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1

Let f(n) be a real-valued additive arithmetic function. Let a(x) and f(z) be real-valued
functions which are defined for all real numbers z>1, and in such a way that f(z)>0.
For each real number z let N(z, z) denote the number of integers n not exceeding z, for
which the inequality ‘
f(n) — al@) < 28(x)
is satisfied. Define the frequencies

v.(n; f(n) —a(x) < 2B(x)) =2 N(x, 2), (x=1).

In this paper we shall make certain restrictions upon the rate of growth of the renormalis-
ing functions a(x) and f(x), and then give necessary and sufficient conditions in order that
the above frequencies should converge weakly.

For simplicity of exposition only, we shall assume that the function f(n) is strongly
additive. In other words, for each prime p and positive integer m the relation f(p™) ={(p)
is satistied. No other assumptions will be made concerning the function f(n). It also proves
to be advantageous to consider frequencies which are defined in terms of a continuous
parameter x.

In order to present our main result it is convenient to define independent random

variables X, one for each prime p, by

f(p) with probability 1
x =1 VY

»

0 with probability 1 -—;.

(1) Partially supported by N.S.F. Grant NSF-GP-33026 x .
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THEOREM. Let fi(x) satisfy the conditions f(x)~> <o, and

sup |B()~ B(y)| = o(B(x)), (x> o0).

ey <z
ProPOSITION A. There exists a real-valued function o(x), with the property that

sup |a(x)—a(y)|=o(ﬂ(x)), (x__) 00)7

sheyss
and such that the frequencies

v(n; f(n) —a(z) < 2B(2)), (¢ >2),
converge weakly as x— oo,

ProrosrrioN B. There exists a function a(x) so that the distributions

P(pZIX,, —a(x)<2p(x), (>2),

converge weakly as x— co. Moreover, for each pair of positive real numbers ¢ and u the condi-
tion
1
Z - 07 (.’IJ - oo)
zf<p<z

. . 11> upz)
18 satisfied.

If, in addition, the function B(x) is continuous for x>2, then each of these two proposi-

tions s also equivalent to the following proposition C.

ProrosiTioN C. Set 6 =1+ (log z)~1. Then there exists a function e(x) so that for each
pair of real numbers t and T the limit

o log p (it,‘(p)) B }_ a_(x_))
w(t) IILI'?O (%: po+h'(o‘—1) {exp ﬁ(x) 1 2t’3(x)

exists, and is independent of v. The function w(t) ts continuous at t=0. Moreover, the lim-

tting relation

lim
—»wlog x5 P

1 lo it 1
2 a+§(g)~1) X (ﬂf((f))) 114t
is satisfied.

The functions a(x) which can occur in these propositions are determined uniquely up to
the addition of a function of the form cB(z) +0(B(x)), ¢ a constant. In particular, if 4 (and so
B) is satisfied we may choose the same function o(z) in propositions A and B, and the limit
laws will coincide. If, moreover, B(x) 18 continuous then we may choose the same function a(x)
in all three of the propositions. The limit law will then have a characteristic function of the
form exp (w(t)).
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Remarks. The addition to «(z) of a function which is of the form cf(x) +o(f(x)) merely
convolutes the limit law with an improper law.

If we assume that §(x) is a measurable funetion of , then the second of the two hy-
potheses which we make upon its rate of growth is equivalent to the assertion that for each
positive real number y, S(2¥) ~ f(x), as z— co. One can view f(z) as a slowly oscillating func-
tion of log . For a study of the pertinent properties of measurable slowly oscillating func-
tions we refer to the paper of van Aardenne-Ehrenfest, de Bruijn and Korevaar [1].

Although we give a detailed proof of the theorem for strongly additive functions f(n) it
is possible to prove that the theorem is valid for an additive function f if and only if it is
valid for the strongly additive function whose value coincides with the value of f on the
prime numbers. The limit laws will then also coincide.

The theorem exhibits a connection between the theory of those Dirichlet series which
possess Euler products, and the limiting behaviour of sums of independent random vari-
ables.

In particular, the present result includes the well-known theorem of Kubilius ([5]
Chapter 4, Theorem 4.1, p. 58), concerning the limiting behaviour of additive functions of
class H.

We conclude this introduction with an historical example. Let f(r) =w(n), the func-
tion which counts the number of distinet prime divisors of the integer n. Then Erdés and

Kac [3] proved that as x— oo
v, (n; w(n) —log log z <z Vlog log z) —~ G(2),
where G(z) denotes the normal distribution, and which is defined by

1 -4

V2mJ -

G(z)= e~ ¥ dw.

