)=
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m(w(at)(v)) (vE€A), M acts on A as a topological transformation group.—We write, if
a=(b, ) €N, a’=(b, x); the map a—~a' is a continuous automorphism of N. In this fashion
to arrive at the desired conclusion, it suffices to note that, with the notations of our lemma:
(am) (v) =7((@')2(v)) (@EN, n€H, vES). Qed.
Hence, in particular, if @ and L are as at the start, G acts as a topological transforma-
tion group on L via the action, which is contragredient to conjugation.
The following lemma is crucial for the rest of this paper; the groundwork for its

complex proof was laid by J. Dixmier in [6].
LEMMA 1.1.3. With the previous notations, the orbit space L|G is countably separated.

Proof. This will easily follow from the following result (cf. {23], Theorem, p. 379).
Assume, that Y) and g are algebraic Lie algebras of endomorphisms of a finite dimensional real
vector space, and that ) is an ideal in . Let us put H=exp () <exp (g) =G (A.1). Then
H|G is countably separated. — To obtain our lemma, it suffices to replace above g and |
by g and b=[g, g] resp. In fact, if § is an algebraic Lie algebra of endomorphisms, so is
b (cf. [2], Théoréme 15, p. 177). Q.ed.

LevMMA 1.1.4. For each m€L, there is a canonical choice of a closed subgroup K, of G,
such that K, > L and that

(i) There is an irreducible representation of K, which on L restricts to v and, if o is any
such representation, T(g) =ind gy ¢ ¢ is a factor representation,

(i) If 7;€ L and 0,€ K, 0,|L=m, (j=1,2), T(g,) and T(g,) are quasi-equivalent if and
only if we have K, =K, , and Go,=Gp,—If this case T(o,) and T(g,) are also unitarily
equivalent.

(iil) We have for all n€L, a€G: K, =K.

Proof. Let  be a fixed element of L; we denote by G, its stabilizer in G (A.9).—We
write 4 for the collection of all those closed, connected subgroups of G, which contain L,
and to which z admits a (G,;), (A.10) invariant extension. We recall (cf. [22], Lemma 3.4,
P- 483), that in A there is a well-defined maximal element I1. Before proceeding let us note,
that if @ is some fixed element of G, upon substituting 7z by ax (A.6) I1 does not change.
In fact, in this case we have G, =aG a1 =G, (since G,, 2 L), and clearly 4 does not change.
—If g,€Il is such that g, |L=n (k=1, 2), there is a y € X(II) with y|L=1, and g;=yx0;
(A.8). This implies at once Ga, =Ga,§ in other words, there is a unique subgroup 11, of G,
such that if g€ I1 and o|L=n, U, =G, We have clearly Il,, =11, (a € (#).—We denote next
by B the collection of all those closed subgroups, containing L, of G, to which 7 admits
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a I, invariant extension. We recall (cf. [22], Lemma 3.5, p. 484) that B, too, has a unique
maximal element K,. Since under the substitution 7z—>an (¢€GF) B does not change, we
have also K,,=K,, and thus K satisfies condition (iii) of our lemma. By [22], Lemma
3.7, p. 484, it satisfies also (i), and by loe. cit., Lemma 3.8, p. 485, it verifies (ii). Q.e.d.

Notation 1.1.1. Since K, is determined by E=Gx, we shall write sometimes for it
K(E), or just K, if E is specified by the context.—Similarly, we shall write oceasionally
G(E) for G, —Observe, that K(E) < G(E).

Remark. For the benefit of the reader, familiar with our previous paper [22] we men-
tion, that if G is solvable with the Lie algebra g, we have K(E)=L@,, where g is an ele-
ment of g’ subject to the condition, that the point € L, corresponding to the Kirillov or-
bit L(g|D), lie in E; here @, is the reduced stabilizer of g. Cf. for all this loc. cit. Proposition
6.1, p. 503.

LeMMA 1.1.5. Let E be a fiwed orbit of G in L. Putting K=K(E), let us set F=
{0;0€R, o|LEE}. Then F, as a subspace of K, is locally compact and Hausdorff.

Proof. (a) We show first, that E is locally closed in L. This follows from the following
series of observations. (1) By Lemma 1.1.1 L is of type I and thus it is also postliminaire
(cf. [4], 9.1. Théoréme, (i)= (iii), p. 168), (2} By virtue of (1) L is locally quasi-compact
and almost Hausdorff (cf. [4], 4.5.7, p. 94 and [10], p. 125), (3) By Corollary to Lemma
1.1.2, G acts as a topological transformation group on L, such that L/G is countably se-
parated (cf. Lemma 1.1.3).—From all this, by virtue of a known theorem of Glimm
(cf. [10], Theorem 1, (3) = (2), p. 124) we infer, that the G orbit Z in L is open in its closure,
which is the desired conclusion.

(b) We observe next, that F is locally closed in K. To show this, we shall use the fol-
lowing result of Dixmier (cf. [6], 4.2. Lemme, (iii), p. 429). Let us suppose, that H is a closed,
tnvariant and type I subgroup of the separable locally compact group G. We asswme, that the
subset A< H is locally closed and G invariant. Then, the set G, of all those elements in G
which, when restricted to H, are carried by A, is locally closed in G. Substituting, as we can
by (a), in place of G, H and A resp. K, L and E we conclude, that K is locally closed in
R. But one shows readily, that F =K. In fact, evidently F < K. If on the other hand,
o is some element of K, g|L is carried by E. Since K < G(E) (cf. Notation 1.1.1) K leaves
E pointwise fixed, and thus there is @ 7€ £ such that o|L~n (A.5). We know, that n
extends trivially to K (cf. Lemma 1.1.4, (i), which implies ¢|L =z, or that ¢ belongs to F.

(¢) Next we recall the following facts; for details cf. [4], pp. 61-62. Given a separable
C* algebra 4, we denote by E(A4) the family of all nonempty closed subsets of 4. If FEE(A4),
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we put
ker (F) = Naer ker (m)c A

Then (1) The map Fr>ker (F) is a bijection between E(A) and the set of all closed two-sided
tdeals, different from A, (2) If I=ker (F) (F€ E(A)), there is a canonical identification be-
tween [ and A—F, (3) If I,, 1, are closed two-sided ideals of A, such that I,> I,, the dual
of the quotient I,/I, is canonically identifiable to I,—I,—Let us put & =C*(K). Since,
by (b), F is locally closed in K, there are open subsets K> 0,2 O,, such that F =0, —0,.
Thus, by what we have just said, we can find closed two-sided ideals > 1,2 I, such that,
putting B=1,/I,, we have B=F.

(d) Let us show now, that B is postliminaire (cf. [4], 4.3.1 Definition, p. 87). To this
end it is enough to establish, that if ¢ € B (A.5), o(B) contains a nonzero compact operator
(cf. [4], 4.3.7, Théoréme, p. 89 and 4.1.10 Corollaire, p. 85). Denoting also by ¢ the repre-
sentation obtained from ¢ € B by lifting it from B=1,/I, to I,, there is a g€ F, such that
0| I;=o. In this fashion it suffices to prove, that we can find a v€R, such that g(v) is non-
zero and compact. We denote by dy an element of the Haar measure on L, and set &=
C*(L). One verifies easily, that § carries the structure of a left € module, uniquely deter-
mined by the condition, that for any f€ C(L) (A.7) and g€ & we have fg= |, f(y)L(y)g-dy,
where y+—> L(y) is the left regular representation of K on the underlying space of & Further-
more, if zz is some element of Rep (K) (A.4) we have n(fg) =n(f)-n(g) (fEL, gER). Let us
put o|L=n€L. Since, by Lemma 1.1.1, L is of type I we conclude (cf. [4], 9.1. Théoréme,
(i) = (iv), p. 168), that there is an f€Q such that z(f) is nonzero and compact. If g€ is
such, that z(f)-o(g) =0, then for v=[fg€R, p(v), too, is nonzero and compact.—We con-
clude from all this, that F =B, as a subspace of K is locally quasi-compact and almost Haus-
dorff (cf. [4], 4.5.7, p. 94 bottom, and [10], p. 125).

(e) Let J be the annihilator of L in X(K). Since [(, G]=L, as in Corollary to Lemma
1.1.2, the direct product N =G x F acts on K as a topological transformation group. More-
over, if g is any element in F, we have F =N, Therefore, since F is locally quasi-compact
and almost Hausdorff we conclude (cf. [10], Theorem 1, (3) = (6), p. 124; replace G and M
loc. cit. by N and F resp.) that the map i: N/N,~ F, defined by i(aN,)=ap (a€N) is a
homeomorphism. Hence N ¢ is closed and F is Hausdorff. Q.ed.

Notation 1.1.2. Sometimes it will be necessary to indicate the dependence of F on
E€L|G; if so, we shall write for it F(E).
We set A= U zeisg F(E) (cf. [22], p. 489; U is denoted loc. cit. by &).

"LEMMA 1.1.6. (i) There is an equivalence relation 3, on U, such that g, is equivalent to
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0, if and only if there is an E€L|G with g,, 0:€EF(E), and then 926(%1’, the closure being taken
in F(E), (ii) F(E)/Z is countably separated for any E€L|G.

Proof. To establish (i), it is enough to show that if, with the notations of the previous
lemma, g,, 0,€F and QZEG?;, then ér’_g_1=CTg_2 Let again g be fix in F. We have [N, N]=
(G, G]=L<K<N, ¢» and thus N, is invariant in N, and N/N, is abelian. We denote by 4
the closure of the image of G in N/N, and observe, that the desired conclusion follows from

i(Am) =Gi(m) (mEN|N,). As far as (ii) is concerned, evidently F(E)/X is Hausdorff,
hence F(E)/X is countably separated. Q.ed.

Lemma 1.1.5 and 1.1.6 will reappear later in a modified form (cf. Lemma 4.1.4 and
4.1.5 resp.)—We shall see in section 6, that if G is solvable, there is a natural bijection be-
tween A2 and the collection of all generalized orbits (cf. [22], Chapter II).

Let L be a separable, locally compact and type I group, T€Rep (L) and E a subset
of L. As above we shall say, that T is carried by E, if the complement of E is of measure zero

with respect to the canonical measure corresponding to T on L.

LeMma 1.1.7. With notations as above, suppose that
T= f T(A)- du()
A

is a direct integral representation of T over the standard measure space (A, u). T is carried
by E< L if and only if the same is true for T(A) almost everywhere with respect to u.

Proof. Cf. [24], Lemma 1, p. 87.

Let A be a C* algebra. If T'€Rep (4) we shall say, that 7 is homogeneous, if any sub-
representation of 7' has a kernel equal to ker (7') (cf. [8], p. 85). Every factor representa-
tion is homogeneous. The kernel of any homogeneous representation is primitive (that is,
equal to the kernal of an irreducible representation).—Given a group H, we shall denote
by hom(H) the set of all homogeneous representations of C*(H).—We recall (cf. Intro-
duction), that Prim (H) stands for the collection of all primitive ideals of C*(H) ([4], 2.9.7,
p- 49).

Because of later applications (cf. e.g. Lemma 1.2.5) the following lemma is more
general, than immediately needed.—G will denote again a connected and simply con-
nected Lie group.

Lemma 1.1.8. Let G be a closed subgroup, containing L=[@G, G], of G. For any
J €Prim (G,) there is an orbit E(J) of G on L, uniquely determined by the property, that if
T €hom (G4) and ker (TY=J, T|L is carried by E.
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Proof. The uniqueness is clear.

(a) We show first the existence of an E(J) as above for T €Fac (G;) (<hom (Gy))
(A.4) and ker (T')=J.—Let us observe first, that if 7;€Rep (G,) are such, that ker (7)) =
ker (T,), then we have also ker (T, |L)=ker (T,|L). This is well known, but can also be
easily established by a remark of (d) of the proof of Lemma 1.1.5. In fact, as loc. cit. we
can consider &, =0*@,) as a left L=C*%L) module, such that for any nm€Rep (G,) we
have 7(fg) =n(f) n(g) (fEL, g€®,). Therefore, if fEker (T, |L), we have also &, <ker (T,) =
ker (T,), and thus Ty(f) T'5(g) =Ts(fg) =0 (g€®,) implying Ty(f)=0 or f€ker (T,|L), and
conversely.—Let us observe next, that if T€Fac (G;), T|L is carried by an element of
L/G. In fact, the canonical measure of T | L is G, ergodic on L and, by Lemma 1.1.3, LG
is countably separated.—We recall ([4], 8.6.8. Proposition, p. 157), that if 4 is a separable
postliminaire C* algebra, T €Rep (4), u the canonical measure of T on A and h(u) the closed
kull of u, we have ker (T)=ker (k(u)) (cf. (c), proof of Lemma 1.1.5). Let now 7';€Fac (G,)
be such, that ker (T';) =ker (T'y) =J. Since L is of type I (cf. Lemma 1.1.1) we can form the
canonical measure yu, of 7,;|L. By what we said above we have ker (h(u,)) =ker (T, |L) =
ker (T'y|L) =ker(h(u,)) and hence h(u,)=h(us). Assume, that 7',/L is carried by E,eLG.
Since L/G is countably separated, it is also T, topological space (cf. [10], Theorem 1,
(3)=(2), p. 124). Therefore, if E, == E,, there is an open subset 0< L such that (say) E,<0,
and E,cL—0. But then clearly A(u,) N0 is empty while A(g,) N 0 is nonempty, and this
contradiction proves, that E, = E,—Summing up, given J €Prim (G,), there is a uniquely
determined E(J)€L/G, such that if T€Fac (G,) and ker (T)=J, T|L is carried by E(J).

(b) Let now T €hom (G,) be such, that ker (T)=J; to prove our lemma, it is enough
to show, that T'|L is carried by E(J) (as above). Let 7'= § T(1)-du(4) be a direct integral
decomposition of 7' into factor representations. Since ker (T'())=J almost everywhere
with respect to u (cf. [8], Lemma 1.9, p. 91), by (a) T'(A)| L is carried by E(J) almost every-
where. Since we have also T'|L= [§ (T(4)|L)-du(4), by Lemma 1.1.7 we conclude, that
T|L is carried by E(J). ‘ Q.ed.

Notation 1.1.3. If E=E(J)€L/G, we shall write sometimes K(J), G(J) and F(J) for
K(E), G(E) and F(E) resp. (cf. Notation 1-2).

Given g €Y such that Q|L=n€Z, as in Lemma 1.1.4 we shall write T(g)=indxlnmg
€ Fac(G). Putting J(g) =ker (T'(g)), we have J(g) €Prim (G) (cf. [3], Corollaire 3, p. 100).—
The main objective of section 1 is to establish, that the map o> J () (o €N) gives rise to a bijec-
tion between N/ and Prim (G).
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LEmMmaA 1.1.9. With the previous notations, assume that o,€U are such, that J(p,)=
J(gs) (=J, say). Then g, and g, lie on the same X orbit U (cf. Lemma, 1.1.6).

Proof. Let us show first, that if g€ satisfies J(p)=J, we have p€ F(J). In fact,
by Lemma 1.1.8 T'(g)|L is carried by E(J). On the other hand, ifg|L=n€Z, we have
(A11) T(o)|L=f&x, olo|L) do. Since the right-hand-side is carried by Gn, we have
o|L=n€E(J) and thus g€ F(J). We write K=K(J) and F=F(J). In this fashion, by
J(p;) =J(05)=J we obtain g,€F (j=1, 2). To complete the proof of our lemma, we must
show, that the closures of Gy, in F' coincide. By (¢) of the proof of Lemma 1.1.5 there are
closed two-sided ideals I, in C*(K) such that I, > I, and, putting B=1,/I,, we have F=38.
This means, that F is the set {p;0 € K, ker (p) > I, ker (o) b 1, }. Noting that ker (T(o,) | K) > I,,
let us write T'; for the representations, corresponding to T(p,), of B; these are clearly
nondegenerate. Furthermore, by ker (T(o,)) =J{(0;) =J(05) =ker (7'(g,)), we have ker (77) =
ker (7T5). We recall (cf. (d), proof of Lemma 1.1.5), that Bis postliminaire. The closed huil
of the canonical measure corresponding to 7'; on B is equal to the closure @ of Gg,;in F.
Reasoning as in the previous lemma we conclude therefore, that ker (7'1) =ker (73) im-

plies _6351 ==GTQ—2-, completing the proof of our lemma. Q.ed.

Lemma 1.1.10. Suppose, that G s a separable locally compact group. (i) If K is a closed
subgroup, and T;€Rep (K) are such, that ker (T,) Sker (T,) then, writing V,=indgs¢ T;
we have ker (V) Sker (V). (ii) If K=G, S€Rep (G) and W,=S®T;, we getker (W,) <
ker (W,).

Proof. For this cf. [24], Corollaries 1-2 to Lemma 15, p. 99.

LemmaA 1.1.11. Suppose, that the elements p,, g, of U lie on the sume Z orbit. Then we
have J(0,) =J(gz)-

Proof. By the proof of Lemma 1.1.9 our assumption implies, that ker (T(g,)| K)=
ker (T(g,)|K) (K=K(E) if g, 0,€F(E)). On the other hand, the representation
indgs6(T(0,) | K) is quasi-equivalent to T(g,) and hence, in particular, their kernels
coincide (k=1, 2). Therefore by (i), Lemma 1.1.10 we conclude, that J{g,) =ker (T'(0,)) =
ker (7'(gz)) =J (ga)- Q.e.d.

1.2. By what we have just seen, the map g+>J(p) (0 €¥) gives rise to aninjection of Y /=
into Prim (G). Our next objective will be to show, that the said map is actually a bijection. To
this end we have to show, that any primitive ideal of C*(G) is of the form J(p) (o €).
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As we shall see below (cf. Lemma 1.2.3) this is equivalent to the following: For each
J €Prim (G) there is a factor representation V with ker (V)=J, and such that V|L gives rise

to a transitive quasi-orbit on L.
LemMa 1.2.1. Given J €Prim (G), there is a o € F(J) such that J(p) < J.

Proof. We write K =K(J) (cf. Notation 1.1.3) and recall, that F(J)< K (cf. Lemma
1.1.5).

