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1. Introduetion 

The theory of quasiregular and quasimeromorphic mappings has turned out to form a 

natural real n-dimensional generalization of the theory of analytic and meromorphic func- 

tions of one complex variable. The study of these mappings was initiated by Re~etnjak in 

1966 in a series of papers listed in [9]. Since then the theory has been developed in many 

directions by several authors. For basic parts of it we refer to [9-11]. Definitions are given 

in 2.1 of Section 2. 

Large parts of the theory of analytic functions of one complex variable have their 

analogs for n-dimensional quasiregular mappings. The methods of proofs for n >1 3 are for 

the most part  completely different from the classical methods in the plane theory. This state 

of affairs has had its influence also on the classical theory. On one hand, new and sometimes 

simpler proofs have been found for known theorems. On the other hand, some interesting 

results are new discoveries for the value distribution theory in the plane. 

In this paper we study value distribution of quasiregular mappings in Riemannian 

manifolds. Let  us consider the basic case, a nonconstant quasimeromorphic mapping ] of the 

Euclidean n-space R n into ~n = R n U {~}.  The fundamental question of value distribution of 

] is how ]-l(y) is distributed and how this set varies with changing of y. A natural quantitative 

measurement of the behavior of ]-l(y) is the counting function n(r, y) which is the number 

of points of f-l(y) in the ball [x[ < r with multiplicity regarded. The spherical average 

A(r) is the average of n(r, y) with respect to the spherical n-measure on R n when y runs over 

R ~. The well-known covering theorems in Ahlfors's theory of covering surfaces [1, p. 164, 

165] imply for n = 2 that  the average of n(r, y) when y runs over a subdomain or a "regular 

curve" in R2, is close to A(r) outside a set of radii r with finite logarithmic measure. This 

suggests tha t  n(r, y) is usually close to A(r) and that  "equidistribution" occurs to some 
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general extent. The purpose of this paper is to study how strong such eqnidistribution is. 

Our main results are new also for the plane theory of meromorphic functions. We work all 

over on the "nonintegrated level" and do not use smoothed counting functions, obtained 

for example by integrating n(r, y) logarithmically with respect to r as is typical in the 

Nevanlinna theory [13]. 

For an arbitrary point y, there need not be any bounded ratio between n(r, y) and 

A(r) outside a thin exceptional set of r-values. First, if y is omitted by 1, then n(r,y)=0 
for all r. In the other direction, it follows from Toppila's Theorem 4 in [23] tha t  for any 

k > 1 there exists a nonconstant meromorphic function of the plane for which n(r, O)/A(r) > k 

ia a set of positive lower logarithmic density. For a modification of Toppila's result, see 

Example 6.1 in Section 6. 

The study of the value distribution of quasimeromorphic mappings of R n into n ~ 

was started in [20], where the main emphasis was on the relationship between the pointwise 

behavior of n(r, y) and the spherical average. One of the problems treated in [20] is the 

question of the validity of an inequality 

(1.1) lira sup n(r, y)/A(Or) < c 
r--~oo 

where O, c > 1 are constants. Even for meromorphic functions (1.1) need not hold no matter  

how the constants 0 and c are chosen. This follows from a slight modification of [23, 

Theorem 4]; see also Example 6.1. On the other hand, if the quasimeromorphie mapping 

has an asymptotic value %, then given any c > 1, there exists a constant 0 > 1 such that  

(1.1) holds for all a =~ a 0 [20, Theorem 5.11]. In the proofs of such theorems a good estimate 

is needed for comparing averages of the counting function over concentric ( n -  1)-dimen- 

sional spheres. If we denote by v(r, s) the average of n(r, y) when y runs over the sphere 

[Yl = s, such an estimate is given by the inequahty 

K(f) llog (t/s)]'~-' 
(1.2) cv(Or, t) >- v(r, 8) (1 - l/c) (log O) '~-a' 

valid for all 0, c > 1, 0 <s, t < ~ [20, Theorem 4.1]. Here K(/) is the maximal dilatation of [. 

The inequality (1.2) is proved by a special technique of path families where one combines 

the modulus inequality [26, Theorem 3.1] with a result on maximal path lifting given in 

[19]. The factor (log 0) 1-n in the error term in (1.2) makes it possible to show that  the 

stronger inequality c~(r, t) >~(r, s) holds for all r outside a set of finite logarithmic measure, 

and in fact each average ~(r, s) is arbitrarily close to the spherical average A(r) for all r 

outside such a set [20, Theorem 4.19]. 
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The idea of the proof of (1.2) suggests tha t  a similar inequality with respect to 0 holds 

in a much wider sense, and as a consequence, averages of the counting function with 

respect to various measures are arbitrarily close to each other outside an exceptional set 

for the exhaustion parameter.  On the other hand, the discussion of the pointwise case 

above and Example 6.1 shows tha t  a regularity assumption on the measure is needed 

which prevents too strong singularities at  points. 

We shall establish an equidistribution theory for averages of the counting function of 

a quasiregular mapping with respect to measures with a regularity condition. More 

precisely, we are given a nonconstant quasiregular mapping f: M ~ N  of a noncompact  

Riemannian n-manifold M into a compact Riemannian n-manifold N and the counting 

function n(s, y), 0 < a  ~<s <b  ~< c~, of ] with respect to an admissible exhaustion function of 

M, i.e. an exhaustion function which is normalized by means of conformal capacity and 

which satisfies the condition in 2.16. Let  ~u be a measure in N such tha t  Borel sets are 

/~-measurable and 0 </~(N)< c~. Let  h: [0, c~[-~[0, c~[ be increasing, continuous, and such 

tl~at h(0) = 0 and h(r) > 0 for r > 0. We call h a calibration function and ju h.calibrated if 

(1.3) /~(B(x, r)) ~< h(r) 

fGr all balls B(x, r ) cN .  Our main result is tha t  the average ~(s)  of n(a, y) with respect 

to ~u is arbitrarily close to the average A(s) of n(s, y) with respect to the Lebesgue measure 

for all a outside an exceptional set A provided/~ is h-calibrated with h satisfying 

~1 h(r)a/p~ 
(1.4) dr  < 

Jo r 

for some p > 2. This is expressed by the limit condition 

(1.5) lim ~u(8) 
alIA 

The exceptional set A for the exhaustion parameter  s has in the parabolic ease b - - ~  

finite logarithmic measure, whereas in the hyperbolic case b < ~ the condition 

(1.6) lira sup (b-8)A(8) 11pa-- ~ 

is needed to ensure tha t  A is thin near b. Here ~ >1 n - 1  is a constant depending on the 

exhaustion. Our theory generalizes the covering theorems in [1, p. 164, 165]. 

The problem of comparing averages is unsymmetric in the sense tha t  the inequality 

(1.7) lim inf %(.s)/> 1 
o-~b A(s) 
8~A 
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is true already if lira supr_,o~(B(x, r))/h(r) ~< 1 for/~ almost every x EA r with h satisfying (1.4) 

for some p > 2. An example of such a measure/~ is the restriction m e a s u r e / ~ - ~ 4 a ( F  D E) 

of the ~-dimensional Hausdorff measure ~ ,  0 < ~ ~< n, where E is any ~4~-measurable set 

with 0 < ~ ( E ) < c o ;  more generally, see 5.12.5. Example  6.1 shows tha t  (1.5) need not 

hold for such measures. 

After preliminary results we first prove in Section 3 a lemma which teUs how much 

extreme values of the counting function in a set can, in terms of conformal capacity, 

deviate from averages over spheres lying in a chart. In  Section 4 relationships between 

capacity and h-calibrated measures are used to establish inequalities of type (1.2) for 

averages (Theorem 4.8). 

The integral condition (1.4) for h originates from the proof of [17, Theorem 8] 

in connection with a lower bound for capacity. This is presented in Lemma 4.2. The 

condition p > 2 is essentially needed in the proof of (4.5) of Lemma 4.4 to obtain effective 

upper bounds for the /~-measure of sets in which the counting function exceeds an 

average value. 

The main results are presented in Theorem 5.11 and are proved by means of the 

inequalities in Section 4 and lemmas on real functions. Our methods apply also to the 

s tudy of the pointwise behavior of n(s, y). In  fact, we prove (Theorem 5.13), under a 

restriction for the hyperbolic case, tha t  there exists a sequence s~Tb and a set E ~ A  r 

of capacity zero such tha t  for y E N ~ E ,  n(s~, y)/A(s~) tends r one. This result is known 

earlier for meromorphic functions in the plane with the standard exhaustion by  disks. 

In  fact, Miles proves in [12, Theorem 2] a stronger s ta tement  in the sense tha t  the limit is 

obtained outside an exceptional set in the exhaustion parameter.  

To prove the results in this paper for Riemannian n-manifolds instead of just R n and 

i~", does not require much extra work. Essentially all what  is needed is the inequality 

2.10 of moduli of path  families, a discussion on exhaustions in Section 2, and some basic 

facts about Riemannian manifolds. 

2. Preliminary results 

2.1. Quasiregular mappings in Riemannian mani/olds. We assume throughout the 

paper that  Riemarmian manifolds are always pure dimensional without boundary, C ~176 

connected, paracompact,  orientable, with a given Coo Riemannian metric, and with a 

given C oo volume form defining the orientation. Chart maps are always taken orientation 

preserving. In  any Riemannian n-manifold M we denote the ball {yEMId(y  , x)<r}  by 

B(x, r) and the sphere {y E Mid(y,  x) = r} by S(x, r) where d is the Riemannian distance. 

