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In  this paper we study the following problem: prove that  for n # m  the n-shift of the 

hyperfinite I I  1 factor is not conjugate to the m-shift. For each n the n-shift is the auto- 

morphism corresponding to the translation of 1 in the infinite tensor product R 1 = |  ~ z (2r ~)~ 

where N is the algebra of n • n matrices and T the normalised trace on _h r. As the above R 1 

does not depend on n, up to isomorphism, because it is the unique hyperfinite factor of 

type II1, the above problem makes sense. 

There is an obvious analogy between this problem and the problem of conjugacy of 

Bernoulli shifts in ergodic theory. In  fact both are special cases of the conjugacy problem 

for automorphisms corresponding to the  translation of 1 in | v)~ where T is a nor- 

malised trace on the finite dimensional yon Neumann algebra -h r. 

So it is natural to try and extend the notion of entropy, from ergodie theory to the 

non commutative frame. I t  is known since a long time that  given a yon Neumann algebra 

M with semi-finite faithful normal trace v, and considering a state r on M, with r =T(Q" ), 

the quanti ty S(r where ~ (x ) -  - x  logx, measures the amount of randomness in 

for the purposes of quantum mechanics. Also Wigner and Yanase defined the purely non 

commutative notion of skew information between ~ and a selfadjoint observable K: 

I~(q, K) = �89 K]2). 

Dyson extended this definition and introduced, for 0 < p  < 1, 

I~(q, K) = �89 p, K][~ l-v, K]) = ~(q*-VK~VK)--T(qK 2) 

They conjectured that  Ip was a concave function of ~ for each fixed K. This conjecture 

was proven by E. Lieb with K not necessarily selfadjoint and I,, ='~(~I-VK*~'K) -=c(QK*K). 

(1) E. Stormer is happy to acknowledge financial support from Centre de Lumini, Marseillo, whore 
part of this work was done. 
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In  fact, it follows easily from Lieb's theorem, which was shown for type I factors, but  whose 

proof also goes through for finite von Neumann algebras, tha t  

I(~, K) = lim 1_ ip(e ' K) = z(~K*[log e, K]) 
w o p  

is a concave function of Q for each K [5]. 

G. Lindblad defines in [7] the relative entropy of a state ~1 given the state ~z by  the 

formula 

S(ei [ Q~) = z(el (log el - log e2))- 

He proved [7, Theorem 1], [8] tha t  S is a jointly convex function of ~1, ~ ,  a fact which 

also follows from the equality 

~(~)1'~2):--I([~ 1 0 j ,  [~ ~]). 

Because of such progress in non commutat ive information theory it was reasonable to 

expect one can get a correct definition of the entropy of automorphisms in the non abelian 

frame. 

The main difficulty comes from the fact tha t  two finite dimensional subalgebras of a 

non abelian yon Neumann algebra can fail to generate a finite dimensional algebra, indeed 

abelian ones will do, see e.g. [1, Theorem 3(ii)]. Thus there is no immediate analogue for 

the operation P V Q between partitions of abelian von Neumann algebras. So we looked for 

a replacement, not of the above V, but  of the quant i ty  H ( P  1 V P~ ... V P,~). 

We construct for each n a function H ( P  1 ..... P,) ,  where the Pj  are arbi trary finite 

dimensional yon Neumann subalgebras of a given von Neumann algebra R with finite 

trace T, and H is symmetric in its arguments. 

This function will satisfy the following requirements: 

(A) H ( N ,  .. . . .  N~,) <-< H ( P ,  . . . . .  Pk) when N j c P ~  i = I, ..., k 

(B) H ( N  1 . . . . .  Nk, Nk+ 1 . . . . .  N~) <~ H ( N ,  .. . . .  N~)-F H(Nk+I . . . . .  N~,) 

(C) P1 ..... p , , cp=~  H ( p  I ..... Pn, P ,+I  ... . .  P,,,) <~ H(P,  P,,+~ . . . . .  Pro) 

(D) For any  family of minimal projections of N, (e~)~r such tha t  Z e ~ = l  one has 

H ( N )  = Z~,,z ~llr(e~,) 

(E) I f  (N 1 U ... U Ni,)" is generated by  pairwise commuting von Neumann subalge- 

bras Pj  of Nj  then 

H(N,  ... . .  N~) = H((N~ U ... U Nk)") 

The other properties of H connect it with a relative entropy function H ( N  IP) analogous 

to the relative entropy of ergodic theory: 
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(F) H(Nx, .... N~) < H(P 1 ..... Pk) + E, H(N,[P,) 

(G) H(2VIQ)<<.H(NIP)+H(P[Q) 
(H) H(2V [P) is increasing in/V and decreasing in P 

(I) Let iv1, ;v, commute, then H ( N ,  INJ  = H((lVl U N,)" [ lVl) = H((lVl U N,)  ~) - H ( N J .  

Moreover we shall prove tha t  H is strongly continuous, more precisely given n and 

e > 0, we find ~ > 0 with 

(dim N =n, N = P ) ~  H(NIP) < s. 

Equipped with such a function H it is then easy to define for an arbi trary y-preserving 

automorphism 0 of the couple (R, T) the quantities: 

H(N, 0) = ~ ~ H(N, 0(N), 0~(N) ..... e(N)) 

H(O) = Sup H(N, 0). 
N f in i t e  

dlme~slona/ 

Moreover the Kolmogoroff-Sinai theorem is true, provided R is hyperfinite (it cannot 

even be stated otherwise) and takes the following form: 

THEOREM 1. Let N~ be an increasing sequence o[ ]inite dimensional yon Neumann sub- 

algebras o / R  with U Nk weakly dense in R, then 

H(O) = sup H(N~, 0) for any Y-preserving 0. 
k e n  

Using property D and property E one gets 

THEOREM 2. Let Sn be the n-shift o[ the hyper/ine 111/actor then H(Sn)= log n. 

