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We present  here the  second par t  of our s tudy  of the equat ion 

div -~ Vu ~,~1 ~x~ \ W OxJ 

for a scalar funct ion u(x) over an  n-dimensional domain ~ with bounding surface ~]. For  

information ' on physical  background and smoothness hypotheses we refer the reader  to  

the  In t roduc t ion  in [7], where we s tudy  the  case ~ independent  of u. The interest for the  

present work, in which ~ is permit ted  to  depend on u explicitly in certain ways, centers 

on the  capillary equa t ion  

N u  ~ div ~ Vu = ~u (2) 

where u # 0 is a constant ,  under  a boundary  condit ion 

1 
Tu .  v - ~ ~.  Vu  = cos 7 (3) 

where v is uni t  exterior normal  on Z and 7 is prescribed (see [7]). However,  we shall dis- 

cuss considerably more general si tuations to  which our methods  apply.  

w  

We impose on ~d(x; u) in (1) a single requirement:  

A : For  a ny  5 > 0 there exists M8 < ~ ,  such tha t  at  least one of the conditions 

AI: {~<~-1~ u<M,} 
A~: {~>~ -~-1~ ~> -M~} 

This work was Supported in part  by the US Atomic Energy Commission, and in part  by AF contract 
F44620-71-C-0031 and bISF grant GP 16115 at Stanford University. 
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holds for all xE~ ,  tha t  is, limu~r :H(x; u )=  ~ uniformly for x E ~  in the case A~, with ana- 

logous expressions in the other cases. 

Remark. The capillary equation (2) is contained in A~ and A,  if x >0, and in A a and 

A, if x < 0 .  

T ~ O R E M  1. Suppose A 1 (resp. A~) is satisfied by ~(x; u), and let u(x) be a solution o] 

(1) in an n-ball B~ o/radius 6. Then u(x) <Ms +6 (resp. u(x) > - M s  -6 )  ]or all x E B~. 

COROLLARY: I[ there is a [ixed 6 > 0  such that ~ can be covered by an interior/amily 

{B~}, then the conclusion holds uniformly in ~,  for any solution u(x) over ~.  I] ~ is arbitrary 

and r is distance to Z, there still holds u(x) <Mr  (resp. u(x) > -M~). 

Proo/ o/ Theorem 1. Suppose first tha t  A 1 holds; let xEB]. Choose 6', 0<(Y <~, and let 

S~,, be an n-sphere (boundary of an (n + 1)-ball) of radius 6' whose center (x 0, %) lies on the  

vertical through the center (xo, 0) of B]. If u o is sufficiently large, S~. will lie above the 

solution surface S: u =u(x). Let  u0 be the largest value of u 0 for which S~. contacts S, and 

let Pl = (xl, ul) be a point of contact. Then Pl lies on the lower hemisphere of S~, (it cannot 

lie on the equatorial sphere since ] Vu [ < ~ at these points), and S~, shares with $ a com- 

mon normal at  Pl. None of the normal curvatures (at Pl) of curves on S through Pl (con- 

sidered as positive when the curvature vector is directed into S~,) can exceed 116', for 

otherwise there would be points of S interior to S~., contrary to the construction. I t  fol- 

lows that  the mean curvature of S at  p~, as defined by the left side of (1), cannot exceed 

1/6'. Thus ~(xl, ul)<l/~'  , from which, by At, Ul<~M,~. Hence u ( x ) < M , . + 6 '  in B~,. The 

proof is completed by letting 6'-+6. 

Similarly, if A~ holds, one finds u(x) > - (Ms +6). 

R~mar~8. 

(i) A somewhat stronger (geometrical) theorem could have been stated. I t  would have 

sufficed to know that  u(x)<Mz (resp. u ( x ) > - M ~ )  whenever the maximum ~ of the 

principal normal curvatures of S satisfies x~ <6 -1 (resp. x~ > --6-1). 

(if) For the capillary equation n~(x;  u)-~xu, x > 0 ,  we may take Ms=n](x6) for the 

case A 1 or A 2. Thus, in this case there holds }u] <n](x6)+6 for any solution in B~. 

(iii) We note that  the corollary holds without explicit hypotheses on the boundary 

Z of ~,  and that  no hypothesis is introduced on the boundary behavior of u(x). Under 

hypotheses A 1 and A2, it provides an a priori bound on [u(x)[ in any compact subdomain 

of an arbitrary ~.  
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(iv) I f  ~u ~> 0 (as in the capillary equation with u >0) the result can be improved 

somewhat by using as comparison surface a rotationally symmetric solution ~0(r; (~) of the 

equation, determined by  the condition %(~; 5) = ~ .  I t  is not hard to show the existence 

of such solutions (cf. w 2) and to estimate them from above. The result u < ~(r; (~) on I x I = r 

then follows from the general comparison principle of w 3.6. In  the case of the capillary 

equation the improvement  obtainable in this way has the order 0((~) as 5->0. 

