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1. Introduction 

The purpose of the present memoir  is to prove that ,  if sl, s2 . . . . .  sn . . . .  denote in as- 

cending order the numbers (not counted according to multiplicity of representations) tha t  

can be expressed as a sum of two squares, then 

(s.+l - sn) ~ = O(x Iog�89 
Sn+I<~X 

for 0 ~< ~ < 5]3. This result, which for the stated range of y is certainly best possible on 

account of Landau ' s  asymptotic  formula 

C x  

~.~ ~fog ~' 

may  be contrasted with the inequality 

due to Bambah and Chowla [1] and with the conjecture tha t  

8~+1 - s~ = O(s~). 

Comparison also may  be made with the conjecture 

~ (pn+l- p~)2 = O(x log x) 
Pn+l~X 

due to ErdSs [2] and with the result 

Z (P"+I-P")~ O(log ax) 
Pn+l~Z IPrt 

tha t  has been obtained by  A. Selberg [5] on the Riemann hypothesis. 

(1) Supported in part by Air Force Office of Scientific Research grant AF-AFOSR-69-1712. 
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The method depends on the application of an idea already used by the author in 

connection with a similar problem concerning the numbers prime to n [4], the principle 

involved being that  there is a connection between the size of the moments of sn+ l - sn  

and that  of the dispersion of sums of the form 

/(~) 
m<~ n < m +  h 

for given h and variable m, where/(n) is a function that  vanishes unless n be a sum of 

two squares. Furthermore by a transformation the dispersion in turn can be estimated 

provided asymptotic formulae with sufficiently accurate error terms can be obtained for 

various sums involving/(n), including in particular a sum of the form 

/(n)/(n + k). 
n~x 

The choice of function /(n), however, for the problem considered here presents a major 

difficulty in relation to the latter sum, since neither of the two most natural functions 

r(n) or rx(n ) is altogether satisfactory, defining as usual r(n) to be the number of repre- 

sentations of n as a sum of two squares and rl(n) to be 1 or 0 according as n be or not 

be expressible as a sum of two squares. On the one hand, although there is an asymptotic 

formula due to Estermann for the sum when/(n) = r(n), the use of r(n) only permits the 

contribution of the larger intervals sn+: - s= to be assessed satisfactorily on account of the 

well-known phenomenon that  the weighting inherent in r(n) tends to emphasis numbers 

with an abnormally large number of prime factors. On the other hand the use of rl(n ) is 

impossible because it would require an asymptotic formula (not merely an upper or lower 

bound) for the sum 
r:(n) r:(~ + k), 

n ~ x  

the determination and proof of such a formula apparently involving much the same dif- 

ficulties as are encountered in connection with the sum 

Z A(n)A(n + k). 
n ~ x  

To obviate the difficulties relating to the smaller intervals a new function ~(n) is defined 

by affecting r(n) with a dampening factor t(n) which has the overall effect of reducing the 

order of magnitude of the function but which at the same time allows the corresponding 

asymptotic formulae to be determined. Defined in such a way that  it mimics as far as 

possible the function 2 -~*(n), where co*(n) is the number of prime factors of n congruent 

to 1, modulo 4, the function t(n) is not necessarily always positive but gives rise by its 

multiplication with r(n) to a function/(n) that  has the necessary feature tha t  it vanishes 
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when n is not a sum of two squares. The asymptotic  formulae, which require some delicate 

and intricate analysis for their proof, then furnish an estimate for the dispersion tha t  is 

satisfactory in respect of the smaller intervals. 

Finally it may  be remarked tha t  the introduction of the function t(n) forms the gen- 

esis of a principle which has other applications in the theory of numbers and of which it 

is hoped to give an account in due course. 

2. Notation 

The letters (~, h, k, l, 1, #, n, and Q are positive integers; ~, #, and m are integers; p is 

a positive prime number;  the letter d with or without a subscript or an asterisk is 

throughout a positive square-free integer (possibly 1) composed entirely of prime factors 

p such tha t  p ~ 1, rood 4. 

The letter x denotes an integer variable to be regarded as tending to infinity, all 

appropriate inequalities that are true for sufficiently large x being therefore assumed to 

hold; y, Yl are real numbers not less than 1 ; v is a function of x to be defined later; 

s=(~ +it. 

