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The purpose of this note is to extend the result of Theorem 3 in the preceding paper 

[2] to a configuration not amenable to the methods of that  reference. 

w  

Consider an open set ~ in Euclidean n-space, bounded in part by a surface Z of class 

C (2) whose mean curvature H r. does not change sign; the sign of H r. is chosen to be posi- 

tive when the curvature vector points into ~. As in [2], we use the symbols Y~ and ~ to 

denote also the area and volume of these sets. 

Let u(x) be a solution in ~ of 

( ) = n H ( x ) ,  1 div v V u  W ~= 1 + IVul ~, (1) 

where H(x) is prescribed in ~, and set 

1 Tu=~Vu (2) 

in ~. Denote by v the exterior directed unit normal on Z. We observe first that  i[ H(x) 

is bounded on one side, then/or any open subset Z * c  ~,, the quantity S~* Tu .,~da is uniquely 

defined as a limit o/ integrals over sur/aces converging in any uni/orm way to Z*/rom within 

~. To see this, it suffices to suppose H > 0 and to show the result when E* is the part of 

lying interior to a (small) sphere S centered on Y~, so that  •* and a part S * c S  together 

bound ~ * c  ~. Integrating (1) by parts in the subregion cut off by an approximating 

surface F*, and passing to the limit as F*-~Z*, we find 

lim fr Tu.vda= f H(x)dX- fs TU.vda. 
I'*~r.* * * * 
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Here the first te rm on the r ight  exists because H > 0, the second exists because I Tuv I < 1; 

thus,  ~z* Tu,~da is defined by  the  term on the left.(1) 

Wi th  this definition in mind  we shall prove the following result: 

THEORV.M 1. Let u(x) be a bounded solution o/ (1) in )I. I /  H r ~ ( n / ( n  - 1))H0>~0and 

H(x) < g o in )1, then Sz* T u . v d a <  Z* on any open subset ~* ~ ~.  I /  I H~I < ( n / i n -  1))H 0 

and H(x) >t H o in )t, then ~ Tu  . vda  > - Z* on any open subset ~,* ~ ~,. 

Remark. I n  [2] it was assumed, chiefly for reasons of notat ional  simplicity, t ha t  

Tuv defines, as a limit f rom within )1, a funct ion cos y almost everywhere on Z. Under  

this addit ional hypothesis  Theorem 1 states tha t  there is no bounded  solution in )1 for 

which cos y = 1 (resp. cos y = - 1) on any  open subset of Y,. I t  is in this sense tha t  Theorem 

1 completes the  result of Theorem 3 in [2]. 

Theorem 1 has a geometrical content ,  which one sees by  not ing tha t  H(x) is the mean  

curvature  of the  surface $ defined by  u(x), t h a t  ((n - 1)/n)H ~ is the mean curvature  of the 

(vertical) cylindrical wall Z over Z, and tha t  Tu .  v]~ is the cosine of the angle ~ between $ 

and Z at points of contact .  Thus, under  the given hypotheses,  the theorem restricts the 

ways in which $ can (in a limiting sense) be tangent  to Z. 

Theorem 1 is best possible in a number  of ways. I t  is false for unbounded  solutions, as 

follows from a construct ion due to  Spruck [5], which we shall also use in the  proof. I t  is 

false if H(x) > ((n - 1)/n)H ~ (respectively H(x) < ((n - 1)/n)HZ), as follows from the example 

of w 2.3 in [2]. I f  H(x) < H 0 < ( ( n -  1)/n)H ~ (respectively H(x) > H  ~ > ((n - 1)/n)]H~l) ,  then 

there even exists ~0, 0 <  ~/0<~, so tha t  there is no solution u(x) in )1 for which limx-.z 

Tu .  v >/cos ~0 (respectively limx-~r. Tu .  v < cos ~/0), see Theorem 3 in [2]. We show later by  

example tha t  in the class of all bounded  solutions, no such ~0 can be found under  the 

present hypotheses;  nevertheless, we do show (Theorem 2) t ha t  if lu(x)l < M  in )1, then  

there does exist a Y0, depending on M, thus  s t rengthening Theorem 1 for any  class of 

equi-bounded solutions of (1). 

