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I have recent ly  1 proposed the following 

Conjec tu re :  Let / (x ,  y, z) be a cubic polynomial in x, y, z with integer coe//icients 

such that / (x ,  y, z) - -  a is irreducible /or all a. Then i/ the equation 

/ (x, y, z) = 0 (1) 

does not represent a cone in three dimensional space and has one solution in integers, 

there exists an in/inity o/ integer solutions. 

This conjecture,  as far as I know, has no t  been proved for even simple equa- 

t ions such as 
x 3 + y~ + z 3 = 3, 

bu t  was proved for some equations and in par t icular  for 

z2 - -k~=lx  + m y +  A x 3 +  B x 2 y +  Cxy~ + Dy3, 

where the coefficients are integers and 1 is pr ime to m, the known solution being 

x = 0, y = 0, z = k. The case 1 = m = 0 seems more difficult, bu t  interest ing results 

can be found for some "equations of the form 

z ~ - k  S = A x  z + B y  a. (2) 

I find t h a t  integer solutions of (2) can be deduced f rom the integer  solutions of 

some very  simple e q u a t i o n s  included in (1), namely,  

ax3 + byZ + c = x y z ,  (3) 

1 " O n  cubic equat ions  z 2 ~ ]  (x, y) w i th  an inf in i ty  of in teger  solut ions"  Proceedings o/ the 
American Mathematical Society 3 (1952), 210--217.  



78 L . J .  Mordell. 

Here  some solutions of (3) are obvious since we can take x =  _+1, and for y, any  

divisor of c+_a. The conjecture suggests t ha t  there should be an infinity of integer 

solutions of (3) and this will be proved. Hence there exist equa,tions 1 of the form (2) 

with an infinity of in teger  solutions as is shown by  

Theorem I. 

The equation 
z 2 _ 272 a ~ b ~ j2 = a b 2 x a + y3 (4) 

where a, b, ] are integers, has an in/inity o/ integer solutions. 

The known types  of formulae giving an infini ty of integer solutions for equa- 

t ions included in (1) are as follows. They  m a y  involve one integer parameter  t 1 or 

two integer parameters  tl, t2. I n  the first case, the solutions are expressed as poly- 

nomials in t 1 or polynomials  in @, ~ l ,  ~f~ where 01 is some constant ,  e .g .  a quad- 

ratic or cubic irrat ionali ty and ~,, Y~I are conjugates  of 01. I n  the second case, 
~ t  1 t 2 t t t~ we have polynomials  in tl, t~, or polynomials  in 0 t~ 0 t', wt w2, ~)t ~f12, where 01, 02 

are cons tant  cubic irrationalities, and ~01, Wl are conjugates  of 01 etc. The irra- 

tionalities arise as the units of quadrat ic  or cubic fields. We m a y  also have two 

parameter  solutions as polynomials  in 01 ~t~ where 01 is a variable quadrat ic  i r ra t ional i ty  

of norm un i ty  as occurs with x 2 + y~ + z ~ + 2 x y z = 1. 

I n  Theorem I, the infini ty of solutions are given by  polynomials  in a, b, c 

with integer coefficients bu t  of variable degrees in a, b, c. The polynomials  are as- 

sociated with an  integer sequence t = l ,  2, 3, . . . ,  and their  degrees are associated 

with 0 t where 0 ~ -  3 0 + 1 = 0 ,  and so really with a l ternate  Fibonacci  numbers.  

W e  consider first the equat ion (3). I f  a prime p is a common  divisor of x and 

y, then p~/c, and so there can only be a finite number  of values for p. Wri t ing  

px,  p y for x, y, we have 
apxa + bpya + c / p 2 = x y z .  

Hence  we can find all the integer  solutions of (3) f rom a finite number  of equat ions  

of the same form in which (x, y ) =  1. 

We write (3) as a congruence and prove 

Theorem II. 

