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1. Introduction 

For a locally compact group G, Tits [14] has described the subgroup B(G) of all ele- 

ments in G which have precompact conjugacy classes. To use this result for analysis on 

G it is important  to have information about  conjugacy classes of whole neighborhoods in 

G, as well as those of single points. In  particular, it is natural  to ask whether an arbi t rary 

g E G,,~ B(G) has a neighborhood U with infinitely many  disjoint conjugates aa(U)=gUg -1, 

g E G. Although this is true for semisimple connected Lie groups [10], we show tha t  it fails 

to hold in general. Nevertheless, the unbounded conjugacy classes in G do possess certain 

uniformity properties. Using the structure theory of Lie groups, the authors describe the 

uniformity properties of the unbounded conjugaey classes in any  connected locally compact  

group. These results are then applied directly to prove tha t  the support  of any finite central 

measure on G must  be contained in B(G). Locating supports in this way greatly simplifies 

the harmonic analysis of such measures. Finally the authors refine Tits '  description of 

B(G), so tha t  these results can be applied to a var iety of groups. 

1.1 De/inition. Let X be a locally compact space, and G x X - ~ X  a jointly continuous 

action, and A c X a closed G-invariant set. A layering of X terminating with A is any 

sequence X = X m ~ X , ~ _ I D . . . D X o = A  of closed G-invariant sets such tha t  each point x 

in the kth " layer"  Xk ~ Xk-1 has a relative neighborhood in Xk ~ Xk-1 with infinitely many  

disjoint G-transforms. I f  X = A  the conditions are vacuously satisfied. 
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Let ~(G) be the group of all inner automorphisms ~g of G. Our main result gives the 

existence of a layering of G under conjugation 3(G) • G~G.  The proof is first reduced to 

the case of a connected Lie group without proper compact normal subgroups. Lie theory 

is then used to produce a layering tha t  terminates with the centralizer ZG(N ) of the (con- 

nected) nilradieal N. Applying the (known) result for the semisimple case, one then ex- 

tends this layering so tha t  it terminates in a certain closed characteristic subgroup A whose 

identi ty component is a vector group; in fact, it is the center of the nilradical. Finally, one 

is reduced to studying the affine action of a one parameter  group, or of a connected semi- 

simple Lie group, on a finite dimensional real vector space. This reduces to questions about  

linear actions, which are analyzed by  elementary methods. Our principal result along these 

lines is the following. 

1.2 THEOREM. Let G be a locally compact group and G • V ~  V an a/line action on a 

real ]inite dimensional vector space. Let Vc be the elements in V with bounded G-orbits. Then 

Vc is a G-invariant a//ine variety (possibly empty) and there is a layering V = Vm~ ... ~ Vo = Vc 

consisting o/G-invariant a/line varieties. 

This result seems to be of independent interest even when G =l~, because of its rela- 

tionship to dynamical  systems. 

For a locally compact group G, let ~4(G) denote the group of all bieontinuous auto- 

morphisms of G, and Y(G) the subgroup of inner automorphisms. I f  x e G, then 0x denotes 

the conjugacy class--i ts Y(G)-orbit 

1.3 De/inition. For x e G  we say tha t  the class O~ is (i) bounded if Ox has compact 

closure, (ii) unbounded if Ox has noncompaet  closure, (iii) uni/ormly unbounded if there 

exists a neighborhood U of x with infinitely many  pairwise disjoint conjugates. 

The set B(G) = (x e G: Ox is bounded} is a normal (in fact, characteristic) subgroup in G. 

Tits [14, p. 38] has shown tha t  B(G) is closed in G if G is a connected group; this means tha t  

B(G) is an [EC]-  group, in the sense of [3]. I n  section 4 we give an example of a (5-dimen- 

sional) nilpotent group and elements x E G ~  B(G) such tha t  no neighborhood of such a 

point has infinitely many  disjoint conjugates, even though the class O~ is unbounded. 

Let  A be a closed :~(G)-invariant set in G, and G=X,n ~ . . . D X o = A  a layering ter- 

minating with A. Points off A must  have unbounded eonjugaey classes, so tha t  A ~ B(G). 

Points in the first layer X ~ Xm_ 1 actually have uniformly unbounded eonjugacy classes, 

but  for x EXm_l (usually a lower dimensional variety) we must  restrict at tention to rela- 

tive neighborhoods, see section 4. 

Here is our main result on unboundedness of eonjugacy classes. 
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1.4 THeOReM. 1] G is any connected locally compact group, then there exists a layering 

o~ G that terminates with the closed subgroup B(G); that is, there are closed y(G)-invariant 

subsets G = Gm~... D G o = B(G) such that every point x E Gk'~ G~-I has a relative neighborhood 

in G~ with infinitely many disjoint conjugates. 

Clearly a layering cannot terminate with a set smaller than B(G). 

I f  x ~ B(G) the uniform unboundedness properties of its conjugaey class can be used 

to draw immediate conclusions about  the location of supports of central measures on G. 

Let  Co(G) be the continuous complex values functions with compact support  on G, equip- 

ped with the inductive limit topology. A Radon measure /z E Cc(G)* is invariant under 

3(G) (or, in some accounts, a central measure) if 

<~,/>=<~,lo~> all ~eY(G), leCc(G), 

where (/o ~)(g)  =/(xgx-1). Now M(G), the measures with finite total  variation, is a Banach 

*-algebra under convolution and is the dual of the Banach space Co(G ) of continuous func- 

tions which vanish at  infinity. Lett ing ~ be the point mass at  x e G, it is easily seen tha t  

/~ e M(G) is invariant  ~ ~x ~- # ~- ~ -1  =/x for all x E G ~ v ~-/x = # ~e v for all v e M(G) ~ /x  is in 

the center of the Banach algebra M(G)~#(~x(E))=g(E)  for all Borel sets E =  G and all 

x E G. The Radon-Nikodym theorem shows tha t  the absolute value Igl is invariant  if ~u is 

invariant; since supp (/~) = supp (I/x I), all questions concerning supports can be decided by  

examining only non-negative central measures. 