The positive highest common factor and lowest common multiple of i ,  # are denoted 

by  (). #) and [~, #], respectively; q:(h) is the sum of the a t~ powers of the divisors of h; 

w(n) is the number  of distinct prime factors of n; [u] is, where appropriate,  the integral 

par t  of u: X(n) is the non-principal character, modulo 4. 

The letter e indicates an arbitrarily small positive constant while ~/indicates some 

positive constant appropriate to the context. The equation [ = 0( I g I) denotes an inequal- 

i ty  of the form ]/] ~< C ]g] tha t  is true for all values of the variables consistent with stated 

conditions, where C is a positive constant tha t  depends at  most  on either s or 7. 

3. The fundamental inequality 

Le t / (n )  be a real function of the positive integer n and let F(m, h, x) and/V(m, h) be 

defined for any integer m and any  positive integer h by  

F(m, h, x) = ~ /(n) and F(m, h) = ~ /(n). 
m<. n<m+ h m<~ n < m + h  

n ~ y  

Then ~ F~(m,h,x)=h ~/2(n)+2 ~ (h-k) ~ /(n)/(n-k). (1) 
- h + l < m < ~ x  n ~ x  k < h  n<~x-k  

Also, for a suitable absolutely bounded number A = A(x) to be specified according to the 

context later, we have 
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(.F(m, h, x) - Ah) 2 = ~ F2(m, h, x) - 2 Ah ~ E(m, h, x) 
- h + l < m ~ x  -h+l<m<~x -h+l<rn<~x 

(2) 
+A2h2(x+h-1 )  = Z F2(m,h,x) -2Ah2  ~ /(n)+A2h2x§ �9 

-h+l<m<<.x n<~x 

Therefore, combining (1) and (2), we obtain 

~. (F(m, h) - Ah) 2 = ~ (F(m, h, x) - Ah) 2 
O < m ~ x - h + l  O < m ~ x - h + l  

(3) 
~ < h ~ / 2 ( n ) + 2 ~ ( h - k )  ~ / ( n ) / ( n + k ) - 2 A h  ~ ~ /(n)+A2h2x+O(h3). 

n ~ x  k < h  n ~ x  k n ~ x  

The properties of the distribution of the intervals between consecutive members of the 

sequence will be inferred from this inequality through the use with appropriate values of 

A of two functions /(n) both of which will have the feature t ha t / ( n )  = 0 unless n be a 

sum of two squares. Since upper  bounds for the sinister side of (3) are required for the 

application of the final method, we proceed in the next  sections to estimate the dexter 

side for the functions/(n)  to be chosen. Throughout it will be assumed tha t  h < x �89 

T h e  c a s e  f ( n )  = r (n)  

In  this section we t ake / (n )  to be r(n), A to be ~, and denote the corresponding sin- 

ister side of (3) by R(x, h). The estimations in this case depend on the following two lem- 

mata,  the first of which is too familiar to require comment and the second of which is 

due to Estermann [3], the error te rm in Estermann 's  formula being stated here in a form 

tha t  takes account of Weil's subsequent work on the Kloosterman sum. 

LwMMA 1. We have 

(i) ~ r(n) = ~y + O(y ~) 
n ~ y  

(ii) Z rZ(n) = O ( y l o g  2y). 
n<~y 

LEMMA 2. We have,/or 0 < k < y ,  

~. r(n) r(n + k) = 8~(k) y + O(y~+~), 
n<~y 

where y(k) is the multiplicative /unction o / k  determined by the conditions 

y(2~) = ~ (-1)2~/~ (zr 

and ~(p~) = (~_l(p ~) /or p # 2. 
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In view of Lemma 1 it suffices to estimate 

(h-k)  ~ r(n) r(n+Ic), 
k<h n<~x-k 

which, by Lemma 2 and the condition h < x�89 is equal to 

Sx ~ (h -  k) y(Ic,) + O(h~x[+~). (4) 
k<h 

In order to evaluate the sum occurring in (4) we consider a similar sum in which the fac- 

tor h - ]c is absent. We have 

7(k)= ~ 7(2 ~)~ ~(1)= ~ 7(2 ~) ~ ~_~(1). (5) 
k <~ y 2c.r l <~ y 2ac <<. y l <~ y /2 c~ 

(l,2)=1 (l.2)=1 
Also 

(~_1(~) ~ ~ ~ ~ ~ 1 Yi ~ + = - =  o 
l~Yi ~l~<~yl ~ ~<~Yl ~<~Y~/~ ~ 2  ~y~  ~<~y~ 

(/.2)=i ()~#,2)~1 (~,2)~1 (#,2)=1 (2,2)=1 

1 
= ~  Y~ 1 _]_O(yl ~ ] ) ( ~ )  1 o 7 = + o {log (y~ + 2)}. 

