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Let/(n)  be a real-valued additive arithmetic function. Let a(x) and fl(x) be real-valued 

functions which are defined for all real numbers x >~ 1, and in such a way that  fl(x)>0. 

For each real number z let N(x, z) denote the number of integers n not exceeding x, for 

which the inequality 
/ (n)  - ~(x) <. z~(x) 

is satisfied. Define the frequencies 

n(n;/(n)-zc(x) -<< zfl(x)) = x - !N(x ,  z), (x >1 U. 

In  this paper we shall make certain restrictions upon the rate of growth of the renormalis- 

ing functions a(x) and fl(x), and then give necessary and sufficient conditions in order that  

the above frequencies should converge weakly. 

For simplicity of exposition only , we shall assume that the function/(n) is strongly 

additive. In  other words, for each prime p and positive integer m the relation/(pro) =/(p) 

is satisfied. No other assumptions will be made concerning the ]unction ](n). I t  also proves 

to be advantageous to consider frequencies which are defined in terms of a continuous 

parameter x. 

In  order to present our main result it is convenient to define independent random 

variables X~, one for each prime p, by 

1 
f(p) with probability - 

Xv= P 
1 

0 with probability 1 - - .  
P 

(1) Partially supported by N.S.F. Grant NSF-GP-33026 • 
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THEOR~.M. Let fl(x) satis/y the conditions fl(x) ~ ~ ,  and 

sup Ifl(x)--fl(y)l=o(fl(x)), ( x ~ ) .  
x�89 <<_z 

PROPOSITION A. There exists a real-valued/unction a(x), with the property that 

sup la(x)-ae(y)l=o(fl(x)), (x-+oo), 

and such that the/requencies 

~,~(n;/(n) - ~(x) < z/~(x)), (x />  2), 
converge weakly as x-+ 0% 

PROPOSITION B. There exists a/unction a(x) so that the distributions 

P( ~ X n -  o~(x) <. zfl(x)), (x >12), 
p~<x 

converge weakly as x-+ oo. Moreover,/or each pair o/ positive real numbers e and u the condi- 

tion 

Z 1- o, (x- oo) 
z~<p<~x P 

lf(~)l > u~(x) 
is satis/ied. 

I/,  in addition, the/.unction fl(x) is continuous/or x >~ 2, then each o/these two proposi- 

tions is also equivalent to the/ollowing proposition C. 

PROPOSITION C. Set a = l  +(log x) -1. Then there exists a/unction a(x) so that/or each 

pair o~ real numbers t and v the limit 

exists, and is independent o/~. The/unction w(t) is continuous at t-~ O. Moreover, the lim- 

iting relation 
1 ~ logp [it t(pq 1 

lim l o ~  ~ p ~  exp = 
�9 1 +iT 

is satisfied. 

The /unctions a(x) which can occur in these propositions are determined uniquely up to 

the addition o/a/unction o/the/orm cfl(x) +o(fl(x)), c a constant. In  particular, i / A  (and so 

B) i8 satisfied we may choose the same/unction a(x) in propositions A and B, and the limit 

laws will coincide. I/,  moreover, fl(x) is continuous then we may choose the same/unction a(x) 

in all three o/the propositions. The limit law will then have a characteristic/unction o/the 

/orm exp (w(t)). 
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Remarks. The addition to ~(x) of a function which is of the form eft(x) +o(fl(x)) merely 

convolutes the limit law with an improper law. 

I f  we assume tha t  fl(x) is a measurable function of x, then the second of the two hy- 

potheses which we make upon its rate of growth is equivalent to the assertion tha t  for each 

positive real number  y, fl(x ~) Nil(x), as x-~ ~ .  One can view fl(x) as a slowly oscillating func- 

tion of log x. For a study of the pertinent properties of measurable slowly oscillating func- 

tions we refer to the paper of van Aardenne-Ehrenfest,  de Bruijn and Korevaar  [1]. 

Although we give a detailed proof of the theorem for strongly additive functions/(n) it 

is possible to prove tha t  the theorem is valid for an additive function / if and only if it is 

valid for the strongly additive function whose value coincides with the value of / on the 

prime numbers. The limit laws will then also coincide. 

The theorem exhibits a connection between the theory of those Dirichlet series which 

possess Euler products, and the limiting behaviour of sums of independent random vari- 

ables. 

In  particular, the present result includes the well-known theorem of Kubilius ([5] 

Chapter 4, Theorem 4.1, p. 58), concerning the limiting behaviour of additive functions of 

class H. 

We conclude this introduction with an historical example. Le t / ( n )  =co(n), the func- 

tion which counts the number  of distinct prime divisors of the integer n. Then Erd6s and 

Kac [3] proved tha t  as x-* 

~x (n; ~o(n) - log log x ~< z 1V~og log x) --* a(z), 

where G(z) denotes the normal distribution, and which is defined by  

1 / '  
G(z) = ~ | e-~W'dw. 

V2~ J - ~  

I t  is easy to check tha t  the choices ~(x) =log log x, fl(x) = (log log x) :/~ fall within the scope 

of the above theorem. By combining the equivalence of propositions A and B together 

with a well-known criterion of Gnedenko and Kolmogorov ([4] Chapter 5, Theorem 3, 

p. 130) we can assert the 

COROLLARY. In  order that/or a strongly additive/unction/(n) the./requencie.s 

�9 z ( n ; / ( n ) - l o g  log �9 < log � 9  :), 

Should converge to the normal law, it is both necessary and su/ficient that/or each positive 

number e the limiting relations 
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1 
~ --~0, 

] f2(p~ 

log log x ~ ~ -~ 1, (both  as x -~ oo ) 
<x, l f ( m J < e l / ~  P 

be satisfied. 

Notation. I t  is convenien t  to  r e ta in  and  ex tend  the  no t a t i on  which was in t roduced  

above.  F o r  a n y  p r o p e r t y  . . .  we define the  frequencies 

rz(n;  . . . ) = x - 1  ~ ' 1. 
n~z 

Here  ' denotes  t h a t  the  s u m m a t i o n  is confined to those posi t ive  in tegers  n for which the  

p r o p e r t y  . . .  is val id .  

