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1. Introduction

It is a well known consequence of the Hardy-Littlewood Circle Method that a dio-
phantine equation
G+ e -G, 7 =0 (L.1)

has a nontrivial solution in nonnegative integers z;, ..., x,, provided only that s >¢,(k) and
that the coefficients a,, ..., a, are not all of the same sign. In the first paper (4] under the
present title, the author proved that if £>0, and if at least cy(k, ) of the coefficients are
positive and at least cy(k, ¢) are negative, then the equation has a nontrivial solution in

nonnegative integers with

|2)| S AP+ (Suml, ..., ) (1.2)
where

A =max (1, |ay], we |a])- (1.3)

In the equation b, (2} +... +2F) — by(xfs1 + ... +2%;) =0 where by, b, are coprime and positive,
every nontrivial solution in nonnegative z,,..., %y has some z,>(B/t)'* where B=
max (by, by). This shows that the exponent in (1.2) is essentially best possible.

In particular, it follows that if k is odd, if 8 >2c,(%, €) and if g, ..., a, have arbitrary
signs, then there is a nontrivial solution of (1.1) in integers a, ..., #, (not necessarily
nonnegative) with (1.2). This latter result had also been shown by Birch [1]. But much
more is true. We will show that 1f k is odd and if 8=>c¢4(k, €) where £>0, then (1.1) has a
nontrivial solution in integers 2, ..., z, with

|z, <4° (i=1,..,9). (1.4)

(1) Written with partial support from NSP grant NSF-MCS 78-01770,

15—792908 Acta mathematica 143. Imprimé le 28 Décembre 1979,
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It is well known (see the remark in [1]) that this result has applications to diophantine
inequalities involving forms of odd degree with real coefficients; more about these

applications will be said in subsequent work.
The example given above shows that a similar result cannot be true if & is even.

The trouble is that the values of 2* cannot be negative in this case. To help such & over-
come their handicap, we replace powers z* by ¢z* where ¢ may be 1 or —1. We then have

the

THEOREM. Suppose k, s are natural numbers with s>c(k, &) where ¢>0. Then given

integers a,, ..., a,, the equation

010, %5+ ... + g, a2k =0 (1.5)
has a solution in numbers oy, ..., 0,5, %y, ..., T, where each o, 18 1 or —1, and where the x,
are integers, not all zero, with (1.4).

Our proof employs the Circle Method but is no straightforward application of this
method. It is similar to the proof in the first paper [4]. We will again use a result of
Pitman {3], but with the expection of two lemmas the present paper is independent of
[4]. Our method allows in principle to compute explicit values for ¢,(k, €), but the values so

obtained would be extremely large.

2. Preliminaries
We are dealing with additive forms
A = Ax) = A2y, ..., 7,) =, 75+ ... +a,xF
with integer coefficients in vectors x=(xz,, ..., z,). If 4 is not identically zero, put
A = (@A) 2 + .. + (@fd) 2,

where d>0 is the greatest common divisor of a,, ..., a,, and if 4 is identically zero, put

A = A. Put
| A =max (1, |a,], ..., |a]),

and denote the number of variables of 4 by s(A).

When k is odd set X =1Z, the ring of integers. When % is even, let X be the set of
products u{ where «€Z and where { is a (2k)-th root of unity. In either case we see that
2% = |z|* or 2% = — |2]* for each € X, and both possibilities actually do occur. X is closed
under multiplication. Let X* consist of vectors X = (2, ..., ) with components in X;

for such x set
[x| = max (|z,], .., |]).
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For x€X*, 4(x) is always a rational integer. We say that .4 represents an integer z if
there is a nonzero x€X° with 4(x)=2. We write 4—2z in this case, and we put

y(A|2) =min x|,

where the minimum is taken over nonzero x€X*® with 4(x)==z. It is clear that 4—0 is
equivalent to 4'—>0 and that
p(A|0) =y(A'|0). @.1)

Our theorem may now be formulated as follows.
If A is a form with s(A)>c,(k, €), then

P(A]0) <|A|" (2.2)