(A,2)=1 

Therefore by this and (5) we have 

1 ~ ~ +  (log ~ 1 y(2~).__27-v 
k<~y ~ u  ~cr 2~<<y i a=0 

(6) 

( ) - ~ 6  ~ y  1 + ~ (2~-~-3.2 -~) + O { l o g ~ ( y + 2 ) } = ~  y+O~log~(y+2)}, 
a=l 

the 

relaxed. Finally, integrating (6) through the range 0 <~ y <~ h, we infer that  

(h - k) ~(k) = ~--~ ~2h~ + O(h log ~ 2h) 
k<h 

and hence from (4) that  

(h -  k) ~ r(n) r(n + It) = �89 ~h~x + O(hx log S 2h) + O(h~x ~+~) 
k<h "n~x-k 

equation holding trivially in the range 0 ~< y < 1 if the condition y >/1 be temporarily 

(7) 

The estimate for R(x, h) follows immediately from (3), (7), and Lemma 1. We de- 

duce that  

R(x, h) <~ u~h2 x - 2u~h~x + ~h~x + O(hx log x) + O(hx log 2 2h) + O(h~ x ~+~) 

+ O(h2x �89 + O(h ~) = O(hx log x) + O(hx log ~ 2h) + O(h~x 516+~) 
on substituting ~ for A. 

(8) 
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5. The case f(n) = @(n): the definition of  @(n) and preliminary lennnata 

In  order to define @(n) and to facilitate some subsequent estimations involving it we 

introduce the function 

p~lo  rood 4 

and let ~(d) = ~o(1, 8). 

We then introduce the number v = x li2~ and write 

@(n) = @x (n) = t(n) r(n), 

( log d] 
where t(n) = tx (n) = ~ 1 

t 
d~v 

tile numbers d in accordance with Section 2 being restricted to square-free numbers com- 

posed entirely of prime factors p such tha t  p ~ l  rood 4. We accordingly now t ake / (n )  

to be @(n), A to be A1 log-�89 where A 1 is a suitable positive constant to be specified later, 

and denote the corresponding sinister side of (3) by  P(x, h). The apparently more natural  

choice of /(n) as the function tha t  would have been obtained had yJ(5) been replaced by  

2 ~(s) in the definition would have served equally well except tha t  certain additional com- 

plications in the work would have appeared. 

As in the first case the estimations depend on formulae for ~/(n), X/~(n), and 

/(n)/(n + k). In  this case, however, these are not already available and require for their 

determination and proof the following preliminary lemmata.  The proofs of the latter are 

given in outline only, since for all but  the last the method is along familiar lines as ex- 

emplified by  [6] while for the last considerations of space preclude the inclusion of a de- 

tailed proof. 

LEMMA 3. We have,/or any given d, 

r ( dn ) = ~P~--~)- 7ly + O(yt ). 
d n ~ y  r 

We consider the generating function 

r(du) 

and denote ]1 (8) by  ](s). Then, for a > ] in the first place, 
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= 1-[ { 1 -  ( 1 - 1 0  a} = ~1 ]7I (2 -- l s )  -- YO(Sd'sd) 
via d s pld 

Therefore, since /(s) = 4 ~(s) L(s) for all s, where L(s) is the Dirichlet's L function formed 

with the character Z(n), we have 

4 d ld (e) = ~ w(s, ) ~(,) L(8) 

without restriction on s. The result then follows by using the formula 

E r(an)= 1 ~c+,~ y* 
I~ (s) - -  as  (c > 1),  

drt <~ y 2 ~ i  d C-- I Oea 8 

valid when y/d is not an integer, in conjunction with mean value theorems for r and 

L(s), the error term given not being the best possible but being sufficient for the applica- 

tions hereafter. 