(v) I t  should be noted tha t  the proof of Theorem 1 does not use the max imum prin- 

ciple, and the result holds for many  equations for which the maximum principle does not 

apply, either for a solution of (1) or for a difference of solutions. I t  is this fact tha t  sug- 

gests tha t  a corresponding result be sought for the case of the capillary equation (2) with 

reversed gravitational field, u <  0. The best result of this sort we can offer is the following: 

T~IEOREM 2. Suppose A a (resp. A4) is satis/ied by ~(x; u). Then i/ u(x) i8 a solution o/ 

(1) in a ball B~, there is a point xEB~ /or which u(x)~ - M  S (resp. u(x)~<Ms). 

The proof is analogous to t h a t  of Theorem 1, the point x being in each case the pro- 

jection onto the base hyperplane of a point of last contact of $ with S~. The method yields, 

however, no global bound throughout the domain of definition, even if (as in the capillary 

equation with u <0) A s and A 4 hold simultaneously. 

w  

The extent to which a global estimate can be obtained under hypotheses such as A 3 

or A 4 remains open. We have stated such estimates in w 11 of [5] and in w 3 of [6]; although 

there is evidence tha t  the statements given there have physical meaning, we have since 

found tha t  our demonstrations of these results are in the full generality indicated incom- 

plete, iThe following remarks bear on this point, and show tha t  a t  least for n = 2, the re- 

sult o/Theorem 1 still holds, with Mo = n/I ~ [ 5, /or the rotationally symmetric solutions o/ (2) 

with ~ < O. 

2.1. Consider solutions of 
1 

div ~ Vu = - u (4) 

in n = 2 variables, tha t  are rotationally symmetric about a vertical axis. Such solutions are 

functions u(r) of a single variable, and satisfy the equation 

- -  r~--~ \ V ~ /  - u .  
(5) 
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We study solutions u(r) of (5) such tha t  u(0)= u 0 <0,  Ur(0)= 0. The local existence of 

such a solution can be proved by the method of Lohnstein [1 I, 12] or of Johnson and Perko 

[10], although this case does not seem to have been explicitly studied in those papers.(1) 

We summarize here the global behavior of u(r), in its functional dependence on %. Some 

of these features were already known to Bashforth and Adams [2] and to W. Thomson [13], 

although perhaps not in mathematical  rigor. We state here only the results we have est- 

ablished; complete details will appear in a later paper. 

2.2. I], in  the init ial  value problem o] 2.1, u0* < 1/3, then the solution u(r) exists ]or all 

positive r. I t  has an in l in i ty  o] zeros. For any  two successive extrema ra, r~ o] u(r) there holds 

lu(r0) l < lu(ro) l. Asymptot ical ly  as u o ~ 0 the ]irst zero r~ is the first zero o/Jo(r) ,  r 1 "" 2.405. 

2.3. A s  u o decreases ]ram 0 to - co, there is a ]irst value u o =Uol , such that the correspond- 

ing ]unction u(r) cannot be continued ]or all r as a solution ol (5). The continuation is possible 

only in  an interval 0 < r <  r ~1~, and lira u ' ( r )=  co. There holds -3-1/4 >u01 > -35i4; the 
r.~r(1) 

point  o / i n / i n i t e  slope on the solution curve is precisely the second point  o/ intersection of this 

curve with the hyperbola r u = - 1  (see Fig. 1). (We note tha t  numerical computations [4] 

yield the value u01 ~ -2 .6 . )  

2.4. H %=%1,  the solution can be continued indefinitely as a solution of the para- 

metric system 
d~ 1 
ds u r sin v 2 

du 
d~ = sin ~o (6) 

dr 
= c o s  ~. 

Here s i s a rc  length on the solution curve, ~p is the angle measured counterclockwise from 

the positively directed r-axis to the tangent  line. There holds everywhere - (~t/2) < ~ ~< (~/2); 

the function u(s(r)) is a solution of (5) except at  the single point r = r  (1~. 

2.5. As u 0 decreases past  u01, the solution continues to exist everywhere as a para- 

metric solution of (6); however, the point (r cx~, u u)) moves below the hyperbola ru = - 1, 

and the solution continues, with decreasing r, to a second point (r ~2~, u ~2~) of infinite slope, 

lying above the hyperbola (see Fig. 2)(~). On this branch, u(s(r)) is a solution of the equation 

(1) We have  been unable  to obta in  a copy of Lohnste in ' s  dissertat ion,  and we have had  to infer 

its content  f rom his later  papers  and  f rom the  general repor t  by  Bakker  [1]. 
(2) This s tep in the discussion is based par t ly  on numerical  computa t ion;  we have no t  yet  establish- 

ed the  result  formally in the full s t reng th  indicated here. 
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--------- ~ ' U  = - -  1 

Fig. 1 

J ~ - - - - - - - -  r u  = - -  1 

(1) 

uo= -- 6 

Fig. 2 Fig. 3 

Nu ( rut ] =  +u (7) 

in which the  sign of the  r ight  side is the  reverse of t h a t  in (5). At  (r (~, u(~)) ,  the curve re- 

verses again, and  continues indefini tely as a solution of (5). 