(a) Suppose, that T €Fac (G), is such, that ker (T)=J. We set T"=indx4¢ (T|K)
and show, that 7" €Fac (G) and that ker (T')=J(g), where p is some element in F(J).
—We start by recalhng (ef. [4], 8.4.2, Théoréme, p. 149) that there is a standard measure
/4 on the quasi-dual K of K, and a x4 measurable cross-section {— T'({) from K into Fac (K)
(A.4), such that T|K = [ T(C)-du(C). Putting A={z; L€K, T(¢)|L is carried by E(J)} we
show next, that the complement of 4 in ;{ is of p measure zero. In fact, since ker (') =J , by
Lemma 1.1.8, T|L is carried by E(J). On the other hand we have T'|L= [ (T(()|L)-du(l)
and hence, by Lemma 1.1.7, T()|L is carried by E(J) almost everywhere with re-
spect to pu, which is the desired conclusion.—Let F’ be the image of F in K under the
canonical injection of K into K. We observe, that A< F'. In fact, if (€A, by definition,

(O)|L is carried by E(J). Since K=G(J), T(o)|L~n (A5) (n€E(J)) and thus since
T(C)EFac (K), T({)~p (o€ F(J)).—We recall (cf. [4], 7.3.6, Théoréme, p. 139) that the
image K,< K of R under the canonical injection is a Borel set, and that the said map isa
Borel isomorphism. F(J) is locally closed in K (cf. (b) proof of Lemma 1.1.5) and hence a
Borel subset in K. Using (d) loc. cit and [4], 4.6.2. Proposition, p. 95 (or by direct verifica-
tion using (e) loc. cit.) we conclude, that there is a Borel cross section {+~>p() from F(J)
into Irr (K). From all this we infer, that there exist a Radon measure » on F(J), such that
T|K = (%, 0'() dv(l) where g'({) is of the form N -o({), and the positive integer N (< + o)
does not depend on {. The measure v is quasi-invariant with respect to G and, since
T €Fac (G), it is also ergodic. The equivalence relation X on F(J) (¢f. Lemma 1.1.6) is G
invariant, such that F(J)/X is countably separated (cf. (ii) loc. cit.). Therefore » is carried by
a T orbit 4< F(J), and thus we can write T'| K = € 0'({)dv({). Putting V() =ind g4 ¢ T({)
we get (cf. [16], Theorem 10.1, p. 123) 7" =indg4¢ (TIK)=_[§ V(C)-dv(@). Since V({) is
unitarily equivalent to V({') if G{=G{’, a routine reasoning (cf. e.g. [22], Lemma 2.3.1,
p. 549) shows, that by virtue of the G ergodicity of », T"€Fac (G). This implies, that
ker (T")=ker (V({)) almost everywhere with respect to » (cf. [8], Lemma 1.9, p. 91).
But ker (V({)), being of the form J{p) (0 € F(J)), the same is valid for ker (1").

(b) Summing up, we have shown above, that 7" =indgy¢ (T'| K) is a factor representa-
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tion of G, such that ker (1")=J(g) for some g in F(J). To complete the proof of our lemma,
it will therefore suffice to establish, that ker (7') = ker (7”). This, however, can be verified
by a trivial modification of the proof of Lemma 10 in [24] (p. 95) to which the reader is
referred for further details. Q.ed.

Lemma 1.2.2. Suppose, that I' is a central extension by the circle group of a direct pro-
duct of a vector group with a free abelian group. Let T be the circle group in the center of I' and
assume, that the factor representation V of T', when restricted to T, is a multiple of the identity
map of T onto itself. Then there is a character y of the center U* of the centralizer of the con-

nected center of I', such that ker (V)=ker (indy#4r )

Proof. Let us write J =ker (V) and observe, that if U € Rep (I') is such, that ker (U)=J,
we have also ker (V|T)=ker (U|T), and thus U|T is a multiple of the identity map of
the circle group onto itself. This being said, the desired conclusion follows from [24],
Proposition 3, p. 104. Q.e.d.

LeEmma 1.2.3. For any J in Prim (G) the following two conditions are eguivalent
(1) There is.a p€N, such that J=J(p), (2) There is a VE€Fac (&), such that ker (V)=J,

and V|L gives rise to a transitive quasi-orbit on L.

Proof. (1)= (2) The assumption means, that J is the kernel of a representation T'(¢) =
indg4¢ 0, Where Q|L=7z€ﬁ, and K=K_ (cf. Lemma 1.1.4). By (i) loc. cit. we have
T(o)€Fac (@), and T(o)|L is carried by Gn. Hence we can take V =1T(p).

(2)= (1) Assume now, that ¥ €Fac (G) is such, that ker (V)=J and V |L is carried by
Gn< L. Let 7° be a projective extension of 7z to G, G the corresponding central extension
of G, by the circle group and ¢ the canonical homomorphism from G}, onto K s/L=M, (cf.
for all this [22], pp. 480-481). Then M, satisfies the condition imposed on I" in Lemma 1.2.2.
Let T (T) be the circle group in (M,)” (A.12) (in (G%)™ resp.). Given a representation, con-
stant on T, of G<, we write [U]™ for the corresponding representation of ¢,. This being
so, since V|L gives rise to a transitive quasi-orbit on L, there is a 7€Fac (M), such that
7| J is the conjugate of the identity map of J onto itself, and that V =ind¢_j ¢[7°*®(r04)]"™.
If U* is the center of the centralizer of (M7),, by Lemma 1.2.2 there is a y€X(U”)
such that ker (7)=ker (V(y)) where V(y)=indy#yu, x. Clearly x|J is the identity map
of J onto itself. Let us put V’'=indg_4¢[7°®@(V(x)o¢)]”. By the proof of Lemma 3.7 in
[22] (p. 484), there is a p€U N K, such that V’'=indg 45, and hence ker (V')=J(g).
Therefore, in order to complete the proof of our lemma, it is enough to show, that ker (V)=

ker (V). To this end we recall the following well-known statement. Suppose, that G is a
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separable, locally compact group, H a closed, invariant subgroup and ® the canonical homo-
morphism from G onto G/H=A. Then, if V,€Rep (4), ker (V) =ker (V,) is equivalent to
ker (V,0®)=ker (V,0®). By a repeated application of this and of Lemma 1.1.10 one

concludes at once, that
ker(V)=ker (ind [#° ® (to$)]") = ker (ind [7° @ (V(X)o$)]") = ker(V’)
G.1 G Y
Q.ed.

LEMMA 1.2.4. Suppose, that for J €EPrim (G) there is a factor representation V, such
that ker (V) 2J and that V| L gives rise to a transitive quasi-orbit carried by E(J) (cf. Lemma,
1.1.8). Then J is of the form J (o) (0 €).

Proof. Let us set ker (V)=.J, €Prim (G). We claim, that E(J)=E(J,). In fact, by as-
sumption, the quasi-orbit of V|L is carried by E(J). On the other hand, by Lemma 1.1.8,
it is also carried by E(J,), and thus E(J)=E(J,). Hence also F(J)=F(J,). Next we ob-
serve that J,, by definition, satisfies condition (2) of the previous lemma; therefore there
is a ;€YU such that J(g,)=J,2J. As in the proof of Lemma 1.1.9 we conclude, that
0.€ F(J;)=F(J). On the other hand, by Lemma 1.2.1 there is a g, € F(J) such that J 2 .J(g,).
Summing up, by what we have just seen, to complete the proof of our lemma it is enough
to show, that if g, g,€ F(J) are such, that J(g,) 2J(p,), then J(g,) =J(g,). Putting K=
K(J), let us write again T'(g;)=indgy g;, Our hypothesis implies, that ker (T(g,)) 2
ker (T'(g,)) whence also ker (T(p,)| K) 2ker (T(p,)| K). Reasoning similarly, as in the proof
of Lemma 1.1.9, we deduce from this, that G—QIQG'-Q;, closures being formed in F(J). By
the proof of Lemma 1.1.6, however, we have then @E=G_g—2- which, by Lemma 1.1.11
implies, that J{g,) =J(g,), completing the proof of our lemma. Q.e.d.

LeMma 1.2.5. For any element J of Prim (G), there is a factor representation V of Q,
such that ker (V)2J, and that V|L gives rise to a transitive quasi-orbit, carried by E(J).

Proof. We recall (cf. Notation 1.1.3), that G(J)=G, (€ E(J).

(a) Let T €Irr (&) be such, that ker (T)=J; then T'|L is carried by E(J)cL. We
denote by o a fixed element of E(J). Using a reasoning already employed (cf. (e), proof of
Lemma 1.1.5) we show, that the map j: G/G,~ E(J) defined by j(aG,) =ag (a€G) is a ho-
meomorphism. In fact, L is locally quasi-compact and almost Hausdorff (cf. (a), proof of
Lemma 1.1.5) and L/G is countably separated (Lemma 1.1.3) and thus the desired conclu-
sion is implied by a theorem of Glimm (cf. [10], Theorem 1, (3)= (6), p. 124). Since ég i8
closed, and evidently G,> L, G/G, is a connected abelian Lie group. Since 7 €Irr (@) and
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j is G equivariant, T'|L is carried by the relative closure of a G orbit in E(J). Therefore
from now on we can assume to be given the following situation. There is a connected abe-
lian Lie group A, a continuous homomorphism ¢ of G into 4 such that ker (p) =G(J),
and that 4'=¢(G) implies A’ = A; there is furthermore a Borel injection s: 4 —Irr (L)
with (writing ag in place of g(a) for a €G and { €L) an({) =n(al) (A.5) and a Borel meas-
ure u on A4 such that

®
TiL= L 7'(€) - dul€) (+)

where 7'({) ~ 7(() ((€ A) (A.5).

(b) Here and in Lemma 4.2.1 we shall use the following elementary result. Suppose,
that A is a conmected abelian Lie group and A’ a connected dense subgroup. There is a closed,
connected subgroup A, such that A,- A’ = A, and putting A=A N Ay, A is a countable
dense subgroup of A,.

(c) We apply now (b) to 4 and 4’ as at the end of (a). We write B = 4/ A4, and denote
by w the canonical homomorphism from 4 onto B. If »’ =wogp, ' is a homomorphism of
G onto B. Putting 8 =ker ('), S is a closed subgroup of @, such that S/G(J) is discrete and
B= A/ A, is isomorphic to G/S.—This being so, we are going to show, that there is a
T, €XIrr (S) with T =inds ¢ T;. In fact, let us denote by P the spectral measure, defined on
the Borel sets of 4 and taking its values in [R(7T|L)]* (A.2, A.12), corresponding to the
decomposition (+). If Q is its direct image, via w, on B=G/8, (T, Q) constitutes a transi-
tive system of imprimitivity based on /S, and hence there is indeed a T, € Rep (S) such
that T =indgy¢ T (cf. [19], Theorem 6.6, p. 291). Moreover 7', EIrr (S), since, by assump-
tion, 7 €Irr (G).

(d) Writing J=ker (7,)€Prim (S), we form E(J)€L/G (replace in Lemma 1.1.8 G,
through 8). We claim, that E(J)=E(J). In fact, by 7 =indgs¢ T, we have T|L=
§%,s7(Ty|L)-dv (A.11). Since T|L is carried by E(J) so is, by Lemma 1.1.7, 7, |L. The
latter is carried, however, also by E(3F), since J=ker (T'); hence E(})=E(J).—Let us
put H =38, (A.10). Since, if V;€Rep (S) and ker (V,) =ker (V) we have also ker (V,|H)=
ker (V,| H), we can speak of the closed two-sided ideal J of C*(H), which is the restriction
of J to H; we shall denote it also by ¥|H. Next we show, that there is a ¢ €Prim (H), such
that J<o and E(o)=E(J) (cf. Lemma 1.1.8). To this end we recall (cf. [8], p. 97, top),
that we can find a Borel measure v on Prim (H) and a v measurable cross-section g:
Prim (H)—hom (H), such that

@
7,18 = o(4)-dv(4)  (ker(g(A))=2)

Prim(H)
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Also (cf. loc. cit. Lemma 3.4, p. 99), denoting by #(v) the closed hull of v and by ker (h(»))
the intersection of the corresponding primitive ideals, we have J=ker (T,|H)=ker (h(»)).

Since at the same time

@
T\ L= f (o)1 L) - dvid)
Prim(H)

and, by what we saw above, T, |L is carried by E(J) ,the desired conclusion follows from
Lemma 1.1.7.

(e) Let U€Irr (H) be such, that ker (U)=0. We claim, that U|L is a multiple of some
element v of E(J). In fact, U|L is carried by E(c)=E(J). Since H =(G(J)),, the action of
H on E(J) is trivial; whence the result.

(f) For more details about the following cf. [24], p. 103.—Let P(H) be the set of all
continuous positive definite functions on H. We denote by P, the subset of P(H) composed
of all those elements, which give rise to a unitary representation of H the kernel of which
contains J. Let EP, be the set of all extremal elements of P,. We define analogously
EP;< P(8). This being said let ¢ be a positive definite function belonging to U and such
that @(e)=1. Then @€ EP; and there is an element »€ EP, such that w|H=¢ (cf. [24],
Lemma 19, p. 103). Denoting by Z the unitary representation of S determined by w, there is
a countable subset B< S such that Z|L=2%%, 5 bU (cf. [24], Lemma 20, p. 104).

(g) Setting V' =indsy Z we are going to show next, that () ker (V')2J,(2) V'|L s
carried by Grn< L where 7 is as in (e) above. Ad (1) w €P, yields ker (Z) 2 J =ker (Tl).
Since, by (c) above, T =indg4¢ T, and since ker (T')=.J, the desired conclusion follows
from Lemma 1.1.10, (i). Ad (2) This follows at once from V'|L=f§,s 7(Z|L)-dr (A.11)and
from Z|L~ Y% pbx (A.5 and (f) above).

(h) Reasoning as in (d) above, by considering a direct integral decomposition of ¥V’
into homogeneous representations over Prim (G) we conclude, that there is a U €hom (G),
such that ker (U)2J and U|L is carried by Gn. Let U=} T(4)-do(A) be the central de-
composition of U. We have ker (U)=ker (T(4)) almost everywhere with respect to o (cf.
{8], Lemma 1.9, p. 91). Hence, again by the reasoning of (d), there is a 4,€ A such that
it V="T(J,), we have V€Fac (G), ker (V)2J and V|L is carried by Grn< E(J). In other

words, V satisfies the conditions of our lemma. Q.e.d.

We sum up the results of the previous discussion in the following

PROPOSITION 1. Given o €U such that o| L=n €L let us write
J{p) = ker (ind g) € Prim (G)
G

K.t

Then (i) The map J: A—Prim (G) is surjective, (ii) We have J(g,) =J(g,) tf and only if g,
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and o, lie on the same X orbit in W (cf. Lemma 1.1.6) (iii) For a fized J €Prim (G) let us set
AT)={0; 0€ A, J(g) =J}. Then A(J), as a subspace of the dual of K(J) (cf. Notation1.1.3)
ts locally compact and Hausdorff. Given a factor representation V of G with a kernel equal tfo
J, there is an (up to equivalence) unique Radon measure y on F(J), quasi-invariant and er-
godic with respect to the action of G, such that V|K(J)~ [, 0-du(p).

Proof. Ad (i) Follows from Lemma 1.2.4 and 1.2.5, Ad (ii) Follows from Lemma 1.1.9
and 1.1.11, Ad (iii) Follows from Lemma 1.1.5 and (a) of the proof of Lemma 1.2.1. Q.e.d.

§2

The purpose of this Section IT is to construct a normal representation (cf. Introduc-
tion or I1.3 below) the kernel of which coincides with a given primitive ideal J (cf. Propo-
sition 2). We shall accomplish this in the following manner. It results from our previous
considera‘nions‘(cf. (a) of the proof of Lemma 1.2.5 or I1.2 below) that E(J) carries a @ in-
variant Radon measure w. Forming U=ind; ¢ (f%; 7 dew(n)), we shall show first, that
U is a representation with trace, or that there is a faithful, normal, semifinite trace ¢ on
[R(U)]* such that, writing & =C*(@), the family of operators {4; 4=U(a), a €@+ and
$(A) < + oo} generates R(U) (cf. Lemma 2.3.4). Using this the desired normal representa.-
tion will be obtained through central decomposition of U; it will have the form of the
direct integral in (iii), Proposition 1, provided g loc. cit. is a G invariant Radon measure
on A(J) (cf. Lemma 2.3.5 and Lemma 2.3.6).—In order to establish the statement con-
cerning U, we shall have to include £(G) (A.7) in a larger * invariant subalgebra B of &,
the elements of which admit restrictions to closed subgroups, containing L, of ¢. B will
play an important role in Section V too; cf. for this Theorem 2.—In the first part of this
section we give the construction of B, in the second we shall obtain a realization, appro-
priate for our purpose, of a representation quasi-equivalent to U (as above), and most of

the third part will be taken up with the construction of a trace on [R(U)]* and its direct
integral decomposition resp.

2.1. We continue to assume, that G is a connected and simply connected Lie group;
we recall, that L=[@, @] is a closed, invariant subgroup of type I (cf. Lemma 1.1.1) of G.
We put H =G/L, and denote by v the canonical homomorphism from ¢ onto H.

If R is the right regular representation of L on the underlying space of &=C*(L),
we have for any €L and v€S: |R(l)v| =|lv|.—Let us consider now the family B of
all those continuous maps f from G into & for which (1) f(lz) = B(l)f(x) for any I€L and

2€4, (2) The map (H=G/L) xL+>f(x) is of a compact support on H; we denote by supp (f)
7—742901 Acta mathematica 133. Imprimé le 4 Octobre 1974
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the support of the latter on H—We shall say, that the sequence {f,} < B converges to f€ B,
if there is a fixed compact subset C of H, such that supp (f,)<C for all n, and if f, tends
to f uniformly on G.—Given f€ £(®), and a fixed element = of G, we denote by F(f)(x)
the map I>f(lx)=f,() (I€L); we have F(f)(x)€EL(L)= L. The map zr>F(f)(z) (x€G)
belongs to B and thus we can identify £(G) to a submanifold B, of B.—Let us show,
that B, is dense in B. To this end, let g be the Lie algebra of G and [j a complementary sub-
space to [g, g] in g. TIf H' is the image of [ through the exponential map, H’ is a closed
submanifold of G such that the map (I, Ryl (LEL, h€H') from L x H' onto G is a homeo-
morphism. We denote by L® L(H’) the linear space of all continuous maps, of a compact
support, of H' into &. Then the map ff|H’ (f€B) is a linear space isomorphism from B
onto ¥® L(H "); we shall denote it by 1. Hence the desired conclusion is implied by the
observation that, since £(L)is densein &, given g€ L® L(H’), thereis a sequence {g,} < L(&),
such that the members of {A(F(g,))} are carried by a fixed compact set C< H’, and such
that A(F(g,))—¢ uniformly on C.

