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1. Introduction

The theory of quasiregular and quasimeromorphic mappings has turned out to form a
natural real n-dimensional generalization of the theory of analytic and meromorphic func-
tions of one complex variable. The study of these mappings was initiated by Refetnjak in
1966 in a series of papers listed in [9]. Since then the theory has been developed in many
directions by several authors. For basic parts of it we refer to [9-11]. Definitions are given
in 2.1 of Section 2.

Large parts of the theory of analytic functions of one complex variable have their
analogs for n-dimensional quasiregular mappings. The methods of proofs for n >3 are for
the most part completely different from the classical methods in the plane theory. This state
of affairs has had its influence also on the classical theory. On one hand, new and sometimes
simpler proofs have been found for known theorems. On the other hand, some interesting
results are new discoveries for the value distribution theory in the plane.

In this paper we study value distribution of quasiregular mappings in Riemannian
manifolds. Let us consider the basic case, a nonconstant quasimeromorphic mapping f of the
Euclidean n-space R™ into R* = R"U {co}. The fundamental question of value distribution of
fis how f~1(y) is distributed and how this set varies with changing of y. A natural quantitative
measurement of the behavior of f~1(y) is the couniing function n(r, y) which is the number
of points of f~!(y) in the ball || <r with multiplicity regarded. The spherical average
A(r) is the average of n(r, y) with respect to the spherical n-measure on R* when y runs over
R”. The well-known covering theorems in Ahlfors’s theory of covering surfaces [1, p. 164;
165] imply for » =2 that the average of »(r, y) when y runs over a subdomain or a ‘‘regular
curve” in R?, is close to A(r) outside a set of radii r with finite logarithmic measure. This
suggests that n(r, y) is usually close to A(r) and that ‘“‘equidistribution’ occurs to some
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general extent. The purpose of this paper is to study how strong such equidistribution is.
Our main results are new also for the plane theory of meromorphic functions. We work all
over on the ‘“‘nonintegrated level” and do not use smoothed counting functions, obtained
for example by integrating n(r, y) logarithmically with respect to r as is typical in the
Nevanlinna theory [13].

For an arbitrary point y, there need not be any bounded ratio between n(r, y) and
A(r) outside a thin exceptional set of r-values. First, if y is omitted by f, then n(r,y)=0
for all 7. In the other direction, it follows from Toppila’s Theorem 4 in [23] that for any
k> 1 there exists a nonconstant meromorphic function of the plane for which n(r, 0)/A(r) >k
ia a set of positive lower logarithmic density. For a modification of Toppila’s result, see
Example 6.1 in Section 6.

The study of the value distribution of quasimeromorphic mappings of R" into R*
wag started in {20}, where the main emphasis was on the relationship between the pointwise
behavior of n(r, y) and the spherical average. One of the problems treated in [20] is the
question of the validity of an inequality

(1.1) lim sup »(r, y)/4(0r) <c

where 8, ¢ >1 are constants. Even for meromorphic functions (1.1) need not hold no matter
how the constants 8 and ¢ are chosen. This follows from a slight modification of [23,
Theorem 4]; see also Example 6.1. On the other hand, if the quasimeromorphic mapping
has an asymptotic value a,, then given any ¢>1, there exists a constant §>1 such that
(1.1) holds for all @ #=a, [20, Theorem 5.11]. In the proofs of such theorems a good estimate
is needed for comparing averages of the counting function over concentric (n —1)-dimen-
sional spheres. If we denote by »(r, s) the average of n(r, y) when y runs over the sphere

|y] = s, such an estimate is given by the inequality

K(p|log (t/s)[**
(1 —1/¢) (log 6)*’

(1.2) cv(Or, t) = v(r, 8) ~

valid for all 6, ¢>1, 0 <s, ¢t < oo [20, Theorem 4.1]. Here K(f) is the maximal dilatation of f.
The inequality (1.2) is proved by a special technique of path families where one combines
the modulus inequality [26, Theorem 3.1] with a result on maximal path lifting given in
{191. The factor (log 6)*~" in the error term in (1.2) makes it possible to show that the
stronger inequality cy(r, £) Z»(r, 8) holds for all » outside a set of finite logarithmic measure,
and in fact each average ¥(r, s) is arbitrarily close to the spherical average A(r) for all r
outside such a set (20, Theorem 4.19].
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The idea of the proof of (1.2) suggests that a similar inequality with respect to 6 holds
in a much wider sense, and as a consequence, averages of the counting function with
respect to various measures are arbitrarily close to each other outside an exceptional set
for the exhaustion parameter. On the other hand, the discussion of the pointwise case
above and Example 6.1 shows that a regularity assumption on the measure is needed
which prevents too strong singularities at points.

We shall establish an equidistribution theory for averages of the counting function of
a quasiregular mapping with respect to measures with a regularity condition. More
precisely, we are given a nonconstant quasiregular mapping f: M —N of a noncompact
Riemannian n-manifold M into a compact Riemannian n-manifold N and the counting
function n(s, y), 0 <a <s<b< oo, of f with respect to an admissible exhaustion function of
M, ie. an exhaustion function which is normalized by means of conformal capacity and
which satisfies the condition in 2.16. Let u be a measure in N such that Borel sets are
u-measurable and 0 <u(N) <oo. Let h: [0, oo[—~[0, o[ be increasing, continuous, and such
that A(0)=0 and A(r)>0 for r>0. We call % a calibration function and u h-calibrated if

(1.3) p(B(z, 1)) <hir)

for all balls B(z, 7)< N. Our main result is that the average v,(s) of n(s, ) with respect
to u is arbitrarily close to the average A(s) of n(s, y) with respect to the Lebesgue measure
for all s outside an exceptional set A provided u is h-calibrated with k satisfying

1 1/pn
(1.4) f M < oo
0 r

for some p>2. This is expressed by the limit condition

. vu(8)
(1.5) mz“@—l.

844

The exceptional set 4 for the exhaustion parameter s has in the parabolic case b= co
finite logarithmic measure, whereas in the hyperbolic case b <oo the condition

(1.6) lim sup (b—s) A(s)!/" = oo
s-»d

is needed to ensure that A4 is thin near b. Here A>7—1 is a constant depending on the
exhaustion. Qur theory generalizes the covering theorems in [1, p. 164, 165].
The problem of comparing averages is unsymmetric in the sense that the inequality
o Pul8)
1.7 lim inf £-1>1
47 4G

8¢4
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is true already if lim sup,,o u(B(x, r))/h(r) <1 for u almost every x € N with A satisfying (1.4)
for some p>2. An example of such a measure y is the restriction measure Fr—>«(F N K)
of the a-dimensional Hausdorff measure }*, 0 <a<n, where £ is any }*-measurable set
with 0 <*(E)<oo; more generally, see 5.12.5. Example 6.1 shows that (1.5) need not
hold for such measures.

After preliminary results we first prove in Section 3 a lemma which tells how much
extreme values of the counting function in a set can, in terms of conformal capacity,
deviate from averages over spheres lying in a chart. In Section 4 relationships between
capacity and h-calibrated measures are used to establish inequalities of type (1.2) for
averages (Theorem 4.8).

The integral condition (1.4) for A originates from the proof of [17, Theorem 8]
in connection with a lower bound for capacity. This is presented in Lemma 4.2. The
condition p > 2 is essentially needed in the proof of (4.5) of Lemma 4.4 to obtain effective
upper bounds for the u-measure of sets in which the counting function exceeds an
average value.

The main results are presented in Theorem 5.11 and are proved by means of the
inequalities in Section 4 and lemmas on real functions. Our methods apply also to the
study of the pointwise behavior of n(s, y). In fact, we prove (Theorem 5.13), under a
restriction for the hyperbolic case, that there exists a sequence s, 7b and a set Ec N
of capacity zero such that for yEN\ E, n(s,, y)/A(s,) tends to one. This result is known
earlier for meromorphic functions in the plane with the standard exhaustion by disks.
In fact, Miles proves in [12, Theorem 2] a stronger statement in the sense that the limit is
obtained outside an exceptional set in the exhaustion parameter.

To prove the results in this paper for Riemannian n-manifolds instead of just R" and
R", does not require much extra work. Essentially all what is needed is the inequality
2.10 of moduli of path families, a discussion on exhaustions in Section 2, and some basic

facts about Riemannian manifolds.

