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1. Introduction

Undoubtedly, the principal problem in many field of mathematics is to understand
and describe precisely the structure of the objects in question in terms of simpler (or more
tactable) objects. After the fundamental classification of factors into those of type I,
type II and type III by F. J. Murray and J. von Neumann, [25], the structure theory of
von Neumann algebras has remained untractable in general form. It seems that the complete
solution to this question is still out of sight. In the previous papers [44, 45], however,
the author obtained a structure theorem for certain von Neumann algebras of type III in
terms of a von Neumann algebra of type II, and an endomorphism of this algebra. Also,
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A. Connes further classified the factors of type III into those of type III;, 0< A< 1, based
on his new algebraic invariant S(7), and obtained a structure theorem for factors of type
IIT;, 0 <A<1,in terms of a von Neumann algebra of type I and its automorphism, [10].
These two structure theorems are closely relé,ted, and encourage us to obtain a general
structure theorem for a von Neumann algebra of type III in terms of a von Neumann
algebra of type II, and its automorphism group. The present paper is devoted to this task.
The structure theorems in the papers mentioned above were obtained by spectral analysis
of the modular automorphism group associated with a carefully chosen state or weight. In
contrast, a general structure theorem for a von Neumann algebra 1 of type III in terms of
a von Neumann algebra of type II,, and a one parameter automorphism group will be
obtained by constructing the crossed product, say M, of a von Neumann algebra M of
type III by the modular automorphism group of M associated with an arbitrary faithful
semifinite normal weight, and then the crossed product of ¥ by another one parameter
automorphism group, see § 8.

Although the crossed product of operator algebras had been treated by F. J. Murray
and J. von Neumann in their fundamental work as the so-called group measure space
construction of a factor, it was M. Nakamura who proposed the investigation of crossed
products of operator algebras, especially factors of type II,, as a possible analogy of crossed
products of simple algebras, with the aim of describing or constructing more factors of type
II,. In 1955, T. Turumaru gave a framework for crossed products of C*.algebras, which
was published in 1958 [51]. Soon after the work of Turumaru, Nakamura and Takeda
began a serious study of crossed products of factors of type II,, [27, 28, 29], and N. Suzuki
worked also on this subject at the same time [38]. They considered, however, only discrete
crossed products of factors of type II,. Continuous crossed products of C*-algebras were first
proposed by mathematical physicists, S. Doplicher, D. Kastler and D. Robinson under the
terminology “covariance algebra” in order to describe symmetries and the time evolution
in a physical system, [12]. Continuous crossed products of von Neumann algebras have been,
however, left untouched.

We shall give, in § 3, the definition as well as the construction of the crossed product
of a von Neumann algebra by a general locally compact automorphism group, which is
somewhat different from that of a C,-algebra—it has no universal property as in the case
of Cy-algebras. We then restrict ourselves to the case of abelian automorphism groups
throughout most of this paper.

In § 4, we prove our main duality theorem for crossed products, which says that given
a von Neumann algebra N equipped with a continuous action o« of a locally compact
abelian group G, the crossed product of M by G with respect to «, denoted by R(M; «),
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admits a continuous action & of the dual group G so that the second crossed product
R(R(M; o); &) is isomorphic to the tensor product M® L(L*A)) of M and the factor
L(LX(GY) of type I. This result, together with Connes’ result concerning the unitary co-cycle
Radon-Nikodym Theorem, [10; Théoréme 1.21] will enable us to describe the structure of
a von Neumann algebra of type III in §8.

Sections 5 and 6 are devoted to analysis of weights on crossed products. The results
obtained there will be used to show in § 8 that the crossed product of a von Neumann algebra
of type III by the modular automorphism group is semifinite (actually of type IL,).

We shall show in § 7 a Galois type correspondence between some intermediate von
Neumann subalgebras of the crossed product and closed subgroups of the dual group G.

Sections 8 and 9 are devoted to the study of von Neumann algebras of type III as
mentioned above. In § 9, we examine the algebraic invariants S(M) and 7'() introduced
recently by Connes for a factor M of type III, in terms of the structure theorem in § 8.

In § 10, we shall discuss induced covariant systems for general locally compact auto-
morphism groups, and prove that the crossed product of the induced covariant system is
essentially isomorphic to the crossed product of the original smaller covariant system.
We shall then apply the result to the structure of a von Neumann algebra of type III
of a certin class in order to describe the algebra in question as the discrete crossed product
of a von Neumann algebra of type II,, by an automorphism; hence by the additive group
Z of integers. This description corresponds to the structure theorems obtained previously
by A. Connes [10] and the.author [45].

Section 11 is devoted to discussing the example of hyperfinite factors of type III;.
As an application of our theory, we prove that the fundamental group of a hyperfinite
factor F of type Hl in the sense of Murray—von Neumann [26] is represented by a continu-
ous one parameter automorphism group of a hyperfinite factor of type II,, which is the
tensor product of F and a factor of type I.

The author would like to express his thanks to Professors H. Dye and M. Nakamura
for their constant encouragement; to Professors A. Hales and S. Takahashi for discussions
concerning cohomological problems in abstract algebras; to Professor T. Liggett for discus-
sions concerning ergodic transformations which inspired the author to obtain Lemma 9.5;

and to Dr. A. Connes for fruitful communications on the present topics.