It is easy to check that the choices a(z) =log log z, 8(zx) = (log log x)'/2 fall within the scope
of the above theorem. By combining the equivalence of propositions 4 and B together
with a well-known criterion of Gnedenko and Kolmogorov ([4] Chapter 5, Theorem 3,
p. 130) we can assert the

CoROLLARY. In order that for a strongly additive funciion f(n) the frequencies
v,(n; f(n) —log log x <zllog log ), z=>1),

should converge to the normal law, it is both necessary and sufficient that for each positive

number ¢ the limiting relations
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1

~ >0,
Dsz.lf(p)|>eyloglogz:p
1 2(p)
loz log 2 'f—(l»l, {both as x — o0)
0g ]Og xpsl. £ (»|<elloglog 2 »p

be satisfied.

Notation. 1t is convenient to retain and extend the notation which was introduced

above. For any property ... we define the frequencies

v(n; .. )=2"12" 1.
n<r
Here ' denotes that the summation is confined to those positive integers n for which the
property ... is valid.
We shall use ¢,, ¢,, ... to denote positive constants. These will be absolute unless other-

wise stated.

2. Proof of the theorem

We shall give an essentially cyclic proof of the theorem. In order to do this it will be

convenient to introduce a modified form of proposition C, namely:
ProrosiTioN C. Seto,=1+(log x)71, and sy=a,+it(c, —1). Then there are functions
ofx), x =2, and u(t), such that as x— o:

exp (%% {exp (%) - 1} - —————lj;:g;)) = u(t) +o(1).

The function u(t) is independent of T, and continuous at the point t=0. Moreover, there is an

interval |t| <t, about the origin t=0 in which the limiting relation

1 log p wfp)y 1
2 exP(ﬂ(z))_l+it

i
e logz ™ p*

1s valid for every real number 1.

We shall prove the theorem by establishing the sequence of propositions A—+Cy—>B—A4
and O—C,.

3. Proof that A implies C,

In this section we consider Dirichlet series whose coefficients depend upon a real para-
meter . We show that information concerning the behaviour of these coefficients under a
transformation x — 2%, where y is a positive real number, leads to information concerning

a certain limiting behaviour of the Dirichlet series which they define, and.conversely.
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Let s =0 47 denote a complex variable. We shall set g,=1+(log 2)-1, as in Proposi-
tion C,,.

For each real number ¢ define

g(n) = exp (itf(z)~f(n))

so that g(n) is a multiplicative function of #, which satisfies |g(n)| <1 for n=1, 2, ... We
define the associated Dirichlet series

=]

)= 2 gm)n™>.

n=1

This series is absolutely convergent.in the half-plane ¢ >1.
Let y be a real number. We shall consider the contour integral

O+ {00 xsy

1
J(x, Y)= 5.7—1;, J‘Uriw _8~ G(S) ds.

We begin by examining the behaviour of J(x, y) as x— oo, for a fixed value of . We shall
need

LeEMMA 3.1. Lei the frequencies
va(m; f(n) — (@) < 2B(x), (¢ >2),

converge weakly to a distribution F(z). Let g(t) denote the characteristic function of F(z). We

assert that as x— oo we have

-y _ @) je® if y>0
x J(x,:l/)exp( nﬂ(x)) {0 it y<o.

Proof. Since G(s) converges absolutely for o >1, we may apply a standard theorem of
Perron (see for example Titchmarsh [6] Chapter IX, p. 300), and deduce that if 2¥ is not

an integer, then
J(z,y)= 2 g(n).

nga¥

If y <0 then J(x, y)=0, and the second of the two assertions contained in Lemma 3.1 is
immediate. Suppose, therefore, that y>0. In this case, the same theorem of Perron as-
sures that we can omit the condition that z¥ be non-integral provided that we add to the

sum over the g(n) a term which is here absolutelv bounded. Consider the expression

K=K(x,y)=exp (—z?—(g—)) x'f’ Zyg(n)-
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We shall estimate this function K(z, y) by deforming it into an expression to which we can
apply the hypothesis of Lemma 3.1. Let us first replace the function «(z) by a(z¥). Since,
by the hypothesis of proposition A, a(z)—a(z¥) =o(f(x)) as x— oo, this changes the value
of the sum K by at most

thor () (~ita(x”))' y
oxe (- 5) oo (- 5 Lol

This sum in turn does not exceed

Hence - K@x,y)=z"" Zﬁexp (z {f( )ﬂ( o;(x”)})+o(1)

as x->o°. We next replace f(z) by f(«¥). This is a little more complicated. Let £ be a posi-
tive real number. Choose a real number u, so large that for all sufficiently large values of

x the inequality
Vo (5 [f(n) — ala?) [ < up(a*) >1—¢

is satisfied. That this can be done is assured by the second of the two assertions which oc-
cur in proposition A of the theorem. For a particular value of z, let the integers » which
are counted in this last frequency be denoted by n,, (j=1, ..., 7). We write

,B(x) <a¥
nEN;

say. We can obtain an upper bound for the second of these two sums at once by | 2] <e.
In each of the terms in X, we replace f(z) by B(a¥). This will then change the value of I,
by not more than

gl {55 o o)
~a 3 exp(~it{f(n;) (¥ )}{%—,—3(17}) ll

| Ilﬁ(xy) ﬂ(x)l

<™ 2 |t ftn) ~ o @

=o0(1), (xz—=> o).