2. Preliminary results

2.1. Quasiregular mappings in Riemannian manifolds. We assume throughout the
paper that Riemannian manifolds are always pure dimensional without boundary, C%,
connected, paracompact, orientable, with a given C* Riemannian metric, and with a
given C® volume form defining the orientation. Chart maps are always taken orientation
preserving. In any Riemannian n-manifold M we denote the ball {y€M|d(y, x)<r} by
B(z, r) and the sphere {y €M |d(y, z)=r} by S(z, r) where d is the Riemannian distance.
It M =R" we set B(r)= B(0,r), S(r)=8(0,r).
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We assume throughout the paper that n>2. Let G@ be a domain in R*. A con-
tinuous mapping f: G—R" is quasiregular if (1) f is ACL" and (2) there exists K, 1 <K < oo,
such that

(2.2) If @) < KJ4()

holds a.e. in G. Here f'(x) is the formal derivative of f at z, i.e. the linear map defined by
means of the partial derivatives D,f(x) as f'(z)e,= D,f(x), e, being the ith standard basis
vector in R”. ||f'(x)| is the supremum norm of f'(x) and J(x) the Jacobian determinant
of f at z.

If f: G—R" is quasiregular, then it is either constant or discrete, open, and sense-
preserving [17], [18]. It is also differentiable a.e. [17], and hence f'(z) is the derivative at
x a.e. If f is not constant, J,(x)>0 a.e. [9, 8.2].

Let M and N be Riemannian n-manifolds and f: M~ N. f is called locally quasiregular
if at each point x €M there is a local expression of f which is quasiregular in the above
gense. The tangent linear map T, f: T, M T, N is then defined a.e. if { is locally quasi-
regular. The mapping f is called quasiregular if (1) f is locally quasiregular and (2) there
exists K, 1 <K <oo, guch that

(2:3) 7" < KJ ()

holds a.e. (cf. [5]). The smallest K in (2.3) is the outer dilatation Ky(f) of f, and the

smallest K for which
Jx) < K||;mf1 1 T.1R|™

holds a.e. is the inner dilatation K,(f) of f. K(f)=max (Ky(f), K,(f)) is the mazimal
dilatation of f. The term gquasimeromorphic is reserved for the case where M is a domain in
R” or R and N=R". R" is equipped with the spherical metric. A quasiregular homeo-
morphism is called a quasiconformal mapping.

2.4. Inequalities for moduli of path families for quasiregular mappings. We shall
present two important inequalities for moduli of path families well known for quasiregular
mappings in R". These are of global nature in contrast to our definition of a quasiregular
mapping.

We shall use the terminology of paths mainly from [25] modified to manifolds and
also from [22]. Let a: I-M be a path. The length of « is denoted by !(«) and the locus
al by |e|. If « is rectifiable and closed, we denote by «®: [0, {(a)]-> M its parametrization
by arc length, by s, its length function s,: I—[0,(«)] such that «=alos,. A map
j: M—N is called absolutely continuous on « if foa® is absolutely continuous.
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Let I' be a family of nonconstant paths in M and let 1<p<oo, We denote by
F(I') the family of all Borel functions g: M —[0, o[ such that the line integral satisfies

(2.5) f pds>1
Y

for all locally rectifiable y €I'. The number

M,(I)= inf f e?dL”
ee D) J
is called the p-modulus of I'. We denote the Lebesgue measure on a Riemannian n-mani-
fold defined by its volume form by £*. M, (T") is also denoted by M(I") and called simply
the modulus of I'. Basic properties such as Theorems 6.2, 6.4, and 6.7 in [25] are also
true here. However, even for p=n one cannot replace F(I') by the larger family of
functions @ for which (2.5) holds whenever y €I is rectifiable as in R [25, 6.9].
We need the following substitute for Fuglede’s theorem (see [25, 28.2]):

2.6. LEMMA. Let f: M~ N be quasiregular and let Ty be the family of paths in M such
that each v €Ty has a closed subpath on which f is not absolutely continuous. Then M(I'y) = 0.

Proof. We cover M and N by relatively compact charts (U, ¢;) and (V,,¢9,),i=1,2, ..,
respectively, such that ¢, and g, are bilipschitzian and such that for each ¢ there exists j
for which fU,=V,. For 4, k>1 set

Iy= {y €T, |y closed, |[y|< U},
VE=U U,
1<k

If v €T, there exists a closed subpath g: [, b]—~M of » on which f is not absolutely con-
tinuous, hence # is in V* for some k. There exists a division of [a, b} into a finite number
of closed subintervals A,, ..., A, such that each 8|4, is in some U,, 4, <k. There exists p
such that f is not absolutely continuous on f#|A,, hence 8|A,€I',,. It follows that T, is
minorized by U;T",, hence

M(T,) <‘_Zl MT).

It thus suffices to show that M(I';) =0 for an arbitrary q.
Let y €I, and let § be such that fU,= V,. Since ¢, and y, are bilipschitzian and f is not

1

absolutely continuous on y, the map kA =y,ofo@; ' is not absolutely continuous on p,o0y.
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Furthermore, % is quasiregular since it is guasiregular locally and has bounded dilatation.
By [25, 28.2] we have M(p,I')=0. By [22, 5.3] M(I',)=0. The lemma is proved.

2.7. LEMMA. Let f: M~ N be quasiregular, let v: N—~R be a nonnegative Borel function,
and let A<X be a Borel set. Then

L (vo)J,dL"= va(y)My, f, 4)dCy)

where N{y, {, A) = card AN f~(y).

If A and fA are contained in charts, Lemma 2.7 follows by [22, 3.8] and by the
application of [16, Theorem 3, p. 364] to the functions v,=min (k,v), k=1, 2, .... The
general case is handled by the use of decompositions of M and N [22, 3.1].

For completeness we include the following analog of [9, 3.2] for manifolds although
it is not used in this paper. We use the notation N(f, A)=sup,.y N(y, [, 4) for A< M.

2.8. THEOREM. Suppose that f: M~ N is a quasiregular mapping and that A is a Borel
set in M such that N(f, A)y<oo. If T’ is a family of paths in A,

M(T) < N(f, A) Ko(f) M(T).

This theorem is proved as in [9, 3.2] by the use of 2.6 and 2.7. Note, however, that in
[9] (2.5) is required only for rectifiable paths.

For the other inequality we need a lemma of Poleckii [15, Lemma 6], see also
[26, 2.8). As in [26] we use the following terminology. Let f: M —~N be continuous and
light and let a: I—M be a closed path. We say that f is absolutely precontinuous on «
if the path § = foa is rectifiable and the path «*: [0, [(8)] > M such that « = a*0sg, given by
an analog of [26, 2.3] for manifolds, is absolutely continuous.

2.9. LEMMA. Let f: M~ N be nonconstant and quasiregular. Let T'y be the family of all
paths B in N such that either B is not locally rectifiable or there exists a closed path o in M
such that foa 18 a subpath of f§ and f is not absolutely precontinuous on a. Then M(T',)=0.

Proof. The subfamily I of I’y consisting of paths which are not locally rectifiable has
zero modulus. We cover M and N by charts (U, ) and (V, 9), 1 =1, 2, ..., a8 in the proof
of 2.6 and for ¢ >1 we let I, be the set of all closed paths in U, on which f is not absolutely
precontinuous. Then Iy is minorized by the union of {J,fI’; and I, hence it suffices to
show that M(fT";) =0 for all <. To prove this we use [15, Lemma 6] and a similar argument
to that in the proof of 2.8. The lemma is proved.
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Our second inequality is [26, 3.1] for manifolds. Its corollary 2.11 was proved for
R* by Poleckii [15].

2.10. THEOREM. Suppose that f: M —~N is a nonconstant quasiregular mapping, I' is a
path family in M, I is a path family in N, and that m is a positive integer such that the
following condition is satisfied:

There is a set Ey< M of measure zero such that for every path f: I->N in I there are
paths o, ..., o, in I such that fou, is a subpath of B for all © and for every x€ M\ E, and
t€1 the relation «,(t) =2z holds for at most one i. Then

n_ Kdf)
M) <=L M(T).

Proof. Let Ty be the family of Lemma 2.9. We set I'; =I'"\\I',. Then M(T";) = M(I")
and it suffices to prove ‘

M(Pl)sK’U )M(l").
m
By only slight modifications and by the use of 2.7 to homeomorphisms we can follow
the proof of [26, 3.1]. Note that here I'; contains also paths which are only locally recti-
fiable. We point out that in the proof of [26, 3.1] the family F(I") has the same meaning
as in this paper.