2.6. As u 0 continues to decrease, the  procedure  repeats ,  le~ding to  the  fo rma t ion  of 

repea ted  "bubb les"  (Fig. 3). All inflection points  on the  meridional  curve l ie be tween the  

two hyperbolas  r u  = • 1. Denot ing  b y  bm the meridional  curva ture  referred to  the  u-axis,  

we have  kin(u(1) ) ~ 0 according as r (J )u  (j) ~ - 1 .  The  entire curve lies above  the  hyperbo la  

r u  = - 2. Asympto t ica l ly  for large I u0 l, 
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2 2 3 
- - - - ~  r ( 1 ) ~  

UO ~0 U03 :' 

while for all % <  - 1 0  there holds 

UO 
2 4 2 4 < u (~  < % - -  

71 2 ~/2" 
UO Uo 

2.7. There is evidence to  support  the assertion tha t  as u0-~ - c~, the "bubble"  solu- 

t ions converge, uniformly in compacta  excluding the origin, to  a new nonparametr ic  solu- 

t ion u = U(r) of (5), satisfying 
1 1 1 - r 4 

- - <  U ( r ) <  . . . .  (8) 
r r (1 +r4) a 

for 0 < r  <r(1), where r(1 ) is the first zero of U(r). 

This new solution is defined for all r > 0, and  yields a solution of (5) with an  isolated 

singulari ty at  the  origin. We have no t  ye t  demonst ra ted  this convergence, nor  have we 

shown the existence of U(r), bu t  we hope to  re turn  to these mat ters  in a subsequent  paper. 

Here  we note in passing tha t  the  r ight  side of (8) is precisely the negative of the mean  cur- 

va ture  of the surface defined by  the  left side of (8). 

2.8. Numerical  calculations of U(r) were performed on the  CDC 6600 computer  using 

a variable-step-length fourth-order  Adams-Moulton method.  The first two terms of the  

formal asymptot ic  expansion 

U(r)  1 5 3 7 - - ~ - ~ r  +O(r ), (r~O) 
r 

provided the initial height and  slope with which to begin the numerical  integrat ion at  

small values of r. The result behaved stably with respect to changes in the  initial value of 

r and  appears to  support  the conjecture of w 2.7. The numerical  solution for U(r) is com- 

pared with the left and right sides of (8) and with bubble solutions corresponding to  several 

choices of %, in Figs. 4, 5.( 1 ) 

2.9. The surmised existence of U(r) indicates t ha t  the result of Theorem 2 cannot  be 

extended to a global bound for solutions t h a t  are no t  rotat ional ly symmetric,  t h a t  is, 

Theorem 1 would be quali tat ively incorrect under  the hypotheses A 3 or A 4. To see this, 

we consider the solution U(r), r 2 = ~ + ~ ,  and a ball B~ (as in Theorem 2) which lies close 

to  bu t  does no t  include the  origin. As indicated in Theorem 2, By will contain points  a t  

(1) We wish to thank W. H. Benson and F. C. Gey for making available their computer programs 
and carrying out some of the calculations. 
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1 1 - r  ~ 1 
r ( l+r4)  a/2' U ( r ) , - -  r 

Fig. 4 

J 

j/'/ 

% = - 4 ,  U(r) 

Fig. 5a 
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u o= - 8 ,  U(r) u o= - 1 6 ,  U(r) 

Fig. 5b Fig. 5c 
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which I U(r)] <Ma, but  it can also be made to include points at which I U(r) l is as large 

as desired. 

2.10. By restricting attention to a wedge-shaped region formed by two lines through 

the origin and meeting with angle 2~, we realize the situation studied in [5, 6]. If the solu- 

tion U(r) exists, then the surface it defines meets the boundary walls of the corresponding 

cylindrical wedge in an angle ~=~/2; thus a + ~  >g/2,  yet  the solution surface is not 

bounded, in apparent conflict with the result stated in w 11, (ii) of [5]. 

2.11. The construction of w167 2.1, 2.2 yields as corollary the nonuniqueness of the solu- 

tion of the capillary problem, (2, 3) in f2, when u <  0. For example, in the case ~ = z/2, the 

horizontal plane u = 0 yields one solution for any choice of f~; if s is the disk r < r~, where 

r~ is the first maximum of u(r), then u(r) yields a second solution for this domain. Calcula- 

tions indicating criteria for uniqueness of rotationally symmetric solutions, with u <0 ,  

are given in [4]. 

w 

If information is known on the boundary behavior of u(x), then Theorems 1 and 2 can 

be sharpened. Write Z = Z ' +  ~:0, Z'  being the set of points x E Z which lie interior to ( n -  1) 

dimensional surface neighborhoods of class C (1). Consider a surface S defined by a solution 

u(x) of (1) in ~,  such that  u(x) E C (1) up to Z'. The angle ? =?(x) between S and the bound- 

ing cylinder walls Z' over Z' is then well defined. Denote by Z ~ the bounding cylinder 

wMls over y0. 