Notation 2.1.1. Keeping H' (as above) fized we shall write sometimes g for A7(g).

Let dg and dl be elements of the right-invariant Haar measure on G and L resp., and
dh an invariant measure on H =@G/L, such that dg=dh-dl.—Observe that, if f€ B and
U €Rep (G), putting F(x)=U(f(x)) U(x), we have F(lx)=F(x) (l€L, z€(). In fact,

U(f(z)) = U(RQ) f(=)) = U(f=)(U@)*

implying the desired conclusion.—In the following we continue to write mostly C*(G) =&.

LeMMma 2.1.1. Given fEB, there is an element [ of C*(@), uniquely determined by the

property, that for any continuous unitary representation U of G we have
U(f')-“-f U(f()) U(x) - dh
H

and the map fr—f' (f€B) is a continuous injection of B into C*(G).

Proof. Uniqueness is clear.—In the following we shall denote for a while by ||f|,
the norm of the element f€®, while || || stands for the norm in € =C*(L).

For f€B let us put [f]=f||f(x)||-dh. We claim, that if f€ L(G), we have ||fl|,<[f].
To show this we observe, that if U€Rep (G), then

U= L U3 @) U(=) - dh (+)
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In fact
o= 1o ve-a- | ([ 10000 a) ve-an- | v @n v

Thus |[|U(H<§x | F() (@) -dh=[f] for any U€ERep (G) and hence also ||f]}, <[f].—Given
fELIG)=B,<= B, let us denote by T"f the corresponding element of @; 7’ is an injection
of B, into &. We claim, that 7" can be extended to a continuous linear map 7T from B
into @. In fact, given f€B, let us put ||f{[,,=sup.ee ||f()[|. To arrive at the desired con-
clusion, it clearly suffices to observe that, for any f€B,, [|7'f|l;<[f1<% (supp (M{|f{|«-
For the same reason, by () above we can also conclude, that for any f€B, U(Tf)=
§u U{f(x)) U(z)-dh. To complete our proof it is therefore enough to show that, if for f€B
we have Tf=0, then also f=0. In fact, we can take then in the statement of our lemma
f'=Tf{—If Tf=0, replacing above, with y arbitrary in X(G) (A.8), U by yU we obtain
easily, that U(f(x))=0 on G for all U€Rep (G). Therefore to arrive at our goal it will suf-
fice to prove that if, for a fixed v€Q, we have U(v)=0 for any U ERep (G), then v=0.
Let us choose an arbitrary z € L and put U=ind; j gzt. We have then U[L=f§ hr-dh (A11),
whence (A7) (v) =0 almost everywhere in A€ H, and thus v=0. Q.e.d.

Remark 2.1.1. By virtue of the previous lemma we can assume from now on, that

(L(G) ~ ) By< B ® (=CHG)).

Remark 2.1.2. Given a closed, but not necessarily connected subgroup M, containing
L, of ¢, we can form analogously, by replacing above G through M, a linear variety
By<C*(M). We shall use Lemma 2.1.1 for this case in section 5.

Let us put d(ela)=A(a)-dl (@ €G). We recall (cf. Lemma 1.1.2), that there is a con-
tinuous homomorphism ar>A4(a) of ¢ into Aut () such that if f€ (L)<= ¥, we have
(4@ D) =paMa)/Ala). Let us dendte by l+>L(l) the left regular representation of L
on the underlying space of &. One verifies easily the following relations: (1) 4(1) =L(l) R(),
(2) AR)L(H=L(zlz"*)4(z) (z€@,1€L), 3y If o, BER, R{)o-Li)B=wo-f (I€L). Let f,
9€B and z€( be fixed, and let us put Gy)=f(zy~!) A(xy)g(y) (yEG). By the previous
remarks one shows readily, that G(ly) =G{y) (I€L, y€64), and thus we can form

Lf(xy‘l) Axy ) gy) - dh (+)

Lemma 2.1.2. B is a subalgebra of & and, if f, g€ B, x+>(fg) (%) s given by (+) above.
Proof. Denoting by k() the expression in {+), a simple computation, using the rela-
tions 1-3 above, shows that k: G— & belongs to B. We shall complete our proof by veri-
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fying, that U(k)=U(f) U(g). We have, since U(A4(a)v)=U(a) U(r) Ua™?) (a€G, vEYR)

U(k(x)) = L Ufwy™) U(A(zy ) g(y)) - dh

- ( f Ulfay™) Utay™) Ulg)) U(y) - dh) U

Uk = f Uk(w)) U(a) - db= L( f Ulfey™) Utay™) Utg(y)) Uw) - dh) dk' = U Ulg)
H
Q.ed.

In the following, whenever necessary to distinguish the * operations on £ and & resp.,

we shall write +° for v* (v€ Q).

LeEmMA 2.1.3. We have B*=B and, if f€B, f*(x)=A(z)(f(z™))’ (r€Q).

Proof. Let us write F(z)=A(x) (f(x1))* (z€G). 1t is clear, that F: G— & is continuous,
and that [|F| is of a compact support on H. Observing, that A(l)RB(I-!)=L(),
A(z) B(xlx)=R(l)A(x) and (L(l)a)*=R(l)(«’) (IEL, z€@, 2 €Y) it is easily shown, that
F(lx)=R()F(x) (I€L,z€G). Hence FEB, and to finish the proof of our lemma, it is
enough to show, that U(F)=(U(f))*. But

U(A(2) (fa™)") Ux) - dh= J Ulw) (U(fe™))* - dh

H

UF) = f U(F(2)) Ux) - dh= f

H
~([ vy vay-a) = ([ viw ve-an) = oo
H
or U(F)=(U(f))*, which is the desired conclusion. Q.ed.

2.2. The purpose of this second part of section 2 is Lemma 2.2.1. For the proof of
Proposition 2 a weaker result would suffice (cf. Remark 2.2.1 below), but in order to speed
up things and to keep measure-theoretic considerations, irrelevant in the given context,
to a minimum, we prefer to use stronger tools from the theory of C* algebras.

Let E be some orbit of G on L, which we shall keep fixed. If x is an element of E,
as we saw earlier (cf. (a) of the proof of Lemma 1.2.5) G/G, is a connected abelian Lie

group, and the natural bijection between GG, and E=Gn is a @ equivariant homeomor-
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phism. Hence we conclude, that E carries a G invariant Radon measure w. This being so,
we wish to preface Lemma 2.2.1 by a series of observations, which are mostly reminders
of results from the theory of C* algebras to be used in the sequel. Below we shall assume,
that dim (7)= + oo (m€E) and shall leave to the reader the modifications necessary to
settle the remaining cases.

(1) Since E is locally closed in L (cf. (a), proof of Lemma 1.1.5), it is of the form F N O,
where F is closed and O is open in L. Let us add, that since E is a @ orbit, these can be also
assumed to be G invariant. In fact, we can suppose from the start, that £ = F and replace
then O by UgegaO.—Hence there are G invariant open sets L>0,>0, such that
E=0,-0,.

(2) We observe next, that if O is @ invariant and open, and I is a closed, two-sided
ideal such that O =1 (cf. loc. cit.), then I, too, is G invariant. In fact to this end it isenough
to note, that if F is closed in L, and a €@, then ker (aF)=a-ker (F). Let I, be ideals in
Q such that O, =T, (k=1, 2). Putting D=1,/I,, we have D=E. From what we have just
said we conclude, that I, is ¢ invariant, giving rise to an action of G on D and D; the lat-
ter is identical with the induced action of G on E< L.

(8) We recall, that a separable C* algebra A is of a continuous trace (cf. [4], 4.5.4, p. 94]
if A is Hausdorff and given my€ A, there is a p€ A, such that 7(p) is a projection of rank one
for all 7w in a neighborhood of my. We claim, that D (as above) is of a continuous trace. In fact,
since D= E, and E is homeomorphic to the group space of a connected abelian Lie group,
D is certainly Hausdorff. This implies, that D is postliminaire (cf. e.g. [4], 9.5.2, p. 185).
We recall next (cf. [4], 4.4.4. Lemme, p. 91) that any postliminaire C* algebra contains a
nonzero closed two-sided ideal of a continuous trace; let K be such with respect to D. If 7,
is arbitrary in D let g, €K, a€G be such, that 7, =ag,. By assumption, there is a p€K,
such that g(p) is a projection of rank one if g is close to g, inside the open subset R of D.
But then, setting ¢ =ap, the same will be true of n(g) for all n in a neighborhood of 7,,
completing the proof of our statement.

(4) Let § be a Hilbert space such that dim (§)) = + oo, T a locally compact space and
A(T) the family of all continuous maps, vanishing at infinity, of 7 in C(£) (A.13). We can
turn A(T) in a C* algebra through pointwise multiplication and by defining, for f€ A(T),
its norm through sup.r ||f(¢)||. This being so, we recall the following result (cf. [4], 10.9.6.
Corollaire, p. 219). Suppose, that T is of a finite dimension, and that HX(T, Z)=0. If A is a
C* algebra of a continuous trace, such that A =T, and that any irreducible representation of
A 1is infinite dimensional, then A is * isomorphic to A(T). — We conclude from this, that
there is an open subset Q< F = D, such that w(£— Q) =0, and if D’ is the closed, two-
sided ideal of D with D’=(), D’ is * isomorphic to 4(0). In fact, we can certainly choose
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an O, as just indicated, such that it be homeomorphic to R", Then the corresponding
D’ will satisfy all the conditions with respect to 4 above since we assume, that
dim () = + oo (R € E).

(6) Recalling, that D= I,/I, (cf. (2) above), we denote by I< I, the complete inverse
image of D’ in &. We show next, that there is a cross section g: O—Irr (L), such that, with
notations as in (4), A(0) ={m>p,(v); vEI}. Infact, givenw € D', let us denote by m+->a(w, 7)
the map OQ—C(), representing w by virtue of the * isomorphism of (4) between D’
and A4(0). We set ¢,(w)=a(w, i), and observe that for each m€(, the map wr>a(w, 7)
is an irreducible * representation of D’ on §). We write o7, for g, lifted to I. Next we recall
(cf. [4], 2.10.4. Proposition, p. 52), that if 4 s a C* algebra, I a closed two-sided ideal of A
and o an irreducible * representation of I, there is a unique * representation p of A, such that
¢| I =o. This being so, we extend o, first to I and then to €. Denoting by g, the representa-
tion so obtained, the map n+>g, from O into Irr (L) obviously has the required properties.

{6) Denoting by U() the unitary group of § with the strong topology, we are going
to show, that the map (I, m)r>0,(l) from L x O into U(D) is continuous (A.14). In fact, the
map (v, )>0,(v) from I x O into C(H) (A.13) (the latter being taken in the uniform to-
pology) is clearly continuous. Next we note, that the right regular representation R of L
on £ leaves any closed two-sided ideal invariant. Let %, v be a fixed pair of elements in I.
Then R(l)u€l, (I€L) and thus R(l)u-v€I. We conclude from this, that the map f of
Lx (O into C(§), defined by [, z)=0,(u) 0,(1) 0(v) =p.(RI1))u-v) is continuous.
Given an element 7, € (0, a compact neighborhood U of 74, and a pair, 4, BEC(H), by (5)
we can find u, v €I such that, on U, g,(u) =4, g,(v) = B. Hence the desired conclusion fol-
lows by observing, that if {U,} and U in U($) are such that, for any 4, BEC(9), AU, B
tends uniformly to AUB, then U, — U strongly.

(7) From what we have just seen we conclude, that the map from & x O into B(),
sending (v, ) into g,(v), is also strongly continuous.

(8) We can assume, that there is a o measurable field {g,; w€ E} such that g, is an
irreducible representation of class 7z on § and that, on O, g, is as above.

We denote by C,(£) the set of all Hilbert-Schmidt operators on § and, given A4 € B(),
we write [4] for its Hilbert-Schmidt norm (< + o0).—As in I1.1 we set H =G/L and de-
note by dh a Haar measure on H.—Let us consider now the Hilbert space £, correspond-
ing to all those maps 4 from G x E into Cy(9), for which A(lx, 7) = A(x, 7) (0,(I))* for any
leL, x€@G, n€E, and such that [A(x, x)], as function on (G/L) x E, is dh-dw measurable,
and

J [A(x, ) Edh-dw < + oo
HxE
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Given a €@, we denote by V(a) the unitary operator on §,, which corresponds to the sub-
stitution z+—xa; the map ar—V(a) is a continuous unitary representation ¥V of G on $q.—
Putting IT = [§ ndw and m =dim () (w € E) one sees at once, that ¥V =m(ind; ¢ 1T) (A.15).

If f€B (cf. 2.1) the function (z, ) [7(f(x))] (< + o) is measurable with respect to
dh-dw. In fact, by (7) above, (x,7n)—>p,(f(x)) is strongly continuous from G x QO into
B(H), and thus (x, 7)r>[n(f(x))] is lower semicontinuous on H x 0.—We set (f€ B)

llflli=L [ Fdhdo (< + )

write B ={f; f€B, ||f|lo<t o}, and define ¥': B'>H(V)=9, (A.2) by

W(f) ={ealf(x)); x€G, n€ E}.
Lemma 2.2.1. With notations as above, V(B’) is dense in H(V).

Proof. Let H' be the transversal, modulo L, in G of IL.1, and let % be the image of d&
on H'. We set ) =L2(E)®@0C,(§) and observe, that there is a canonical isomorphism be-
tween H(V) and LZ(H')®Y. We also note, that if BEf=v®¢ (cf. Notation 2.1.1), then
I711Z = ll@||2(f el (v) ]2 dew). This being so, the desired conclusion follows from the fact (cf.
(5) above), that [ is spanned by its elements of the form {g,(v); n€ E} (vEI). Q.ed.

Remark 2.2.1. One could prove Proposition 2 below, goal of section 2, by knowing
only, that ¥'(B’) contains a nonzero element. This is true if we have a v€Y such that
fe[7(v)]2-dew < + 0. In fact, then, for g€ L(H'), we obtain f=v®g€B’ and ¥(f)+0. One
can construct a v€ € of the indicated sort as follows. With notations as before, since D is
of a continuous trace (cf. (3) above) there is a w € D+ such that 7+>Tr (7z(w)) is a not iden-
tically vanishing continuous function on E (cf. [4], 4.5.2, p. 93). We can also assume, that
it is zero outside a compact neighborhood of some element m, of E (cf. [4], 10.5.6. Corol-
laire, p. 201). This being, so, it is enough to choose a v€Q over w*€ D =1,/1, (cf. (2)).

2.3. LEMmaA 2.3.1. For f€ B= C*(@) we have ||fl|, =], (< + ).

Prbof. We recall (cf. Lemma 2.1.3), that f*€ B and f*(x) = A(»)((f(z1))°). Therefore,
for any n€ B, z€G:
[ (@)] = [2(4(@) (fe™))] = [(z77) (f)] (A.6)

and thus, by the ¢ invariance of dev,
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113~ L( [ e i yrao) an- [ (] ) do

=f (@) dh-do= ]2 (< + o)
HxE
' Q.ed.

We observe, that on & there is a canonical conjugation g+>g, continuing that of
L(6). We put g*=(g)*=(g") (9€G).

LeMMa 2.3.2. With notations as in 2.2 and above, if f€B’ and g€ B we have fg€B,
and ¥(fg)=V(g")¥({f).

Proof. We start by showing, that given a compact subset K< H, there is a constani
C >0, depending only on K, such that if f€B’, g€ B satisfy supp (f), supp (g)= K, then we
have ||fgll, <C|g9llw[lf[.~—To this end we note first, that if § is a Hilbert space then
(1) For any A, B€ B(h) (A.13) [AB]<[A]| B], (2) If 4: H— B(}) is norm continuous and
of a compact support, putting 4 = [, A(y)-dy we have [A]< f [A(k)]-dh (< + o). Hence,
by Lemma 2.1.2, if k=Fh (supp (f)), for any n€ E:

[=((fg) (@))] < L ((f(xy~ NI g(x) [| dh

3
<lolle( [ Ertromian) <t-lglh | tseonran)
By virtue of our assumption clearly supp (fg) < K - K = K?, and hence
ol [ ([ ity @nran) aws gl 1712

or ||fgll, <CUlgllc)|fllo where C=Fk-(h(K?))} proving our statement.—If, in our lemma,
g€ L(G), we have (fg)(x)= [ g(a)f(xa)-da, whence clearly fg€ B’ and ¥(fg)=B(g" )V (f)—
If g is arbitrary in B, let {g,}< B, be such, that there is a compact subset K< H with
supp (g,), supp (9), supp ()= K and that ||g—g,[lo—~0. By Lemma 2.1.1 we have then
9,~>¢ in & and hence also ¢}, ~>g*. Therefore lim,_,.¥(fg,)=V(g")¥'(f) in H(V).!On the
other hand, by what we saw above

N F 92) =) = 19~ Do < C(llgn ~ NIl

and thus finally W(fg) =lim,,,, ,¥V(fg,) = V(¢)¥(/) (f€B’, g€B). Q.ed.
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LeEmMa 2.3.3. There is a sequence {g,}< B', such that, for any f€B’, Y(fg,)>F(f) in
H(V).