2. Prelimaries

For a locally compact space G and a topological vector space 7', we denote by
X(T; @) the vector space of all continuous 7'-valued functions on G with compact support.
When the complex number field C is taken as 7', then we write X(@) for X(C; G). When
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a von Neumann algebra M is taken as 7', then we consider the g-strong* topology in
for the space X (M; @). If a positive Radon measure dg in G and a Hilbert space £ are
given, then we consider the inner product in X(9; &) defined by

(&ln) = L(E(!J)M(g)) dg, & n€X(H; ), (2.1)

which makes X (); G) a pre Hilbert space. The completion of JX($); &) with respect to this
inner product is denoted by L*($; &, dg), or by L¥(D; G) when the measure dg is fixed by the
circumstances. Of course, the imbedding of X(9; &) into L*(§; G; dg) is not injective
unless the support of dg is the whole space G. However in most cases, we consider only such
measures. Each element & in L*($); G, dg) is realized by an $-valued function £(-) with
the properties:

(i) g€G—>(£(g)|n,) is dg-measurable for each 7,€;

(ii) for each compact subset K of G, there exists a separable subspace £, of § such
that &(g) €9, for dg-almost every g€K;

(i) fall£<g)ll2dg< + oo,

The last integral is equal to ||£||2. Each essentially bounded dg-measurable function f on

G acts on L*(); G, dg) as a multiplication operator, i.e.,

(16)(9) = H(g)é(g), EELXD; G). (2.2)
Such an operator f is called a diagonal operator on L*(§); G). The set 4 of all diagonal

operators is an abelian von Neumann algebra isomorphie to L*(@, dg). If z is an operator in
the commutant 4’ of 4, then there exists an £(§))-valued function z(-) on G with the
following properties:

(iv) for each pair &, 7 in §, the function: €G> (x(g)&|7) is dg-measurable;
(v) for each fixed £€$) and compact subset K = @, there exists a separable subspace
$, of § such that z(g)& falls in §, for dg-almost every g€K;

(vi) ess sup [|z(g)|| = |l2]| < + oo
geG

Conversely, each £(§)-valued function z(-) satisfying the above properties gives rise to an

operator z in 4’ by
(&) (9) ==(9)é(9), EELXS; G). (23)

The operators of 4" are called decomposable. For details, we refer to papers of Vesterstrom &
Wills [52] and Maréchal [22].
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Given a faithful semifinite normal weight ¢ on a von Neumann algebra M,, we get
a one parameter automorphism group {of} of M, which is uniquely determined by ¢
subject to the so-called Kubo—Martin-Schwinger condition: for each pair 2, y in the defini-
tion hereditary subalgebra m of ¢ there exists a bounded continuous function F on the

strip, 0<Im z< 1, which is holomorphic in the interior such that

F@)=q(of(2)y); F(t+1i)=plyot(x)).

The group {of} is called the modular automorphism group of M associated with ¢. The
fixed point subalgebra of M under {of} is called the centralizer of ¢, and sometimes denoted
by M,. For the details of the theory of weights and modular automorphism groups,
we refer to the articles, [9], [10], [33], [42], [43] and [50].

3. Construction of crossed products

Let M be a von Neumann algebra. We denote by Aut (M) the group of all auto-
morphisms (*-preserving) of 1 and by Int (M) the group of all inner automorphisms
of M. Clearly, Int () is a normal subgroup of Aut (). We denote by ¢ the identity in
Aut ().

Definition 3.1. Given a topological group @, a continuous action of G on 7 means a homo-
morphism a: G2 g> o, €Aut (M) such that for each fixed x € M, the map: g €G> o () EM
is o-strongly* continuous. The pair {M, a} is sometimes called a covariant system on G.
In particular a continuous action of the additive group R of real numbers is called a
(continuous) one parameter automorphism group of M.

The following easy proposition says that the continuity assumption imposed in the
above definition is weakest as long as we intend to study the relation between unitary

representations and actions of a topological group.

Prorosition 3.2. Let {M, H} be a von Neumann algebra acting on a Hilbert space.
Every continuous wunmitary representation {U, D} of a topological group G such that
Ulg) MU(g)* ="M, g€G, gives rise to a continuous action o of G@ on M by

o (x) = U(g)zU(g)*, g€G, z€M.

Suppose that {M, ) is a von Neumann algebra on a Hilbert space, equipped with
a continuous action a of a locally compact group G. We denote a left invariant Haar
measure of G by dg. On the Hilbert space L¥(§); G), we define representations n, of M
and A of @ as follows
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(2 (2) &) (B) = o' (x)E(R), hEG; } (3.1)

(A(g)é) (k) =&(g7h), g€G, EEL¥D; G).

It is easily seen that m, is a normal faithful representation and
M) (2)Ag)* = m00,(x), xEM, gEG. (3.2)

In general, if a pair {,, A} of representations 7 of M and A of G satisfies (3.2), then it is

called a covariant representation of the covariant system {M, «}.

Definition 3.3. The von Neumann algebra on L3*§; G) generated by x,(M) and

A(G) is called the crossed product of M by G with respect to the action «, or simply the
crossed product of M by the action o of G, and denoted by R(M; «).

Apparently, the crossed product R(M; «) depends also on the underlying Hilbert
space §. However, the next proposition assures that the algebraic structure of R(M; «)
is independent of the Hilbert space §.

ProrosiTION 3.4. Let {M, H) and {N, K} be two von Neumann algebras equipped with
continuous actions o and f of a locally compact group G respectively. If there exists an iso-
morphism x of M onto N such that

xoa, =f,0ox, ¢g€QG, (3.3)

then there exists an isomorphism % of R(M; «) onto R(N; B) such that

7 0K() = %Om, (%), TE ‘m;} (3.4)

where 7, 7wg, Am and A, mean the representations of M, N, G and G respectively which are

used to construct R(M; «) and R(N; p).