THEOREM 3. Suppose A 1 is satis/ied by ~/(x; u) and suppose there is a lower hemisphere 

S~, lying partly (or entirely) over ~,  that does not meet Z ~ and that meets Z' (i/ at all) in angles 

yz satis/ying 0 <~Ts ~<~(x) at each contact point that projects onto x E ~'. Letting B~ be the pro- 

]ection o/ S~ onto the hyperplane u=O, there holds u(x)<M$ + e) /or all x E B~ N f2. I / A  2 holds 

and i/there is an upper hemisphere/or which ~(x) ~<~s ~<~, then u(x) >1 - M ~  -(5 in B~ fl f2. 

CO~OLr.A~r. I / /o r / i xed  6>0,  ~ can be covered by a/amily  o/such balls B~, then the 

indicated bounds hold uni/ormly in ~ .  

I t  suffices to prove the theorem for the c a s e  A1, as the other case is analogous. If  

?s <?(x) at all contact points, the proof is formally identical to that  of Theorem 1; we need 

only note that  because of the condition ?s <?(x), none of the contact points corresponding to 

u =u0 can lie in Z. If  we are given only ~z ~<?(x), consider a concentric sphere S~,, 0 <5'  <(~, 

and the corresponding projection B~,. One verifies easily that  ?s. <?s  at any points of 
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contact tha t  lie on a corresponding generator of Z' .  Thus, the proof follows for x E B~. fl 

again as it did for Theorem l; the result in the general case is obtained by letting (3 (3. 

We also have: 

T ~ O R E ~  4. Suppose A a (resp. A4) is satis/ied by ~4(x; u), and that g~ satis/ies the 

hypothesis o/the Corollary to Theorem 3. Then in each B3 there is a point x E BE/or which 

u(x) >~ - M$ (resp. u(x) ~<M~). 

3.1. We illustrate the above theorems by  considering, as in [7, w 3.5], a wedge region 

W with boundary E defined by  

m--1 

r = x s e c ~ ,  r2=x2+ ~ y ~ ,  2<~m<~n. (9) 
t=1  

Here ~] is smooth except at  the ( n -  m) dimensional "ver tex"  continuum E~ r = 0. I f  

/> (~/2) - ~, R/(1 + sin ~) >(3 >R/2, the spherical cylinder 

m - 1  
S~ : (x - (3) 3 + ~ y~ + U s = (R - (3)3 

j = l  

will meet  the walls of the cylinder Z'  over Y /=  Y~ - E ~ in an angle 7s < Y, and will lie interior 

to the cylinder r = R. 

Suppose condition A 1 is satisfied by  :H(x; u). Let  u(x) be a solution of (1) in ]OR= 

~0 A {r < R}, and suppose tha t  on the part  Z '  of the boundary of this domain, the solution 

surface meets Z '  in an angle 7(x)>~ ( ~ / 2 ) -  a. We shall show tha t  u(x) is bounded above 

as the vertex is approached in any way from within 1 0 .  

To do so, consider first the sphere, for arbi trary {bi}, 

~ :  ( x - ( 3 ) 2 + ~ l y ~  + ~ (yj-bj)2 +u 2= (R-(3) 2 
~=1 i = m  

and its p ro jec t ion /~  o n t h e  base space u = 0 .  Clearly 3~ again meets Z '  in the angle ~s <~'. 

Theorem 3 then yields immediately tha t  u(x) < M s  +(3 in W f3/~. 

We now observe tha t  the (bj} are arbitrary,  and it follows that  the same result holds 

in W flB~, with B~ the projection of S~ on the base space y j=0 ,  ?'~>m. Lett ing (3-+R/2, 

we find tha t  the bound holds uniformly in B~/2 up to the vertex. Finally, we note tha t  

if R* = (2/(1 + [/5)) R, then WS* can be covered by  balls of radius R/2, each of which lies 

in the set r ~< R and meets Z '  in an angle not exceeding y; thus the same method yields a 

uniform bound in ~0 n*. An analogous discussion holds under the condition A s. 

We summarize the result: 
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Let ~H(x; u) satis/y A 1 (resp. A~). Let u(x) be a solution o/ (1) in ~ R  and suppose the 

solution sur/ace meets the part Z' o/ the bounding walls in angles ?(x) /or  which ~ >~ (zt/2) - 

(resp. ~ <~ (~t/2) + zr Then, without regard to the conditions on the remainder o/the boundary, 

there holds u(x) <Ma/~ + R/2 (resp. u(x) > - M ~  - R/2) in ~a*,  R* = (2/(1 + VS)) R. 

In  fact, a bound holds in any ~/~R' with R'  < R. The value R* was chosen because 

of the simple exphcit nature of the estimate in this case. 