Proof. We show first, that if v€Q is such, that [;[7(5)]2dw< + oo, then for any
@€ L(H') we have (v ®@¢)'€B’ (cf. Notation 2.1.1). In fact setting, for w€Q, w’ =(ﬁ))*=u7‘,
we get for any f€B: fi(x)=A(x)((f(z~"))"). Denoting again by dn the image of dk on H’,
we obtain thus for f=vQg:

17 2= L lw(h‘l)lz( L[(h*a) («7)]2dw) dn= ||<P||§( f [nw)]zdw) (< + o),

proving our assertion.—Writing, for p€C(H'), V(p)=fp @(h)V(R)dy, we have clearly
V(iv®e@)=V(v) V(p). This being said we observe, that to establish our lemma, it is enough
to construct a sequence {v,}< & such that V(v,) tends strongly to the unit operator and
Sz [m(v)Pdw < + oo, In fact, if {p,}< L(H') is a sequence, such that V(gp,)—unity strongly,
we can then set ¢, =(v, ®¢,)’ and note, that by Lemma 2.3.2 and by what we said above
Wfg,)=V(v,) V(g,)¥'(f) tends to W(f) in H(V) for any f€B'.—With the notations of
2.2 we have V=m(ind,;¢ II), where I1=Qn-do. Since clearly oIl =II (A.6), V|L
is a multiple of IT and hence it is enough to find a sequence {v,}<&, such that
Jelm(B,)]2dew < + o0 and §,(v,) tends to the unity strongly, almost everywhere on O with
respect to dw. But for this it suffices to recall (cf. (4) loc. cit.) that if 4: O—C() is con-
~ tinuous and of compact support, there is a w €&, such that A(m)=p,(w) (x€O0). Q.e.d.

Given a unitary (Hilbert) algebra A (cf. [5], p. 70), for any € A we denote by V, the
bounded operator on the completion of the underlying pre-Hilbert space of A4, uniquely
determined by V_y=yx (y €4). We recall, that the right ring W¥(4) of 4 is the v. Neumann
algebra generated by the operators {V ; x€A4}.

LeMma 2.3.4. With the notations of Lemma 2.2.1, we can define the structure of a unitary
algebra € on V' (B’), such that R(V)=W(E) and V(B)=>{V,; x€E}.

Proof. Given f, g€B’ let us set (f, 9) =(¥'(f), ¥(g)). By Lemma 2.3.1, (B')*=B’ and
(f, 9)=(g* f*). f h€B’, Lemma 2.3.2 implies, that
(fh, g) = (¥(fr), ¥(g)) = (VY (f), ¥(9)) = (¥(), V(2 (9))
= (Y (), Y(fr*)) = (f, gh*).
Let us consider now the factor algebra &= B'[ker (V') ~¥(B’). The map f—f* of B’

onto itself gives rise to an involutive antiautomorphism of £ (to be denoted in the same

manner), such that with the inner product (,) induced by that of H(V) we have for any
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z, y; 2€E: (ay, 2)=(x, xy*) and (z, y)=(y* 2*).—By Lemma 2.3.3, the set {zy; x, y€EE}
is dense in £. If , y€E, and z="T(f) (fEB'), we have V_ y=V(f')y; hence, for any fixed
x € E the map y+—>yx of £ into itself is continuous, completing the proof, that £ constitutes
a unitary algebra.—We have just seen, that V(B)>{V, x€E} whence, using 8=6,
B'-B< B’ and the proof of Lemma 2.3.3 (or quite simply the commutation theorem, cf.
loc. cit. p. 71, bottom) we get R(V)="U(E). Q.e.d.

Lemma 2.3.5. Let O be an orbit of X on A (cf. Lemma 1.1.6). There is a positive, G in-

variant Radon measure on O, uniquely determined up to a positive constant factor.

Proof. With notations as in Lemma 1.1.6 we assume, that O =GTQ, closure being taken
in F. Let us set 4 =N|N, and recall (cf. (e), proof of Lemma 1.1.5), that the map i: A~ F
defined by i(aV,)=ao (¢€N) is an N equivariant homeomorphism. If 4’ is the image of
G in A, we have A =A4' and i(4)=0. Hence if 5 is a Haar measure on 4, i.(n)=v is a
positive, ¢ invariant Radon measure on (. Conversely, let u be such a measure and sup-
pose, that y=i.(n’). Then %’ is a positive, 4’ invariant Radon measure on 4 and hence

there is a constant ¢ >0 such that 5’ =c¢#, and therefore also u=cv. Q.ed.

Let J be a fixed element of Prim (&); below we shall write E=E(J), F=F(J), K=
K(J) (cf. Notation 1.1.3) and set O=A(J) (€ F/Z; cf. Proposition 1).

As already mentioned earlier (cf. the introduction to section 2), we shall say, that
T€Rep (G) (A4) is a representation with trace, if R(7T) (A.2) carries a faithful, normal,
semifinite trace @, such that the set {7T(a); a €®+, O(T(a)) < + oo} generates R(T). If,
in addition, T €Fac (G), we shall call T a normal representation.

Notation 2.3.1. We shall write Facn (G) for the subset, composed of all normal representa-
tions, of Fac (G).

We recall (cf. (a), proof of Lemma 1.2.1), that there is a Borel cross section
e: F—TIrr (K).

LeMmA 2.3.6. With notations as above, let ‘u‘ be a positive G invariant Radon measure
on O (cf. Lemma 2.3.5), and let us put

o

(C]
T ;r;g(f e(&)-du(é))

Then T is a normal representation with ker (T)=J, and there is a p € B+ (=B N &+), such
that 0 <T(@) and T(¢p) ts of a finite trace.
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Proof. We infer at once from (a), proof of Lemma 1.2.1, that T € Fac (&), and ker (T') =
J. Hence, in order to establish our lemma, what we have to show here is, that 7" is normal.

(a) Let again w be a G invariant Radon measure on E (cf. I1.2). Fixing a Borel cross
section m: B —TIrr (L), let us set I1= ¢ n(n)-dw(n). Let 7" be a Haar measure on 4=
N|N, (cf. Lemma 2;3.5) and 7=i,(7'), Putting ¥ =[% o(l)-dz({) we claim, that ¥ =
ind;y & II. In fact, let us define P: F—~E by P(p)=¢|L (¢€F); clearly P is continuous.
Furthermore, if ¢ is some element of F, n=P(¢) and F the annihilator of L in X(K) (cf. (c),
proof of Lemma 1.1.5), the map ¢+>@o is a homeomorphism between F and P~!(x). Thus
we can write 7= [21,dw(x), where 7, is F invariant on F and carried by P~Y(zn) (n € E).
We recall, that if Y(n)= % o(l)dr,({), then Y(n)=ind. 4 x (n) (cf. [20], Lemma 1, p. 325).
Moreover (cf. [17], Theorem 2.11, p. 204 and [16], Theorem 10.1, p. 123) the field 5> Y (x)

is w measurable and

2] ® 2] .
Y=f g(&)-dr(§)=fE Y(n)-dw(n)=f (ind z(n)) - dew(n) = ind I1

F E LYK LYK

proving our assertion.

(b) We write A=F/X and, if A€A, we denote by O; the corresponding 2 orbit. By
the proof of Lemma 2.3.5, there is a Radon measure » on A, and for each A€A, a G in-
variant Radon measure 7;, carried by O;, on F, such that 7=, 7,d»(1). Therefore,

putting Z(A) = % o(£)-dr,({) we obtain, similarly as in (a), that

@ ®
Y= f o(&)-dr(§) = f Z(2) - dv(A).

F A
Let us write now U=1ind;4¢ Il and U(J)=indgy ¢ Z(4); then by ¥ =ind 4« II (cf. (a)) we

conclude, that :
U= ind Y=f® U(A) - dv(2). (+)
Y A ‘

Let us note, that by virtue of our construction, there is a A, €A such that U(4,)=T
(the latter as in the statement of our lemma).

(c) We claim, that the decomposition (+) is central. This we infer from the following
result of E. Effros (implied by [8], Theorem 1.10, p. 91). Let (Z, ) be a standard measure
space, L+>T(L) an a-measurable field of factor representations on Z, such that ker (T(C,)) =
ker (T'(C,)) only for {=C, Then the direct integral [$ T()-da(l) is central—To obtain
the desired coneclusion, it is enough to recall, that ker (U(1))=J(p) (0€0;) and thus, by
Lemma 1.1.9, 4, 4, implies ker (U(4,)) +ker (U(4,)). ‘

(d) We observe next, that if there is a A,€A such that U(Ay) €Facn (G) (cf. Notation
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2.3.1 above), then we have U(A)€EFac (G) for all A€A. To see this, let us form the direct
product N=G x X(G). If a={(b, 2) €N and T€Rep (@), we set (aT)(g)=yx(g) T(b-gd)
(9 €G), in which fashion we get a left action of NV on Rep (G). Similarly, we let N act on the
left on Rep (K).—We define ¢: X(G)~F by ¢(x)=x|K and write (a=(b, 2 EN): jl@)=
(b, H{x))EN. Let us observe, that since N acts on F as an abelian group, it preserves X
orbits and hence acts transitively on A= F/X. This being so we claim, that (aU)(1)=
U(j(@)A) (A€A). In fact, since U(A)=indgq¢ Z(1) (cf. (b)) we have clearly alU(1)=
ind g4 ¢(j(@)Z(1)). Putting b=4j(a) and bl=x, the image of dr;, under the action of b on F,

is a multiple of dz,. In this fashion, in the sense of unitary equivalence

@ @ @
bZ(2) = f bo(£) - dua(é) = L o(b8) - dra(é) = f 0(8) - dr(&) = Z(x)

F F
Hence finally
aU(4) = ind (j(a) Z(4)) = ind Z(j(a) 4) = U(j(a) 4)
Kt G Kte

proving our statement.—Assume now, that A, is as at the start of (d). Given 1€A, by
virtue of what we have just seen, there is an a € N, such that U(1) =aU(4,). On the other
hand, letting N act on & =C*(G) as in Lemma 1.1.2, there is an o’ €N with (aU(4,)) (f) =
Udp)(@'f) (f€@®). Hence if U(Ay)EFacn (G), we have also U(A)€Facn (G) for all AEA, as
claimed above.

(e) From here we complete the proof of Lemma 2.3.6 as follows. Replacing in Lemma
2.3.4 E€L/G through E€L/G (A.15) we observe, that V=m-indy4cIl =m-U. Ontheother
hand we showed loc. cit., that there is a unitary algebra &, such that W(E)=R(V) and
V(B)>{V,; € E}. Therefore, if ® is the natural trace on [W(E)]* (cf. [5], Definition 2,
p- 88), V is a representation with the trace ®. If @’ corresponds to ® on [R(U)}]*, U will
then be a representation with the trace ®'.—Since the decomposition U= UQA)-dv(d)
(cf. (+) in (b)) is, by (c), central, we have also (dropping the prime) @ = §§ ®,d»(1), where
®, is a faithful, normal, semifinite trace on [R(U(A))]* such that, if 4 €[R(U)]* and 4=
IR AQ)-dv(2), we get D(A)= [ D (A(R))-dv(A) (< + o) (cf. [5], Théoréme 2, (iii), p. 200).
Let a € B+=B N &+ be such, that 0 <®(U(a)) < + co; for instance, take b € B’ with U(b*) +0
and set a=>5*- (b%)*. What we have just seen evidently implies, that there is a d€EA satis-
fying 0<®4(U(d)(a)) < + oo, and therefore U(S)EFacn (G) (cf. [4], 6.7.2. Proposition,
p- 127). Hence we can apply (d) above with A,=4 and conclude, that U(1) €Facn (G) for
all A€A, and thus, in particular (cf. the end of (b)) T'=U(4,) €Facn (G).—Let us show
finally, that there is a p € B+ =B N &+, such that 0<T(p) and that T(p) is of a finite trace.
By what we have just seen we can find V €Facn (@), x€N and a€ B* such that T(f)=
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V{a(f)) (f€®) and that V(a) is of a finite positive trace. Hence it suffices to verify, that
for any 8 € N we have §(B+) S B+; in fact, we can take then ¢ =(a?) (a). Clearly, it is enough
to show, that $(B) < B. Suppose, that §=(b, ), and let us denote by A(b) the automor-
phism of & corresponding to b€G (cf. Lemma 1.1.2). For a fixed f€B we set F(r)=
x(x)- A(D) ((f(b~'xb)) (x€G). By observing, that A(b) R(b—'1b) = R(l) A(b) one verifies easily,
that x> F(x) belongs to B. We denote by F the corresponding element of & (cf. Lemma
2.1.1) and claim, that F=gf. If U €Rep (), we have U(SF)=(x(b-2U))(f) (A.6, A.8). On
the other hand, since U(A4(b)v)=(b-1U)(v) and (yU)(v)=U(v) (v€L)

()= L U(F (&) Uta) - dh= L U(A®) ((6-2b)) (V) (2) - db

= L(Xb”lU) (f(x)) (267 0) (H(2)) - dh = (b~ U) (/) = U(Bf)
completing the proof of our lemma. Q.e.d.

We sum up the previous discussion in the following

ProrosiTioN 2. Suppose, that G is a connected and simply connected Lie group, and

J some element of Prim (G). There ts a normal representation the kernel of which is J.

Proof. This follows at once from Lemma 2.3.6. Q.ed.

Remark 2.3.1. The following observation will be useful in Section 5 (for the reasonings
employed below cf. [4] 6.6, p. 125). Suppose, that V;€Fac ((), ®; is a normal trace on
[R(V,)]t such that ©,(V,(a))=Dy(Vy(a)) (€BT) and that, for some bEBF, we have 0<
Dy (Vb)) < +oo. Then V, and V, are quasi-equivalent.—Let us start by noting that, if
m; is the ideal of & corresponding to V, and n,=m}, we have n, N B=n,N B (cf. [4],
6.1.2, p. 112). In fact, a €S belongs to 11, N B if and only if a € B and ®,(V,(a*-a)) < + oo;
but then also €1, N B, and conversely. Let us put B, =n, N B. If 4, is the unitary algebra
corresponding to m}, the image of B, in A, is dense (j=1, 2). In fact, if 4=4, (say),
9 is the completion of 4 and f) the closure of the image of B, in §), then § is nonzero, and
invariant under the left and right actions by elements of B. Hence, since V,€Fac (G),
we have ) =§. Summing up, there is an isometry from the completion of 4, onto that of
A,, making correspond to each other left actions of B. Thus V, is quasi-equivalent to V,.

Q.ed.

Remark 2.3.2. Let G be as above. We write L, for its left regular representation on the
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Hilbert space L*(G) of all square integrable functions with respect to a right invariant Haar
measure on @, and set R(L;) = U(G); then WU(G) is the left ring of G. The purpose of the
following observations is to sketch a proof, on the basis of our preceeding considerations,
that U(Q) is semifinite. We recall, that due to a theorem of J. Dixmier (cf. [6], Théoréme,
p. 423) the analogous statement is valid for any separable, locally compact and connected
group.

Let G, be the left regular representation of L; we have L£;=ind;¢LC;. Wenote, in-
cidentally, that L =[G, ] is unimodular; in fact, if L=exp (d) (4.1), the radical of b is
nilpotent. Let ¢ be the Plancherel measure of L and s: L—-Trr (L) a Borel cross-section.
Putting 1T =f(z> 7(L)-du(l), we have L~ 11 (A.5), and hence, if V =ind 4 1I, also Lo~ V.
In this fashion it is enough to establish, that R(V) is semifinite. — G acts on L as an abelian
group, such that §=L/G is countably separated (cf. Lemma 1.1.3). Hence we can write
u=§sps dv(s) where, up to a set of » measure zero, U is o-finite, is carried by s€8 and,
if apu=2ad(a)u (a€@), also au,=d(a)u,. Therefore, in particular, u, is equivalent to a G
invariant Radon measure on s. Let us set I1(s) =j'(§7z(§‘) -du({) and V(s)=ind ¢ II(s). It
is implied by Lemma 2.3.4 that, if s does not belong to a set of ¥ measure zero, V(s) is
a representation with trace and thus, in particular, R(V(s)) is semifinite. Since II=
J§ I1(s)-dw(s), we have also V=9 V(s)-dw(s). The latter decomposition is central; in fact,
to see this, it suffices to note, that V(s)|L~1II(s), and that (¢ Il(s)-dw(s) is certainly
central. Thus finally, the semifiniteness of R(V) is implied by [5], Corollaire 2, p. 206.

Q.ed.

§3
The purpose of the next two sections is to show, that any normal representation, up to
quasi-equivalence, is uniquely determined by its kernel (cf. Proposition 4, section 4). In the
present section 3 we shall treat separately a special case of interest, where the desired

conclusion is implied by standard results.

Lemma 3.1. The following properties of J €Prim (@) are equivalent: (1) If V €Fac (G)
and ker (V)y=J, then V is of type I, (2) There s an irreducible normal representation of
kernel J.

Proof. (1) = (2) By Proposition 2, there is a U€Faen (¢) with ker (U)=J. Our as-
sumption implies, that U is of type I; hence, to satisfy (2) it is enough to take W €Irr ()
such that U~ W (A.5).

(2)= (1) Here we employ the following well-known assertion (implied by [4], 4.1.10.
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Corollaire). If A is a C* algebra and m€Irr (A) is normal, then ker (7) =ker (') (7’ €Irr (4))
tmplies w~n' (A.5). By virtue of this we obtain the desired conclusion using a reasoning
due to J. Dixmier (cf. [3], Remarque, p. 100). Let us assume, that V € Fac (@) is such, that
ker (V)=J. Suppose, that V = [ V(z)-du(x) is a decomposition of V into a direct integral,
over the standard measure space (X, ), of irreducible representations. Then (cf. loc. cit.)
ker (V(x))=ker (V)=J almost everywhere with respect to u. By assumption, there is an
irreducible normal representation W with ker (W)=J. What we said above implies, that

V{xz)~ W up to a set of y measure zero. Hence V ~ W and V is of type I. Q.ed.

We shall say, that J €Prim (G) s of type I, if J satisfies one of the two conditions of
Lemma 3.1. Incidentally, from what we saw above is clear, that if J is such, any two nor-
mal representations of kernel J are quasi-equivalent.—Our next objective is a charac-
terization of such ideals (cf. Proposition 3 below).

We observe, that if E€L/G is fixed, and 0€F(E), G, (A.9) does not change; hence
we may write G,=1(E). This being so we recall (cf. [22], Lemma 3.7, p. 484) that
K(E)(G(E)), (cf. Notation 1.1.1) is an open subgroup of W(E). Denoting its index by
n(E) (< +o0), of o€ F(E), T(o)=indg)s¢ 0€Fac (&) (cf. Lemma 1.1.4, (i) is of type I if
and only if n(E)< + oo.—Given J €Prim (G) we set n(J) =n(E(J)) (cf. Notation 1.1.3).