This proves in particular tha t  those shifts are non conjugate for different n's. We 

shall in Theorem 4 generalize Theorem 2 to Bernoulli shifts 0 of R defined by  positive 

numbers 21 ..... 2n with sum 1. For such a 0, H(O)= -Z2 j  log 2j. 

1. Preliminaries 

Here we fix our notation and remind the reader of some known facts of non commutat ive 

information theory, then we prove an important  inequality ((8)) to be used later. Through- 

out R will be a finite yon Neumann algebra with faithful normal finite trace T. When _N is a 

yon Neumann subalgebra of R we let E N by  the unique faithful normal conditional expecta- 

tion of R onto/V which is T-preserving. 
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The  let ter  ~ designates the funct ion x~[0,  + ~ [ - ~  - x  log x. We recall t ha t  

log is an operator  increasing funct ion on [0, + ~ [ ,  [11] Prop.  2.5.8 (1) 

z/is an operator  concave funct ion on [0, + oo[, [9]. (2) 

~(xy) = ~(x)y +x~(y) for commuting operators x, y. (3) 

We put,  for x, y~R+, x<2y for some 4 > 0 ,  

S(x[y) =~(x (log x -  log y)), 

and it  follows, as shown in the introduct ion,  t ha t  

S(x[y) is a joint ly  convex funct ion of (x, y). (4) 

I t  implies in part icular  the well known Peyerls Bogoliubov's inequal i ty  

�9 (x) (log ~(x) - log ~(y)) ~< ~(x(log x -  log y)). (5) 

Note  also tha t  

s(Z~l~u) =~s(~]u), ~ >0. (6) 

Using (4) and (6) the  following inequal i ty  is then  easy to  show: 

g~, x~ e R+, g~ ~< x~, ~ xt = 1 implies ~ "~(y,(log x~ - log y~)) ~< T~,~=~ y, . (7) 

(Because ~?ol S(y,l~,) >1 s l 2  y,12~,) = - ~ ( ~  y,)). 

We now derive from (7) an inequal i ty  which will p lay  a fundamenta l  role in the sequel, 

and is used in the proof of p roper ty  C. 

Le t  I, J be two finite sets, (Xij)lG X. ~ J be a family of elements of R+ such tha t  Y': • 3 xtj = 1 

then  

�9 ~(~,j) < ~ T~(~) + V ~(~)  (8) 

1 ~jX~i, X 2 ~ X ~ t .  where x~ = 

To prove (8), we just  have to  show tha t  

5 ~n(x,) - ~. ~(x~)  = 5 "r(x,s(log x~ - log x~j)) 
| . i  ~ t,i 

and then  apply (7). Bu t  the above equal i ty  follows from 

5T(x,jlog~)=--'r~(x~) for any  i e J .  
$ 
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2. Def in i t ion  of  H and proof  of  propert ies  ( A )  to  ( I )  of  the  jo in t  entropy 

Let  R and v be as in section 1. For  each k E N, we let S~ be the  set  of all families 

(xs,.~ ...... ~k),s~N of posit ive elements  of R, zero except  for a finite n u m b e r  of indices, and  

satisfying: 
x~,.t ...... ~k = 1. 

For  xES~ ,  1E{1 . . . . .  k}, and  i s E N  w e p u t  

sl....sz-1. ,~+~ ..... sk 

De]inition 1. Le t  N 1 . . . . .  N~ be finite dimensional  yon N e u m a n n  subalgebras  of R then:  

H ( / V  1 . . . . .  N k )  = S u p  ~. ~'lT(xs ...... 'k) - ~- ~ TIIEu,(X~,). 
xe.gk tl....,tk 1 Sl 

I t  is clear t h a t  H is posit ive and  symmetr ic ,  bu t  it  is no t  clear t h a t  i t  has  a finite value.  

This  will in fact  follow f rom propert ies  (B), (D): 

Property (A). H ( N  1 .. . . .  N~) <~H(P 1 .. . . .  Pk) when N j c  P~V~. 

Proof. For  a n y  y E R+, and ~ E {1 . . . .  k} we have  b y  Jensen ' s  inequali ty,  which follows 

f rom (2) and  [2], 

~I( EN,(y) ) = ~l(E~,Ee,(y) ) ~ ENj ~I( Ee,(y) ). 

Hence wlEN~(y ) >Jr~lEvj(y), which makes  the  proof  obvious.  

Property (B). H ( N  1 .. . . .  Nk, Nk+i . . . . .  Np) <.H(Nx . . . . .  N~) +H(Ne+I  . . . . .  N~) 

Proo/. Let  x E S~, and  define x' E Sk, x" E S~_k b y  

t X ~ 
XSl ..... fk = ~ XS,,...,Lp, ~ ...... ]p--]~ ~ Xf ...... |k.~ . . . . . .  1p--k" 

i k + l ,  . . . .  ip  Sl . . . . .  tk  

, l _  s / E { 1 ,  k ) ,  ~t_ z+k We have  xsz - xsl . . . . .  xjz - xjl , 1 E { 1 . . . . .  p -- k) .  

We hence just  have  to prove  t h a t  

Y ..... ,,) < ..... + Y 

To do this let m be the  Lebesgue measure  on [0, 1], ~) be a par t i t ion  of [0, 1] whose generic 

a tom as ...... ,, has measure  T(x, ...... ~p). Le t  ~)' (resp. ~ )  be the  par t i t ion  whose a toms  are 

union of a toms of ~) with fixed k first  indices (resp. p - / c  last), t hen  clearly the  above  in- 

equal i ty  follows f rom h( ~ ' V  ~" )~<h(~ ' )  + h ( ~ " )  where h is the  classical en t ropy  of ergodie 

theory.  

