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In this paper we study the following problem: prove that for n<m the n-shift of the
hyperfinite II, factor is not conjugate to the m-shift. For each » the n-shift is the auto-
morphism corresponding to the translation of 1 in the infinite tensor product B, = ®,ez(N,7),
where N is the algebra of » x » matrices and T the normalised trace on N. As the above E;
does not depend on #», up to isomorphism, because it is the unique hyperfinite factor of
type 1I;, the above problem makes sense.

There is an obvious analogy between this problem and the problem of conjugacy of
Bernoulli shifts in ergodic theory. In fact both are special cases of the conjugacy problem
for automorphisms corresponding to the translation of 1 in ®,ez(N, T), where 7 is a nor-
malised trace on the finite dimensional von Neumann algebra N.

So it is natural to try and extend the notion of entropy, from ergodic theory to the
non commutative frame. It is known since a long time that given a von Neumann algebra
M with semi-finite faithful normal trace 7, and considering a state ¢ on M, with ¢ =1(p-),
the quantity S(¢)=1(n(¢)) where n(z)= —z log 2, measures the amount of randomness in
¢ for the purposes of quantum mechanics. Also Wigner and Yanase defined the purely non

commutative notion of skew information between g and a selfadjoint observable K:
(o, K) = 4(le"®, K]
Dyson extended this definition and introduced, for 0 <p <1,
Lo, K) = 47([¢” K1[* ™, K]) =7(¢' *K¢"K) —7(eK?)

They conjectured that I, was a concave function of ¢ for each fixed K. This conjecture
was proven by E. Lieb with K not necessarily selfadjoint and I, =1(p"?K*¢?K) —1{pK*K).

(}) E. Stermer is happy to acknowledge financial support from Centre de Lumini, Marseille, where
part of this work was done.
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In fact, it follows easily from Lieb’s theorem, which was shown for type I factors, but whose
proof also goes through for finite von Neumann algebras, that

1
I(o, K)= }'}_13 1—01,,(@, K)=1(¢K*[log ¢, K7])

is a concave function of g for each K [5].
G. Lindblad defines in [7] the relative entropy of a state g, given the state g, by the
formula

8(01]02) =7(o, (log o, —log g,)).

He proved [7, Theorem 1], [8] that S is a jointly convex function of p,, g5, a fact which
also follows from the equality

0 0 0
selea--2([% 7] |3 o))

Because of such progress in non commutative information theory it was reasonable to
expect one can get a correct definition of the entropy of automorphisms in the non abelian
frame.

The main difficulty comes from the fact that two finite dimensional subalgebras of a
non abelian von Neumann algebra can fail to generate a finite dimensional algebra, indeed
abelian ones will do, see e.g. [1, Theorem 3(ii)]. Thus there is no immediate analogue for
the operation P V @ between partitions of abelian von Neumann algebras. So we looked for
a replacement, not of the above V, but of the quantity H(P, V P, ... VP,).

We construct for each n a function H(P,, ..., P,), where the P; are arbitrary finite
dimensional von Neumann subalgebras of a given von Neumann algebra R with finite
trace 7, and H is symmetric in its arguments.

This function will satisfy the following requirements:

(A) H(Ny, ..., N,) <H(P,, ...,P,}) when N,cP; j=1,..,k

(B) H(Ny, ..., Ny, Nppyyy oo, Np) <H(N,, ..., N +H(Ny 4, ..., Ny)

©) Py, .., P,cP=HP, .. .P,P,,,.,P,)<HQP,P,,y,..,Pp

(D) For any family of minimal projections of N, (e,)zc; such that Xe,=1 one has
H(N)=2,c1n7(es)

(E) If (N,U...UN,)" is generated by pairwise commuting von Neumann subalge-
bras P, of N, then

H(N,, ..., N,)=H((N,VU...UN,)")

The other properties of H connect it with a relative entropy function H(N | P) analogous

to the relative entropy of ergodic theory:



ENTROPY FOR AUTOMORPHISMS OF II; VON NEUMANN ALGEBRAS 291

(F) H(Ny, ..., Ny) <H(Py, ..., P,) + X, HN,| P,))

(G) H(N|Q) <H(N|P)+H(P|Q)

(H) H(N|P) is increasing in N and decreasing in P

(I) Let N,, N,commute, then H(N,|N,) = H((N, U N,)"|N,) = H((N, U N,)") —H(N,).
Moreover we shall prove that H is strongly continuous, more precisely given n and

£>0, we find § >0 with
s
(dim N =n, NcP)=> H(N|P) <e.