I f  xeG has a uniformly unbounded 3(G)-orbit, then x cannot be in supp (/~) for any  

positive central measure/xEM(G); for any  neighborhood U of x we get # ( U ) > 0 ,  and if 

U has infinitely many  disjoint conjugates {~(U):  i = 1 ,  2, ...}, then g(a~(U))=g(U) and 

#(G) ~ > ~ 1  # ( ~ ( U ) ) =  + ~ .  I f  we are given a finite positive central measure and ~ layer- 

ing G =  X z D  ... ~ X  0 = A, then by  examining orbits in Xm~ Xm-1 we conclude tha t  

supp (~t)= X~_ r But  now ju may  be regarded as a finite 3(G)-invariant measure on the 

locally compact  space X~_ 1. In  discussing supports it is only necessary to examine relative 

neighborhoods within Xz_ 1. Since orbits of points in Xz_l ~ X~_~ are uniformly unbounded 

with respect to Xm_ l, we conclude tha t  supp (g )=  Xa-2. By induction, we conclude tha t  

supp (g )~  A. Applying Theorem 1.4 we get: 

1.5 T H E O R ~ .  All / ini te  central measures on a connected locally compact group G are 

supported on the closed subgroup B( G). 

Now B(G) always has a simple structure, see section 3, and in many  interesting cases 

reduces to the center of G, see section 9. Section 9 is devoted to a refinement of Tits '  

description of B(G) in important  special cases. 
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We are indebted to the referee for his many  helpful suggestions which allowed us to 

shorten, and give more elegant proofs for, a number  of results in this paper. 

In  dealing with connected Lie groups we shah refer to the following closed sub- 

groups: (i) R = rad (G), the radical; (ii) N = nilradieal; (iii) Z(N) = center of the nilradieal; (iv) 

Za(N)=eentralizer of /V in G; (v) Z( G) = center of G; (vi) K ( G ) = t h e  maximal  compact  

normal subgroup in G. The identi ty component  of a group H is indicated by  H 0. For the 

existence of K(G) in connected locally compact groups, see [5; p. 541]. We will also 

write [ x , y ] = x y x - l y - l = ~ x ( y ) y - 1  for the commutator  of two group elements, and 

[A, B] = {[a, b]: a e A ,  bEB} for subsets A, B of G. 

2. Basic combinatorial results on layerings 

Here we set forth simple facts about layerings which will be used throughout our dis- 

cussion. In  particular, they allow us to reduce the proof of Theorem 1.4 to the case of a 

connected Lie group. The first lemma allows us to lift a layering in a quotient group back 

to a layering of the original group. 

2.1 L~MMA. Let X ,  Y be two G-spaces, ~: X-~ Y a continuaws equivariantmap. I f  x E X  

and G.g(x) is uniformly unbounded in Y, so is G . x  in X .  I] Y ~ Y m D . . . ~  Y o = A  is a 

layering in Y, the sets X k = g - l (  Yk) give a layering in X that terminates at A'  =~-I(A).  

The proof is obvious by  lifting disjoint neighborhoods in Y back to X. I f  H is a closed 

normal subgroup of G and ~: G-+G/H=G" is the quotient map, each inner automorphism 

~x on G induces an inner automorphism f lz(yH)=~z(y)H=~(~x(y))=~n(x)(~(y))on G'. 

This correspondence maps Y(G) onto Y(G'). The map g: G-~ G' is equivariant between these 

actions of G on G and G' respectively. By  Lemma 2.1 every layering G' = X ~  .. .~Xo=A~ ' 

in G' lifts back to a layering Xk =~r-I(X~,) of G which terminates at  A =~-I(A') .  

2.2 LEMMA. Suppose that A,  B are closed :l( G)-invariant sets in G. I f  there are layerings 

G-=XrnD .. .~ X o = A and G = Yno  ... ~ Yo = B, then there exists a layering o/ G that termina- 

tes with A f~ B. 

Proof. The sets Y~ = Yk N A are closed, *J(G)-invariant; we assert tha t  G = Xm~ ... ~ X 0 = 

A = Y ~  ... D Y'0 = A  n B is a layering. I t  is only necessary to examine orbits of points 

xG Y ~  Y~,_~. By hypothesis, there is a relative neighborhood U in Yk which has infinitely 

many  disjoint conjugates ~(U) .  Now V = U N A is a relative neighborhood in Y~, and since 

~t(V) ~ a~(U) these conjugates are pairwise disjoint within Y~. Q.E.D. 



U N B O U N D E D  CONJUGACY CLASSES I N  L I E  GROUPS 229 

If the maximal compact normal subgroup K(G) is factored out of a connected locally 

compact group G, then the quotient group G/K(G) contains no nontrivial compact normal 

subgroups. However, the group G may be approximated by Lie groups by factoring out 

small compact normal subgroups K p c  G (Yamabe's theorem, see [7, Ch. 4]); since the Kp 

all he within K(G), G/K(G) must be a Lie group. For any locally compact group G, and any 

compact normal subgroup K, B(G) is the inverse image of B(G/K) under the quotient map 

~: G--->G/K. 

In view of Lemma 2.1, we may pass from G to G/K(G) in proving Theorem 1.4; tha t  

is, we are reduced to considering only connected Lie groups without proper compact nor- 

mal subgroups. 

3. Structure of B(G) 
3.1 L ~ A .  I/ G is a connected Lie group and i/K(G)o is trivial, then (i) its nilradical 

N is simply connected and (ii) Z(N) is a vector group. 

Proo/. Property (ii) follows from (i). Obviously K(N)o, being characteristic in N, is 

trivial if K(G)o is trivial. Let  ~: _ ~ N  be a universal covering. Then Z(~)  = V is connected, 

hence a vector group. Let  W be the vector subspace of V spanned by Ker (~). Then K = 

7t(W) ~ W/Ker (zt) is compact, central in N, and so must be trivial. Thus re is faithful, as 

required. Q.E.D. 

If  K(G)o is trivial G acts via Y(G) as additive (hence R-linear)transformations in 

V =Z(N), giving us a linear action G • V-+ V. Let  Vc be the set of elements v E V with pre- 

compact G-orbits; Vc is a G-invariant linear subspace. Tits' elegant analysis [14] of the 

bounded orbits in G yields the following description of B(G). 

3.2 T H E O R ~  (Tits). Let G be a connected Lie group. If K(G)o is trivial, then B(G)= 

Z( G). Vc. .Furthermore, B( G) is a closed, characteristic subgroup o/ G whose connected compo- 

nent is B(G)o = B(G) N N = Vc. I/  K o = K(G)o # (e} then B(G) is the inverse image o/B(G/Ko) 

under ~: G~G/K o. 