'lﬁ () ﬁ(x”

We have now proved that as x — oo
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K(zx, Z/)=w“"é1 exp (— it {M%(_—xy";(”y)}) +o(1)+0e (|08]<1).

By adding to the sum which occurs in this equation the appropriate terms, we see that

—Y _ g 1) — ()
Kz, y)—= néxexp( zt{ B })|<2£.

lim sup

T—>o0

Since £ can be chosen arbitrarily small:
o«

K@, y)= f ¢y (n; f(n) — ala?) < 2B(a) + o(1),

-0

as x— oo, However, the integral which appears on the right hand side of this estimate is
the characteristic function of a frequency which converges weakly to F(z) as x— . By a

standard theorem from the theory of probability we deduce that as x— oo

stoc(x)

p(z)
This completes the proof of Lemma 3.1.

x~ Y J(z, y) exp (— ) = K(x, y)— ¢(?).

To continue with our proof that proposition A implies C, it is convenient to transform
the integral J(z, y) by the substitution 7—(g,—1)7. We then obtain the representation

1 [* @
@ =g [ - 1yas

where it is now to be understood that s= s;= g, + iz(g,— 1).

Define

Then since #*¥ = a¥ exp (y{s,— 1} log x) = 2% exp (y{1 + it} (6, — 1) log ) = 2 exp ((1 + i7) )

we can write
(-]

(ex) Y I (x, y)= J‘ eV h(7) dr.

-0

It is pertinent at this point to note that

_ el _ i)
()] S7log+iTlog—1)| Y118

where the ‘constant’ A(z) depends upon z. For each fixed value of = the function h(t) be-

longs to the class L2( — oo, o0).
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It will be convenient in what follows to denote the fourier transform of a function
k, by 2~ In fact the fourier integral involving A(t) can be proved to exist as an improper
Riemann integral.

We have so far proved that

o ()

A=)

o (x)

plx)

[h(r) exp (— )] = (ex)™"J(z, y) exp (— ) =o(=,9),

say. Since for positive values of z>1 and y the inequality |J(x, )| <¢,2” holds uniformly,
the function which oceurs on the right hand side of this equation belongs both to the class
L(— 00,00} and L3 — oo, o) with respect to the variable y. We can thus apply a fourier

inversion to obtain the relation

. | foe
k() exp (— li‘;‘(:(:;)) = on f_we"”'@(x, y)dy.

For each fixed value of y+0, we have proved in Lemma 3.1 that

e Vo(t) ify>0

Q(x’y)é{o if y< 0.

Moreover, |o(z, y)| <c,e* holds uniformly for all values of 2>1. We may therefore apply

Lebesgue’s theorem on dominated convergence, to deduce that

. (@) 1 [ _., _, @(t)
- = =T 3.2
Jim h(z) exp ( (@) ) 27 f IR AUL. Qe g, (3.2)
Let us examine this expression involving k(z). Let {(s) denote the Riemann zeta-function,
which is defined for o>1 by

This function is well-known to be everywhere analytic except for a simple pole with re-
sidue 1 at the point s=1. We shall only need its properties in the neighbourhood of s=1.

We write A(t) in the form

-1
)= G L) {3

C(so)}. .

As x ~> oo the expression inside the curly brackets has the estimate

Ty
2

go— 1 1
1 2ms,(0y— 1+t1(0y— 1)) 2a(l+iv)

-1 1
oy (10 =
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From our limiting relation (3.2) we deduce that

to(x)

Bla)

G(3,) £(8y) ! exp (— ) >@(t), (x—>o0). (3.3)

Both G(s) and ((s) possess Euler products in the half-plane ¢ >1. In terms of these we

we can write

D

G(s) S(sa) =11 (1 + 219(10) 10‘3“'") (I—p™%).
For each prime p define .
0, () =log (1 +g(p) p~>(1—p™*){1-p™ >}~ {g(p)— 1} p~>.

Define also , O(z) = 210, ()}

We assert that if the principal value of the logarithms are taken, then as o0, G (x)—0.

In fact if p is large, and we apply Taylor’s theorem, then on the one hand

. 0 . 1 %0 1
0, (%) = g(p) {p‘““ (I-p~*) '+ m2=2( —g(P)p(1—p~*)"H" P m2=2p“”‘s° E} =0(p73).

Hence for all absolutely large numbers P, imiformly inx>2:
2 10,(@)]=0( 2 p~*) = O(P7).
p>P p>P

On the other hand, for each fixed prime p it is easy to see that 0,(x) > 0 as x > co. We

deduce that
lim sup ©(z)= O(P?).

Z—>00

But P can be chosen arbitrarily large, so that ®(x) > 0 as > oo, as was asserted.