If @G is solvable, the integer n(J) can be described as follows. In this case we have
a canonical bijection between points of Prim (@) and generalized orbits (cf. [24], ITL.6,
p. 85 and loc. cit. Theorem 1, or Section VI below resp.). Let J €Prim (G) and O be the
corresponding generalized orbit. Let g be the Lie algebra of @, and g an arbitrary element
of the projection of O into g'. Then n(J) is equal to the index of the reduced stabilizer G,
(cf. [24], 3.3, p. 83) i G,.

We assume now again, that ¢ is an arbitrary connected and simply connected Lie
group. Given J€Prim (@) we recall, that A(J)={p; 0€A, J(o)=J} (cf. Proposition 1).
Observe, that G acts on 4(J) as an abelian group (cf. e.g. Lemma 1.1.6).

ProrositionN 3. J€Prim (G) is of type 1 if and only if (1) G acts transitively on
A, (2) n(J]) s finite.

Proof. Let us assume first, that J is of type I. We form, as in Lemma 2.3.6, the re-

presentation

D @
T= ind d = T(o)-dulo
KNG (fA(J) ¢ 1“(0)) fA(J) (@) ,u(“)

We know (cf. loc. cit.) that T'€Fac (G) and ker (T')=J. Since T(g,)~ T'(g,) if and
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only if Gg, =Gy, (cf. Lemma 1.1.4, (ii)) by a routine reasoning (cf. e.g. [22], Lemma 2.3.2,
p- 550) we conclude, that if 7' is of type I, A4(J) must be a & orbit. But then, for any
0€ A(J), T~ T(p); hence T(g) is itself of type I, implying n(J) < + oo.—Conversely, if
J €Prim (G) satisfies the two conditions of our lemma, then T(g) is of type I for g€ 4(J)
and, as above, Faen(G)€T ~ T(p). In other words, T(p) (0 € A(J)) is normal and of type
I which, by our definition, yields the desired conclusion. Q.ed.

We shall discuss the implications of assuming only, that A4(J) is a G orbit, in Pro-
position 5.4.3 below.

§4
The main objective in this section is to show, that if G is connected and simply con-
nected, V,EFacn(G) and ker (V,)=ker (V,)=J (say), then V,~V, (cf. Proposition 4).
This implies easily the analogous result for a not necessarily simply connected, connected

group (cf. Theorem 1). By what we saw in section 3, we can assume, that J is not of type 1.

4.1. We put E = E(J), fix an element 7 € £ and recall the following (for more details,
cof. [22], start of Section 3, Chapter I, p. 480-481). Let n° be a projective extension of =
to G, giving rise to a continuous cocycle a (a(gyl;, go2ls) = (g1, 92); J1 92€ G L, LEL).
We put G5 =G* and note, that G° can be realized as the set {(a, w); a€G,, »E€T} with the
multiplication (a, %) (b, v) = (ab, uva(a, b)) and the product topology. The subset {(I, 1);
I€L}, to be denoted again by L, is a closed, invariant subgroup of G°. Let us set M, =G*/L
and denote by @ the canonical homomorphism G*—M,,. Since G is connected and simply

connected, we have

1 T central M,, Z 1

where Z is direct product of a vector group with a free abelian group. Below we shall put
=M™,

Given a subgroup H, of a group H, we denote by C(H,) the centralizer of H, in H.
Putting I';=C([')) and U=0((I'y)*) (A.10, A.12) we have U=I;-T'y (cf. {22], proof of
Lemma 6.5, pp. 502-503). Let us select a maximal abelian subgroup H of I'; and set E =
T'y-H.

LEMMa 4.1.1. With the above notations we have (i) E=C(H), (ii) E is the direct product
of Ty and of a free abelian group A.

Proof. Ad (i) We have evidently E<C(H) and thus it is enough to establish
the opposite inclusion—If y€C(H), since Hy=(I'()*, we have y€U. Let us write
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Y =176 (1€, ¥, €L). Since H<I'y=C(I',y), , commutes with H and hence, since H is
maximal abelian in I'y, y, €H or y €H-I'y= E.—Note that, in particular, £ is closedinT'.
Ad (ii) Since Hy=H n Ty, it suffices to show, that H = H, x A+ H being abelian, for this it is
enough to establish, that H/(H), is free abelian. We have

H|H,=H|(H nTy) = HT\/T', = E/T,<T/I',
whence the result follows by observing, that I'/T' is free abelian. Q.e.d.
COROLLARY. F is of type 1.

In fact, by (i1) above it suffices to remark, that I'; is a connected nilpotent Lie group.

In the following we shall associate with a given E€L/G a closed subgroup D of G,
satisfying K(E)= D<W(E)=G(E) (for U(Z) cf. III above). As the subsequent lemmas
will show, D shares all the useful properties of K(E) and, in certain respects, it is more
advantageous (cf. e.g. Lemma 4.1.3 and Remark 5.2 below). The reason for which, how-
ever, we prefer in our main statements K(Z) (cf. Proposition 1 and Theorem 2) is the lack
of a possibility to make the choice of D canonical.

Below we shall write F, K, Ul and G, for F(E), K(E), I(£) and G(E) resp.—Let T
be the central 1-torus in G°. With the previous notations we set D*=®-YE) and D=
DfIT=@. D is a closed subgroup of ¢ such that K< D<ll. To see this it is enough to re-
call, that U*c HcT',< U, and that U=0-YU)/T (cf. [22], p. 483, bottom) and K =
Q-1 U*)/T (cf. loc. cit., proof of Lemma 3.6, p. 484).

LeMMA 4.1.2. Assume, that ¢ ts a factor representation of D such that its restriction to
L is carried by E. Then o is of typé I

Proof. Since D<@, the action of D on E is trivial, and thus ¢|L is quasi-equivalent
to a 7' € E. Replacing, if necessay, o by ac (¢ €G) we can assume, that 7’ =7 (7 as previ-
ously). Let us put @, =®|D° and nf{=n°| D°. Denoting by T the 1-torus in I', there is a
u€Fac (E) such that y|J is a multiple of the conjugate of the identity map of J onto it-
self, and that, with notations similar to those of Lemma 1.2.3, o =[n{® (uo®,)]". Hence
to complete our proof it is enough to recall, that £ is of type I (cf. corollary of the previous

lemma). Q.e.d.
We set F'={0; 6€D, 6|L~n', 2’ any in E}.
LemMma 4.1.3. For any o in F', its stabilizer in G is equal to D.

Proof. Since [(, @)=L< D, D is an invariant subgroup of G. Replacing, if necessary,
8 — 742901 Acta mathematica 133. Imprimé le 7 Octobre 1974
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o by bg (b€G) we can assume from the beginning, that ¢|L~z (as previously), and then
it is enough to show, that as = (for some a€G) implies a € D.—If ag =0, then asw =, or
@€G,. In the following, whenever convenient, we shall write for (g, 1), (e, w) €G*, g or u
resp. (§€G,, w€T). There is a u€Irr(E), such that 4]T is a multiple of the conjugate of
the identity map of T onto itself, and that o(d)=n°(d)@u(®(d)) (d€D). Putting y=
®((a, 1)) €T, we are going to show, that yu=pu. To this end it suffices to prove that, if we
write U=n%(a)® I, we have (ao)(d)=U* (n%(d)® (yu)(®(d))-U (d€D). In fact, if again
®, =®| D¢, 7§ =n°| D°, we obtain then

0 =[i® (uo®@)]", a0 = U*[#{® ((y-p)o®,)]"- U,
whence, since ac ~ ¢, we conclude, that yu~ p (A.5).—Let d be fix in D. Then
(a0)(d) = o(a~1-da) = a°((e1-da, 1)) ® u(P((a~da, 1)).

Since (a~da, 1) =(a, 1)71-(d, 1)(a, 1)-« (#€T), we obtain, that

(a0) (d) =7%((a, 1)+ (d, D) (g, 1)) @ u(D((a, 1)+ (d, 1)(a, 1))
= U*-(n°(d)® (yu) (®(d)))- U,

where U=nfa)® I, as claimed above.—We show next, that yu=pu implies that y€E.
In fact, by E=C(H) (Lemma 4.1.1, (i)) there is a y € X(H) such that u|H~y. Sinceypu=u
we have also yy =y. For a fixed A€ H, let us write p~*hy =uh (u€T); we have to prove, that
w=1. But (identifying T to the circle group) we get: x(h)=(yx)(k)=yxly‘hy)="uy(h),
giving the desired conclusion.—Summing up, we have shown, that ac =g, implies that
a€G,, and if y =®((a, 1)), then y € E. Hence (a, 1) €®~(E)=D* and a€ D, completing the

proof of our lemma. Q.ed.

LEMMA 4.1.4. With the above notations F', as a subspace of D, is locally compact and
Hausdorff.

Proof. At many points this will be similar to that of Lemma 1.1.5. We show first as
at loc. cit. (a), (b), that F’ is locally closed in D. Putting D = C*(D) we conclude as in (c),
loc. cit., that there are closed, two-sided ideals ©> I,> I, such that, if M =1,/1,, we have
M=F —We prove next, that M is of type I or, what amounts to the same, that if
o’ €Fac (I,) satisfies ker (¢")> I, then ¢’ is of type 1. We recall (cf. [4], 2.10.4, p. H2),
that there is a unique ¢ €Fac (D) such that ¢|I; =¢’ and in this case R(c)=R(c¢’). This
being so it is enough to show, that o|L is carried by E. In fact then, by Lemma 4.1.2, o,
and hence also ¢’, is of type I. Let o= [% o(z)du(x) be a decomposition into a direct in-

tegral of irreducible representations over the standard measure space (X, u;. There is a
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subset N of X with u(M)=0, such that if x€ N, ker(o(x)) = ker (¢) (cf. [3], p. 100), hence
also ker(c(x))> I,. There is also an N, <X, u(M,) =0 such that o(z)| I, =0 if z€X —H,.
In fact, otherwise there is a nonzero projection P with Po(l,)=Po¢'(I,)=0. Since F'=
{6;0€D, ker (8)> 1, 6|I,%0} we conclude, that up to a set of measure zero, o(x)€ F';
in which case also o(x)|L~x'€ E. Thus, on account of Lemma 1.1.7, o|L is carried by E.
— We write F' for the annihilator of L in X(D), and form the direct product N'=G x F' - N’
acts as a topological transformation group on D (cf. Corollary of Lemma 1.1.2). We claim,
that F’ is an N’ orbit. To this end it suffices to show, that if «, § € F’ are such, that o IL ~B|L,
then there is a p€JF with S—qo (A.8). Let us write £’ for the subset of E, which on J
reduces to the conjugate of the identity map of J. Putting, for 5 €E’, f(n) =[n5Q (1o D)1
we can find y, 6€ £’ such that a=f(y), B=f(0). Also, one sees at once, that if F” is the an-
nihilator of Jin X(E), there is an isomorphism 1: F’'— J”, such that ¢f(n) =f(x(¢)n) (€ F).
In this fashion it is enough to establish that, by multiplication, F” acts transitively on £,
By Lemma 4.1.1., (ii) we have E=I'y x A, and T, is of the form T’y x 4, where 4 is a vector
group, and 'y central extension by the circle group of a vector group and, if dim (I") >1,
dim [Ty, I'g]=1. Hence to obtain the desired conclusion it is enough to recall, that if
7€X(Tg) is identically one on the center of Iy, and nEf, then g =x.—Summing up,
F' =M is locally compact and almost Hausdorff (since M is of typeI) and N’ acts tran-
sitively on F’. In this fashion we can complete the proof of our lemma by reasoning as in
(e) of the proof of Lemma 1.1.5. Q.ed.

LeEMMA 4.1.5. (i) There is an equivalence relation X' on F', such that g, is equivalent to
02 tf and only if @166*9_2. (i) F'/Z' is countably separated.

Proof. One can proceed in the same fashion, as in the proof of Lemma 1.1.6, and

therefore we omit the details.

4.2. We continue to keep fixed a J €Prim (&), which is not of type I, and set £ = E(J).
D will correspond to E in the following as in 4.1.—Observe, that now D+G.

LeEMMA 4.2.1. Suppose, that the normal representation V of G is of kernel J. There is

a unitary representation W of D, such that V is quasi-equivalent to indpyg W.

Proof. (a) Since F’ — 3, and M is of type I (cf. the proof of Lemma 1.1.4 above), we
can find a Borel cross section o: F'—Irr (D). Proceeding as in (a), proof of Lemma 1.2.1,
we coneclude, that there is a Borel measure 4 on F’, which is quasi-invariant and ergodic
with respect to G, such that V| D= [%. ¢'(z)-dA(z), where ¢’ (z) ~ o(). Imitating the reason-

ing of (a), proof of Lemma 1.2.5, we can assume the following situation: (1) 1 is carried by
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the X’ orbit 4< F’, (2) A is the underlying space of a connected abelian Lie group; there
is a continuous homomorphism ¢: @— A4, with ker (p)=D, such that 4'=¢(G) implies
A= A, and ad’(x) =0'(p(a)x) (@ €G, x€ 4). In the following we write ax for ¢(a).

(b) We have, by (a), V|D=[$ ¢’'(x)-dA(x), and the direct integral is clearly central.
For p€X(A), let us put V(y)=f$ p(z)- I, -dAx); then V(p)€E(R(V|D))*< R(V). We de-
fine ' € X(G) by w'(g)Em) (9€G). This being so we observe, that V(g) V(y) V(g~")=
v'(9) V().

(¢) Let us denote by C the annihilator of D in X(G). Putting C'={y’; p€X(A4)} we
claim, that C’ is dense in C. In fact, otherwise there is a g€G— D such that 1=9y'(g)=
17)(¢Tg)) (w€X(4)), whence p(g) =e and g€ker(p) =D, giving a contradiction.

(d) We write again & =C*(@), and consider the homomorphism of Lemma 1.1.2, of
X(G) into Aut (®). Next we remark, that (V(p))*: V(a) V(yp)=V(p'a) for any p€X(A4)
and a €. In fact, fixing y € X(A4), it is enough to show this for a=f, where f is integrable
with respect to a right invariant Haar measure dg. By (b) above we have (V())*- V(g) V(y) =
v'(9) V(9), and thus

(Vep)*-Vh- Viy) = Lf(g) (V)" Vig)- Viy)-dg= L V(@) ) V(g)-dg= V(')
proving our assertion.

(e) Let us put M= R(V). Since V €Facn (), in particular, M is a semifinite factor;
we denote by @ a faithful, normal, semifinite trace on M+. We claim, that for any y€C,
O(V(xa)) =®(V(a)) (a€@+). In fact, since by (d), (V(p))*- V(a)- V(yp)=V(y'a) (€X(A),
a€G) and since V(p)€EM (cf. (b)), our statement is certainly valid if y € C’. By C’'=C (cf. (¢))
and by the normalcy of ® this yields ®(V(ya)) <®(V(a)) and thus also ®(V(ya))=
®(V(a)) for all y€C and a €G+.

(f) For the following cf. [5], Ch. I, § 6, 2, pp. 85-89. Let us put m={4; A€M,
®(4*-A)< +oo}-m can be endowed with the structure of a unitary algebra such that, for
Xem, (X, X)=0(X-X*). We denote the Hilbert space, which isits completion, by ). Let us
putt={a; a€®, O(V(a*-a)) < + oo }; nisa two-sided idealin . Writing § ={V(a);a €n} <},
we have §’'=}. In fact, by V(&) <l, V(@)<Y if P is the projection on b, since M
is a factor, P is equal to zero or one. But the assumption, that V is normal, clearly implies
P +0.—Let g—L(g) (g €G) be the left regular representation of G on &; we have V(L(g)v) =
V(g) V(v) (v€®) and thus L(g)n<n. Hence there is a unitary representation ¥’ of & on §j,
uniquely determined by V'(g)(T)=V(g)T (T€Y); V' is quasi-equivalent to ¥V.—Also
by (e), there is a unitary representation W of C on §j such that, ifw € C, W(yp)(V(v)) = V(yv)

(v€n). One verifies easily, that V'(g) W(y) V'(g72) =y(g) W(yp) (9€G, y€C).
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(g) Using the previous observations we complete the proof of our lemma as follows.
We put G =@/D and, if g€, we denote its image in G by g. Since G is the dual of C, there
is a spectral measure D on @ such that W(y)=[zy(k)-dD(h) (p€C). By the last rela-
tion of (f) we conclude, that if E is some Borel subset of &, we have V'(g) D(E)V'(g™1) =
D(E). In other words, (V', D) constitutes a system of imprimitivity based on G/D, and
hence (cf. [19], Theorem 6.6, p. 291) there is a W E€Rep (D), such that V’'=indpy¢ W.
Since (cf. (f)) V~ V', W satisfies the condition of our lemma. Q.e.d.

For the notion of a multiplicity free representation cf. [4], 5.4.5, p. 108 and 13.14,
p. 250.—We shall say, that W €Rep (D) is @ invariant, if aW ~ W (A.5) for all a€G.

LeEmMA 4.2.2. (i) W, as in Lemma 4.2.1, can be chosen G invariant and multiplicity free,
(ii) If W and W' satisfy the conditions of (i) and indpye W ~indpye W', then W~ W'.

Proof. Ad (i) Let W be as in Lemma 4.2.1. Putting W,=RgW -dg, we have aW,~
Wi(a€@) and indpy ¢ W=(+ o°) (indpy ¢ W). Thus replacing W by W,, we can assume, that
W is G invariant.—We claim, that in this case there is a @ invariant, multiplicity free
representation U of D such that W isa multiple of U. Infact, puttingindpy ¢ W =T € Fac (&)
we get, as in (a) of the proof of Lemma 4.2.1, since G=+ D,

(+=)W=T|D= J@a'(x)-d/l(x)

where 4 is a ¢ quasi-invariant and ergodic. On the other hand, since F’ -M , and M is of
type I (cf. the proof of Lemma 4.1.4) there is a Borel measure y on F’, and a y-measurable
function xr>n(x) (x€ A4) taking its values in the set of positive integers (< + c0) such
that W =% n(z) o(z)-du(z) (cf. e.g. [4], 8.6.6. Théoréme, p. 156); hence A is carried by
A, and there we can assume A=u. Since W is G invariant and A ergodic, there is a positive
integer N (< + o0) such that n{x) =N almost everywhere with respect to 1. We put U=
J€o(x)-dA(x). Clearly U is @ invariant, multiplicity free and W =N-U.—In this fashion
we can satisfy condition (i) of our lemma by replacing W through U.—Ad (ii) Assume
now, that W and W’ satisfy the conditions in (i) and thatindpy¢ W ~indps ¢ W'. Then we

have
(+ ) W=(ind W)|D~ (ind W)|D=(+ o)W
DtéG Dt G

and thus (+o0) W~ (+oo) W’ Since W and W’ are multiplicity free, we can conclude
from here, that W~ W' ([4], 5.4.6. Proposition, p. 108). Qed.