Proof. By the theorem of Dixmier [11, Théorém 1.4.3], there exists a Hilbert space
M and a unitary U of HOIN onto K@M such that U(x@1) U* =x(z)®1, € FN. Since the
assertion is trivially true for a spatial isomorphism x», we may assume that » is an ampli-

fication: x € M—>2®1. Namely, we assume that the Hilbert space & and » are of the forms:
KR=HDOM, x(z) =z®1, xEM,
for some Hilbert space M. It is then clear that
LX&; @) = LX(9; &) I;

so we define an amplification % of R(M; x) by
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#(zx)=z®1, zER(M; ).
It is then straightforward to see that % is the required isomorphism. Q.E.D.
ProrosiToN 3.5. Let {M, H} be a von Neumann algebra equipped with two continuous

actions o and f of a locally compact group G. If there exists a o-sirongly continuous function
u: gEGr>u,€ U(M), where U(M) denotes the group of all unitaries in M, such that

Upn= U0ty (Uy), 9, REG; (3.5)

Bo(®) = ugoy(x)u;, €M, (3.6)
then there exists an isomorphism » of R(M; &) onto R(M; B) such that

xom,(x) =mg(x), zEM,

where 7, and 7y are the representations of M on LA($; G) given by (3.1) based on « and B
respectively.

Proof. First of all, we remark that R(; ) and R(M; B) both act on the same Hilbert
space L(§); (), and the representation A of G does not depend on « or f. Define a unitary
operator U on L3(§; G) by

(UE) (9)=u,.£(9), gEG, EEL(;0). (3.7)

We have then for each x€M

(Ut (@) U*£) (9) = w1 (ma () U*E) (9) = w105 (2) (U*£) (9)

=u, 105" (x) uy_1&(g) = B3 (%) E(g) = (7s(x) £) (9),
and

(UAB)T*E) (g) = u,-1 (A(B) U*E) (g)
= (U*E) (b g) =, yu 2, €1 g) = s (0105 () E(B7g)
= o (wh) w7 g) = B7 (uh) £ g) = (mp(wh) A(R) &) (9).

Therefore, we get
{Un“(x) U*=mp(x), x€EM;
UMg)U*=mp(ug) Ag), 9€G.

Hence it follows that UR(M; &) U* < K(M; B).
Using the facts that ugn =uy By (ur), g,hEQ

and ug B (@) uy= o, (), €M,
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we can show U*R(M; B)U < R(M; «). Therefore, putting »(x)=UzU*, x€R(M; x), we
obtain the required isomorphism . Q.E.D.
Combining Propositions 3.4 and 3.5, we obtain the following result:

CoroLLARY 3.6. Let {M, o} and {N, B} be two covariani systems on the same locally
compact group G. If there exist an isomorphism » of T onto N and a strongly continuous func-
tion u: gEGr>u, € U(M) satisfying (3.5) such that

wlof,0n(x) = u,a,(x)u;, *EM, g€G,
then there exist an isomorphism 3 of R(M; «) onto R(N; B) such that % om,(x) =mg0%x(z), x€ M.

Given two continuous actions « and 8 of a locally compact group G on M, let
{uf*: g€G} be a o-strongly continuous U(M)-valued function on @ satisfying (3.5) and
(3.6). If y is another continuous action of G on T such that there exists {u}’:g€G}
satisfying (3.5) and (3.6) for B and y, then the function "% g€G—>ul*=uPub-*€ UY(M)
satisfies (3.5) and (3.6) with respect to « and y. Furthermore, the function u*#: g € Gr>uf =
(ub-*)* satisfies (3.5) and (3.6) for § and «. Therefore, if we write &~ when the assumption
of Proposition 3.5 is satisfied, then the relation “a~f" is an equivalence relation among
the actions of G' on M. We say that « and § are equivalent if o~ f, and o and § are weakly
equivalent if there exists an automorphism » of 7 such that xoxox~1~ f. More generally,
two covariant systems {M, «} and {N,5} on a locally compact group G are said to be
weakly equivalent if the assumption of Corollary 3.6 is satisfied.

4. Duality

In this section, we shall show a duality for crossed products of von Neumann algebras
by locally compact abelian groups. We consider throughout most of this section locally
compact abelian groups only and denote by addition the group operation. Given a locally
compact abelian group G, we denote by G the dual group. We fix Haar measures dg in G and
dp in @ so that the Plancherel formula holds.

Let {M, H} be a von Neumann algebra equipped with a continuous action a of G.
Consider the crossed product R(M; &) of M by & on L¥(H; G). We then define a unitary
representation u of G on L*(; @) by

m(p)E(g) =<9, P>E(9), EELHR; @), g€G, p€C, (4.1)
where (g, p> denotes the value of p€G at g€G. Clearly we have

WD) () u( —p) =7 (x), EM, pEG; (4.2)
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p@PAMu(—p) =<9, p>Mg), gE€G, (4.3)
so that (@) ROM; )u(—p) = R(M; o), pEC. (4.4)

Hence we can define a continuous action & of G on R(M; ) by

6,(x) = u(p)zu( —p), ER(M; «), pEC. (4.5)

Definition 4.1. We call & the dual action of G on R(M; ), or more specifically we say
that the action & of G ob R(M; d) is dual to the action « of G on M.

Prorosition 4.2. If {M, o} and {N, B} are weakly equivalent covariant systems on a
locally compact abelian group G, then the isomorphism % in Corollary 3.6 intertwines the dual
actions, & on R(M; «) and B on R(N; B), of G in the sense that

o, (@) =B 0%(x), x€R(M; ). (4.6)

Proof. As in the previous section, we can easily reduce the problem to the case where
M and N are the same von Neumann algebra, denoted again by M, and x is the identity
automorphism. Let U be the unitary opefator on IAH; G) defined by (3.7). Put
#(zx)=UzU*, x€R(M; a). We have then for each €N, g€G and p€G,

706,07, (%) = %074 (%) = 75 (%) = f,0 %0, ();
#08,0M(g) = {9, p> %0 4(g) = (g, P> mp(u7) A(g)
= By (ms(uf) 1)) = ByoR0X(g).
Hence we have %o&,= f,0%, p€G. ~ QED.
Suppose now {M, H} is a von Neumann algebra equipped with a continuous action
of a locally compact abelian group G. We shall show that the second crossed product
R(R(M; a); &) is isomerphic ta the tensor product M® L(LX(G)).