Applying this result, and making use of (3.3) we see that

it (z)

p=)

exp (Z (g(p)+~ Do~ ) ='g(t)+o(l), aszx-> oo,
D
Here the function ¢(t) is. a characteristic function, and, so is continuous for all values of
¢, and in particular at the point ¢=0.
This proves the validity of the first assertion made in proposition C,, with u(f) =e(#).
To obtain the second part of ;proposition O, we carry out the same series of operations,
but using '(s) =dG(s)/ds in place of G(s). The integral corresponding to J(x, y) then has

an approximate representation
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-~ > g(n) log n.

n<a¥

This introduces an extra factor of y log z into the calculations, but no further complica-

tions occur. Proceeding along the above lines we arrive at the asymptotic relation

AT P L TC)) W S v __—ol
Zrvs, (0 1)2eXp( ﬁ(x)) 2nf B A 40K Sy w3

Since g(t) is a characteristic function there is a proper interval about the origin, |¢] <t,
say, in which ¢(t) does not vanish. For values of ¢ in the interval |¢| <{, we apply the above

asymptotic relation together with the (genuine) asymptotic relation (3.3), to deduce that

& (50)
G(sy) 71 + 't"L’

(x— o0).

(60— 1)

b

By logarithmic differentiation of G(s):

GI (80) — e -8 l 1
o) ;gw)p og p+0(1),

as x - oo, so that
i T )_ 1 Slogp (itf(p) 1
(00— 1) G(s,) 1ogx§ 7 P ( B(x) ) +0(10g x)

This leads at once to the validity of the second assertion contained in proposition Cj,

and we have completed a proof that 4—C,.

4. Proof that C, implies B

It is convenient to begin by proving the second of the two assertions which we made
in proposition B.

We consider the second of the two limiting relations of Oy, namely that if |¢| <t, then

1
—— 2 p~* log p exp (ﬂf((p))) T

(2 00).

log zp
From the theory of the Riemann zeta function, as 2 — oo we have

4 (30) 1
—$So ~ — — ~ ————
log zD 2plogp (00~ 1) Fs) L(8) 1+t

so that 1og%Zp"s"(l—g(p)) logp—>0, (x—o00).
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We set 7=0, and take real parts. In this way we deduce that for [¢|<{,,

1
S(z)= fog e %p“‘“(l —Reg(p))logp—+0, (x-oo).

Here 1—Re g(p)=2(sint{(p)/2f(x))2. By means of the inequality |sinmu|<m|sin u|
which is certainly valid for every positive integer m, and real number «, we can extend the
validity of this last limiting relation to hold for each real number ¢ It is convenient to

note at this point that since |g(p)| =1

uniformly for all x>2.

Let ¢ and u be positive real numbers. Set 7'=2/u. Then we easily obtain the chain of

inequalities
T
<in f(p)
1 logp< 1 s 2log p 1— Blx)
log x jecpcme 7 log@ ecpcae  p” Tf(p)
[ Ao} >uf(z) [ f(D)| > uB(x) —ﬁ(_xT

2
logz jecpesue ™ T

10810_1JT e H(®)
Osm 2/3(x)dt

T T
< % fo 10; xpgmp"’“ (1—Reg(p))log p di <§11 fo S(x) ds.
By applying Lebesgue’s theorem on dominated convergence we see that the integral which
occurs on the extreme right hand end of this chain of inequalities is o(1) as z— <. In the
range ¢ <p <zl we have log p>¢ log x, and p~! <p—9 exp (1/¢). In particular, therefore,
we have proved that

lim > Lo 0.

T—00  TE<PKT p
()| >upx)

This is the second of the two limiting relations which are asserted to be valid in proposi-
tion B.
We shall now apply this last relation to simplify the result that

ttor(z)

Bl

exp (% P (g(p)—1)— ) >u(t), (x—>oo).

Let £ and u be positive real numbers. We shall ultimately allow them decrease to zero.

Then from the above results we can assert that as x— oo



64 P. D. T. A. ELLIOTT

> pglp)—-1|<2exp(lfe) = p'=o(l).

E<p<alie r€<p<lie
7o) >uf(z) 1) >up(x)

On the other hand, whenever |j(p)| <uf() is satisfied we can assert that
l9(p) ~ 1| <|f(p) Bi2) | < u.

Thus S polgm-ll<u I pi=2u(—loge+o(l)),
€ <pgrlle ze<p<alie
IADI<up(z)

as ¥ > oo, From these last two estimates we deduce that

limsup > p "|g(p)—1|< —2uloge. (4.1)

T—>o0  rE<pgrl/e

Determine the unique integer k so that 2*< "< 2**!. Consider the right hand side of

the following inequality :

> pglp—-1j<2z > pTo.

p>zxlle m=k 2M<pg2m¥1

For each integer m the innermost sum has the value

 log 2
-1 — -1 1 < -1 (_ m )
2'”<p<2m+1p exp (= (oo ) log p) 2m<p§2m+1p exp log x
10 2 m+1 lO 2
< -1 . m log 1 B y log
m czexp( Tog )<c3k Jm exp(’ Togz d