We write IV for the direct product G x X(G) and consider again N' =G x F’ as in the
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proof of Lemma 4.1.4. Putting, for y€X(G), ©(x)=x|D, and for (a, 2 €N, j(a, x)=
(@, T())EN’, j is & surjective homomorphism. In this fashion N actson D, and F’isan N
orbit (cf. loc. cit.). Since [N, N]=[G, G}=L< D< N, (6EF’) we have N,=A (say), and
A=N/A is abelian. Let ¢ be now fixed in F’. We observe, that the map aAr>as (@€N)
gives rise to an N equivariant homeomorphism between 4 and F’ (cf. loc. cit. and (e),
Lemma 1.1.5).—Let 4 be asin (a), Lemma 4.2.1, and assume that o, as above, is in 4.
Putting £={u; a€N, x4AS A}, we have also E={x; a€N, ao€ A}.—We denote by Er’mrm
the image of Facn (63) in G (for the latter cf. [4], 18.6.2, p. 323). Setting again, if V€Rep (G)
and «=(b, y)EN, (V) =%(bV), since (&' V)(v)=V{x(v)) (& =(b, %), vES®), we get cor-
responding actions of N on é’nom and Prim (G).—Similarly, we can let ¥ act on Rep (D).

Lemma 4.2.3. With the previous notations, we denote by M the set of all G quasi-orbits
on A, and write G,={l, leénorm, ker (I)=J}. Then (i) € acts on M and G,, (ii) There is an

& equivariant injection n: G;—~ M.

Proof. Ad (i) Given a Radon measure uon Aand €&, wedefine au by §, f(ax) - du(r) =
S af(@)-dlop) (x) (f€ L(A)). Since G €&, and £ acts on A as an abelian group, clearly
& maps M into itself. —We show next, that & leaves (}, invariant. To this end it is
enough to establish, that if V €Facn (G) is such, that ker (V)=J, and if «€E, then
ker («V) =ker (V). By Lemma 4.2.1, we can assume V =ind p 4 s W, whence aV =ind p 4 g(a W).
By virtue of Lemma 1.1.10, (i), it suffices to prove that ker (aW)=ker (W). Let M
be as in the proof of Lemma 4.1.4, and let us denote by T, T" the representations of M
corresponding to W and «W resp. Assuming, as we can by the previous lemma, that W is
@ invariant, the canonical measure A of T on M = F" is @ ergodic and is carried by 4< F’
where A4€F'[X’ depends on J only (cf. [4], 8.6.8, p. 157). Hence the closed hull of A isequal
to 4. The canonical measure of 7" is just the action of « on A; since « leaves 4 invariant
the closed hull of this measure, too, coincides with 4. In this fashion ker (T')=ker (7")
(cf. loc. cit.) and hence also ker (W)=ker (aW), proving our statement.—Ad (ii) Let 1
be some element of G ;. By the previous lemma, there is a G invariant and multiplicity free
W €ERep (D), up to unitary equivalence uniquely determined by the condition, that the
quasi-equivalence class of indp4 ¢ W be I. The canonical measure class of the representation,
corresponding to W, of M is a G quasi-orbit on ACﬁ =F’ and is well determined by I;
we write for it 7(l) (€ M). The map Ir>n(l) from 63, into M is clearly injective and, by

what we saw in Ad (i) above, it is £ equivariant. Q.ed.

4.2.4. For any element of é’nom, its stabilizer in N is closed.

Proof. We shall base this on the following two results, the first one of which is clas-
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sical. (1) Let E be a countably separated Borel space, G a separable locally compact group,
acting on E such that, for each fixed x € E, the map ar—~ax (2 €G) is Borel. Then G, (A.9)
is closed. (2) énorm, as a subspace of the Borel space @ is standard and thus, in particular, is
countably separated. (Thisisimplied by & recent result due to H. Halpern; cf. [15], Theorem
3.)—This being so to complete our proof it is enough to show, that for any I fix in énorm, the
map at>al (x€N) is Borel. Let V be some element of Fac (G) (cf. [14], p. 135), and p
the canonical projection from Fac (¢/) onto G. The map ar>aV is evidently Borel, hence
so is ar>al=p(aV) (x€N). Q.ed.

ProprosiTiON 4. Let G be a connected and stmply connected Lie group, and V,, V,
normal representations of G, such that ker (V) =ker (V,). Then V, is quasi-equivalent to V,.

Proof. We assume, that J and 4 < F’ are as before, and that ker (V;)=J (j=1, 2).
—We start by observing, that there is a unique element m € I such that £,=E& (A.9).
In fact, with the notations of the remarks preceeding Lemma 4.2.3, putting I'=E/A
(=4 =N/A), there is a I" equivariant homeomorphism between I" and A. In this fashion
we can derive our claim from the fact that, on I', any Borel measure, quasi-invariant with
respect to I', is equivalent to the Haar measure (cf [18], Lemma 7.3, p. 145).—With our
previous notations our proposition states, that G’, contains only one element. Let lGG,
and pu=%(); by Lemma 4.2.3, (ii) it is enough to show, that u =m. By our previous remark,
this will follow from £,=€. By Lemma 4.2.4, £ =E NN, is closed in €. The € equivari-
ance of 7 implies £,=&;. On the other hand, evidently G= €,, A= £, and GA =E&. Thus
finally GA < €, < &, providing £,=€. Q.ed.

Remark 4.2.1. Observe, that by what we have just seen, if 4 is an (evidently essentially
uniquely determined) G invariant Radon measure on 4, then [ o(x)-di(x)€Rep (D) in-

duces in G a normal representation of kernel J.

THEOREM 1. Let G be a connected Lie group. Then the map l—>ker (1) from the set of all
quasi-equivalence classes of normal representations into the space of primitive ideals is a
bijection.

Proof. We start by recalling, that if G is a locally compact group, H a closed, invariant
subgroup of G, ® the canonical homomorphism from @ onto G/H, V,;€ERep (G/H), V;=
V,00, then ker (V,)=ker (V,) is equivalent to ker (V1) =ker (V3).—Let now G be as in
our theorem, G’ the universal covering of &, ® the canonical homomorphism from "
onto G and I'=ker (®). Given V €Rep (() we shall write V' =Vo®D€ERep (¢'). We con-
clude from our starting remark, that given J€Prim (), there is a unique J'€Prim ()
such that, if 7 €Rep (G), ker (T)=J, then ker (7")=J’, and conversely, if U€Rep (@
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satisfies ker (U)=J’, then we have U=V’ (V €Rep (F)) with ker (V)=J.—Let dg and dg’
be right invariant Haar measures on ¢ and G’ resp., such that, if dy is the normalized in-
variant measure on I', we have dg’' =dy-dg. Let us put & =C*@) and &' =C*(G"). This
being said we claim, that for any T €Rep (G) we have T(®)=T'(&’). In fact, given
f€L(G"), let us denote by (f) the element of £(G), corresponding to x+> X, f(yx) (xEG);
we have T(7(f))=T'(f). Since 7(L(G')) = L(G) this implies T(L(F))=T"(L(G")), and thus
finally, since T(®), 7"(®’) are norm closed

T(®)=T(C(&)=T"(LGE)=T(®"),

proving our assertion. We conclude from this, that we have V€Facn (@) if and only if
V'€Facn(G’). In fact to this end it is enough to recall (cf. [4], 6.7.2. Proposition, p. 127),
that, for any locally compact group &, ¥V €Facn (G) is equivalent to the existence of a
nonzero operator 4 € V(Q) such that A*-A4 is of finite trace.—Let now J be an element
of Prim (@). Since G is simply connected, by Proposition 2 there is a W €Faen (G') with
ker (W)=J'. What we said above implies, that we can find V € Facn (), such that W=V,
and thus ker (V)=J. Hence the map lr>ker () from C”?nom into Prim (@) is surjective.—
If V,€Facn (@) and ker (V,)=ker (V,)=J, then ker (V;)=ker (V;) and hence, by Pro-
position 4, Vi~ V,. But then also V|~ V,, completing the proof of our theorem.  Q.e.d.

The following corollary has been known so far only if either G is unimodular (implied

by [4], 18.7.9, Corollaire, p. 326) or if G is solvable ([22], Corollary 7.2, p. 594).

CoroLLARY. Let G be a connected Lie group. If b is different from the unity, thereisa
normal representation of G, which on b assumes a value different from the unit operator.

In fact, by the theorem of Gelfand and Raikov, thereis a U €Irr (G) such that U(b) + I.
By Theorem 1 we can find a 7' €Faen (@) with ker (T') =ker (U). In this case, however, the
kernels of these representations, viewed as homomorphisms of ¢ into unitary groups, too,

must coincide, and hence T'() is different from the unit operator.

Remark 4.2.2. We wish to note here the following implication of the above results.
Let us assume again, that G is connected and simply connected, and let J be some ele-
ment of Prim (G). By Proposition 2, there is a T € Facn () with ker (7') =J, and such that
for some p€ B N &+=B+ (cf. 2.1) T(p) is nonzero and of a finite trace. If U~ T, U(p)is
an operator of the same kind. But, by Proposition 4, T is determined up to quasi-equi-
valence by its kernel. Hence we can conclude, that for any V €Facn (G) there is a p € Bt,
such that Vi(p) is nonzero and of a finite trace.—Let @ be a faithful, normal ,semifinite
trace on R(V). Then the map v+>®(V(v)) (< + o) (vEGH), up to a positive multiplicative
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constant, is uniquely determined by J =ker (V). We shall denote it by y;, and call the charac-
ter belonging to J €Prim (@) (cf. [4], pp. 126-7). Let us observe, that by Remark 2.3.1 and
by what we said above, if y,(v)=y;(v) (v€Bt; Jy, J, fix in Prim (G)), then J, =J,—We
recall flnally, that if @ is solvable, by [22] Theorem 4 (p. 593), the Plancherel measure is
carried by Gmrm, and there is a set < Gnorm of Plancherel measure zero, such that for any
V €Facn (G), the class of which belongs to Gnom—E, there is a continuous positive defi-

nite function ¢ of compact support, such that V(p) is nonzero and of a finite trace.

4.3. We recall (cf. Proposition 3}, that ¥V €Facn (G) is of type I if and only if, putting
J =ker (V), A(J) is G transitive and n(J) < + co. The following proposition characterizes

the situation arising upon dropping the second assumption on J.

ProprosiTION 5. Let G be a connected and simply connected Lie group. The following
conditions bearing on the element J of Prim (@) are equivalent (1) A(J) is transitive with re-

spect to G, (2) For any 0 € A(J), ind g4 co 18 @ normal representation.

Proof. (1)= (2) We write K = K(J).—Let us put, as before, T(o) =ind x40 (0 € A(J)).
If u is a G'invariant Radon measure on 4(J), by Lemma 2.3.6: 7 = [ %, T'(g) - du(o) € Facn(G).
If @ acts transitively on A(J) we have, for any g€ A4(J), T(p) ~ T, and thus indgy¢ @
is a normal representation.—(2)= (1) We start by observing, that if 7(¢) € Facn () for one
0 € A(J), then the same holds true for all g in 4(J). In fact, in this case even T'(¢) € Facn (G)
for all g€ F(J) (cf. Noté,tion 1.1.3). To see this we form again the direct product ¥ =
G x X(@), and let it act, similarly as in Lemma 4.2.3, on Rep (G) and Rep (K). To obtain
the desired conclusion it suffices to note, that F(J) is an N orbit (cf. (e), Lemma 1.1.5)
and that aT'(g)=T(xg) (0€U).—We are going to prove now, that T'(¢) EFacn (&) (for a
single g € 4(J)) implies, that & acts transitively on 4(J), in the following fashion. As-
sume, that p,, 0,€ A4(J). By what we said above, we have then T(g,), T'(p;) € Facn (G) and
also ker (7'(0,)) =J(0,) =J =J(0,) =ker (T'(g,)). Hence, by Proposition 4, T(o;)~ T(g,),
which, however, implies that Gg, =Gp, (cf. Lemma 1.1.4, (ii)), or that 4(J) is a G orbit.

Q.ed.
§5

Let G be again a connected and simply connected Lie group. If every normal repre-
sentation of @ is of type I, by Proposition 2 and Lemma 3.1, @ itself must be of type I.
Hence in order to form the character y; belonging to J €Prim (G) (cf. Remark 4.2.2) we
have to consider traces on factors which, in general, are not of type I. The purpose of this
section is to find for y,;| B+ an expression in terms of type I traces (cf. Theorem 2 below).
—We recall (cf. loc. cit.) that y,, | B+=y,,| B+ implies J, =J,.
81 — 742901 Acta mathematica 133. Imprimé le 7 Octobre 1974
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LEMMA 5.1. Assume, that J and D are as in 4.2. There is a closed subgroup S of G, such
that D= S<@ and 8/D 1is discrete, and a unitary representation W of D with the following
properties (1) Pulting V=indpye W, we have VE€Facn () and ker (V)=J. (ii) W is multi-
plicity free and sW ~ W (s€8), (iii) Writing U =indpysW, R(V) is tensor product of R(U)
with the full ring of a Hilbert space.

Proof. (a) Let A4 be as in the proof of Proposition 4. By choosing an origin for the ac-
tion of I' as loc. cit. we can assume, that 4 itself is a connected abelian Lie group. As in
Remark 4.2.1 we form the representation Z = [§o(x)-di(x); by what we said loc. cit.
indp4 ¢ Z€Facn (G) is of kernel J, and clearly A is just the Haar measure on 4. We havea
homomorphism ¢: G— 4 such that ker (¢)=D, ¢(G)=A4" implies A=A, and ac(x) =
olp(a)x) (@€G, € A4); we write ax in place of p(a)x in the sequel.—As in (b), proof of
Lemma 1.2.5, we observe, that there is a closed, connected subgroup A, of A4, such that
A A=A, and 4, N A = 4 is countable and dense in 4,. Let us put S=¢=(4). Sis
closed, contains D, S/D is discrete and B = 4/ A4,=G/S. Let u and % be Haar measures
on 4 and B resp. such that di =du-dh. For p€B, we write u, for the translate of x carried
by the coset p; then 1= [§ u, dh(p). Putting

®
T(p)= L o(x) - duy(x),
we have (cf. [17], Theorem 2.11, p. 204)
® ®
[ 70r-ab)= [ oto) - duter - 2.

Since clearly aT'(p)=T(ap) (¢ €G, p€DB), setting W =T(0), where 0 is now the neutral
element of B, we conclude (cf. [16], Theorem 10.1, p. 123) that

&
indZ= J (ind T'(p)) - dv(p)~ ind W.

Dte 8 D4G DG

Hence, putting V =indpy s W, we get V €Facn (G) and ker (V)=J. Since W is multiplicity
free and clearly sW ~ W(s€S8), it satisfies conditions (i)—(iii) of our lemma. Hence it re-
mains only to verify condition (iii).

(b) Putting U=indpys W, we obtain V=indss¢ U and V|§= §8shU -dh.

(A.11). We claim, that the last decomposition is central. To this end it is enough to show
the same for [@,5h(U|D)-dh. By sW~ W (s€S) we have U|D=[§,6W-do~ W; hence
the desired conclusion follows by observing, that clearly [&,s2W-dh(=Z) is central.

(¢) The subsequent analysis, in view of applications in the next lemmas, is somewhat

more detailed, than needed to complete the proof of our lemma. In order to realize V =
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indsq ¢ U, we construct a Borel cross section 7: B~ and an open subset <%, the com-
plement of which is of Haar measure zero, such that 7|0 be continuous, as follows. Since
B is a connected abelian Lie group, there are one-parameter subgroups {g,(¢); t€R, 1 <k <n}
{91(z); T€T, 1 <I<m} (T=circle group) of B, such that putting t=(t, ¢y, ..., t,) ER", 7=
(T1, Tas -y Try) ET™, the map (¢, T)>g1(8,)Gats) - Fnltn) 91(T1)9o(Ta) - gm(Tm) is & homeomor-
phism. We denote by w and ¢ the canonical homomorphisms ¢—% and R—T resp. Let
{ef(t); tER, 1<k<n}, {e;(t); t€R,1<I<m} be one-parameter subgroups of @, such that
o(e,t) =g,t) (1 <k<n) and w(e; (1) =g/(p@#)) (1 <I<m). We identify T to [0, 1]modulo1,
and define p: T—[0, 1] by w(z) =7 if 0 <z <1, and y(z) =0 otherwise. Let #: B—~>G be such
that
N(t, 7) = ex(ty) ealrs) .. ealtn)er(p(r1)) €2(p(Ta)) ... emlp(Tn))-

Clearly, # is Borel and won =identity. We set
O0={{t1);0<7,<1, 1<k<m}

Then QO is open in B such that A(B— 0)=0, and 5| O is continuous. For later use observe,
that dh| O =dt-dv (dt=di,dt, ... dt,, dv=dv,dr, ... dt,). (2) Let us put T =%(B); then any
a€G can be written uniquely as st (s€8,¢€T). Given a €G and h€B we write hd =hw(a);
hence if t€T, n(h)-t=yp(h, t)-n(ki) (y(h, t)€8). Observe, that if s€8, t€T, then

n(k)s-t = [n(k)- s>y ik, )In(hd).

