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1. Introduction

The purpose of the present memoir is to prove that, if s;, 8y, ..., 8,, ... denote in ag-
cending order the numbers (not counted according to multiplicity of representations) that
can be expressed as a sum of two squares, then

2 (8pr1— 8, =0(x logt¥ Dyg)

Sp4+1<2

for 0<p<5/3. This result, which for the stated range of y is certainly best possible on

account of Landau’s asymptotic formula

S 1~ Ox

J
<7 log

may be contrasted with the inequality

Sni1— S = O(sk)
due to Bambah and Chowla [1] and with the conjecture that
Spi1— 8= 0(s}).

Comparison also may be made with the conjecture

2 (Par1—Pn)?=O0(x log z)

DPn+1<T

due to Erdos [2] and with the result

Z (Pni1 '“pn)2

Pn+1<2 Pn

= O(log® z)

that has been obtained by A. Selberg [5] on the Riemann hypothesis,
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The method depends on the application of an idea already used by the author in
connection with a similar problem concerning the numbers prime to n [4], the principle
involved being that there is a connection between the size of the moments of s,,1~s,
and that of the dispergion of sums of the form

f(n)

mgn<m+h

for given % and variable m, where f(n) is a function that vanishes unless n be a sum of
two squares. Furthermore by a transformation the dispersion in turn can be estimated
provided asymptotic formulae with sufficiently accurate error terms can be obtained for
various sums involving f(), including in particular a sum of the form

2 f(n) f(n+ k).

n<T

The choice of function f(n), however, for the problem considered here presents a major
difficulty in relation to the latter sum, since neither of the two most natural functions
r(n) or ry(n) is altogether satisfactory, defining as usual r(n) to be the number of repre-
sentations of n as a sum of two squares and r,(n) to be 1 or 0 according as »n be or not
be expressible as a sum of two squares. On the one hand, although there is an asymptotic
formula due to Estermann for the sum when f(n) =r(n), the use of #(n) only permits the
contribution of the larger intervals s,,; —s, to be assessed satisfactorily on account of the
well-known phenomenon that the weighting inherent in r(n) tends to emphasis numbers
with an abnormally large number of prime factors. On the other hand the use of 7 (n) is
impossible because it would require an asymptotic formula (not merely an upper or lower
bound) for the sum

> nn)ry(n+k),

n<e
the determination and proof of such a formula apparently involving much the same dif-
ficulties as are encountered in connection with the sum

> Am)A(n +k).

n<e

To obviate the difficulties relating to the smaller intervals a new function p(n) is defined
by affecting r(n) with a dampening factor #(n) which has the overall effect of reducing the
order of magnitude of the function but which at the same time allows the corresponding
asymptotic formulae to be determined. Defined in such a way that it mimics as far as
possible the function 27**™, where w*(n) is the number of prime factors of » congruent
to 1, modulo 4, the function #(n) is not necessarily always positive but gives rise by its

multiplication with r(n) to a function f(n) that has the necessary feature that it vanishes
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when # is not a sum of two squares. The asymptotic formulae, which require some delicate
and intricate analysis for their proof, then furnish an estimate for the dispersion that is
satisfactory in respect of the smaller intervals.

Finally it may be remarked that the introduction of the function #(n) forms the gen-
esis of a principle which has other applications in the theory of numbers and of which it

is hoped to give an account in due course.

2, Notation

The letters 6, &, k, I, 4, u, n, and g are positive integers; «, f, and m are integers; p is
a positive prime number; the letter d with or without a subscript or an asterisk is
throughout a positive square-free integer (possibly 1) composed entirely of prime factors
p such that p=1, mod 4.

The letter x denotes an integer variable to be regarded as tending to infinity, all
appropriate inequalities that are true for sufficiently large x being therefore assumed to
hold; y, y; are real numbers not less than 1; » is a function of z to be defined later;
s=g¢+it.

The positive highest common factor and lowest common multiple of 4, u are denoted
by (A, ) and (A, ul, respectively; o,(k) is the sum of the o' powers of the divisors of &;
w(n) is the number of distinet prime factors of n; [u] is, where appropriate, the integral
part of u: X(n) is the non-principal character, modulo 4.