Put xAu if z,u,=0 for i=1, ..., s. We say that 4 represents a form B=B(y,, ..., y,) if
there are x,, ..., X, in X* with x,4=0 (1<i{<s) and x; A x; (1<¢<§<s) such that

B(ys, s ¥) = Al X+ Y %). (23)

This equation means that
By, s Ye) =by i +... + byl (2.4)

where b,= A(x,) (¢=1, ...,t). Whenever 4~ B put
¥(A| B) = min (max (|x,], ... |x])),

where the minimum is over ¢-tuples Xy, ..., X, as described above which have (2.3). If
A—B and B—z then 4—z, and in fact

w(A|2) <p(A| B)yp(B|2). (2.5)

3. Reductions

In all that follows, & will be fixed and we will not explicitly express the dependency
of constants or of sets on k. Let A be the set of numbers u>0 such that there is a
cs=cg(u) with the property that every form 4 with s(4)>c; has

p(A0) < | A~ 3.1)

By the work of Pitman {3], A is nit empty. Let 1 be the greatest lower bound of A.
By [1] or [4], A<1/k. Our goal hcre will be to show’ that

A=0. (3.2)

We will suppose that A>0 and v.e will reach a contradiction.
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The polynomial g(p)=A+kA2—kio—k?A% —p has g(A)=—%213<0. Hence we can
pick g with

0<g<4 (3.3)
and g(p) <0, i.e. with
A+ kA2 —kAo— kA% <p. (3.4)
Pick >0 so small that
i) o+84y <4, (3.5)
(ii) » <1/5,
(iii) » <g/10.
Finally pick x4 with
max (o +84v, A—4Av) <u <AZ. (3.6)

We will show that u€A, and this will be the desired contradiction. We will show that
(3.1) holds whenever s(4) is large. We clearly may suppose that no coefficient of 4 is zero.
Suppose we can show that (3.1) holds whenever both | 4| and s(4) are large. A short
reflection shows that (3.1) is true when | 4| is under a fixed bound and when s(4) is
large. Hence it then follows that (3.1) is true if just s(4) is very large. Thus it will suffice
to show the validity of (3.1) when both |A4| and s(A4) are large.
Pick 7 with
max (o +81y, A—4v) <z <pu 3.7

and choose >0 so small that
(1+8)r+(26/k) < p. (3.8)

Divide the interval 0<z<1 into a finite number of subintervals I of length not ex-
ceeding d. If s is large, one of these subintervals will be such that many of the coefficients
a, will have |a| =|4|* with «;€ 1. We may suppose that the first coefficients a,, ..., &
have |a,ja,| <|A[¢ (1<i,j<t) where ¢ is large. Put 4*=| 4|’ max (|a,|, ..., |a}). Let
P1s ---» P; Do the largest integers with

|a,|pf < A4*.

Now A*f|a;|>]A|® (i=1,..,¢), and if |4| is large (which we may suppose), then
P >271%(4*|a,| V¥, so that

34 <|apt|<4® (i=1,..0). 3.9)
We have A—>a,pfyl+... +a,pfyf =B, say, with
¥(A| B) <max (py, .., p) <|A|¥* and |B]<4*<|A|M.
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If we can show that
p(B]0) <|B|~,
then
P(A[0) <p(A]| Byp(B|0) <| A| HrP+1+9x < | 4]n

by (3.8), which is what we want.
What is special about B is that by (3.9) each of its coefficients has absolute value at least
equal to 3| B|. Hence it will suffice to show that if 4 =a,af +... +a,2¥ is a form such that

HAl<[|a]<|A] (=1,..9), (3.10)
and if 8 =s(A4)=c,, then
w(A|0) <[ A" (3.11)

Of course ¢4 depends on k and 7, but since &, 4, g, v, u, 7 will be fixed, we will not

indicate the dependency of ¢; (and of subsequent constants) on these parameters.