The congruence 
a x  a + b y  a+c=:O (rood xy),  (4) 

1 I h a v e  p r e v i o u s l y  f o u n d  s o m e  e q u a t i o n s  of  t h i s  k i n d  i n  a p a p e r  " N o t e  o n  c u b i c  d i o p h a n t i n e  

e q u a t i o n s  z * ~ J (x, y)  w i t h  a n  i n f i n i t y  of  i n t e g r a l  s o l u t i o n s " .  (Journal o/ the London Mathematical 
�9 Society 17 (1942), 199-203). 
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where a, b, c are given integers, has an in/inite number o~ solutions /or which 

(cx, y )=  1, and we can give x, y as polynomials in a, b, c. 

More generally, it will be seen that  the same method proves the existence of 

an infinity of solutions of 

axm +by~ +c~O (rood xy), 

where m, n are given positive integers, and also of 

/ ( x ) + g ( y ) + c ~ O  (rood xy),  
where 

/(X)__Cloxrn ~ a l x  m 1 ~  . . .  _~am_lX ,  

and 
g ( y ) = b 0 y ~ + b l y ~ - l + . .  +b~_ly,  

and the a's and b's are integers. 

The working is simpler if we write Xl, x2 for x, y respectively. Since (xl, x~) = 1, 

(4) is equivalent to the two congruences 

bx~+ c~O (rood xi) , (5)  

a z ~ + c - O  (rood x~). (6) 

We can satisfy (5) by putt ing 

b x2 3 + c = x I x3, (7)  

where x 1 is any divisor of b x~+e and x2, prime to c, is still to be determined. We 

suppose x 1 can be taken so that  (x> xa)= 1, and it will suffice for this if @3, c)= 1. 

To satisfy (6), we require from (7), 

\ xa / 

Since @2, xa)= 1, this will be satisfied if 

a e a + e x ~ O  (rood x2) , 

or since we have assumed that  (x2, c)--1, if 

x~ + ac  ~ 0 (rood x~). (8) 
From (7), 

bx~ + c~O (rood xa). (9) 

Hence (8), (9) are two congruences in x2, xa similar to (5), (6), the two congruences 

in Xl, x2. 

A particular solution of (8) is given by taking 

x2= x] + ac 2, b(x~ + ac~)a + c-~O (rood xa). 
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Since (x~, c ) = 1 ,  it suffices if x~l(ba~P+ 1) and so (xa, c ) - l ;  and in part icular  if 

2Ca--baac~+l. Then x~=-(baaP+l)a+ac "~, and 

and so 
2C~ x~ = b (x~ + a cZ) ~ + c, 

X 1 = b x ~  @ 3 bac ~" x~ + 3 baeca2c~ + c. 

We can deal more generally with (8), (9) by  wri t ing (8) as 

X~ ~- a c  2 = X 2 X 4. 

( x3  @ a c 2 ) 3 @  c ~ - O  ( r o o d  2C3)" 
Xa ! 

Then from (9) 

Suppose n o w  (xa, xa)= 1, which from (10) is so if (xa, ac)= l. Then 

x~ + ba ~c5~0 (rood xa), 

x~ + a c ~ = 0 (rood 2C~). 
and f rom (10) 

These two congruences in x3, x4 are similar to those in x~, xa given in (8), (9). 

A par t icular  solution of (11), (12) is given by 

xa=x]+ba3c~; b3aSc13+ l ~ O  (rood x4). 

We can take x ~ = l + b a a  sc 13 and so (2C4, a c ) = 1 .  Then 

(10) 

(11) 

(12) 

xa = (1 + b ~ a s cla) 3 + b a 3 c 5 ~- 1 (rood c), 

2C4 2C~ = (x ]  + b a 3 c5) 3 + a P ,  

x2 = 2cs + 3 b a 3 c ~ 2c~ + 3 b 2 a 6 c ~~ x~ + a c 2 =~ 1 (rood a c). 

cont inue this process. Thus for ~ - 1 ,  2, 3 . . . . .  we define exponents  ~(, W e  can 

/Q, vQ by the recurrences formulae, 

~tQ+2 = 3~+1 - ~,, /~+2 = 3 ~ t e + l  --~t~, r~+2 = 3 r e + l  - -  r e, (13) 
and 

~ 1 = 0 ,  ~ 2 = 1 ,  ~ 3 = 3 ,  ~ 4 = 8 ,  ~ 5 = 2 1  . . . .  