The under lying heuristic content  of Theorem 1 is t ha t  if two surfaces $1 and S3 are 

t angen t  at  a common point  p, if the mean  curvature  vector  h2 of S~ at  p is either directed 

oppositely to  the corresponding vector  h I of S1 or satisfies ]h21 < ] h i  ], then S3 cannot  lie 

on the side of $1 into which h 1 points. This much  is geometrically evident.  I f  I hs[ = I hl I, 

then  nothing can be said unless information is known on these vectors in an  entire neigh- 

borhood of p; however, it is still easy to give conditions tha t  lend themselves to  analysis. 

A related problem for which it is less evident  what  happens appears when the  surfaces 

(1) We note that since I Tu. v I < 1, there holds J'n* H(x)dx < c~ whenever a solution of (1)can be 
defined in )1". 
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ha ve a manifold F of contact tha t  serves as a boundary for one of them (say S~) so that  

$2 is not known to be continuable across F as a surface satisfying the hypotheses. I t  is 

this type of situation tha t  we discuss here, for the special case in which $~ is a cylinder 

and $2 projects simply onto the base of $1- 

The problem has appeared previously, incidental to other investigations; the result 

of Theorem 1 was given by  Jenkins and Serrin [3, Lemma 3] for minimal surfaces, l a t e r - -  

with the same method of p roof - -by  Spruek [5, Lemma 4.2] for surfaces of constant mean 

curvature, in the case n = 2  and under a hypothesis that  the intersection manifold F is 

continuous over the base plane. 

The conceptually interesting new feature of the present note is tha t  no hypothesis at  

all is introduced on F; in fact, the surfaces are not explicitly required to contact. Thus, 

assuming only tha t  u(x) is a bounded solution of (1) in T/, and tha t  Z satisfies the (neces- 

sary) curvature inequality, one can infer information on the angle of contact (defined in a 

limiting sense) between the two surfaces. This is the natural  setting for the capillary 

problem, which is the physical motivation for this note and for the two papers appearing 

with it. In  tha t  problem, a fluid surface is to be determined by  the condition tha t  it makes 

a prescribed angle with bounding walls; no reference to boundary curves appears in the 

problem's formulation. 

Before proving Theorem 1, we derive a preliminary result: 

LEMMA 1. Let ~ and Z be as above, with Hr. ~ ( n / ( n -  1))H o. Suppose there is a point 

p E Z at which H r ' ( p ) > ( n / ( n -  1))H o. Then there exist~ (locally) a surface If of constant 

mean curvature H[ ,  such that p E 1 f, Hr. (p) > H [  > (n/(n - 1)) Ho, and If A ~ = r 

Proof. We adopt a coordinate frame with p at  the origin, so tha t  the x, axis is normal 

to Z at  p and points into T/, and so tha t  the other coordinate axes coincide with the prin- 

cipal directions on Z. 

Denote by  St ... . .  ~n-t the principal curvatures of Z at p. Thus, Z~ -1 2 j=  ( n -  1)H ~ (p). 

For any H0 T in the indicated range, set e=Hr.(p)-HoT>O, ~/ t=2 t -e .  Then ~t<~t,, 

i = 1, ..., n - 1, and Z~ 1 ~t = ( n  - -  1)H0 T. We consider the initial value problem for the equa- 

tion 

~ ,  = ( n -  1)Ho T W 2 = 1 + Iv~ol ~, 
i = i z i 

with initial data  
in--2 

~(X 1 . . . . .  X n - 2 , 0 ) = ~  1~ ~tX 2 

~ (xl . . . . .  x,-2, 0 ) = 0  
~Xn-1 
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(3) 

(4) 
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Fig. 1 

on the hyperplane x~_l=0. The existence of a solution of (3, 4) in a neighborhood of 

x = {xj} = 0 is assured by the Cauehy-Kowaleski theorem [4]. 

At x =0  there holds (O]Oxj)q) ~0,  ] = 1 ..... n -  1, and (O~/(Ox~Oxj))~ =0  if i ~ j .  Thus, for 

j = 1 ... . .  n - 2 ,  ~j is the j th principal curvature of the surface Y: ~0(x) at  x=0 .  But  by  (3), 

H0 Y is the mean curvature of Y. Hence ~ - 1  is the ( n - 1 ) t h  principal curvature at  x = 0; 

in some neighborhood of x = 0, the surface Y satisfies the requirements of the lemma. 