2.11. CoroLLARY. If f: M- N i3 a nonconstant quasiregular mapping and if I" is a

path family in M, then
M(T) < K,(f) M(T).

2.12. Condensers and capacities. A condenser in M is a pair (4, C) where A<M is
open with M\ A= and C<A4 is compact and nonempty. The (conformal) capacity
cap (4, C) of a condenser (4, C) is the modulus M(A(C, 24; A\ C)) where we have used
the notation A(E, F; H) for the family of paths y in H such that I_y] n E#@#m nFr.

A compact subset K of M is said to be of capacity zero if the modulus of the family
of paths in M with one endpoint in K is zero. An arbitrary subset E of M is said to be
of capacity zero if all compact subsets of E are of capacity zero. If E is of capacity zero,
we write cap E =0, otherwise cap £ >0.

2.13. Exhaustions. We shall carry out our study of value distribution of a quasi-
regular mapping of a noncompact Riemannian n-manifold M into a compact Riemannian
n-manifold N with respect to an exhaustion of M by compact subsets which will be
parametrized as presented below. We assume now that M is noncompact.
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By an exhaustion function of M we mean a function D:[a, b[—D(M), where
—oo<g<b<oo, such that each D(t)=D,=M is open, connected, the closure D, is

compact, D,< D, for t<u, and
M= U D,

tela,bl

We shall use exhaustion functions D: [a, b[+ D(M) with ¢ >0, D,+ O, and parametrized

via the equation

W1 1/(n-1)
(2.14) t=aexp ((M(l" t)) )

for t>a, where I, , is the family of paths in D,\ D, which connect 8D, and D, and

®,_, is the (n—1)-dimensional measure on the unit sphere in R® This could for n=2
be called a parametrization by normalized harmonic module. Let M =R" or M = B(b).
Then t—B(¢) is an exhaustion satisfying (2.14).

In order to obtain significant value distribution results with respect to a given ex-
haustion we need a measure of the deviation from an “‘extremal” exhaustion with respect
to conformal capacity which is the substitute for harmonic exhaustion on a Riemann
surface. Let a <s<t<b. Then I'; , is minorized by both I'; , and I', , which are separate,

hence

n-1
(2.15) (logg) >M(I‘ 3y

We shall need an opposite inequality. More precisely, we give the following definition.

2.16. Definition. An exhaustion D: [a, b[ > D(M) satisfying (2.14) is called admissible
if there exist constants a,€la, b[, 6,>1, x>0, and 1>n—1 such that

A
2.17) (log :) <x M“(’;‘“)
8t

holds for ay<s<it<b, tfs<0,

Note that in the case b<oo always t/s <b/a,. The exhaustion of R* or B(b) by balls
B(t) is admissible and satisfies (2.17) with A=n—1, ¥=1 for a <s<t<b. M = B(b) here
is a special case of the exhaustion of a relatively compact domain U in R® with a condition
on the boundary as follows. Let F< U be a nondegenerate continuum such that U\ F
is a domain. Let U\ F satisfy Martio’s condition M,= oo [7] at each of its boundary
points z. By [7, 5.9] there exists an extremal function u: UN_F—R in the definition
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[6, 6.2] of the conformal capacity of the condenser E = (U, F) with boundary values
u{8F =0, u|dU =1. Then the level sets D, ={x€ U\ F|u(z)<u,}U F, where

c&pE lin-1) £
= 1 -
U (wn—l) Oga7

give an admissible exhaustion for U which satisfies (2.17) with ¥x=1,A=#n—-1 for
a<s<t<b. While this method takes partly care of the “hyperbolic”’ case b<oo, no
existence result for admissible exhaustions in the “parabolic” case b= oc is known if
n23. For n=2 it is well known that parabolicity is equivalent to the existence of an
Evans-Selberg potential which then can be used to produce a harmonic exhaustion.
However, by using a preliminary discrete exhaustion (G,) of M, it is possible with an idea
of Ohtsuka to produce an exhaustion funetion of M which is “admissible on intervals”
of [, b[. Value distribution with respect to such partly admissible exhaustions can be
established in the spirit of the present article, although formulation of the results becomes
slightly more complicated.

One can prove that the class of admissible exhaustions of R? contains every ex-
haustion which is obtained from the exhaustion by concentric disks by applying a
quasiconformal self-map h: R*—R?, i.e. D,=hB(t). The corresponding result for R" is

probably also true but there seems to be a lack of sufficiently sharp modulus estimates.

2.18. Counting function. Let f: M—>N be a nonconstant quasiregular mapping of a
noncompact Riemannian manifold M into a Riemannian manifold N. Assume that we
are given a fixed exhaustion function D: [a, b(—~ D(M) of M. The counting function of f with
respect to D is then

aty)= 3 i),
zeDyNS-Ny)

defined for t€[a, b, yEN. Here i(z, f) is the local index of f at x [24]. Since D, is
compact, n(¢, y) is finite. The function y+>n(t, y) is upper semicontinuous.

3. Comparison of extreme values and averages

3.1. In the rest of the paper let f: M - N be a nonconstant quasiregular mapping of a
noncompact Riemannian n-manifold M into a compact Riemannian n-manifold N with
inner dilatation K;= K,(f). We assume that M has an admissible exhaustion D; [, b[ - D(M)
with constants a,, 0), 4, and » as in 2.16.
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For small r we denote by w(s, S(x,r)) the average of n(s,y) over the sphere
S(z, r)= N with respect to the (n—1)-dimensional (normalized) Hausdorff measure }£*-1.
For any nonempty set E< N we define

(s, E) =sup n(s, y),
YEeE

»(s, E)= inf n(s, y).
YEE

Since N is compact, there exists r,>0 such that for each { €N there is a chart map
@ B(C, ro)~ B(ro) which is 2-bilipschitzian (i.e. the Lipschitz constants of ¢; and ¢;* are
bounded by 2) and which has the property ¢.S(Z,7) =';S(r) for all 7€]0,7,]. We fix
7€]J0, 4[ such that ¢, log 2>w,_; (log (1/7))*~" where ¢, >0 is the positive constant in [25,
(10.11)] depending only on n. Recall that w,_, = H*-1(S(1)).

32. Lemma. Let O<u<v<oo, F,cB(u), F,cdB(v), Ty=A(F,, Fy; B(v)),
I, =A(F,, B(v); B(v)), and T'y=A(F,, 8B(u); B(v)\B(x)) (see 2.12 for notation). Then

M(Ty,) > 37" min (M(Ty), M(Ty), ¢, log (v/u))
where ¢, >0 is the constant in [25, (10.11)].

Proof. The proof is similar to the proof of [10, 3.11] and [14, 3.3]. Choose g € F(I',,).
Consider first the case where

f pods =}
N
holds for every locally rectifiable path y,€I', or
[ es>4
s
holds for every locally rectifiable path y,€I';. Then 3p € F(I',) or 3p € F(I'y) which implies
|| eracr> 37+ min ey, 2.
Rﬂ

In the remaining case there exist paths y, €I'; and 9, €Ty such that

f@ds>§
14

19— 792908 Acta mathematica 143. Imprimé le 28 Décembre 1979
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for every locally rectifiable path y €A(|y|, |ys|; B(v)\B(w))=I". Then 3p€ F(I'), and
by [25, 10.12]

jnng”dﬁ 23""M(TI") 23 "¢, log (v/u).
The lemma is proved.

3.3. LemMma. For each ¢>1 there exists d >0 such that the following holds. Let 2 <q <3,
0<r<r,, 2EN, and let F< Bz, vr) be a set with M(A(F, 2B(z, r); Bz, r))) >8>0, where r,
and t are as in 3.1. Then

(3.4) cv(0s, 8(z, 1)) = (s, F) ~ 5 (loi o)y
and

) d
(35) v(e, 8(z, 7)) < cilBs, F)+ 50 o o gy

whenever ay<s<0s<b, 0<0,.
Proof. To prove (3.4) fix s and 0, set ¥ =8(z, r) and

A = {y€ Y |n(bs, y) <n(s, F)/c}.
Then

(3.6) 6 f n(8s, y)dH-y) >nle, F) WY F~4)
Y
=n(s, F)H 1Y) —n(s, F) W Y(A).