The letter ¢ indicates an arbitrarily small positive constant while # indicates some
positive constant appropriate to the context. The equation f=0(|g|) denotes an inequal-
ity of the form |f| < C'|g| that is true for all values of the variables consistent with stated

conditions, where C is a positive constant that depends at most on either & or 7.

3. The fundamental inequality

Let f(n) be a real function of the positive integer » and let F(m, h, x) and F(m, h) be

defined for any integer m and any positive integer & by

Fmho)= 5 fm) and Fmh)= 3 fn).

mgn<m+h mgn<mih
ny
Then > FEm, b, x)=h > ffn)+2> (h—k) > fn)fn—k). (1)
~h+l<mge ngr k<h ngr~k

Also, for a suitable absolutely bounded number A == A(z) to be specified according to the

context later, we have
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(F(m, b, ) — AR = >  F¥m,h,2)—2Ah >  F(m,h,z)

—h+l<m<g ~h+l<mga —h+l<mge 2)
(
+ AR x+h—1)= >  F¥m, h,z)—2AR% > f(n)+ ARz -+ O(R®).

—h+l<m<ge n<r

Therefore, combining (1) and (2), we obtain

(F(m, by — AR)2 = > (F(m, h,x)— AR)?

O<mgz—h+1 O<mgr—h+1
3)
<h > fin)+ 2k2h(h -k > fm)fn+k)—2AR ; f(n) + A%RBx -+ O(R®).

n<r n<r—k

The properties of the distribution of the intervals between consecutive members of the
sequence will be inferred from this inequality through the use with appropriate values of
A of two functions f(n) both of which will have the feature that f(n) =0 unless n be a
sum of two squares. Since upper bounds for the sinister side of (3) are required for the
application of the final method, we proceed in the next sections to estimate the dexter

side for the functions f(r) to be chosen. Throughout it will be assumed that A < «*,

The case f(n) =r(n)

In this section we take f(n) to be r(n), A to be z, and denote the corresponding sin-
ister side of (3) by R(z, ). The estimations in this case depend on the following two lem-
mata, the first of which is too familiar to require comment and the second of which is
due to Estermann [3], the error term in Estermann’s formula being stated here in a form

that takes account of Weil’s subsequent work on the Kloosterman sum.

Lemma 1. We have

i) > r(n)=ny+O0(y?)

n<y

(i) > rin)=0(ylog 2y).

n<y

Leuma 2. We have, for 0<k <y,

> r(n)r(n+ k) =8y(k)y + O@y*+),

n<y

where y(k) is the multiplicative function of k determined by the conditions

Y@= S %ﬁ’ (&> 0)

8]2%

and y(p*y=0_4(p") for p+2.
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In view of Lemma 1 it suffices to estimate

’Zh (h— k)n > rmyr(n+k),

<r—k
which, by Lemma 2 and the condition h < z?, is equal to
8 3 (h— k) p(k) + O(h2t+e). (4)
k<h

In order to evaluate the sum occurring in (4) we consider a similar sum in which the fac-
tor b —k is absent. We have

2yl = 2 y@90.= 2 729 2 o). (5)
k<y 2%y 2%<y 1<y/2*
,2)=1 €,.2)=1
Also
1 1 1 1 1
S o~ 3 3= 53 3 a-ly 3 403
1<y yi<y, A A<y A p<ain 2 1<u, A lgy;z
@.2=1 G 2y=1 GuD=1 =1 .2=1
121 1 1,
=5y 2 53T O0lyy 2 55)+0| 2 2)=-a"y+0{log (y, +2)}.
2 (112:)1211 Sy A r<u A 16

Therefore by this and (5) we have

o0 [><] 2“
S yi=ggny 3 Pelwoflogrn) 3 p@9) -y 2ty 5 2+ oftoty+ )

k<y 2%y 2%y 16
(6)

® 1
= % 7y (1 + > (@*—3. 2"“)) +0{log*(y +2)}= A 7ty + 0{log¥(y +2)},
a=1

the equation holding trivially in the range 0 <y <1 if the condition y>1 be temporarily
relaxed. Finally, integrating (6) through the range 0 <y <5, we infer that