Property (C). P~ . . . . .  Pn c P ~ H(Pt  . . . .  , Pn, Pn+l, "", Pro) <.-.H(P, Pn+l . . . . .  Pro) 
20 - 752904 Acta mathematica 134. Impr im$ lo 3 0 c t o b r e  1975 
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Proo]. Using property A we can assume tha t  P~=P, ~= 1 ..... n. We let xeS,n, then we 

build an XESm_n+X such that ,  with Ez=E~l, 1E{1 .. . . .  m}, we have 

~ ( x ,  . . . . . .  ,=)  - ~ ~ ~ E , ( ~ , )  < ~ ~(X,  ...... ,.-.+1) - ~ ~ ~(E,+n_,(X~,)). (9) 

To get X, let ~ be a bijection of N onto N n and put: 

X l a ,  . . , , I r a -  n + l ~ X ~ ( J D a . . . . . o ( h ) n , h ,  , , . J m -  n + 1" 

Clearly, for l >  1, X~l=x~ +z-1 and also: 

J2, . . . . Jm -- n + l 

where x,'....t. = ~ x, ...... h. 
I ~ + 1  . . . . .  Im 

So tha t  the inequality (9) is equivalent to 

Y. Y. T,TE,(x~,) >15, ~(E~x'~, . . . . . .  ~ ( , , . ) .  (lO) 
l < ~ l < ~ n  it J 

But  E~=E~ for 1E{1 . . . . .  n} and with y~ ...... ~.=E~(x~ ...... ~) we get 

y, ...... ~ =En(z~,). 
t i .  . . . .  t l  -- 1. ti 4-1,  . . . ,  fa  

Hence the inequality (10) follows from (8). 

Property (D). Let  (e~)~az be a family of minimal projections of N such tha t  Y'~e~ e~ = 1. 

Then H ( N ) = Y'~e x ~Tz( e~). 

Proo/. As ~(e~) = 0  we have 

I 1 1 

Hence to prove property D we just have to cheek the following 

for x ~  Sx one has ~ ~z(x~)-~(E~(x~))~< ~ ( e ~ ) .  (11) 

As ~(E~(x~)) =v(x~), one can assume to prove (11), t ha t  all the x~'s lie in _N. 

We have for each a ~ N  +, tha t  ~/~(a) -~7(a)  =~(a (log a -  log ~(a))) =S(a  ]z(a)). Hence by 

(9) and (6) one has 

a, b e N+, ~v(a + b) -~7(a  + b) <~ (~z(a) - ~ ( a ) )  + (r/v(b) - ~ ( b ) ) .  (12) 

I n  fact (12) is also an easy consequence of the Peierls Bogoluibov inequality (5). 

Using (12) and the spectral decomposition of each x~, we see tha t  to prove (11) we can 

assume tha t  each x, is the product  of a positive scalar 2, by  a minimal projection/~ of N. 

Let  e be a minimal projection in the center of h r. For i ~ N  we have x~c=x~ or x~c=0, 
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and for iEI ,  e~ c = 0  or e~ c = e .  Let  Ac~{iEN , x~c.O}, Jc={O~EI, e~c~=O}. To prove (11) it 

is clearly enough to show that:  

Y 

Now x~ =;t~/~ so tha t  by  (3), ~(xt) =~(~)/~ and ~T(xt) -~(~(i~)/~) =~t~T(/~). As the/~, i EAc, are 

all equivalent, 

~v(x,) - z~(x,) = - ( ~ 2, T(/,)) log T(]) = - z(c) log z(]) 
|eAr fGAr 

where / is an arbi t rary minimal projection of N such t h a t / ~ c .  The same computation 

shows tha t  ]~G~c ~(T(e~))= -T(c) log T(]) and proves equality (13). 

Property (E). I f  (N 1 U ... U N~) n is generated by  pairwise commuting subalgebras Pj  

of Nj then H ( N  1 ..... Nk) = H ( ( N  1U/V~ ... U N~)"). 

Proof. First assume tha t  the ~ are abelian and commute pairwise. I t  follows from 

properties A and C tha t  H(N~ ..... ~ )  is smaller than H((Nx U ... U N~)"). Let  ( e~)~  be for 

each i E {1 .... .  /r the list of minimal projections of N~, then let x E S~ be such tha t  x~ ...... ~ = 

e~ ... e~. By definition 1 we have 

' ,  " . . . . .  ~(e~ e~ ... 
~.... |~ 

But  the first term is equal to H((N~ U ... U N~) n) by  property D. Now we no longer assume 

the N~ abelian nor commuting. We have by  C, H ( N  1 ..... N~) <.H((NI U ... U N~)~). To prove 

tha t  H(N~ ..... N~) >~H((N 1 U ... U N~) ~) we can replace each N~ by  the corresponding P ,  

i.e. assume tha t  the N~ are pairwise commuting. 

Now let ~ c N ]  be maximal  abelian in N~ for each j, we have 

H ( N x ,  ..., N~) >~ H(~4~ . . . . .  .,4~) = H((.,4x U ... U .,4~)"). 

Hence we just have to check tha t  (~1U ... U ~ ) "  is maximal  abelian in (N~ U ... U N~)". 

To do it check tha t  any  product of minimal projections e~ of ~V~, say e =e~ ... e~ will be a 

minimal projection of ( ~  U ... U/V~) n. 

Property (F). H(N~, N~ ..... N~) <~H(P~ ..... P~) +Z~ H(N~IP ~) 

where H(N]P)  = sup ~ (~E~(x~)-~E~(z~)) .  
3:e~l 

Proo]. Immedia te  from definition 1. 

Property (G). H(NIQ ) <<.H(N]P) + H(PIQ ). 
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Proo]. Let  xES x then: 

l 

= ~ (~(Eo(x,)) - ~(Ep(x,)))  + ~ (v~(E~(x,)) - ~n(E~,(x,))) <~ H(P I Q) + H(N]P). 

Property (H). H(NIP ) is increasing in N, decreasing in P.  

Proo/. Same proof as for property A. 

