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I have recently! proposed the following

Conjecture: Let [(z, y, 2) be a cubic polynomial in x, y, 2 with integer coefficients

such that f(z, y, z) — a 1s trreducible for all a. Then if the equation
f(x, y,2)=0 1

does not represent a cone in three dimensional space and has one solution in integers,
there exists an infinity of integer solutions.
This conjecture, as far as I know, has not been proved for even simple equa-

tions such as )
2+ yt+28=3,

but was proved for some equations and in particular for
P—E=lr+my+Ada3+Bsty+Czxy®+ Dy,

where the coefficients are integers and ! is prime to m, the known solution being
=0, y=0, z=%. The case I=m=0 seems more difficult, but interesting results
can be found for some ‘equations of the form

P2—k=Az*+ Bys. (2)

I find that integer solutions of (2) can be deduced from the integer solutions of
some very simple equations included in (1), namely,

ar®+biyr+ce=2z2yz, (3)

1 “On cubic equations 22=f (x, y) with an infinity of integer solutions” Proceedings of the
American Mathematical Society 3 (1952), 210—217.
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Here some solutions of (3) are obvious since we can take z= +1, and for y, any
divisor of ¢+a. The conjecture suggests that there should be an infinity of integer
solutions of (3) and this will be proved. Hence there exist equations?! of the form (2)

with an infinity of integer solutions as is shown by

Theorem 1.

The equation
22—212 a2 2= b®a® + 43 4)
where a, b, j are integers, has an nfinity of integer solutions.

The known types of formulae giving an infinity of integer solutions for equa-
tions included in (1) are as follows. They may involve one integer parameter ¢, or
two integer parameters ¢, {,. In the first case, the solutions are expressed as poly-
nomials in #; or polynomials in 6, @i, pi* where 6, is some constant, e.g. a quad-
ratic or cubic irrationality and ¢, v, are conjugates of 0,. In the second dase,
we have polynomials in ¢, t,, or polynomials in 6% 6%, @it gk, yityh where 6,, 0,
are constant cubic irrationalities, and ¢,, y, are conjugates of 0, etc. The irra-
tionalities arise as the units of quadratic or cubic fields. We may also have two
parameter solutions as polynomials in 0" where 6, is a variable quadratic irrationality
of norm unity as occurs with 2%+ 42+ 2> +2zyz=1.

In Theorem I, the infinity of solutions are given by polynomials in a, b, ¢
with integer coefficients but of variable degrees in a, b, ¢. The polynomials are as-
sociated with an integer sequence t=1, 2, 3, ..., and their degrees are associated
with 6° where 62~36+1=0, and so really with alternate Fibonacci numbers.

We consider first the equation (3). If a prime p is a common divisor of z and
y, then p?/c, and so there can only be a finite number of values for p. Writing
px, py for z, ¥y, we have

aprd+bpydte/pi=zyz.
Hence we can find all the integer solutions of (3) from a finite number of equations
of the same form in which (z, y)=1.

We write (3) as a congruence and prove

Theorem 1I.

The congruence
ax®+byd+c=0 (mod zy), (4)

1 1 have previously found some equations of this kind in a paper “Note on cubic diophantine
equations 22=f(x, y) with an infinity of integral solutions”. (Journal of the London Mathematical
Society 17 (1942), 199-203).
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where a, b, ¢ are given nlegers, has an nfinite number of solutions for which
(cx, ¥)=1, and we can give x, y as polynomials i a, b, c.
More generally, it will be seen that the same methed proves the existence of
an infinity of solutions of
az™ +by" +c¢=0 (mod zy),

where m, n are given positive integers, and also of

f(x)+g(y)+e=0 (mod zy),
where
J(@)=apa" +a, " '+ tan_ iz,
and
g@) =boy" + by Fbay,

and the o¢’s and b’s are integers.
The working is simpler if we write @, 2, for z, y respectively. Since (z,, 2,) =1,

(4) is equivalent to the two congruences

bai+c=0 (mod ), (5)
azi+c=0 (mod z,). (6)

We can satisfy (5) by putting
bas+c=x, x, (7)

where @, is any divisor of ba+¢ and w,. prime to ¢, is still to be determined. We

suppose x; can be taken so that (x,, 2;)=1, and it will suffice for this if (z,, ¢)=1.
To satisfy (6), we require from (7),

(bx§+c

al22TC

T3

3
) +c=0 (mod x,).