ProrosiTioN. If s(4)=c, and if (3.10) holds, then either (3.11) is true or there is a
z with
A=z, 2| <|A|Y and y(A|z) <|Ae (3.12)

This proposition appears to be too weak, but in fact is all that we need. For note that
24>/ and that c4(24) is defined; in fact we may suppose it to be an integer, and similarly
we may take ¢; to be an integer. Now if 8(4)>c¢,¢5(24), then we may write

A(X) = Ay (%)) + ... + A(x)

where ¢ =cy(24) and where x = (x,, ..., x;) and each x, has ¢, coordinates, so that s(4,) =¢,
(i=1,..,t). If some A4 has y(A4;|0)<|A|* <|A|*, then we are done. Otherwise, the
proposition tells us that 4,—~z, (i=1, ..., t) with (3.12) for each . Thus 4~z 95 +...+
2yt = B, say, where

|B] <|A|%, w(A|B)<|Ale and s(B)=t=c424).
It follows that y(B|0)<|B|?4, whence we get

¥(A4|0) <y(A|B)p(B|0) <|A|| B|* <| A|e+er < | A|*
by (3.7).
We will now proceed to prove the proposition.
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4. The Circle Method

We may suppose without loss of generality that s is even and that half of the
coefficients of /4 are positive and half are negative. For a given form 4 we put

A=|Al; (4.1)
then (3.10) may be rewritten as

jA<|a|<d4 (i=1,..9) 4.2)
Let N, H be the integer parts of A%, A", respectively, Then
JAP <N < 4%, 3A¥ <H<A* 4:3)

if 4 =] A4| is sufficiently large. The proposition will certainly be true for 4 if we can solve
the equation
T+ +a 2k —2=0 (4.4)

in integers z,, ..., Z,, 2 subject to
1<z, <N (¢=1,..,8) and 1<z<H. (4.5)

The number Z of such solutions is given by

1
Z= fo (o) dot (4.6)

where
N

N H
flay= 2 ... 2 2 elala; @i +...+a,25 - 2)) 4.7)

71=1 =1 2=1

and where e(z) =¢**. We are finished if we can show that Z>0.
We define the Major Arcs to be the intervals modulo 1 of the type

Me:

«— gl <AVNE, 4.8)

where
1<g<A4” and g.cd. (g, u)=1 (4.9)

These arcs do not overlap, at least when A is large, since their centers have mutual
distances >A-%>2A4-1+ by .(3.5 ii). The complement of the major arcs constitutes the
Minor Arcs.

For later reference we state the following
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LeMMa 1. Suppose that >0, that N >c4(n) =cy(k,n) and that C>N'"VE+1 where
K =21 It o is such that
N
2, e(ex)|>0,

ELD

then there i3 a natural
g <(N[CY*N" with [og| < (N/C)*N",

where ||+ || denotes the distance to the nearest integer.

Proof. This is the corollary to Lemma 1 of [4]. It is an easy consequence of the “Weyl
Inequality”.

5. The Minor Arcs
LeMMA 2. Suppose 8¢y, and suppose o lies in a Minor Arc. Then either
|H(e)} < HN*-*4-2, (5.1)
or y(A]|0)<A4r, ie. (3.11) holds.
Proof. We may suppose that 0 <a<1. Choose n with
0<9n<cyy (6.2)

where ¢y, is a constant (depending on k, 4, g, , u, ) to be determined later. The quantity
cs{A+7) is well defined and may be taken to be an integer. Set

n=csA+n), h=ni (6.3)

Choose ¢, so large that s>¢, implies

(k+§)/(a-—h+ <.

Since by (4.3), A<N** if A is large, we have
(NEAB)IG-R+D < ple+@ianite-h+d) - N, (5.4)

Now if (5.1) fails to hold, then the sums
N
Sy(o)= Zle(aa,x") (¢=1,...,8) (5.5)

satisfy
|8y(@) ... Sy{er)| = N*-*A4-2, (5.68)
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If, say, |Sy(a)|=>..>|8,(«)|, then the left hand side of (5.6) is bounded by
| Su(ex)|*="+1 N1, and |S,(x)| and therefore |S(«)| for ¢=1, ...,k satisfy
I‘gi(“), > N(a-lc‘—'h+1)A(s—h+l)A-2/(s—h+1)

=N(NkA2)—ll(a—h+1)>N1—'l

by (5.4). The hypotheses of Lemma 1 aré satisfied by C=N'"", since N~7> N1-1/D+n by
(5.2), if ¢, is small enough. Lemma 1 yields the existence of natural numbers g¢,, ..., g, with

¢ <N*™ and [aa,q || <N *2T (i=1,.., h). (65.7)
It follows that
loa gh]| < N-*+2En (51, ..., k).