Property (I). Let  N 1 and N 2 be commuting finite dimensional von Neumann subalgebras 

of R. Then H(N2INx) =H((N~ U N~)" IN1) = H ( ( N  2 U Nx)") - H ( N  O. 

Proof. We can assume tha t  R = (N x U N~)". Then C I =Center  of N 1 is contained in the 

center of R and it is easy to check that:  

H(N, I Na) = ~ v(e) H((N,)cl (Nx)r 
c atom of Cx 

H((Nx U N2)"IN~)= ~ -c(c)H(N~ u N~);I(Nx)~), 
C at~II1 Of C I  

H((NI U N~)")- H(N 0 = ~ ~(c)(H((N~ U N2)'~)- H((NO~), 
c a t o m  of  C1 

where in each of the terms like H((N2)cl (N1)~), the entropy is computed in R~ relative to 

*/*(c). 
I t  follows tha t  we can assume N 1 to be a factor, in which case the equalities follow from 

Lieb-Ruskai second strong subaddit ivi ty proper ty  ([6]) which shows tha t  

H((Nx U N,)" INI) ~< HCN,). 

3. Continuity of the relative entropy in the strong topology 

Let R be a given finite von Neumann algebra with trace ~(*). I f  N, P are von Neumann 

subalgebras of R we shall write (cf. [12]) N ~ P for positive ~, if and only if: 

where for each pe[1,  oo[, and aeR, Ilall,= (lal': and Ilall o is the C* of a. 

THEOREM 1. Let R and T be as above. For each integer n < ~ , and each e > 0  there i8 a 

> 0 such that/or any pair o] yon Neumann 8ubalgebras N, P o] R: 
d 

(dim N = n, N c P ) ~ H ( N I P ) < e .  

The first par t  of the proof, Lemmas 2 to 9, does not involve the function H. 

(*) T is t h r o u g h o u t  a f a i t h f u l  n o r m a l  t r a c e  s u c h  t h a t  v(1)  = 1. 
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First part 
L~MMA 2. For each m > 0  and 7 > 0  there is a ~=(~m(~) such that/or any yon Neumann 

subalgebra P o / R ,  any abelian yon Neumann subal!tebra t4 o / R  with minimal projections 
a m ( *),=1 ..... m, ~]~=1 ai =1, one has 

( A s  i = 1  . . . . .  m, ~ a ; = l  
i = l  

/or some/amily o/ projections a', eP). 

Pros/. For m = 1 the lemma is obvious. We assume it has been proven for m < m 0 and 

we prove it for m = m s +  1. Choose 71 such that: 

9(3~1) 1/s +~x < ~]" 

Then take (~ smaller than 5m0(W1) and than ~1- Let  A and P be given, with A ~ P  and call B 

the abelian yon Neumann subalgebra of A whose list of minimal projections is bl=al  ..... 

bm~ b,n.=amo+amo+l. There exist by hypothesis, projections (b~)~= 1 . . . . . . .  , b~EP 

such that  

l lb;-b,  J = 1 .. . . .  too. 

As (~<~1, there is an xEP+, Ilxll~o~<l such that  il~-a~.ll,<n. 
Now b~, xb'~o is a positive element of R+ such that  

b !  I i  t i p moxom.-a,~.[[~=iib,,~176176 [ Ix -  a~~ 4 3~1. 

By [3] Lemma 4 p. 273 there is a spectral projection a~~ of b'~~ xb~~ such that: 

[[ a~,, -- am, ]]~ ~ 9(3,1) 1/2. 

! i . ~  r t - , . ~  t t t t 
We have a~o~P and amo'~bm~ so that  the family (bl, b,no-1, am., bm.-amo) of projec- 

tions of P satisfies the required conditions. 

Lv.MMA 3. Let e be a projection, eER, and let y E R  be such that y*y<~e. Let y=u~  be the 

polar decomposition o/y .  Then there exists a spectral projection / o/~ such that 

li/-eil  9ily*y -eli  IIn/- yli  slly*y -ell  

Pros/. By [3] Lemma 4, p. 273, if we put  e =  lie-eJJt '2 and suppose e<�89 the spectral 

projection / of ~ corresponding to [ 1 - e ,  1] will satisfy the first of the required in- 

equalities. Moreover by [3], p. 274, we have [[Q-/Jiz ~<Se so that  ][u/-u~iJs~<8e. 

LEMMA 4. Let n > 0  and e > 0  be given. Then there is a (~>0 such that/or any pair o/ 

yon Neumann subalgebras Q and P o~ R with Q c P, dim Q = n, and any system o/ matrix 
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units (e~))~. 1=1 ...... k' k = 1, ..., s, with Z~.k ~,'(k) = 1, of Q, there exists a system o/ matrix units 

(k) (p,j ) , . j~ ...... ~, k = 1, ..., s, 

o/ P such that 

II el, ~ ) -  p~'l l~ < ~ v j ,  m. 

Proo]. First  choose ~ > 0 such tha t  

3~/+ 9(7~/) 1/z ~< e/3]Tnn. 

Then  choose c~ =~n0l) as in L e m m a  2 with c~ <~/. Let  Q and P satisfy Q c P ,  and (e~)) be a 

system of matr ix  units  in Q. B y  Lemma 2 we can find a family (b~k))j~l ...... k.~=l ..... s of 

projections of P ~4th Zj ~ b~ k) = 1 and ,(k)_ ~(k)fl . ~tt ~s I1~ ~<~, V j, k. We now fix k and we construct  

an n k • n~ system of matr ix  units  ~,~j-(k) all belonging to P~jb~k). Let  ?" E {1, ..., nk}, and x EP 

such tha t  I14~ ) - x l l ,  < ~ .  Then 

II bl ~) xb(1 ~) - ei~ ) II~ -< II bl ~, - el2 ) II~ * II b(, ~) - e(,i ) II~ + n < an 

and ~j  ,~(k) ~ ~~(~)~* / ~ ' ~ ( ~ ) ~  ~(~)~ / - b~ ~) 112 ~< 7~/. 