Tits proves that  B(G)=Z(G) for simply connected nilpotent Lie groups. In section 9 

we shall calculate B(G) in a number of other cases, thus strengthening the conclusions in 

[14] in those cases. For example, if G is simply connected solvable and is either complex 

analytic, real algebraic, or of type (E), then B(G)=Z(G). 

4. A counterexample 

The following example shows that  orbits of points x q. B(G) can fail to be uniformly 

unbounded, even though unbounded. Thus the introduction of layerings seems unavoid- 
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able. We s tar t  by  examining a simpler situation, which will recur later on. Let  V = R  4 

and let ~( t )=  E x p  (tA), t ER, be a continuous one-parameter  subgroup of GL(V) where 

[il~ [i t J2, 3J3,1. 0 1 1 t t2/2!1 
A = so tha t  ~?(t) = . 

o O l  : 1  
... 0 0 

(1) 

This gives a linear act ion R • V-+ V, with which we m a y  form the semi-direct p roduc t  

group G = R • ~ V. 

4.1 EXAMPLE. I] Vc={vE V: orbit o /v  is precompact}, then Vc=Ker A; thus points 

in V.,. Vc have unbounded orbits. There exist points in V,.. Vc (in/act in Ker  A 2) such that 

no neighborhood has in/initely many disjoint traus/orms under ~(R). 

Proo/. Using the  same basis as in (1), we express vectors as column vectors  v =  

(a z, a2, as, a4); then  

( t~ p t 2 ) 
r/(t) (v)= ax + a2t + as ~. + a4 ~ ., a2 + ast + a4 ~., as + a4t, a4 . 

The polynomials  involved are unbounded,  so it is clear t ha t  the orbit  of v is bounded  

a2 = as = a4 = 0 (a z arbi t rary)  <=~v E Ker  A, which proves the first par t  of the theorem.  

Now consider x = (0, 1, O, O) E V,~ Vc and  let U be any  neighborhood of x in V (similar 

reasoning applies using any  non-zero scalar 2 ~=0 in place of 2 = 1). For  any  infinite sequence 

{t~: i = 0 ,  1, 2 . . . .  } in R, let U~=~i(t~)U. We will show tha t  there exist ? ' ~ k  such t h a t  

Ur f3 U k #  ~ ;  consequently,  no infinite sequence of t ransforms of U can be pairwise disjoint. 

Clearly we m a y  assume t h a t  t o = 0, so U 0 = U; t ransforming all sets by  ~( - t  0) cannot  

alter disjointness relations. Wi thou t  loss of generali ty we m a y  also assume U has the 

form U = {(al, as, as, a4): ]as]< e for i #  2, and ]a 2 - 1 ] <  e} for some e with 0 < e < 1/2. 

Le t  ~=12/~. I f  It, I for some 1, then  (0, 1, -6/t~, 12/t~) and (0, 1, 6]tj, 12/~) are 

bo th  in U. Since 
~/(t,)(0, 1, -6/t,,  12/t~) = (0, 1, 6It,, 12/t~) 

we get  (0, 1,6/tj, 12/t~)EUjN Uo#O. If Its] <~ for all j, then {t,} is bounded  so t h a t  

I t j -  tk [ < e for some pair  i # k. Then  ~](tr tk) (0, 1, 0, 0) = ( t j -  t~, 1, 0, 0) E U, so t h a t  

~(tj) (0, 1, 0, 0) =~(t~)(tj-tk, 1, 0, 0)E Uj N U k # O .  Q.E.D. 

4.2 COROLLARY. I /  G = R  •  as above, then G is simply connected nilpotent and 



U N B O U N D E D  C O N J U G A C Y  CLASSES I N  L I E  GROUPS 231 

B(G) =Z(G)= Vc. But there are points xEG,,~ B(G) such that no neighborhood of x has infini- 

tely many disjoint conjugates. 

The proof is routine. 

5. Proof of Theorem 1.4 (Step 1) 

For reasons explained in section 2, we can restrict attention to connected Lie groups 

in which K(G) is trivial (G without compact normal subgroups). Let Za(N ) be the centra- 

lizer of N in G; it is a closed characteristic subgroup in G, and is not necessarily connected. 

The purpose of this section is to prove the following lemma. 

5.1 LEMMA. Let G be a connected Lie group with K( G)o trivial. Then there exists a layer- 

ing o /G that terminates with Za(N ). 

Proof. The nilradical N is closed and characteristic in G, and is simply connected by 

Lemma 3.1. Thus the Lie subgroups in the upper central series N =Nm~ ... ~ N1D N o = {e), 

Nm = N; Nk-1 = Lie subgroup generated by [N, Nk], 

are closed (all analytic subgroups are closed in a solvable simply connected group [4, p. 

137]). They are characteristic in both N and G. Now define H~=(xEG: [N, x ] c N k )  for 

0 ~< k ~< m; thus, G = H , ~ . . .  ~ H 1 ~ H o =ZG(N). These sets are all closed in G since each 2V k 

is closed. They are subgroups since: [x ,n]=xnx- ln - lENk~ax(n)=-n(modNk) ,  for all 

n EN. Note that  Hk~ •k for all k. The inclusion Hk~ Hk_l need not be proper, even though 

Nk #Nk_l for each k. 

The subgroups H k provide the desired layering of G. If  m =0  then G =Za(N ) and there 

is nothing to prove. Otherwise, consider any k with 1 ~< k ~< m and any point u 0 E Hk ~ Hk-1; 

again, if Hk = Hk_l there is nothing to prove, so assume Hk =~Hk-1. Then [N, %] c Nk and 

[N, u0] ~= Nk-1 since u 0 ~ Hk_l, so there is an n o E N such that  [no, u0] e N k ~ Nk-1. Since the 

2Y~ are closed, as are the H~, we see that  

There exists a relative neighborhood of u 0 in H k such that  [no, u]ENk~Nk_ 1 

for all u this neighborhood. (2) 

We will use powers of the inner automorphism a: g-->nog(no) -1 to obtain the disjoint con- 

jugates of a suitably chosen relative neighborhood of %. Let fl be the inner automorphism 

induced by ~ on ~ = G/Nk_ 1. Let lY =Nk/Nk_ 1 and l]~ =Hk/Nk_l; then ~ is a vector group 

since N is simply connected (Lemma 3.1). Write ~=7e(x) for any xEG, where ~: G ~  t is 

the quotient homomorphism. For u EHk near u0, as in (2), we get 
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a(U) = nou(no)-lu-lu = [n 0, u] u @ u (mod N,_I). 