W e  shall  use Cl, c 2 . . . .  to  denote  posi t ive  constants .  These will be absolu te  unless other-  

wise s ta ted .  

2. ProoI  o f  the  t h e o r e m  

W e  shall  give an essent ia l ly  cyclic proof  of the  theorem.  I n  o rder  to  do  th is  i t  will be 

convenien t  to  in t roduce  a modi f ied  form of propos i t ion  C, namely :  

P R o P o S I T I 0 N C 0. S~t O" O = 1 + (log x)-l ,  and s o = (70 + i~(ao - 1 ). Then there are/unctions 

~(x), x>~2, and it(t), such that as x ~ o o :  

\ ~ p  t \ f l ( x ) / -  ~ ( x ) / =  if(t) + ~ 

The/unct ion  it(t) is independent o /v ,  and continuous at the point t = 0 .  Moreover, there is an 

interval I tl <~ t o about the origin t = 0 in which the limitinq relation 

1 l o g p  / i t l ( p ) ]  1 
l im 1-ogxZ p S 0  exp - ~_.~ \ fl(x) / 1 + iT 

is val id/or  every real number ~. 

We shall p rove  the  theorem b y  es tabl ish ing the  sequence of propos i t ions  A-~  C 0-~ B-~ A 

and  C ~ C  o. 

3. P r o o f  that  A impl ie s  C O 

I n  th is  sect ion we consider  Dir ichle t  series whose coefficients depend  upon  a real  para -  

me te r  x. We  show t h a t  in fo rmat ion  concerning the  behav iour  of these coefficients u n d e r  a 

t r ans fo rma t ion  x -~ x v, where y is a pos i t ive  real  number ,  leads to  in fo rmat ion  concerning 

a cer ta in  l imi t ing behav iour  of the  Dir ichle t  series which t h e y  define~ and  conversely.  
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Le t  s = a + iT deno te  a complex var iable .  W e  shall  set  a0 = 1 + (log X) -1, a s  in  Proposi -  

t ion  C o . 

F o r  each real  n u m b e r  t def ine 

g(n) = exp (it~(x)-l/(n)) 

so t h a t  g(n) is a mul t ip l i ca t ive  funct ion  of n, which satisfies Ig(n) l ~< 1 for n = 1, 2 . . . .  W e  

def ine the  associa ted  Dir ichle t  series 

G(s )=  ~ g(n)n -~. 
r~=l 

This series is abso lu te ly  c o n v e r g e n t  in the  ha l f -p lane  a > 1. 

Le t  y be a real  number .  W e  shall  consider  t he  contour  in tegra l  

 o(s)ds. 

W e  begin  b y  examin ing  the  behav iour  of J(x, y) as x o  oo, for a f ixed va lue  of y. W e  shall  

need 

LEMlgA 3.1. Let the/requencies 

~'x(n;/(n) - ~(x) <<. z~(x)) ,  (x >12), 

converge weakly to a distribution F(z). Let q~(t) denote the characteristic function o] F(z). We 
assert that as x--~ ~ we have 

x_~J(x, y) exp ( _  it:t(x)~.~lq~(t) i/ y > O  
fl(x)] [ 0 i t y<O. 

Proo/, Since G(s) converges abso lu te ly  for a > 1, we m a y  a p p l y  a s t a n d a r d  theorem of  

Pe r ron  (see for example  T i t chmarsh  [6] Chap te r  I X ,  p. 300), and  deduce  t h a t  if x u i s  no t  

an  integer ,  t hen  
J(x, y)= ~ g(n), 

n~xY 

I f  y < 0  then  J(x, y ) = 0 ,  and  the  second of the  two asser t ions  con ta ined  in L e m m a  3.1 is 

immedia te .  Suppose,  therefore,  t h a t  y > 0 .  I n  th is  case, the  same theo rem of Per ron  as- 

sures t h a t  we can omi t  the  condi t ion  t h a t  x u be non- in tegra l  p rov ided  t h a t  we a d d  to  the  

sum over  the  g(n) a t e rm  which is here absolu te lv  bounded .  Consider  the  express ion 

I K = K(x, y) = exp - - ~ 1  • g(n). 
n<~xY 
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We shall est imate this funct ion K(x, y) by  deforming it into an expression to which we can 

apply  the hypothesis  of Lemma 3.1. Let  us first replace the funct ion ~(x) by  a(xY). Since, 

by  the hypothesis  of proposit ion A, a ( x ) - g ( x  ~) =o(fl(x)) as x-~ co, this changes the value 

of the sum K by  at  most  

2., 
This sum in tu rn  does no t  exceed 

Hence 

~-x)  =o(1) ,  

p.<. \ I. fl-(x) j ] + o ( 1 )  

as x-~ oo. We next  replace fl(x) by  fl(xv). This is a little more complicated. Let  e be a posi- 

tive real number.  Choose a real number  u, so large tha t  for all sufficiently large values of 

x the inequali ty 
v=,(n; I / ( n ) -  ~<(~')I < uf l (#))  > 1 - 

is satisfied. Tha t  this can be done is assured by  the second of the two assertions which oc- 

cur in proposit ion A of the theorem. For  a part icular  value of x, let the integers n which 

are counted in this last f requency be denoted by  nj, (j = 1, ..., r). We write 

K(x'y)=x-Ys~,exp= \ - i t  t )l]-~] j/+x-":~:,2 (...)=Y~I+V~, 
n * n  f 

say. We can obtain an upper  bound for the second of these two sums at  once by  ]Z2] ~< e. 

I n  each of the terms in Z 1 we replace fl(x) by  fl(x~). This will then change the value of Z a 

by  no t  more than  

x-~j~ exp ( -  it {/(nJ)flT~(z*!}) - exp ( -  i" ft(nj)- ~(~)l~ l 

-<~-'2 Itll/(,~,)-,~(~)l 1 <ultllB(~)-B(x)l 
j~i ~ ) ,6(x) 

o(1), (x-~oo). 