We may assume H" '(4)>0 and n(s, F)>0. Let 4'c 4 be compact such that
H 1 (A4')>H""1(A)/2 and let T be the family of paths y: {0, 1] B(z, r) with y(0)€F,
p(1)€A’. If y€T and if {z,, ..., %} =f"}y(0)) N D,, then

m= % i(xh f) '>’Z”(8’ F)
1=1 '

By the analog of [19, Theorem 1] for manifolds there exists a maximal sequence a;, ..., %y,
of f| Dy, liftings of y starting at the points of f-1(»(0))N D, in the terminology of [19].
Let j be the smallest integer such that j=>n(s, F)(1—1/c). Since n(fs, y(1))<n(s, F)/e,
at least j of the lifts «,, ..., &, must end in 8Dy, Let I'* be the family of all such lifts
when y runs through I'. By 2.10 with E, equal to the branch set B, of f, by 2.16, and
by the fact that ¢, is 2-bilipschitzian we obtain
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22, M(I'*) < 222K wew,_y
(s, F) (1 —1/c)  n(s, F) (1 —1]c) (log 6)*'

3.7 M, )<

Set 8, = M(A(g, F, 8B(r); B(r))), 6y=M(A(p.A’, 2B(r[2); B(r)\ B(r/2))). In the following
we shall denote by b,, by, ... positive constants which depend only on % and by d,, d,, ...
positive constants which depend only on %, K, 0,4, and ». By 32 Mg )=
3-" min (c, log 2, é,, d;). According to the choice of T we have ¢, log 2> w,_, (log 1/7)1-">6,.

Assume M(p,I') <3-"9,. Then M(p,T') >8~"0,. Let A" = B(re,, c) N 8(r) be a spherical
symmetrization of @,A’, g€]0,2r] being then defined by the condition H" *(4")=
H* Y@, A’). By [21, 7.5] cap (R™\ B(r/2), ,A")>cap (R*\B(r/2), 4"). Assume first
o <r/4. By using an auxiliary quasiconformal mapping of R” onto itself we first obtain
cap (R™\B(r/2), 4")>b, cap Ry(4r/c) where Ry(v), v>1, denotes the Grotzsch ring. In
condenser notation Ry(v)=(R™\ {x€R"|z,>v, z,=...=2,=0}, B(1)). By the n-dimen-
sional analog of [3, Lemma 8] we have cap Rg(v)>b, (log v)-". It follows that
cap (R B(r/2), A”)=b, (log (4r/))*-". This is true also if o¢>r/4. By (4, Lemma 1]
8, =21 cap (R*™\ B(r/2), p,4’). By putting the estimates together we get M(p,I')>
3-"2-1p, (log (4r/6))'— which combined with (3.7) gives

exp ((d,n(s, F)(1—1/c)(log 6))1*~?) < dr/o.
Since H"1(A4)<bo" ! and " 1<b, W }(Y) for some b,, we obtain
(3.8) WY A) <bH YY) (exp ((dyn(s, F)(1—1/c) (log G)}) D)y~

By exp u>u we obtain

dyg H1(Y)

(3.9) W A< H =T/ log )"

If M(p,I')>3-"5,, then

dy

(3.10) 61 < 3”.M(¢, P) < (s, F) 1- llc) (log 0)1.

The substitution of (3.9) or (3.10) into (3.8) yields (3.4).

To prove (3.5) set 4,={y€Y|n(s,y)=k}, B,={yEY|n(s, y)=>k} for k=1,2,.... We
may assume ¢ <2 and v(s, ¥)>max (cii(0s, F), 4). Let ¢’ = Ve and k=v(s, Y)/c'. We shall
use a similar argument as for (3.8) and (3.10). Assume }" '(B,)>0 and let B;< B be
compact such that }"~Y(B,)>H""Y(B,)/2. Let ' be the family of paths y: [0, 1] B(z, r)
with 9(0)€ B, y(1)€F. Let y €T, m=n(s, ¥(0)), and let a,, ..., &, be a maximal sequence
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of f| Dy,-liftings of y starting at the points of f~(»(0))n D, given by [19, Theorem 1]. Let j
be the smallest integer such that j=>k—w(s, Y)/c. Since m >k and n(fs, y(1)) <#(0s, F) <
¥(s, Y)/e, at least § of the lifts o, ..., &, must end in @Dy,. As (3.7) we now obtain

222K %, _,
(k—2(s, Y)/c) (log 6)*

M(p, )<

Let 6, be as before, i.e. &,=M(A(p,F, 0B(r); B(r))), and set d,=M(A(p, B, 2B(r/2);

B(r)\B(r/2))).
It M(p,I')<3-"5,, we use the same argument as for (3.8) to get

(3.11) H=Y(By) < bs H*1(Y) (exp ((dy(k — (s, Y)/c)(log O)}/*-1))=*.,

I M(p,T')=3-"6,, then

d8 da c

(3.12) %S G, 1)) (og 6) (s, T) (0 — 1) Uog )"

From (3.12) we get b
dy ¢ (log 6,) "
Y& 1)< 57 1) log 67

which is of the required form (3.5). Thus it suffices to consider the case where (3.11) is
true for all k>(s, ¥)/c’. We use exp »>u%/6 and obtain from (3.11)

dy T H1(Y)

EHY(B,) < k(' — 1) (log )%’

from which

n-1 -1 dg ' H1(Y)
oIS 2 BB 5 G, Tle — DN — 1) (log O

Hence

we, V) SH-NT)! S kWA, +dglg—2)2c%(c’ — 1)~ (log 6)~
k<y(s, Dic’
<H(s, X))o’ +dglg—2)1c%e’ — 1)~ (log 6)~%,
and
¥(8, Y) < dg(g—2)~2c+(c’ — 1)1 (log )%

which is also of the required form (3.5). The lemma is proved.
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4. Averages with respect to h-calibrated measures

4.1. Let u be a measure in N such that Borel sets are u-measurable and 0 <y(N)<oo.
Recall from Introduction that u is h-calibrated if u(B(z, r)) <h(r) for all z€N, r >0, where
h is a calibration function. We shall prove our results on equidistribution of the counting
function for averages with respect to an h-calibrated x4 with h satisfying (1.4) for some
p>2. In this section we shall establish a basic comparison result (Theorem 4.8) with
error terms similar to those in 3.3. In Lemmas 4.2-4.4 we fix a calibration function A
satisfying (1.4), an h-calibrated measure x, and a number p>2 such that (1.4) is true.

The average of n(s, ¥) with respect to u over a y-measurable set < N with u(E)>0
is denoted by v,(s, E), i.e.

(s, B) = p(E) Ln(a, v duw).

We abbreviate v,(s, N) =v,(s) and denote A(s)=v(s).

For A<R" let y,(4) be the infimum of the sums Y h(r,) when A is covered by at
most a countable number of balls B(z,, r;). We need some connections between capacity
and the outer measure y,. Recall the notation 7, and 7 introduced in 3.1.

4.2. LEMMA. There exists L>0 such that
yu(d) < L (cap (B(r), 4)y°
whenever A is a compact set in B(r) and 0<r<r,.

Proof. The proof is similar to that of [17, Theorem 8], cf. also the proof of [8,
Theorem 3.1]. Define &, = A'?, Applying [17, Lemma 6] with A=1, p=n we find positive
constants K, K,, and C such that if u is a nonnegative function in L"(R") with «|(B(r,) = 0
and

w(z)= J; —l(_"'/'i)n_—l aC™y),

(fo) |x_ Yy
then for all >0
¥m {ER"|w(z) > K,[8+ Ky|lull,} < C(8]|u|la)",

where ||ul|, is the L"-norm of u. Here K, and C depend only on n and K, is of the form

To 1/n
K =b, [ m@7 4,
o @
where b, depends only on n.
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Suppose first that cap (B(r), 4) <(2K,)"w;-1. Let £ > 0 be so small that cap (B(r), 4) +
£<(2K,)"wy-1. Then there is a continuously differentiable function »: R*—[0, oo[ such
that v|GB(r) =0, v(z)>1 for z€A, and

fR |Vo|md Lt <cap (B(r), A) +&<(2K,)"wh_;.

We take u = | Vo|/w,_, and define w as above. Then |u]l, <(2K,)-! and by [17, Lemma 3]

“o e lz=g]" (y) < w(x).
We choose § = K, (1 — Ky)|u||,)~2. Then w(x)>1=K,/d+ K,|u|, for z€A and we obtain
i (4) < O(d||ull,)* = CEF(1 — Eyllufln) "ol
< CK?2"w;™ fm |Vo|*dL" < OK} 2" w3 (cap (B(r), 4) + é).