Put My=R(M; «) and N=R(R(M; «); &). By construction, #{ acts on the Hilbert
space L2(§: G'% @), and is generated by the operators of the following three types:

(7r: oma (%) £) (9, p) = o7 (2) E(g, p), TEM
7z (Alh)) E(g,p) =<k, D> E(g—h,p), ~ hEG,; : (4.7)
Mg) &g, p)=Elg.p—q), q€G '

We consider the operator F on X(§); G x @) defined by

Fitg. )~ [ Tpe.p dp, EEX(E:66) (4.3)

17 —732907 Acta mathematica 131. Imprimé le 11 Décembre 1973
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It is well-known that F may be extended to a unitary of L($; ¢ x @) onto L2($H; G x G),
which is also denoted by F, and that the inverse F* of F is given on X($H; G xG) by

(F*8) (4, p) = f ) gL, EEX(HC Q) (4.9)

We consider the von Neumann algebra FHUF*, say D, instead of M itself. We put

F=Fn.om, () F*, x€M;
v(g)=Fr olg) F*, g€G;
u(p)=Fi(p)F*, pE€G.

‘We have then

@) @ W= @EGR), €M, ) |
(v(k) &) (9, B)=E&(g— k. h— k), KkEG; (4.10)
(u(p) &) (g, b) = <k, pYE(g. ),  PEG
for every £€LX§;@x@). The von Neumann algebra P, which is  isomorphic to

R(R(M; x); «), is generated by %, z€ M, v(g), §€G, and u(p)‘,' pEQ. These operators satisfv
the following equation: ' '

(v(g) Fv(—g) = (2,(x))", =EM, gE€G,; (4.11)
“u(p)zu(—p) =% vEM, pel; (4.12)
o(g)u(p)v(—g)u(—p) =<g, )1, 9€G, p€C. (4.13)

The last equation (4.13) 18 known as the (generalized) Heisenberg commutation relation. Itis
then known, see [18, 19, 30], that the von Neumann algebra B generated by {v(g), u(p):
g €@, p€G} is isomorphic to the algebra £(L*()) of all bounded operators on L*(@), which
is a factor of type I. Therefore, we have P=(PN B)®B. For each z€ M, we define

n(x) E(g, h) = a7 n(2) E(g, h), EEL*(D; G xG). (4.14)

LumMMa 4.3. The map n: x€ M—n(z) € CLAD; G x @) is a normal isomorphism of m
into PN B.

Proof. Tt is easy to see that 7 is a normal isomorphism of 71 into B, ie., n(z), zEM,
commutes with v(g) and u(p), g€G and p€G. Hence we have only to show the inclusion
a(M)< P. Let z be a fixed arbitrary element of M. Put y =n(x). For each g€ X(G) and
Y€ X(G), we define ' '

Yopo= L é<g,p> @(g) p(p) a; (x)” u(p) dg dp.
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It is clear that y,,, belongs to P. For each &, 5€L*(H; G x @), we have
ot = [[. G800 vi0) (05" @) wtp) el dgdp
N f f f f@ 0(9) p(0) k) (0tn (@) Eh, 1) (b, k) dg dh dk dp
B f f f f@’“_ﬁ 9(0) ¥(D) (5n (2) £k, ) | m(h, B) dg dh dk dp

B f f f . P+ ) (9) (51 (2) &R, B) | n(h, k) dg dh dk
(by Fubini’s Theorem)

= f f f 9 9lg—F) (aztnr(z) &b, k) (b, b)) dg dh dk,

where ¢ means, of course, the Fourier transform of y on G ie.,

Plg) = fé<g,p> p(p)dp, ¢E€G.

Put F(g,h, k)= (P(g) (“;-l}h (x) &(h, k) |7](h’ k), 9, h,k€G.

The map: gEG+—F(g, -, +)ELYG x ) is then continuous and has compact support. There-
fore, when the measure (g)dg converges to the Dirac measure §, at the origin 0 €G, the

above integral converges to

UG th( — k) (a2 () E(B, K) | (R, k) AR dE,

and this converges to (y&|7) as ¢ converges to the identity constant function uniformly on
each compact subset of G. Therefore, y is well approximated weakly by y,. ,, so that y
belongs to P. Q.E.D.

LemMMA 44. The von Neumann algebra D is generated by (M) and B; hence

D=mMeB.
Proof. Let x be a fixed arbitrary element of . For each ¢ € X(G) and v € X(G), we put

Topp= H XG<g,p> @(9) v(p) 7w(og(x)) u(p)* dg dp.

G

It follows then that z,,, belongs to ((M) U B)"'. For each &, n€L*(H; G x G), we have
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(@opElm) = f LXGng) (p) (nloty (=) u(p)*E|m) dg dp
N f f f Lxcxmm 0(9) p(0) (@2 i-g (%) E(h, )| (R, 1)) dg dh dk dp
;f f f”"g + &) 9(g) (oo () E(h, )| (h, B)) dg dh de

=] w0 9ta— e o0 £ 11 ) dg

For the same reason as before, when (g) dg converges vaguely to the Dirac measure Jy,

the last integral converges to
HG Grp( — k) (o * (2) &(R, )| (B, k)) dh dE,

which converges to (Z£|7) as @ tends to 1 in an appropriate sense. Thus every #, x€ T,
belongs to (m(M) VU B)”", so that
D<= (=(Mu B)". Q.E.D.

Combining Lemmas 4.3 and 4.5, we obtain the following duality theorem.