LEMMA 4. Let u(n) be the coefficient o / n  -s in the expansion o] 

( 
] p~-l, mod 4 ~9~3, rood 4 

as a Dirichlet's series/or ~r > 1. Then 

(i) 16 u(n)>..-r~(n): 

(ii) /or any given d, 

u(dn) = 2~r 
dn<y d 

where a and b are constants and 

y(a log y + b + aO(d)) + 0(x5/6), 

Since we have, for a >  1, from Euler's identity 

. . . .  1 ~r2(n, (1 ls)-1 y~ (~(~+1,2] 17 ( 1 t-1 
16 n=l nS - p~* ]v~a~.~o~\ 1 p ~ I ,  rood 4\ce=0 ~ 7  ' 

the generating functions for u(n) and r2(n) when expressed as infinite products differ only 

in respect of the factors relating to primes congruent to 1, modulo 4, the product of the 
1 9 -  712907 Acta mathematica 127. Imprim4 le 11 Octobre 1971 

o {v,'/., \,p(s, d)]~=l- log d. 
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common  factors  re la t ing to the  pr imes incongruent  to 1, modulo 4, being a Dirichlet 's  

series with posi t ive coefficients. Therefore  to prove  pa r t  (i) of the  l emma  it  is enough to  

show tha t ,  if a~ be the  coefficient of p - ~  in the  expansion of ( 1 - 4 p  -s +2p-~8)  -1 as a 

power  series, then  a~ ~> (:r + 1) 3. The  la t ter  fact  can be inferred b y  a simple induct ive argu- 

men t  involving the  recurrence relations a 0 = b 0 = 1, a 1 = b 1 = 4, a~ = 4a~ i - 2a~_2, b~ = 

2b~_l-b~ 2 (a>~2), where b ~ = ( ~ + l )  2. 

For  pa r t  (ii) we use the  generat ing funct ion 

u(dn) 
gd(s)  = 

~=1 (dn)  ~ 

and write gl (8) as g(s). Then,  for a > 1 initially, we have  

ga(S)=l-[ 1 4 2 ~-1 4 2 I~ 4 2 g(s) p l a { ( - ~ §  - - 1 } { i - - - ~ §  -2~ ~ 

' 

where KI(S ) is bounded  and regular  for a > (log (2 + }/2)/log 5) + U and therefore,  in par t i -  

cular, for a ~> 4/5. Therefore,  since 

~ l . m o d 4 ( - 1 ~ )  -2 ~(s)L(s) 1 

for a > 1, we deduce t h a t  

2~(d)y~(d, s) 
ga (s) ~ d~ ~2(s) L~(s) Ks(s), 

where K2(s ) is bounded and regular  for a ~> 4/5. The result  then  follows much  as in the  

previous  l emma by  using Per ron ' s  formula  in conjunct ion with  mean  value theorems for 

~(s) and  L(s), the  poin t  s = 1 being a double pole of the  in tegrand ga (s) xS/s. 

where 

L ~ M ~  5. We have 

�89 1 
: / z ( d ) l o g Y  4 A ~ g  y + O ( l o ~ ) ,  

~<y d 2 = 

Here  the  generat ing funct ion is, for a >  1, 
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1 ) K3(s) 
- 1 h(s)= 

where Ka(s ) given by 

g~(s) (1 I - ~ _ ,  = -~-s) ~=3.1-Imoa,( 1 - ~ ) - ~  

is regular and bounded for a >~ 3/4 and where the positive determination of square roots 

is taken for s > 1. Defining h(s) by analytic continuation in appropriate zero-flee regions 

of ~(s) and L(s), we apply the formula 

#(d) y _  1 ~+~r y ~  1 
log h(s) ds I) 

~<y-d-  d 2~i | ~ _ ~  ( ~ - l )  2 

and deform the contour according to the methods used in [6]. We conclude that  

L #(d) y 1 Ka(1) y~-lds 
a - lOgd 2=iL (1) 

where C is a contour encompassing s = 1 of the type used in Hankel's integral for the 

gamlna function. Therefore 

E #(d) y _  1 1/2A 
a < ~ - d  log d 27~ (~/4) �89 

which on simplification yields the lemma. 

L]~MA 6. Let ~(d, ~) = F {(d, ~*)}, where ~* = ~/(d, e)" Then we have 

/~(d)(d'e)l~176 d l o ~  )' d <~ y .jrg 

where 
I 1 

[ 0 ,  

if PI~ and p ~ l ,  mod 4 implies Pe]e, 

otherwise. 