3.2. Now suppose ~ + ~  < (zt/2) -Co for some eo > 0  at  all xEZ ' .  Let ~ be a sphere of ra- 

dius 8, with center on the hne of symmetry  a t  distance Q from the vertex Z ~ I f  ~ meets 

Z '  in an angle ~<7o ~<7, there follows ~ <~ sin ~ see 70 <q. Thus, no set of these spheres of 

fixed radius can cover all points in the corner. The method yields only the growth estimate 

u(x) ~<MQ.+q' (resp. u(x)>~--MQ.--~') with ~' =~ sin ~ see ?0, for points x at  distance ~>Q 

from Z' ,  as ~ 0 .  We proceed to show in a particular case that  this estimate is qualita- 

t ively the best tha t  can be expected. 

3.3. We consider, for ~ >0,  a solution u(x, y)=u(x ,  YI . . . . .  Yn-1) of the equation Nu =xu,  

defined in a region ~R bounded between parts of the spherical surface r 2 = x ~ . . . .  1 t 2.,J1= 1 y~ = R 2, 

the conical surface Z':  r = x s e c  ~r 0 <  ar ~/2, 0<  x <  R, and the vertex •0: r= O. Let 

~0=glbx. ~. I f  ~0>~(zt/2)-x, then u(x, y) is bounded above near ~0, by 3.1. Suppose 

~0 < (~/2) - ~, and set k 0 =s in  ~ see V0. The function 

) ~(~,y;ro)=~ - t ,  t = V k ~ - l + ( ~ / r )  ~ (10) 

is then defined and positive in ~R- We assert tha t  for any R ' <  R, there is a constant C, 

depending only on the geometry and on R'  (and not on the particular solution considered), 

such tha t  
u(x, y) <~(x ,  y; ~0) + C  (11) 

uniformly in ~w.  

The proof can be obtained, with minor modifications, from a similar result, given in 

our earlier paper  [6] for the case n = 2. We present here an alternative, more geometrical 

proof, modeled on the considerations of w 1 of this paper. 

We suppose first 70 >0,  and consider 9o in the range 0 <90 <Fo, 9o to be determined 

later. We introduce a function 

and set 
/(~)={2M_2V~-M-~_X2, 

O<;t~<M 

M < . 2 < . V 2 M  

~M(X, y; ~0) = l[~(x, y; ~o]. 
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Thus, ~0 M is defined in the subdomain ~M in which ~0 ~< t/2M. We note t ha t  on the spherical 

cap W = ~/2M the normal  derivative (a/~v)q)M= oo. 

The calculation of NWM in :~M and of T~M. V on •' is facilitated by  the observat ion 

tha t  the level surfaces of ~M are spheres t ha t  meet  Z '  in the constant  angle 7o. We find 

NqJM << . U~M + U(X, y), JU(X, y)J < Cr a (12) 

T~M'M]Z,  = COS ~0 +/A(r) ,  - -  Cr 4 <lu(r) ~<0 (13) 

uniformly as r tends to its minimum, for all 70 in the range considered, and  for M > M o > 0. 

We now choose ~0 < 7o, and r0< R, so t h a t  for r <  r o there holds cos ~50 + lu(r) > cos 7o. 

Clearly, by  (13), it suffices to choose ~5 o so t h a t  cos 750 > cos 7o + Cry, for r o sufficiently small 

t ha t  this inequali ty is possible. 

Now set WM = ~M + C, and choose C to  be the smallest value for which eOM >/U in ~M. 

For  this choice of C, there mus t  be at  least one point  p E ~M at  which u (p )=  O)M(p)- The 

point  p cannot  lie on the inner cap 9 = I/2M, since (~/~V)gM = c~ on this cap; similarly, since 

T(~M. M > COS ~'0, the surface 9M meets the cylinder walls Z '  over X'  in an angle smaller t han  

7o; thus p cannot  lie on Z '  unless it lies on the  outer  cap r = r o. 

I f  p is an  interior point  of :K M, then  u(p) = ~OM(p) = (PM(P) + C, and since at  p, the mean 

curvature  of the surface u(x, y) cannot  exceed tha t  of the surface WM(X, y), there holds 

uu(p) <U?M(P)+~(P); thus,  uC < 7  in this case. 

I f  p lies on the outer  cap r=ro, then  from u(p)=cfM(p)+C=~(p)+C we find C <  

maxr=r, [u(x, y) - 9 ( x ,  y)]. Theorem 1 provides an a priori bound  for u(x, y) on the are r = r0, 

and a bound  for ~ on this arc is known explicitly. 

I n  both  events, C is bounded  a priori independent  of M, and we are free to let M-~ 0% 

This yields a bound of the form 

u(x, y) ~< ~(x, y; 7o) + C (14) 

in any  :~R', and it remains only  to  investigate the transit ion ~5 o-~ 7o- 

Choose ro< rain (1, R} and sufficiently small t ha t  ~5 o can be chosen to satisfy 

cos 7o >cos  7o + Cry, as above. I f  we choose ~5 o sufficiently close to  7o tha t  also 

cos ~5o <cos  7o+2Cr~ we note, using the explicit form of W(x, y; 7), t ha t  there is a constant  

Co such tha t  
~0(x, y; ~5o) < ~(x, y; 7o) + Cor~/r (15) 

for all points (x, y) for which r < ro, and with C O independent  of r o in the range considered. 