Hence by  T.emma 3 there exists a part ial  isometry u~)~  P with initial support  
(k) ~< ~(k) i "~ ~1 a n d  s u c h  t h a t :  

and [[ b(~ ~ ) -  1~'[[~ ~ 9(7~?) ~'~. 

P u t  -(~) ~11 = At/~ k)" Then v(bi~)-p(~))<~(bi~)-l~)) which follows f rom the relation 

/ - e A / ~ e V / - e  for e and / projections. So t h a t  IIbT)-~i[) l l ,<~/3,  hence Ilei~ ) -  
r 

P l l  [l~ ~< 2e/3. Also put Fil~(k) ---- r (k)/~11~(~)" Clearly t h e  /ail~(k)/ail~(k)* fo r In  a system of  n~ • n~ m a t r i x  

units, and we have: 

p ( k )  ~(k) ~< (k) 
~l - ~.~I 2 "~" I] Ul k) --  eil  ]]2 -]- II p ~ k )  e(l~)[[9 ~< e/3 H- 2 s / 3  : s. 

Notation 5. Let ~ be a yon Neumann subalgebra of R, then for any projection/e-h ~' 

we pu t  
~V~ = {xl + ~ ( 1 - 1 ) ,  xe~V, ~eC}. 

Clearly N ' is a yon  Neumann  subalgebra of R. 

LEMMA 6. Let n > O  and ~ > 0  be given. Then there is a (~>0 such that/or any pair  o / yon  

2Yeumann subalgebras 2V and P o / R  with N c P,  dim N = n, there exist a yon Neumann  sub- 

algebra 2"~ o / P ,  dim 1~ < n -4-1, a pair  o /pro jec t ions /EN' ,  ] E ~ '  and a unitary u E R such that 

(1) u/~*=i, uN,u*=~ ( ~ ) I I / - l l l ~ < ~ ,  f [ [ - l l l ~ < ~ ,  ( 3 ) H ~ - I H ~ < ~ .  

Proo/. First  choose e > 0 such tha t  

e < a/8n, 14e TM ~ a/8n. 
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Then  app ly  L e m m a  4 for this n and this e to  get  & Le t  N and  P be given, N ~ P,  and  let  

(e(i~)) be  a sys tem of ma t r ix  uni ts  in N.  B y  L e m m a  4 there  exists a sys tem of ma t r ix  uni t s  

(p~)) of P such t h a t  
(k) II ei~ ) -  p,, II, < ~, v i, k 

Let  ~ be the  yon N e u m a n n  subalgebra  of P genera ted  by  the  e~j-(k). Clearly d im ~ < n + 1. 

( I t  is equal  to  n + 1 if the  sum of the  p}~) is different  f rom 1.) 

The  proof of L e m m a  5 p. 274 of [3] does no t  use the  hypothes is  " fac to r" .  Hence  we 

get for each k E {1 ..... s} a par t ia l  i sometry  wk such that :  w~ we -~, -< ~ wkw~* "~l~xa, "< (~) Ilwk - en (~) th< 
a/Sn. We take  w = Z  k ~" ~(~)- ~(k) The  par t ia l  i sometr ics / , j l  -~k~l~ ,~j~,J~ ~k~J .  ~(~). ~(k) have  pairwise ortho- 

gonal  init ial  projections and pairwise or thogonal  final projections.  So w is a par t ia l  iso- 

merry ,  

w*w = ~ ei~'w* w~ei~, ,, ~ *  = ~ p~'w~w* ~i~'. 
J,k Lk  

Hence  / =  w*w belongs to  N '  and  [ =  ww* belongs to (~) ' .  For  each i, i, k we have  

wei? w* = ~,~' w~ 4~' e l f  eS~' w* ~i~ ~ = ~Ix~,w~ w~ ~i~ ~ = [~If. 

Let  u be a un i t a ry  in R such t h a t  u / =  w. Then  

u/u* = , ~ o *  = 1, ulei~ )lu* = t~i~'t v i, i, ~. 

Hence  uN~u * = 1~ ~. 

Also 

so t h a t  

and  

HW ~ ~ e(k)e (k)~(k)ll ~ o~ - / - . ~  jl n~ lJ l l z<~ne+n~n<~ ~, a j 

i i w _ l l l ~ < _  ~ ~ _<~ 

I1~- i l k <  I lu / -  1113§ Ilu(1 -/)11~ ~-~ + ~ 

LEMMA 7. Let ~ > 0 ,  u be a uni tary in  R such that I1~-111~<~, then there exist unitaries 

v and v' such that 

I Iv - l l l~  < ~1,~, T(Support  ( v ' - l ) )  ~< ~lt~ and  vv' = u .  

Proo/. Let  e' be the  spectral  project ion of u such t h a t  l u -  112e'~> ae', [ u -  11 z (1 -e ' )~<  

a ( l  - e'). Then  take  v = u(1 - e') + e', v' = (1 - e') + ue'  and  use the  inequal i ty  T( ] u - 1 [~e') ~< 

I l u - l l l ~ < ~  ~ to get ~(e')-< ~. 

LEMMA 8. For each h E N  there is k(n) EN such that i / N  is a yon N e u m a n n  subalgebra 

o / R  with n = d im N,  t hen /or  any pro~ection e E R there is a projection E E N '  N R such that 

E <~e and T(1 - E)  <~ k(n)v(1 - e ) .  
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Proo/. Consider N as imbedded as blocks along the main diagonal in the n x n matrices 

M~. M .  is generated by  the group H of unitaries with coefficients 0, • 1. Let  k(n) = card H. 

I f  G = H  fl N, then (G)" =s Let  E =  Au~oUeu*. 