The proof is an obvious generalisation of that  of the previous lemma, the generating 

function being now h e (s) = h(s) C(s, Q), where 

p ~ l ,  rood 4 p ~ e ~ 1o:--I, rood 4 
p ~ I ,  rood 4: 

Since C(Q) = U(1, ~) the main term is obtained immediately while the error term is esti- 
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mated by giving close attention to the effect C(s, e) has on the residual contours used in 

the previous proof. 

L~z~z~A 7. We have, /or  any given d*, that 

(i)  tt(d) 2~(a) log~= O {a_�89 (d*)} 
d<~ y d 

(d, d* )= l  

( i i )  
/~ (d) 2 ~(a) 0 (d), y 

d log~= ~(log 2ya_�89 
a~< y 

(d, d* )= l  

where O(d) is defined as in Lemma 4. 

For part (i) we use the generating function 

k~,(~)= ~ ~(d)~ -(~) tC~(~.) -~  
~ :  d ~ - ~ ( s )  L ( ~  : ' 

(d, d*)~:l 

where K4 (s) is regular and bounded for a > 1 - ~. 

Part  (ii) is most easily proved by observing that,  since O(d) is an additive function, 

the sinister side of the proposed formula may be written as 

#(d) 2 ~ . y 20(p)  . . . . . .  (~) 
v<u a<u ~ mg d ~<u p a~<ul~ 
p~d (d, d*)= 1 ~ ~[cl* (dl ,pd*)=l 

p ~ I ,  raod 4 d ~ l ,  rood p p~-l ,  rood 4 

the latter expression being by part (i) equal to 

\ ~<u P I 

L ~ A  8. We have, /or 0 < k < y  and given dl, d~, that 

~'. r(n) r(n + k) = ~ 7 :  (k) F(k, d:, d~) y + O(d~d~ y~+~), 
n ~ y  

rt + k~0,  raod d~ 

where y: (k) = 7(2 ~) /or 2~11k and where, i /  Ok (Q) denote Ramanu]an'  s sum ~,k,~lQ /t(e/(~) 5, 

then 
: ~r ~k (e) (d:, el (d2, e) ~(dl)~(d~) 

r (~, dl, d~) = ~ o~ e ~ "r(d:, el'r(d.~, el 
(~,2)=1 

This generalisation of Lemma 2 can be established by following Estermann's method 
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closely although the proof is long owing to the additional arithmetical complications caused 

by the presence of dr, d 2. Alternatively there are a number of other approaches which do 

not, however, lessen to any extent the length of the proof, Whatever method be adopted 

we are led to a main term involving a series (over appropriate ranges of summation) of 

the form 

Z(ll) Z(12) ([dl, 11], [d2,/2]) 
1,.~ z [d .  l~] [d2,12] 

([ 1,h] ,[  ~, ~])lk 

which can be expressed in terms of F(k, dl, d2) by means of the relation 

5r ={~, if ~]k, 
eia O, otherwise, 

the special constitution of d~, d2 as products of primes being relevant to the argument. 

We are now in a position to consider the sums involving @(n). 

6. Estimation of  ~ Q ( n )  and ~ ~ ( n )  

The estimation of ~@(n) is quickly effected. We have, using Lemma 3 and then 

Lemma 5, that  

log d] 

d<~v n~---__0, rnod d 

v O( x) log va~.. ~ l ~  \ d<~ / 1 0 ~  + +O(xtv) 

-- 0 x 
log~ v ~- . (9) 

The estimation of ~ @2 (n) on the other hand takes longer. We have, by both parts of 

Lemma 4 (1), 

@2 (n) = ~ t 2 (n) r ~ (n) <~ 16 ~ t ~ (n) u (n) 
n ~ x  n<<.v n<~x 

n<z alln.d, ln y~(dl)%v(d2) - l o ~ - ]  1 logv ] 
dl ,  d 2 <~ v 

16 #(d~)#(d~) log v _v 
- log ~ v ~l,~.<v W(dl) W(d=) ~ log ~2 u(n) 

n ~ x  
n~---0, rood [all, d~] 