I n  particular,  in the range r~ ~< r < ro, there holds 

~(x, y; 7o) < ~0(x, y; ~o) + Cor~, 
and hence by  (14) 

1 5 -  742909 A c t a  m a t h e m a t i c a  132. Imprim~ lc 19 Juin 1974 
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u(x, y) ~< ~(x, y; ~0) + C < ~(x, y; Vo) + C + Cot ~ 
in this range. 

Using again (15), we may  choose ~1, T0 ~<~1 <V0, such tha t  for r ~<r0 ~ there holds 

~(x, y; ~1) <~(x ,  y; ~,o)+Cor~/r 

so tha t  in the range ro 4 ~< r ~< 

~(x, y; Pl) < ~(x, y; to) +Cor~ 

We note (a/O(cos ~))~ >0; thus q~(x, y; ~x) >~(x, y; ?0) and it follows tha t  on the sphere 

r = r  2 

u(x, y ) - ~ ( x ,  y; ~1) < C+Co~ 

Applying the above proof of (14) in :~r:, with ~0 replaced by ~1, we obtain 

u(x, y) < ~(x, y; :~1) + C + Co~ 

< ~(x, y; ~0) + o + Oo (to ~ + r~) 

4 in the range r~<r<r~. I terat ion of this procedure, with ~ replaced successively by  to, 

r0 s ..... yields the estimate, for all r ~ ro, 

u(x, y) <~(x,  y; ~0) + o + ~0 co/(1 - r0  ~) 

which completes the proof of (11) in the case ~040.  

Finally, suppose ~0 = 0. In  this ease, q(x, y; 0) satisfies the boundary condition exactly, 

tha t  is,/~(r)--0 in (13). We consider first an interior region :K~ obtained by  translating the 

cone Z slightly along the axis of symmetry.  On the new conical wall ~ '  there holds 

>~0 > 0, hence the above proof can be repeated, yielding the stated result in : ~ .  Since 

p(r) =0,  the estimate is in this case independent of the amount  of shifting; thus we are 

free to let Z '  slide back to Z, and the assertion follows again in :~R- 

3.4. We obtain from 3.3. a universal a priori bound above, for all solutions of (2) de- 

fined in :~R- A corresponding bound holds of course from below, and is obtained from the 

given one under the transformation u ~ - u ,  ~ - ~ g -  y. Under this generality, little more can 

be said. However, if it is known tha t  ~ ~<?1 < (~/2) - ~ on Z ' ,  then there holds Mso 

~(x, y; 71) - C < u(x, y) 

uniformly in any :~R', R'< R, where again C depends only on the geometry and on R' .  

We do not at  present have a geometrical proof of this fact, and we refer the reader to w 3.7, 

where it is obtained under weaker conditions as a consequence of a much more general 

result. Alternatively the analytical proof given in [6] for the case n =2,  ~ ~-~1, can be mo- 

dified, using the results of w 1, to yield the assertion. 
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3.5. We collect the  above results, toge ther  wi th  others  t h a t  are p roved  analogously,  

in a general  s ta tement .  To do so, i t  is convenient  to  introduce a funct ion 

~p(x,y;,~)=fq~(x,y;7) if k~=sin~ a s e c ~ 7 <  1, 

to if ]c2~> 1, 

where ~(x~ y; 7) is defined b y  (10). 

I n  t e rms  of (I)(x, y; 7), we then  have:  

THEOREM 5. There is a constant C, depending only on ;~, R, R '  < R and not on the par. 

ticular solution u(x, y)), such that i /u (x ,  y) satisfies N u = ~ u ,  x > 0 ,  in ~R and 70~<7(x)~<71 

on Z' ,  then 
(I)(x, y; 71) - C  <~ u(x, y) <<. qP(x, y; 70) §  (16) 

in :Kn'. 

We have  immedia te ly :  

CO~OLLARr :  Under the above hypotheses, i / 7  =cons t .  on Z' ,  then 

(i) i / ~  >~ ](~/2) - 71, then - C <~ u(x,y) <~ C in ~n.;  

(ii) i / ~  < I (~/2) - 71, then q~ (x, y ; 7) - C <~ u(x, y) ~< ~(x, y; 7) + C in ~R.. 

Thus,  if 7 - - c ~  the  a sympto t i c  behavior  of u(x, y) is character ized complete ly  

to  within a (universal) addi t ive  constant .  More precisely, all solutions for which 

(~/2) - ~ ~< 7(x) ~< (~/2) + ~ are bounded  in ~n ' ,  while if 71 < (7~/2) - ~ or if 70 > (x/2) + ~, 

then  all solutions are unbounded .  I r respect ive  of bounda ry  behavior ,  no solution in ~ a  

can grow fas ter  in magn i tude  t han  O(r -1) a t  the  ver tex.  