L~MMA 9. Let n and e ' > 0  be given. Then there exists a ~ > 0  such that,/or any pair o/ 

R, with N ~ P and dim 1V = n, there exists a unitary v, [Iv - l lloo < e', von Neumann subalgebras o/ 

a projection E, ~ ( E ) > l - e '  and a v o n  lVeumann subalgebra h~ o / P ,  dim h ~ < n §  such 

that: 

EeN' ,  vEv*el~' and vN%* = (lqF ~*. 

Proo/. Choose ~ > 0 such tha t  if k(n) is as in Lemma 8 then 

0g 1/2 < e ' ,  gl/2 2[- ~2 < e'/k(n). 

Then choose (~ corresponding to n and ~ by Lemma 6. Let  A r = P  and dim h r=n .  Then let 

A ~ P ,  u , / ,  ] satisfy the conditions of Lemma 6. By Lemma 7 there are unitaries v, v ' e  R, 

with v'e=ev'=e and e<./. (Take e = / A ( 1 - s u p p o r t ( 1 - - v ' ) ) ,  so tha t  v ( 1 - e ) ~ < r ( 1 - / ) +  

r (support (1 - v ' ) )  < [[ 1 -/[[~ + ~,/2 < ~2 + ~,,2 <e'/k(n). 

Let E E N '  be a projection such tha t  E<e,  r ( 1 - E )  ~<k(n)r(1-e) ~<e' (Lemma 8). As 

E ~< / we have (NI) ~ = N s, ((h~)f) u~* = (uN/u*) u~u* = uNSu * and as uEu* <~ ], 1~ u~u* = uN~u *. 

Also E ~<e, so tha t  uEu* =vEv*, and uN~u * =vN%*, hence vN%* =1~ (~*).  

Second part 

L~M~A 10. Let n>O, e > 0  be given, then there exists an e ' > 0  such that/or any yon 

Neumann subalgebra Q o] R o/dimension n one has: 

H(Q[vQv*) <e,  u  unitary, Hv-ll[oo <e ' .  

Proo/. Choose e' such tha t  for any family of positive reals g,, i = l  . . . . .  n, E ~ = 1 ,  any 

families ;t~, ~ >0,  i = l  ..... n, Xdt,=F~2~ =1, 

Then let Q and v be given. Let  x e R+, ~(x) = 1. We have E~Qv. (x) = vEQ(v*xv) v*, v ~ E ~ .  (x) = 

~EQ(v*xv). Now X = E~(x) and X '  = EQ(v*xv) both belong to Q+ and satisfy T(X) =7(X ' )  = 1, 

][ X ' - X I I  1 <<. I[v*xv-x[I 142e' ,  since EQ is a contraction in the [[ Ill-norm. 

Let  ql, .-., q8 be the list of atoms of the center of Q, where Qq~ is of type nj and En~ =n 

so tha t  Znj<~n. Let  X = Z k  X~__kl "~:(k)'(~)~ , (resp. X'=Z~.~ 2~(k)e~ (~)) be the spectral decom- 

position of X (resp. X'),  where for each b, ], e~ ~) and e~ (k) are minimal projections of Qqk" 
We have, for a suitab]e choice of the decompositions [10], Theorem 5.6, tha t  

(k) ' (k)  (k) ~ , 
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We have shown that  V x 6 R  +, 137E~v,(x)-37E~(x)l ~<ev(x); it follows easily tha t  

H(QIvQv*) 

LEMMA 11. Let N be a yon Neumann subalgebra of R of dimension <~n, and E6N" be a 

projection, then 
H(NE[ N) < 7(3(E)) +7(1-3(E)), 

H(NI NE) < 7(3(E)) + 7 ( 1 - 3 ( E ) )  +3(1 - E) log n. 

Proof. Let Q be the yon Neumann algebra generated by  N and the abelian yon Neu- 

mann subalgebra ~4 of N'  generated by E. We have (property I) H(QIN ) <H(;4) =73(E) + 

73(1 - E). As N E and N *-B are commuting and generate Q we have (property I) 

H(QIN E) <~ H(N l-E) <<. ~3(1 - E) +~(3(E)) +3(1 - E) log n. 
Then 

H(N[N ~) ~ H(Q[N E) <<. 7(3(1 - E)) +73(E) +3(1 - E) log n 
and 

H(NE[N) <<. H(Q]N) ~< 7(3(E)) +7(3(1 - E)). 

End of the proof of Theorem 1. First choose e' such that  Lemma 10 is satisfied with 

n + 1 and e/2, and such that,  e' ~< 1/2, 

2(7(e') + 7 ( 1 - e ' ) )  +e '  log ( n + l )  4e/2.  

Then choose ~ such that  Lemma 9 is satisfied for n and e'. Now let N and P be given, with 

N ~ P and dim N = n. By Lemma 9 we find E 6 N', 3(E) > 1 - e', and/~, /~  c p ,  dim N ~< n + 1, 

v 6 R, llv- lll  with vNEv* By Lemma 11 we have: 

H(NIN E) <<. 7(1 - e ' )  +7(e') +e '  log (n + 1). 

By Lemma 10 we have 
H(NE[vN% *) <<. ~/2. 

By Lemma 11 we have: 

H(h?~E~* [ N) ~< 7(1 - e ' )  +7(e'). 

So wet get, using property G and H(N ]P)=0 ,  tha t  

H(N [P) ~ 2(7(1 - e ' )  +7(e')) +e '  log (n+  1)+e/2 < e. 

4. The n o n  abelian Kolmogoroff -Sinai ' s  theorem 

Definition 1. Let  0 be an automorphism of the finite yon Neumann algebra R, preserv- 

ing the faithful normal trace v, v(1)= 1, then 
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(a) For any finite dimensional yon Neumann subalgebra N of R put  

H(N, O)=lim 1 H(N, O(N) . . . . .  Ok(N)). 