Here we have made use of the elementary estimate, which is uniform in all positive in-

tegers m:
2m<p§2m+1 %= log log 2™*1 — log log 2™ + O (Egl 27,,) =0 (7%) .
The constants ¢, and ¢; are absolute. Summing over m=k, k+1, ... we obtain the upper
bound
2¢4k™! J' :exp (— yl—(l)%g—xg) dy < exp ( _vkl:)()gg:) ——«2]:31(1)(;;

From the definition of k it follows that k+1 =log x/e log 2, so that if x is sufficiently large
(in terms of ¢) the right hand side of this inequality will not be more than 4c;e. Putting
this inequality together with that of (4.1) we see that

limsup 5 p % |g(p)— 1|< —2ulog e+ 4cse. (4.2)

I—>o0 . p>IE

In particular we deduce that
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2 7 gp)—- 1|<eﬂ > P lg(p)— 1| < —2euloge+4decs +o(1), (x> o0).
<PLT

E<pLT

We shall need this result later.

Let us now examine the sum
2 p™(g(p)—1).

A

If we replace s, by 1 we change the value of this sum by at most

pgﬂl gp)—){p>—p1}<2 2, p7|exp ((sy— 1) log p) —1].

P

We note that since each prime p does not exceed x¢, when z is lai‘ge enough |s,—1|log p<

(1 +72)%e<1/2, provided only that ¢ is sufficiently small in terms of 7. In these circumstances
Jexp (5= 1) log 51— 11< 3 (|5 1]log p)" -1 <2lso— 1 log p.
Hence the error term which we have presently introduced is not more than
2|sy— 1|1’§Mp-l log p=2|sy— 1| (log2® + O(1)) < 3(1 + 7%)}s.
Here we have made use of another elementary estimate from the theory of numbers,

namely

1
> 0—i2=10gy+0(1),

Py

which is valid for all real numbers y >2.

Putting all of these inequalities together (with 7 =0) leads to the following inequality

lim sup

T—>00

<cy(—ulogete).

exp (pgzp-l @p)—1)— %‘:%’) — ult)

valid for all sufficiently small but positive values of » and . Letting u—~0+ and then

e—~0+ we arrive at the limiting relation

exp ( 2P gp) - 1) _’Z’:g)) —>u(f), (z—>o0). (4.3)

s

Consider now the distributions

P2 X,—ax)<zB(z)), (z=1).

T

Their associated characteristic functions @(x {) have the form

5 — 742908 Acta mathematica 132. Imprimé le 18 Mars 1974
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1
@(z,t)=exp (—— itg%) p];II (1 +;)(g(p)— 1)).

In a calculation very similar to that made in 3.3 concerning the function A(r) one can prove

that
tho ()

@(x,t)=exp (pglfp‘l(g(p)—l)— B() +o(1))-

From the limiting relation (4.3) we see at once that

@, 1) > ult), (x> o).

Since u(t) is continuous at the point {=0, it must be a characteristic function, and the
random variable

Blx) {2 X,~ a(x)}

p<T

converges to its corresponding distribution.
This completes the first assertion of proposition B of the theorem, and also the proof
that Cy— B.

5. Proof that B implies 4
In this section we shall make use of a representation theorem of Kubilius.
LeMMA 5.1. Let x be a real number, x>2. Let r be a further real number in the range

2<r<uz. Let j(n) be a strongly additive function. Define independent random variables £,, one

for each rational prime p, by

j(p) with probability %

&= .
0 with probability 1 — 5

Then there is a positive absolute constant so that the inequality

ve(n; 3 j(p)<z)=P(p§r§I<z)+ 0 (exp (__clog x))

pln.pgr log r
holds uniformly for all real numbers z, r (2 <r<x), and functions j(n).

Proof. Kubilius proves this lemma in his monograph [5], Chapter 2, pp. 25-27. Our
use of the real variable x where he has an integer = is not of great significance.
It is convenient to define distribution functions

Gz, z) = v,(n; f(n) —a(x) < zB()),
and
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H(w,2)= P( 2 X,— a(z) <zf(x)),
psq
for =1, where the random variables X, are those which are introduced in the formula-
tion of the main theorem.
Let ¢ be a positive real number, and let a(x) be a function so that the two assertions of

proposition B are valid. Then we obtain at once the inequality

G, 2) < v,(m; f(n) —a(z) <2B(x), Ap|n, & <p <a, |f(p)] > ()
+y(n; 3p|n, ¢ <p <z, |{(p)| > &B(x)).

The second of the two frequencies which occur on the right hand side of this inequality

does not exceed
1

ze<pgzr P
- f o> 2@

and by the second part of proposition B this sum is 0(1) as z— co. As for the first frequency

on this same side, we note that if » is an integer which is counted in it, then

fp)—e@)<fm)—a@)+ 3 |f(p)|<(+e)pl),

pln,pae zZE<p <, p|n

since n can have at most ¢! distinet prime divisors p which lie in the interval 2* <p<u.

