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1. Introduction
In J. J. Schiffer [4] the equation
1424 o =ym (1)

is studied. Schéffer proves that for fixed ¥>0 and m >1 the equation (1) has an infinite
number of solutions in positive integers x and y only in the cases

M k=1,m=2 (II) k=3, me€{2,4}; (III) k=5, m=2.

He conjectures that all other solutions of (1) have x=y =1, apart from k=m=2, x =24,
y="70. In [1], the present authors have extended Schaffer’s result by proving that for
fixed r, b€EZ, b=0 and fixed k>2, k¢ {3, 5} the equation

¥4 2% 4 ok tr =byf 2)

has only finitely many solutions in integers z,y>1 and 2>1 and all solutions can be

effectively determined. In this paper we prove a further generalization.

THEOREM. Let R(x) be a fixed polynomial with rational integer coefficients. Let b==0
and k=2 be fixed rational integers such that k¢ {3, 5}. Then the equation

1% 4 24 . +o* + R(x) = by? (3)

in tntegers x, y =1 and 2>1 has only finitely many solutions.

The proof of our theorem differs from our proof in [1] in quite a few respects. We
combine a recent result of Schinzel and Tijdeman [5] with an older, ineffective theorem

by W. J. Le Veque [2]. Thus, we can determine an effective upper bound for z, but not
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for x and y. However, we think that it is possible to prove an effective version of Le
Veque’s theorem. By such a theorem one could determine effective upper bounds for «.
and y, like in [1] for the equation (2).

In section 2 we quote the general results mentioned above; in section 3 we formulate
a special lemma and prove that this lemma implies our theorem. In section 4 we shall
prove our lemma, thus completing the proof of the theorem. In section 5 we show that
our theorem is not valid for k€{1, 3, 5} and discuss the number of solutions in integers
x,y>1 of (3) for fixed 2>1 and fixed k€{l, 3, 5}.

2. Auxiliary results

LEmMa 1. 1%+ 2%+ ... + & = (B a(x + 1) — By+1(0))/(k + 1), where

— _ q-1 1 q Q-2 _ — 3 q q-1
B(x)=a%— }qz® '+ x = B,z (4)
6\2 o\l
is the g-th Bernoulli polynomial.
Proof. Well-known (see e.g. Rademacher [3], pp. 1-7). O

LemmA 2. (Le Veque.) Let P(x)€ Q[x],

n

Pr)=aga" +a, 2"+ ... tay=a[] (x— )7,

i=1
with ay==0 and o+, for i5]. Let 0b€Z, mEN and define 3,;: =m/[(m, r,). Then the equation
P(z) = by™

has only finitely many solutions z, y€Z unless {s,, ..., 8,} 18 a permutalion of one of the
n-tuples

Q) {s,1,..,1},s=>1; (i) {2,2,1,...,1}.

Proof. This follows from Le Veque [2], Theorem 1, giving the stated result in the
case b=1, PEZ[x]. Let d be an integer such that dP(x) €Z[x]. Then b™1d™P(x) is a poly-

nomial with integer coefficients, satisfying
b™-1d"P(x) = (bdy)™.

According to Le Veque’s theorem there are only finitely many solutions x and bdy. [J
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LemmaA 3. (Schinzel, Tijdeman.) Let 0==b€Z and let P(x) € Q[x] be a polynomial with

at least two distinct zeros. Then the equation
P(x) = by’

in integers x, y>1, 2z implies that z<C, where C is an effectively computable constani
depending only on P and b.

Proof. See Schinzel & Tijdeman [5]. For a generalization compare Shorey, van der
Poorten, Tijdeman, Schinzel [6], Theorem 2. O

3. A lemma; proof of the theorem

From section 2 it is clear that we have to prove that the polynomial
P(z) = By()— By +¢R(z—1)

satisfies the conditions in Lemmas 2 and 3 with respect to the multiplicity of its zeros,
unless g€{2, 4, 68}. We shall formulate such a result, postponing its proof for the time
being, and show that this result implies our theorem.