Since ~(a(u))=fl(~(u)) for all uEG, and the image of a relatively open neighborhood of 

uo in Hk is a relatively open neighborhood of re(u0) in 2l~, we see that: 

For all ~ near u0 in M, fl(~) -~ [r  0, ~]" ~ @ ~. (3) 

Fix a relative neighborhood ~ of ~(u0) in ~ such that  (3) holds. Then [rio, [n0, u]] E 

~[N, Nk]cz(Nk_l)  ={~}, so that  ~(n0) = r  0 commutes with all points in the set It0,/~] and 

products thereof. Thus, fl leaves all such points fixed and 

~(~) = [r0,  ~ ]  

p 2 ( ~ )  = ~([~0, ~]~) = [r0 ,  ~].~(~) = [~, ~]2~ 

~(a) = [r0,  ~]~, 

for p = I ,  2 .. . .  , ~ECT. Note that  the "displacements" [r  0, fi]~ all lie in the vector group 

~'=Nk/Nk_ 1. Define r ~ via ~ [ r 0 ,  fi]. Then r is a continuous map of 2~ into ~, 

since r  =~[no, Hk]~z(N, )  = ]~. Using additive notation in ]~, and noting that  r 4:0 

in TY, we see that  there exists a relatively open neighborhood A of r in ~, and integers 

n(1) <n(2)<. . .  such that  the sets n(k)A (scalar multiples of A) are pairwise disjoint for 

k = 1, 2 . . . . .  Now replace ~ above by any smaller compact relative neighborhood of u0 in 

_~ such that  r  Let  ~V: 17 A (~(~-~ (a symmetric neighborhood of zero in ~). If 

we set (1/2)W={(1/2)w: wE W), it is clear that  the sets in TY: 

n{k) r + �89 = n(k) r § 2 n ~  l~/ (4) 

lie within n(k)A for all large k (say k~>N0), because n(k)--+ + oo and r is compact in 

the open set A, and W is also compact. Thus the sets n(k) ~(~) • (1/2) I~/arc disjoint for 

~>~0. 
Now examine the action of fl in the fl-invariant closed subset ~:/~ ~; fl = a~t~,~ e Y((~) 

and the conjugates {fl~(~): n~Z} lie in ~r since U is a relative neighborhood of ~0 in _71~. 

The conjugates fl'(~)((~) are disjoint for k/> No; indeed, if p > q ~> N O give intersecting con- 

jugates, then there would be points u~, u~. ~ U with 

~ ( P ) ( U l )  = r  1 = r = f l ' (q)(U2) , 

which would imply that  

(all within l~), so that  there would exist points w~, w~_ ~ ~ /wi th  
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n(p) r + �89 1 = n(q) r + �89 

contrary to the disjointness of the sets (4). Thus, there are infinitely many  disjoint con- 

jugates fin(U) in _~. I f  U = z - i ( U ) ,  then the conjugates an(U) are disjoint, as in the proof 

of Lemma 2.1. Q.E.D. 

5.2 COROLLARY. I /  N is a connected nilpotent Lie group then B ( N ) = g - i ( Z ( N / K ) )  

where K = K ( N )  is the maximal compact normal subgroup and ~: N - > N / K  the canonical 

homomorphism. For/ ini te  central measures we have supp (tu)c B(N). 

I t  is worth noting tha t  the connectedness of G is never really used in 5.1; the proof 

uses only the eonnectedness of the nilradical. For  non-connected Lie groups, define N(G) = 

the nilradical of G 0. This remark may  be useful in later studies of central measures. I t  al- 

ready yields the following result concerning non-connected groups. 

5.3 COROLLARY1 Let G be a (not necessarily connected)Lie group whose connected com- 

ponent has no proper compact connected normal subgroups, so that K(Go) o is trivial. Then 

supp ( /~)cZa(N)/or  every/inite central measure #, where N is the nilradical o/ G. 

6. Proof of Theorem ].4 (Step s 

In  this section we shall deal with the semi-simple part  of G by examining the map 

~: G-->G' =G/R  where R = r a d  (G). Then G' is a semisimple Lie group and there exists a 

semisimple Lie subgroup S ~ G such tha t  G = S R  and ~ I S is a local isomorphism. Notice 

tha t  K(G') may be non-trivial even if K(G) is trivial. 

For connected semisimple Lie groups, the unbounded conjugacy classes have been 

described in [14] and [10], respectively, where it is shown tha t  

(i) B(G')=Z(G') .K(G')  

(ii) The orbit is uniformly unbounded for every point outside of B(G'). 

Let C = ~-I(B(G,)); as in Lemma 2.1, it is obvious tha t  the orbit of any  point x E G ~ C 

is uniformly unbounded, so there is a one-step layering of G terminating with C, which is 

a closed characteristic subgroup of G: 

I f  H = Z v ( N ) ,  then by  Lemma 2.2 there is a layering of G tha t  terminates with the 

closed characteristic subgroup A = H N C. Our main observation is the following. 

6.1 L~MMA. Let G be a connected Lie group without proper compact normal subgroups. 

Then the connected component A o o/the subgroup A = H  ~ C is the vector group V =Z(N).  

This lemma will allow us to restrict our at tention to the action of :J(G) on A, rather  

than  all of G. Furthermore,  since each eoset of A 0 is a copy of V, we will be able to reduce 

1 6 -  742909 Acta mathematica 132. I m p r i m 6  le 19 Ju in  1974 
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the proof of Theorem 1.4 to the study of certain affine actions on the vector space V. 

These problems will be treated in the next section. 

Proo/ o/ 6.1. The closed subgroups C, H =Za(N), A and their connected components 

C 0, H0, A 0 are all characteristic in G. We first note that  

rad (Ao) = V = Z(N). (5) 

Obviously V c  rad (A0) since V is abelian, normal in G, and CD R ~  V, H =Za(N)~  V. 

But rad (A0) is normal in G; it is also connected and solvable. Thus, rad (A0) c R = r a d  (G). 

If  rad (A0) extends outside of N, then N and tad (A0) generate a connected nilpotent Lie 

subgroup (since tad (A0)~ A c H centralizes N) that  is normal in R. This violates the de- 

finition of N. Thus, rad ( A o ) c N  , which implies that  rad ( A o ) c A  o N N c H  ~ N =Z(N) = V. 