> (h—k)pk)= 118 72 h? + O(h log? 2h)

k<h

and hence from (4) that

S(h—k) 3 rn)r(n-+k)=%a2hiz+ O(ha log? 2h) + O(h2at+e) 1)
k<h nsr—k
The estimate for R(z, ) follows immediately from (3), (7), and Lemma 1. We de-
duce that

R(z, h) < n*h?x — 272 h2w + m2h2a -+ O(ha log 2) + O(ha log? 2h) + O(R2a¥+)

(8)
+ O(R*x?) + O(h®) = O(hx log x) + O(hx log® 2h) + O(R22%/5*¢)

on substituting s for A.
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5. The case f(n) = g(n): the definition of g(n) and preliminary lemmata

In order to define p(r) and to facilitate some subsequent estimations involving it we
introduce the function
/ 1
s, 8)= 2 ——
o= 1 (2-7]

p=1, mod 4

and let () = (1, J).

1/20

We then introduce the number v =2"'*° and write

o(n) = z(n) =t(n) r(n),

whero )=t (m) = > LD (1 —%)

the numbers d in accordance with Section 2 being restricted to square-free numbers com-
posed entirely of prime factors p such that p=1 mod 4. We accordingly now take f(n)
to be g(n), A to be A; log™*v where 4, is a suitable positive constant to be specified later,
and denote the corresponding sinister side of (3) by P(x, #). The apparently more natural
choice of f(rn) as the function that would have been obtained had () been replaced by
299 in the definition would have served equally well except that certain additional com-
plications in the work would have appeared.

As in the first case the estimations depend on formulae for Zf(n), 2f*n), and
2 f(n)f(n+ k). In this case, however, these are not already available and require for their
determination and proof the following preliminary lemmata. The proofs of the latter are
given in outline only, since for all but the last the method is along familiar lines as ex-
emplified by [6] while for the last considerations of space preclude the inclusion of a de-
tailed proof.

Lenmma 3. We have, for any given d,

s ran =YY 0y 1 oY),

an<sy d

We consider the generating function

and denote f,(s) by f(s). Then, for ¢>1 in the first place,
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R EE) DG

1(s) a1 P pld \am1 P w0 P°

1\9 1 1\ (s, d)
=TI11 — (1 =) {==TIl2 — =} =2,
}Fd{ ( ps)} dsgl( ps) d°

Therefore, since f(s)=4{(s) L(s) for all s, where L(s) is the Dirichlet’s L function formed
with the character X(n), we have

fole) = 5 905, D) 26) Lis)

without restriction on s. The result then follows by using the formula
ctico

déyr(dnbz{; fm fol) L s >1),

valid when y/d is not an integer, in conjunction with mean value theorems for {(s) and
L(s), the error term given not being the best possible but being sufficient for the applica-

tions hereafter.

LEMMA 4. Let u(n) be the coefficient of n™° in the expansion of

1\1 ( 4 2\71 ( 1 )'1
1-= 1 -+ 11—
( 23) p= LI_:Inod 4 p° pzs) pe= 3],:Inod 4 p*

as a Dirichlet’s series for o>1. Then
(i) 16 u(n)=1*(n):
(i) for any given d,
w(d)

> u(dn)=—~—2 y(@)

dn<y d

y(alog y + b+ ab(d)) + O="*),

where a and b are constants and

_ w'(s,d>) oo d
o@) (q)(s,d) B

Since we have, for ¢ > 1, from Euler’s identity

1 2 7n) ( 1)*1 (°° (ot 1)2) ( 1 )*1
— = - 1 — =
16 21 n® 25) pzll,_{lmdzi ‘xg() p“s pz?}_z[nod4 pzs ’

the generating functions for u(n) and r%(n) when expressed as infinite products differ only

in respect of the factors relating to primes congruent to 1, modulo 4, the product of the
19 — 712907 Acta mathematica 127. Imprimé le 11 Octobre 1971
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common factors relating to the primes incongruent to 1, modulo 4, being a Dirichlet’s
series with positive coefficients. Therefore to prove part (i} of the lemma it is enough to

show that, if a, be the coefficient of p~* in the expansion of (1 —4p~*+2p~2%)7!