Equipped with such a function H it is then easy to define for an arbitrary 7-preserving
antomorphism § of the couple (R, 7) the quantities:

H(N, 6) = lim %H(N, O(IN), B3N, ..., O5(N))

H(®)= Sup H(N,0).

dimensional

Moreover the Kolmogoroff-Sinai theorem is true, provided R is hyperfinite (it cannot

even be stated otherwise) and takes the following form:

THEOREM 1. Let N, be an increasing sequence of finite dimensional von Neumann sub-
algebras of R with U N, weakly dense in R, then

H(0)= sup H(N,,0) for any 7-preserving 6.
keN
Using property D and property £ one gets
THEOREM 2. Let S, be the n-shift of the hyperfine 11, factor then H(S,;)=log n.

This proves in particular that those shifts are non conjugate for different n’s. We
shall in Theorem 4 generalize Theorem 2 to Bernoulli shifts 6 of R defined by positive
numbers 4,, ..., A, with sum 1. For such a 6, H(f)= —Xi,log 4;.

1. Preliminaries

Here we fix our notation and remind the reader of some known facts of non commutative
information theory, then we prove an important inequality ((8)) to be used later. Through-
out R will be a finite von Neumann algebra with faithful normal finite trace 7. When N is a
von Neumann subalgebra of R we let E, by the unique faithful normal conditional expecta=

tion of R onto N which is t-preserving.
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The letter 7 designates the function x €[0, + co[ = —2 log x. We recall that

log is an operator increasing function on {0, + e[, [11] Prop. 2.5.8
7] is an operator concave function on [0, + o[, [9].

n(xy) =n(z)y +2n(y) for commuting operators x, y.
We put, for x, y€ R, x <2y for some >0,
8(x|y) =7(x (log z— log y)),
and it follows, as shown in the introduction, that
S(z|y) is a jointly convex function of (z, y).
It implies in particular the well known Peyerls Bogoliubov’s inequality

t(x) (log T(x) — log t(¥)) <t(2(log z — log ¥)).
Note also that
S(Az|2y) = A8(z]y), A>0.

Using (4) and (6) the following inequality is then easy to show:
n . n n
Y% € R, yi<w, iglxi =1 implies ZIT(?/:'(IOg z;—logy)) < '”7(21 Y

(Because 2 S(?/il-'”i) = S(Z ?/i' Z‘xi) = - m(Z'Ll Y1)-

SN—

(4)

()

We now derive from (7) an inequality which will play a fundamental role in the sequel,

and is used in the proof of property C.

Let I, J be two finite sets, (2;;)icr. 1c; be a family of elements of B, suchthat ¥, ; ;=1

then
izj (zy) < ; (i) + ; (})

where =, x,;, &} =2,x,.
To prove (8), we just have to show that
,Z,- (@) — ; (x3) =¢Zj 7(z,,(log 27 —log z,)))
and then apply (7). But the above equality follows from

S t(wylogaf) = (=) forany jEJ.
i

(8)
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2. Definition of H and proof of properties (A) to (I) of the joint entropy

Let R and 7 be as in section 1. For each k€N, we let S; be the set of all families

(%, 1, ..., 4)yyeN Of positive elements of R, zero except for a finite number of indices, and
satisfying:

Z Tty by i = 1.
PO VR Y
For z€8,, 1€{1,....,k}, and 4,€N we put
xi, = Z xtl-'ll“--ik‘
-1, 04,

Definition 1. Let Ny, ..., N, be finite dimensional von Neumann subalgebras of R then:

H(N,,...,N,)=Sup E{k T, it) — IZ % Ev(zl).

z€Sk iy, ...,

It is clear that H is positive and symmetric, but it is not clear that it has a finite value.
This will in fact follow from properties (B), (D):

Property (A). H(N,, ..., Ny)<H(P,, ..., P,) when N,=P,Vj.

Proof. For any y€R,, and j€{1, .., k} we have by Jensen’s inequality, which follows
from (2) and [2],

N Enfy)) = n(En; Er(y)) = Exyn(Erfy)).
Hence tnEy(y) >tnEp(y), which makes the proof obvious.

Property (B). H(N,, ..., Ny, Niyy, ooy N))SH(Ny, .., N) +H(Npyy, ooy Nyp)
Proof. Let x€8,, and define 2’ €8, 2" €S,_, by

’ »
Ty, te = Z CZigentes Ty ok Z Ly, oo ib s condp— ke
i+ 1, wenip [P 1

We have 2/ =}, 1€{1, ..k}, z'=a}}*, 1€{1,...,p—k}.

We hence just have to prove that

Z 777(1711....1;:)<1 Z

o ip

nr(xill.....ik) + z nt(x;,,....}p—k)'
ix Jrendp—k

To do this let m be the Lebesgue measure on [0, 1], D be a partition of [0, 1] whose generic
atom a, ..tp)- Let P’ (resp. D”) be the partition whose atoms are
union of atoms of P with fixed % first indices (resp. p —k last), then clearly the above in-
equality follows from k(D' V D")<h(P')+k(P") where h is the classical entropy of ergodic
theory.