If  M = R ' ,  we set B(r) = B(O, r), S(r) = S(O, r). 
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We assume throughout the paper that  n >~2. Let  G be a domain in R n. A con- 

tinuous mapping ]: G ~ R  n is quasiregular if (1) ] is ACL n and (2) there exists K, 1 ~<K< co, 

such that  

(2.2) II/'(x)ll" ~< KJt(x) 

holds a.e. in G. Here ]'(x) is the formal derivative of ] at x, i.e. the linear map defined by 

means of the partial derivatives Dd(x ) as f@)et = Dt](x), el being the ith standard basis 

vector in R ~. Hf(x)[[ is the supremum norm of f (x)  and Jr(x) the Jacobian determinant 

of / at  x. 

If ]: O-+R ~ is quasiregular, then it is either constant or discrete, open, and sense- 

preserving [17], [18]. I t  is also differentiable a.e. [17], and hence f(x)  is the derivative at  

x a.e. If ] is not constant, J r ( x )>0  a.e. [9, 8.2]. 

Let  M and N be Riemannian n-manifolds and ]: M-*N.  ] is called locally quasiregular 

if at  each point x fi M there is a local expression of [ which is quasiregular in the above 

sense. The tangent linear map Tx]: TrM-*Tt(x)N is then defined a.e. if f is locally quasi- 

regular. The mapping ] is called quasiregular if (1) f is locally quasiregular and (2) there 

exists K, 1 <~K < o% such that  

(2.3) II T, III" < KJ,{x) 

holds a.e. (cf. [5]). The smallest K in (2.3) is the outer dilatation Ko(/) of /, and the 

smallest K for which 
Jr(x) ~<K inf IIT,]hll" 

I l t t l l -1  

holds a.e. is the inner dilatation K,(I) of I. K(I)= max (Ko(l), K~(])) is the maximal 

dilatation of [. The term quasimeromorphic is reserved for the case where M is a domain in 

R ~ or i{" and N = R". ~n is equipped with the spherical metric. A quasiregular homeo- 

morphism is called a q~asicon[ormal mapping. 

2.4. Inequalities /or moduli o/ path families /or quasiregular mappinqs. We shall 

present two important inequalities for moduli of path families well known for quasiregular 

mappings in R". These are of global nature in contrast to our definition of a quasiregular 

mapping. 

We shall use the terminology of paths mainly from [25] modified to manifolds and 

also from [22]. Let  a: I ~ M  be a path. The length of ~ is denoted by l(a) and the locus 

~I  by I~]. If a is rectifiable and closed, we denote by ~0: [0, I(~)]-+M its parametrization 

by arc length, by sa its length function sa: I ~ [ 0 ,  l(~)] such that  ~ = ~ ~  a. A map 

f: M-~_N is called absolutely continuous on ~ if ]o~ ~ is absolutely continuous. 
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Let r be a family of nonconstant paths in M and let 1 ~<p < ~ .  We denote by 

F(F) the family of all Borel functions ~: M-~[0, c~[ such that  the line integral satisfies 

(2.5) fr~ds >1 1 

for all locally rectifiable 7 6 r .  The number 

Mu( r )=  inf fMqUdl: n 
Q~F(F) 

is called the p-modulus of r .  We denote the Lebesgue measure on a Riemannian n-mani- 

fold defined by its volume form by s Mn(r)  is also denoted by M(F) and called simply 

the modulus of F. Basic properties such as Theorems 6.2, 6.4, and 6.7 in [25] are also 

true here. However, even for io = n one cannot replace F(F) by the larger family of 

functions ~ for which {2.5) holds whenever y EF is rectifiable as in R ~ [25, 6.9]. 

We need the following substitute for Fuglede's theorem (see [25, 28.2]): 

2.6. LEMMA. Let [: M-~N be quasiregular and let ro be the [amily o/paths in M such 

that each ~ 6 r  o has a closed subpath on which [ is not absolutely continuous. Then M(ro) = 0. 

Proo[. We cover M and N by relatively compact charts (U~, ~t) and ( Vt, Vt), i = 1, 2, ..., 

respectively, such that  ~ and ~ are bilipschitzian and such that  for each i there exists j 

for which [U~c V s. For i, k>~l set 

r ,  = {?6ro[  7 closed, Irl ~ v,}, 

V k= U Ut. 
|<k 

If ~ 6 F0, there exists a closed subpath fl: [a, b]-~M of ? on which / is not absolutely con- 

tinuous, hence fl is in V k for some k. There exists a division of [a, b] into a finite number 

of closed subintervals A 1 ..... A e such that  each fllA~ is in some Ul~, ip ~< k. There exists p 

such that  / is not absolutely continuous on iliad, hence f l iA~EF,.  I t  follows that  r 0 is 

minorized by [JtF~, hence 
oo 

M(ro) < 5 M(F,). 
$-1 

I t  thus suffices to show that  M(F~)= 0 for an arbitrary i. 

Let ~El~f and let ] be such that  ]U~c V~. Since q0, and ~j are bilipschitzian and ] is not 

absolutely continuous on ~, the map h = ~ojo/o~/-1 is not absolutely continuous on q%a~. 



A V E R A G E S  OF T H E  C O U N T I N G  F U N C T I O N  O F  A Q U A S I R E G U L A R  M A P P I N G  279 

Furthermore, h is quasiregular since it is quasiregular locally and has bounded dilatation. 

By [25, 28.2] we have M(~F~)=  0. By [22, 5.3] M(F~)= 0. The lemma is proved. 

2.7. LEMMA. Let f: M ~ i V  be quasiregular, let v: N ~ R  be a nonnegative Borel function, 

and let A c X be a Borel set. Then 

~, ( w / ) J l d s  n= fT(Y)IV(Y,  f, A)ds 

where N(y, l, A) = card A n l-~(y). 

If A and /,4 are contained in charts, Lemma 2.7 follows by [22, 3.8] and by the 

application of [16, Theorem 3, p. 364] to the functions vk= min (/c, v), /c= 1, 2 . . . . .  The 

general case is handled by the use of decompositions of M and iV [22, 3.1]. 

For completeness we include the following analog of [9, 3.2] for manifolds although 

it is not used in this paper. We use the notation iV(f, A)=  sup~N iV(y, ], A) for A c M .  

2.8. THEOREM. Suppose that f: M ~ N  is a quasiregular maplaing and that A is a Borel 

set in M such that N(f, A) < oo. I f  F i8 a family of l~aths in A, 

M(F) ~< iV(l, A)Ko(/)M(/F) .  

This theorem is proved as in [9, 3.2] by the use of 2.6 and 2.7. Note, however, that  in 

[9] (2.5) is required only for rectifiable paths. 

For the other inequality we need a lemma of Poleckii [15, Lemma 6], see also 

[26, 2.6]. As in [26] we use the following terminology. Let f: M - ~ N  be continuous and 

light and let ~: I ~ M  be a closed path. We say that  f is absolutely precontinuous on 

if the path ~ ~ ]o~ is rectifiable and the path ~*: [0, I(~)]-~M such that  ~ = ~*os~, given by 

an analog of [26, 2.3] for manifolds, is absolutely continuous. 

2.9. LEMMA. Let f: M--* N be noncxmstaut and quaziregular. Let F 0 be the family of all 

paths fl in N such that either fl is not locally rectifiable or there exists a closed path o~ in M 

such thar foo: is a subpath of fl and f is not absolutely precontinuons on o:. Then M(Fo) =0.  

Proof. The subfamily 1 ~ of Fo consisting of paths which are not locally rectifiable has 

zero modulus. We cover M and N by charts (U~, ~01) and (Vi, ~pj), i = 1, 2 ..... as in the proof 

of 2.6 and for i >t 1 we let F~ be the set of all closed paths in Ut on which f is not absolutely 

precontinuous. Then F 0 is minorized by the union of [J4fP~ and F, hence it suffices to 

show that  M(fFt) -- 0 for all i. To prove this we use [15, Lemma 6] and a similar argument 

to that  in the proof of 2.6. The lemma is proved. 
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Our second inequality is [26, 3.1] for manifolds. Its corollary 2.11 was proved for 

R n by Poleckii [15]. 

2.10. THEOREM. Suppose that/: M ~ N  is a nonconstant quasiregular mapping, F is a 

path/amily  in M, F' is a path /ami ly  in N, and that m is a positive integer such that the 

/oUowing condition is saris/led: 

There is a set Eo C M o/measure zero such that/or every path fl: I-* N in F' there are 

paths o~1, ..., o~ m in I ~ such that/o~r is a subpath o / f l / o r  all i and [or every xeM\Eo and 

t E I  the relation ~(t)-= x holds/or at most one i. Then 

M(F')  -<< gl(/_) M(F). 
m 

Proo/. Let F 0 be the family of Lemma 2.9. We set F 1 = F ' ~ F 0 .  Then M(F1)-~ M(F') 

and it suffices to prove 

M(P~) ~< K~(/)M(F). 
m 

By only slight modifications and by the use of 2.7 to homeomorphisms we can follow 

the proof of [26, 3.1]. Note that  here F I contains also paths which are only locally recti- 

fiable. We point out that  in the proof of [26, 3.1] the family F(F) has the same meaning 

as in this paper. 

2.11. COROLLARY. 1/ f: M ~ N  is a nonconstant quasiregular mapping and i / F  is a 

path /ami ly  in M, then 
M(/F) < K,(I)M(F). 

2.12. Condensers and c a v i t i e s .  A condenser in M is a pair (A, C) where A ~ M  is 

open with M ~ A  ~ 0  and C c A  is compact and nonempty. The (conformal) co/pacify 

cap (A, C) of a condenser (A, C) is the modulus M(A(C, OA; A ~ C ) )  where we have used 

the notation A(E, F; H) for the family of paths r in H such that  [rl N E ~ = ~  [r[ N F. 