LeMMA 4. For g2 let B,(x) be the g-th Bernoulli polynomial. Let R*(zx)€Z[x] and set

P(x) = B,(z) — B, +qR*(x). (8)
Then
(i) P(x) has at least three zeros of odd multiplicity, unless q€{2, 4, 8}.
(ii) For any odd prime p, at least two zeros of P(x) have multiplicities relatively prime to p.

Proof of the Theorem. Let R(x—1)=R*(x). We know from Lemma 4 that the poly-

nomial
154+ 2%+ ..+ o5+ R(x)= k_}r—i (Besi(x+1)— Byyr + (+ 1) R*x+ 1))
has at least two distinct zeros. Hence it follows from the equation (3) by applying Lemma 3

that z is bounded. We may therefore assume that z is fixed. So we have obtained the

following equation in integers # and y
P(z) = by"™, (6)

where P is given by (5) with g=k+1. Write P(x)=ay [ [f.1(z — )", where ay=0, a;+a,
if ¢=7. If p|m for an odd prime p, then by Lemma 4 at least two zeros of P have multi-
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plicities prime to p, so we may assume that (ry, p) =(ry, p) =1. Setting s,=m/(m, r;), we find
that p|s, and p|s, If m is even, then by Lemma 4 at least three zeros have odd multi-
plicity, say r,, 7, and r; are odd. Hence s,, s, and s; are even. Consequently, the exceptional
cases in Lemma 2 cannot occur and thus (8) has only finitely many solutions for any

m>1. This proves the theorem. O

4. Proof of Lemma 4

By the Staudt-Clausen theorem (see Rademacher [3], p. 10), the denominators of the
Bernoulli numbers B,, B,, (k=1, 2, ...} are even but not divisible by 4. Choose the minimal
d €N such that dP(x)€Z[x], so

e-1

dP(z)=d 2 (;‘7) B2+ dgR*(x) € Z[x];

=0

hence d (“1’) B,€7Z and

(2qk) dBy€Z, for k=1.2,...,[}g— 1)l

If d is odd, then necessarily ((‘l’) and (2qk) must be even for k=1, 2, ..., [#(g—1)]. Write

¢=2%, where A1 and r is odd. Then ( 2%) is odd, giving a contradiction unless r=1. So

disodd < ¢=2* forsomed=>1. {7

If ¢==2% for any A>1 then
d=2 (mod 4). (8)

We distinguish three cases
A. Let ¢>3 be odd. Then d=2 (mod 4) and for I=1, 2, 4, ..., ¢—1

d (lq)B,s (?) (mod 2).

Now

$te-1)

dP(z)=2""1+ > (2(11) 2% (mod 2).

=1

Hence,
d(P(zx) +xP'(x)) =2%1 (mod 2).
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Any common factor of dP(x) and dP’(x) must therefore be congruent to a power
of  (mod 2). Since dP'(0)=g¢dB,_; =1 (mod 2), we find that dP(zx) and dP’(x) are relatively
prime (mod 2). So any common divisor of dP(x) and dP’(z) in Z[x] is of the shape 28(x)+1.
Write dP(2) = T'(x)Q(x), where T'(z)=]],7(x)*€Z[x] contains the multiple factors of dP
and @ € Z[x] contains its simple factors. Then T'(x) is of the shape 28(x) + 1 with S €Z[x], so

Q(z) =dP(@) =2%1+.. (mod 2).
Thus the degree of Q(x) is at least ¢—1, proving case A if ‘¢>3. If ¢=3, then
2P(x) =228+ =2zx(x+1)(x—1) (mod 3),

showing that P has three simple roots, which proves Lemma 4 if ¢ is odd.