Property (C). Py, ..., P,.<P=H(Py, .., P,, Py, ..., Pp)<H(P, P, ..., Py)
20— 752904 Acta mathematica 134. Imprimé le 3 Octobre 1975

., has measure 7(z,,
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Proof. Using property A we can assume that P,=P, j=1, ..., n. We let z€S,,, then we
build an X €8,,_,,, such that, with E,=Ep, l€{l, ..., m}, we have

2 (i, i) — ; ng;(x:,) <2 Xyoimomt1) — 12 g m(Brin-1(X})). (9)

To get X, let ¢ be a bijection of N onto N* and put:

Xh. wodm—n 31 = LD i @G da, eI —n+1¢

Clearly, for I>1, Xj,=2},"'"" and also:

1 - _ r
Xj= D Tl dDrnsim—nt1 = Ll ..
Jareedm—n+1

’
where Ty osta™ 2 Tyt

So that the inequality (9) is equivalent to
> 2 nB(xh)> iz (B Tys,.....000m)- (10)

1ign 4

But E,=E, for 1€{1,...,n} and with yi, . .i,=FE,(z; ;) we get

wnrin

L PPN T W D P P

Hence the inequality (10) follows from (8).

Property (D). Let (e;)xe; be a family of minimal projections of N such that 2., e,=1.
Then H(N)=2.crnt(es).

Proof. As 1(e,) =0 we have
2 me(ex) — 2 wn(Eylea)) = 2 m7(ea).

Hence to prove property D we just have to check the following
for €8, onehas 2 nr(z)—mp(By(z)) < 2 nr(es). (11)
ieN ael

As 7(E y(x,)) =7(2;), one can assume to prove (11), that all the x;s liein N.
We have for each a € N+, that 5t(a) —w7(a) =(a (log a — log t(a))) =S(a|t(a)). Hence by
(9) and (6) one has

a, bEN*, 7(a-+b) —vn(a+b) < (y(a) ~T4(a)) + (7z(b) ~Tn(b)). (12)

In fact (12) is also an easy consequence of the Peierls Bogoluibov inequality (5).
Using (12) and the spectral decomposition of each x;, we see that to prove (11) we can
assume that each x, is the product of a positive scalar 1, by a minimal projection f; of N.
Let ¢ be a minimal projection in the center of N. For 1€ N we have z,c=x, or z,c=0,
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and for 4€1, ¢;c=0 or ¢,c=e . Let A,={i€N, z,c+0}, J,={a €I, ¢, c+0}. To prove (11) it
is clearly enough to show that:

% nr(E,) — (%) = GZJ n7(es).

Now x;=A4,f,s0 that by (3), n(z;) =n(A,}f; and nr(z,) —t(p(A) },) =Am(f). Asthe f;, t€A,, are

all equivalent,

ig (@) — () = — (% A t(f)) log T(f) = — (c) log 7(f)

where f is an arbitrary minimal projection of N such that f<c¢. The same computation
shows that 2., 7(7(e.)) = —7(c) log 7(f) and proves equality (13).

Property (E). If (N, U ... UN,)" is generated by pairwise commuting subalgebras P,
of N, then H(N,, ..., N,)=H((N,UN, ... UN,)").

Proof. First assume that the N, are abelian and commute pairwise. It follows from
properties A and C that H(N,, ..., N,) is smaller than H((N, U ... UN,)"). Let (¢});e » be for

each t€{l, ..., k} the list of minimal projections of N,, then let €S, be such that =, ., =

ej el ... elk. By definition 1 we have

: 2 nuleted...e)<H(N,, ..., N).
PP 1

But the first term is equal to H((¥, U ... U N,)") by property D. Now we no longer assume
the N, abelian nor commuting. We have by C, H(N,, ..., N;}<H((¥, VU ... UN,)"). To prove
that H(N,, ..., N,)>H((N, U ... UN,)") we can replace each N, by the corresponding P,,
i.e. assume that the N; are pairwise commuting.

Now let 4;= N, be maximal abelian in N, for each j, we have
H(N,, ..., Ny) > H( A, ..., Ay) = H((A U ... U A)").

Hence we just have to check that (A4, U ... U 4,)" is maximal abelian in (¥, U ... UN,)".
To do it check that any product of minimal projections ¢; of N,, say e=e, ... ¢, will be a

minimal projection of (N, U ... UN,)".
Property (F). H(N,, N,, ..., N,)<H(P,, ..., P,)+ Z, H(N,|P))
where H(N |P)= sup 2 (xnEp(x;) — tnEy(2)).
Proof. Immediate from definition 1.

Property (G). H(N|Q)<H(N|P)+H(P|Q).
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Proof. Let €8, then:
3 (en(Bola) — w(Euz,)
= ; (vn(Bol@:) — mn(Ep(:))) + ; (zn(Ep(x) — tn(En(x))) < H(P|Q) + H(N|P).