A compact subset K of M is said to be of capacity zero if the modulus of the family 

of paths in M with one endpoint in K is zero. An arbitrary subset E of M is said to be 

of capacity zero if all compact subsets of E are of capacity zero. If E is of capacity zero, 

we write cap E = 0, otherwise cap E >0. 

2.13. Exhaustions. We shall carry out our study of value distribution of a quasi- 

regular mapping of a noncompact Riemannian n-manifold M into a compact Riemannian 

n-manifold ~V with respect to an exhaustion of M by compact subsets which will be 

parametrized as presented below. We assume now that  M is noncompact. 
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By  an exhaustion function of M we mean a funct ion D:[a,b[-~)(M),  where 

_ c~ < a  <b  ~ ~ ,  such t h a t  each D(t) = D t c  M is open, connected, the closure ])t is 

compact ,  / ) t =  Du for t<u,  and 

~=UD~. 
~[a,b[  

We shall use exhaust ion functions D: [a, b [ - ~ ) ( M )  with a >0 ,  Da=~O, and parametr ized 

via the equat ion 

(2.14) t = a exp \ \ ~ ] ~ 1  (1 ~.tj / 

for t > a ,  where Fa. t is the  family of paths  in D t ~ D  a which connect  ~Dt and /)a and 

con_ x is the  (n -1) -d imens iona l  measure on the  unit  sphere in R ~. This could for n = 2 

be called a parametr izat ion by  normalized harmonic module. Let  M - - R  n or M = B(b). 

Then te-->B(t) is an exhaustion satisfying (2.14). 

I n  order to obtain significant value distr ibution results with respect to  a given ex- 

haust ion we need a measure of the deviat ion from an "ex t remal"  exhaust ion with respect 

to conformal capaci ty  which is the  subst i tute  for harmonic exhaust ion on a Riemann 

surface. Let  a < s  < t < b. Then Fa. t is minorized by  both  Fa. s and F,. t which are separate, 

hence 

t~ "-1 eo,_l 
(2.15) log ~) >I M(r,.~)" 

We shall need an opposite inequality. More precisely, we give the following definition. 

2.16. De/inition. An exhaust ion D: [a, b[-* ~)(M) satisfying (2.14) is called admissible 

if there exist constants a0E]a, b[, 00 > 1, x >0 ,  and ~t > ~ n - 1  such t h a t  

(2.17) log ~ x M(ra.t------) 

holds for ao <<.8<t <b , t/8<<.O o. 

Note  t h a t  in the case b < oo always t/s <. b/a o. The exhaust ion of R n or B(b) by  balls 

B(t) is admissible and satisfies (2.17) with ~ - - n - 1 ,  x-~ 1 for a < s < t < b .  M =  B(b) here 

is a special case of the  exhaust ion of a relatively compact  domain  U in R n with a condit ion 

on the boundary  as follows. Let  F c  U be a nondegenerate  cont inuum such t h a t  U ~ F  

is a domain.  Let  U ~ F  satisfy Martio 's  condit ion M~-- ~ [7] a t  each of its boundary  

points x. B y  [7, 5.9] there exists an  extremal  funct ion u: U ~ F - ~ R  in the  definition 
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[6, 6.2] of the conformal capacity of the condenser E = (U, F) with boundary values 

ulOF =0, ulSU = 1. Then the level sets Dt = {xe U ~ F l u ( x  ) <ut} U F, where 

~cap .E 11/(,~- 1) t - -  l o g a ,  ut= \ eo,~_l ] 

give an admissible exhaustion for U which satisfies (2 .17)wi th  u = l , ~ = n - 1  f o r  

a<s<t<b. While this method takes par t ly  care of the "hyperbolic" case b<oo ,  no 

existence result for admissible exhaustions in the "parabolic" case b= c~ is known if 

n > 3. For n = 2 it is well known tha t  parabolicity is equivalent to the existence of an 

Evans-Selberg potential which then can be used to produce a harmonic exhaustion. 

However, by using a preliminary discrete exhaustion (G~) of M, it is possible with an idea 

of Ohtsuka to produce an exhaustion function of M which is "admissible on intervals" 

of [a, hi. Value distribution with respect to such par t ly  admissible exhaustions can be 

established in the spirit of the present article, although formulation of the results becomes 

slightly more complicated. 

One can prove tha t  the class of admissible exhaustions of R 2 contains every ex. 

haustion which is obtained from the exhaustion by concentric disks by applying a 

quasiconformal self-map h: R2-~R ~, i.e. D t--hB(t). The corresponding result for R" is 

probably also true but there seems to be a lack of sufficiently sharp modulus estimates. 

2.18. Counting /unction. Let /: M - , N  be a nonconstant quasiregular mapping of a 

noncompact Riemannian manifold M into a Riemannian manifold N. Assume tha t  we 

are given a fixed exhaustion function D: [a, b[-~ ~)(M) of M. The counting function of f with 

respect to D is then 
,;(x, l), 

xe,D~Nf-l(y) 

defined for rE[a, b[, yEN. Here i(x, ]) is the local index of / a t  x [24]. Since /)t is 

compact, n(t, y) is finite. The function y~->n(t, y) is upper  semicontinuous. 

3. Comparison of extreme values and averages 

3.1. In  the rest of the paper let ]: M-~,V be a nonconstant quasiregular mapping of a 

noncompact Riemannian n-manifold M into a compact Riemannian n-manifold _N with 

inner dilatation K l = Kz([). We assume tha t  M has an admissible exhaustion D: [a, b[-* ~)(M) 

with constants a0, 00, )t, and ~ as in 2.16. 
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For small r we denote by y(s, ~(x, r)) the average of n(~, y) over the sphere 

8(x, r ) c N  with respect to the (n-1)-dimensional (normalized) Hausdorff measure ~,/~-~. 

For any nonempty set E ~ N  we define 

a(s, E) ffi sup n(s, y), 
yeE 

_n(s, E ) =  in/n(8,  y). 
yeE 

Since N is compact, there exists r0~0 such that for each ~EN there is a chart map 

~ :  B(~, ro)-*B(ro) which is 2-bilipschitzian (i.e. the Lipschitz constants of ~v~ and ~ 1  are 

bounded by 2) and which has the property ~gS(~,r)ffiS(r) for all rE]0, r0]. We fiX 

TEl0, ~[ such that cn log 2 >con_1 (log (l/z)) 1-n where cn >0 is the positive constant in [25, 

(10.11)] depending only on n. Recall that ~on_ 1 ffi ~-1(8(1)). 

3.2. LEMMA. Let 0 < u < v < ~ ,  F l c B ( u  ), F2cOB(v), P12~'-A(F1, F2;B(v)), 

F1 =A(F1, OB(v); B(v)), and P2ffi A(F~, ~B(u); B(v)~B(u)) (see 2.12 for notation). Then 

M(FI~) >1 3-" rain (M(P1) , M(P2), cn log (v/u)) 

where c~>0 is the constant in [25, (10.11)]. 

Proof. The proof is similar to the proof of [10, 3.11] and [14, 3.3]. Choose 0EF(I'12). 

Consider first the case where 

holds for every locally rectifiable path 71 E F 1 or 

holds for every locally rectifiable path 72E 1" 2. Then 30 E F(P1) or 3~ E F(P2) which implies 

f n Q~ d s ~ >i 3 - ~  rain (M(P1), M(F2)). 

In the remaining case there exist paths 71 E 1" 1 and 72 E rg such that 

1 9 -  792908 Acta mathemattca 143. Imprim6 le 28 D~embro  1979 
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for every locally rectifiable path reA(Ir~l, ]r~l; B(v)\B(u))--r. Then 3~EF(F), and 

by [25, 10.12] 

R~"ds >1 3-"M(F) >-- 3-"c, log (v/u). 

The lemma is proved. 

3.3. L EMMA. FOr each c > 1 there exists d >0 such that the/oUowing ho/ds. Let 2 <q ~< 3, 

0 < r < r  o, z e N ,  and let F c  B(z, Tr) be a set with M(A(F, OB(z, r); /~(z, r)))~>8>0, where r o 

and ~ are as in 3.1. Then 

d 
(3.4) cr(0a, ~(z, r))/> .n(s, ~') - ~ (log 0) a' 

and 

d 
(3.5) ~,(8, S(z, r)) <<. c~(Os, F) + 8(q_ 2) (log 0) qa 

whenever ao <~.s <-.Os <b, 0 ~0o. 

Proo/. To prove (3.4) fix s and 0, set Y = 8(z, r) and 

Then 

(3.6) 

A = {Y e r[n(Os, Y) < n(s, F)/c}. 

efr.(Os, . - ,  Y ~ A )  y ) d ~  (y) ~>_n(s, F)~"-x(  

= _n(s, F)  7.g'- ~(Y) -_n(s, F) ~4"-~(A). 

We may assume ~n-Z(A)>0 and _n(a,F)>0. Let A ' = A  be compact such that  

~n- l (A ' )>~n-Z(A) /2  and let r be the family of paths y: [0, 1]-~ /](z, r) with 7(0)EF, 

r(1)eA'. If 7 e r  and if (x 1 ..... xk}=--/-x(Y(O)) N Ds, then 

k 
m ffi Y i(xj, /)  >i _n(s, F). 

J-1 

By the analog of [19, Theorem 1] for manifolds there exists a maximal sequence ~z ..... ~m 

o f / [  Des-liftings of Y starting at  the points of/-1(7(0)) fl Ds in the terminology of [19]. 