We have now proved t h a t  as x -~ oo 
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(101  1. 
J=~ l ~(~) l /  

B y  add ing  to  the  sum which occurs in  th is  equa t ion  the  app rop r i a t e  terms,  we see t h a t  

l i m s u p  K ( x , y ) - x  -u ~ exp ( " ' f ] (n ) - -~ (~ ) ] ' ~ [  

Since e can be chosen a r b i t r a r i l y  smal l :  

K(x, y) = f~_~ e~t~d~,xy (n ; / (n) - a(x ~) <~ zfl(x-v)) + o(1 ), 

as x-+ ~ .  However ,  the  in tegra l  which appears  on the  r igh t  h a n d  side of th is  es t imate  is 

the  charac te r i s t i c  funct ion  of a f requency  which converges weak ly  to  F(z) as x-~ ~ .  B y  a 

s t a n d a r d  theorem from the  t heo ry  of p robab i l i t y  we deduce  t h a t  as x ~  co 

( _  its(x)] = K(x, u) ~ ~(0. 
x-UJ(x, y) exp \ fl(x) ] 

This  completes  the  proof  of L e m m a  3.1. 

To cont inue wi th  our proof  t h a t  p ropos i t ion  A implies  C O i t  is convenien t  to  t rans form 

the  in tegra l  J(x, y) b y  the  subs t i tu t ion  ~-~ ( a 0 - 1 ) v .  W e  then  ob t a in  the  r ep resen ta t ion  

= Z (~ o(s) 
J(x ,y)  2~,)_~r s x ~ U ( a ~  

where i t  is now to be unde r s tood  t h a t  s = s o = % + iv(ao - 1). 

Define 

h(v) = ~ (o" o - -  1 ) .  
~ 8  o 

Then since x sou = x v exp (y{s o - 1} log x) = x u exp (y{1 + iT} (a0 - 1) log x) = x u exp ((1 + iv) y) 

we can wr i te  

-u J(x, y) = ~ e *~uh(v) dr .  (ex) 

It is pertinent at this point to note that 

I O(so)l (~o- l) a(~) 
Ih(,)l- 2~1~0+ i ,(~0-1)1 < Vt + ~* 

where the  ' cons t an t '  2(x) depends  upon  x. F o r  each f ixed value  of x the  funct ion  h(v) be- 

longs to  the  class L2( - co, co). 
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I t  will be convenient in what  follows to denote the fourier transform of a function 

h, by  h ̂ . In  fact the fourier integral involving h(v) can be proved to exist as an improper 

Riemann integral. 

We have so far proved tha t  

fJ I 

say. Since for positive values of x >~ 1 and y the inequality I J(x, Y) I ~<cl x~ holds uniformly, 

the function which occurs on the right hand side of this equation belongs both to the class 

L( - cr oo) and L~( - co, ~ )  with respect to the variable y. We can thus apply a fourier 

inversion to obtain the relation 

ito~(x)~ 1 r 
h(v) exp - = ~ J_ooe-'r~e(x, y)dy. \ 3(x) / 

For each fixed value of y 4 0 ,  we have proved in Lemma 3.1 tha t  

{ O ~ ( t )  i fY >0  
~(x, y) -> if y <  0. 

Moreover, I~(x, Y) I < cl e-~ holds uniformly for all values of x >~ 1. We may  therefore apply 

Lebesgue's theorem on dominated convergence, to deduce tha t  

limh(z) exp{_i to~(x)~=l  ~oo e-"~e-Vq~(t)dy = q~(t) (3.2) 
x-~o \ fl(x) / 2~ J_~ 2~(1 + i~)" 

Let us examine this expression involving h(v). Let ~(s) denote the Riemann zeta-function, 

which is defined for a > 1 by  

~(s) = ~ n -s.  
n = l  

This function is well-known to be everywhere analytic except for a simple pole with re- 

sidue 1 at  the point s = 1. We shall only need its properties in the neighbourhood of s = 1. 

We write h(T) in the form 

~ao- I $(So)}" 
h(v) = G(8o) ~(So) -1 t 2--~s0 

As x -~ ~ the expression inside the curly brackets has the estimate 

%-1 1 %-1 1 
2 ~ % ( 1 + ~  2~eo(O'o- l+i ' t ' (O 'o-1))  2 ~ ( l + i v ) "  



ON T H E  L I M I T I N G  D I S T R I B U T I O N  O F  A D D I T I V E  A R I T H M E T I C  F U N C T I O N S  61 

From our l imiting relat ion (3.2) we deduce t h a t  

G(s0) ;(s0) -1 exp ( -  it~(~)~ (x -~oo) .  (3.3) 

Bo th  G(s) and ~(s) possess Euler  p roducts  in the  half-plane a > 1. In  t e rms  of these we 

we can wri te  

For  each pr ime p define 

O , ( x / = l o g  (l + g ( p ) p - ' " ( 1  - p - 8 "  I {1 - P-~'}I - {g(P) - 1}P - '~ 

Define also O(X ) --- E I0~ (x) l. 

We  assert  t h a t  if the  principal  value of the logar i thms are taken,  then  as x-~ 0% O ( x ) ~ 0 .  

I n  fact  if p is large, and  we app ly  Tay lor ' s  theorem,  then  on the one hand  

1 r162 

Hence  for all absolute ly  large numbers  P,  un i formly  in x ~> 2: 

E ]0v(x)l = O( Y p - 2 ) =  O(p-1). 
p>P p>P 

On the other  hand,  for each fixed pr ime p it is easy to  see t h a t  0p (x) -~ 0 as x ~ co. We 

deduce t h a t  
lira s u p  @(x)= O(P-1). 

x--> oo 

But  P can be chosen arb i t rar i ly  large, so t h a t  @(x) ~ 0 as x ~ ~ ,  as was asserted.  

Apply ing  this result ,  and  making  use of (3.3) we see t b a t  

exp (g(p)= 11 ~ - s . _  fi(X)i] =~0(t)+o(1),  a s  x-~  oo. 