Property (H). H(N|P) is increasing in N, decreasing in P.

Proof. Same proof as for property A.

Property (I). Let N, and N, be commuting finite dimensional von Neumann subalgebras
of R. Then H(N,|Ny)=H((N,UN,)"|N,)=H((N;UN,)")—H(N,).

Proof. We can assume that BR={N, U N,)". Then C;=Center of N, is contained in the
center of R and it is easy to check that:

HWN|N)= 5 ole) H(Noe| (1)),

H((N1UN2)”|N1)=C“°Z

m of

Cl'r(c) H(N, U No)o L (Vo)

H((NluNz)")_H(Nl): ca Z

tom of

C.T(C)(H((Nl v Nz)Z) - H((Nl)c)’

where in each of the terms like H((N,).|(N).), the entropy is computed in E, relative to
7/7(c).

It follows that we can assume N, to be a factor, in which case the equalities follow from
Lieb-Ruskai second strong subadditivity property ([6]) which shows that

H((N, U N,)"| N,) < H(N,).

3. Continuity of the relative entropy in the strong topology

Let R be a given finite von Neumann algebra with trace z(*). If N, P are von Neumann
subalgebras of R we shall write (cf. [12]) N E P for positive ¢, if and only if:

VzEN, ||lz]|o <1, IYEP, |ly]lo <1, |z—y|l. <6
where for each p€[l, o[, and a € R, |ja||,=7(]2|*)"? and ||a||, is the C* norm of a.
THEOREM 1. Let R and v be as above. For each integer n<< oo, and each >0 there is a
8>0 such that for any pair of von Neumann subalgebras N, P of R:
(dim N=n, N&P)=H(N|P)<e.

The first part of the proof, Lemmas 2 to 9, does not involve the function H.

(*) 7 is throughout a faithful normal trace such that z7(1)=1.
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First part

LuMwMa 2. For each m>0 and 1 >0 there is a 6 =34,(n) such that for any von Neumann
subalgebra P of R, any abelian von Neumann subalgebra A of R with minimal projections
(@3)ic1. ..., m» Zit1 @;=1, one has

(ACP)= (la;i—alfla<e i=1,...,m, 3 ai=1
for some family of projections a; € P).
Proof. For m =1 the lemma is obvious. We assume it has been proven for m <m, and
we prove it for m =m,y+1. Choose 7, such that:
9(Bmy)"2 +7y <.
Then take ¢ smaller than 6, (n,) and than #,. Let 4 and P be given, with A4 &P and call B

the abelian von Neumann subalgebra of 4 whose list of minimal projections is b, =ay, ...,

bmy-1=%my-1, by, =«p, +ay ;. There exist by hypothesis, projections (4))s, s b;EP
such that
”b; —bl"2 <7 1=1,..,mg

As § <), there is an 2€P,, ||z, <1 such that [z —~a,,[.<n,
Now b,,, 2by,, is a positive element of R, such that
” bz"oxb’mo T Gm, "2 = " b:ﬂoxb:ﬂu - bmoa’mubmo “2 <2 " b:nn - bm., "2 + ” r—Qm, "2 < 3771
By [3] Lemma 4 p. 273 there is a spectral projection a,, of by, 2by,, such that:
| @me — @, |2 < 9(3)""%.

We have ap,,€P and a,, <b,, so that the family (b1, ..., by, _1, @mo; Oy —anm,) of projec-

tions of P satisfies the required conditions.

LreMMa 3. Let e be a projection, e€ R, and let y € R be such that y*y <e. Let y=ug be the
polar decomposition of y. Then there exists a spectral projection f of ¢ such thai

I —ella < 9lly*y —ell2®, [luf —ylls < 8lly*y —e|l2™.
Proof. By [3] Lemma 4, p. 273, if we put ¢ =||o —¢||3” and suppose ¢ <}, the spectral
projection f of ¢ corresponding to [l —¢, 1] will satisfy the first of the required in-
equalities. Moreover by [3], p. 274, we have [Jo—f||, <8¢ so that |luf—ug||,<8e.

Lrevma 4. Let n>0 and £>>0 be given. Then there is a 6 >0 such that for any pair of
von Neumann subalgebras @ and P of R with QéP, dim @ =n, and any system of matriz
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units (€)1, -1, ngr k=1, ..., 8, with T, . 5> =1, of Q, there exists a system of matriz units

(pgf))i.lsl....,nk, k=1,..s,
of P such that

e —pir’lla< e ¥ 5, k.
Proof. First choose >0 such that
3n+9(Tn)'2 < £/3Vn.
s
Then choose §=4,(7) as in Lemma 2 with § <7. Let @ and P satisfy @< P, and (¢i}’) be a
system of matrix units in Q. By Lemma 2 we can find a family (5),.1,.., . x-1,...s Of
projections of P with %; , b/° =1 and ||ef}’ —b§|[; <7, V §, k. We now fix k and we construct
an m, xn, system of matrix units p{}° all belonging to Ps jog0- Let j €{1, ..., m}, and 2 €P
such that ||ef” —z||;<#. Then
1852 2602 — e ||, < || 85 — €5 || + [| 65 — e [l + n < 3n
and 185" 2b{y* (B5® 2b{?) — b ||, < 7.
Hence by Lemma 3 there exists a partial isometry «{* € P with initial support
¥ < b and such that:
WU <P, [u— el < 3+ 87
and [[887— £l < 9(7n)"™.