B. Suppose ¢=2% for some 1>1, so d is odd. We first prove (i) so we may assume
that 1>3. Now (2qk) is divisible by 4 unless 2k =g =241, Similarly, (2qk) is divisible by
8 unless 2k is divisible by 242, We have therefore for some odd d’, writing v=4¢

dP(x) = da® + 20 +d'2® + 22  (mod 4). 9

Write dP(z)=T%x)Q(x), where T(x), Q(x)€Z[x] and @ contains each factor of odd
multiplicity of P in Z[x] exactly once. Assume that deg Q(z)<2. Since

T 2)Q(z) = 2* +2* =2¥(2™ +1) (mod 2),
T?(z) must be divisible by =2 (mod 2). So
T(x) =2 Ty(x) +2Ty(),
T*(z) = 2™ *TH(z) +4Ty(x),

for certain T,, T,, Ts€Z[x]. If ¢>8, then v>2 so the last identity is incompatible with
(9) because of the term 22. Hence deg >3, which proves (i). If ¢=8, then d =3 and

dP(x) =328+ 228 + 28+ 222 = — 2 (x4 1) {(x — 1) (22 + 1) (22 +2) (mod 4).

All these factors—except x*—are simple, so deg @>6>3 if ¢=8, proving (i) in case B.
To prove (ii), let p be an odd prime and write dP(x)=(T(x))’@(z), where Q, T €Z[x]
and all the roots of multiplicity divisibly by p are incorporated in (7'(x))”?. We have,
writing u=1q,
dP(x) = (T(x))PQ(x) = x#(xt +1) = xt(x+1)¢ (mod 2).

Since g is prime to p, @ has at least two different zeros, proving (ii) in case B.
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C. Suppose ¢ is even and ¢g=2% for any A. Then d=2 (mod 4) and hence

$@-2) q-1
dP@)= S (quc) =S (g) =(x+1)—a29—1 (mod 2).
k=l =1

Write g =24, where r>1 is odd. Then
dP(x)=(z+1)—2"—1 = ((z+1)—~2'—1)? (mod 2).
Since r>1 is odd, (+1)'—2"—1 has 2 and z+1 as simple factors (mod 2). Thus
dP() =22 (x+ 1) H(z) (mod 2),

where H(z) is neither divisible by # nor by #+1 (mod 2). As in the preceding case,
P(x) must have two roots of multiplicity prime to p. This proves part (ii} of the lemma.
In order to prove part (i) we may assume that ¢>10, because g=2, 4, 6 are the
exceptional cases and ¢ =8 is treated in section B. Now d and ¢ are even, so dg is divisible
by 4 and, in view of (8)
dP(z)=22"—gqa® 1+ }d (g) 224 ...+dB_; (g) ¢ (mod 4). (10)
Write dP(x) = T%(x)@(x), where T, Q € Z[z] and Q(z) contains each factor of odd multiplicity
of P exactly once. Let
T(zx) =2" +2"+...+2" (mod 2),

where 4, >14,>...>1,>0. Then

THz)=2* + 2+ ... + 2"+ 25 p,a'  (mod 4),
1

where p, is the number of solutions of 4,+4,=1, 4,<4,, ¢,j€{1, ..., m}.
Assume that deg @ <3. Let
Q(z) = axt +bx+c.

If & is odd, then T%x)Q(x)=aa?4+?+ ... (mod 4), which is incompatible with (10). If 4|a,
then T2(z)Q(z)=ba"**1+ .. (mod 4) so 4]b. By the definition of d, dP(x) must have some
odd coefficients, so ¢ must be odd. Hence T2(2)Q(z)=cz*" +... (mod 4), which is again
incompatible with (10). Thus =2 (mod 4) and 4, =}(g—2). By comparing the coefficient
of 291 in (10) and in T%(z)Q(x), we find that b=q (mod 4), so b is even and ¢ must be odd.
So @(z)=1 (mod 2) and

dP(x)=T?x) =2* + 22+ ...+ 2 (mod 2).
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Let A={4,, 4, ..., 4,}. We have by (10) that