Letting ¢—~0 we get
Ym(d) < CK12"w;”; cap (B(r), 4).

If cap (B(r), A) = (2K,) " wy_1, then
Ym(4) < hy(rg) < by(r,) (2K,)" w3y cap (B(r), 4).
Hence there is a constant L, such that in both cases
VYn(A4) <L, cap (B(r), 4).

The result follows now from the inequality y,(4)<y,(4)® which is true because

2hr)<(2 h(r V7).

4.3 LEMMA. There exists Q>0 such that if 2€N, 0<r<r,, and E is a Borel set in

B(z, r), then ~
UWE) <QM(A(E, 8B(z, r); B(z, )))).

Proof. Let F< E be compact such that 2u(F)>u(E). Let ¢>0 and let the balls
B(uy, ry), t=1,2, ... cover ¢, F such that y,(p, F)+&>3 h(r,). Since v <}, we may assume
B(uy, r,)< B(ry) for all i. The balls B(p;(u,), 2r,) cover F. There exists an integer g,
depending only on 7 such that each B(g;(u,), 2r,) can be covered by at most ¢, balls
with radius r,. Then, since u is A-calibrated,

#(F) < a3 hir) < quyal@e F) +5e.
The result follows then by Lemma 4.2 and the 2*"~2.quasiconformality of ¢,
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44. LaEMMA. Let 2<q<3. For ecach c>1 there exists d >0 such that the following holds.
Let zEN, 0<r<r,, E a Borel set in B(z, tr) with u(E)>0. Then

d
(4.5) ov(0s, Stz ) >4l B) = gy iog Gy
and
d
4.6) V(s St ) < ovBs, B)+ S o gy

whenever ay,<s<0s<b, 6<0,.
Proof. To prove (4.5) fix 5,0, and set Y =8(z,7), ¢’ = Ve,

E,= {w€E]|n(s,w)=k}, k=1,2,..,
A= {yeY|n(s, y) <c'v(fs,Y)}.

For k>cv(0s, Y) let T) be the family of paths y: [0, 1]»B(z,7) such that y(0)€ E,,
y(1)€A. Then as in the proof of Lemma 3.3 we obtain by 2.10 and 2.16

2n-2
2 KI HWy_y

(k—c'v(0s, Y)) (log 0)*

4.7 Mg, T <

Since »(fs, Y) N {(Y)>c'v(fs, Y)H (Y 4), we have for »(fs, ¥Y)>0 ¥ Y4)>
W1 (Y)(1—1/c’). This holds trivially if »(6s, ¥) =0. Then M(A(p,4, dB(r/2); B(r)))=>a>0
where o depends only on n and ¢’. From Lemma 3.2 we obtain M(p,I}) >
3-" min (M(A(g, By, 2B(r); B(r))), «, ¢, log 2). By the choice of t M(A(g, E,, dB(r); B(r))) <
¢, log 2. Hence M(g,I',)>3"" min (1, a/(c, log 2)) M(A(p, E,, 2B(r); B(r))). With (4.7) this
yields

B dy
M (BB, 0Lz, 7% Ble, ) < 357 Gog B

Here we denote by d,, d,, ... positive constants which are independent of s, 6, z, r, E, and k.
By Lemma 4.3 we hence obtain for k>cv(0s, Y)

dy
P11 —-1/¢'y (log )"

ku(B,) <
The inequality (4.5) follows then from the estimate

fn(a,y)dﬂ(y)= > kwB)+ 3 kw(E,)
E k Y)

<ew(s, k>cv(0s, Y)

< cv(fs, Y) u(E) + dg (log 0)~2,
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To prove (4.6) we make use of (3.5) in Lemma. 3.3. If
E' = {w€ E|n(0s, w) <c'v,(0s, E)},

then u(E)v,(0s, E)>c'v,(0s, E)u(EXE'), hence u(E')>(1—1/c')u(E). Lemma 4.3 gives a
constant @, such that u(E')<Q, M(A(E’, 8B(z, r); B(z, 1)), and hence by Lemma 3.3

b
w(E) (log 6)*

dy
M(E) (log 6)*

v, Y)< ¢'7i(0s, E') +

<ov,(bs, By+

The lemma is proved.

4.8. THEOREM. Let u be an h-calibrated measure in N with h satisfying (1.4) for some
p>2. Then for each c¢>1 there exists d>0 such that

(4.9) cA(fs) = v,(s)—d (log 6)~"2
and
(4.10) A(s) < cv,(68) +d (log 6)-72

whenever a,<s<0s<b, 6<0,.

Proof. We observe that the Lebesgue measure of N is hy-calibrated with Ay(r) = Cr",
where C'>0 is a constant, and the function &, satisfies (1.4) for any p>0. We shall first
prove (4.9). Let p>2 be as in the theorem and set ¢ =min (p, 3). Fix ¢>1 and r€]0, ry[.
We cover N by balls V,= B(z,1r), t=1, ...,I. Let E,c V, be disjoint Borel sets such that
CYE)>0 and .

N=UE,.
=1
Let o be the minimum of the numbers C*E,), LV N V) for VN V,+@,4,j=1,..,1L
Fix ¢, s and §. We shall first estimate v ,(s, E,) from above provided u(Z,) >0. Set ¢’ =c!,
6’=06"". Let 1<j<l. We can choose a chain X,, ..., X,,, m<l, of the balls V,, ..., ¥,
such that X, =V, ,Z, =X, NX,,+9, k=1,..,m—1, and X,,=V,. We apply (4.5) to
4 and (4.6) to £* and obtain

' ' 1 1
4.11) v,(s, B))< c'ven(0's, Z,y) +cl(,u(E,) (log 0)9/1"' AN, 0)"‘)



AVERAGES OF THE COUNTING FUNCTION OF A QUASIREGULAR MAPPING 201
where ¢, >0 is independent of s, 8, and E,. Similarly
(4.12) ve(08, Zp,) < c'ven(07* '8, Zy, 1) +2¢, a2 (log 6)—94
for k=1, .., m-2, and
(4.13) ve(0'™ 8, Z,, ) < Cvn(0'™s, B)) +2¢, a2 (log B)-2.
The inequalities (4.11)—(4.13) give
vu(8, B,) < cven(0, B;) +d,y (log 0)~%% +c, u(E ) (log 0)—2*
where d, = 2lc, ¢/a. Multiplying by u(E,), summing over ¢, and dividing by u(N), we obtain

(4.14) %,(8) < oven(fs, B,)-+d (log 6)~4A -+, Ju(N)-1 (log 0)~2
Soves(0s, Bp)+ (dy+ ¢, Ju(N)™) (log 6)24,

where dy=d, max (1, (log 6,)*2). Multiplying (4.14) by C"(#,), summing over §, and
dividing by L*N), we obtain

v,(8) < cA(0s) + (ds+, lu(N)™) (log )2,

The inequality (4.10) is proved similarly as follows. In place of (4.11) we obtain by
applying (4.5) to £" and (4.6) to u the inequality

(4.15) veul0™ 18, Zy) < v, (0", B+ %(#Zl) + ;T(lﬂ) (log 6)~%,

The inequalities (4.12) and (4.13) are replaced by
(4.18)  yu(0™ %15, Z, ) < Y0 Fa, Zy) + 20,07  (log 0)-4, k=1, .., m—2,
(4.17) ven(8, B,) < c'venl(0'8, Z,,_y) +2¢, a2 (log 6)—92,
respectively. The inequalities (4.15)-(4.17) give
ver(s, By) < cov,(0s, E)) +(d, +cyu(E))?) (log 8)—2.
As in the end of the proof of (4.9) we obtain from this the inequality (4.10) in the form
A(8) < ov,(08) + (dy + ¢, lu(N)) max (1, (log 6y)%4) (log 6)~"4.

The following theorem shows that a weaker assumption is enough to ensure a onesided
estimate.
20 ~ 792908 Acta mathematica 143. Imprimé le 28 Décembre 1979
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4.18. THEOREM. Suppose that u i3 a measure in N, 0 <u(N) <o, all Borel sets of N are
-measurable, and there is a calibration function h satisfying (1.4) for some p>2 such that

the condition
lim sup u(B(z, r))/h(r) <1
r->0

holds for u almost every x€N. Then for each ¢>1 there is d>0 such that

A(s) < cv,(6s) +d (log 672
whenever a,<s<0s<b, §<4,.