Put p{f = A;f{. Then (6% — p{P) < 2, 7(6{" — f{”) which follows from the relation
f—eAf~eVf—e for e and f projections. So that |3 —p{¥||;<e/3, hence |[eff —
P2 < 2¢/3. Also put pi¥ =uf® pi¥. Clearly the p{i’ pii’* form a system of n, X n, matrix
units, and we have:

1757 — e lls <[l uf” — e llo + || 5P — i ls < /3 -+ 2¢/3 = .
Notation 8. Let N be a von Neumann subalgebra of R, then for any projection fEN’

we put
N = {af +M1—f), zEN, A€C}.

Clearly N’ is a von Neumann subalgebra of R.
LeMMA 6. Let n>0 and a>0 be given. Then there is a 6 >0 such that for any pair of von

Neumann subalgebras N and P of R with N éP, dim N =n, there exist a von Neumann sub-
algebra N of P, diim N <n-+1, a pair of projections fEN’, fEN' and a unitary u€ R such that

(1) wfu* =F, ulu* =8, @) [f-1]s<e [f-1[: <@ @) [lu—1]z<a
Proof. First choose £ >0 such that

£ < af8n, 146" < /8n.
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Then apply Lemma 4 for this » and this ¢ to get 4. Let N and P be given, N éP, and let
(¢}P) be a system of matrix units in N. By Lemma 4 there exists a system of matrix units
(p$P) of P such that

e — piPlla<e, ¥ i, k.

Let N be the von Neumann subalgebra of P generated by the p{. Clearly dim N <n+1.
(Tt is equal to n+1 if the sum of the p{¥ is different from 1.)

The proof of Lemma 5 p. 274 of [3] does not use the hypothesis “factor’. Hence we
get for each k€ {1, ..., s} a partial isometry w such that: wi w, <ef?, w,wi <p{p, |w, — P |, <
a/8n. We take w=3, %, piw,ely. The partial isometries pii’w,efy have pairwise ortho-
gonal initial projections and pairwise orthogonal final projections. So w is a partial iso-
metry,

w*w =,Zk &P wiw e,  ww*= Zk 50w, wi pif.
. 7.
Hence f=w*w belongs to N’ and f=ww* belongs to (¥)'. For each i, 7, k we have
w1 = D e e e} 555 = i, ) — T

Let % be a unitary in R such that uf=w. Then
ufu* =ww*=f, ufelP fur=JpPfVvi,j,k.

Hence uN"u*= N’

Also
=S5 ePe® el <ne+n =<2,
) 8 4
so that
lo-1lo<% Ni-1lh<g 17-1l<3
and

o [r4
lu— 1< lluf =1+ lu(t~pll < +5<e

Lemma 7. Let «>0, u be a unitary in R such that ||u—1||3<a, then there exist unitaries
v and v’ such that

lo—1jjo < 3, z(Support (v —1)) <o*® and o' =u.
Proof. Let ¢’ be the spectral projection of » such that |u—1{2¢’>ae’, [u—1 [P(l—e)<
a(l —¢’). Then take v=u(l —¢’)+¢’, v'=(1 —e’) +ue’ and use the inequality 7(|u—1 [2e") <
lu—1{3<a? to get 7(e') <a.

LemMA 8. For each n€N there is k(n)EN such that if N is a von Neumann subalgebra
of R with n=34im N, then for any projection € R there is a projection EEN'N R such that
E<eand 1(1 — E)<Ek(n)r(1 —¢).
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Proof. Consider N as imbedded as blocks along the main diagonal in the n x » matrices
M,. M, is generated by the group H of unitaries with coefficients 0, +1. Let k(n)=card H.
If G=HANN, then (G)"=N. Let B= A,quen*.

LeMMA 9. Let n and &' >0 be given. Then there exists a 6 >0 such that, for any pair of
von Neumann subalgebras of R, with N & P and dim N = n, there exists a unitary v, || — 1), <€,
a projection E, ©v(E)>1—¢' and a von Neumann subalgebra N of P, dim N<n+1 such
that:

EEN', vEv*€N' and vNF* = (N)"=",

Proof. Choose & >0 such that if k(n) is as in Lemma 8 then

o2 <e', a2+ o < &'fk(n).