LEA <« 2<24,<g—2 and (2%)51 (mod 2). (11)
1

Since 3(g—2)€A, we have that (g) is odd, so ¢ =2 (mod 4), whence =2 (mod 4). Thus

dP(z)= O (22*M*2+ 22°4*1 + ca®) + 25 p,2t  (mod 4).
JeA i

If ;€A and A;<}(g—2), then by (10) the coefficient of #%4+! in dP(x) must vanish, so

MEA .
A<3g—2) }=> P2a,+1 i odd. (12)
Observe that by ¢>10 we have §(g—2)>4.

Now (g) is odd, so 1€A by (11). Thus p; is odd by (12) and hence, by the definition of
the numbers p,, 2EA. So (Z) is odd, thus ¢ —2 =4 (mod 8). Then also (g) isodd, s0 3€A by
(11). Since 2€A, pg is odd by (12). But if {1, 2, 3, 4} €A, then p;—2. So 4¢A and g is

even by (11). Thus ¢—6=0 (mod 16), 50 ( q) = ( q) = (‘—’ ) =0 (mod 2). Hence 5 ¢ A, 6¢ A

10/ ~\12) T \14
and 7¢A. So p,=0. But since 3€A, p, is odd by (12). This gives a contradiction, so
deg @ >3 if ¢>10. The proof of Lemma 4 is thus complete. O

5. On the cases k=1,3,5

Consider the equation (3) for fixed k€{l,3,5} and fixed z=m>1. Let R*(x)=
R(x—1) and ¢=k+1. Then (3) is equivalent to the equation

P(x) = by™, (13)

where P(z)=B,(x)— B,+qR*(x), ¢€{2, 4, 6} and b3-0 is a fixed integer divisible by g¢.

If g=2, then P(x)=2%—x+2R*x). P(xr) has two zeros of multiplicity 1, since
P(z)=z(x—1) (mod 2). In view of Lemma 2, (13) has a finite number of integer solutions
z, y unless m =2. In the case m =2 we can choose R*(x)=(2?—z)(28%=x)+28(x)) for any
S(x)€Z[x]. In that case (13) becomes

(@?—x)(28(x) +1)* = by?,
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which amounts to Pell’s equation, having an infinite number of solutions in integers
z, y=1 for infinitely many choices of b.

In the case g=4 we have P(x)=x%— 223 + 2%+ 4 B*(x). Since P(z)=2*x—1)? (mod 2),
by Lemma 2 the equation (13) has infinitely many solutions only if m =2 or m =4. If this
is the case, there are infinitely many choices for R*(x) and b such that (13) has an infinite
number of solutions. We may take R*(x)=x%*x—1)2(48%x)+88%(x)+ 68%(x)+2S(x)) for
any S(zx)€Z[x] and from (13) we get

2 x—1)2(28(x)+ 1)t =by™, m=2 or m=4.

Both for m=2 and for m=4 this equation has an infinite number of solutions in
integers z, y >1 for infinitely many choices of .
In the case ¢=6, (13) is equivalent to

2P(x) = 22° — 625 + b5t — 22 + 12R*(x) = 22w —1)2(222 — 22— 1) + 12R*z) = by™, (14)

where 12|b. Since 2P(z)=2(z—1)22%(x +1)? (mod 3), by Lemma 2 the equation (14) has
infinitely many solutions in integers z, ¥ >1 only if m =2. For infinitely many choices of
R*(x) and b there is an infinite number of solutions z, y if m=2. We may then choose
R*(x) =x%(x —1)2(22% — 22 — 1) (38%(x) + 2S(x)) for any S(x)€Z[x] and (14) may be written
in the form

¥z —1)% (222 — 22 — 1) (6S(x) +1)% = by2.

Consequently, (14) has an infinite number of solutions in integers z, y>1 for infinitely
many choices of b.
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