Here  the  funct ion q~(t) i s  a characterist ic function,  and, so is :continuous f o r  all va lues  of 

t, and in par t icular  a t  the  poin t  t =0 .  

This  proves  the va l id i ty  of the  first  assert ion m a d e  in proposi t ion Co, with #(t) =~0(t). 

To obta in  the  second pa r t  of propos i t ion  C o we car ry  out  the  same series of operat ions,  

bu t  using G'(s)=dG(s)/ds in place of G(s). The integral  corresponding to J(x, y) then  has 

an approx imate  representa t ion 
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- ~ g(n) log n. 

This introduces an extra factor of y log x into the calculations, but  no further complica- 

tions occur. Proceeding along the above lines we arrive at  the asymptotic  relation 

O'(s0) ( a0 -1 )  2 exp (_ i ta (x ) ]  1 fo ~ 2~s 0 fl(x) ] ~ ~ e-'~Uye-Uq~ (t) dy 
- ~(t) 

27e(1 + i~) ~" 

Since qg(t) is a characteristic function there is a proper interval about the origin, It ~<t 0 

say, in which ~0(t) does not vanish. For values of t in the interval [t I ~< t o we apply the above 

asymptotic relation together with the (genuine) asymptotic relation (3.3), to deduce tha t  

( a 0 - 1 ) G ' ( s ~  - 1  
G(so) 1 + iv' (x ~ oo). 

By logarithmic differentiation of G(s) : 

o'  (~o) = _ Z g(p)  p -  ~" log  p + o(1) ,  
G(So) 

a s  x---> c o  s o  t h a t  

- log Z-y. #(x) / 

This leads at  once to the validity of the second assertion contained in proposition Co, 

and we have completed a proof tha t  A-+ C o. 

4. Proof  that C O implies B 

I t  is convenient to begin by proving the second of the two assertions which we made 

in proposition B. 

We consider the second of the two limiting relations of Co, namely that  if I tl ~< t o then 

1 ~v p-S~ log p exp (it/(p)] 1 
log x \ f l - ~ ]  -~ 1 + iv '  (x -~ ~ ) .  

From the theory of the Riemann zeta function, as x ~ oo we have 

~"(So) 1 
1 ~ p - S o l o g p ~ _ ( a 0 _ l ) ~ ~ l + i v  

log x 

1 
so tha t  logx Z p - ' , ( 1 - g ( p ) )  l o g p - ~  0 , ~  (x-~ oo). 
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We set ~ = 0, and take real parts. I n  this way  we deduce t h a t  for ] t I < to, 

1 
s(z)  = fd~g ~ ~ p - o . ( 1 - R e  g(p)) log p ~ 0 ' ( z ~  oo). 

Here 1 - R e  g ( p ) = 2 ( s i n  t[(p)/2fl(x)) ~. By means of the inequality Isin m u  I <mlsin u I 
which is certainly valid for every positive integer m, and real number  u, we can extend the 

val idi ty  of this last limiting relation to hold for each real number  t. I t  is convenient  to 

note at  this point  t ha t  since I g(P)] = 1 

S(x) < 2 ~ < 1 
log x 

uniformly for all x ~> 2. 

Let  s and u be positive real numbers.  Set T = 2/u. Then we easily obtain the chain of 

inequalities 
. T / ( p ) \  

1 ~ log 1 ~ 21ogp 1 sm , , i-8(-~-I 

2 ~ log p 1 fo r = l o g x  z~<p<~11~ pC~ T sins t](p) dt 

1 (  T 1 l f o  Y: p-~~ 8(x )d t .  

By applying Lebesgue's  theorem on dominated convergence we see tha t  the integral which 

occurs on the extreme r ight  hand  end of this chain of inequalities is o(1) as x-~ oo. I n  the 

range x ~ < p  ~<x 1/~ we have log p >e  log x, and p-1 <p-~ .  exp (I/e). I n  particular, therefore, 

we have proved tha t  

lim ~ _l = 0. 
x--~:r z~<p<x P 

If(P)l> ufl(x) 

This is the second of the two limiting relations which are asserted to be valid in proposi- 

t ion B. 

We shall now apply  this last relation to simplify the result t ha t  

ito~ ( x ) ~ 

Let  e and u be positive real numbers.  We shall u l t imately allow them decrease to  zero. 

Then from the above results we can assert t ha t  as x-* oo 
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P-'Ig(P)- ll~<2exp(l/e) E p-1=o(1). 
<p<~xl le x~ <p<~xllg 

If(v)l >ufl(x) If(v)l >u~(x) 

On the other hand, whenever l i(P)[ ~ ufl(x) is satisfied we can assert tha t  

[g(P) - 11~< I/(v)fl(x)-' I < u. 

Thus Z p-~~ <~u ~ P-x=2u(-loge+o(1)), 
Xe <p<~xlle ze  < p<~xlle 
If(P)[ <~ul~(x) 

as x-+ c~. From these last two estimates we deduce that  

lim sup ~ p-~"lg(p)-ll<-2uloge. (4.1) 
X.--~oo xe <p~xl le  

Determine the unique integer k so that  2~< xXt~<~ 2 k+l. Consider the right hand side of 

the following inequality: 

Y v- 'lg(v)-ll<2 
~ > x l ! e  m ~ k  2m < 1~<2 m + l  

For each integer m the innermost sum has the value 

p_,exp(_(qo_l)logp)<~2.,< ~2.,+ p_lexp ( mlog2~ 
~=<p.<2m+l v~ log  x / 

~< m -1 c2 exp ( m log 2~ p~+i y log 2~ < cak-aJm exp ( -l~g x ] dy. i#g i 

Here we have made use of the elementary estimate, which is uniform in all positive in= 

tegers m : 

._.,<v<2,.+ ~ ~ = ~ - -  1 log log 2m+~-log log 2m + 0 (l~g 1 2- ~ 1 = 0 (  1 ) �9 