TaEOREM 4.5 (Duality). Let M be a von Neumann algebra equipped. with a continu-
ous action o of a locally compact. abelian group G. Then the crossed product R(R(M; «); &) of
R(M; «) by the dual action & of the dual group G of G is isomorphic to the tensor product
MR LLAQ)) of M itself and the factor C(LA(Q)) of type I of all bounded operators on LA(G).
Therefore, if M is properly infinite and if G is separable, then R(R(M; a); &) is isomorphic
to the original algebra M itself.

We now consider the action & of G on the second crossed product R(R(M; «); &), say n,
which is dual to the action & of G on R(M; «). The relevant unitary representation /i of
G on L*); G x @), which gives rise to the action & of G on H, is defined by

ji(9)€(h, p) = (g, pYE(h, B), 9EG, EELNG; GXB). (4.15)
The action & of G on M is now given by
&ylx) = (g)xf(—9g), gEG, x€N {4.16)
Let w(g) = Fu(g) F*, g€G. We have:

w(g)&(h, k) = &(h, k+g), EELXH; G xG). (4.17)
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If we identify 1 and D= F W F*, then the corresponding action & of G on D should be given

by
&y (x) =w(g)aw(—g), z€D, g€G. (4.18)

We have then, for each g, 1€G and p€G,

&, (v(h)) = v(h) } (4.19)

&g (w(p)) = <g, p> u(p)-

Hence the action & of G leaves B invariant and its restriction to B is induced by the
unitary representation v of @, that is

&y(x) =v(g)*xv(g), =€B, g€l (4.20)

We have next, for each x€ M,

(Gg0m(x) &) (h, k) = (w(g) 7u(x) w(g)* &) (h, k)
= (7e(x) w(g)* &) (b, o+ g) = anliy (x) (w(g)* &) (A, K+ g)
= oz 00y () &h, k) = moa, (x) &(h, k),

so that gon(z)=mou,(r), x€M, g€G. (4.21)
Therefore, we have d,=a,®Ad(v(g)*), g€G, (4.22)

under the identification of ¥ and M ® B, where, for any unitary », Ad (u) means the inner
automorphism defined by

Ad (u)x = uzu*.

Thus we obtain the following result:

THEOREM 4.6. Under the same assumptions as in Theorem 4.5, the isomorphism of
R(R(M; «); &) onto M L(LAG)) in Theorem 4.5 transforms the action & of G onm
R(R(M; o); &) into the action of G on M L(LHG)) given by x,®Ad (v(g)*), gEG, where
v(*) i3 the regular representation of G on L¥@) defined by

v(9)é(h) =£&(h—g), g,h€Q, EELXG). (4.23)

Suppose now that M is properly infinite and G is separable. By Theorem 4.5, we may
identify M and R(R(M; «); &). We consider here the problem of how the original action
o of G on M and the bidual action & of @ on M are related under the above identification.

Let T be a properly infinite von Neumann algebra equipped with a continuous action
« of a locally compact group G. Let B be a factor of type I with separable predual. Let
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{e;;n=1,2,..} be an orthogonal family of projections in I with e,~1 and >;21e,=1.
Let {v,:n=1,2, ...} be a sequence of partial isometries in I with v3v,=1 and v,v;=e,.
Let {u;,:¢,9=1,2,..} be matrix units in B. For each x€ I, put

* A .
xi.i':viwj’ @,7=1,2,...,

o (4.24)
a(x) =i leu(@“i.r

It is then well-known that ¢: xM—>c(z) € M® B is an isomorphism of M onto M® B.
Define an action § of @ on M® B by

Bo(x) = o000 Y(z), zEM®B. (4.25)

We shall show that the actions g and {&,®:: g€G} of G on M® B are equivalent.
Put w,=0(v,), n=1,2, ..., and

0

= lenﬁ,(wi), geqQ. (4.26)
We have then

o0

wtg=( 3 patout) 3 wattwt)

= ;Eo:':lﬂn (wy) w:wm/gg (w;:) = nglﬂg (wy,) w:wnﬂy(w:) =ﬂa (:Ei:lwnw:) =ﬂg(1) =1;

n,

n=

wyus=( 3 waps) (3 potumut) = 3 wapywimwi= 3 w,wi=1;

o0 -]

ugn=n§1wnﬂgn(w:)= > w08 (Wh)= glwnﬂ,(w:) Bo(w,) B0 Ba(wh)

n=1 n=

=1

= [:i WP, (w:)] Ba [mozj:lwmﬂh (w’:‘,,)] =ty g (1)
Noticing that 1 ®w, ,=w,w}, 1,j=1,2, ..., we have
a1 ©u )03 = 3 w,8,000) o) ( 3 putin) )

* t 3
= w, B, (wi ww}w,) wi =ww =1Qu, ;.

Let 2 be an arbitrary element of M, and put y=2®1. We have then

oM y)= Elvnw:;



DUALITY FOR CROSSED PRODUCTS AND STRUCTURE OF VON NEUMANN ALGEBRAS 263

%P, (y) u: = uao'( El 0g (vnxU:)) u;

=( 3 w8, (w;*)] o| 2 mtonarh)] |3 putw w:‘]

i=1 n=1

=g ([ 5 via,(v:‘)] [3 ag<v,.xv:)] L§ oy () v;"])
i=1 =1 =1

o ( ilvh oy () v’,',‘) =, (z)®1.

Hence we get u,8,(z®1)u; =a,(r)®1. Thus we have proved the following lemma.

LemMma 4.7. In the above situation the actions B and {o,®t: g€G} of G on MR B are
equivalent.