as a
power series, then a, > (¢ + 1), The latter fact can be inferred by a simple inductive argu-
ment involving the recurrence relations a,=b,=1, a;,=b;=4, a,=4a, 1—2a, 2, b=
28,1 — by_s (0= 2), where b, = (a+1)2,

For part (ii) we use the generating function

and write g, (s) as g(s). Then, for ¢>1 initially, we have

ga(s) (_i 2)_1 }{l_i E} (i__%)zw
g(s) %{1 p+p PP prlzlips p* -

Also 11 (1~is+—22;)=1(1(s) I (1—i)~4,
P p

s
p=1, mod ¢ p=1, mod 4 P

where K,(s) is bounded and regular for o> (log (2 + V§)/log 5) +# and therefore, in parti-

cular, for o> 4/5. Therefore, since

1\ 1 1
pzlgnodz{(l h?) - C(S)L(S) (.1 _—é—s)p_?)l_rlnod‘i(l ﬁ?‘;)

for > 1, we deduce that
2°Dy(d, s)

B2 020) L) Ko,

gals) =

where K,(s) is bounded and regular for o>4/5. The result then follows much as in the
previous lemma by using Perron’s formula in conjunction with mean value theorems for

£(s) and L(s), the point s=1 being a double pole of the integrand g,(s) z*/s.

LeMMa 5. We have

u(d y 44 logty ( 1 )
4 7 + 0 1 >
d<y d d 7 log*® 2y
1\ %
where A= TI (1 _"_é) .
p=3, mod 4 p

Here the generating function is, for ¢ > 1,
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1 3(*5')
psgiou(l ’ps) {¢(8) L(s)}¥’

. 1 -1 1 -1
Ks)=(1-= JR—
3(s) ( 23) EQM 4( 1023)

is regular and bounded for ¢> 3/4 and where the positive determination of square roots

© u(d
Me)= > /“C(ls) _

where K,(s) given by

is taken for s> 1. Defining %(s) by analytic continuation in appropriate zero-free regions

of {(s) and L(s), we apply the formula

#(d) 1 c+ico ys—l
> ;) d oo f h{s) _1)2ds (e>1)

a<y joo (8

and deform the contour according to the methods used in [6]. We conclude that

ZM(d) __1 K(I)J‘ slds ( 1 )
a<v 275 L) Jo (s— ¥ logt 29/’

where C is a contour encompassing s=1 of the type used in Hankel’s integral for the

gamma function. Therefore

pay oy 1 V24, (_ifz (_1 b (*1_)
dgy g logd 5 ()4 2 sin 5 r 3 logty+0 logiay)’

which on simplification yields the lemma.
LeMma 6. Let ¥(d, ) = {(d, 0%)}, where o* = /(d, ). Then we have

wld) (d, o)
2 A¥(d, ) °

:4A0(9)10g%y+0( ot )
, i

y
d ogt2y/)’

4

1
- g and p=1, mod 4 implies p2lo,
where co=tpar 7 plo and p plies p’lo

0, otherwise.

The proof is an obvious generalisation of that of the previous lemma, the generating

function being now k,(s) = k(s) C(s, g), where

_ p P 1)“1
0O(s,0) = 1 — o - - -
.0 HQ ( ps‘l(zp*l)) LIQ (1 ps) LI@ 4(1 i

»=1, mod 4 ofe p=1, mod
p=1,mod ¢4

Since C{p)=C(1,p) the main term is obtained immediately while the error term is esti-
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mated by giving close attention to the effect (s, g) has on the residual contours used in

the previous proof.

Lremma 7. We have, for any given d*, that

. d) 20
() P AR
@eha
w(d)
(i) » /‘—(‘m—d@ tog Y= 0 {log 2y0_ (@)},
(d.ddg*gl=l

where 0(d) is defined as in Lemma 4.