Proof. Set ¢’ =}c. The function z+>lim sup,.ou(B(z, r))/h(r) is.a Borel function. In
fact, for each r >0 the function x+>u(B(z, r)) is lower semicontinuous and since u(B(z, }))
is increasing in r and % is continuous, the upper limit does not change if r is restricted
to positive rational numbers. Hence there are a Borel set #<N and r, >0 such that

c'u(E)Zu(N) and
W Bz, r)) < 2h(r) for x€E, 0<r<ry;

thus
MEN Bz, r)) <2h(2r) for z€N, 0 <r<r2.

It follows that the restriction measure A+>u(E N A) is hy-calibrated with A (r)=C k(2r)

for some C>0. Clearly 4, satisfies (1.4) for p. By Theorem 4.8 there is d >0 such that
¢'v,(0s, E) > A(s)—d (log 6)—"*

whenever a,<s<0s<b, 0 <0, Hence

cvu(08) = cu( E)u(N)v,(0s, E) > c'v,(0s, E) > A(s)—d (log 0)~72.

5. Main results

In Section 4 we presented in Theorems 4.8 and 4.18 basic comparison estimates with
a ratio 6>1 in the exhaustion parameter and with error terms. We shall now turn to
establish results without a difference in the exhaustion parameter. For this purpose we

need two lemmas on real functions which are refinements of Lemma 4.14 in [20].

5.1. LeMma. Suppose that 1 <c' <c, ¢y, 0 >0, that p is a non-negative, continuous, and
tncreasing function of [a,b[, and either b=oco and limg,y(8)=o0, or b<oc and
lim sup,,, (b—8)y(8)!/° = co. Then there exists a set A<[a, b[ such that

(5.2) f%"w it b= oo,
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(5.3) lim inf 'M;‘?—’b—[) =0

n i - if b<oo,

and the following holds:

(i) If ¢: [a, b[>R, = {rER|r>0} is such that

p(8) < ¢'p(0s) +c, (log 6)°

for all s and 0<0,, a,<s<0s<b, then
(54) pls) < cpls)
for all s€[a, B\ A.

(i) If ¢: ia, B[—>R, is such that

¢~ 1gp(s/0) — ¢, (log 6) ™7 < y(s)

for all s and 0<6,, a,<s/60 <s<b, then
(6.5) Pl8) < cyls)
for all s€la, b\ A.

Proof. We choose constants M >1 and ¢, > 0 such that ¢(1 —c,c3) =c¢' M, ¢’ M(1 +¢,c3) <c.

We may assume p(a,) >1. Set
B(s) = cay(s)°[ps

where p >1 is chosen so that for s>a,
(log (1+1/3f(8)))™° < cgp(s).

Since y{s)—=>cc as ¢—>b, we may assume that 1+1/sf(s)<(1—1/sB(s))1<h, for s=>a,.
Let F be the set of all s€[a,, b[ such that s+ 1/8(s)=b or the inequality

p(8+1/B(s)) < My(s)

does not hold. We denote 8,=1+1/s(s).
We shall first prove (i). Let ¢ satisfy the hypothesis in (i) and let s€[a,, b F. Then
c'p(0,8) >p(8) —c; (log 6,) ™7 >9(s) (1 —c,¢58) Zp(0,8) (1 —cy c§)/| M >'y(B,)/c, hence

(5.6) (6,8) < c(6, ).
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We consider first the case b = co. This part is similar to the proof of [20, Lemma 4.14].
We define a sequence a,=ry<r, <r;<r;<rp<... as follows. Let r, =inf F N Jr;_,, o[, and
if 7, <o, set 7, =17, +2/B(r;). Consider then the union

E=U [ e
k21

of intervals where g, =ry+pri/cap(r)V°. If w€18,,aq, ©o[\Z, then since ¢ is increasing,
there exists s€Ja,y, oo\ F such that u=0,s and (5.6) holds. It hence suffices to estimate
the logarithmic measure of E. We obtain

dr

gy
<2 f =< 2 (@—rln
ET 1 T k21

- 2 (=t )

( 2p p(l+2p/ca))_
Bi\Ga )" ()

The last sum is finite because of

Y1) = plri) > My(r).

Assume then b<oo. Let 0<e<} and a,<t,<b. By assumption there exists ¢ €E[¢,, b[
such that

4pb
- Yoo, 2P0
(6.7) 6= 90> —
Set £, =b—e(b—t). It suffices to prove that (5.4) is true in {¢, {,] outside a set independent
of ¢ and of length <2¢(b—¢). We consider two cases:

Case 1. FN), 4,]=0. If s€W, 4], we have 0,8—s<bp/c,y(s)'"<e(b—t). Hence
{0,8|8€, t,[} covers the interval Jt+e(b—¢), ¢,[ and (5.4) holds by (5.8) in [¢, ¢,] outside
a set of length e(b—1).

Case 2. FN Jt, 1,14 @. Now we define a sequence ¢ = ry<r, <ry <r, ... <r,<rg of points
in [¢, b inductively by 7, =inf F N ri_,, b, 7 =7, +2/B(r;) such that ¢ is the last index &
for which F N Jri_y, b[+D and r,<t,. If now u€}t +e(b—1t), t,]\E where E is defined as
before, then there exists s €J¢, §, ]\ F such that » =0,s and (5.6) holds. For the length of E
we get an estimate as follows:
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2 & 4pb 4pb
YE)< - <
‘C ( ) kgl (Qk rk)< Icg:l Ca ,‘P(,rk)lla Cay)(t)lla(l — llMlla)

<egb-—t).

This yields the desired result.

Next we consider (ii) in the case b= co. Let t>a, and let s’ €[t, o[\ F. Since p is
assumed to be continuous, there exists 8€[t, oof such that s’ =s/{,=s8—1/f(s). From the
choice of p it follows that also (log {,) 9 <c3y(s). Let ¢ satisfy the assumption in (ii).
If s<s8'+1/8(s'), we get

¢ p(s’) Sp(8) +¢, (log £,)™° S p(s8) (1 +¢.65)
<o +1/B(s")) (1 +¢,68)
< M(1+ce8)pi(s’) < cc'ly(s’)
which is the desired inequality for s’. On the other hand, if s§>s8 +1/8(s'), we get

B(s') > B(s), hence /
'_E(_sl)) /g _ )
(%) =1 e

By choosing ¢ larger if necessary, we obtain My(s’) >y(s) which yields the desired inequality
for s'. It thus suffices to estimate the logarithmic measure of F ], oof. This is done by
a similar but simpler argument as used in the proof of (i), in fact F Nt oo[< E.
Finally, to prove (ii) for b< oo we let 0<e <}, a,<1,<b, and choose {€[t,, a[ so that
(6.7) holds. We can imitate the case b= if we require 8’ €], t,[\F and observe
Fnlt, t,]J< E where t;, and E are defined as in the proof of (¢) for the case b<co.

5.8. LEMMA. Suppose that y is a function on [a, b satisfying the hypothesis of Lemma
5.1. Then there exists a set A<[a, b[ sattsfying (6.2) and (5.3) and such that the following holds:
If g:[a, B[R, is such that for every c¢>1 there exists c,>0 with

p(9) < cp(0s) +¢, (log 6)~°
for all & and 0<0,, ay,<s<0s<b, then

lim inf @(s)/y(s) 2 1.
=

2¢A

If @: [@, B[ >R, is such that for every c>1 there exists ¢, >0 such that

c~1(8/0) — ¢, (log 8)° < p(s)
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for all s and 6<0,, a,<s/0<s<b, then

lim sup g(s)/p(s) < 1.
s>b

s¢4

Proof. We shall first prove the first part in the case b= oo. If E is a measurable subset

of [a, o[, we denote
ds

tE=| —.
8
First fix ¢>1. For m=1, 2, ... let F,, be the set of all those ¢ satisfying the hypothesis
of the first part of the lemma for which the corresponding ¢, <m. By Lemma 5.1 there
exists 4,,<[a, o[ such that 4, <oo and yp(s)<cp(s) for all p€F, and s€[a, o[\ 4,,.
Choose a sequence g, 7 oo such that 74,,<2 ™ where A, =A4,N [0y, °[. Let 4= U4,.
Then 14 <oo. Let @ satisfy the hypothesis of the first part of the lemma. Then there is an m
such that € F,. If s€[a, o[\ 4 and 8>g,,, then s€[a, o[\ 4,, and y(s) <cgp(s). Hence

lim inf 2& > 1/c.
sv0 P(8)
s¢4
Next choose a sequence d,, 1, denote by A™ the exceptional set corresponding to ¢ =d,,,
and apply a similar g,,-method as above to the sets A™ to obtain a set A< [a, o[ such that
74 < oo and
lim inf 28 > 1.