THEOREM 4.8. Let M be a properly infinite von Neumann algebra equipped with a
continuous action « of a separable locally compact abelian group G. Let o be the isomorphism of
M onto M LLAQ)) given by (4.24). Identifying ME LILAR)) and R(R(M; x); &) by
Theorem 4.5, the action B of G given by (4.25) on M® L(LXQ)), and the second dual action
& of G on R(R(M; x); &) are equivalent.

Proof. By Theorem 4.6, the action & of @ is given by {a,®Ad (v(9)*): g€G}; so it is
equivalent to {a,®¢: ¢€G}. Thus Lemma 4.7 implies the equivalence of & and . Q.E.D.
Thus, the actions « of G on M and & of G on R(R(M; «); &) are weakly equivalent.

5. Dual weight

In this section, given a von Neumann algebra M equipped with a continuous action
« of a locally compact abelian group G, we shall establish a canonical way of constructing a
faithful semifinite normal weight on R(M; «) from a faithful semifinite normal weight on
M which is relatively invariant under the action « of G.

Since we consider only faithful semifinite normal weights throughout this paper, we
shall omit the adjectives “faithful semifinite normal”. Namely, a weight means always
in this paper a faithful semifinite normal one.

Suppose ¢ is a weight on a von Neumann algebra M. Let n={x€ M: p(r*r) < + oo}
and m=n*n, the space spanned linearly by the elements z*y, z, y €n. The following facts
are then known:

(i) n is a left ideal of M;
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(ii) m is linearly spanned by its positive part m,, and m,={z€ M,: p(r) <+ o},
and ¢ may be extended to a linear functional ¢ on m;

(iii) n is a pre-Hilbert space with inner produects: (z, y) €n x n—¢@(y*z);

(iv) Denoting the completion of 1 by § and the im‘bedding of n into § by 7, Mm is
faithfully represented as a von Neumann algebra on § in such a way that

an(zx) =nlax), a€M, z€n;

(v) The image A =7n(nNn*) of nNn* in § turns out naturally to be a full left Hilbert
algebra such that 7} is the left von Neumann aigebra () of ;
(vi) The modular operator A of U gives rise to the modular automorphism group

‘ {o?} of M associated with @ in such a way that

Aty (x) =n(of(x)), €N, tER;} (5.1)

of(x)=Atz A%, z€M;

(vii) The set of all analytic elements in A with respect to {A*: ¢ R}, or more precisely
the image of all analytic elements in 1N n* with respect to {of}, form the maximal
Tomita algebra 9, contained in 9 and L) = M. For each & €9, (sometimes & €Y
or £€"), (&) and =, (&) mean respectively the left and right multiplication
operators by &. ' :

Let o be a continuous action of a locally compact abelian group G on M.

Definition 5.1. A weight ¢, (faithful semifinite normal), on M is said to be relatively
invariant under the action of « of @ if there exist a continuous positive character y of &

such that
poa, =x(9)p, gEG. (5.2)

In order to construct canonically a weight ¢ on the crossed product R(M; a) of Moy
o, neither the relative invariance of ¢ nor the commutativity of G is essential. But the
presentation of the theory of crossed products in full generality is not our purpose in this
paper, while it should certainly be done. We shall treat it on another occasion. We assume
instead the relative invariance of g as well as the commutativity, in order to reach quickly
a structure theorem of von Neumann algebras of type IIL

Suppose that ¢ is a relatively invariant weight on F{. Since the modular automorphism
groups associated with ¢ and y(g)p are the same, the modular automorphism group
{o?} associated with ¢ and the action o of @ commute. In fact, we have

of = ¢} 9P =¥ = q;'00fou,, ¢gEG.

For each g€G we define operators T'(g) and U(g) by
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T(9) n(x) = noay(x); }
(5.3)
Ul(g) n(z) = 2(9) tnoa,(x), xz€n. ,

The operators T(g) and U(g) are then extended to bounded operators on § which are
denoted by the same symbols.

LeMMA 5.2, The map U: g€G—>U(g) is a continuous unitary representation of G on
and the map T: g €G+—>T(g) is a strongly continuous representation of G by bounded invertible

operators.

Proof. By construction, it is sufficient to prove the first assertion. The assertions for
T follow automatically from the first. Since the group property is obvious, we have only to
prove the strong continuity of U. By the normality of ¢, there exists an increasing net

{®:}ier of normal positive linear functionals on M such that

p(x)= lilm w;(z), zEM,.

There exists then an increasing net {h;};, in (')* converging strongly to the identity 1

such that )
wi(y*x) = (n(2)|hiy(y), @, y€n,iEL
We have then

(U@)n(=)| hin(®)) = 1(9)7 (o ay(@) |hin(y)) = x(9) wi(y*a,(x)), =z, y€n, i€l

Hence the function: g€G—>(U(g)n(x)|hm(y)) is continuous. Since n(n) and U,erh;n(n)
are both dense § and U(g), g€G, are unitaries, U is strongly continuous. Q.E.D.
The commutativity of {cf} and the action a of G entails the following:

T(g) At = AT €G, tE€R:
(9) A*=A"T(g), ¢ ,tR,} (5.4)

U(g) AV = A*U(g).

Furthermore, being an algebraic *-automorphism of 9, T'(y) commutes with the involu-
tion § of ¥, the closure of the §-operation in U; hence 7'(g) and the unitary involution J

in § associated with 9 comute; that is,

T(g)=JT(g), gGG;} (5.5)

Ulg)J=JU(g).

Thus, T'(g), and hence U(g)=y(g)*T(g), leave the Tomita algebra 9, invariant.
To consider X(y; G), we equip the Tomita algebra 9, with the locally convex
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topology induced by the family {pg: K runs over all compact subsets of C} of seminorms
on Y, defined as follows:

px(§)=sup {|A°¢]| + [, (AE)|| + [, (A B}, £€W, (5.6)

In X(¥,; @), we define an inner product by

(&ln) = L(E(gﬂn(g)) dg, &nEXU; ). (8.7)

The completion & of K(Wy; &) is nothing but L2(; G). We consider the algebraic structure
in KWy &) defined by the following:
(én)(9)= f [(T(— k) &(g — h)]n(h) dh;
G

i E(g)=T(—9) &(—9)%;
[A(w) &1(9)=x(9)* A”&(g), wEC.