Now write A o = S  1. V where S: is a semisimple Lie subgroup of A 0. Obviously S 1 com- 

mutes with V since A o c H  centralizes N ~  V. This forces S~ to be uniquely determined, 

hence characteristic in A0, because all other semisimple local cross sections are obtained 

from S 1 through conjugation by elements in rad (Ao). Thus S 1 has no nontrivial compact 

normal connected subgroups; these would lie within K(S1) and the latter would be charac- 

teristic in A0, normal in G, and nontrivial, in violation of our hypotheses on G. 

Now A o = ( H  N C)o~H o N Co, so that  xe(A0)c(~(C)) 0. Furthermore ~IS1 is a homo- 

morphism of ~1 onto a purely noncompact semisimple normal subgroup of B(G')oc K(G'). 

Thus ~(S:)={e}, so that  SI ={e} and A o = S  1. V =  V. Q.E.D. 

7. Proof of  Theorem 1.4 (Step 3): Action of ~ (G)  on A = Z G ( N )  N C 

Let G be a Lie group and V a finite dimensional vector space. If L: G~GL(V)  is a 

differentiable representation, the map fl: G • V-+ V given by (g, v) =L(g)v will be called a 

linear action. If  T: G-~ V is a differentiable map, then y: G • V-~ V given by y(g, v) = 

L(g) v + T(g) is an a/line action (preserves convex sums in V). 

Now assume G is a connected Lie group without proper compact normal subgroups. 

Since G is connected, each coset of A 0 in A is Y(G)-invariant. We denote these cosets by 

a~V, a~EZa(N ). By the previous results, B(G)={aEA: y(G)-orbit has compact closure in 

A}. Since V is a vector space, the action of G on V given by v-+gvg-: is a representation. 

An easy calculation shows that  for each at the affine action ~t: G • V-~ V given by ~l(g, v) = 

gvg-l+ [ai -1, g] is G-equivariant with the action fit: G • A ~-~ A~ given by fit(g, a~v)=gaivg-: 

via the map v2: V ~ A t  where ~o(v) =a~v. Thus we are reduced to studying affine actions on V. 

For any connected subgroup G ' c G  we write A~. c (G') for the elements of A I with 

bounded G'-orbits (or just At. c if G'= G). To prove Theorem 1.4 it suffices to show 
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7.1 L ~ A .  Let G be a connected Lie group with K(G) trivial. Then in each coset C = A  i 

there exists a layering C = C,n~... ~ C o =A~. c. 

To prove the lemma, we invoke the following elementary result whose proof we omit. 

7.2 L ~ M A .  I / f l :  G • V-+ V is an a/fine action there is a linear action ~,: G• W ~ W 

where W =  V G R, such that (i) the hyperplane V* =((v, 1): vE V} is G-invariant (ii) theactions 

~: G • V*-+ V* and fl: G • V ~  V are equivariant under the identification 

yJ: V-> V*, where ~f(v) = (v, 1). 

I / V c ,  W~ are the elements with precompact orbits, then y~(V~) = Wc N V*. 

Hence Theorem 1.4 is reduced to proving the following result for linear actions. 

7.3 THEOREM. Let G be a connected Lie group and G x V-~ V a linear action o/ G on 

a finite dimensional vector space V. I] V c denotes the set o/elements with bounded orbits, then 

there exist G-invariant subspaces V = Vm~ ... ~ Vc such that each xE V k "  Vk-1 has a relative 

neighborhood in Vk with infinitely many disjoint G-trans/orms. 

Theorem 7.3 will be proved in section 8. 

8. Linear  act ions  o f  G on a vector  space 

We now take up the proof of Theorem 7.3 (and so, of Theorem 1.4). We begin with 

the special cases in which G = R or G is a connected semisimple Lie group. 

8.1 PRO~'OSITION. Let ~: R • V-~ V be a linear action on a vector space (a 1-parameter 

trans/ormation group). Let Vc be the subspace o/points  with bounded orbits. There exists a 

layering o/ V that terminates with Vc. 

We prove Proposition 8.1 in a series of lemmas. Let  A be the infinitesimal generator 

of the 1-parameter group, i.e., ~( t )=e tA. There is a normal form of A which facilitates our 

analysis; unfortunately, it does not seem to appear  explicitly in the literature, so we include 

a proof. 

8.2 L ~ A .  Given any linear operator A on a real vector space V we can express A as 

a sum A = A T + A t §  o/operators on V, and decompose V as a direct sum o/subspaces 

V =  V I |  Vm, so that (i) The operators At, At, N commute pairwise and leave each Vk 

invariant. (ii) Ar is diagonalizable and acts on Vk as scalar multiplication by a real scalar x~ 

(the real part o /an  eigenvalue ~) .  (iii) A~ is skew-symmetric (with respect to a suitable basis 

in each Vk). (iv) N is nilpotent. 
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Proo]. Let  A = A~ + N be the  J o r d a n  decomposi t ion of A. For  each complex n u m b e r  

z let  X z =  V |  be the  corresponding eigenspace of A,. I t  is easily seen t h a t  X z + X  ~ is the  

complexif icat ion of its real pa r t  X z . i =  (V+iO)  N (X~+X~) .  Thus  V is the  direct  sum of 

the  var ious Xz.~. Let  At  be the  semisimple opera tor  which acts  as the  scalar Re  z on Vz,~. 

Now A~ = As - Ar has the  desired skew s y m m e t r y  on Xz,~ since it  acts  on X z + XZ as a pure  

imag ina ry  scalar when complexified. Final ly  N commutes  with Ar because it  leaves in- 

va r i an t  X v X z + X~, and the  real pa r t  Xz.~, on which A t is a scalar. T h u s / V  commutes  

wi th  A t. Q.E.D.  

I n  each Vk t ake  a basis so t h a t  A~ is skew-symmetr ic  and  impose the  corresponding 

inner  p roduc t  norm.  On V int roduce a no rm compat ib le  wi th  the  direct  sum V = V1 |  | Vm; 

thus  if v = v l + . . .  +V,n, we take  Ilvll~= Uvdl~+... + IIv~ll ~. For  each tER,  etA' has or thogonal  

matr ices  for its diagonal  blocks, so 

II  A'(v)ll =llvll for all veV .  (6) 

Since/V is n i lpotent  and  e -tN is the  inverse of e ~v, we also have  

p ~  all vE V, all tER,  (7) 

where p ( t ) = l  + I tl IINil + . . .  + I tl~ IlNll'/st (s a power  such t h a t  N~=O); indeed, Ilvll = 

II -  r II II I1 %11  <p(t)ll %ll. 