Since (x,, z;) =1, this will be satisfied if

ac®+cxd=0 (mod ),
or since we have assumed that (z,, ¢)=1, if

z3+act=0 (mod ). (8)
From (7),

bai+c=0 (mod a). (9)

Hence (8), (9) are two congruences in z,, z; similar to (5), (6), the two congruences
in z, ,.

A particular solution of (8) is given by taking

z,=a+ac®, b(@+ac®P®+ce=0 (mod z,).
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Since (x5, ¢)=1, it suffices if x,](badc®+1) and so (23, ¢)=1; and in particular if
#3=ba*c®+ 1. Then z,= (ba®c5+ 13 +ac?, and
T332, = b (2 +ac®)P+e,
and so
2, =bad+3bactal+3bactadt-c.

We can deal more generally with (8), (9) by writing (8) as

a3+ acd =y, (10)
Then from (9)

3 2
x5 tac
6(3

3
) +e=0 (mod z,).
£

Suppose now (2, ;) = 1, which from (10) is so if (z,, ac)=1. Then
23+ bacb=0 (mod x,), (11)
and from (10)
Z+act=0 (mod x,). (12)
These two congruences in a,, @, are similar to those in z,, z, given in (8), (9).
A particular solution of (11), (12) is given by
Zy=ai+badcd; b3asc3+1==0 (mod z,).
We can take x,=1+5%a8¢® and so (z,, ac)=1. Then
z3=(1+b3abc®)P+ba’cs=1 (mod c),
2y, = (23 +badcP)P+ac?,
T, =23 +3badcial+ 3b%a8c0a} + ac®=1 (mod ac).

We can continue this process. Thus for o=1,2,3,... we define exponents 4,

Mo, ¥, Dy the recurrences formulae,

lg+2:329+1*lg, /ug+2:3/ug+l—luga VQ+2:3VQ+1_V97 (13)

and

M=0, A=1, 4,=3, 1,=8, 4,=21, ...

= =1 =0, us=1, uy=3, u;=8, . .. (14)

v=1, v,=2, v;=5, v,=13, »;=34, ...
It may be remarked that the Fibonacci numbers are 1, 2, 3, 5, 8, 13, 21, . . ., so that
(14) consists essentially of sequences of alternate Fibonacci numbers.

Also

3 Ayqthy ¥
2+ a b T =g, 50, for 0=2,3, ... (15)
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We suppose x;, #,, . . . #, determined from these equations and then z,.1, z,4+» satisfy
Do+ a BN =0 (mod 74,1), (16)
281+ 008" =0 (mod w,.s). (17)

Then we can take as a particular solution

g+1 b:“g—{rl

¢ ot (18)

3 A
Loi1= Xgre +a

and

32 -4, ,3u ~u, 3y —y 2 »
Cpra=a CTTep et et et e = gler2pferz etz 4 ] (19)

Clearly (2522, abc)=1 and so (42, %,.;)=1. Since z,4:=1 (mod abc), z,.1=1 (mod
abc), then z,=1 (mod abc). Hence (2,11, %) =1, (z,, T,-1)=1 ete.
It may be remarked that we might take as other particular solutions
__xg+1:x2+2+alg+lbug+lc”g+l’

and then
2

tapp= —a OTIPerE e

The values of xp.1, Zo1e in (18), (19) give a value for z;, z,. We show now
that x, is a polynomial in a, b, ¢, of degree AZ.» in a. Since the coefficients are
positive and the degrees are steadily increasing with p, it follows that the values of
x, found in this way are all different and so we have an infinity of solutions
in/xl, Z.