Q) As will be seen the replacement of v2(n) by u(n) reduces the complexity of ~he subsequent 
calculations. 
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_ 16x ~ /~(dl)/~(d~)2~{~a"a~}~v{[dl,d2]} 
log ~ v a. ~<, ~V(dl) ~v(d2) [dl, d2] 

v (  ) 
• (a log z + b + 0 {Ida, d~]}) log ~ log ~ + 0 x ~;~ Y 1 

x ~, ~u(dx)/~(d~)2~ 
~ d-~d d (a~logx+b~+2a~O(di) - - 1 0 ~  V d ~ , d ~ v  ~'(~. 1~ "~,') 1 2 

v 
--a~O{(dl, d2)})log dll log ~ + 0 - l o g  ~ v ' (~o) 

the penultimate line following from symmetry, where al, b~ are suitable constants, 
Next, by the MSbius inversion formula, 

(dl, de) = E H~ (da) 

and (d~, d~) 0 {(dl, d~)} = E Ha (da), 

where d(~) ~ da ~/~(~) 2~~ 
Hi(da) = ~ #  2~(~)YJ((~) - 2~(a')~~ ~la~ r 

and 

2 ~(~)~(~) 2 ~(d~)~(d3) ~ld~ 

Writing Hl(d~) d3 H3(d3) 
2~(a.)yj(ds) 

and H~(da)_ 0(da) da Ha(da) da 
2 ~(~)~(d3) 2 ~(a')~(d3) 

we therefore have 

H4(d3), 

V V ~v = ~ #(d~)/~(d2)2~(a')2~ (a~ log x+b~+2a~O(dx)) l o g ~  log ~ ~ Hl(da) 
d~, d~ < v d I d~ daldl, da[d2 

_ al ~ /~(dl) #(d2) 2~(al)2 o(a~ v v ~ H~(d3) 
al.a~<v d, d2 log rill log ~ a.la~.a, la~ 

4~ ( 

(d[, ds) = 1 
d[ <~ v/ds 

~(d;) 2 ~(~) 
d~ (al log x+ b 1 + 2a10(dl) + 2al'O(d~)) log dl I 



INTERVALS BETWEEN NUMBERS THAT ARE SUMS OF TWO SQUARES 291 

= ~ { H 8(d s) (a~ log x + b~ + % 0 (da)) + % H 4(da) } Z~, c/3,1 a.~v d3~o(d3) 

+ ~ H~(da) Eva~l~va~,  
a.<v dayJ(da) . . . .  

(11) 

where Ev d8 1 ~ / / (dr)  2 o(d') v / d  3 
' ' (a',a~)~l d' log d' 

d'<~ v]da 

and 
~(d')2 ~(~') O(d') v/d3 

V~ a~ ~= ~:z. d' log d' " ' " (d ' ,d~)=l  
d'~v]cla 

We deduce from (11) and Lemma 7 t ha t  

2~189 x ~ 2 '~ 

since Ha(da) = 0(1) and H4(da) = 0 {log d a a_~(ds) ). Therefore we have 

{1 
io-ml,mod 4 p~l ,  rood 4 

f rom which and (10) we conclude tha t  

Y e~(n) = 0 (log;-x) " 
n < x  

(12) 

7. Es t imat ion  of  Y ~ (n )  0 (n  + k)  

In  assessing the  sum appearing above we assume tha t  0 < k < x. Then  

q(n) q(n + k) = ~ t(n) t(n + ~) r(n) r(n + k) 
n<~x n<~x 

n<~ a~ln, a~ln+~ v(dl)v(d2) - 1-~gv] 1 - l o g v ]  

�9 1 #(dl) #(d~) log v v ~ r(n) r(n + k). 
= l o g  ~ ~  a~,~<, y~(d,)~fl(d2) ~ log ~ n<~x 

n~O, rood d x 
n + ~0, sod ds 
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Hence, by Lemma 8, we have 

Y 
: O(n)O(n+k)-~z~Yx(k~)Xlv : /~(d~)/~(d~~)F(Ic'd~'d~)l~ ~. +O(m{+~ : (d~d~)�89 

/~(dl)/~(d2) v v ( ~ )  
- -  "~2Y1(~)  Z E ~(]c, di, d2) l o g  log ~ v <.a~<, !p(d~)w(d:) log ~ ~ +  0 

= logUv \log'x] , say. (13) 

Next, by the definition of F(k, d 1, d2) in Lemma 8 and then by Lemma 6, we have 

G(k,v)= ~ ~k(e) 
e=1 0 2 

(@.2)~1 

#(d~)/~(d2)(d~'o) (d2'0) log v v 

q = l  _ ( q ~ ) l  1 
(~, 2)=I , = 

16 A 2 log v Z~ 1 + O(5k 2), say. 
~ 2  . . 04) 

Considering the easier sum first we have 

(15) 