Let ~ be the smallest integer such that  j>~.n(s, F)(1-1 /c ) .  Since n(0a, r(1))<.n(8, F)/c, 
at least j of the lifts ~1 ..... ~m must end in 0D08. Let r* be the family of all such lifts 

when 7 runs through r .  By 2.10 with E o equal to the branch set B I o f / ,  by 2.16, and 

by the fact that  ~ is 2-bilipschitzian we obtain 
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(3.7) M ( ~  F) 
.n(s, F) (1 - 1/o) .n(8, F) (1 - 1/o) (log 0) ~" 

Set O~ffi M(A(9~F, OB(r); /](r))), O2ffiM(A(~pzA', aB(r/2); l~(r)~B(r/2))). In the following 

we shall denote by hi, bs .... positive constants which depend only on n and by dl, ds .... 

positive constants which depend only on n, Kz, Oo, g, and x. By 3.2 M(~0~r)>~ 

3-" rain (cn log 2, ~1, ~). According to the choice of ~ we have on log 2/> wn-i (log l/z) 1-n i> Or 

Assume M(~D)  <3-n~r Then M(~I ' )  ~ 3-~s. Let A" ffi B(re~, #) A ~(r) be a spherical 

symmetrization o~ ~ A ' ,  #~]0,2r] being then defined by the condition ~-l(A")ff i  
~/~-l(%A'). By [21, 7.5] cap(Rheim(r/2), %A' )~cap (Rn~B( r /2 ) ,  A"). Assume first 

< r/4. By using an auxiliary quasicon~ormal mapping of R n onto itself we first obtain 

cap ( ~ ( r / 2 ) ,  A")>~b i cap Ro(4r/~ ) where R~(v), v > 1, denotes the Gr6tzsch ring. In  

condenser notation Re(v)= ( R n ~ ( ~ R n l z l ~ v  ,ms= . . .  ~n f f i0} ,  ~(1)). By the ~-dimen- 

sional analog of [3, Lemma 8] we have cap R~(v)>~bs (log v) i-~. I t  follows that  

cap (Rn~/~(r/2), A")~bs Clog (4r/#)) 1-n. This is true also ff ~>r/4.  By [4, Lemma 1] 

~s>~2-1cap (Rn~B(r/2), ~p~A'). By putting the estimates together we get M(~F)>~ 

3-n2-1bs (log (4r/~)) 1-n which combined with (3.7) gives 

exp ((dln(S , F) (1  - l/o) (log 0)a) v(~-l)) ~< 4r/~. 

Since ~lt"-l(A)~b4# n-1 and r~-i<--b4://n-l(Y ) for some b~, we obtain 

(3.8) ~/t"-l(A) <~ b~tn-l(Y) (exp ((dl_n(a, F) (1-1 /o)  (log 0)a)ll<n-1))) 1-". 

By exp ~ > u we obtain 

(3.9) 

If M(%P) >~3-n~l, then 

(3.10) 

da W"-I(y) 

://=-I(A) ~ n(s, F) (1 - I/o) Clog O) ~" 

~(s, F) (1 - 1/o) (log O) ~" 

The substitution of (3.9) or (3.10) into (3.6) yields (3.4). 

To prove (3.5) set A~ = {y s Y In(8, y) ffi k}, Bk •ffi {y s Y In(s, y) ~ k)for k = 1, 2 ..... We 

may assume c < 2  and ~(8, Y)>max  (c~(0a, F), 4). Let o '=  ~/c and k>~(s, Y)/o'. We shall 

use a similar argument as for  (3.8) and (3.10). Assume ~/~:*(Bk)>0 and let B~c B~ be 

compact such that  ~/~-1(~) >~-1(B~)/2 .  Let F be the family of paths 7: [0, 1]-~B(z, r) 

with 7(0)GB~, 7(1)EF. Let 7EF,  turn(a ,7(0)) ,  and let ~1, ..., ~m be a maximal sequence 
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of [I Ds,'liftings of 7 starting at the points of p-x(7(0)) fl ]), given by  [19, Theorem 1]. Let  i 

be the smallest integer such that  ]>~k-~(,, Y)/c. Since m>~lc and n(O*, 7(1))~<6(0~, F ) <  

v(,, Y)[c, at  least ] of the lifts ~t ..... ~c~ must end in ado,. As (3.7) we now obtain 

M(~, r).< (~_ ~(~, r)/c) (log O) ~" 

Let ~t be as before, i.e. OtfM(A(~0,F, aB(r); B(r))), and set Os=M(A(9~B~, 8B(r/2); 
~(r)~.B(r/2))). 

If M(9~I" ) <3-~1,  we use the same argument as for  (3.8) to get 

(3.11) W"-~(B~) ~< b6 ~/ ._1(y)  (exp ((dl(k -v(8, 7)/C) (log O)~)V("-z))) 1-". 

H M(gzr) >i 3-~t, then 

(3 .12)  ~z (k- ~(,, Y)Ic) (log 0) 4 < v(s, Y) (e' - I ) (log 0) 4. 

From (3.12) we get 
d 4 c (log 00) (*-1)4 

v(*, Y) .< 8(c' - 1) (log O) q4 

which is of the required f o r e  (3.5). Thus it suffices to consider the case where (3.11) is 

true for all k>~(s, Y)/c'. We use exp~z>u~/6 and obtain from (3.11) 

from which 

k)~s, F)/C" 

d s d ~ " - t ( Y )  
b~"-z (B*) "<< ba-1(c' - 1) q (log O) q4, 

k~"-~(a,,)< Y_ k~"-~(B,,)~< d~/"-~(r)  
~),( , .  r)lc' ( q -  2) (~(s, Y)/c' - 1)q-2(c ' - 1) ~ ( log  O) ~ r  

Hence 

and 

v(a, Y) <~ ~.- t(y)-* 7. k:~l"-1(Ae)+d6(q-2)-Icq(c'-l) ~ (I~ ~ 
/~<IKI, F)Iv" 

<~ ~(a, Y)/c' + d 6 ( q -  2)-~r176 ' - 1) -q (log e) - ~ ,  

~(s, Y) < ds(q-2)-Ic~+1(c ' -  I) -~-I (log O) ~ 

which is also of the required form (3.5). The lemma is proved. 
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4. Averages with respeet to h-cnlihrated measures 

4.1. Let  p be a measure in N such that  Borel sets are p-measurable and 0 <p(N) < ~ .  

Recall from Introduction that  p is h-calibrated if p(B(x, r)) ~ h(r) for all x E N, r > 0, where 

h is a calibration function. We shall prove our results on equidistribution of the counting 

function for averages with respect to an h-calibrated p with h satisfying (1.4) for some 

p > 2 .  In this section we shall establish a basic comparison result (Theorem 4.8) with 

error terms similar to those in 3.3. In  Lemmas 4.2-4.4 we fix a calibration function h 

satisfying (1.4), an h-calibrated measure p, and a number I~ > 2 such that  (1.4) is true. 

The average of n(s, y) with respect to p over a p-measurable set E c ~  with p(E) >0  

is denoted by vg(8, E), i.e. 

~t,(a, E) = p(E)-i f n(s, y)dp(y). 
d E  

We abbreviate vg(s, N ) =  v~(s) and denote A(s)-~ v~(s). 

For A c R  ~ let 7a(A) be the infimum of the sums ~ h(rt) when A is covered b y a t  

most a countable number of balls B(xt, rt). We need some connections between capacity 

and the outer measure 7a. Recall the notation r o and z introduced in 3.1. 

4.2. LEMMA. There exists L > 0  such that 

7a(A) ~< L (cap (B(r), A)) p 

whenever A is a eom~zet set in B(r) and 0 < r < to. 

Proo/. The proof is similar to tha t  of [17, Theorem 8], cL also the proof of [8, 

Theorem 3.1]. Define h 1 = h lip. Applying [17, Lemma 6] with Z - 1, p -- n we find positive 

constants Kx, K~, and C such that  ff u is a nonnegative function in Ln(R n) with u] CB(ro) - 0 

and 

w(x)= ~ r  x u-~,ds 
J~ (.) - Y l  

then for all ~ > 0 

r~, (xemlw(x) > K,/a +K.ilul].) ~< C(all, ll.r, 

where Ilull,, is the Ln-norm of u. Here K~ and C depend only on n and K 1 is of the form 

b ~" hl(Q)l'n Klffi 1jo., o 

where b 1 depends only on n. 
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Suppose first tha t  cap (B(r), A) < (2K~)-"o~n_I. Let  e > 0 be so small tha t  cap (B(r), A) + 
e < (2K2)-"ojnn_l. Then there is a continuously differentiable function v: Rn-~[0, o~[ such 

that  v[CB(ro)=O, v(x)> l  for x~A,  and 

fR n [Vv[nds ~ cap (B( r ) ,A)+s  (2Ke)-no~n_~. < < 

We take u--  IWl/~.-~ and define w as above. Then I1.11. <(2K,)-x and by [17, Lemma 3] 

1 fa Vv(y).(x- =~=---~_. I~-yP Y)ds 

We choose 0 = K,(1 - x ,  ll~ll.) -x. Then w(x) > 1 = K,]~ + x ,  lMI. for ~ e A  and we obtain 

n , ( a )  < o(~ll-II.r = o ~ ( ~  - K, II~II.)-"II~II~ 

<OK~2no~"_~ ~ [WI"as <cap W(r),a)+8). 
d R- 

Letting e-~0 we get 
CK~, o . . - -  7h,(A) < -~x- ~-,-1 cap (B(r), A). 