Hence we have proved that
Gz, 2) < vy(n; f(n) — o) < (z+&)B(x)) +o(l), (x— o). (4.2)

We now apply Lemma 4.1 (Kubilius’ representation theorem) with r=x¢, and replace the
expression on the right hand side of the inequality by
P(2 X,— a(x) <(z+¢)fx)) + O(exp (—ce ")) +o(1).

P TE

In turn, the probability which appears in this expression certainly does not exceed

P(> X,—a@)<(z+2e)B@)+P(| 2 X,|>ef(x))=H(x,z+2¢)+ Py,
P E<P<KT
say. We can majorise the probability P; by choosing a positive real number 7, and in-

troducing new independent variables Y, defined by

Y =

»

X, if |X,,|<17ﬂ(x)
0 it |X,| >nf@)
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Then P,<PAX,+Y, 2<p<z)+P(| X Y,|>ef(x)=P,+P,,
rE<pET
say. We can estimate P, at once by applying the second part of hypothesis B:

1
P,< 3 —=o(l), (@>oo).
re<p<T
|£(»)| > np(z)

To estimate P; we apply a standard argument of Tchebycheff:

Py<(ef(x)) 2 Expect ( > Y, =(ef(x) 2{Var( > Y, +(Expect > Y,)%
r8<PT z€

<P<KT TE<P LT

= () *{ 2 VarY,+( > ExpectY,)}

I8<P KT I8<P LT

<(eﬁ(x))“2{ > @+( ) '—"’”—")}

TE<PLT TE<PLT p
|| <np@ [F(»)| <np
1 2
< 8_2172( > =+ l)
s<pgz P

=& 2% (1—log e+ o(1))%, (x> oo).

Altogether this proves that if ) and ¢ are positive real numbers 0 <g <1, then as x— o0
P, <e ¥l —log ) +o(1).
We have therefore proved that the inequality
G(x, 2) < H(z, z+2¢) +&72%(1 —log &)2 + O(exp ( —ce~1)) +o(1)

holds as x— oo, for any fixed pair of positive real numbers ¢ and «, 0 <e¢ <1, and uniformly.
for all real numbers z.

In a precisely similar way we can obtain the inequality
G(x, 2) = H(z, z—2¢) —&~2n2(1 —log )2+ O(exp ( —c&e71)) +o(l), (x— oo).

We can express these two inequalities in a somewhat different manner.
We recall that if F and G are two distribution functions then their Lévy-distance
o(F, G) is defined to be the infinum of those real numbers A for which the inequalities

Fz—h)—h <G(z) < F(z+h)+h

hold uniformly for all real numbers 2. This defines a metric on the space of distribution

functions; and a sequence of distribution functions F,, (n=1, 2, ...) will converge weakly
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to a distribution function F if and only if o(F,, F)—>0 as n~>co. In these terms our last

two inequalities can be expressed thus:

lim sup o(G(x, 2), H(x, 2)) < 2e+ ¢~ 2n*(1 — log &) + O(exp ( — cc71)).

We let =0+ and then ¢-+0+ to deduce that
(G(x, z), H(z, 2)) >0, (x—> ).

It is now clear that if the distribution functions H(zx, ) converge weakly as z— oo, then so
will the distribution functions G(z, z), and to the same limit law.

This establishes the first part of proposition 4, and it remains to verify that

sup |a(x) — a(y)|=o(B(x)), (x> o).

FARSAS

In order to do this we make use of the fact that a(x) occurs as a renormalising function
which is restricted by the fact that the distributions H(z, z) converge. We shall need a

part of the following result of Gnedenko and Kolmogorov ([4], § 256 Theorem 1, pp. 116~
121.).

LeMMA 4.3. In order that for some suitably chosen constants A, the distributions of the

sums
Ept ot — A,

of independent infinitesimal random variables converge to a limit, it is necessary and suffi-

cient that there exist non-decreasing functions
M(w), (M(~ o) =0), N(u), (N(+ ) =0),
defined in the intervals (— oo, 0) and (0, o) respectively, and a constant ¢ >0, such that

(1) At every continuity point of M(u) and N(u)

lim f P<u)=Mu), (u<0)

T—>00 k=1

lim kzn {P(£pe<u)—1}=DN(uw). (u>0).

n—>00 k=

@) lim lim inf kz { f 22dP(¢,,<2)— ( 2dP (&, < z))2}= o,
lzj <€ el <&

ge>0 n—oo0 k=1

together with a similar relation obtained by replacing ‘lim inf’ by ‘lim sup’.
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The constants A, may be chosen according to the formula

An= g: ZdP(§1xk< Z)

k=1 J|z|<x
where + T are continuity points of M(u) and N(u).

Remark. In their theorem, Gnedenko and Kolmogorov also determine the form of
the limit law in terms of the representation theorem for infinitely divisible distribu-
tions of Lévy and Khinchine. We do not state this part of their result since we shall have
no need of it.