To estimate ~k.1 we define/q,/c a for given k = ~Ip ~ by 

kl= F[ pe, ~=  IX pe, 
p------l, rood 4: p------3, raod 4: 

and define 01, 0~ for general 0 in a similar manner. Then, since Ok(0) and C(O) are multi- 

plicative and C(Oa) = 1, we have 

Ok(01) C2(01) Ok(0a) 5~1.) 1 V(~) say. (16) 

:Next, by the expression of Ok(q) as a divisor sum and the definition of A in Lemma 5, 
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~a#(~a) 1 
~.~(~)~ = ~ . . . . .  ~ = ~ ( k ~ )  g l  1 - = , 

where "[(/~3)= O'-1(]~3)" TO consider Z~)~ we need the fact  tha t  if e~[[/c then 

Then 

[r if ~<~, 
q)~(P~) = t - pC' if g = fl + 1, 

[ O, if c ~ > f l + l .  

p ~ I  od 4 a = 2 ~ 02a~ ] 

= I ~ ( 1 + ~ 1  {1 1 ~ } )  = "r(/cl), say. 
vlkl ( 2 p -  1) ~' io ~-1 

Thus, b y  (16), (17), and (18), we infer tha t  

v(kl) z(ka) 
~k.1 -- A 2 

Finally,  b y  (13), (14), (15), and (19), we obtain  

~ ( n ) o ( n  + k) = 16T(k) x 
n<x log v 

o{~_~(k) x~, 
~- \ log~x ] 

where z(k) = yl(k) T(]Cl) T(/~3). 
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(17) 

(18) 

(19) 

(20) 

8. The c a s e f ( n )  = ~(n)  completed: estimation of P(x ,  h)  

In  order to be able to est imate P(x, h) it remains to consider, for 0 < h < x �89 

E (h- ~)n~ 2 (~) e(~ + ~), 
k < h  ~ - 

which b y  (20) is equal to 

16~ ~ (h-k):(k)+0 hx E :-~(~) =lZ~gv ~ (h-~):(k)+ \:og, x ! 
V z.~ ~ log ~<g k<g k<h 

To evaluate  the  lat ter  sum consider for a > 1 the generating funct ion 

(21) 
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the application of Euler's theorem being valid since ~(k) is multiplicative and the series 

is absolutely convergent. In the infinite product the factor when p = 2 is 

( )( 1)_1( ,)1 1+ ~ Y(2~) 1 §  ~ (2 - -3 .2  -~) 1 + 1 _ 
.=1 2 ~ s = .=1 2 ~s -- 1 - ~  ~ 1 1 - ~  . 

When p ~ 3 ,  rood 4, the factor is 

( p - a s -  p-~(s+l)-I  _ 
(~-I(P~) ~ --/9-1 = 1 l - -  p :,s 1 a=0 ~=0 

and when p ~ l ,  mod 4, it is 

1 + ~ ~(p~) ~ 1 1 ( P ~ - -  ~ +  ~ 1 p + l ~  
~1 ~o (2p-  1) ~ ~=~ ~ ~ + ~ ?  

d 1 1 1 _ 1 -I 
= (1 _ ~ ) - 1  (1 (2p_ l )~p  ~ {~--p}  {1 ~ i }  ) 

after some simplification. Therefore/(s) = K d s  ) ~(s), where 

-1 

1-I l d  1 1 -1 

is regular and bounded for a > ~/. Hence, using the formula 

we deduce that 

~ fc  ~+~:r h s+l 
E (h-~l~(k)= l(s) s ( ~ )  & (c>11, 

E (h - k) T(k) = �89 Ks(1 ) h e + O(h 1+~) = �89 A2h 2 + O(hl+~), 
k < k  

(22) 

since the integral is absolutely convergent for c > 0 (c# 1). 