The constants c z and c a are absolute, Summing over m = k, k + 1 . . . .  we obtain the upper 

bound 

2cak -1 logx/dy<~exp l o g x /  k l o g 2  

From the definition of k it follows that  k + 1 >~log x/e log 2, so that  if x is sufficiently large 

(in terms of e) the right hand side of this inequality will not be more than 4cae. Putt ing 

this inequality together with that  of (4.1) we see that  

lira sup ~ p - r  Ig(P) - I I < - 2u log e + 4c3e. (4 .2)  
;g--+ oo ~ :>x~ 

In particular we deduce that  



x e < p ~ x  

ON THE LIMITING DISTRIBUTION OF ADDITIV~E ARITHMETIC FUNCTIONS 

p-llg(p)-ll<~e ~ p-r176 ), ( x ~ ) .  
xe<p~<x 

We shall need this result later, 

Let  us now examine the sum 
Y p-'* (g(p) - 1). 

p <~ x8 

65 

If  we replace s o by  1 we change the value of this sum by  at  most  

I (g(p)- 1) {p-~~ p-1}l < 2 ~ p-1 lexp ((s0-1) log v ) -  1 I. 
p ~ x s  p~Xe 

We note tha t  since each prime p does not exceed z ,  when x is large enough ] s 0 - 11 log p ~< 

(1 + T2)�89 < 1/2, provided only tha t  e is sufficiently small in terms of T. In  these circumstances 

lexpt ts  0 - 1 )  log p ) -  l l ~ ~ (]s o - l l l o g p ) m m ~ Z l s  o - 1  I logp .  
m=l * 

Hence the error term which we have presently introduced is not more than 

2 Is 0 -  11 ~ ~o -1 log p = 2 Is 0 - 11 (log ~ ~- 0 ( 1 ) ) <  3 (1 -~- T2)�89 
~x8 

Here we have made use of another elementary estimate from the theory of numbers, 

namely 

log P=logy+O(1), 
P < Y  

which is valid for all real numbers y ~> 2. 

Putt ing all of these inequalities together (with T =0) leads to the following inequality 

ito:(x ) ~ _/a(t) 
lixm2u p exp  (p~<xP-1 (g(~o) -- l)  -- ~ - j - ]  < c 4 ( - - u l o g  8~-8 ). 

valid for all sufficiently small but  positive values of u and e. Lett ing u-~O + and then 

e-~O + we arrive at  the limiting relation 

ira(x)] 
exp  (p~x~9-1(g(V) - l )  -- ~ - ~ - ]  -->/.~(~), (x---> oo). (4.3) 

Consider now the distributions 

P( 5 X~-o~(x)<~zfl(x)), (x~>l). 
p<~x 

Their associated characteristic functions ~(x t) have the form 

5 -  742908 Acta mathematica 132. Imprim~ le 18 Mars 1974 
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~ ( x , t ) = e x p (  i t ~ ( x ) ]  ( 1 §  ~ ) ]  ~<~ p ( g ( p ) - 1 ) ) .  

In a calculation very similar to that  made in 3.3 concerning the function h(v) one can prove 

that  
ira (x) ) 

q ~ ( x , t ) = e x p ( ~ p - i ( g ( p )  - 1 ) -  f l - -~ -+o(1 )  . 

From the limiting relation (4.3) we see at once that  

~(x, t)-~#(t), (x-~ co). 

Since lu(t) is continuous at the point t=0 ,  it must be a characteristic function, and the 

random variable 
~(X)-I{ ~ X p - 0 ~ ( x ) }  

p~x 

converges to its corresponding distribution. 

This completes the first assertion of proposition B of the theorem, and also the proof 

that  Co-+ B. 

5. Proof that B implies A 

In this section we shall make use of a representation theorem of Kubilius. 

L]~MMA 5.1. Let x be a real number, x >~ 2. Let r be a /urther real number in the range 

2 <~ r <~ x. Let ~(n) be a strongly additive/unction. De/inc independent random variables ~ ,  one 

~= 

/or each rational prime p, by 

i(p with probability 1 
P 

with probability 1 - 1_. 
P 

Then there is a positive absolute constant so that the inequality 

v,(n; Z ? ( P ) < ~ z ) = P ( Z ~ < ~ z ) + O ( e x p ( - - -  
pln, p~r p~r 

clog x]~ 
log r ]] 

holds uniformly/or all real numbers z, r (2 <-r ~ x), and/unctions j(n). 

Proo/. Kubilius proves this lemma in his monograph [5], Chapter 2, pp. 25-27. Our 

use of the real variable x where he has an integer n is not of great significance. 

I t  is convenient to define distribution functions 

G(x, z) = n (n ; / (n ) -a (x )  << zfl(x)), 
and 
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H(x, z) = P( ~ Xv - a(x) <. zfl(x)), 
PQq 

for x >~ 1, where the random variables Xp are those which are in t roduced in the formula- 

t ion of the main  theorem. 

Let  e be a positive real number,  and let a(x) be a funct ion so tha t  the two assertions of 

proposit ion B are valid. Then we obtain at  once the inequali ty 

G(x, z) <~ %(n;/(n) - ~(x) <~ zfl(x), ~ p in ,  xs < p <~ x, ]/(P)] > s2fl(x) ) 

+~x(~; ~pl n, x~ <p  <x, I/(p)l > ~/~(x)). 

The second of the two frequencies which occur on the r ight  hand  side of this inequali ty 

does not  exceed 
1 

xe<p<.x p 
]f(p)[ > e*~(x) 

and by  the second par t  of proposit ion B this sum is 0(1) as x-~ ~ .  As for the first f requency 

on this same side, we note tha t  if n is an integer which is counted in it, then 

Z /(P) -- o:(x) <<./(n) -- a(x) & 5 I/(P)] <~ (z + e) fl(x), 
p]n,p ~x~ xe < p ~ x, pln 

since n can have at most  s -1 distinct prime divisors p which lie in the interval  x ~ < p  ~<x. 