3.6. Theorem 5 can be obta ined  a l ternat ively ,  and  under  weaker  smoothness  hypo-  

theses, as a consequence of a m a x i m u m  principle, which is closely related to, bu t  not  equi- 

va len t  to, the  result  of Theorem 6 in [7]. 

THEOREiVl 6. Let Z = Z ~  + Za + ZB be a decomposition o/ Z, such that Z~ is either a 

null set or o/ class C (1~ and E ~ is small in the sense introduced in w 3.5 o/ [7] .  Let u(x), v(x) 

be o/class C (~ in ~ ,  and suppose 

(i) N u  > Nv  at all x e ~  /or which u - v  >O. 

( i i ) /or  any approach to ~ / r o m  within ~ ,  l im sup [ u - v ]  <0 .  

(iii) on ED, Tu .  v <~Tv. v a lmost  everywhere  as a limit(1)/tom points o / ~ .  

Then u(x) ~<v(x) in ~ .  

(1) A somewhat weaker hypothesis suffices; el. the remarks in the preceding note [9]. 



220 P A U L  C O ~ C U S  A N D  R O B E R T  F I N N  

The proof is identical to the proof of Theorem 6 of [7] for the case Za dg Z0, as in that 

proof no use was made of the set for which u - v  <0. We note that the conclusion of Theorem 

6 of [7] for the case Z~ c Z 0 can not be expected to hold in the present situation. 

3.7. We are now in position to give an independent proof of Theorem 5, without smooth- 

ness conditions or bounds for u(x) on Z. We suppose only that  Tu.v exists as a limit almost 

everywhere on Z'.  I t  suffices to prove the right-hand inequality, as the left inequality fol- 

lows analogously. 

We choose Z ~ to be the vertex of ~R, ~ the conical walls, and ~ the set r = R'< R 
in ~R. 

Suppose first 0 <~0 < (:~/2) - ~. Since ~'0 ~ ( x ) ,  (13) implies that  for any constant C the 

function v(x, y) =~0(x, y; ~0) + C  satisfies (iii) for sufficiently small R', for any ~0<?0 . 

From (12) we see that  C may be choosen so that, (a) v(x, y)>~u(x, y) on Z a, and (b) hrv~ < 

.Nu=uu at all points where u>v, uniformly as ~0~?0 . Thus, (i) and (ii) hold, and since 

Z ~ can be covered by balls of radius bounded from zero, it follows from Theorem 3 that  C 

can be chosen independent of the particular solution u(x, y) considered. Since (iv) obviously 

holds in this situation, Theorem 6 yields u(x, y) -~v(x, y) in ~R.. The transition :~0~?0 is 

effected as in w 3.3. 

If  ~'0= 0, then (13) holds with/~(r)-= 0 and one may choose ~0=~o; no transition is 

then needed. 

If  ?0>(:~/2)+ a, the transformation u - ~ - u ,  ? - ~ : ~ - ?  reduces the problem to the 

previous case. 

Finally, if it is known only that (:~/2) - a ~< 70 <~ ~(x), then a uniform bound above for 

any solution in ~R" is obtained by the methods of w 3.1. 

3.8. Theorem 5 was verified physically in an ad hoe experiment by Mr. Tim Coburn 

in the Medical School at Stanford University. Mr. Coburn constructed a wedge by machin- 

ing one edge of a 1/2 inch thick rectangular piece of acrylic plastic 4" high, then placing 

the edge in contact with a face of a similar piece of the same plastic; the configuration was 

placed on a flat horizontal plastic surface, and the bottom of the wedge was then covered 

by a small amount of distilled water. The results corresponding to the half angles a of ap- 

proximately 12 ~ and 9 ~ are shown in figure 6. Both photographs are on approximately the 

same scale, the scratch mark on each corresponding to a height at the vertex of about 7 cm. 

We interpret the result with the aid of Theorem 3. Since for distilled, water a = 78 

dynes/cm, we find u=~g/a=980/73 > 13; hence, choosing 8=  [/~13 and using the remark 

(ii) following the proof of Theorem 1, we obtain lu(x)l <0.8 cm. whenever a+~,~>:~/2. 

This is above the observed rise height for a = 12 ~ but less than 1/10 the height observed for 
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Fig. 6a. ~=12 ~ Fig. 6b. ~=9 ~ 

= 9 ~ (The liquid failed to rise the entire height of the plates in the  lat ter  case presumably  

because uniform contact  between the  two plates could no t  be mainta ined all the way  to the  

top). We conclude, in particular, t h a t  the contact  angle of distilled water  with acrylic 

plastic (under the given conditions) has a value between approximate ly  78 ~ and 81 ~ 

3.9. We consider now t h e  case ~ <0 .  The material  of w 2 suggests t ha t  Theorem 5 can- 

no t  be expected to  hold as s tated in this situation. We show, however,  t ha t  a weaker form 

of the  result~ suggesting the quali tat ive behavior  when ~ <  1(~/2)-9 '1 ,  still holds when 

~ < 0 .  