8.3 Lv, M~A. I /  v ~Ker  (At) , there is a neighborhood in V with in/initely many  disjoint 

transforms under ~(R). I n  particular, V c c  Ker  (At). 

Proo/. Write  v = vl + ... +vm, (vk E Vk). Since v ~ K e r  (At), there  is an index k such t h a t  

Re  (~tk)= xk ~:0 and  ]lvkII = ~ > 0. Take  any  K > 0 such t h a t  0 < ~ < K and examine  the  neigh- 

borhood of the  form W = { W = W l +  ... +win: Ilwj[I <~K all i, and  [IwkII >~/2}. To  see t h a t  W 

has the  desired properties,  assume {t I ... tn} have  been chosen so t h a t  ~(tj) W are pairwise 

disjoint  for 1 ~<j ~<n, and  find a tn+l such t h a t  ~(tn+l) W is disjoint  f rom these. [Note t h a t  t 1 

m a y  be chosen a t  random.]  Le t  M be any  bound  for the  norms  of w in U~=I ~(t~) W. Now 

if w = w 1 +. . .  + w m E W we have  

etA'(W) = ~ et~Jwj (writing ~k = xk + iyk) 
J = l  

and since the  subspaces  Vj are mu tua l ly  or thogonal  and  N- invar ian t ,  
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I j = l  

e2txk (~2 

for all we W, tER. Since xk4=0 we can obviously choose t =t=+l so that  Ile  (w)ll > M  for all 

we W; thus the sets etiAW are disjoint. 

Proo/ o/ Proposition 8.1. If V' is an A-invariant subspace of V, then V'c = V' N Vc. 

Therefore, by induction, it suffices to show that  if V # V~ there is an A-invariant subspace 

V' with V 4= V' ~ V~ such that  each v E V ~ V' has a neighborhood with infinitely many dis- 

joint transforms ~(t) U=etAU. If  Ker  (At) 4= V, then V' = K e r  (At) is invariant and points 

v E V,., V' have uniformly unbounded orbits (hence V' ~ V~) as required. Therefore, we may 

assume that  A t = 0  and A = A ~ + N .  If  N = 0  also, then ~/(t)=e ta' is orthogonal for all t 

and every orbit in V is bounded, so that  V = Vc and there is nothing to prove; thus, as- 

sume A =A~ + N  where N4=0. 

Consider the kernels {0} c. Ker N ~. . .  ~ Ker  N ~-* ~ Ker  N m = V, (m >~ 2 since N ~ 0). 

The proper subspace V' = K e r  N m-* will satisfy our requirements. Let  V" = K e r  N m-2 and 

note tha t  (i) {0)___ V".~ V'~. V, (ii) each space Ker N k is invariant under A, A~, N. In  de- 

monstrating that  any point v o E V,,~ V' has uniformly unbounded orbit, we may assume 

V"={0}. Otherwise we could pass to the induced operator 57 on lY= V/V" (for which 

m = 2  and ~ " = K e r  57m-2={0}), then produce disjoint transformed neighborhoods of v0, 

and finally lift things back to V. 

Assume V"={0}. If  V is equipped with an inner product such that  Aiis  skew-sym- 

metric, e tA  ̀ is orthogonal so that  I le~vll-  II~vll for vE V. Clearly v0E V~- V' imphes that  

NvoE V ' ~  V", so that  Nv 0 4=0; however,/V~ =0  on V, so that  

etN(v)=v+tN(v) fora l l  tER, all vEV. (8) 

Pick any bounded open neighborhood W of N(vo) tha t  is bounded away from zero. 

We may choose t (1)<t(2)< ... increasing toward infinity so that  the norms of the points 

in the sets t (k)W lie in disjoint intervals: if Ilwll E[r0, sol for wE W (0<r0<so), then for 

wet(k) w we get llwll Et(k)[ro, so] = N o w  choose any compact neighborhood U of 

v 0 such that  N ( U ) ~  W. By (8) we get 

et(~)N(U)c U + t ( k ) N ( U ) = t ( k ) [ t - ~  U + N(U)]  ; 
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since t(]c)-+ + ~ ,  W is open, and U compact, we get 

1 
- -  U + N ( U ) ~  W and e~(k)N(U)ct(lc)W t(k) 

for all large k, say ]c>~k 0. This insures that  the sets et(k~A(U) are disjoint for k>~k o, because 

if u E U we have 
I[ etA(u) II = II tiN(u) I] e Irk, ski (disjoint intervals). 

This proves the proposition. 

The actions of semisimple groups are less complicated. 

Q.E.D. 

8.4 PROPOSITION. Let G be a connected semi-simple Lie group and ~: G~GL(V)  a 

real linear representation. Let Vc be the subspace o/points with bounded orbits. Then every 

Toint v E V N  Vc has a neighborhood in V with in/initely many disjoint G-trans/orms. I /  G 

has no compact/actors (i. e., q K(G) is trivial) then Vc=(ve  V: G(v)=v}. 

Proo/. Let  K=K(G);  there is a semi-simple normal Lie subgroup S such that  (i) S 

has no compact factors, and (ii) G = S K ,  a local direct product with commuting factors: 

[S, K] =(e}. Clearly Vc(G ) = Vc(S) since all points of V have compact orbits under K and 

the action G • V-~ V is jointly continuous. Thus it suffices to prove that  8.4 is valid when 

G is a connected semi-simple Lie group without compact factors. 

Since we are assuming G has no compact factors G is generated by Lie subgroups 

locally isomorphic to SL(2, It), cf. Serre [13; Ch. VI, Thm. 2]. Therefore, it suffices to take 

G=SL(2,  It) and to show tha t  if vE V is such that  Q(g)v~=v for some gEG, then the G- 

orbit of v is uniformly unbounded. Let  g =~I(2, R) and let d~: g-~End (V) be the corre- 

sponding representation of g on V. 