Proo/o/ Theorem 1. I t  suffices to consider the ease H ~ ~>(n/(n- 1))H o >~ 0, as the other 

is analogous. We suppose the theorem false, and restrict at tention to t h e  given open sub- 

set, which we again denote by •. 

If  H ~= (n/(n-1))Ho,  we identify Y, with Y and select an arbi trary point p o n  this 

surface. Otherwise there is a point pEY~ at  whieh. t t '~(p}>(n/(n-1))Ho . By Lemma 1, 

there is a surface Y through la and exterior to T/, such tha t  H f i s  constant and satisfies 

H ~ (p) > H Y > ( n / ( n -  1))H 0. Let  St(l) ) be a sphere of radius :e centered at p.and bounding, 

with par t  of Y, a region ~ *  with ~/* =7/~* N T/4=r (see Fig. 1). We denote the two parts  of 

the boundary of ~/* by Z*~  Z and by F*~  St(1)), and define u(p)=  lira supx-,p u(x), xe~/. 

We use in a basic way a theorem of Spruek [5, w 9]: i / e  is su//iciently small, there exists 

a solution v(x) o/ 

(1  ) W~= + , V v ,  ~ (5) div ~ V v  = - ( n - 1 ) H  Y, 1 

in ~ * ,  such that lim~-.r, v(x) = 0  and lim~_, y v(x) = + oo. 
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We proceed in several  steps: 

(i) Le t  ~ = v - c ,  where c is chosen so t h a t  on F*, ~ <  glbx~N* u(x). Note  t h a t  ~ is again 

a solution of (1) in '1//*, and  ~(p) = co. 

(ii) Le t  ~$ (x)=  ~(x+~5) ,  where ~ is the  uni t  exter ior  normal  to  Z a t  p, and  choose 

sufficiently small t h a t  there  still holds ~$ (p) > u(p) .  ~$ (x) is defined in a region ~ obta ined  

b y  displacing TI* a dis tance ~ along ~- 

(iii) The  funct ion w(x) =~$ (x) - u ( x )  is defined in ~ ~ ~*. Denote  b y  ~0 the  open com- 

ponen t  in ~ having p as a bounda ry  point,  and  in which w > 0 .  Tl ~ is bounded  b y  Z ~  Z* 

and b y  a closed set F ~  ~ N ~* (see Fig. 1). 

(iv) We now consider the  formal  iden t i ty  

f ~~ [div (w V~) - div (w VU) ] dx = f z,w[T~ - Tu] " ~*da 
1 A 1 

Here  the  integral  over  ~0 is to be unders tood  as a l imit  of integrals over  surfaces approx ,  

imat ing  ~'.0 f rom within  ~0, and  the  integral  over  F ~ does not  appea r  s ince w=O on t h a t  

set,(1) 
F r o m  the  construct ion of w(x), we find t h a t  the  in tegral  on the  left  in (6) is non-nega-  

t ive.  The  in tegrand in the  other  integral  over  7//~ can he expressed  as a posit ive definite 

quadrat ic  fo rm in the  components  of Vw; thus  this integral  is positive. 

To  s tudy  the  integral  over  Z ~ we choose as approx ima t ing  surfaces a family  Z ~ tha t ,  

in suitable local parameters ,  t ends  to  Z ~ toge ther  wi th  the  first  order  der iva t ives  of the  

posit ion vector.  The  convergence will then  also be in area, and  we find, since [Tu] < 1, 

t h a t  ff the  e lement  danc ~o corresponds to da~ Z ~ t hen  

~iTu"~d(~n=~r~o(TU"~)z~da+sn 

where ~n-~ 0 as n-~ ~ .  