T H E O R ~  7. Let u(x, y) satis/y 2Vu=,~u, ~< O, in ~R. I/,  on Z' ,  9'>~9'0 >(~/2)  + 

(resp. 9' ~<9'1 < (~/2) - ~), then there is a sequence o/points in ~R tending to the vertex Z ~ along 

which u(x, y) > 2/r (res T. u(x, y) < -(,~/r)), with 

> n - 1 sin ~ + cos 9'0 I n - 1 sin a - cos 9'1~ 
(sin \resp" X > Y ! 

Proo/. Suppose 9' ~> 9'0 > (~/2) + ~. Consider the  region A~ cut  off f rom ~R by  the  plane 

x=r.  In tegra t ing  the equat ion over A t and using the est imates T u . o >  - 1  on the plane, 

Tu .  ~ = cos ? ~< - cos 9'0 on Z ' ,  we find 

u ( .  u(x,y) dydx< w,_l(r sec ~)n-1 (sin ~ +  cos 9'0) 
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w h e r e  O)n_ 1 is the  volume of a uni t  ( n - 1 ) - b a l l .  I f  there were to hold u ( x , y ) < 2 / Q  for 

some constant  2 when x = ~ < r, we would have 

f ~  f o ~  ~Jt ( r t a n ~ ) n - 1  u(x,  y) dy  dx  > ~2 r l (g t a n  ~) n- l m~_ ldQ = n _ 1 
r 

f rom which the result  follows.(1) The other  case is proved analogously. 

3.10. We remark  t h a t  the derivatives of H(x) were at  no t ime used for any  of the  re- 

sults of the first par t  of our s tudy  [7]; thus  all the results of t ha t  paper  apply  equally to 

a n y  si tuation discussed in the present work, whenever  the solution u(x) is known  to be 

bounded.  I n  part icular  t hey  apply  whenever  the  hypotheses of the Corollary to  Theorem 1 

are satisfied, as these hypotheses  yield an  a priori bound on any  possible solution in ~ .  

As an example, we note t ha t  if u(x) is a solution of N u = g u ,  g > 0 ,  in a s tar-shaped do- 

main  ~ with smooth boundary  E, then,  in the nota t ion  of [7], (10) of [7] implies 

~g ~ _ 
- ~ = cos 7 H~" 
n 

3.11. The criterion in the corollary to Theorem 5 relates closely to  recent  work of Em-  

met  [8] on the existence of solutions of a variat ional  problem associated with (2, 3). For  a 

domain ~R, E m m e r ' s  criterion Iv I I/1 +L2 < 1, when applied to the bounda ry  a t  the vertex, 

is equivalent  to the condition u > I (~t /2) -71;  thus, his criterion is a lmost  identical to the 

one ensuring boundedness of all solutions in ~ .  I f  n = 2 and  ~ < ] ( ~ / 2 ) - 7 ] ,  Theorem 5 

shows there is no solution in the regular i ty  class considered by  Emmer .  M. Miranda has 

pointed out  t ha t  the variat ional  expression admits  no finite lower bound in this case. 

I t  should be noted, however  t ha t  if x >0 ,  solutions of (2, 3) regular in ~ and  in the 

class s can be shown to  exist in (essentially) the class of domains  considered in w 

3.6, whenever Z ~ = r  This follows from the method of E m m e r  in conjunct ion with the 

results of w 1 and general a-priori interior est imates for the derivatives of the solution, cf. [3]. 

We remark  tha t  E m m e r ' s  condit ion ~ > 0  is necessary, even for smooth  boundaries;  

this follows from Corollary 3.1 in [7]. 
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fortable and pleasing milieu afforded us pr ivacy  and a n o n y m i t y  tha t  were impor tan t  for 

our  efforts. We enjoyed also the concomitant  privilege, during moments  of relaxation, of 

observing the  m a n y  fascinating and changing vignettes of everyday  life t ha t  passed be- 
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Notes added in proo/: 

1. The surmised (w 2.7) existence of the singular solution U(r) is now proved; details 

will appear  in a work by  these authors,  now in preparation.  

2. We have been informed t h a t  the  solution U(r) was encountered independent ly  in a 

computa t ional  s tudy  by  C. H u h  (Capillary Hydrodynamics . . .  Dissertation, Dept.  of Chem. 

Eng.,  Univ. of Minnesota, 1969). 

3. We note  a part icular  choice for the two constants  C in (16). Define by  ~K ~, j = 0, 1, 

the pa r t  of ~R between the ver tex ~0 and the  outer  cap of a sphere, of radius ~j = min 

{~, 6 sin a[ sec 7J] }, centered on the  axis at  distance 6 < R/2 f rom Z ~ We m a y  then choose 

C=n(g6j) - l§  in ~ J  on (respectively) the r ight and the left of (16). Here ej(6)->0 

with 8, ej = 6j if sin ~ I sec 7j I >~ 1. 
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