By (21) and (22) we have now 

8A2h2x A/hl+~x'~ / h~x '~ 

k < h  n < ~ x - k  

Substituting this together with (9) and (12) in (3)with o ( n ) = f ( n ) a n d  A=4Alog- �89 
we obtain 
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16A2h2x 32Aah2x 16A2h2x 0~- hx ] [hl+sx~ 
e(~,h) <~ log v log v ~- log v + \ l o ~  ~! + ~ ~ ) 

/ h2x \ / h2x ~ O( hx "~ / h2x "~ 
§ J + ot  x) § § 

which is the  es t imate  required. 
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(23) 

9. The distribution of the intervals 

The theorem on the  intervals  will follow f rom (8) and  (23) according to  the  proce- 

dure used in [4]. Adopt ing a no ta t ion  similar to  t h a t  in the  la t ter  paper ,  we let N (x) be 

the  number  of intervals  s n + t -  s~ of length l for which s~+l ~< x and  then  let 

S~t) (X) = NI(X ) + 2tNZ+l (X) + 3tNz+2 (x) + . . . .  

We let also ~, be a real constant  such t h a t  ~ < 5/3 and  suppose for the  t ime  being, for ease 

in exposit ion, t h a t  ~ > 1 also. Then firstly, since s=+l - s ,  = O(x ~) for Sn+l <~ x b y  [1], we 

have  
~ / V z ( x ) / ' =  ~ N~(z)lr+ ~ Nz(x)l~'=Z~+22, say, (24) 

where u 1 = [log �89 x] and u~ = [Bx ~] for some sufficiently large constant  B. Nex t  

21 <~ 'ITS1 ~ N z (X,) = 0 = O(X log ~(~-1) x ) .  
l 

(25) 

Fur thermore ,  b y  par t ia l  summat ion ,  

: ~ =  u,~<z<~ ~ (S~~ S~~ u~S~:(x) +~l<t<~: S~~ l~'-l) 

~ - 0 (  u~IS(uO:(x)+ u,<l<u2 ~ (S~I)( z ) - -z+l,c(1)'x"l~'-l),, 

§ o(u  § ) 

which completes  the  first  s tage of the  est imation.  

The  sum 53 is wr i t t en  as 

5 3=  ~ + ~ = 2 ~ + 2  5 , say, 
ul~l<ua u3~l<u2 

(27) 

and  then  ~4 and 2~ are assessed th rough  the  es t imates  for P(x, h) and  R(x, h), respect ively.  

Set t ing h = 1 - 1 in (3) we have  
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16 A~(1 - 1) 2. S~l)(x ) <~ P(x, l - 1), 
log v 

since regardless  of the  sign of t(n) we have  ~ (n )=  0 when r ( n ) =  0. Therefore,  b y  (23), 

0 X , 

Simi la r ly  we infer  f rom (3) t h a t  

~ ( 1 -  1) 3 S~'(z) <~ R(x, l -  1) 
and  hence from (8) t h a t  

F r o m  (28) we have  

Also, f rom (29), 

) 
= O(xu~ -2 log x) § O(x) + O(x ~+~ ,-1)+,) = O(xu~_2 log x) + O(x), 

since y < 5/3. Then,  b y  this ,  (24), (25), (26), (27), and  (30), i t  follows t h a t  

Nz (x) l" = O(x log�89 § O(xu~ -1 log -1 x) + O(xu~ -2 log x), 
l 

Hence,  b y  choosing u a so t h a t  xu~ -1 l o g - i x  = xu~ -2 log x wi th  the  consequence t h a t  bo th  

u a - log 2 x and  the  condi t ion  u 1 < u 2 < u a is satisfied,  we have  

/V l (x) l" = 0 (x log �89 - 1) x) + O(x log e "-  a x) = O(x log �89 - 1) x), 
l 

since y < 5/3. I t  is a p p r o p r i a t e  a t  th is  po in t  to  r e m a r k  t h a t  the  upper  l imi t  5/3 for y is 

of crucial  impor t ance  for two independen t  reasons  in the  above  a rgument .  

W e  therefore  infer a t  once the  following theorem for the  ease 7 > 1, the  extens ion  to  

the  case 0 ~< ~ 4 1 being made  th rough  the  obvious special  cases y = 0 and  y = 1 and  an  

app l i ca t ion  of HSlder ' s  inequa l i ty .  

T H E O r E m .  Let  sl, s 2 . . . . .  s . . . . .  be in  ascending order the numbers  that are equal to a 

s u m  o/ two squares. T h e n , / o r  0 4 y < 5/3, we have as x--> 

(s~+ l - s~) ~ = O(x log�89 
Sn+I~X 
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