In our present circumstances we shall be interested in the variables
{6, 1 <k <k} ={f(n)'X,, p<n}, (n=12, ..).

Thus we shall be considering cumulative sums of independent random variables, so that
any possible limit law will belong to the class L of Khinchine (see for example Gnedenko
and Kolmogorov [4], Chapter 6, §§ 29, 30). Each of the functions M(u) and N(u) which
occur in the formulation of Lemma 4.3 are then actually continuous, so that in the final
assertion of that lemma any (fixed) positive value of v may be taken.

Since the distributions H(z, z), (x>2) and therefore H(n, z), (n=1, 2, ...) are assumed
to converge weakly, there exists a continuous function k(u) ,defined for real numbers
4 >0, so that

S o oku), (noo) (4.4)

N
1] > up(m

Assume now that the distributions H(z, 2) converge to a proper limit law. That is to
say, a law whose characteristic function is not of the form exp (ict), ¢ a constant. Consider

the sequence of distributions H(z, z), n=1, 2, ... . Then, by Lemma 4.3 we may choose

. f(p)
aw- z 0
(o] < 2B

provided that 7 is a fixed positive real number. Since the variables

p)H{ 2 X, — A(n)}

pn)™? {pgn X, — a(n)}

converge to the same proper law, an elementary result from the theory of probability (see
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for example Gnedenko and Kolmogorov [4] Chapter 2, Theorem 2, pp. 42-44) implies that

as p—> oo
A —am)
p(n) '
We next prove that as n—> oo
Jsup aty) = a(m)| = ofB(n) (45)

To do this it suffices to note that if ¥ lies in the interval n—1<y <n+1 then G(n,z) and
the frequency

vu(m; f(m) —oly) <2B(y)), (=n"'yG(y, 2))
both converge to a certain proper limit law. Hence, we deduce that both

Bw)[B(n) > 1, |aly) —a(n)|/B(n) >0,

as n— oo, The first of these limiting relations is of no present value to us, but the second
is the relation which we wished to establish.

Let x and y be real numbers which satisfy 2 <z'/2<y<z. Define integers m and n
so that m <y<m+1, and »—1 <z <n. Thus the inequalities 2<m <n <z +1 are satisfied.

As z— oo we see from property (4.5) that
a(x) — a(y) = a(n) —a(m) +o(f(x))
= A(m)—A(n) +o(B(x))

It is then convenient to write

f(p) f®) f(p)
Am)y—Amn)y= 2 —+ 2. - > =21+ 22+ 25
m<p<n P pg<mifp|<Bm P p<mf|<tpm P
If(»)| <vpm 1A} > 2ptm) 1£(0)| > xB(m)

say. Let ¢ be a positive real number. Then if x is large enough f(r) < (1 + &) §(m), so that
by condition (4.4) of the present section

Sal<pen{ s - 1

p<m (M| <t +)pm) P p<m, | /D) <htm) 5
<tB(m){ — k(z+et) + k(r) +0(1)}, (x> 0).

Hence (since f(n) ~ p(x) as - co),

lim sup B(x) | D] < — v {k(v+ e7) — k(z)}.

We let ¢e—~0 -i;, and recall that 7 is a point of continuity of k(). In this way we can prove
that X, =o0(f(x)) as x> oo,
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In exactly the same way we prove that X3=o0(8(x)).
To consider X, we split the sum into two parts. Into the first part we put those terms
involving primes p for which |f(p)| >¢&f(n). The contribution to X, which such terms make

is at most

1
@) 2 -
nt<pgn p

7)) > ep(m)

and by the second condition of proposition B this expression is o(f(x})) as —>o°. On the
other hand, those terms which remain in X, contribute not more than

eBin) 3 %=sﬂ(n){10g2+0(1)}, (n— oo).

nt<pgn

Hence lim sup fB(z)7*| 2| <elog 2,
I—> o0

holds for every positive value of ¢. Letting ¢—~0+ we see that X, =o(f(z)), and that

a(x) —o(y) = o(f(x)), (x> )

holds uniformly for all values of y in the interval z/2<y<w.

This is the second assertion of proposition 4, and so we have completed a proof that
B—A4, in every case except that of when the distributions H(z, z), and so G(z, z), converge
to an improper law. In this last case we are concerned with a form of the weak law of large
numbers. This has been considered by the author on another occasion [2], and the argu-
ments and results given there guarantee the validity of the inference B true—A true in
this special case under hypotheses on «(z) and f(z) which are considerably weaker than

those which are assumed in the present theorem.

6. Proof that C, implies C, and conversely

It is immediate that C—C,. Assume, therefore, that proposition C, is valid. Then by
the proofs of §§ 3-5 so are propositions 4 and B, with in fact the same a(x) as a possibility.