Since G is generated by one-parameter subgroups (exp (tX): X Eg}, and since 

et~q(x)=~(exp (tX)) for XEg, it follows that:  if ~(g)vr  for some gEG, this implies tha t  

d~(X) v ~=0 for some X E 9- However, g is generated as a Lie algebra by the matrices 

XI=(10  _ ~ ) a n d X 2 = ( ~  10) 

so it follows that: d~(X1)v :~::0 or d~(X2)v 40.  Now, d~(X,), i = 1, 2, is diagonalizable (over 

R) with all its eigenvalues real [13; Ch. IV, Th. 1]. Each one-parameter group ~,(t)= 

exp (td~(Xt)) lies within Q(G) and has infinitesimal generator Aj =d~(Xj), j = 1, 2. In  terms 

of the decomposition A = S + N = (At + A,) + N, discussed in Lemma 8.2, we have A = A r 

and A , = N = O  in each case, and our conditions on v mean precisely that  v~!Ker A 1 (resp. 
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v~Ker  ,42). I f  v~Ker  A j, j =  1, 2, the result follows by  applying 8.3 to the one-parameter  

group ~s(R): Q.E.D. 

In  order to combine these results we must  be able to decide whether the G-orbit of 

a vector v is bounded in terms of boundedness under the separate actions of generating 

subgroups G~c G. 

8.5 LEM•A. Let G1, G2 be analytic subgroups of a Lie group G, with G~ normal in G. 

Suppose that G=G1G2. I / G  • V-> V is a linear action on a vector space Vc let Vc= Vc(G) 

(resp. V~(G~)) be the subspaces o/elements with bounded orbits under the action o/G (resp. Gt). 

Then Vc= Vc(GI) N Vc(G2). 

Proof. The inclusion ( = )  is obvious. Conversely, write Vo= Wc(Gi) N We(G2) and W =  

Vc(G~). The subspaee W is G 1 and G2 invariant; G 2 invariance is clear, and G 1 invariance 

follows from normality of G2 ~. G2(glv)=gl.g~lG2gl(v)=glG~(v) is preeompact if G2(v) is. 

We star t  by  proving tha t  G2I W is preeompaet in EndR (W). We take any norm llvll on w 

and refer  to the operator norm ]] T H = sup (H T(v)II: If v ]] <~ 1, v E W l for endomorphisms. By 

hypothesis we have sup (llg(v)ll: + for  each v W. the  uniform bounded- 

ness principle, we must  have: sup (llg l I: g ~ a2) < + so gives a norm bounded set G 21 w 

of linear operators on W, which must  be precompact due to finite dimensionality. The 

func t ion / (T)  = d e t  T must  be bounded on G~I W; since G~I W is a group, /(T) must  also 

be bounded away from zero. Therefore the closure H of G2[ W is a compact subgroup in 

GL(W). 

~Tow consider the action Of G on a point vEVo(=W); Gl(v) is precompact and 

Gl(g2(v)) =~glg2(v) = ggl(g2)" gl(v): gl E G1}~ H(G l(v)). The latter set is precompact in W 

because H is compact and G L ( W ) •  is a jointly continuous map. Thus vEVo 

implies tha t  G(v)=(G1.G~)v= ((Gl(g~v): g~EG~}=H(G~v), so tha t  vEVc. Hence 

V0= V~(G~) N V~(G2) c V~. Q.E.D. 

We note tha t  the above result also holds for affine actions. Now we combine previous 

lemmas; our basic tool for this is the following observation. 

8.6 LEMMA. Let G x V-~ V be a linear action of a connected Lie group on a vector space. 

Let A be a G.invariant subspace of V and let H be a subgroup of G. I~ there is an H-invariant 

subspace V' such that V :~ V' ~ A and every point v E V ~ V' has a neighborhood with infini- 

tely many disjoint H-transforms, then there is a G-invariant subspace W with V 4 W ~  A 

such that every v E V,,~ W has a neighborhood with infinitely many disjoint G.transforms. We 

may take W ~  V'. 

Proof. There is nothing to prove if V =A.  I f  V ~:A take the H-invariant  subspaee V' and 

form the G-invariant subspace W =  N(gV' :  gEG}. Since A is G-invariant, V:4:V'~ W ~ A .  
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Now if v E V,,~ W, there is a g E G such tha t  v q gI/', which means tha t  v 0 = g-iv ~ F'. By 

hypothesis, there is a neighborhood U = V ~ V ' ~  V,~ W of v 0 with infinitely many  trans- 

lates hi(U), h~EH; thus, U= g(U )  is a neighborhood of v in V,~ W, and the G-translates 

h~g-l(U) =hi(U) are disjoint. 

8.7 LEMMA. Let G=G1.G 2 where G 1 is normal in G. I/there exist layerings (i) under 

the action o] G 1 terminating with Vc(G1), and (ii) under the action o/ G 2 terminating with 

V c (G~), then there exists a layering under the action o/G (via G-invariant subspaces) terminat- 

ing with V~ = V~(G). 

Proo/. This is trivial if dim (V)=0.  Assuming dim (V)~> l, there is nothing to prove if 

Vc= V. Otherwise, let V ~  VI~. . .D Vr= Vc(G1) by the layering under the action of G r 

I f  Vc(G1)=4= V, then V1 =~ V and by  8.6 there is a G-invariant subspace V' such tha t  VI~  

V'~  Vc(G) such tha t  every point vE V,~ V" has a neighborhood with infinitely m a n y  dis- 

joint G-transforms. Our hypotheses remain true for the restricted actions of G 1 and G~ on 

V', so by  induction we get a layering of V under the action of G which terminates with F~. 

I f  Vc(G1)= V, then Vc(G~)= Vc(G1)N Vc(G2)= Vc(G)~=V, so the layering under the 

action of G2, V~  WID.. .~ Ws= V~(G~)= Vc, has WI:~V. By 8.6, there is a G-invariant 

subspace W'= WI such tha t  every v E V ~ W' has a neighborhood with infinitely many  dis- 

joint G-transforms. Now apply the induction hypothesis to the actions of G 1 and G2 

on W'. Q.E.D. 

To prove Theorem 7.3 for a linear action of an arbi t rary connected group G, first re- 

place the action of G by the lifted action of its simply connected covering group. The cover- 

ing group can be written G=]- -~  G~ where the Gk are closed subgroups such tha t  G, is 

semisimple, dim Gk = 1 for k <n ,  and Gk normalizes I-~j<k Gs. By 8.5 we have V~= N ~ Vc(Gk). 

Now apply 8.1, 8.4, and 8.7 repeatedly. 