(b) Put H(O) = Sup H(N, 0). 
N 

Note that  in (a) the limit exists because of property B. 

T ~ W O R ~  2. Let R be a hyper/inite yon Neumann algebra o/type II1, and v, 0 as above. 

Let (Pq)a ~ N be an increasing sequence o//inite dimensional subalgebras o /R  with ( U ~ = R 

(weak closure) then: 
H (O) = lira H(Pq, 0). 

Proo/. Let N be a finite dimensional yon Neumann subalgebra of R, and e > 0. Apply 

Theorem 1 of section 3 to get a q such that  H(NIPq) <e. Then 

H(N, O) = Ftm 1-H(N, O(N), Ok(N)) 
k - . r  I r  " " " ~ 

1 - -1  k 
~< lim = H(Pq, 0(Pq), Ok(Pq)) + lira ~ ~ H(OJ(N) IOJ(Pq)) 

k- -~o  k """  ~ 1=0 

<~H(Pq, O)+~. 

T H E O a E ~ 3. Let N o be a/ ini te  dimensional yon Neumann algebra with/aith/ul nor- 

malised trace T o. Put ( R, ~) = | Vo), and let S be the automorphism o /R  corresponding 

to the translation o/1 in Z. Then S preserves ~ and: 

H(S) = H(No). 

Proo[. Let ~rj be the homomorphism of N O in R such that  

zrj(x) = 1| ... | 1 7 4 1 7 4 1 7 4  ... | 174  ... 
J t h  t e r m  

We have by construction S~r~ =Zj+r 

Let k E N and Pk = (U ijj<~Trj(N))". Clearly the Pk form an increasing sequence of finite 

dimensional von Neumann subalgebras of R and U ~ I  P~ is weakly dense in R. 

Property E shows that  H(Pk, SP k ..... S 'Pk)=(2b+n+l)H(No)  hence Theorem 3 

follows from Theorem 2. 

We next extend Theorem 3 to a larger class of ergodic automorphisms of the hyper- 

finite factor R which are the analogues of Bernoulli shifts. Recall tha t  if M~ is the I , -  

factor with trace Tr, such that  Tr,(1)=n, and co is a state of M ,  then eo(x)=Tr,(hx), 

where h is a positive operator of trace l, then the eigenvalue list of eo is the spectrum 
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{~t 1 ... . .  ~tn} of h counted with multiplicity. I f  Rm is a yon Neumann algebra and ~0~ a normal 

state of Rm, m E Z, we denote as before by  | ~ ~ z (Rm, ~0~) the yon Neumann algebra obtained 

from the GNS representation of the state | on the C*-algebra tensor product |  

I f  ~0 is a state on a yon Neumann algebra M its centralizer is the algebra {x E M: ~0(xy - yx) -= O, 

u y EM}. The following theorem was also noted by  W. Krieger. 

THV.OR~M 4. Let M o be the n x n matrices and q)o a/aith/ul state on M o with eigenvalue 

list (,~ ..... ,~). For m E Z  let Mm=Mo and ~ = ~ 0 .  Let M = | ~ ) .  Then: 

(1) I / R  is the centralizer o/the state | in M then R is the hyper/inite IIl-/actor. 

(2) The restriction of the shift on M to R is an ergodic automorphism with entropy 

-Z7=1 ~j log 2j. 

De/inition 2. The automorphism of R constructed above is the Bernoulli shift defined 

by  (21 .... .  2n)- 

Proof. Let  ~ be the normal state | on M. Then it is welt known tha t  ~ is faithful 

and M is a factor. I f p  ~<q are integers let M~ q be the image of | in M under its natural  

imbedding. Let  F~ q be the centralizer of ~ I M~q in M~ q. If  p ~< r ~< s ~< q then clearly F~ c F~ q. 

We assert that  ~ U 1 F_~ is strongly dense in R. 

Let  at =a~ be the modular automorphism of M defined by  ~, see [15]. Since ~ is a 

product state, for each p ~< q we have at = at ]M~ | (M~) c, where (M~)C = (M~)' N M, and 

M is identified with M~ q | (M~) c. Let  (I) be the faithful strongly continuous a. invariant  

conditional expeetion of M onto R [4]. Then (I) (M~ q ) = F~ q. Let  x e R. Since U ~o Mpp is strongly 

dense in M there is a net (x~) in U ~ M [ p  converging strongly to x. Thus x=~P(x)= 

strong limit (b(x~), with q)(x~)E ~ p U 1 F_~. The assertion follows. 

We show R is a factor, hence by the above paragraph R is the hyperfine IIl-factor.  Let  

P be the group of finite permutations on Z and G the group of *-automorphisms of M de- 

fined by  the action of P on the factors in the infinite tensor product. Since ~ is G-invariant 

the automorphisms are well defined, and R is globally invariant  for each gEG. I f  gEG 

there are integers p ~< q such tha t  g is an automorphism of M~ q and the identi ty on (M~) c. 

Since M~ q is a type Z-factor g is an inner automorphism of M, hence implemented by  a 

uni tary operator ug E M. Since ~ is G-invariant ug E R. The arguments in [13] show tha t  the 

C*-algebra |  is asymptotically abelian with respect to G and tha t  | is an extremal 

invariant  state. Since ~ is faithful on M, G acts ergodically on M, see [14]. Since u~ER 

for all g E G, R is a factor as asserted. 

To show the second part  of the theorem let a be the automorphism of M which shifts 
q _ q §  the factors in the infinite tensor product one factor to the right, so a (M~)-Mp+l ,  and let 



304 A.  C O N N E S  A N D  E.  S T O R M E R  

H be the cyclic group generated by  x. As above r is H-invariant ,  the automorphism well 

defined, and |  m asymptotically abelian with respect to H. Since M is a factor, | 

is ergodic [14], and H acts ergodically on M [14]. Let  0 denote the restriction of a to R. 

Then 0 is an ergodic automorphism of R. 