There are integers u, ..., u, with

| o gt —u,| < N-FH2E0 (=1, .., b). (5.8)
We obtain
@ gt uy— a,qf wi < | (2, gf — w) @y gt| + | (2, gf — w) 0, g}
S 2NHHIENANED  (1<4,§< B).
Thus the integer vectors
8,=(a,qf,u) (=1,..,h) (5.9)

satisfy
|det (8, 8,)| < 2AN-**%E7 (1<, j<A). (5.10)

Write a, =7b where b is primitive, i.e. a vector with coprime integer components; say
b=(¢q,u) with ¢>0 and gcd. (g,u)=1. (6.11)

Now (5.8) yields |u,;| <2]a,|qi, so that |u]| <2¢ and |b| <2¢, which in turn yields
7| = [2.1/[b] > 4/2|b]) > 4/(4g)- (8.12)

Choose ¢ such that b, ¢ becomes a basis for the integer vectors. Then |det (b, c)| =] and

each a, may be written as
a;=v,b+wie (¢=1,..., A)

with integers »,, w,. In view of (5.10) and (5.12) we have
|w| = |det (a,, b)| =|r[~*|det (a;, 8,)]
< lr|‘1'2AN"‘+”‘K"

S 8GN HEET L M, (i=1, ..., k) (5.13)
say.
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6. The Minor Arcs, continued

We now distinguish two cases (I) and (II).
(I) M >1. This is the fun case. Recall from (5.3) that A=n2. We now replace the
indices ¢=1, ..., & by double indices §, # where 1 <7, I<n, So, for example, a,, ..., a, are
NOwW Wwritten as @,q, ..., Gyp, -5 By, +o; Oyy. Introduce the forms

)4] = Aj(le’ cany xm)= w,lxﬁ‘l'u. +’wmz§‘n (j=l, “eey n).
We have | 4,| <M by (5.13) and since M > 1. Further since n=c;(A+%) by (5.3), we bave
cp(A,[O) < [,4,[3""1 S Mir (=1, ..., n). (6.1)

Choose nonzero vectors X;=(Zj, ..., Z;,) € X" with 4,(x,)=0 and |x,| =p(A4,]0) (=1, ..., k).
Then the two dimensional vectors

b, = xﬁall'f'"‘ +"’fnam (=1, ...;:n)

are integer multiples of b, and hence the first coordinate b, of each b, is divisible by g. We

observe that
b, = aanlﬂl +.. +a;,.¢‘y;zfn (=1, .., n), (6.2)

whence it follows that 4—+ B where

B = bly']‘,'*' s +bnyﬁ.
We note that

v(A4|B)< max |g,x,| < NP YA (6.3)
1ctign
by (5.7), (6.1) and our choice of the x,. In view of (6.2) it is clear that
| B| < nA(NEIMA+n)e = p A NED Jfrd+in, (6.4)
Observe again that n=csA+7), so that B—~0 and
¥(B[0) =9(B’[0) <|B'|* < (max (1, | B| /g))**. (6.5)

This is true if B=B'=0 and |B’| =1, and also if B'<=0, dince each coefficient of B is
divisible by ¢ and therefore | B'| < | B]/g in this case. Combining (6.3) and (6.5) we obtain

y(A]0) < N**" (max (M, M|B]/g))**. (6.6)
Now g, being a divisor of a,g%, satisfies

g < AN (6.7)
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by (6.7). Thus from (5.13),
M < 8AN-k+okED (6.8)

Since by (6.7), ¢ does not exceed the right hand side of (6.4), we have

max (M, M|B]/g) < MnAN=En pri+knjq,

and by (5.13) this is
< 8N—k+4chnnAN2kKanA+kn

— SnAN_k+6kK"MM+k".