9. Refined description of B(G) 

Now tha t  Theorem 1.4 is available to handle the uniformity properties of unbounded 

conjugacy classes, we turn to the question of giving a more detailed description of the 

subgroup B(G) in certain cases. In  [14] Tits introduced the notion of an automorphism o/ 

bounded displacement as follows. I f  G is a locally compact group and ~E~4(G), the auto- 

morphism group of G, one says tha t  ~ is of bounded displacement, or is a bd automorphism, 

if x-lee(x) lies in a fixed compact subset of G for all x E G. In  addition, one observes tha t  an 

inner automorphism ~g is a bd automorphism if and only if gE B(G). In  [14] Tits has con- 

sidered the question of characterizing B(G), and more generally, finding the bd automor- 
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phisms when G is a Lie group. He proved, among other things, a result (Th~or~me 1) which 

implies tha t  if G is a connected, simply connected nilpotent Lie group, it has no nontrivial 

bd automorphisms. Here we extend this conclusion to certain other classes of groups. 

9.1 THEOREM. Let G be a connected Lie group whose radical R has no nontrivial bd 

automorphisms. I / G / R  has no compact/actors, then G has no non-trivial bd automorphisms. 

This result extends Tits '  Corollaire (2), where R is assumed to be nilpotent and simply 

connected. We need two lemmas. 

9.2 LEMMA. Let G be a connected Lie group having no non-trivial central torus. Then 

K(N) is trivial, where N is the nilradical o/ G. Every bd automorphism o/ G is an inner auto- 

morphism by some g E B(G), and B(G) =Z(G). V where V is a vector subspace in Z(N). 

Proo/: We claim tha t  K(N)0 is central in G. For if X E~, the Lie algebra of K(N)o, 

then ad X is nilpotent so tha t  Exp (R ~ l  X) = Ad (exp (RX)) =~ It, and therefore cannot 

be compact unless ad X = 0. Hence ad X = 0 for all X E 3. The rest of the lemma now fol- 

lows immediately from Tits'  Theoreme (1) and Theoreme (3). Q.E.D. 

9.3 LEMMA. Let R be a solvable Lie group with no non-trivial bd automorphisms. Then 

R contains no non-trivial central torus. 

Proo/. Suppose T c Z ( R )  were a torus, which we can assume to have dimension one. 

Define a homomorphism r R-+T without fixed points other than  the unit  in R, as 

follows. I f  R = T, take any non-trivial homomorphism which is not the identity. I f  

dim R > 1, then there is a connected normal subgroup R 1~ T of eodimension one. There 

is also an onto homomorphism r R/RI-~ T. I f  ~: R ~  R / R  1 is the quotient map, then 

r 1 6 2  R - ~ T  is a homomorphism without fixed points other than  the unit. Then 

O: g_~g.r is a non-trivial bd automorphism on R. 

Proo/ o/ 9.1. By Lemma 9.3, R and therefore G, contains no central torus. By  Lemma 

9.2, every bd automorphism is an inner automorphism by  some g E V. Now V ~ Z(R) since 

B(R) =Z(R)  by hypothesis. Finally, the action of G/R on V by  conjugation must  be trivial, 

by  8.4, since G/R has no compact factors. Hence VcZ(G) .  Q.E.D. 

9.4 THEOREM. Let G be a simply connected Lie group which is either (i) solvable o/ type 

(E), or (ii) complex analytic. Then G has no non-trivial (real analytic) automorphisms of 

bounded displacement. I / ( i i i )  G is any connected complex analytic linear group, then G has no 

non-trivial complex analytic automorphisms o/ bounded displacement (hence no inner bd 

automorphisms). 
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Proo/. In  (i) and (ii) G has no central torus T, since T c N  would contradict the  as- 

sumption tha t  G is simply connected (recall 3.1). Hence by  Lemma 9.2 it suffices to show 

tha t  VcZ(G).  

In  case (i), type (E) is defined as in [2], [12]; then ad X for X E g  cannot have non-zero 

pure imaginary eigenvalues. Identifying V with its Lie algebra ~, the orbit of a point v E V 

under 3(G) corresponds to the orbit of v E ~ under Exp (R ad X). Since this orbit is bounded, 

it must  be trivial for each X E fl in view of the eigenvalue condition. Thus the action of G 

by  conjugation on V is trivial, so tha t  VcZ(G).  

In  case (ii) the action of G on V must  also be trivial since the image of a complex one- 

parameter  group of linear maps cannot be bounded unless it is a point. 

Case (iii) could be handled similarly, but  we refer the reader to a direct proof: see C. 

Sit, P h . D .  Thesis, CUNY Graduate Center (to appear). Q.E.D. 

Theorem 9.4 also applies if G is a simply connected solvable linear group which 

-'s real algebraic, since such groups are of type  (E). 

Remark. The conclusion of (i) fails if G is not of type (E); (ii) fails if G is not  simply 

connected, and (iii) fails in the case of real analytic automorphisms. 

(i) Let G be the simply connected covering group of the group of Euclidean motions 

in the plane. I f  x is a non-trivial element of [G, G] then the conjugacy class of x is a circle 

in the plane [G, G], and so is compact. But  [G, G]N Z(G)=(e}, and Z(G)~= (e}. 

(ii) Consider the complex Heisenberg group N3(i3) of 3 • 3 complex upper triangular 

matrices with l ' s  on the diagonal. Let  G =N3(C)/Z(N3(C)). Then [G, G]- is compact, and in 

particular B(G) = G. 

(iii) Let  G=GL(1, i3)=C*, the multiplicative group of non-zero complex numbers. As 

a real analytic group, G ~ I t  x T, and the map (r, t)-+(r, 1/t) is a nontrivial real analytic 

bd automorphism. 

10. Remarks  

All of B(G) is needed to support  central measures, so tha t  Theorem 1.5 is the best 

possible result. 

10.1 THEOREM. Let G be any connected locally compact group. Given any xEB(G), 

there is a finite central measure ~t such that xEsupp (/x). 

We omit the proof, which is fairly routine. 

Theorem 1.5 m a y  be used to s tudy central idempotent  measures on G, those central 

measures ~u such tha t  ~u ~-~u =/~. Since B(G) ~ supp (/x), we may  apply results from [8] to B(G) 
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to  p rove  t h a t  an  idempotent cent ra l  measure /~  is, in fact ,  suppo r t ed  on K(G). This observa-  

t ion  al lows one to  de te rmine  all  cent ra l  i d e m p o t e n t  measures  on a connec ted  loca l ly  com- 

pac t  group,  ex t end ing  earl ier  work  in [1], [6], [8], [9], [10], [11]. These resul ts  will be pub-  

l ished elsewhere. 
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