/~1 = -  1, /~2=0,  /~a= 1, Z4=  3, /~5 = 8  . . . .  (14) 

v 1 = 1 ,  v2=2 ,  v 3 = 5 ,  v 4=13 ,  v ~ - 3 4  . . . .  

I t  m a y  be remarked tha t  the Fibonacci  numbers  are 1, 2, 3, 5, 8, 13, 21 . . . . .  so t ha t  

(14) consists essentially of sequences of a l te rna te  Fibonaeci  nmnbers.  

Also 

a~~ ~~ for a - 2 ,  3, (15) Xa+ 1 "~- 2C a Xa+2~ . . . 
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We suppose xl, x2, . �9 �9 xo determined from these equations and then xQ+~, xs+s satisfy 

x 3~+2+a~Q+lbs~+lc~+l-O= (rood xQ+l), (16) 

x~+l + a~QbZ~cVe~O (rood xe+2 ). (17) 

Then we can take as a particular solution 

X~+ 1 = X34.2 ~- C~ )''~ b /~+1  c vp+I, (18) 
and 

xe+2 = a a~e+l-~e b ~ 'e+l - ' e  c ~ + l - ~ e  + 1 = a ~e+z b "e+2 c ~+e + 1. (19) 

Clearly (xe§ , abc)=]  and so (xq+2, xe+~)=l.  Since x~+2~1 (mod abc), x e + l ~ l  (rood 

abc), then x e ~ l  (rood abc). Hence (x~+~, xe)= 1, (x~, xq-1)= t etc. 

I t  may  be remarked tha t  we might take as other particular solutions 

3 - xe+l  = xq+2 + a ~e+l b "e+l  c re+l ,  

and then 
+_xe+2 = - a~'e+2b'e+e c~e+2 § 1. 

The values of xe+l, xe+~ in (18), (19) give a value for Xl, x2. We show now 

tha t  x 2 is a polynomial in a, b, c, of degree e XQ+2 in a. Since the coefficients are 

positive and the degrees are steadily increasing with ~, it follows tha t  the values of 

xz found in this way are all different and so we have an infinity of solutions 

i n  Xl~ x 2. 

Let  the degrees in a of xQ+~, X~+ l , . . .  be Ae+2, Aq+I . . . . .  Then from (19), 

Ae+2=~e+~, and from (18), Ae+1=3~+2 since 3~e+2~e+l .  Also from (15), 

A,,+A,~+2=max (3Ao+1, ~o), 
if 3 A ~ + 1 ~ , .  Hence 

A~ = 3 A e +  1 - A~+2  = 8 ).q+2 = )-4 ire+2 

Ao-1 = max  (3 ~ ~e+u, ~-1)  - Ae+I 

= 21 A e + e  = 2~ Ae+e .  

We easily prove by indhction tha t  for ~ = - 2 ,  - 1 ,  0 . . . .  ~ - 2 ,  

A~_~ = ~+~ A0+~. 

For if the result is true for ~, ~ + 1 ,  it is true for ~ + 2  since 

A~_~_~ + Ao_~ = max  (3Aq_~_~, ~_~_~), 
or  

A~_~_~ + ,~+~ A~+~ = 3 ~+~ A~+z 
since 

3 Ae-,-1 >_ 3 Ae+e = 3 ~ e + ~  ~_~_~. 
6--513804.  Acta mathematica. 88. Impr im4  le 28 octobre 1952. 
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Hence  f rom (13), 

and  so for T = p - 4 ,  
A~ = ).o+2A~+2 2 

We now come to Theorem 1. Consider  the  equa t ion  

z 2 - / c  "~ = a b (x 3 + c y3), c 7 z 0. (20) 

Deno te  b y  0, % ~ the  roo ts  of t a = c .  