If  cap (B(r), A) >1 (2K~)-noJ~_x, then 

7h,(A) < hi(to) < hi(to) (2K2)nw~_"l cap (B(r), A), 

Hence there is a constant Lx such that  in both eases 

7h,(A) ~<L x cap (B(r), A). 

The result follows now from the inequality 7n(A)~<Tn,(A)~ which is true because 

h(r,) < (Y h(r,)~) o. 

4.3 LEMMA. There ezi.s~ Q > 0  such that i / zEN ,  0 < r < r  0, and E is a Borel set in 
B(z, Tr), then 

p(E) < Q(M(A(E, OB(z, r); B(z, r))))'. 

Proo]. Let F e E  be compact such that  2p( F) >~ p( E). Let e > 0  and let the balls 

B(u~, rj), i ~- 1, 2, ... cover ~xF such tha t  7h(%F) +e~> ~ h(r~). Since r < ~ ,  we may assume 

B(ut, rt)cB(ro) for all i. The balls B(~ l (u t ) ,  2rt) cover F. There exists an integer q, 

depending only on n such that  each B(~0~l(u~), 2rt) can be covered by at  most q, balls 

with radius r I. Then, since p is h.calibrated, 

~(av) < q. ~ h(r~) < g.Th(~F) +g.e. 

The result follows then by Lemma 4.2 and the 2~n-S-quasieonformality of ~%. 
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4.4. LEMMA. Let 2<q~<3. For each c > i  ~here exiats d > 0  ~uch tha~ the/oUowin 9 holds. 

Let z6N,  0 < r < r o ,  E a Betel set in B(z,~r) with p (E )>0 .  Then 

(4.5) 

and 

(4.6) ~(s, S(z, r)) < ~.(Os, E) 

whenever ao <<.s<Os<b , 0<~0o. 

d 
p(E) (log 0) pa 

d 
#(E)  (log 0) '~ 

Proo]. To prove (4.5) fix a, 0, and set Y = S(z, r), c'--I/c, 

~ = {w e E ]n(s, w) = k}, k -  l ,  9 . . . . .  

A ffi {ye  YIn(Os, y) < c'~,(Os ,Y)}. 

For k>cl,(Os, Y) let Fk be the family of paths 7: [0, 1]-~/](z, r) sueh that  7(0)eEk, 

7(1)EA. Then as in the proof of Lemma 3.3 we obtain by 2.10 and 2.16 

2~"- 2 K z ~tm,_ a 
(4.7) M(~, Fk) ~< ( k -  c%(Os, Y)) (log 0) a" 

Since ~(0s, Y)7~"-X(Y)>-.c'~(Os, Y ) ~ - 1 ( Y ~ . A ) ,  we have for ~(0s, Y)>0  ~"-a(A)>~ 

~/,-a( Y)(1 - l/c'). This holds trivially if ~(0s, Y) ffi 0. Then M(A(~0~A, OB(r/2); B(r)))/> ~ > 0 

where ~ depends only on n and c'. From Lemma 3.2 we obtain M(~0,F~)/> 

3-" rain (M(A(~0zEk, OB(r); B(r))), ~, c, log 2). By the choice ofx M(A(~,Ek, OB(r);/](r))) < 

c, log 2. Hence M(~,Fk) >~3-" rain (1, a/(c, log 2))M(A(~mBk, OB(r); B(r))). With (4.7) this 

yields 
_ d, 

M(A(E~, OB(z, r); B(z, r))) <~ (k - c%(Os, Y)) (log 0) a" 

Here we denote by d z, d 2, ... positive constants which are independent of s, O, z, r, E, and/c. 

By Lemma 4.3 we hence obtain for k >c~(Os, Y) 

dl 
/q~(Et,) < ko_l( 1 _ llc')~ (log 0) pa" 

The inequality (4.5) follows then from the estimate 

fE n(s,y)dp(y)= Y. Icp(E~)+ ~ ltp(E~) 
k~e~(Os. Y) k>c~(O$, Y) 

c~,(Os, Y) p(E) + d8 (log O) -~a. 
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To prove (4.6) we make use of (3.5) in Lemm~ 3.3. If 

~ ' =  {w~:~ln(Os, w) < c'~(0,, E)}, 

then p(E)va(Os, E)>~c'va(08, E)la(E",,,E' ), hence p(E')>~ (1-1 /c ' )p(E) .  Lemma 4.3 gives a 

constant Q1 such that  p(E') <~QIM(A(E', OB(z, r); B(z, r))), and hence by Lemma 3.3 

(f4 
v(s, Y )  < c' 6(Os, E') + p(E) (log 0) qa 

-<< vv~(Oa, E) + p(E) (log O) qa" 

The lemma is proved. 

4.8. THEOREM. Let/z be an h-calibrated measure in N with h satis]ying (1.4) ]or some 

p > 2. Then ]or each c > 1 there exist8 d > 0 such that 

(4.9) 

and 

cA(Os) >>- v j,(s) - d  (log O) -~a 

(4.10) A(s) < cvj,(Os) +d (log 0) -p~ 

whenever a o ~ s <Oa < b, 0 <~ 0o. 

Preol. We observe that  the Lebesgue measure of N is h0-calibrated with ho(r ) ffi (Jr", 

where C > 0  is a constant, and the function h 0 satisfies (1.4) for any p > 0 .  We shall first 

prove (4.9). Let  p > 2  be as in the theorem and set q f m i n  (p, 3). Fix c > l  and rE]0, r0[. 

We cover 1V by balls Vt = B(z ,  ~r), i -- 1 .... ,1. Let  E l c  Vl be disjoint Betel sets such that  

L~(E,) > 0 and 
I 

N= 0E~, 
1-1 

Let ~ be the minimum of the numbers ~ ( E t )  , L~(Vtfl Vj) for VtN V j * O ,  i, ~-- 1, ..., I. 

Fix i, s and 0. We shall first estimate v#(s, E,) from above provided p(Et)>0.  Set c ' - - c  vt, 

0 ' ~ 0  TM. Let l < j < l .  We can choose a chain X1 ..... Xm, m<l,  of the balls V 1 ..... Vt 

such that  X 1 = V~, Z~ = Xk N Xk+l # O, k = 1 ..... m -  1, and X= = Vj. We apply (4.5) to 

p and (4.6) to C n and obtain 

Z1 ) + c a  1 t- s 0) ~ )  (4.11) v~(s, Ej) < c'v~,(O's, (~(E~) (log 0) p~ 
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where ~ ~ 0  is independent of a, 0, and  E~. Similarly 

(4.12) ~(0'~s, Z~) ~ c'~(0'k%, Z~+~) + 2c~ ~-~ (log 0)-~ 

for k ~ 1 ..... m-- 2, and 

(4.13) ~c-(0'm-la, Zm-1) <~ c'~z*(0'ms, Ey) + 2c 1 ~-l(log 0) -~ .  

The inequalities (4.11)-(4.13) give 

~(a, E,) ~ c~,e.(Os, Ey) + dl (log 0) - ~  + tip(E,)-1 (log 0) - ~  

where d 1 ~ 2/clc/~. Multiplying by p(El), snmming over i, and dividing by p(N), we obtain 

(4.14) ~,~,(s) ~ ~v~(08, Ey) + d~ (log 0) - ~  + c llp(_N) -1 (log 0) - ~  

<~ c~c,(Os, Ey) + (din + cl lp(N) -1 ) (log 0) -~ ,  

where d~ffifdlm~x (1, (log00)~). Multiplying (4.14) by L~(/~), summing over ~, aad  

dividing by L'~(N), we obtain 

The inequality (4.10) is proved shnilarly as follows. In  place of (4.11) we obtain by 

applying (4.5) to L ~ and (4.6) to p the inequality 

(4.15) , ~ ( 0 " - ' , ,  Z,)~< ' " (s ~--~,)) c v~(0 s, s + c~ + (log 0) -q~, 

The inequalities (4.12) and (4.13) a~e replaced by 

(4.16) ~(O'm-~-~s, Z~+~) ~ ~'~(o'm-~s, Z~) +2cx~-1(log O) -~ ,  b ~ I, ..., m - 2 ,  

(4.17) ~e(s, Ey) ~ c'~e(O's, Z=_~) + 2 c ~ - l ( l o g  #)-~, 

respectively. The inequalities (4.15)-(4.17) give 

�9 ~.(~, ~ )  <~ ~(O~, ~,)+ (d~ + c~(~,)-~) (log 0) -~ 

As in the end of the proof of (4.9) we obtain from this the inequ&lity (4.10) in the form 

.4(8) ~. CPp(08) "~-(d I -~-C1 ~/J(Z~7) -1 ) max (1, (log 00)'~ ) (log 0) -'~. 

The following theorem shows tha t  a weaker assumption is enough to ensure & onesided 

estimate. 
2 0 -  792908 Acta mathematlca 143. Imprim~ lo 28 IMcombre 1979 
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4.18. THEOREM. Suppose that/~ is a measure in IV, 0 </*(N) <0% all Borel sets o / N  are 

p.measurable, and there is a calibration/unction h satis/ying (1.4)/or some p > 2  such that 

the condition 
lira sup p(B(x, r))/h(r) <~ 1 

r-.*O 

holds [or # almost every x E~V. Then/or each c > 1 there is d > 0 such that 

A(s) <~ cv~(Os) +d (log O) -;'a 

whenever a o < s < Os < b, 0 < 0o. 