By  definit ion, limn_,~r ~z~Tu �9 ~ da~ = ~z~ ~ da, and since b y  hypothes is  ~r.,Tu. "~da 
Z* and ~ o ~  ~, ,  there  follows~ using again [Tu I < 1, ~z* Tu .  v da  = Z ~ Thus,  

l im ~ (Tu.'~)~oda=Z ~ (7) 

We have  by  the above construct ion t h a t  on Z ~ [T~] ~< cos ~0 < 1 for all sufficiently large 

n. Le t  #n be t h e  measure  of the  set  on Z ~ on which ~(Tu.~)r~<cos~0.  T h e  inequal i ty  

(') The difficulties arising from possible irregularities of F ~ can be overcome by a simple approxi- 
mation procedure, based on the fact that I ~~ is a level set of w(x); cf. footnote (2) in [1]. 
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]Tu] < 1 now implies, with (7), that/~n-~ 0. I t  follows then from 0 < w < M in ~0 that  

~ 0w[T~s - T u ] .  ,~da< (2+ e) M/xn 
I :  

and finally, from (6) 
f *  

0 < | [T~ - Tu]. Vw dx ~< 0. 
Jn e 

This contradiction establishes the theorem. 

w 

The above proof yields somewhat more information than is stated in Theorem 1. To 

achieve the contradiction it suffices to have 

cos~ ,o=maxT~ .v~<  inf 1. ~ Tu.~da,  

(the integral on the right being understood, as before, in a limiting sense), so that  the 

theorem will be improved as soon as a uniform bound on the left-hand term can be ob- 

tained. Clearly this bound depends, for given Z, only on e and on the distance 5 that  ~/* 

can be displaced while maintaining the inequality ~(p)>u(p) .  ~ can be chosen depending 

only on the geometry, that  is, to permit the Spruck construction in a region 7~* of the 

desired form. Assuming the geometry fixed, the maximum permissible 5 depends only on 

the bound for ] u(x) ] in T/. This remark proves one of the inequalities of the following re- 

sult, the other one being obtainable, as before, analogously. 

THEOREM 2. I /  Hr>~(n/(n--1))Ho>~O and H(x)~<H 0 in 7~, then there exists ~o, 

0< ~,0< ~e, dependinq only on ~ and on M, such that/or any solution u(x) o/(1) in 7~ saris. 

/ying lu(x)l < M there holds cOS$o~ inf~.c~(1/Z*) S~.Tu.vda. I / IH~I  < (n/(n-1))H0and 

H(x)>~H 0 in 711, then there exists 71, 0<71<Yt, such that i] u(x) satis/ies (1) in 7~ and 

] U(X) ] < M ,  then cos ~1 ~< supE,c  z (1/Z*) S~. Tu.  v da. 

Remark. If, as is done in [2], it is assumed that  Tu-v  defines, as a limit from within 

T/, a function cos ~ almost everywhere on Z, then the result of the theorem becomes that  

there cannot hold cos y ~> cos ~0 (resp. cos ~ ~< cos ~1) on Z. 

w 

The restriction ]u(x)l < M  of Theorem 2 is necessary. This can be seen by considera- 

tion of the properties of the Spruck surface; alternatively, we present here a more ele- 

mentary example. 
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Let  ~ be the disk x 2 + y 2 < l ,  and Z the  arc x2+y2=l ,  y > 0 .  The cylindrical surface 

Z in Eucl idean 3-space, t h a t  projects onto Z, has mean curvature  ~ - 1 _  1 ~  ~ - ~ - ~  . If Z is 

ro ta ted  a (small) angle a about  the x-axis, in such a way  t h a t  points on the positive y-axis 

are tu rned  away from the positive z-axis, we obtain  a surface Z~: u~(c, y) defined over 

and satisfying the equat ion 
1 

Let  pa be a point  on Z ~ N Z. pa lies at  the intersection of a generator  on Z th rough  Z, 

and of the image generator  on Z ~. I t  follows tha t  the angle y~ between Z and Z ~ at  p~ 

satisfies 0 < ~ ~< ~, uniformly on Z, and hence lim~_,0 ~ .  Tu~](x.y) = 1 uniformly for (x, y) E Z. 

The surface Z~: u~(x, y) is however defined and bounded  in N (although of course not  equi- 

bounded  in a) for all a > 0. 

w  

We remark  finally t ha t  the sense of Theorems 1 and 2 is to give conditions under  

which I Tu~[ cannot  be close to  un i ty  on a b o u n d a r y  set of significant size. Tha t  the size 

of the boundary  set mus t  enter  into the result  is easily seen f rom the example at the end 

of w 3.3 in [2], which shows tha t  under  the hypotheses  of the theorems any  value of Tu.  v 

in  the closed interval  [ -  1, 1] can be obtained at  an isolated boundary  point. 
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