Observing (6.8) we obtain

max (M MI BI/Q) < 8nAN—k+6kKn Skz+kqul+kr)N—k’l+8kKn(kl+kn)
)
<Al+kl+qu—k—k'l+7kKn(l+2k).)

if 4 is large and if 7 <A. But <A can be made true by choosing the constant c,, in (5.2)
sufficiently small. If we substitute this into (6.6) we get

'P(AIO) <A/1+k41' —kl’—k’l‘Acuv,
with a certain constant ¢,, independent of 7. In view of (4.3) we have
P(A4]0) <| A+ -kie- Ko+ 2eun, (6.9)

Now if the constant ¢, in (5.2) is sufficiently small, the exponent in (6.9) is less than g by
(3.4), hence is less than v by (3.7). So we get y(4|0)<|A|", i.e. the desired (3.11).

(II) M <1. This case resembles the situation in [4]. We revert to the original notation
with indices ¢ =1, ..., k. We have w,=0 by (5.13), and hence each vector 8, (:=1, ..., k) is
a multiple of b. Therefore ¢ divides each a,gf (i=1, ..., ). We have 4— B where

B=a,fvi+... +andiyt,
w(A|B) S N*F, | B| < AN®H" (6.10)

and

by (5.7). We have 8(B)=h=n2=n=c4d+7) by (5.3), and
Y(B|0) =9(B’|0) < |B'|*+1 < (| B|/p**,
since each coefficient of B is divisible by ¢. Thus from (6.10) and (4.3),
¥(4]0) < p(A4|B)y(B|0)< N**"(|B|/g)'*"
< N2En( g NBEnyhngd < g NREWL4kD o2

<Al+r;+2xw(l+4ki.)q—1< Al+(v1/2)q—-i.
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if 9 is sufficiently small by (5.2). Now if ¢=> 4", then
P(A|0)< | AP < | Al
by (3.7). We may thus suppose that ¢ <A4”, so that (4.9) holds. (5.8) yields

Lo U
a——|=|a——
Q' o gk

< 2A—1N~k+2kxq <A—1+9N—lc

< 2‘4—1'““1?’1‘_ '"'1|

if 9 is small and A4 is large. So « lies in a Major Arc. We have shown that if (5.1) is false then
either (3.11) holds or « lies in a Major Arc. Lemma 2 follows.

7. The Major Arcs

From here on s=c¢, will be fixed. We will employ the O-notation, with explicit con-
stants which may depend on k, 4, 4, ..., 8 only, but not on A. We will assume A4 to be large.
We will suppose that (3.11) is false, so that by Lemma 2 we have (5.1) unless « lies in a
Major Arc. We obtain from (4.6) that

Z= 3 i f(ax)da+ O(HN**4-%). (7.1)
q<A¥ u=1 Mgy,
{u.q)-l

LemMa 3. For a=(ulg)+B€ M, we have

Sl(“) =Q‘IS{ (g) I{(ﬂ)‘l" O(sz) (1:= 1, cosy 8) (72)
where
w5, (uw [
8 (Q) ,Z‘xe( q yk) and 1) J:) e(a, fE¥) dE. (7.3)

Proof. Write x=gz+y. Then
& (au "
8y(x)= Zze _q‘ ¥ 2 e(a,B(gz + y)*), (7.4)
Y= 2
where the sum over z is over integers z in 1 <gz+y <N. We endeavour to approximate the
sum over z by the integral of e(a,8(¢¢ +y)*) with respect to ¢ in the interval determined by

0<q{+y<N. The function
9(0) = e(a,Blal +y))

|g'(0)| < 27]a,B|kgN*"Y, [g(D)] <1

has
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in this interval, which is of length N/q. Therefore

S e(algz+ 91 f e(a,Blat + ) dL
< (N/q) 2nkg|a,B| N*1) + 3< 27kN*4|B| + 3
< 2nk4’+ 3= 0(4"),

since |B|<A-1+*N~*, Taking the sum over y in (7.4) we obtain
& f(au i 2
Sy(a)= Zle 7 ¥°) | ela:Bgl +y))dl + O(4™).
v-

The change of variables §=¢{+y yields the desired result.
Let J(y) be the “singular integral” defined by