Proo/. Set c'ffi l/c. The function x ~+lim sup,...op(B(x, r))/h(r) is :a Borel function. In  

fact, for each r > 0 the function x ,-~/*(B(x, r)) is lower semicontinuous and since p(B(x, r)) 

is increasing in r and h is continuous, the upper limit does not  change if r is restricted 

to positive rational numbers. Hence there are a Borel set E c I V  and r l > 0  such tha t  

c'p(E) >~/*(N) and 
/*(B(x, r)) <~ 2h(r) for x e E, 0 < r < rl; 

thus 
/ , (Eft  B(x, r)) < 2h(2r) for xEN,  0 < r < r l / 2 .  

I t  follows tha t  the restriction measure A~+p(E N A) is hi-calibrated with hi(r)=C h(2r) 

for some C > 0. Clearly h 1 satisfies (1.4) for p. By Theorem 4.8 there is d > 0 such tha t  

c'v~,(Os, E) >i A(s) - d  (log 0) -p~ 

whenever a 0 < s < Os < b, 0 ~< 0 o. Hence 

cv~,(Os) >i cp(E)#(N)-lv~,(Os, E) >i c'vl,(Os, E) >1 A ( , ) - d  (log O) -p~. 

5. Main results 

In  Section 4 we presented in Theorems 4.8 and 4.18 basic comparison estimates with 

a ratio 0 > 1 in the exhaustion parameter  and with error terms. We shall now turn to 

establish results without a difference in the exhaustion parameterl  For this purpose we 

need two lemmas on real functions which are refinements of Lemma 4.14 in [20]. 

5.1. LEMMA. Sup~pose that 1 <c '  <c, c 1, a > 0 ,  that ~ is a non.negative, continuous, and 

increasing /unction el [a, b[, and either b= co and l ims_~p(8)= c o  or b < c o  and 

lim sups.~ (b -s )~(s )  v ~  co. Then there exists a set A c[a,  b/such that 

(5 .2)  f de - - < c o  i/ b =oo, 
8 
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(5.3) l i m i n f O ( A N [ s ' b D = 0  i/  b < ~ ,  
s ~  b - -  8 

and the/ollowing holds: 

(i) I /~:  Is, bi-~R+--- {r~R]r>~0} issuch that 

v2(s ) ~ c'~p(0s) + Cl(lOg 0) -~  

/or all s and 0<~0o, ao <~s<Os<b, then 

(5.4) vJ(s) < c~,(s) 

/or all s E [a, b [ ~ A .  

(ii) I / r  Is,  b [ -~B+/~  such that 

c'-1r - c x (log 0)-~ ~< ~p(s) 

/or all 8 and 0 <~ 0o, a o <~ s/O < s < b, then 

(5.5) ~(s) < cry(s) 

/or all s e [a, b [ ~ a .  

Proo/. We choose constants  M > 1 and c= > 0 such t h a t  c(1 - clc~) >1 c'M, c'M(1 + c 1 c~) < c. 

W e  m a y  assume v2(ao)>f 1. Set  

where p > 1 is chosen so t h a t  for s/> a o 

(log (] + 1/sp(s)))-" < ~v.,(s). 

Since ~v(s)-*oo as s-~b, we m a y  assume t h a t  l+l/~(s)<(1-l/s~(a))-l<~Oo for  s~>a 0. 

L e t  F be the  set  of all sE[a0, b[ such t h a t  s+ l /~ ( s )~>b  or the  inequal i ty  

~(8 + l//~(s)) < M~2(s) 

does not  hold. We  denote  0 , = 1  + l/aft(s). 

We shall first  p rove  (i). Le t  ~ sat isfy the  hypothes is  in (i) and  let  s E [a 0, b [ ~ F .  Then  

c' q~(O,S) >~v2(s) - c l  (log 0,) -~ >~p(s) (1 -ClC~) >~o(08s) (1 - c l  c~)/M >/c' v2(Oss)/c, hence 

(5.6) ~(O,s) < c~(O,s). 
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We consider first the case b ffi co. This part  is similar to the proof of [20, Lemma 4.14]. 

We define a sequence ao=ro<~rx<ri<~r=<r~.~..., as follows. Let  rk =in~ F ~  ]r~_~, co[, and 

if r~< co, set r',=r~+2/~(r~). Consider then the union 

= U It,,, o.] 

' ~ lJo of intervals where ~,ffir,+prd~,~(r,) . I f  u~]O~ao, o ~ [ ~ E ,  then since ~ is increasing, 

there exists s ~]a 0, c o [ ~ F  such tha t  u-O~s and (5.6) holds. I t  hence suffices to estimate 

the logarithmic measure of E.  We obtain 

f J r  - fetdr - r ~ 2. I 7g ~ (o,-r, ,) lr , ,  
Ic;~1 J r  k k . ~ l  

- 

2v v(1 + 2p/c~)~ 
~; 'E ( ,~r.1/,, I ~ \c~W( ~ c,w(rD TM /"  

The last sum is finite because of 

V(r~+~) ~ ~(r~) ~ M~(r~). 

Assume then b < co. Let  0 <e  < ~ and a 0 ~ t o <b. By assumption there exists t E [t 0, b[ 

such tha t  

(5.7) ( b -  t) ~(t) TM > 4pb 
cme(1 - 1/MII~)" 

Set t 1 - b - e ( b - O .  I t  suffices to  prove tha t  (5.4) is true in [t, tx] outside a set independent 

d ~ and of length ~ 2 e ( b -  0. We consider two cases: 

Ca~ 1. F ~ ] t ,  t l ]=O .  I f  ae]t ,  tl], we have 0 , a -a~ /~ /c2V(s )v~<e(b-0 .  Hence 

{O, sJsE]t, tl[ } covers the interval ]t+e(b-t), tz[ and (5.4) holds by (5.6) in [t, tz] outside 

a set of length e(b-O. 

t s ~ t Case 2. F N ]t, tx] * O. Now we define a sequence t = r0 ~ rl < rx ~ r 2 . . . .  r~ < r~ of points 

in [t, b[ inductively by rkffiinf FN ]r~_l, b[, r~ =rk+2/~(rk) such tha t  q is the last index k 

for which F ~  ]r~_l, b [ ~ O  and r ~ t  x. If now uE]t+e(b-t),  t x ]~E where E is defined as 

before, then there exists sE]t, t l ] ~ F  such that  u =O~s and (5.6) holds. For  the length of E 

we get an estimate as follows: 
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& 4pb .< 4pb 
s ~< k~.x (q~ - rk)< 2,_1 02y)(rkf I~ ~" % ~p(t)x/o(i - 1/M 11~) < e ( b -  t). 

This yields the desired result. 

Next  we consider (ii) in the case b = c~. Let  t>~a o and let a'E[t, v o [ ~ F .  Since ~ is 

assumed to be continuous, there exists aE[t, oo[ such that  s ' = a / ~ = a - 1 / ~ ( s ) .  From the 

choice of p it follows that  also ( log~)-~<o~(8) .  Let  ~0 satisfy the assumption in (ii). 

I f  s.<.8'+l/~(s'), we get 

0'--1~0(8 ') < ~(8) "~-C 1 (log C,) -~ • W(a)(1 +CxC~ ) 

< W(8' + 1]fl(a'))(1 +cxc~) 

~< M(1 +clc~)~(s') <~ cc'-~(8') 

which is the desired inequality for s'. On the other hand, if 

fl(s') >fi(s), hence 
'~'(s')] I'" :> 1 
~(a)] csV,(a) I'~ 

s>s'+l/ f l (s ' ) ,  we get 

By choosing t larger ff necessary, we obtain M~/(s') >~y)(s) which yields the desired inequality 

for s'. I t  thus suffices to estimate the logarithmic measure of F f~ ]t, oo[. This is done by 

a similar but  simpler argument as used in the proof of (i), in fact F 0  ]t, o o [ c E .  

Finally, to prove (ii) for b<  ~ we let 0<e< �88  a0~<t0<b, and choose tE[t 0, a[ so that  

(5.7) holds. We can imitate the case b= ~ if we require s'e]t, t x [ ~ F  and observe 

FN ]t, t l ] c E  where t 1 and E are defined as in the proof of (i) for the case b < ~ .  

5.8. LEMMA. Sulrpoee that ~ is a function on [a, b[ satisfying the hypothesis o/Lemma 

5.1. Then there e x i ~  a set A c [a, b[ satisfying (5.2) and (5.3) and such that the following holds: 

I / ~ :  [a, b[-~R+ is such that/or every 0>1 there exists cx>0 with 

~(,) ~< c~(O,) +01 (log O) -a 

/or oJl 8 and 0 ~ 0o, ao ~< a < Os < b, then 

lira inf ~(a)/~(s) ~ 1. 

s t A  

I f  ~: [a, b[-*R+ is such that for every c > l  there exists 01>0 auch that 

c -~O /O ) -c :  (log O) -~ < ~(8) 
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/or all s and 0~0o, ao~s/O<s<b, then 

lira sup ~(8)/~o(8) ~< 1. 

Proo/. We shall first prove the first par t  in the case b = co. I f  E is a measurable subset 

of [a, co[, we denote 

First fix c > l .  For m = 1, 2 . . . .  let ~m be the set of all those ~ satisfying the hypothesis 

of the first par t  of the lemma for which the corresponding cl<m. By Lemma 5.1 there 

exists Amc[a, co[ such tha t  zAm<co and ~(s)<~cq~(s) for all ~E~m and sE[a, co[~Am. 
t m t Choose a sequence ~mToo such tha t  zAm<2- where Am=ArnN [~m, co[" Let  A = UA~. 