For part (i) we use the generating function

T u@)2e? K (5) 2)"
karls) = 2 ‘z(s;L(sw*( ‘_) ’

S
=1
(d,d®)=1 p

where K,(s) is regular and bounded for ¢>1—#.
Part (ii) is most easily proved by observing that, since 6(d) is an additive function,

the sinister side of the proposed formula may be written as

i(d) 2P 20(p) (d,) 20 ylp
o) 3 Mgl y TR 5 HE)T e (F),
Py <y P<Y P a<yp 1 1
pld (d,d%) =1 R opfa* (dy,pd*¥)=1
p==1,mod 4 d=1,modp p=1, mod 4

the latter expression being by part (i) equal to

0(0‘_%(d*) > 1*0%)) = O{log 2yo_;(d*)}.

<Y

LremMa 8. We have, for 0 <k<y and given dy, d,, that

S rn)r(n+ k) =2ty (B)D(k, dy, dy) y + O(didbyt ),
nEOrffnL(/)d dy
n+ k=0, mod d,

where py (k) =p(2%) for 2*||k and where, if ®,(0) denote Ramanujan’s sum Zsikop0 140/0) 0,
then

1
%, d"dz):cm ;
(o,

§ Dy (0) (dy, 0) (dy, 0) p(dy) "//‘(dz).
X Q2 W(d,, 0) W(d,, 0)

=1

)=1

This generalisation of Lemma 2 can be established by following Estermann’s method
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closely although the proof is long owing to the additional arithmetical complications caused
by the presence of d,, d,. Alternatively there are a number of other approaches which do
not, however, lessen to any extent the length of the proof, Whatever method be adopted
we are led to a main term involving a series (over appropriate ranges of summation) of

the form
2(0) X(Ly)

s (el [ 1)

hls
(dy, 1), 1da DK
which can be expressed in terms of I'(k, d;, dy) by means of the relation

{a, it o|F,

0, otherwise,

Zq)k(Q) =

ols

the special constitution of d, d, as products of primes being relevant to the argument.

We are now in a position to consider the sums involving o(n).

6. Estimation of Zg(n) and 2 o*(n)

The estimation of Zg(n) is quickly effected. We have, using Lemma 3 and then
Lemma 5, that

- _ pd) (( logd) < pd) () logdy
Z o) = 2 imr(m) = Zr(n) 3 o0 (1 ) 2 (1 ) 2 ()

ngr n<r nge dn Y log v a<v 'l/)(d) 10g v n<e
a<v n==0, mod d
wx w(d) v ( 4 Az ( x )
=" B log ~ i =240 -} + Ot

log v dgv d ¢a" O\ dgul log‘%v+ log? (=%2)

4 Ax x
= . 9

log%v+o(log§x) )

The estimation of 2 o*(n) on the other hand takes longer. We have, by both parts of
Lemma 4(1),

2 0% (n)= 2 ¥ (n)r*(n) <16 2 £ (n) u(n)

nge nge n<T

PR Iu(dl)[u(dz)( _logd, ( _logdz)
16n§xu<n) Zﬂ%ﬂn p(dy) w(dy) ! logv 1 log v

1, Gy <

u(n)

Clog?v g, G pldy)pide) T dy T dy e

n==0, mod [d,, d,]

(1) As will be seen the replacement of 72(n) by wu(n) reduces the complexity of the subsequent
calculations.
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_16x o pldy pldy) 2Py {[d, dyl}
logzv dy, dp<v p(dy) p(dy) [dy, dy]

X (@ log 2+ +0{[dy, dy]}) log - log +-+ o(xm > 1)
1 2

dy, da

__ = w2 (dy) p(dy) 2792 2°99 (d, )
log? v ¢, a0 2971y {(d}, dy)} dy d,

(a, log +-b; +2a, 0(d,)

x x
— a,0{(dy, d,)}) log;i—logd +0(log% ) @Tvzﬁr()(@), say, (10)

the penultimate line following from symmetry, where a,,b, are suitable constants.