Hence we have proved tha t  

G(x, z) <~ % ( n ; / ( n ) - ~ ( x )  <~ (z +~)fl(x)) +o(1), (x ~ co). (4.2) 

We now apply  Lemma 4.1 (Kubilius'  representat ion theorem) with r =x ~, and replace the 

expression on the r ight  hand  side of the inequali ty by  

P(  ~ X~ - ~(x) < (z + e) fi(x)) + O(exp ( - c 8 - 1 ) )  + 0(1). 
p~x~ 

In  turn,  the probabi l i ty  which appears in this expression certainly does not  exceed 

P ( ~  X~-~ (x )<~( z+2e ) f l ( x ) )+P(]  ~ X p ] > e f i ( x ) ) = H ( x , z + 2 e ) + P , ,  
p~X  x e < p ~ x  

say. We can majorise the probabi l i ty  P1 by  choosing a positive real number  ~], and in- 

t roducing new independent  variables Yp, defined by  

{o x ,  if Ix~l < nt~(x) 
Y~ = if I Xp ] > ~/fl(x). 
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Then Pl<-..P(3Xp:4:Yp, x~<p<.~x)+P(I ~. Ypl>efl(x))=P~+Pa, 
x s < p ~ x  

say. We can estimate P2 at  once by applying the second part  of hypothesis B: 

1 
P~-<< ~ - =  o(1), (x-~ ~ ) .  

X e < p ~ X  p 
If(P)[ > ~/~(X) 

To estimate Pa we apply a standard argument  of Tchebycheff: 

Pa <~ (eft(x)) -2 Expect ( ~. Yp)~ = (eft(x)) -~ (Var ( ~ Y~) § (Expect ~. rp)2} 
x$ < p  ~ z  xe<p  <~x x s < p  ~ z  

=(eft(x))-2( ~ V a r Y p + (  ~. ExpectY~) 2} 
xS <p ~ x  Xe<p ~ x  

I fcv)l <,~(x) IIcp)l <,~cx) 

< e - e ~ 2 (  ~. 1 §  
\xs<p <x p 

= e - 2 ~ 2 ( 1 - 1 o g e + o ( 1 ) )  ~, ( z - , oo ) .  

Altogether this proves tha t  if ~ and e are positive real numbers 0 <e  < 1, then as x-~ 

P1 ~< e - ~ (  1 - l o g  e) ~ + o(1). 

We have therefore proved tha t  the inequality 

G(x, z) ~ H(x, z +2e) +e-2~*(1 - l o g  e) 2 + O(exp (-ce-1))  +o(1) 

holds as x-~ ~ ,  for any fixed pair of positive real numbers e and u, 0 <e  < 1, and uniformly. 

for all real numbers z. 

In  a precisely similar way we can obtain the inequality 

G(x, z) >~ H(x, z-2e) -e -2~2(1  - l o g  e)~+O(exp (-ce-1))+o(1) ,  (x-~ oo). 

We can express these two inequalities in a somewhat different manner. 

We recall tha t  if F and G are two distribution functions then their Ldvy-distance 

~(F, G) is defined to be the infinum of those real numbers h for which the inequalities 

F ( z - h ) - h  <. G(z) < F(z+h)+h 

hold uniformly for all real numbers z. This defines a metric on the space of distribution 

functions; and a sequence of distribution functions Fn, (n = 1, 2 . . . .  ) will converge weakly 
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to a distribution function F if and only if ~(F~, F)-~0 as n-~ ~ .  In these terms our last 

two inequa]ities can be expressed thus: 

lim sup o(G(x, z), H(x, z)) ~ 2e + e-~/2 (1 - log e) 2 + 0(exp ( - ce-1)). 

We let ~-+0 + and then e-+0 + to deduce that  

q(a(x, z), H(x, z))-~ O, (x ~ ~) .  

I t  is now clear that  if the distribution functions H(x, z) converge weakly as x-~ 0% then so 

will the distribution functions G(x, z), and to the same limit law. 

This establishes the first part of proposition A, and it remains to verify that  

sup ]a (x ) -  a(y)l = o(fl(x)), (x ~ o~). 
x�89 

In  order to do this we make use of the fact that  a(x) occurs as a renormalising function 

which is restricted by the fact that  the distributions H(x, z) converge. We shall need a 

part of the following result of Gnedenko and Kolmogorov ([4], w 25 Theorem 1, pp. 116- 

121.). 

LEMMA 4.3. In  order that/or some suitably chosen constants A~ the distributions o[ the 

s u m 8  
~,~, + ... +~,~ - A ,  

o[ independent in/initesimal random variables converge to a limit, it is necessary and su/[i- 

cient that there exist non-decreasing/unctions 

M(u), (M( - ~ )  = 0), N(u), (N( + ~ )  = 0), 

de/ined in the intervals ( - ~ ,  O) and (0, cr respectively, and a constant a >~O, such that 

(1) At every continuity point o /M(u)  and N(u) 

kn 

lim ~ P(~,~<u)=M(u) ,  (u<0)  
X-->o0 k ~ I 

k n  

lim ~ { P ( ~ n k < u ) - l } = N ( u ) :  (u>O). 
n-->oo k = 1 

(2) lim l iminf z~dP(~n~ < z ) -  = o ~, 
e-~0 n oo k ~ l ( J l z l < e  

together with a similar relation obtained by replacing 'lim in/' by 'lim sup'. 
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The constants A n may be chosen according to the/ormula 

A n =  ~ zdP(~,,k< z) 
k = l  z[<v 

where i v  are continuity points o/M(u)  and N(u). 

Remark. I n  their theorem, Gnedenko and Kolmogorov  also determine the form of 

the limit law in terms of the representat ion theorem for infinitely divisible distribu- 

t ions of L6vy and Khinchine.  We do not  state this par t  of their result since we shall have 

no need of it. 

I n  our present circumstances we shall be interested in the variables 

{~nk, 1 < k < kn} = { ~ ( n ) - ' x ~ ,  p < n} ,  (n = 1, 2 . . . .  ) .  