Then zA < co. Let  ~ satisfy the hypothesis of the first pa r t  of the lemma. Then there is an m 

such tha t  ~E~m. I f  sE[a, co[~A and S>~m, then sE[a, oo[~Am and ~(s)<~c~(s). Hence 

lim in/~(s)  ~ l/c. 

sOA 

Next choose a sequence d,'~ 1, denote by A m the exceptional set corresponding to c=dm, 

and apply a similar ~m-method as above to the sets A m to obtain a set A c  [a, co[ such t ha t  

zA < co and 

,-,.oo ~(a)  
=IA 

In  the case b < co for a fixed c > 1 we choose the sets Am C [a, b[ given by  5.1 so tha t  

s N [tin, b[) 
< 1/m 

b-tin 

for some sequence tmTb satisfying b-tm+x<(b-fm)/m. With 

A = gAin. Then clearly 

and 

lim in/s  N [t, b[)= 0 
~.~ b - t  

llm : - *  ~(s) >i I/c. 
s~A 

A~ = Am n [tin, tin+l] set 

Repeating the procedure for a sequence dm"~ 1 we get as in the case b = co the desired 

result. 
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The second part of the lemma follows similarly. 

5.9. Remark. Observe that  the continuity of ~o was used only in the proofs of the 

second parts in 5.1 and 5.8. 

The following result takes care of the case where A(s) is bounded in the case b = oo. 

5.10. LEMMA. Let b= oo and lim,_~oA(8) = d <  oo. Then lim~_~on(s, y)<d for all yEN 

and l i m ~ n ( s ,  y)=d for yEhr",~,E where Ec2V is a Borel set of ca2oaciSy zero. 

Prool. Set 
v =  {ve2Vllim nCs, V) <d}, 

21,= {yeN' Fln(i, y) i> d + II]}. 

Suppose s  Then s176 for some ~0, and for s>1~0,1 

A(,) 1> ((d+ 1/jo) C'(Ato) +dE~(B3)IIY(2V), 

where B~ = {y s ~ F ~ A  j01 n(l, y) > d}. The lower bound for A (,) tends to ((d + 1/?0) In( A t0) + 

dE"(B-'~Aj.))/I~(N)>d as /-*oo, which gives a contradiction. Hence En(F)>0. This 

implies cap F >0. 

Suppose now that  cap (_hr~F)>0. Then e a p A j > 0  for some ~. Let now r be the 

family of paths 7: [0, 1 ]-* N such tha t  7(0)E A t, 7(1)E F. If 7 E r,  there exists by the analog 

of [19, Theorem 1] for manifolds for , > j  a maximal fl D,-lifting ~r of 7 which starts at  a 

point in/-1(7(0)) f~ J~ and which ends in ~D~. Denote the family of these maximal lifts by 

Fv Then M(rs)-*0 as ,-* oo. But  M(/rs) >~M(F) >0  because cap F, cap Aj>0 .  This 

contradicts for large s the inequality M(fF~)<<,K:M(P,) in 2.11. We have proved 

cap (2V~F)ffi0. Let yE2W',,,F. Then n(s,y)>d for some s. Since the exhausting sets 

satisfy ])~c Dt for a <t, we also have n(t, z)> d for z in a neighborhood of y for t >/s + 1. 

Therefore h r ~ F  is open and thus empty. 

To prove the second statement set 

H =  yelvl m n(,, y)= d} 

and suppose cap ( N ~ H ) > 0 .  Set Cj-'={yENIn(s,y)fd if s>~j). Then H is the union of 

the sets Cj and since Fff iN,  we have s >0  and hence cap Cj>0  for some ~. Let now 

F'  be the family of paths 7: [0, 1 ]-~ h r with 7(0) s C t and 7(1) E N ~ H .  If  P; denotes the set of 

maximal f]Ds-liftings for s>~ similarly as above, we get again a contradiction with 

M(/F's) ~K~M(P's) as 8-* oo. The lemma is proved. 
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We are now in a position to give our main result. Recall tha t  / is a quasiregular mapping 

of a non-compact Riemannian n-manifold M into a compact Riemannian n-manifold 

N '  n(s, y) is the counting function of / with respect to the given admissible exhaustion of M, 

and 2 ~ n - 1  is related to this exhaustion by the inequality (2.17). Recall also that  v~(s) 

and A(s) are the averages of n(s, y) with respect to a measure p and the Lebesgue measure 

of N, respectively, and that  p is h-calibrated if pB(x,  r)<h(r) for all balls B(x, r )~  N. 

5.11. THEOREM. Suppose either b=oo ,  or b < ~  and lim sup~.,c(b-s)A(s) x/~a=r 

/or some p > 2. Then there exists a measurable set A c [a, b[ such that 

f d. - - < o o  i/  b - -co ,  
8 

lira inf  s  n [8, hi) ffi 0 i l  b < co 
b - s  

and the/oUowing holds. Let p be a measure in N such that 0 < p ( N ) <  r and Borel sets o/ 

~V are p.measurable and let h be a calibration/unction satis/ying (1.4)/or  p. 

(1) 1 / p  is h.ca2ibrated, then 

run v~,(s) •, 1. 

stA 

(2) I / l i ra  sup,,~p(B(x, r ) ) /h(r) <. l holds/or/~ almost every x E N, then 

%(s) 
lim il~ >1 1. 

81A 

Proof. If b<oo  or b =  co and limv.~oA(s)= 0% the proof follows from 4.8, 4.18 and 

5.8. Suppose then that  b-- co and lira A ( s ) = d <  oo. Consider (2). As in the proof of 4.18 

we conclude ths t  for each e >0  there exists a Borel set F e" N such that  p (N ' - , ,F )<e  and 

Tv-~p(F N T) is hl-e~librated for some h t satisfying (1.4) for p. Let  E be the Borel set of 

capacity zero in 5.10 and let E ' c E  be compact. By the application of 4.3 to sets 

F N B(z, ~r) N E'  we conclude p(E '  N F)  -- 0. Hence p(E  N F) = 0 which implies p(E) -~ O. 

If Cj is the Borel set {yENIn(s ,  y)-~d if s~>~} for ~'ffi 1, 2 ..... and H=N', . . .E,  then by 

5.10 for s~> i 
s t  

>. I . ,  y)d iy) I . ,   )dm) = 
tilt Jc~ 

from which the assertion follows since p(Cj)~p(H),  in fact we obtained the conclusion in 

(1). (1) follows from this. 
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5.12. RearerS.  1. The conclusion (1) is essentially included in [20, Theorem 4.19] 

for the following special ease: M - ~ R  n with the standard exhaustion by  balls, iV--R~, 

p (F)  = ~/n-l(FN Y), Y an (n-1)-dimensional  sphere. 

2. I f  in Lemmas 5.1 and 5.8 we assume in the case b < c~ tha t  lims.~ (b _~)~(s)~/r~ ~ c~ 

and in Theorem 5.11 the same for r/(s)---A(s), then the set A can be chosen so tha t  

lira s N Is, bD = 0. 

This follows by direct inspection of the proofs of 5.1 and 5.8. I t  is possible to draw 

the conclusion in (1) in the hyperbolic case b < c~ under the weaker condition 

lim supa_~(b-8)A(~) 1/~ = c~ for a smaller class of measures p. This is for n = 2  and ~ ffi 1 

recognized as a condition which ensures regular exhaustibility of a covering surface in [1]. 

3.  W e  shall show in Example  6.1 for n - 2, b ~- 0% by  a meromorphic function tha t  

the assumption for p in (2) is not sufficient to draw the conclusion in (1). In  Example  6.5 

we show tha t  the condition of finiteness of logarithmic measure of A cannot be improved. 

4. I f  X is a compact k-dimensional C 1 submanifold of 1V, k ~  1, then the measure 

E~-->~k(ENX) is h-calibrated with h(r)=Cr k for some constant C > 0 .  The same con- 

clusion holds also for kffi~ if X is an s subset with L~(X)>0 or for n - - 2 ,  

k - -1  and X is a regular curve in the sense of Ahlfors [1]. 

5. Let  h be a calibration function satisfying (1.4) for some p > 2  and let ph be the 

Hausdorff measure generated by  h. I f  Ec1V is ph-measurable with 0 < p h ( E ) <  0% then 

lira sup~oph(EN B(z, r))/h(2r)~1 for p~ almost every xEE.  One can prove this by a 

method similar to tha t  of [2, 2.10.18] by observing tha t  any ball B(z, 5 r ) c N  can be 

covered with k balls of radius r where k is independent of x and r. By the use of the 

calibration function hl(r ) •ffi h(2r) we obtain tha t  the conclusions in 4.18 and 5.11(2) hold 

with p(F)=p~(EN F), F e N .  

6. I t  is clear from the proof of 4.8 tha t  if N is not assumed to be compact,  averages 

with respect to measures supported in a compact subset of N are still similarly comparable. 

As an application of Lemmas 3.3, 4.4 and 5.1 we are able to prove the following 

result on pointwise behavior of the counting function. 