Then choose § corresponding to n and « by Lemma 6. Let N &P and dim N =n. Then let
NP, u, f, f satisfy the conditions of Lemma 6. By Lemma, 7 there are unitaries », v' € R,
with v'e=ev'=e and e<f. (Take e=f A (1 —support (1 —2')), so that 7(1 —e)<z(l—f)+
7 (support (1 —v")) <||L—f|l3 + &' ? <o+ o <&'[k(n).

Let E€N’ be a projection such that E <e, (1 — E) <k(n)r(l —¢)<¢' (Lemma 8). As
E<f we have (N'f¥=N=, (W/)“*" = uN/u*)*¥*" =uNFy* and as uBu* <f, N*5* =y NFu*.
Also E <e, so that uEu*=vEv*, and uNFu* =vNEFv*, hence v NEy* = NOE?™,

Second part

Lemma 10. Let n>0, >0 be given, then there exists an & >0 such that for any von
Neumann subalgebra @ of R of dimension n one has:

HQ|vQv*) <e, Vounitary, [v—1]|,<¢.

Proof. Choose &' such that for any family of positive reals «;, ¢=1, ..., n, Z o;=1, any

families A, 1;>0, i=1, ..., %, T, =3A;=1,

2. Mi - l:l“i< 2¢' = IZ (n(4) - "7(]*1,)) “zl <eé&.
Then let @ and v be given. Let € R, 7(x) =1. We have Eg,«(x) =vEq(v*2v)v*, 11 E gu(x) =
wmEq(v*av). Now X = E,(x) and X' = Ey(v*zv) both belong to @+ and satisfy 7( X) =7(X") =1,
| X’ — X||, < ||v*ev—x||, <2¢, since E is a contraction in the || [;-norm.

Let gy, ..., ¢; be the list of atoms of the center of ¢, where @, is of type n; and Xnj =n
so that Tn,<n. Let X =3, X% A{?¢{®, (resp. X' =X, ,4;¢;*) be the spectral decom-
position of X (resp. X'), where for each %, j, ¢/ and ¢, are minimal projections of @,,.
We hayve, for a suitable choice of the decompositions [10], Theorem 5.6, that

I[P ~241P|v(ef?) <2¢/,
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hence that

| T0E s ou(@) — TEo(@)| = | 2 (n(A°) — (4 ) (e) | <.
We have shown that Vz€R*, |tnEg.(x) —mEq(z)| < er(z); it follows easily that
H(Q|v@Qv*) <e.

LemMMA 11, Let N be a von Neumann subalgebra of R of dimension <n,and EEN’ be a
projection, then
H(N®|N) <n(v(E)) +n(l —7(E)),
H(N|N¥) <n(x(E))+n(1 —t(E)) +7(1 — E) log n.

Proof. Let @ be the von Neumann algebra generated by N and the abelian von Neu-
mann subalgebra 4 of N’ generated by E. We have (property I) H(Q|N)< H(A)=nr(E) +
nt(l — E). As N¥ and N'-F are commuting and generate Q we have (property I)

H(Q|N®)< H(N*E) <yr(1— E) +n(x(E)) +7(1 — E) log n.
Then
H(N|N®) < HQ|N*®) <q(x(1 — E)) +qr(E) +7(1 — E) log n
and
H(NE|N) < H@Q|N) <n(t(E)) +n(x(1 - E)).

End of the proof of Theorem 1. First choose & such that Lemma 10 is satisfied with

n+1 and £/2, and such that, ¢’ <1/2,

2(p(e") +n(l—£')) +&' log (n+1) <g/2.
Then choose § such that Lemma 9 is satisfied for » and ¢'. Now let N and P be given, with

N&Panddim N =n. By Lemma 9 we find E€N’,7(E) >1 —¢',and N, N P, dim K <n+1,
vER, ||v—1]|, <&’ with vN%* =N By Lemma 11 we have:

H(N|N®) <n(l —¢')+9(e') +¢' log (n+1).
By Lemma 10 we have
H(NE|oN®v*) <¢/2.
By Lemma 11 we have:

H(N"™"|N) <q(1 —¢') +9y(e’).
So wet get, using property @ and H(V|P) =0, that
H(N|P)<2(p(l —¢&')+5(c")) +& log (n+1) +¢/2 <e.

4. The non abelian Kolmogoroff-Sinai’s theorem

Definition 1. Let 6 be an automorphism of the finite von Neumann algebra R, preserv-
ing the faithful normal trace 7, 7(1) =1, then
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(a) For any finite dimensional von Neumann subalgebra &N of R put
H(N, 6) =]im%H(N, B(N), ..., FK(N)).
k—>»00
(b) Put H(0)=Sup H(N, 0).
N

Note that in (a) the limit exists because of property B.