By Theorem 2 H(O)= lim H(FP_v, 0). Fix p; then 

P p k P H(F_,, O(F_, )  . . . . .  0 (F-T) )  = H ( F ~  ,.~,,+I_,+I . . . .  , ~,+k).+~ 

By property C 

H(FP_~, .... 0 k (F_p))v <H(F~+~). 

Let  A~_v be a maximal abelian subalgebra of F~_p such tha t  AP_v commutes with OJ(AP_v) 
for all jEZ,  and such tha t  A =(A~_p U0(AP_v)(J ... O 0~(AP_v)) " is a maximal abelian sub- 

algebra of FP_ +k. This choice is possible since 9 is a product state. Thus by properties C, D, 

E together with the above inequality we have 

H ( ~ " _ ,  . . . . .  0 ( F - , I I  = H ( A )  = ( 2 p  + kl  - ~ a j l o g  ~j . 
1 

The proof is complete. 

Remark 4. Recently G. Emch has defined an entropy for automorphisms of yon Neu- 

mann  algebras. His definition is different from ours, and as far as his entropy cannot be 

computed in the above examples because of the lack of a Kolmogoroff-Sinai theorem we 

do not know whether the two definitions coincide in the case of shifts. In  fact his defini- 

tion of H(N, O) is not even increasing in N, so tha t  we do not believe tha t  the analogue of 

our Theorem 2 can be proved in his context. 

Remark 5. Another possible candidate for the entropy of an automorphism is the 

abelian entropy 

He(O) = s u p  H(O[ A), 

where the sup is taken over all abelian yon Neumann subalgebras A of R with 0 (A)=  A, 

and H(O 1,4) is the entropy of 0 [ A defined in the abelian case. I f  0 is the Bernoulli shift 

defined by  {21 ..... ~tn} we again get Ha(O)=-Z~=x ~t~ log2j. However, the definition is 

unsatisfactory in tha t  it is not clear whether there exist large invariant  abelian yon Neu- 

mann  subalgebras for a given 0. In  the next  remark (Remark 6) we show how to compute 

H(O ~) from H(0); it is highly improbable tha t  the same formula holds for the abelian entropy 

Ha, because an abelian yon Neumann algebra ~4c R globally invariant  under 0 ~ is not  

necessarily globally invariant  under 0. 
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R e ~ r k  6. Let R be a yon  N e u m a n n  a lgebra  of t y p e  I I  1, and  0 an  a u tomorph i sm  

preserv ing  a fa i thful  no rma l  t race  v sa t i s fy ing T(1) = 1. W e  show t h a t  if p is an  in teger  t hen  

I plH(O) ~ H(0~), and  if R is hypef f in i t e  t hen  IpIH(O)=H(O~). 

The case p = 0 is t r iv ia l  as is the  i d e n t i t y  H(O -1) = H(O). W e  thus  assume p > 0. Le t  e > 0 

and  N be a f ini te  d imens iona l  yon  N e u m a n n  suba lgebra  of R and  n o E N such t h a t  

H(~) < ~ H(N, OPN . . . . .  OwN) + e for r ~ n 0. 

I t  is i m m e d i a t e  f rom proper t ies  A and  C t h a t  

for f in i te  d imens iona l  yon  N e u m a n n  suba lgebras  N 1 . . . . .  Nk+ 1 of R. Therefore  for n o suffi- 

c ien t ly  large,  and  r ~ no, 

H(O) + e > rpl H(N, ON . . . .  , OWN) ~ 1 H(N, OrN . . . . .  Ow N > Pl- H(Or ) _ e/p. 

Thus  pH(O) >~ H(Or). 

F o r  t he  converse inequa l i t y  assume R is hyper f in i te ,  so the re  is an  increas ing sequence 

{Fj}  of f in i te  d imens iona l  yon  N e u m a n n  subalgebras  wi th  un ion  weak ly  dense in  R. L e t  

e > 0. B y  Theorem 2 there  are  b, n 0 E N such t h a t  

H(O)- IH(Fk ,  OFk . . . . .  OnFk) <e/p for  n ~ n  o. (1) 

L e t  m = d im $'k. Choose b y  Theorem 1, (~ > 0 so small  t h a t  for  N and  P f in i te  d imens iona l  

yon  N e u m a n n  subalgebras  of R we have  

O 
dim N = m ,  N c P ~ H(NlP)  < e/p. (2) 

Since the  sequence {Fj} is increas ing wi th  un ion  dense in R there  exists  q E N, q >~ k, such 

t h a t  Fk, OFk ..... O~-lFk~ Fq. Choose rE N so large t h a t  

rp >1 no, (3) 

H(O", Fq) - 1 H(Fq, O"F~ . . . . .  O~F~) I < ~. (4) 
r I 

B y  P r o p e r t y  C 

H (Fq, O'.Fq . . . . .  O~.Fq) >1 H (Fq . . . . .  Fq, O~'Fq . . . . .  OP.Fq . . . . .  O(~- I)PFq . . . . .  O(~- I)P.Fq, OW.Fq), 

where  all repe t i t ions  occur p t imes.  Using  th is  toge ther  wi th  P r o p e r t y  F we ob ta in  f rom 

(1)-(4), 



306 A. CONNES AND E. STORMER 

H(O,, Fq) + ~ > 1 H(Fo, OFo . . . . .  0~Fo) 
r 

>~ r 1H(Fk' OF~ . . . . .  On~Fk)- r s~o= t~o= H(O~'+'FkIOwFo)- r 

1 p-1 
P H(Fk, OFk . . . . .  0 ~ ) -  - r ~ H(O~F~IFq)-- 1_ H(Fk[Fq) 
rp r t=o r 

> p ( H ( O ) - s / p ) -  ( p +  ~)s/p>~pH(O)- 3s. 

Thus  H (O ~) >~ p H  (O), as asser ted.  
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