Next, by the Mobius inversion formula,

(6{1, d2)
d
2(»{(«1; dz)}w{ dpdz } daldlzt:ialdng( 3)
(dl: dz) 0 {(db dz)}

B et St TS et E -7 SN d.

and 2w{(d1'd2))1/){(d1,d2)} ds]dlndaldsz( 3)7
6 __ dy £(9) 2°Py(6)
where )= ( ) 20y(0) 2"Py(dy) d, 0
and
ANEON dy (8) 2°©4(9) 6(9)
2(d3) = ZM ( ) 2(0(5) (5) (d3) H ( 3) 2w(ds)w(d3) o K .
. dy
Writing H,(ds) = m—) H(ds)
3
_ 0 (d3)d3 _ d3

and H2(d3) - 2w(d3)w(d3) H3(d3) 2w(d3)1/)(d ) H4(d3)!

we therefore have

d d 2w(d1)2w(dz)
3= 5 Ad)uld) (aylog x+b, +20,0(d) log ~log > S Hy(dy)
a1, dy <Y dl d2 dl d2 dg|d,. dylds
) p(dy) 299 274
- log — l H,(d
“ dl,%@ d,d, 8 d, ¢ 1, d, d3|dlz(:ia|d2 2(ds)
40 PAP G , , v/d.

=2 = Hl(d3)< > 1; (ay log @ +by +2a,0(d1) + 2,0(dy)) log —7*

daY 3 (dj,dp)=1 1 1

di<v/dy

|
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4’y 9@ vld 400 4’y 90@? »/d 2
X ( s MBI o d;)—aldz —dg;Hz(dg( 3 DR g U

(Zf ji’ ¢ 1 " @l
2w(ds)
dzévd3’(/l(d {Ha(dy) (o) log &+ b, +a,0(dy)) + ay Hy(ds)} 23 4,1
2w(ds) z z
- Hay(@ o2 11
dacv By p(dy) 8(ds) 20,051 20,012 (11)
d’) 2w(d') ’l)/d
h > p(d) 27 vldy
where v,ds,l(d,‘%)jl 7 0g -
d'<olds
\ow(d”) ’
and % ntna= w20 ) Iy,
TR @ a=1 d d
a'<vids

We deduce from (11) and Lemma 7 that

204963 4 (dy) 2999 g_y(dy)
z,,=0(lo x ~—‘2—~3)=O(10 x ~——ﬂ),
8 dsz@’ dyyp(dsy) 8 dszév dap(ds)

since Hy(dg) ~O(1) and Hy(ds) = O {log dyo_,(d 3)). Therefore we have
z =0(logx IT {1 -I—1 (1——1—)—1(1 +i)})=0{lo z [] (1—!—1)}:0(10 2 )
i DY p 2p pt € p<Y P 5
p==1,mod 4 p=1,mod 4

from which and (10) we conclude that
2\ x
néxg (n)=0 (*log% x) (12)

7. Estimation of 2 o(n) o(n + k)

In assessing the sum appearing above we assume that 0 <k <z. Then

2 o(n) o(n + k)= Z ) t(n+ k) rin)r(n + k)

pldy) u(ds) ( log d1) ( log dz)
— k i S U vk T T 1—
ézr(n) rn )d1|‘;1,%|<n:-k p(d,) w(dy) ! log v log v

1 ( 1) ,u(dz) v v
log®v EEALE 22 1og = Tog - - rin)r(n + k).
log ¥ a4, 45 <o P(dy) w(d,) g d, g d, :é‘%’dd (n)r( )
7t =0, mod
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Hence, by Lemma 8, we have

Eonlk) z (dy) u(dy) v v
g =Tk ACANICH] ) log Y- Tog 2 (%n P %)
ngzg(n) on k) log*v a4, 3<o p(dy) (dy) Lk, 4y, ds) Og‘7l1 o8 d2+0 g dl.%@( 142)
T Vl(k) wuldy) u(d,) v v ( z )
= Ad) %) k,d,,dy) log — log —+ O(——
log*v a,5<v w(dy) p(d,) Pk, 4y, da) log d o8 dy log® z
-~ nzyl(k) Gk,v)z x
——~——~—~10g20 +0(lwog2 x)’ say. (13)

Next, by the definition of I'(k,d,,d,) in Lemma 8 and then by Lemma 6, we have

Di(0) (#(dy) w(dy) (dy, 0) (do, 0) | g L log —
92 dy, dy < d d. 1F(dp )‘F(dz: ) dl & d2