5.13. THEOREM. ~u~Ypose that either b - o o  or b<oo and Hm,.~ (b - s )A(s )  11p~-- oo 

for some p > 2 .  Then there exist a sequence (s~) and a set E ~  N oJ capacity zero auch that 

lim s t f b  and for all yEN", , .E 

lira n(s!' y )  ffi 1 .  
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Proo[. We shall present the proof for the case b = ~ .  The case b < oo is handled 

similarly with regard of Remark  5.12.2. We cover _~ by  balls B~-- B(z~, vro/2), k -- 1 ..... m, 

where r 0 and v are as in 3.1. Denote C~= B(z~, r0/2), 

and let A be the exceptional set of Theorem 5.11 with ~a ds/8 < oo. Then each v~ is 

continuous and 

(5.14) li ~''(~) m - - = l .  
A(~) 

8~A 

Let c > 1. Combining 3.3 and 4.4 for q- - ra in  (p, 3) with p replaced by  s and E 

replaced by Bk, we find tha t  given ($ > 0  there is d 8 > 0 such tha t  

rk(8) < V~(08, F) + d~ (log O) -r~ 

~,~(s) >i _n(8/O, ~')/ i /~- d, (log O) -"a 

whenever F is a set in Bk with M(A(F, OCk;O~))>~O>O and ao<~8/O<Os<b, 0<~0o . By 

Lemma 5.1 there is a set A j c  [a0, oo[ of finite logarithmic measure such tha t  A cA~  and 

c--ln(8, F )  < ~'/r < C~,(8, F )  

whenever F is a set in B~ with M(A(F, OC~;~k))>~O>O and sE[a  o, ~ [ ~ A ~ .  We can 

choose A~ independent of k by taking union. Set 

E~.,= {Ue B~ln(8, u) > c,,~(e)} u {ue B~In(e, U) <,,~(e)/c}. 

Then for all sE[a0, oo[~Aa,  M(A(Ek,,, OCt; Ck))~<2~. For each positive integer i choose 

st = st(c, ($)E[a 0, ~ [ ~ A ~ - i - ~  a such tha t  lira sl = oo. Then 

(5.15) M A ~k.,,, 00~,; ~ Y~ M(A(E,,.,,, 0a,,; Ok)) < ~ 2-t,~ = ~. 
f f-1 | - 1  

Choose now sequences c j ~  1, ~ j ~ 0  such tha t  ~t>j O~<($j and for each j a sequence 

8#. t--sl(cj, Oj) as above. Letting 8~ = 8~. ~ we will show tha t  

(5.16) lira n(st, y )  1 
~-~ 1'k(sJ 
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for all y E Bk outside a set of capacity zero. Suppose this is not true for some k. Assume 

e.g. tha t  

cap ~y E Bkl lim sup n(8~, y) > 1} > 0. 
L t.-,~ v~(a~) 

Then for some ~, M(A(Dj, ~Ck; 0~)) >6j where 

D ' = l Y E B k I l l m s u p ~ > c ' }  ~ ,k(s,, 

From (5.15) we obtain M(A(Ej, ~Ck; Ck)) ~6j  where 

some i .  

If lim sup,_~ n(s,, y)/~'k(~,) >cj, then there is i > j  such that  n(a,.,, y)/~k(s,. ~) >cj~c, ,  which 

yields Djc U,>jE, and 

~j < M(A(D,  aCk; C~)) < ~ M(A(E,, ~Ok; 0k)) < ~ ~, <~j. 
i>J f>J 

This contradiction shows that  (5.16) holds. The theorem follows now from (5.16) and 

(5.14). 

5.17. Remark. In the plane Miles has proved for meromorphic functions a result 

which is stronger than 5.13 in the sense that  the limit is obtained outside an exceptional 

set for the exhaustion parameter, see [12, Theorem 2]. 

6. Examples 

In this section we shall present two examples of meromorphic functions in the plane 

refered to in Remark 5.12(3). Corresponding examples of quasiregular mappings for 

dimensions n >/3 of equal sharpness have not been constructed. In  the following we shall 

denote by ~'(s, E) --v~(s, E) the average over an ~' .measurable set E with 0 <~/ '(E) < ~ ,  

where ~l  is the normalized /-dimensional Hausdorff measure in R ~. 

6.1. Example. We shall construct a nonconstant meromorphic function /: R~-*]~ ~ 

such that  for each c > 1 there exist a set E c R ~ which is a countable union of circles 

centered at  the origin with ~//I(E)< r162 and a measurable set A c [ 1 ,  ~ [  such that  

(6.2) rl(r, E) > cA(r) for tEA, 
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and 

(6.3) - - =  c~, 
r 

where the exhaustion is the standard exhaustion by disks. 

Our function / will be a slight modification of the meromorphic function in Theorem 4 

in [23]. We define an increasing sequence ~x, s2 .... of integers by the condition s4~_2 = sa~_~ -- 

s a z = s a , + ~ i §  10 for i = 1 ,  2 .. . .  and set s~--~2. We set rm--ex p ((2sin) m) and 

oo 

/(z)= VI (1- z/r.) (-'-)'. 
m-1 

Fix i and set m~-4i, am=r~ +1/4~, ~m--r~ +1/~'. Arguing as in [23] we obtain A ( ~ ) < 2 a ~  -1, 

n(rm, 0)>*~. Shnilar calculations give the estimate 

_sm-x 
~,~. ! ! 

Set d = 12c -  81 and P, = sm+4/(sm+4 + d) - 8m/(8,n + d). The set E is constructed as follows. 

Let  E,  be a union ofp~ disjoint circles with center 0 and radii in the interval [~t,/2, ~l] where 

2pf/(~,)<~pi<2p,/(~)+l. Then set E - -  U~-, Ej. 

Suppose am <~ r ~<~m. Then 

(6.4) n(r, y) d~l(y) >I n(r, y) d~X(y) >i n(rm, O) ~ pj 
J- t  

Since ~ x ( E ) ~ 1 3 ~ j = 3 ( 1 - s J ( a l §  we get with (6.4) for ~m~d,l,l(r, E)>cA(~m). 
Finally, let m 0 --4i 0 be such that  s~ ~ d  and set 

oo 

A = U I'~.,, e . j .  
f-fo 

Then (6.2) holds for rEA and clearly A satisfies (6.3). 

Denote by p the restriction measure C~-~I(CN E) of ~n. Then p is a measure in R ~ 

and satisfies the condition in 5.11(2) for h(r) = 2r, p almost everywhere, in fact in all points 

except 0. Hence the conclusion in 5.11(2) holds. On the other hand, (6.2) and (6.3) show 

that  the conclusion in 5.11(1) is not true for p. From the eonctruction it is clear tha t  such 
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a p is also obtained by giving the Lebesgue measure a weight which has a suitable 

singularity at the origin. 

6.5. Ez~m~le. We shall show tha t  there exists a disk E ~ R  ~ and a number c>  1 such 

that  for a given decreasing positive function ~ of the positive real axis with ~(r)-~0 as 

r-~ oo there exists a meromorphic function f: R 2-~R~ such tha t  with respect to the standard 

exhaustion by disks we have 

~2(r, E) >cA(r)  for t E A ,  

where A c [1, c~[ is a measurable set which for some r e >0  satisfies 

f a dr - - > f ( r )  for r~[r0,=[. 
N[r.~o[ r 

In  this example we take for/z the restriction measure C~--~Is(C 13 E). Then p is h-calibrated 

with h(r).ffi Cr 2 for some C > 0. 

The following construction was given by S. Toppila. For  1 < r~ <e~< R, with r~ R,--e~ 

and t~ a positive integer consider the function 

g~(z) = ( 1  - (z/r,) a) (1 - z/e,)-m(1 - zlR~) ~. 

For small and large [z ], g~(z) is near 1, and if e,/r~ is large, the behavior of g~(z) is determined 

by the first factor near [z] =r , .  Set h~(z)ffi 1-(z/r~) ~ and r Then the counting 

function of h, satisfies for rj~r~r~+cr~ 

n~(r, y)= t~ 

n~(r,  y) = 0 

if y E a ( I ) + 1 ,  

if y ~ / ~ ( 2 ) + 1 ,  

and we choose Q~/r t so large tha t  for gl we have 

n e , ( r , y ) f t  ~ if y E B S ( l - & ) + l ,  

n~(r,y)ffiO if y ~ / P ( 2 + ~ ) + l ,  

where ~ is some number with 0 <~ < ~. Let  p >I 1 be an integer and set t~ = (1 +p)~. Then 

k-1 

(6.6) IV ~ t~ < t ~ .  
1-1 

We may choose the ratios edr, and r,+x/R, so large tha t  the meromorphic function 

/: R~--~R ~, 

l(z) = FI g,(z), 
i - 1  
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behaves up to a small error term as h~(z) near I zl -- rv With suitable choices of these ratios 

we have then for the counting function of / for r s < r  ~<r~ +as  

k - 1  

n ( r , y ) =  ~ 2 t ,+ t  s if y E B 2 ( 1 / 2 ) + I ,  
f = l  

k - 1  

n ( r , y )<  ~.. 2 t ,+ t  s if y E B 2 ( 3 ) + I ,  
|=1 

k - 1  

n ( r , y ) <  ~ 2ti if y , B ~ ( 3 ) + l .  
|--1 

Set E---B2(�89 F =  B~(3)+ 1, and let fl be the spherical measure of $'  divided by  the 

total  spherical measure g. Then for r k ~< r ~< r s + as 

' ) 
A(r) ~ fl 2t~ + tk + (1 - fl) ~ 2t,, 

\ 1 - 1  | - 1  

k - 1  

v~(r, E)  = ~: 2t, + t~. 
I -1  

With regard of (6.6) we obtain 

1 
A(r)/v~(r, E) < fl + ~ (1 - fl) = 1/c < 1 for r~ <<. r ~ r~ + a k. 

Let now q0 be a decreasing positive function with q~(r)-~0 as r - ~ .  Since 

fr, r'+*' dr . r = tog (1 + l/2t,) 

is independent of r~, we may  choose the r~'s in addition so tha t  

9(rk-~)< ~ f"§176 
f - k  t]r~ r 

We can therefore take U ~ l  [r~, rt+(rt] to be the required set A. 

The problem of covering a disk more than A(r) was also considered in Example  2 in [12]. 
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