Thus we shall be considering cumulat ive sums of independent  r andom variables, so tha t  

any  possible limit law will belong to the class L of Khinchine  (see for example Gnedenko 

and Kolmogorov  [4], Chapter  6, w167 29, 30). Each  of the functions M(u) and N(u) which 

occur in the formulat ion of Lemma 4.3 are then actual ly  continuous, so tha t  in the final 

assertion of tha t  lemma any  (fixed) positive value of T m a y  be taken. 

Since the distributions H(x, z), (x ~> 2) and therefore H(n, z), (n = 1, 2, ...) are assumed 

to converge weakly, there exists a continuous funct ion k(u) ,defined for real numbers  

u > 0 ,  so tha t  

1 -> k(u), (n -+ oo). (4.4) 
p ~ n  p 

Ircp)l > up(n) 

Assume now tha t  the distr ibutions H(x, z) converge to a proper limit law. Tha t  is to 

say, a law whose characteristic function is no t  of the form exp (ict), c a constant.  Consider 

the sequence of distr ibutions H(x, z), n = 1, 2 . . . . .  Then, by  L e m m a  4.3 we m a y  choose 

I(P) A(n) = z. 
p<n p 

Ifc~)l < rfl(n) 

provided tha t  r is a fixed positive real number.  Since the variables 

fl(n) -I { ~. X p -  A(n)} 
p~<n 

fl(n)-' { ~ X ~ -  a(n)} 
p ~ n  

converge to the same proper law, an elementary result f rom the theory  of probabil i ty (see 
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for example  Gnedenko  and  Ko lmogorov  [4] Chap te r  2, Theorem 2, pp.  42-44) implies  t h a t  

a S  n - - > ~  

A ( n ) - a ( n )  +0. 
fl(n) 

W e  nex t  p rove  t h a t  as n -+ 

sup I~(y)- ~(n) l= o(fl(n)) (4.5) 
] y - n ] ~ l  

To do th is  i t  suffices to  note  t h a t  if y lies in the  in te rva l  n -  1 < y < n + 1 then  G(n, z) and  

the  f requency  
vn(m; / (m)-o~(y)  <-zfl(y)), ( = n - l y G ( y ,  z)) 

bo th  converge to  a cer ta in  p roper  l imi t  law. Hence,  we deduce  t h a t  bo th  

fl(y)/fi(n) -~ 1, I~(y) - a(n)]/f l(n) -~ o, 

as n-+ cr The  first  of these l imi t ing  re la t ions  is of no presen t  value to  us, bu t  the  second 

is the  re la t ion  which we wished to  establ ish.  

Le t  x and  y be real  numbers  which sa t is fy  2 <.x 1/2 <~y <~x. Define integers  m and  n 

so t h a t  m ~<y < m  + 1, and  n - 1 < x  ~<n. Thus  the  inequal i t ies  2 ~<m < n  ~<x + 1 are  sat isf ied.  

As x-+ ~ we see from p r o p e r t y  (4.5) t h a t  

~z(x) - a(y) = o~(n) - a(m) + o(fl(x) ) 

= A ( m )  - A ( n )  +o(fl(x)) 
I t  is t hen  convenien t  to  wr i te  

A (m) - A (n) = /(P) + ~ /(P) Z /(P)- ~ + ~ + ~3, 

If(p)l <Tfl(n) If(v) > Tf l (m)  f (p )  > ~:fl(n) 

say.  L e t  e be a pos i t ive  real  number .  Then  if x is large enough fl(n) <<, (1 + e) fl(m), so t h a t  

b y  condi t ion  (4.4) of t he  p resen t  sect ion 

tv<m. lr(v)l<~(l+8)~(m) p p<~m,Js p l  

< ~ ( n )  { -- k(~ + e~) + k(~) + o(1)}, (x -~ ~ ). 

Hence  (since f l (n )~  fl(x) as x ~ ~ ) ,  

l im sup fl(x)-I I ~ I~< - ~ {k(~ + e v ) -  k(~)). 

i 

W e  let  e ~ 0 + ,  and  recal l  t h a t  ~ is a po in t  of con t inu i ty  of k(u). I n  th is  w a y  we can prove  

t h a t  Z~ =o(fl(x)) as x-+ ~ .  
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In  exactly the same way we prove that  ]E s =o(fl(x)). 

To consider Z1 we split the sum into two parts. Into the first part we put those terms 

involving primes p for which I/(P)[ > ~fl(n). The contribution to ZI which such terms make 

is at most 
1 

l,-+(n)l > ep(n) 

and by the second condition of proposition B this expression is o(fl(x)) as x-~ ~ .  On the 

other hand, those terms which remain in ]El contribute not more than 

Hence 

eft(n) ~ 1 ~�89 efl(n)(log 2§ (n-~ ~ ) .  

lim sup  (x)-ll LI < ~ log 2, 
x---~ oo 

holds for every positive value of e. Letting e-~0 + we see that  •1 =O(fl(X)), and that  

~(x)-a(y)=o(fl(x)) ,  (x---~oo) 

holds uniformly for all values of y in the interval x 1/2 <~y <~x. 

This is the second assertion of proposition A, and so we have completed a proof that  

B ~ A ,  in every case except that  of when the distributions H(x, z), and so G(x, z), converge 

to an improper law. In  this last case we are concerned with a form of the weak law of large 

numbers. This has been considered by the author on another occasion [2], and the argu- 

ments and results given there guarantee the validity of the inference B true~A true in 

this special case under hypotheses on ~(x) and fl(x) which are considerably weaker than 

those which are assumed in the present theorem. 

6. Proof that C O implies C, and conversely 

I t  is immediate that  C ~ C  o. Assume, therefore, that  proposition C O is valid. Then by 

the proofs of w167 3-5 so are propositions A and B, with in fact the same ~r as a possibility. 

Moreover,/~(t) is the characteristic function of a limit law for the sums 

fi(x) -~ ( ~ x , -  ~(x)). 
p ~ x  

I t  is easy to see that  the variables fl(x)-lX~, (2 ~ p  ~x), are infinitesimal, and since they are 

independent such a law must be infinitely divisible. In  particular/z(t) will be non-zero for 

all real values of t (Gnedenko and Kolmogorov [4] Theorem 2 of w 24, Chapter 4, and 
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Theorem 1 of w 17, Chapter  3). Thus  none of our earlier a rguments  need to  be res t r ic ted to  

any  par t icular  in terval  of t-values, and  the  second assert ion of proposi t ion Co (and there- 

fore of C) holds for each real value of t. 