Gk,v) =
@2-1

JIM8

N8

[u

(o) (Z w(d) (d, 0) log 2)2
d

@2 i< d¥(d, g)

Q
@, 2)=1

=16A;logv §1 (Dk(g)zc’z(@)+0( % I(DS;Q”)

o=1
©@.2)=1 @.2)=1

16 A% log v
7%_ zk 1+ O(Zk 2), S4Y. (14)

Considering the easier sum first we have

%.-0( 576 0z 3

=1 ol e=1 @
=0, mod ¢

)=0(Z 51%) Oy} (15)

S|k

To estimate 2, , we define k,, k; for given £=1]p? by

kl = I—[ pﬂ> k3 = H pﬂ:

p=1,mod 4 =3, mod ¢4

and define g, g, for general g in a similar manner. Then, since ®,(p) and C(g) are multi-

plicative and C(g;) =1, we have

zk = Z o (01)0 (04) Z Dy ( Qa Ea) 3@ (16)

k.1, 8AY.
€1 Ql [ Q‘&

Next, by the expression of @,(g) as a divisor sum and the definition of 4 in Lemma 5,
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’ n 1 T(k)

i 2 G =t (1 _ﬁ)= 2 17

o e5h0¥ (9393)2 o 3)1,53’120“ p? VE (17)
oilk

where 7(ks) = 0_4(k;). To consider 2£; we need the fact that if of||k then

(), if a<p,

Qu(p*) =1 — 2%, if a=p-+1,

0, if a>f+1.
Then
2 Du(p%) 02(1)“)) ( 1 e ‘Dk(p“))
Sy = (1 4 Bnt AY PR V) 14+—=
el pzlgxodéi agz pza }Fk; * (2]7 - 1)2 a=2 pza—z
1 1 1
=££(1+@p—lf{1"5F3‘5%)=’““’“y' 4

Thus, by (16), (17), and (18), we infer that

T(ky) T(k
5,0~ AT a9)
Finally, by (13), (14), (15), and (19), we obtain
_167(k)z o_y(k)x
gfmmm+m——5§7+0ﬂﬁg;, (20)
where (k) = v, (k) T{ky) T(ks).
8. The case f(n) = o(n) completed: estimation of P(x, k)
In order to be able to estimate P(x, %) it remains to consider, for 0 <h <a?,
2 (h—k) 2 o(n)e(n+k),
k<h n<r—k
which by (20) is equal to
16z ha 16z 'z
> (h— —— _ = - —]. 1
Tog 0 x2, (h— k) z(k) + 0(10g2 - ;Zho' %(k)) Tog v ’Zh (b — k) (k) + 0(10g2 x) (21)

To evaluate the latter sum consider for ¢>1 the generating function

_ S k) 3 P
-5 50-m(1+ 5 220),

k=1 D o=
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the application of Euler’s theorem being valid since (k) is multiplicative and the series

is absolutely convergent. In the infinite product the factor when p=2 is

2@ = (2-3.279 11 1\ 1\

a=1

When p=3, mod 4, the factor is

o0 o (pac) o0 p—a:s_p»z(s+1)—1 1 -1 1 -1
z ! = Z =|1 _ps+1 1 DY) )

a=0 ,/pas «=0 1- p_l

and when p=1, mod 4, it is

g
1 1 1 11t
(1 e {E“Io} {1 _p_} )

after some simplification. Therefore f(s) = K4(s) {(s), where

11 I 1)
Kys)=(1—-;+ 51— b
5(8) ( 98 + 48) ( 25+1) pz?}jnod‘i( p5+1)

1 1 1 1 —1)
X 1+ ===l ~—3
pEl,I;Imd 4( (2p - 1)2ps {ps p}{ ps+1}

is regular and bounded for ¢>#. Hence, using the formula

1 c+ioo s+1
Sh-bbos | fe s o),
we deduce that
2 (h—k)T(k) =% K5(1) B* + O(h***) = § Ah* +- O(h' *9), (22)

k<h

since the integral is absolutely convergent for ¢>0 (c=1).
By {21) and (22) we have now

S -k S Q(n)g(n+k)=8A2h2x+ 0(k1+ex)+0(lk2x )

3
K<h n<z—k log v log og®

Substituting this together with (9) and (12) in (3) with g(n)=f(n) and A=4A4 log™tv,

we obtain
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16 A4°W*»  32A4%R*x 16 A*h*x (_ ha pite x)
log v log v log v log

logtx
: RPx R 3 hx Kz
roliags) o) rom-olg) rolagd) e

which is the estimate required.