Take  
z + k = a  I-[  ( p + q O + r O ~ ) ,  

O,~,yJ 

s - k = b I - [  (p~ + q~ O + n 02), 

(21) 

(22) 

where  p, q, r, Pl, ql, rl are  integers .  Then m u l t i p l y i n g  (21), (22) and  rep lac ing  0 ~ 

b y  c and 04 b y  0c, we have  equa t ion  (20), where  

x = p p ~  + ( q r l  + q ~ r ) c  , y = p q ~  + p ~ q + c r r ~ .  

Also p r ~ + p l r + q q ~ = O ,  and  

2 k = a (p3 + c qa + c 2 r 3 _ 3 c p q r )  - b (p~ + c q~ + c 2 r~ - 3 c Pl ql rl) .  

Take  r 1 = 0 ,  P l - q ,  q l = - r -  Then 

and.  
x = p q - c r  2, y = - p r , + q  2, z - k = b ( q a - c r 3 ) ,  

2 k = a (p3 + cq3 + c2r3 _ 3 c p  qr)  - b (q3_ cr3). 

Take  now c = b / a ,  and  so 

and  

z 2 -  k 2 = a D x  3 d- b 2y3 ,  

2 k = a p  ~ r 3 - 3 b p q r .  
a 

I t  is easy  to  impose  condi t ions  upon  a, b so t h a t  th is  e q u a t i o n  has  in teger  solut ions  

in  p , q , r  and  

b b 2 
x = p q - - r 2, y p r + q 2, z = /c + b qa - - -  r 3, 

a a 

are  integers .  I n  p a r t i c u l a r ,  t a k e  p = 3 b P ,  r = 3 R a ,  k = 2 7 a b 2 ] ,  where j is an  in teger .  

Then x, y, z are  in tegers  and  

2 j = b P 3 +  2 a R 3 - P R q .  
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From Theorem I I ,  this has an infinity of integer solutions in P,  R, q. Since 

b l x  and b]z,  on put t ing b x for x, and b z for z, we see tha t  

z 2 - (27 a b j)2 = a b ~ x 3 + y3 

has integer sohltions given by 

x - 3 P q - 9 a R  2, y = - 9 a b P R + q  2, 

z = 27 a b j + q3 - 27 a2 b R ~, 

where 2 ?" = b P  3 + 2 a R  3 - P R q .  

The infinity of integer solutions in P, R, q gives an infinity of integer solutions 

in x, y, z since the value of z shows at  once by  Thue's theorem that  if z were 

bounded, then also q, R would be bounded. 

I t  may  be noted tha t  if in (20) we take a = b = l ,  P l = - P ,  q l = 0 ,  r l = r ,  we 

see tha t  integer solutions of 

z 2 - k ~ = x 3 + c y a  

are given in  terms of integer solutions of 

2 p a § cq a -  3 c p q r =  2 k  (23) 

by  means of 
x = - p 2 + c q r ,  y = - p q + c r  2, 

z -  k =  - pa § car a. 

We can easily impose conditions other than k ~ 0  (mod 27 c) to make obvious some 

solutions of (23) for p, q, r. 

Postscript. - -  The conjecture is false in the simple nontrivial case 

X 2 § y2 § Z 2 §  4 X y Z = 1. 

After I spoke to Dr  Cassels about  this equation, he proved very s imply  tha t  the only 

integer solutions were those typified by  y = z  = O. 

Note added in reading the proofs, Aug. 1952. - -  Hurwitz  has proved tha t  if a 

is an integer 4 1,3, the only integer solution of the equation 

x2 +y2 +z~ + a x y z = O  

is x = y = z = O .  

See his Mathematische Werke 2, p. 420. 

St John 's  College, Cambridge, England. 