THEOREM 2. Let R be a hyperfinite von Neumann algebra of type 11, and t, 0 as above.
Let (P,)qe y be an increasing sequence of finite dimensional subalgebras of Rwith (Ug-1P,)~=R

(weak closure) then:
H(0)=lLm H(P,0).
q—>0

Proof. Let N be a finite dimensional von Neumann subalgebra of R, and £>0. Apply
Theorem 1 of section 3 to get a ¢ such that H(N|P,) <e. Then
1
H(N,0)=lim —H(N,8(N), ..., 6%N))

koo k
1 —1 X ;
<lim > H(P,,0(P,), ..., 0¢(P,)) +lim~ > H(((N)|0/(P,))
k—)qu k k =0
<H(P,0)+e

TuEOREM 3. Let N, be a finite dimensional von Neumann algebra with faithful nor-
malised trace Ty Put (R, 7)= ®yez(Ny, 7o)y and let S be the automorphism of R corresponding
to the translation of 1 in Z. Then S preserves T and:

H(8) = H(N,).
Proof. Let 7; be the homomorphism of N, in R such that
() =1®..010201®...R1® ...

jth term

We have by construction Sw,=n,,,.

Let k€N and P, = (U 5<x7;(N))’. Clearly the P, form an increasing sequence of finite
dimensional von Neumann subalgebras of R and U%-; P, is weakly dense in E.

Property E shows that H(P,, SP,, ..., S"P,)=(2k+n+1)H(N,) hence Theorem 3
follows from Theorem 2.

We next extend Theorem 3 to a larger class of ergodic automorphisms of the hyper-
finite factor R which are the analogues of Bernoulli shifts. Recall that if M, is the /,-
factor with trace T'r, such that Tr,(1)=n, and w is a state of M, then w(x)=Tr,(hz),
where h is a positive operator of trace 1, then the eigenvalue list of @ is the spectrum



ENTROPY FOR AUTOMORPHISMS OF II, VON NEUMANN ALGEBRAS 303

{As ..., Az} of b counted with multiplicity. If R,, is a von Neumann algebra and ¢,, a normal
state of R,,, m€Z, we denote as before by ®,ez( R, ¢,) the von Neumann algebra obtained
from the GNS representation of the state ®¢@,, on the C*-algebra tensor product ® R,,.
If ¢ is a state on a von Neumann algebra M its centralizer is the algebra {x € M: p(xy —yx) =0,
V y € M}. The following theorem was also noted by W. Krieger.

THEOREM 4. Let M, be the n x n matrices and @, a fasthful state on M with eigenvalue
list {Ay, ..., Ap}. For m€Z let M,,=M, and @, =@, Let M =@ nez(M p, @r). Then:

(1) If R is the centralizer of the state @@, in M then R is the hyperfinite I1,-factor.
(2) The restriction of the shift on M to R is an ergodic automorphism with entropy
—Z14;log A,

Definition 2. The automorphism of R constructed above is the Bernoulli shift defined

by {Ay, .oy An}-

Proof. Let ¢ be the normal state ®¢, on M. Then it is well known that ¢ is faithful
and M is a factor. If p <gq are integers let MJ be the image of ®3M,, in M under its natural
imbedding. Let F} be the centralizer of ¢ | M3 in M2. If p<r<s<gq then clearly F;< F].
We assert that U F?,, is strongly dense in B.

Let ¢,=0f be the modular automorphism of M defined by ¢, see [15]. Since ¢ is a
product state, for each p<q we have o,=0,| M@0, |(M7)°, where (M3)°=(M3)' N M, and
M is identified with M{®(M3)°. Let ® be the faithful strongly continuous o-invariant
conditional expection of M onto R [4]. Then ®(M$) = F?. Let z € R. Since UT M2, is strongly
dense in M there is a net {z,} in UYM”, converging strongly to z. Thus x=0(z)=
strong limit ®(z,), with ®(z,) € UT F?,. The assertion follows.

We show R is a factor, hence by the above paragraph R is the hyperfine II,-factor. Let
P Dbe the group of finite permutations on Z and @ the group of *-automorphisms of M de-
fined by the action of P on the factors in the infinite tensor product. Since ¢ is G-invariant
the automorphisms are well defined, and R is globally invariant for each g€G. If geG
there are integers p <gq such that g is an automorphism of M3 and the identity on (M?)°.
Since M{ is a type I-factor ¢ is an inner automorphism of M, hence implemented by a
unitary operator u,€ M. Since ¢ is G-invariant u, € R. The arguments in [13] show that the
C*.algebra ® M, is asymptotically abelian with respect to G and that ®g,, is an extremal
invariant state. Since ¢ is faithful on M, G acts ergodically on M, see [14]. Since u € R
for all €@, R is a factor as asserted.