We  now show how to obta in  the  first  of the  two assert ions in proposi t ion C. More 

exact ly,  let log #(t) be defined cont inuously f rom the principal  value t aken  a t  t = 0. (Since 

#(t) is a characterist ic funct ion it  will be a cont inuous funct ion of t). Then  we shall prove  

t h a t  as x-* co 

i fl(x) ] ~ - ~  I g/~(t). 

For  ease of presenta t ion let us denote  the  expression which occurs here on the  left hand  side 

of the  ar row by  w(x, s o, t). Then the  proof t h a t  A ~ C  o will also yield t h a t  exp w(x, s o, t )~  

/z(t) un i formly  over  any  (fixed) bounded  sets of real numbers  13[-4%, It] 4 t  0. The  only 

ad jus tmen t  needed is t h a t  one obta ins  a form of L e m m a  3.1 in which the  convergence is 

uni form over  any  f ixed in terval  of y-values O<ce<y4c7,  and any  bounded  in terval  of 

t-values. This  is easily obta ined since uni formly  for such an in terva l  of y-values {a(x ~) - 

a(x)}fl(x)-X~0, as x-+ r We can therefore assert  t h a t  for sui tably  chosen integers n(x, 3, t) 

we have  
w(x, So, t) = log/u(t) +2ze in (x, 3, t) +o(1) 

as x ~  co, uni formly  for 131 430, Itl 4 t  0. Thus  we can find a real n u m b e r  x 0 so t h a t  if x > x  0, 

then  with  these same uniformit ies  

I w(x, 80, t ) - l o g / z ( t ) - 2 g  in (x, 3, t) I < �88 

The  funct ion w(x, so, t) is a cont inuous funct ion of x. (Here fl(x) is now assumed to be a 

continuous funct ion of x. The n u m b e r  80 also depends  cont inuously  upon  x). This  can be 

readi ly  proved  as follows. Le t  P be a posit ive real number .  Le t  x 1 be a real number  (x 1>/2), 

81 = 1 + (log xl) -1 + iv(log xl) -1. Then  

so, t)_W(Xl ' sl, t )144  ~ p-~.+ : (p-S._:p-S,){exp ( i t l (p)~_ 1} I Iw( , 

As x 1 -~ x we have  s 1 -~ So, fl(xl) ~ fl(x), and  deduce t h a t  

l im sup Iw(x, So, t) - w(xl, s,, t)[ 4 4  ~ p -~ ' .  
XI*-->X l0 > P 

Letting P - *  co w e  s e e  that uniformly f or  131 4 %, I tl 4 t0, we have I (x, 3, tl -  (xl, 3, t) l < X 
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provided only tha t  z 1 is sufficiently near to x, and x > x 0. We can therefore assert tha t  the 

integers n(x,  v, t) in fact do not  depend upon the value of x. Let  us therefore write n(T, t) 

in place of n(x, T, t). Then as x-~ oo 

w(x, s o, t) ~ log/~(t) + 2xdn(v, t) 

uniformly for IT I ~T0, I t ] ~<t0" Since w(x, so, t) is continuous in 7 and t and the convergence 

is suitably uniform the funct ion lim w(x, s o, t) (x-~ ~ )  is also continuous in 7 and t. I n  

view of the continuous definition of log/~(t) the integer n(v, t) must  be continuous, and so 

a constant  for 171 ~<70, Itl ~<t 0. Therefore over this rectangle of values of 7 and t we have 

n(7, t )=n(O,  O)=0.  This proves tha t  as x ~  

w(x, s o, t) -~ log/~(t) 

uni formly for any  rectangle of (7, t)-values. 

We have now established the first assertion in proposit ion C, and so completed the 

proof of the theorem. 

7. Concluding remarks 

I t  is clear from the arguments  of w 3 tha t  the properties of :r and fl(x) which se 

assume are of a simple nature  with respect to their behaviour under  the t ransformations 

x ~ x  y (y >0).  I n  fact, for our purposes these functions are essentially asymptot ical ly  in- 

var iant  under  such transformations.  I t  is quite possible to consider other  renormalising 

functions a(x) and fl(x) whose behaviour under  these t ransformations is entirely different. 

The nature  of the resulting conditions which are necessary in order tha t  the frequencies 

G(x, z) should converge weakly are then quite different. I n  particular,  the funct ion /(n) 

need no longer behave like a sum of independent  r andom variables. 

I n  another  direction, we can view the t ransformations x-->x y as forming a group 17 

(with composition as a group law) which is isomorphic to the multiplicative group of po- 

sitive real numbers.  Our use of fourier analysis with respect to the variable y can thus be 

viewed as fourier analysis upon  the group F. Accordingly, we can ask whether  in certain 

circumstances one might  not  profi tably use groups of t ransformations other than  I ~ with 

which to operate. 

We intend to  re turn  to various such questions at  a future date. 

Note: Since this paper  was accepted for pubfication it has come to the notice of the 

au thor  tha t  a form of necessary and sufficient condit ion in order t ha t  proposit ion A be valid 

has been established, inter alia, in a paper  of Levin and Timofeev (B. V. Levin and  N. M. 

Timofeev: An analytical  method  in probabilistic number  theory.  Transact ions of the Vla- 
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d imi r  S t a t e  Pedagogica l  I n s t i t u t e  of the  Min i s t ry  of Culture,  R S F S R .  pp.  56-150, see 

pp.  113-117). The  me thod  t h a t  these  au thors  use differs cons iderab ly  f rom t h a t  of the  

presen t  paper .  I n  pa r t i cu l a r  the  above  me thod  is one which applies  qui te  n a t u r a l l y  in  more  

genera l  c i rcumstances ,  as is i nd i ca t ed  in  this  section. 
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