P(z,h) <

9, The distribution of the intervals

The theorem on the intervals will follow from (8) and (23) according to the proce-
dure used in [4]. Adopting a notation similar to that in the latter paper, we let N (x) be

the number of intervals s, .1 — s, of length [ for which s,,; <z and then let
8P (x) = N, () + 2N, 1 () + 3N, o (2) + ... .

We let also p be a real constant such that y < 5/3 and suppose for the time being, for ease
in exposition, that 9> 1 also. Then firstly, since $,.1~s,= O(x*) for 8,1 < by [1], we
have
IN@F= 3 N@)P+ 3 Ny@)l'=Z,+2, say, (24)
1 4

<uy U< U
where u, = [logtz] and wu, = [Bx?*] for some sufficiently large constant B. Next

ulx

LS YN (2) = O(k)g% x) = O(xlog" D). (25)

Furthermore, by partial summation,

S,= 3 <sg°><x>—85‘21(x)>ly=0(uzsz°3<x)+ S 80 Z)

msI<us i<i<u

:o(uzss?z @+ S (80w —SD@) z)

Ur<I<Usg

—~ 0@} S0 (@) + 0y ST () + 0( > S?’V“Z)

mgI<ug

= O}z log~tz) + O(u] 'x) + 0( > S%l)l”‘2) = O(x log*¥Vx) + 0(2,), say, (26)

wLi<us

which completes the first stage of the estimation.

The sum 2, is written as

23= >+ > =2,+2 sy, (27)

Uyl<us usl<uy

and then 2, and 2 are assessed through the estimates for P(x, k) and R(z, h), respectively.
Setting A=1—1 in (3) we have
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16 A*(1—1)? ”
PN A, < —
Tog v SiP(x) < P(x,l1-1),

since regardless of the sign of {(n) we have g(n) =0 when r(n) = 0. Therefore, by (23),

W of%logte (x)
S () 0( : )+01ng. (28)

Similarly we infer from (3) that

21— 128V (x) < R(z, 1 — 1)
and hence from (8) that

S () = O(x log x) + o(x log”2 Z) +O(ate). (29)

l l
From (28) we have

.= (Oxlog x> 3) —l—O(O > 2) O(x log¥¥ D) + O(xu}*log ™ z). (30)

Iz g X<y,

Also, from (29),

Zy= O(x logz > Z”’s) + O(x 3 Ir-3log 2l) + 0(3:%“ > ZV’Z)
151

1>us I<us
= O(au 2 log %) + O@) + (¥t ""0%*) = O(2u % log ) + O(x),
since y < 5/3. Then, by this, (24), (25), (26), (27), and (30), it follows that
ZN, ) = O(x log** V) + O(xul~* log ' z) + O(wu}~? log z),
Hence, by choosing u, so that @u} *log 'z =2u} % log « with the consequence that both
uy =log® x and the condition u, <u, <wu, is satisfied, we have
> Ny () I = Oz log*? V) + O(z log**~*x) = O(z log ¥*¥~Px),
4
since y <5/3. It is appropriate at this point to remark that the upper limit 5/3 for y is
of crucial importance for two independent reasons in the above argument.
We therefore infer at once the following theorem for the case y > 1, the extension to

the case 0<y<1 being made through the obvious special cases y =0 and =1 and an
application of Holder’s inequality.

TEEOREM. Let s,8,,...,8,,... be itn ascending order the numbers that are equal fo a

sum of two squares. Then, for 0<y <5/3, we have as x~> o

Z (Sn«!-l - sn)y = O(x log%(y—l)x)‘

Sp4 1<%
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