For notational convenience, we shall write in the following sometimes b in place of n(h)€T
(@) and thus, in particular, ha for n(hw(a)) (@€G). (3) Let us set u(k, {)=U(y(h, t)) (REDB,
t€T). From what we have just seeri we conclude, that V =indgs4¢ U can be realized on
H(V)=H(U)®L}(B) by

(V(st)f) (h) = (h=2U) (s) ulh, ) f(hE) (wES, t€T; fEH(V))

(d) The following reasoning is inspired by [19], pp. 288-290.—By (b} the decompo-
sition V|8=[§ (,-1U)-dh is centrai. Therefore, if 4 E(R( V))", we can write by virtue of
it: A=f§ A(h)-dh, where A(h)€(R(U))" almost everywhere. Hence if t€T is fixed and
fEH(V), we have (AV(t)f)(h)=u(h, t)- A(h)f(hi) on the one hand; on the other, this is
identical to (V(t) Af)(k)=u(h, t) A(hE) f(kf) for almost all L€V In this fashion A(RT) éA(h)
and, in view of the aribtrariness of €7, there is a 4 €(R(U))’ such that 4(k)=4. In other
words (R(V)) =(R(U))'® I and hence R(V)= R(U)® B(L:(B)) (A.13) completing the proof
of Lemma 5.1. Q.e.d.

Let dz, ds be right invariant Haar measures on G and S resp., such that dz=ds-dh.
9 — 742901 Acta mathematica 133. Imprimé le 4 Octobre 1974
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We write & =C*(&), @ =C*(8S) and consider as in 2.1, the variety B< (. We observe, that
B|S<Bs<& (cf. Remark 2.1.2) and that B*|S<Bs<&+—Since VEFacn (G), R(V)
is a semifinite factor and hence, by (iii) of the above lemma, so is R(U).

LeEMMA 5.2. Assume, that V and U are as in Lemma 5.1. Let ¥ be a faithful, normal,
semifinite trace on [R(U)]*. There is a trace ® of the same kind on [R(V)]*, uniquely deter-
maned by

dnvw»=J;mTuhUn¢w»«m (@EBY).

Proof. Uniqueness is clear, since there is a ¢ € B+, such that 0 <®(V(p)) < + oo (cf.
Remark 4.2.2).—We recall (cf. (c. 2), proof of the previous lemma), that k2 (€B) can stand
also for (k) €G.

(a) Given p€B and &, ¢ fix in B, let us put F(x)=(r"1U) (p(hxt)) U(z) (x€S). One
verifies at once, that F(lx)EI';(x) (€L, x€8). We set X=8/L, and denote by dl, do
Haar measures on L and X resp., such that ds=dl-do By what we have just said we can
form [5(A1U)(p(h'2t)) U(z)-do=K,(h,t) (say). We observe, that the map (b, t)—>
K,(h,¢t) is continuous from O x O into B(H(U)), the latter being taken in the uniform
topology (cf. loc. cit. (c.1)).—We denote by ¥ the linear variety in H(V)=H(U)® Li(B)
composed of all those continuous maps from B into H(U), which are of a compact support
contained in (. We are going to show that, for any f€V, (V(@)f) (k)= fs K, (h, t)f(t)-dt.
In fact, let us suppose first that g €B, (~ L£(G); cf. Remark 2.1.1). Writing dk also for
N«(dh) on T =n(B), we have [op(g)-dg=fs.rp(st)-ds-dt. In this fashion, by (c.3) in the
proof of Lemma 5.1, we obtain

Venm- |

@lst) (V(st) f) () - ds - dt = f Lol (h~U) (3) palh, £) f(hE) - ds - dit

xT P’

=f (f p(st) U (hsh-l)-ds) ulh, t) f(hi) dt
T S

Writing d(g, - 9) = A(g,)dg, since [G, G]1=L< S, we have also d(ksh™') = A(h)ds (REG).
Hence the substitution s—h~1sh yields

V(g h(h)= (A(h))“(L(J‘;p(h‘lsht) U(s)- ds) plh, t) f(hE) - dt

Recalling, that At = y(h, t) - b (loc. cit. (c.2)) and u(h, t) = U(y(h, t)) (loc.cit (c.3)), we obtain
through the further substitution s— s(y(k, t))™*
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iy = o[ ([ oo tshy v as) sty -ar)

- (A(h»*l(f%( ng(wst) Uts) -ds) ft)- dt) - f b, 010) -

where, noting that d(hlh—') = A(h)-dl, with notations as at the start of 2.1, we have

=

Hh,t)= (A(h))"( f (b st) U(s)-ds) = (A(h))‘l(f (f p(h~ st U(l)-dl) U(s)) -do
N L

Ef (f "”‘l"%s"("*lU)‘”‘dl) U<S>)d<ff J (h=0) (F(g) (b "at)) U(s) - do= K, (h, 1)
= L )

If ¢ €B is arbitrary, we can find a sequence {@,}< B, such that supp (¢,) is carried
by a fixed compact subset C' of G/L and ¢ ~¢,—~0 uniformly (cf. loc. cit.). This implies,
by what we saw above, at once

(Vig)f) (hy= f Kb 0f)-dt (W),

where K, (h, t)= [ (R 1U) (p(hst)) U(s) - do, as claimed before. Q.e.d.

{b) From now on we shall assume, that ¢ € B+. Let e€ H(U) be fixed. We assert, that
the function (h, t)—> (K (h, t)e, e) is positive definite and continuous on O x 0. To see this,
we select a A€ L(0) (A.7), set f=e®A€H(V) and observe, that

V@), f) = fﬁ (K (b, e, ) AR) A() - dh-ds > 0,
B

which implies the desired conclusion.—Note that, in particular, K,(k, ) >0 (k€ Q).

(¢) We recall, that writing B for the full ring of L%(®B), we have R(V)=R(U)® B (cf.
Lemma 5.1, (iii)). Hence, since V €Facn (G) along with R(V), R(U) is a semifinite factor.
Let ¥ be a faithful, normal, semifinite trace on R(U). We are going to show, that there is
a trace ® of the same kind on R(V), such that

V() = L\F(KM, B)-dh (< + oo3pEBY).

We start by recalling (cf. [5], Corollaire, p. 85), that there is a family {e;; j€I}< H(U)
with W(4) =2, (Ae,, ¢;) (A E[R(UN]*). We can assume S+ @G. Let {i,; n=1, 2, ...} = £(0)
be a complete orthonormal system in L(B), and y; ,=e,Qp,. We denote by ® the faith-
ful, normal, semifinite trace defined on [R(V)}* by ®(4)=X, , (A, n ¥;,) and show
below, that it meets our condition. We write I =(0, 1), and recall (cf. (c. 1), Lemma 5.) that
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B> 0 is homeomorphic to R™xI™ such that dh|Q=di-dr. For j€I fixed, let us put
Kb, k)=(K,(h, k)e,, e,). Since (cf. (b) above) (k, k)— K ,(h, k) is positive definite and con-

tinuous on O x O, by the theorem of Mercer
w _——
> K,(h, k)}.n(h)ln(k)-dh-dk=f Kb, h)-dh< + oo,
n=1Jo0x%x0 [2)

Hence we conclude that

Q)= 3 V@ v =3( 2, [ Kb 0T 0020 )

n,7

=Zf K,(h,k)-dh=f (> Kk, h)-dh)
7J® B

Since Kk, h)=(K,(h, k)e,e), we have >, Kh, h)=Y(K,h,h)) whence O(V(gp))=
Jo' T (Ky(h, b)) -dh (< + o).
(d) We observe next, that if p € B, then ¢| S € Bs<= S = C*(S) and K, (k, k) = (A*U) (¢|8).

In fact, since (cf. (a))

K, (b, t)= f . (AU (p(h"st)) U(s) - do

we have (cf. Remark 2.1.2)
Kb, h)= f (h'U) (p(h"sh)) U(s) - do = f (h10) ((s) (R1U) (5) - do = (h"2U) (@] 8)
b b

Hence, by the last relation of (¢) we obtain finally
Q(V(w))=f%‘1’((hU)(¢lS)~dk

completing the ‘proof of Lemma 5.2. Q.e.d.

Below we shall write Tr ( ) for the faithful, normal, semifinite trace, with the standard

normalization, on the full ring of a Hilbert space.

Remark 5.1. We shall use later the following byproduct of the previous proof. 4ssume,
that M and N are closed, but not necessarily connected subgroups of G- such that M > N> L.
We suppose -also, that.(ind iy » ) =g E€Lrr (M), and that BN = §Sv pa-dp (A.11)3s central.
Then for any g€ Bi;

Tr(ﬂ(9))=fMWTr((poc) GIN)-dp (< +o0).
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We write X,(v)=®(V(v)) (v€G*; J=ker(V)) (cf. Remark 4.2.2). Below D, 4 and 1 are

as in (a), proof of Lemma 5.1.

LEMMA 5.3. Assuming switable normalization of A, we have
X(p) = L Tr(o(p|D)) - dA(s) (p€B").

Proof. (a) We write again D =C*(D) and &=C*(S). Since /D is discrete (cf. Lemma
5.1), we can identify D to a closed subalgebra of S.—Let us denote by C the annihilator
of D in X(8). C is compact, and we write dy for the normalized invariant measure on C.
We consider, as in Lemma 1.1.2, the representation y+—A(x) of C in Aut (§); we recall,
that T(A(y)v)=(T)(v) (T€Rep (S), v€S, y€C). Let us put P=J. A(y)-d,. P:S~>D
is continuous, such that P|D is the identity map; moreover P(S+)=®* and, if ¢p€Bs,
Pyp=¢|DEBy.

(b) Assuming, that U and ¥ are as in Lemma 5.2, we show next, that ¥(U(v))=
W(U(Pv)) (v€ST). In fact, since U=indps W, we have yU ~ U (X € (), hence

V(U(A)v) =c()F(U@) @EEH).

Obviously ¢(y;) c(x2) =¢()1°%2) and c(x) >0 on C and thus, by the compactness of C, ¢(y) =1
and therefore also W(U(4(y)v)=V(U(v)) (v€S+, y€ (). Fixing v€SH, if e is arbitrary in
H(U), we have (U(A(y)v)e, ¢) 20. Hence (cf. (¢), Lemma 5.2)

YU @)= J‘C‘F(U(A(X)U)) -dx= Ef (U(A(R)v) €5 ) - dx= 2. (U(Pv) e, ¢) =T (U(P))

jel iel

(veS™),

proving our assertion.—Note, that in particular, if f€Bs we have (cf. (a)) V(U(f)) =
Y(U(f| D)). Hence, by Lemma 5.2, we conclude, that

xf(¢)=d>(V<¢>)=f%‘F«hU)(wlD)-dh (< +o0) (p€BY).

(e) Let us put m+={v; v€D+, 0 <Y (U(v)) < + oo}, and denote by } the weak closure
of all finite linear combinations of {U(v); v€m+}. We claim, that ®#=R(U|D). In fact,
let P be the largest projection of . Since R is a two-sided ideal in R(U | D), it is enough to
show, that P is the unit operator. We have evidently s m* < m* (s€S) and thus P belongs
to the center of R(U). Hence, by U€TFac (8), it suffices to prove P =0, or that m* con-
tains an element v€D+ such that W(U(v))>0. By Remark 4.2.2 there is a ¢ € BT with
0<W(V(p))< +co and therefore, by the last relation of (b) above, we can find a hEG
satisfying 0 <W((hU)(p| D)) < + 0. Setting v=h"1-(¢| D) €D+, we obtain in this fashion,
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that 0 <¥(U(v)) < +co.—Let us put M=R(U|D) and Z=Y¥|M. From what we have
just seen we conclude, that Z is a semifinite trace on M.

(d) Since D is invariant in S, there is a representation s> w(s) of §in Aut (M) such
that w(s)(4)=U(s) AU(s™') (A€M). Evidently Z(w(s)(4)) =Z(A4) (A € M+). Observe, that
also w(s)(U(w)) =U(s-v) (vED+).—We recall, that U|D~ W (cf. (b), Lemma 5.1). Putting
N=E(W), let i: M—N be a * isomorphism such that i(U(v))=W(v) (v€D). There is a
faithful, normal, semifinite trace Z’' on N+ satisfying Z'(W(v))=Z(U(v)) (v€D+). If we
define w'(s)€Aut (N) by '(s)(i(4)) =i(w(s)(4)) (AE€EM), we have also Z'(w'(s)(4))=
Z'(A) (s€S; AEN*).

(e) With the notations of (a), proof of Lemma 5.1, W = {5, o(x)-du(x) (o(x) €Irr (D)),
where A, is the closure of the image of Sin 4, and u is an S invariant Radon measure on A4,.
Since this decomposition of W is central, we can write at the same time Z' = €, Z,-du(x),
where Z, is faithful and normal on the full ring of the representation space of o(x) (cf.
[56], Théoréme 2, (iii), p. 200). By replacing p through an equivalent measure u’ we can
achieve, that Z, has the standard normalization. In fact, let e be an abelian projection in
N, the central cover of which is equal to the unit operator. Writing e= (%, e(z)-du(x),
a(x) =Z,(e(x)) is 4 measurable and positive almost everywhere; hence it suffices to define
u' by du'(x) =a(x)-du(x)—This being so we claim, that 4’ is a constant multiple of H.
To see this it is enough to prove, that u’ is § invariant. This follows at once by observing,
that for all €S8 and A€N*, if A= 9 A(x)-du'(x), we have

L Tr(A(x)) - dp'(x) = Z'(4) = Z'('(5) (4)) = f Tr(A(s™" - ) - dp' ().

AL

Summing up, assuming, that u is suitably normalized, we have shown
P(UGID)=Z (W gl D)= [ Telo@lD) duto)< + = (p€BY)
A1

(f) Let h€G and p€B =G/S its canonical image. We write again (cf. loc. cit) u, for
the measure on 4, which is the translate, carried by the coset p, of u. By what we have
just seen, we conclude, that W'((AU)(p| D)) = § , Tr (o(p| D)) du,(c). On the other hand, if 1
is an appropriately normalized G invariant Radon measure on A4, we have A= fyu,-dh(p)
(cf. loc. cit.). Hence finally, by the end of (b) above

24{9) = L\F«hm (¢|D)) - dh= f%( LTr(a(«pw»-du,,<a))dh<p>= fATr(amD))-dz(a),

for all p € B+, completing the proof of Lemma 5.3. Q.e.d.
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We set E=E(J)eL/G, K=K(J) (cf. Notation 1.1.3) and form again F={g;0€K,
o|LEE} (cf. Lemma 1.1.5) and F'={0;0€D, o|L~zn, n any in E} (cf. Lemma 4.1.4).
We observe, that given ¢ € F’, there is a g€ F such that alK ~g. In fact, reasoning as in
(a), proof of Lemma 1.2.1, we can write o|K = [ ¢'()-dv({), where 7 is quasi-invariant
and ergodic with respect to D. But D acts trivially on F since G,=1 (¢€F) and D=1l
(¢f. the remarks before Lemma 4.1.2). Hence 7 is concentrated in one point of F, proving
our assertion. Since ¢ is uniquely determined by o, we can define p: F'—F by p(o)=p
(o| K ~p).

LemmaA 5.4. With notations as above, the map p: F'—F is G equivariant, continuous
and open.

Proof. The G equivariance is clear.—As in (e), proof of Lemma 1.1.5, we denote by
F the annihilator of L in X(K), and form the direct product N =G x J. Let ¢ be fix in F.
We recall (cf. loc. cit.) that the map i: N/N,~ F defined by i(aN,) =ag (¢ €XN) is a homeo-
morphism between N/N, and F< K.—As in the proof of Lemma 4.1.4, we write F' for
the annihilator of L in X(D) and set N'=G x F. Let ¢ be fix in F'. Then the map 4":
N’'|N,—~F’ defined by i'(aN,)=ac (@€N') is a homeomorphism between N'/N, and F'< D
(cf. loc. cit.). For p € F let us set y(p) =¢| K € F, and define the homomorphism h: N'—N
by k((a, @))=(a, p(p)). Let c€F’ be arbitrary and assume, that above p=p(c). We put
A'=N’'|N,, A=N|N,; these are connected abelian Lie groups. If a €N’, we have p(ac)=
h(a)p(c)=h(a)p, and thus there is a continuous surjective homomorphism ¢: 4'—~4,
such that g(aN,)=h(a) N, (a€N’). Hence ¢ is open. Observing, that the diagram

~

by by
L

is commutative, we conclude finally, that p, too, is open. Q.e.d.