To show the second part of the theorem let  be the automorphism of M which shifts
the factors in the infinite tensor product one factor to the right, so a(M%)=M3}}, and let
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H be the cyclic group generated by «. As above ¢ is H-invariant, the automorphism well
defined, and ® M, asymptotically abelian with respect to H. Since M is a factor, ®g¢,
is ergodic [14], and H acts ergodically on M [14]. Let 6 denote the restriction of « to R.
Then § is an ergodic automorphism of R.

By Theorem 2 H(0) =lim H(F”,,0). Fix p; then
H(F?,, 0(F”,), ..., 04F? ) = H(F? ., F*%L, . FPHe ).

By property C
H(F?,,...,05(F" ) <H(F?LF).

Let A?, be a maximal abelian subalgebra of F?, such that 4”, commutes with /(4% )
for all j€Z, and such that 4 =(4%,U6(4%,) U ... U6¥(4”,))" is a maximal abelian sub-
algebra of F*%*. This choice is possible since ¢ is a product state. Thus by properties C, D,
E together with the above inequality we have

H(F?,,...,00(F2 ) =H(A)=2p+ k) (— > Alog 1,.) .
1
The proof is complete.

Remark 4. Recently G. Emch has defined an entropy for automorphisms of von Neu-
mann algebras. His definition is different from ours, and as far as his entropy cannot be
computed in the above examples because of the lack of a Kolmogoroff-Sinai theorem we
do not know whether the two definitions coincide in the case of shifts. In fact his defini-
tion of H(N, 0) is not even increasing in N, so that we do not believe that the analogue of

our Theorem 2 can be proved in his context.

Remark 5. Another possible candidate for the entropy of an automorphism is the
abelian entropy

H,(0) =sup H(| A),

where the sup is taken over all abelian von Neumann subalgebras 4 of R with 0(A4)= A,
and H(0| A) is the entropy of 0| 4 defined in the abelian case. If 6 is the Bernoulli shift
defined by {4,,...,4,} we again get H,(6)=—2}, A,log A, However, the definition is
unsatisfactory in that it is not clear whether there exist large invariant abelian von Neu-
mann subalgebras for a given §. In the next remark (Remark 6) we show how to compute
H(6%) from H(6); it is highly improbable that the same formula holds for the abelian entropy
H,, because an abelian von Neumann algebra A< R globally invariant under 6* is not

necessarily globally invariant under 6.
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Remark 6. Let R be a von Neumann algebra of type II,, and § an automorphism
preserving a faithful normal trace 7 satisfying 7(1) =1. We show that if p is an integer then
|| H(6)>H(6"), and if R is hyperfinite then |p|H(6)=H(6").

The case p =0 is trivial as is the identity H(6-1) =H(6). We thus assume p >0. Let £¢>0
and N be a finite dimensional von Neumann subalgebra of B and n,€ N such that

H(GP)<;H(N,0"N,...,0"’N)+8 for r>mn,

It is immediate from properties A and C that

H(Ny, .., N)<H(Ny, ..., Ny, Ny
for finite dimensional von Neumann subalgebras N, ..., Ny, of R. Therefore for n, suffi-
ciently large, and r>n,,

HO)+e>L HW.0N,...,0°N)> L BN, 0N, ..., 0"N > L H(©”) —e/p.
rp o P

Thus pH(0) = H(67).

For the converse inequality assume R is hyperfinite, so there is an increasing sequence
{F,} of finite dimensional von Neumann subalgebras with union weakly dense in R. Let
£>0. By Theorem 2 there are &, n,€ N such that

H(0)-}LH(F,‘,0F,‘,...,0”F,,) <eglp for n=mn, (1)
Let m=dim F,. Choose by Theorem 1, § >0 so small that for N and P finite dimensional
von Neumann subalgebras of R we have
s
dim N=m,Nc P= H(N|P)< &/p. (2)

Since the sequence {F,} is increasing with union dense in R there exists g€ N, ¢=>k, such
that F,,0F,, ..., Bp“leé F,. Choose r€ N so large that

rp =Ny, (3)
H, B~ H(E0°F, ..,07F))| <. @
By Property C
H(F,0°F,,...,0°F)>H(F,,...,F,0°F, ... 0°F, .. 0" YF,. . 0" VF, 67F,),

where all repetitions occur p times. Using this together with Property F we obtain from

(1)-(4),
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B, )+ &> H(F,0F,....07F,

1 r-1p-1 l
2 2 H(O7F,|6vF,)— ;H(G”’Fklemﬁ'q)

T s=0 t-0

>;H(Fk!0Fk’---;0ka)—

p-1
= 2 (R OF,,.....07F) — v 5 HEF,|F)— HF,|F,
P r t-0 r

>p(H(6) —¢/p)— (p + ;)s/p > pH(0) — 3.

Thus H(6°)=>pH(0), as asserted.
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