(5.8)

It is clear that
A(w) XWy; 6)=KWy; §), wEC;

JC(QIO; G)#= JC(?[.); Q).
Lemma 5.3. If & and n are elements of X(Wy; G), then the product &n falls in H( Wy G).
Proof. Putting £,(g)=A%&(g) and 7,(g) =Avx(g) for each w€C and g€G, we have
(€ 0)= | 17(= ) Avstg - R (A~ ek @b

- L[A«*T(—h) £(g— B [A%y(h)) dh = fGM{m—h) £g — M n(h)} dh

= e[ w-meg-migma,
where the last step is justified by the closedness of the operator A». Hence &7(g) belongs to

the domain D(A%) of A« for each g€G.
For each compact subset K of C, we put

760 =19 [ lpualo =Ml o )] 5.

We have then for any (€%, and w€K,
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7, () {(Somo) (9)} = nr(C)fG [T(— 1) éulg — B)] nolh) dh

= Lnr (O [T(—h) bulg— )] 90 (k) dh= Lﬂz (T(—h) §ulg—h) mi(no (k) L dh

= {Lai tom(&ulg — k) 7 (10 (h))dh} g,

so that e (@) 1A eI < ye @) 2], w€K, (€U

Hence A®&g(g) is left bounded for every w€C. Hence &7(g) belongs to U, for every g€G.
We have next for each g, g,€G,

sup |Au{&n(g) — Entgo)}ll = sup oo (@) — Eono(gol

f {T(~h) A1¢lg ~ ) Elgo— W} 1A% (M) dh“

=sup
wek
<sup Llln,w(s(g—h)—5(90—1»»]" |A“n (k)] db

< fapx<s<g—h)—5<go—h))px(nw»dh»o

as g tends to g,. Similar arguments show that

lim sup ||z, (A®&n(g)) — 7, (A“ Enlgo))|| = 0;

g—>0, weK

lim sup ||z, (A®&n(g)) ~ 7, (A% én(go)) = O-

g—>g; wekK

Hence the function: g € G+>£n(g) €Y, is continuous. The fact that én has compact support
follows from the usual arguments for convolution. Q.E.D.

LeMMA 5.4. For each & 5, L€ Xy @), we have (En)C=EmC) and (&n|)=(n|E¥L).

Proof. The usual arguments of changing the order in integration based on Fubini’s
theorem verify the equalities, so we leave it to the reader. Q.E.D.

Thus K(¥,; @) is an involutive algebra over C.

Lemma 55. For each fized E€ X, G), the left multiplication operator mi(&):
7€ N Wy; G)—>En€ K(WUy; @) is bounded.

Proof. Taking an arbitrary 7€ X(¥,; @), we compute as follows:



268 A MO TAKBSAKL
enlol=| [ ([ 7w ea-mnmanizo) 4

s Haxel([T(‘h) E(g—m)]n(R)[2(9))| dg dh
= f f M= Ry st — w1l 12 ()] dg b

< f f o JmEa =l @) I(g)ll dg dh

=[] Imtcont i e~ ds b

< L"m(ag»" [( Lnn(h)um;zy ( L Iz - k)llzdk) *] dg

= el et o

Hewewetave  [énll= s el o< ol [ Im(étol s
Thus 7, (£) is bounded QE.D.

LEMMA 5.6. Given a function f€X(G), we put, for each EEL*(H; G),
(%80 = [ fg-m ew) an (5.9)

We conclude then that

(i) fx%¢& is an H-valued square integrable continuous function on G
(ii) for each £€ WUy @) & belongs to KUy G);
(iii) for each &, €KWy G,

(f%&m=fx(En) and (f*&|n) = (&|f**n),
where f*(g)=f(Tg).
Proof. Let {&,} be a sequence in KX(Uyp; G) with lim, .. "E—én" =0. We have

I &0~ @ < [ |ia= 1) e~ a0 b

—_ B2 g,{ — 2 }«}
<{L|f(g h)|dh} Lll&(h) £, (B)|* dh

=[firmea) e -0 as nven
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Hence fx& is the uniform limit of {f%&,}, so that it is continuous since fx £, is con-
tinuous. The square integrability of fx £ is seen by an argument similar to that in Lemma
5.5. It is also obvious that fx& belongs to Ky G) if & does. The last equalities are
verified by the usual arguments of changing order of integration based on Fubini’s
Theorem Q.E.D.

Lemma 5.7, The set of all products &n, &, n€ KWy @), is total in LAH; G).

Proof. Let  be an element of L(§); @) orthogonal to every &n, &, n€ X(¥,; G) which

means that
fc(&;(g)li(y))dFO, EEXWUy; G).
By Lemma 5.6, we have, for each f€ X(G).

Enlf*8)= (f*&m|)=o.

Let f; and f, be elements of X(G). Since the functions: €G> f,(9)£(9) = (f,£) (g9) and
gEG=>1alg)n(g) = (fan) (9), & € K(Us; G), belong to K(¥y; G), we have

0= (he) tanli* )= | (ko Gumb@li* L) do
=[] ne=mum 5 ag-mmmli*condoan

= ffaxafl (@) F(B) ((T(— 2) E@T (B |f X L (g + &) dg dh.

Since f, and f, are arbitrary, and the function:

(9, 1) €G x G ([T(—h)&(g)In(R) | (f % L) (g +h)) €C

is continuous, we have
(T(—k)&g)n(®)| (f*C) (g +R) =0, ¢, h€G.