Let the degrees in a of .+, %pe1, - .. be Agis, Apia, . . .. Then from (19),
Agys=2g12, and from (18), A,11 =322 since 34,:2>2,41. Also from (15),

AU + ‘40’+2 =max (3 A0+1; j'0');
if 3A4,,15#2%,. Hence

Ay=3dg1— Agro=8gs2=24 Ap12
A,y =max (34, Apr2, Ap1) — o1
=21 Agyo= 25 Apso.
We easily prove by induction that for 7= -2, -1,0,...0—2,
Aoz =Arrs Agss.
For if the result is true for 7, T-1, it is true for v+ 2 since

Ag~r~2 + A@~1 =max (3 Ag——r—l, 19—1—2);
or
. AQ—1—2+1T+4AQ+2=32'T+5 Ag+2
since
3 Ag—'r—l 2 3AQ+2 = 3 /'[Q+2> 19_1_2.

6 — 513804. Acta mathematica. 88. Imprimé le 28 octobre 1952.
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Hence from (13),
Ag—ra2:Zr+6Ag+2
and so for 7=p—4¢,
Az = Ag+2 Ag+2 = /’{§+2-
We now come to Theorem 1. Consider the equation

-k =ab@d+cy’), c*0. (20)

Denote by 0, ¢, ¢ the roots of #*=c.

Take
z+k=a [] (p+q0+7r06?, (21)
0, oy
2—k=b ] (o, +q 0+7 0%. (22)
0. @,y

where p, ¢, 7, p;, @, 7; are integers. Then multiplying (21), (22) and replacing 6
by ¢ and 0* by 0Oc, we have equation (20), where

x=pp+(grytaqr)e, y=pq +pigtern.
Also pry+p,7+9q, =0, and
2k=a(p+e®+Ar3—3cpgr)—b@i+edi+Fri—3epaam).
Take r,=0, p,=¢q, ¢;= —r. Then

rx=pg—cr’, y=—pr+q¢*, 2—k=>b(*—cr3),
and.
2k=a(p +cd+cEr*—3cepgr)—b(g®—crd).

Take now c¢=b/a, and so

Z2—kP=aba®+b2y8,
and

2
2k=ap3+2—2~~ r3—3bpgqgr.

It is easy to impose conditions upon a, b so that this equation has integer solutions

in p, q,r and
b, 2 b
=P, Y= PrEg, z=k+bq3—;r3,

are integers. In particular, take p=3bP, r=3Ra, k=27ab?j, where j is an integer.
Then z, y, z are integers and
2j=bP3+2aR3—PRqg.



The congruence az®+by®+¢=0 (mod zy). 83

From Theorem II, this has an infinity of integer solutions in P, R, ¢. Since
bz and b|z, on putting bz for x, and bz for z, we see that

- (27abj)=ab®2®+¢?
has integer solutions given by
x=3Pq—9aR? y=—9abPR+¢,
2=27Tabj+q¢*—27a%b B3,
where 27=bP*+2aR*—PRq.

The infinity of integer solutions in P, R, ¢ gives an infinity of integer solutions
in «, y, 2 since the value of z shows at once by Thue’s theorem that if z were
bounded, then also ¢, B would be bounded.

It may be noted that if in (20) we take a=b=1, p;=—p, ¢ =0, r,=r, we

see that integer solutions of

2-kP=a3tey
are given in terms of integer solutions of
203 +ec@®—3cpqr=2%k (23)

by means of
x=—p teqr, y=—pqgtecr’

z—k=—p3+c*rd.
We can easily impose conditions other than k=0 (mod 27 c¢) to make obvious some
solutions of (23) for p, g, r.
Postscript. — The conjecture is false in the simple nontrivial case
Py A+ dryz=1.
After I spoke to Dr Cassels about this equation, he proved very simply that the only
integer solutions were those typified by y=2=0.
Note added in reading the proofs, Aug. 1952. — Hurwitz has proved that if a
is an integer = 1,3, the only integer solution of the equation

PP+ +azyz=0
18 z=y=2=0.
See his Mathematische Werke 2, p. 420.
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