Moreover, u(t) is the characteristic function of a limit law for the sums
B 2 X, — afz))-
p<z

It is easy to see that the variables f(z)~1X,, (2 <p <z), are infinitesimal, and since they are
independent such a law must be infinitely divisible. In particular u(t) will be non-zero for
all real values of ¢ (Gnedenko and Kolmogorov [4] Theorem 2 of §24, Chapter 4, and
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Theorem 1 of § 17, Chapter 3). Thus none of our earlier arguments need to be restricted to
any particular interval of t-values, and the second assertion of proposition C, (and there-
fore of C) holds for each real value of ¢.

We now show how to obtain the first of the two assertions in proposition C. More
exactly, let log u(t) be defined continuously from the principal value taken at ¢ =0. (Since

u(8) is a characteristic function it will be a continuous function of ). Then we shall prove

cul (i) _ ) italz)
2P {eXP(mx)) 1} Bl ~ogHl):

that as x— o

For ease of presentation let us denote the expression which occurs here on the left hand side
of the arrow by w(z, sy, ). Then the proof that 4—C will also yield that exp w(zx, sy, £)—>
u(t) uniformly over any (fixed) bounded sets of real numbers |v| <7,, |¢| <t,. The only
adjustment needed is that one obtains a form of Lemma 3.1 in which the convergence is
uniform over any fixed interval of y-values 0 <c¢;<y<c¢,, and any bounded interval of
t-values. This is easily obtained since uniformly for such an interval of y-values {a(2¥)—
o(x)} B(x) 10, as x> oo. We can therefore assert that for suitably chosen integers n(x, 7, )

we have
w(x, 8o, ) = log u(t) +2m in (x, 7, t) +o(1)

as 2—> o, uniformly for | 7| <7y, |¢| <#,. Thus we can find a real number x, so that if x>z,

then with these same uniformities
|w(x, sy, t) —log u(t) —2m in (z, 7, 8)| < }-

The function w(z, sy, t) is a continuous function of . (Here f(x) is now assumed to be a
continuous function of x. The number s, also depends continuously upon ). This can be
readily proved as follows. Let P be a positive real number. Let x, be a real number (x, >2),
8,=1+(log x,)"* +ir(log z,)~*. Then

|W(x, So» t) - w(xl7 815 t)‘ <4 Z p—w +
p>P

2o o (55) - Gl

As 2, >z we have s; - sy, f(x;) = (), and deduce that

+

lim sup |w(z, 8y, ) — w(x,, 83, 8)| <4 > p~.
2,—>T p>P

Letting P— oo we see that uniformly for |t| <7,, |¢| <{,, we have |n(z, 7, t) —n(z,, 7, t)| <1
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provided only that x, is sufficiently near to z, and x >x,. We can therefore assert that the
integers n(z, 7, t) in fact do not depend upon the value of x. Let us therefore write n(z, ¢)

in place of n(x, 7, ). Then as x— oo
w(x, 8y, t) ~> log u(t) +2min(z, t)

uniformly for || <7,, [#| <&, Since w(x, s, t) is continuous in 7 and ¢ and the convergence
is suitably uniform the funetion lim w(z, s,, t) (x— ) is also continuous in 7 and ¢. In
view of the continuous definition of log u(f) the integer n(z, t) must be continuous, and so
a constant for |7| <z,, |¢| <¢,. Therefore over this rectangle of values of v and ¢ we have

n(t, ) =n(0, 0) =0. This proves that as x— oo
w(z, 8o, t) > log u(t)

uniformly for any rectangle of (z, t)-values.
We have now established the first assertion in proposition C, and so completed the

proof of the theorem.

7. Concluding remarks

It is clear from the arguments of § 3 that the properties of a(x) and f(x) which se
assume are of a simple nature with respect to their behaviour under the transformations
x—>2¥ (y>0). In fact, for our purposes these functions are essentially asymptotically in-
variant under such transformations. It is quite possible to consider other renormalising
functions «(x) and f(x) whose behaviour under these transformations is entirely different.
The nature of the resulting conditions which are necessary in order that the frequencies
Gz, z) should converge weakly are then quite different. In particular, the function f(n)
need no longer behave like a sum of independent random variables.

In another direction, we can view the transformations x->a¥ as forming a group I
(with composition as a group law) which is isomorphic to the multiplicative group of po-
sitive real numbers. Our use of fourier analysis with respect to the variable y can thus be
viewed as fourier analysis upon the group I'. Accordingly, we can ask whether in certain
circumstances one might not profitably use groups of transformations other than I' with
which to operate.

We intend to return to various such questions at a future date.

Note: Since this paper was accepted for publication it has come to the notice of the
author that a form of necessary and sufficient condition in order that proposition A be valid
has been established, inter alia, in a paper of Levin and Timofeev (B. V. Levin and N. M.
Timofeev: An analytical method in probabilistic number theory. Transactions of the Vla-
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dimir State Pedagogical Institute of the Ministry of Culture, RSFSR. pp. 56-150, see

pp.

113-117). The method that these authors use differs considerably from that of the

present paper. In particular the above method is one which applies quite naturally in more

general circumstances, as is indicated in this section.

(1}
[2].

[31.
[4].
[5].
[61.
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