0 Y(8)
344

In the case b< oo for a fixed ¢>1 we choose the sets 4,,<[a, b given by 5.1 so that

1
L£Y(4m D [, b[)< 1/m
b—t,
for some sequence f, b satisfying b—t,,, <(b—t,)/m. With A,=A,N[ty,, tn] set

A=A, Then clearly
CHAN[EB) _

hT.,.mf h—¢ 0
and
lim int 28 > 1c.
o P(8)
s¢A

Repeating the procedure for a sequence d,y1 we get as in the case b= co the desired
result.
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The second part of the lemma follows similarly.

5.9. Remark. Observe that the continuity of ¢ was used only in the proofs of the
second parts in 5.1 and 5.8.
The following result takes care of the case where A(s) is bounded in the case b= oo,

5.10. LEMMA. Let b= oo and lim, o A(s) =d < oo, Then limy,on(s, y) <d for all yEN
and limg,on(s, y)=d for ye N\ E where E< N i3 a Borel set of capacity zero.

Proof. Set
F = {y€N|lim n(s, y) <d},
=900

A= {yeN\F|nj, y) > d +1/j}.
Suppose L F)=0. Then £*4,,)>0 for some j,, and for s>jy, !
A(8) = ((@+1/jo) L4 1) +dLY(By)) L'(N),

where B, = {y € N\ F"\ 4,,| n(l, y) > d}. Thelower bound for 4(s) tends to (¢ +1/jo) L*(4,,) +
dLMNN\4,))/LN)>d as l->co, which gives a contradiction. Hence C*(F)>0. This
implies cap F>0.

Suppose now that cap (N F)>0. Then cap 4,>0 for some j. Let now I be the
family of paths y: [0, 1]->N such that y(0)€4,, y(1)€ F. If y €T, there exists by the analog
of [19, Theorem 1] for manifolds for s>j a maximal f| D,-lifting « of y which starts at a
point in f-2((0)) N D, and which ends in 8D,. Denote the family of these maximal lifts by
I',, Then M(I'})=>0 as s—~co. But M(fT',)=>M(I')>0 because cap F, cap 4,>0. This
contradicts for large s the inequality M(f,)<K,M(I',) in 2.11. We have proved
cap (N F)=0. Let ye N\_F. Then n(s, y)>d for some 8. Since the exhausting sets
satisfy D,c D, for s<t, we also have n(t, z) >d for z in a neighborhood of y for t>s+1.
Therefore N\_F is open and thus empty.

To prove the second statement set

H = {y€N|lim n(s, y) = d}

and suppose cap (N\\H)>0. Set C,={y€N|n(s, y)=d if 8>5}. Then H is the union of
the sets C, and since F =N, we have £*C,)>0 and hence cap C,>0 for some j. Let now
I be the family of paths y: [0, 1] N with y(0) €C,and y(1) EN\ H. If I'; denotes the set of
maximal f|D,liftings for s>j similarly as above, we get again a contradiction with
M(fT;)<K,M(T;) as s—cc. The lemma is proved.
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We are now in a position to give our main result. Recall that f is a quasiregular mapping
of a non-compact Riemannian n-manifold M into a compact Riemannian zn-manifold
N, n(s, y) is the counting function of f with respect to the given admissible exhaustion of M,
and A>n—1 is related to this exhaustion by the inequality (2.17). Recall also that v ,(s)
and A(s) are the averages of n(s, y) with respect to a measure x and the Lebesgue measure
of N, respectively, and that u is h-calibrated if uB(x, r) <h(r) for all balls B(z, r)= N.

5.11. THEOREM. Suppose either b= o0, or b<co and lim sup,,,(b—s) A(s)"?* = oo
for some p>2. Then there exists a measurable set A<[a, b[ such that

f-d—8<°° if b=oo,
Aa

1
limint ZA0E0 o i peo
8>b b—s
and the following holds. Let p be @ measure in N such that 0 <u(N)<oo and Borel sets of
N are y-measurable and let h be a calibration function satisfying (1.4) for p.
(1) If u is h-calibrated, then
. Vul8)
lim £-=1,
s»0 A(8)

8¢A

(2) If lim sup,.o u(B(x, r))/h(r)<1 holds for u almost every x€N, then

ON
hlﬁ.},an(s)’l'
s¢4

Proof. If b<oo or b= co and lim,,,A4(s) = oo, the proof follows from 4.8, 4.18 and
5.8. Suppose then that b= oo and lim 4(s) =d < oo. Consider (2). As in the proof of 4.18
we conclude that for each £ >0 there exists a Borel set F< N such that u(N\ F)<e¢ and
T u(FN T) is hy-calibrated for some h, satisfying (1.4) for p. Let E be the Borel set of
capacity zero in 5.10 and let E'c £ be compact. By the application of 4.3 to sets
Fn B(z,7r)N E' we conclude u(E’'n F)=0. Hence u(E N F)=0 which implies u(E)=0.
If C, is the Borel set {yEN|n(s,y)=d if 8>7} for j=1,2, ..., and H=N\E, then by
5.10 for s >4

du(H) > Ln(& y)duly) > fc (s, y)du(y) = du(C)),
1

from which the assertion follows since u(C,)->u(H), in fact we obtained the conclusion in
(1). (1) follows from this.
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5.12. Remarks. 1. The conclusion (1) is essentially included in [20, Theorem 4.19]
for the following special case: M =R" with the standard exhaustion by balls, N =R",
WF)y=W"YFNnY), Y an (n—1)-dimensional sphere.

2. If in Lemmas 5.1 and 5.8 we assume in the case b < oo that lim,.,;, (b —8)y(s)!?* = co
and in Theorem 5.11 the same for y(s) = A(s), then the set A can be chosen so that

lim S0 _
s—b b—s

This follows by direct inspection of the proofs of 5.1 and 5.8. It is possible to draw
the conclusion in (1) in the hyperbolic case b < oo under the weaker condition
lim sup,.,(b—s)A(s)"*=co for a smaller class of measures u. This is for n=2 and A=1
recognized as a condition which ensures regular exhaustibility of a covering surface in [1].
3. We shall show in Example 6.1 for n=2, b= oo, by a meromorphic function that
the assumption for y in (2) is not sufficient to draw the conclusion in (1). In Example 6.5
we show that the condition of finiteness of logarithmic measure of A cannot be improved.
4. If X is a compact k-dimensional C* submanifold of N, k>1, then the measure
E—W(ENX) is h-calibrated with h(r)=Cr* for some constant C>0. The same con-
clusion holds also for k=n if X is an L£*-measurable subset with £L*X)>0 or for =2,
k=1 and X is a regular curve in the sense of Ahlfors [1]. ‘
5. Let b be a calibration function satisfying (1.4) for some p>2 and let u" be the
Hausdorff measure generated by h. If E<N is u"-measurable with 0 <p*(E)<eo, then
lim supy,o u*(E N B(x, r))/M(2r) <1 for u" almost every x€E. One can prove this by a
method similar to that of [2, 2.10.18) by observing that any ball B(z, 5r)< N can be
covered with k balls of radius r where k is independent of z and r. By the use of the
calibration function h,(r)=h(2r) we obtain that the conclusions in 4.18 and 5.11(2) hold
with u(F)=u™ENF), F<N.
6. It is clear from the proof of 4.8 that if N is not assumed to be compact, averages
with respect to measures supported in a compact subset of N are still similarly comparable.
As an application of Lemmas 3.3, 4.4 and 5.1 we are able to prove the following

result on pointwise behavior of the counting function.