8

- 11([] et 1)dt.) d,

iBl<y t=1
where
ri=aj4 (i=1,..,8). (7.5)
LemMa 4.
H
f@)doe=N**4"1¢g728, (E) e 8, (1‘) (Z e (— 3l’z)) JA’)+ O(HN**-14-1+%),
My q q/ \e=1 q

Proof. Since |8,(x)| <N, the preceding lemma shows that for a=(u/g)-+B€ My,

8y(x) ... 8,(x) =g~*8, (g) 8, (g) L(B)... 1,(B) + O(N*-14%),

For 1<z<H<A% we have |fz|<A " N*A*<A’N-! by (3.5ii), so that |e(f2)—1| =
2|sin nfz| <2m|Bz| < A*N-1, whence

e(—az)—e (-—g ) <A*N?
and
8y(@) ... 8y(e)e(~ oz) =q~*8, (g) 8, (g) e (— gz) L(B) ... I,(B) + O(N*-14*).

Taking the sum over z we obtain
H
fo)= 21 8,(@) ... Sy(x)e(—az)
B

=¢84, (:_—;) .8, (g) | (z% e (-,,— gz)) L(B) ... I(B) + O(HN*-*4%).
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Since M, is of length 24-1+*N~* we infer that

f(“) da = 9_331 (y) ees S, (9) (% e (— y z)) JC + 0(HN8—k~1A—1+3y)’
Mgu: q g/ \z=1 q //
where

x- ). ().

1Bl<a~14'N"
Put 5!=N§; (i=l, evey 8); ﬂ=A—1N—kﬂ’. Then
a,pEf = (a, N*|AN¥) & =1, B'E* (i=1,...,9).

We now have |8'|<4’, and if £§=§, in the definition (7.3) of I,(8) ranged in 0 <§,<N,
then £ ranges in 0<£;<1. Thus after a change of notation we see that

X=N*413(4").

8. Conclusion

Recall that at the beginning of § 4 we made the convention that s be even and that
half of the coefficients a, be positive, the other half negative. Hence half of the y, are
positive, half are negative. Moreover we have

<l <1 @=1,..9) 8.1)
by (4.2) and (7.5).

LemMMma 6. Under the conditions just stated, and assuming &>k, the limit of J(y) as
y—+oo exists; denote this limit by J(oo). Here J(y) and J(oo) depend on x, ..., x,» but the
convergence to the limst is untform in yy, ..., x, subject to (8.1). Moreover,

(00) > eyg(l, 8) >O.

Proof. This was shown in [4, § 7], which in' turn had a reference to [21.(*)
Since the number of summands on the right hand side of (7.1) is <42, Lemma 4 yields

Z = N**A-1§J(A") + O(HN* ¥4~ 4+ HN?"k-14-1+%), (8.2)

where § is the ‘“‘singular series”

(*) Added in proof. There is a minor mistake in [4]. The integral in formula (7.3) of [4] should
be replaced by L,Q(u) (sin 2wwu/nu) du, where &= — 2., 0y, p= z.,g.,. Two lines below, {}(w) should
be Qfu).
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H [} Q q
S=SA&H=5 5 5 3 .. Zlq"e(g(alp/{+...+a,y§-—z)). (8.3)

z2=1 g<4¥ u=l =1 Ye=
@ o=1

The summands g=1 give the contribution H to the multiple sum on the right hand side.
When ¢>1,
H
Se (,— g z)
2=1 q

so that the summands with fixed ¢>1 contribute O(¢?). Taking the sum over gin 1 <¢< A4’
we get a total contribution O(4%), which is of smaller order of magnitude than H by
{4.3). Hence if A4 is sufficiently large,

<q,

| S| > 3H.
On the other hand by Lemma 5,
| I(4%)] > derq
if 4 is large. Hence the main term in (8.2) will be
> (¢1o/4) HN*"*41,
This is for large A of a greater order of magnitude than the error term, since

HNs—k—lA--1+67 = O(HNc—k—lA_levlo) = O(HNa—k—(llz)A_1)

by (4.3) and (3.51iii). Thus Z>0 if A is sufficiently large. Our proof of the proposition
and hence of the theorem is complete.
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