We set G,=G(E) and write M = K(G,),< D. M is open in D; in fact, M= D,=(G,),.
We denote by £ the annihilator of M in X(D). We recall, that G,=11 (¢€ F), and that
M<Dc<l

LEMMA 5.5. Let ¢ be fiz in F' and set p=p(c). Then (i) The map gr>go (p€E) is a bi-
jection between & and p~Yg), (i) p~(o) is the closure of No in F'.
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Proof. We shall use the notations of 4.1 assuming that 7, at the start of loc.cit. is
such, that ¢o|L~n.—We recall (cf. the proof of Lemma 4.1.4) that (1) Denoting by £’
the subset of £ composed of all those elements, the restriction of which to Jisa multiple of
the conjugate of the identity map of 7 onto itself and, setting f(1) =[n{ ® (no®@,)]~ (n€L’;
nf=n*| D, ®; =®| D), the map 7+>f(n) is a bijection between £’ and the set of all g€ F"
with o|L~z, (2) Writing J” for the annihilator of J in X(Z), there is an isomorphism
7. F—>F such that @f(n)=f(x(p)y) (€EL’)—Let us denote by G the collection of all
those elements of X(U#), which on J restrict to the conjugate of the identity map TJ—J.
Since evidently U” < E*, given n€E’, there is a ¢p€G with n|U* ~¢; we put ¢ =Ai(n).
Setting nf=n°| K, ®,=®|K*® and, for p€QG, g(y) =[ns(po®D,)]~ ([ 1~ interpreted similarly
as above), clearly the map yr>g(y) is an injection of G into F. Since f()| K =~ g(A(n)), we
have p(f(n)) =g(A(n)), or

)4 -7
P 117
g p F

Let us denote by £; the annihilator of I'yU* in X(E); one sees at once, that 7(£)=§,.
We write, as in the proof of Lemma 4.1.1, H=(I)* x A, and denote by A, the subgroup of
A such that U*=(I")* x A,. Let &, be the annihilator of A, in X(A). The map p>@|A
(p€&,) is an isomorphism from &, onto &,. We conclude from this that, if 7€ £ and o =
A(t), the map @+>g7 (p €&,) is a bijection between & and A—(w). In fact, by Lemma 4.1.1,
E =T, xA, and hence we can write 7 as outer Kronecker product 7, x y (7, € f‘o, 1 €EX(AN—
This being said let us show, that p~(p) is an &€ orbit. In fact, if ¢’, 0" € F’ are such, that
p(0’)=p(c")=p then, in particular, ¢’|L~n, ¢"|L~mn, and thus we can find %', " €E’
with ¢"=f(y), o"=f("). Hence g(A(n'))=p(f(n'))=p(f(n")=g(A(n") providing A(n’)=
An"). Let p€E, be such, that " =yz’, and assume ¢ =17(p) (p€E). Then @o’ =¢f(n’)=
fa(@)n’)=f(n")=0", proving our assertion. If po =0 for some ¢ €&, and o =£(n), we have
He(@)n) =¢fn) =gpo=0=f(n), whence t(¢)n=n, t(g)=1 and p=1. Summing up, we have
completed to prove, that the map ¢pr>q@o (€ E) is a bijection between £ and p~—p) (0 =p(0)),
which is statement (i) of our lemma.—We have clearly llo<p~(p) and, since p: F'—>F
is continuous, also o< 27Y(p)- In this fashion, to establish (ii) it is enough to show that,
always with the notations of 4.1, putting ¥=0—(1",)/T we have Vo= p~Yp). Assume,
that o =f(n) (n€E’). By the proof of Lemma 4.1.3, if a€ 1 and y=®((a, 1)), we have ag=
fyn) (A.5). On the other hand, for each y €I there is a ¢, €&, such that py =g, 7. Hence,
to complete our proof, it suffices to show, that {¢,;y €T} is dense in &;. If not, there is
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an e€ K —(U”-Ty), satisfying ¢,(e) =1 (y €I',), which is equivalent to say, that e commutes
with T';. Since E=H-T, we can put e=h-y,(h€H, y,€Ly). Then h commutes with I';
and hence, by H<I'; =C(I'), also with I'y. In this fashion, 4 is in the center of I'y- ', =U
and e€ U*-T';, giving a contradiction. . Q.e.d.

Remark 5.2. Using the previous lemma, one can easily show the following. Let
J € Prim (G) and A€ F'[Z' be as e.g. in Lemma 5.3. Then J is of type I (cf. §3) if and only
of G acts transitively on 4. (One should compare this with Proposition 3).

For A(J) below, cf. Proposition 1; for K(J), cf. Notation 1.1.3.

THEOREM 2. Let J be an arbitrary element of Prim (@), If p is a properly normalized G

invariant Radon measure on A(J) (cf. Lemma 2.3.5), we have
XAg)= L(J)Tr (o(p!K(J)) - dule) (p€BT).

Proof. Below we shall write mostly 4= A4(J), K=K(J); on the other hand we replace,
in Lemma 5.3, 4 through 4. We recall, that by loc. cit. :

Xilp)= L Tr (o(p| D)) -dAo) (p€B),

where 4 is a  invariant Radon measure on 4’ € F'/¥’ (cf. Lemma 4.1.5),

(a) We claim, that p(A4")= A4(J). To this end let us show first, that p(A4')€ F/Z or,
that p(A4") is of the form_G_g (cf. Lemma 1.1.6). If € 4, we have A’ =Go; hence, putting
o= plo), G_QD p(A"). On the other hand we conclude from Lemma 5.5, that 4’ is the com-
plete inverse image of p(A4’). Since, by Lemma 5.4, p is an open map F'— F, proving
—G—Q=p(,4’), and hence p(A4')€ F/X. To show, that p(A4)= A(J) we recall (cf. the proof of
Lemma 4.1.4), that if V €Fac (G) satisfies ker (V)=J, then V| D=[%¢'(x)-dr(x) (¢'(x) ~ x),
and thus V|K(J)=f%,,0'(y) d&(y) (¢’ (y) ~y), whence the desired conclusion follows by
Proposition 1, (iii). 4

{b) Let £ and M be as in Lemma 5.5. We denote by dy the normalized Haar measure
on &£ and observe, that there is a ¢ invariant Radon measure u on 4= 4(J) such that, for
all fEL(A"), §4f0) dAo)=f(fcf(wo) dy))du(o). Reasoning, as in (b), proof of Lemma
5.3, we note, that [, Tr ((yo)(p|D))-dy=Tr (s(¢|M)). Hence we conclude that y,(¢)=
§4Tr (Blp| M))-dule) (p€B*) where, for each p€ 4, ﬁef{ is subject to the condition,
that §|K ~p.—With the notations as just employed, we shall have completed the proof of
our theorem by showing, that Tr (B(p| M))=Tr (o(p|K)) (p€B*).

(c) We claim, that there is a closed subgroup M, of G, with K< M,= M, and an
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a € M, such that (i) #=ind , 4 y «, (i) If § is the annihilator of K in X(M,), pax=y,a(p€M)
and the map pr>y, gives rise to an isomorphism between M/M, and §. In fact (1) With
notations as in 4.1, let us put A=U""T', n§=n°|M, ®,=0|M°. We have then M=
®-1(4)/T, and analogously as at loc. cit., with an appropriately chosen 7€4, =
[75® (ro®@,)]™. (2) A is of the form I'y x A, where A is discrete abelian, and T, is central
extension of a vector group with the circle group. Therefore, if 4, is a maximal abelian
subgroup of 4, there is a € X(4;) such that v=ind 4,4 4,7. We have furthermore for any
y€4, yt=g¢,7, and the map y—>¢, gives rise to an isomorphism between 4/4, and the
annihilator of A4, in X(4). (3) We recall, that if H is any locally compact group,
H, a closed subgroup of H and V,€Rep (H,), VERep (H), then (indy;5zV,)@V =
indy, 3 p(V,®(V{H,)). Therefore putting M,=0(4)/T, »f=n°|M, ®,=O|M°* and
a=[n;® (no®,)]", we obtain §=ind, 4 » «, proving (i). {4) As in the proof of Lemma 4.1.3
we see, that if a €M, and y =O((a, 1})€4,, then ax=[n{® (yn0D,)]". From this, by what
we saw in (2), we conclude that, for p€M, pa=y,a, and the map p+>y, gives rise to an
isomorphism between M/M, and $ < X(M), proving (ii).

(d) Let us put f=¢|M € By. By Remark 5.1, if dv is a suitably normalizedinvariant

measure on M/M,, we have

Tr (B(F) = f Tr ((por) (f1 M) - du(p).-
MM,
Therefore, denoting by dy the image of dv on §), we obtain
Te g = | Te (o) (1130 .

(e) We set g =f| M € Bj;. By Remark 2.1.2 if dw is a properly chosen invariant measure
on M,/L, a(g)= §m,zx(g(x))x(x)-dw(z). To simplify notations in the following, given
Y €H(= X(M,)) we denote in the same fashion the corresponding element of X(M,/K). Let
du be the measure, dual to dy, on M,/K, and let dy be the invariant measure on K/L satis-
tying dw =du-dy. If e is a fixed element of H{a), the function G(u) = { &, (x(g{zy))alzy)e, e) - dy
is continuous and of a compact support on M,/K, and we have

((W)(g)e,e)=f P(u)G(u) - du>0 (peH).

M,/K

Therefore

f ((ya) (g)e, e)'dw=f (f p(u) G(u)-du) -dw=f (alg(¥)) ay) e, e) - dy = (x(g] K)e, e).
o o\ mur KIL
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) Let {e;} be a complete orthonormal system in H(a). Given, that g=f|M,, we
obtain by virtue of (e) from the last equation of (d)

Tr(pi)= ;L((W) @) e, &) - dy = ZJ (a(f1 K) e, &)= Tr (o(f| K))

since clearly o|K =Q.¥-Substituting f=@| M (p € B+) we obtain the last relation of (b), and
hence the proof of Theorem 2 is complete. Q.e.d.

§6

In this last section we shall assume, that @ is a connected, simply connected and solv-
able Lie group with the Lie algebra g. For more about the background of the following
summary cf. [24], Introduction, p. 74 and 3, p. 80.—Given g€g’ (=dual of the under-
lying space of g) we denote by G, the reduced stabilizer of g (cf. loc. cit. 3.3.a), p. 83).
Putting (G,)o=exp (g,) (A.1, A.10) there 1s a x,€X((G,),) such that dy,=i(g|g,). We set
G ={1: 1 €X(G), 11(Go=xs}» R=Uyerr G and recall (cf. loc. cit. 3.6, p. 84), that one
can define an equivalence relation & on R as follows. Let G and L=[G, G1=(G, G] be as
in 1.1. Writing L =exp (b), we have D=[g, g]. Given E€L/G, we denote by Q its complete
inverse image, via the Kirillov isomorphism between d’/L and L (loc. cit. 3.1.a)), in g’
We have K(E)=G,L (cf. Notation 1.1.1), where g is arbltrary in Q. Putting K =K(E)
we set K {x; x € X(K), x]KO_l} Then B(Q) = U,GQG can be endowed with the struc-
ture of a bundle over Q, with K as structure group (loc. cit. 3.5.a), p. 84). This being so
there is an equivalence relation & on R, such that p,=p, () if and only if there is an
E€L|G with Q (as above) containing both p, and p, and Gp, =Gp,, the closure being taken
in B(Q)—We put- S=R/S and call its elements the generalized orbits of G.—Given
O€S, we can associate with it a unitary equivalence class F(Q) of factor representations
of @ in the following steps. Assume, that again A = U g.;,5 F(E) (cf. Lemma 1.1.6). (1) We
recall (loc. cit. 3.3.c), p. 83), that there is a map A: R~ such that A(p)|L=¢(p) (PER)
where, if p=(g, %), &(p) is the image of g|D in L,and F(p) =ind x4 ¢ A(p)€Fac (G) (K =K(E),
if p€Q as above) is unitarily equivalent to a holomorphically induced monomial repre-
sentation (that is a unitary representation of the form ind (f), p); cf. [22], Theorem 1,
p. 512) (2) There is an, essentially uniquely determined positive @ invariant Radon measure
dv on O (cf. [24], 3.6, p. 85), (3) If pr>T(p)€ F(p) (p€ O) is Borel measurable, F(Q) is de-
fined as the unitary equivalence class of [ T(p)-duv(p).—Let us define the map I: §—>@
by !(0)=quasi-equivalence class of F(Q) (O€S), and let us set J(O)=ker ({{0)). The
principal result of [24] (cf. Theorem 1, p. 114) states, that O—~J(Q) ¢s a bijection between
S and Prim (@). Below (cf. Theorem 3) we show, that O—1(0) is a bijection between S
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and &mm (for the latter cf. 4.2) whence the previous result, by virtue of Theorem 1, fol-

lows easily. In fact, let us put 6(J) =ker () (leé); we have

y > Prim (G).

To obtain the stated conclusion, it suffices to recall, that by loc. cit. 8| Gyor is a bijection

between Cnr*norm and Prim (G).

TuEOREM 3. With notations as above, the map I: §>Gisa bijection between the set S

of all generalized orbits and f;,,,,m.

Proof. Let us choose a primitive ideal J €Prim (G). Writing K =K(J) (cf. Notation
1.1.3)and 4= A(J)< K (cf. Proposition 1) we recall (cf. Lemma 2.3.6), that if o: 4—1Irr(K))

is a Borel cross section and y a @ invariant Radon measure on 4 (cf. Lemma 2.3.5), then

T=ind (J@ o(é)- d,u(é')) (€ Fac (G))
K4G\Ja4
is a normal representation of kernel J. We are going to construct an Q€S, such that T
belongs to the quasi-equivalence class I((), as follows. We set E=E(J) €L/@ (cf. Lemma
1.1.8) and form the corresponding Q< g’ as above. Putting ¥ = F(E) (cf. Notation 1.1.2)
and writing 4 for A{B(Q) we recall that (1) 4 is a continuous, open map from B((2) onto ¥
(cf. [24], Lemma 6, p. 91), (2) We set G, =G(E) (cf. Notation 1.1.1) and form, asin Lemma
5.5, M =K(G,), Then, for g€Q arbitrary and f=g|b, we have M=C_¥G(GQ)OL, and A(p,)=
Alp,) if and only if Mp, =Mp,, (3) A is equivariant with respect to G x K (loc. cit. 3.3.c),
p. 82)—We show next, that 1 gives rise to a bijection between B(Q)/S and F/Z (cf.
Lemma 1.1.6). To this end, it is enough to see, that 1(63_5 = —2_(;) But since _G_p is M in-
variant, and 4 open, we have Z(C_YY;)DGM, whence the stated conclusion is clear.—Let
OE€S be such, that A(0)= 4 (as above), and dv a positive, f invariant Radon measure on
O. If v* is a finite measure equivalent to v, then A.(¢*) is equivalent to . In fact, thereis
a closed, connected subgroup QCG~ X Ii’, such that M= §G and O=Gp (cf. [22], (d) in the
proof of Proposition 7.1, p. 541). Moreover, O is homeomorphic to §/G, and v is image of
a ( invariant measure on G/(, (cf. loc. cit. Proposition 1.1, p. 515). Hence it suffices to
observe, that 4 is-homeomorphic to ¢/G,M and p:is the image of a § invariant meas-
ure.—Observe, that from what we have just seen we can conclude, that v=f ,v;-du((),
where v; is carried by A2({) ([€ A4). Let- T be as at the start of our proof. Setting Z({) =



CHARACTERS OF CONNECTED LIE GROUPS 135

indgyc0(l) (C€A) we have T=[9Z(() du(). Let us put T(p)=Z(A(p)) (p€ O); observe,
that T(p)€ F(p), and therefore T’ = [ T(p)-dv(p) belongs to F(Q). We claim, that T" ~ T'.
In fact, since {§ T(p)-dv(p)~Z(C), by v={,v:-du() we obtain (cf. [17], Theorem 2.11,

p- 204)
@ ®/ ro ®
T = L T(p) - dv(p)= L (f T(p)- dvc(p)) du(l) ~ L Z(Q)-du(Q) =T
[

proving our assertion. Summing up, given J €Prim ((), and 7 €Facn (G) with ker (T') =J,
we have found an OéS, such that the quasi-equivalence class of T is equal to [(O).
Since, by Proposition 4, the assumptions 7T, €Facn (G) and ker (T,)=J imply T, ~ T, we
can conclude, that I(§)D Chinom —If, in our previous reasoning, in place of A€WA/Z
we start with OES we shall obtain, that l(o)eé,mm, and hence [(S)=
fashion, to complete the proof of our theorem, it suffices to show, that (O,)=1(0,) im-
plies O;=_0,. Let us put (0,) = A4, €A/Z, and suppose, that A= A(J;) (J,E€Prim (&),
k=1, 2). If T €Facn (G) is such, that ker (T,) =J, (k=1, 2) then, by what we saw above,
T, is of the quasi-equivalence class [(O;) (k=1, 2). Therefore, by assumption, 7', ~ T',,
and hence J, =ker (T,;)=ker (T,) =J,, and thus also ,41 A, and 0;,=0,. Q.e.d.

G oorm-—In this

Appendix: Some general assumptions and notational conventions

(1) Given a Lie algebra g (defined always over the real field and finite dimensional),
exp (g) will denote a connected and simply connected Lie group with the Lie algebra g.
If G=exp (g) and ) is some subalgebra of g, exp (f)) will stand for the connected subgroup,
determined by §), of G.

(2) All unitary spaces considered are assumed separable. If W is a unitary repfesenta-
tion of a group or a * representation of a C* algebra H(W) denotes its representation space
and E(W) the weak closure of the collection of all linear combinations with complex coef-
ficients of operators of W——When quoting the htera.ture we shall often leave to the
reader to translate results concerning representatlons of O* algebras in the group repre-
sentation context.

(3) If W is a * representation of a o algebra, it will be assumed to be nondegenerate,
and thus R(W) always contains the unit operator.

(4) All locally compact groups and C* algebras are supposed to be separable. If ¢ is
such a group or 4 is a C* algebra, we shall write Rep (&), Irr (G) and Fac (G) (Rep(4),
Irr (4) and Fac (4) resp.) for the set of all conerete representations, irreducible representa-
tions and factor representations resp,—'fhe few exceptions, when we use these symbols

in the sense of [4] to designate the related Borel spaces, will be specially noted.
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(5) Whenever convenient, we shall use the same symbol for a concrete representation
and its unitary equivalence class. Thus if 7, and T, are concrete representations, 7, =T,
indicates, in general, only their unitary equivalence (unless specified otherwise by the
context). Should the necessity arise to emphasize, that we are claiming only unitary equi-
valence, we shall write 7';~ 7',.—Quasi-equivalence of 7, and of 7', will be denoted by
T,~ T, —Analogous conventions will be observed for * representations of C* algebras.

(6) If G is a group and H an invariant subgroup of G, given =z € Rep (H) (cf. (4) above)
and a €@, an stands for the representation of H defined by (ax) (k) =n(a—'ha) (h€H).

(7) If 7 is a locally compact space, £(T) denotes the family of all continuous complex-
valued functions with a compact support on 7'.

(8) Given a group @, we write X(G) for the group of all continuous homomorphisms of
G into the circle group.—For 7 €Rep (G) and y € X(G), yz stands for the tensor product of
n with the one dimensional representation y.

(9) If the group G acts on the set X as a transformation group, given p€X, we shall
denote by @, or by Stab, (G) the stabilizer of p in .

(10) Given a topological group G, we write G, for the connected component of the
identity.

(11) We shall often use the following relation. Assume, that G is a locally compact
separable group, K a closed invariant subgroup of G and 7 €Rep (K). Then, in the sense

of unitary equivalence
]
(indT)| K = f oT -do,
K{G G/K

where do is & Haar measure on G/K, a: G/K—@G an arbitrary Borel cross section and
(0T)(k)=T((a(0))"ka(o)) (¢ €G/K).

(12) Given a group G, G* denotes its center. Same for algebras.

(13) Given a Hilbert space H, B(H) stands for the ring of all bounded operators and
C(H) for the collection of all completely continuous operators.

(14) We use always the same symbol for a unitary representation of a group and for
the corresponding representation of the group C* algebra.

(15) For a unitary representation U, U denotes its conjugate.
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