5.13. THEOREM. Suppose that either b= or b<oo and lim,,, (b—8)A(8)!P = o
for some p>2. Then there exist a sequence (3,) and a set E< N of capacity zero such that
lim 8;=b and for all ye N\ E

: n(sh y)
lim —*=1
= Als)
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Proof. We shall present the proof for the case b=co. The case b<co is handled
similarly with regard of Remark 5.12.2. We cover N by balls B, = B(z,, t7,(2), k=1, ..., m,
where 7, and 7 are as in 3.1. Denote C; = B(z, r,/2),

Vi(8) = veals, By),

and let 4 be the exceptional set of Theorem 5.11 with {, ds/s<co. Then each v is
continuous and

5.14 . Vi(8) _
&1% e~ "

8¢A

Let ¢>1. Combining 3.3 and 4.4 for ¢=min (p, 3) with u replaced by L£* and £
replaced by B,, we find that given 4 >0 there is d; >0 such that

n(8) <Veii(s, F)+d, (log 6)-72
n(8) = n(s/0, F)[yc—d, (log 6)—"4

whenever F is a set in B, with M(A(F, 8C,; C)) >0>0 and a,<s/6 <0s<b, 6<6,. By

Lemma 5.1 there is a set A;<[a,, o[ of finite logarithmic measure such that A< 4; and
c7ln(s, F) <ws) <cn(s, F)

whenever F is a set in B, with M(A(F, 80,;C,))=6>0 and s€[a,, o[\ 4;. We can
choose 4, independent of k¥ by taking union. Set

E, .= {yGBkln(s, ¥) > cn(8)}V {yGB,,|n(.9, y) <wnl(8)c}.
Then for all s€[ay, o[\ 4;, M(A(E, ,, C,; C;)) <24. For each positive integer ¢ choose

8,=8,(c, 8) €E[ay, o[\ Ag-+-15 such that lim s,= co. Then

(6.15) M(A(G E.s, 8C;; 0,,)) < 3 M(A(Bh.s, 9Cy; C)) < E 2748=40.
i=1 f=1

i=1

Choose now sequences ¢, 1, 8,0 such that >, ;8,<d; and for each j a sequence
8;,¢=8(c;, 8,) as above. Letting s,=s, ; we will show that

(5.16) lim " ¥ _
150 Vi(81)
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for all y€ B, outside a set of capacity zero. Suppose this is not true for some k. Assume
e.g. that

cap {y €B,|lim sup ™8 Yy) 1} >0.
oo V(84)

Then for some j, M(A(D,, 2C;; C,)) >4, where

: ”(30?/) }
D,= iy € B,|lim sup — =" > ¢;.
() {ZI kl ‘_mP el3)) i}

From (5.15) we obtain M(A(E,, 8C,; Cy)) <4, where

If lim supy,o n(8y, ¥)/v(8;) >¢,, then there is i>j such that n(s, ,, y)/¥.(s; ) >¢;=¢;, which
yields D,= U, E, and

e, 9) >¢, for some i}.

Vie(8y,4)

8; < M(A(D,,8Cy; C)) <'Z M(A(E, 8Cy; C)) < Zjéa <94,
>J >

This contradiction shows that (5.16) holds. The theorem follows now from (5.16) and
(5.14).

5.17. Remark. In the plane Miles has proved for meromorphic functions a result
which is stronger than 5.13 in the sense that the limit is obtained outside an exceptional
set for the exhaustion parameter, see [12, Theorem 2].

6. Examples

In this section we shall present two examples of meromorphic functions in the plane
refered to in Remark 5.12(3). Corresponding examples of quasiregular mappings for
dimensions 7 >3 of equal sharpness have not been constructed. In the following we shall
denote by (s, B) =w,(s, E) the average over an }!-measurable set E with 0 <¥(E) < oo,
where ! is the normalized i-dimensional Hausdorff measure in R2.

6.1. Example. We shall construct a nonconstant meromorphic function f: R?—R2
such that for each ¢>1 there exist a set £<R? which is a countable union of circles
centered at the origin with W(E)<co and a measurable set 4<[1, oo such that

(6.2) i(r, B) > cA(r) for r€A,
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and

(6.3) S

where the exhaustion is the standard exhaustion by disks.

Our function f will be a slight modification of the meromorphic function in Theorem 4
in [23]. We define an increasing sequence 8,, s, ... of integers by the condition sy_, =84_; =
84 =844, =1+10 for ¢=1,2, ... and set s, =s,. We set r, =exp ((2s,)") and

@

flz)=TT (1 —2[ry)*".
m=1
Fix i and set m =44, 0, =7k 4, o, =rit1%» Arguing as in [23] we obtain A(p,,) <2s77,
@ 4

n(r,,, 0)>sy. Similar calculations give the estimate
_gm-1
h=ra" <|Hz)] for on<]|z]|<g.

Set d=12c—s, and u,=8,,4/(8n1a+8)—8y/(8n+3). The set E is constructed as follows.
Let E, be a union of p, disjoint circles with center 0 and radii in the interval [1,/2, A,] where
2u,/(7d) <Py <2uf(mh)+1. Then set E= UR, E,.

Suppose ¢, <7 <p,. Then

(6.4) j nir, ) dWE) > S f n(r, ) dHG) > nlrn, 0) 5 1
E i=t JE =1
m dsp
= ™rm: 0) (1 T 8+d) T ot d

Since HUE)<ZP;3u;=3(1~—s,/(s;+d)), we get with (6.4) for s,>d,v'(r, E)>cA(on).
Finally, let my=4i, be such that s,,>d and set

A= 'l_J‘ [Oa1; 00

Then (6.2) holds for r€A4 and clearly A satisfies (6.3).

Denote by u the restriction measure C'+>3(Cn E) of 1. Then y is a measure in R?
and satisfies the condition in 5.11(2) for h(r) = 2r, u almost everywhere, in fact in all points
except 0. Hence the conclusion in 5.11(2) holds. On the other hand, (6.2) and.(6.3) show
that the conclusion in 5.11(1) is not true for u. From the conctruction it is clear that such
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a u is also obtained by giving the Lebesgue measure a weight which has a suitable
singularity at the origin.

6.5. Example. We shall show that there exists a disk £<R? and & number ¢>1 such
that for a given decreasing positive function ¢ of the positive real axis with ¢(r)—~0 as
r—> oo there exists a meromorphic function f: R*—R? such that with respect to the standard
exhaustion by disks we have

v¥(r, B) >cdA(r) for r€A,

where A<[1, o[ is a measurable set which for some r,>0 satisfies

f dr >e@(r) for re€fr, cof.
4

atr.oof T

In this example we take for u the restriction measure C>H*(C'N E). Then u is h-calibrated
with A(r) = Cr? for some C>0.

The following construction was given by S. Toppila. For 1 <r,<g,< R, withr,R,=¢}
and ¢, a positive integer consider the function

gi(z) = (L —(2/r)*) (L —2[o,) %41 —z/ R )¥.

For small and large |z|, g(z) is near 1, and if p,/r, is large, the behavior of g,(2) is determined
by the first factor near |z| =r, Set hy(2)=1—(z/r)% and o,=r,/2t,. Then the counting
function of A, satisfies for r,<r<r,+a,

m(r, y)=14 if y€BYl)+1,
mlr,y)=0 if yé¢B}2)+1,

and we choose g,/r, so large that for g, we have

ny(r,y)=1¢, if yeBY(l-6)+1,
n(r,y)=0 if y¢BY2+4)+1,

where § is some number with 0 <8 <}. Let p >1 be an integer and set ¢, = (1 + p)!. Then
k-1

(6.6) p S t<t,.
t=1

We may choose the ratios g,/r, and r,,/R, so large that the meromorphic function
f: R*—R2,
-]
Hz)= ﬂ 9:(2),
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behaves up to a small error term as h,(z) near |z| =r, With suitable choices of these ratios
we have then for the counting function of f for 7, <r<r,+0o;

k-1

n(r,y)=‘zl2t,+t,c if y€BY1/2)+1,

k-1

n(r,y)< > 24+t if y€EBY3)+1,
i=1

k-1

n(r,y)< 2 2, if y¢BY3)+1.
f=1

Set E=B%(4)+1, F=B%3)+1, and let § be the spherical measure of F divided by the
total spherical measure z. Then for 7, <r<r,+ao

k-1 k-1
A(r)< ﬂ(gl 2, + t,,) +(1-8) 21 2t,,

k-1

vi(r, B)= 3 2,+4,.
i

-1

With regard of (6.6) we obtain

1
A(r)Wir, B)< B+ H_——p—/é(l —-B)=1le<l for r,<r<n+o.

Let now ¢ be a decreasing positive function with ¢(r)—>0 as r—co. Since

e+,
f‘ ‘d—:=log (L+1/2t)

L]
is independent of r,, we may choose the r/s in addition so that

@© Tyt o d’.

P(re-1)< 2
1ek J1; r
We can therefore take U§2, [r, 7, +0,] to be the required set 4.

The problem of covering a disk more than A(r) was also considered in Example 2 in[12].
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