Putting =0, we have (£(g)(0)|f*((g)) =0 for every g €G. Since the values of elements of
PUy; @) at a fixed point in G exhaust all of Yy, we have (&n|fx{(g)) =0 for every &, n €U,
and g €@, so that fx(g) =0 for every g€@. For each compact neighborhood K of 0 in G,
we choose a positive f,€ X(G) with f¢fx(9)dg=1. The net {fx %} converges in norm to {.

Hence we have
¢ =lim fg*¢ =0. Q.E.D.
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LemMma 5.8. For each w€C and &, 7€ X(Wy; G), we have

A(w) (&) = (A(w) §) (A(w)7) s} (5.10)

(Aw) £ = A(— @) &F.

Proof. The first equality is seen by the following:
[A(w) £1[A(w) 7] (9) = f T=h (A(w) &) (g— W [A(w) 7] (B) dh
- f Hlg— B LT(= B) A — K A (k) db
= x(0)* | AT~ 1) g~ M9} b

= X(g)“’A‘“L [T(— k) &g — W) (k) dh = A(w) (én) (9),

where the last step follows from the closedness of A®.

The second equality follows from the calculation:

(A(o) &) (9) = T(— g) (A(w) &) (— 9)¥=T(— g) [X(g) “A°E(~ g)]¥

=T(—g) Xg) " A~“&(— g)¥ = X(g) *A~°T(~ g) &(— 9)¥ = [A(— @) &¥1 (g).
Q.E.D.

LeMMA 5.9. For every pair &, in KX(Uy; G), we have

(A(L) &|n) = (5¥] &H). (5.11)

Proof. We compute as follows:

rflen= | @(-g)n(-oHIT(~0) &~ dg
- | w0 v- 0 - 0#120) U (=0) &1 dg
- | 10 =0 =41V~ 0) (-1 dg
- [ 2 -l -0 dg— [ 207 Ak(— (-0 dg

= Ll(g) (AE(g)|n(9)) dg = (AQ) &|n). Q.ED.
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LeMMA 5.10. For every t€R, A(t) is essentially self-adjoint on K(3y; G).

Proof. The algebraic tensor product Ay ® K(G) is canonically imbedded in K(H; G).
Let y be the (not bounded unless y=1) self-adjoint operator on L%G) defined by

xN (@)= x(@)f@g), feL¥G).

We have then (1+y")X(@)=X(G). Identifying L*($); G) and the Hilbert space tensor
product HRLAG), we define

H(t) = (1-AY1® (1 +x9) 1+ AL +AY 1 @ g1 + 292

on L¥(§; G). It is then clear that H(f) is a bounded positive operator on L*(§; ). Since
(1+AH®(1+x"* is nonsingular and H(f)> (1+ A% ® (1+x", H(t) is nonsingular
too, i.e., the range of H(t) is dense in L% H; G). We have
(L+AE) KA = (1+A' 1) (U © K(G))
' =H(@t)[1+AYA,@ (L +2 ) K(F) = HE)[(1+A) U@ K(G)],
where the last two tensor products mean the algébraié ones. Since (1 + A%, is dense in §,
-the last expression in the above equality is dense in L($); @); hence so is (1 + A(£)) X(Uyp; G)

in L*(H; &). This means that A(t) is essentially self-adjoint. QE.D.
It is now clear that the function:

wEC— (A(w) &) = L(x(g)ﬂ*A%(g)ln(g))dg

is an entire function for every pair &, # in J((?Io; G). Thus combining this with Lemmas

5.3 through 5.10, we have obtained the following result.

TaEoREM 5.11. The involutive algebra K(@y; G) is a Tomita algebra.
The associated unitary involution J in L¥(; G) is given by
(J&)(g) = U(—)JE(~g) = JU(—g)&(~g), EELX(H; G). - (512)
This is seen by the following, with EE XUy G):
(jé) (@)= (A}) &%) (9) = 2(9) t A E¥ (9) = 2(9) Y AR T(— g) &(— g)¥
=U(-gy AYJAYE(—g) =U(—g)JE(—9)=TU(—g) &(—9).

TaEOREM 5.12. The left von Neumann algebra C(K(o; @)) of the Tomita algebra
(HW,: G) coincides with the crossed product R(M; ) of M by the action o of G.



272 MASAMICHI TAKESAKI

Proof. Let & be an element of H(WUy; @). For each g€G, put
a(g) = ot (5(9)) €M
x= Lna (%(g)) Mg) dg ER(M; o).

We have then for each 7, (€ X(¥,; G),

(o)) = f ralel@) ) n]0)dg = f (i (a(9)) ik —g) | £(8)) dh dg

GXG

= H‘Gw(aﬁlgmz (@) n(h—g)|L(h) dg dh = _”G([T(g —h) @) n(h—g)|L(R)) dg db

- f an(m —g) &k — )1 n(g) | C(R)) dg dh— (En]0) = (mu(&) ).

Hence ,(£) =z belongs to R(M; «), so that -L(KQ,; M<=R(M; x).
Let & =am,(&,) € M for an arbitrary element &,€ %,. For each 7€ X(Wy; &), the function:

€G> (me(2)n) (9) = g ()n(9) = [T(—9)éoln(g) €Yy

is continuous with respect to the locally convex topology in 9, given by (5.6) and has
compact support, so that s (x)n belongs to KUy G). For each € XKWy @), we have

[z, (8) 722 (%) 1] (9) = [(ma (x) 1) L1 (9) = ~L[T( — k) (7a (@) ) (9 — k)] £ (h) dh

- [ @-mit-g tng-myeman

- fG(T(—m £) (T(~ B) (g — W] £(h) dh=a;l<x)fG[T(—h>n(g—h)] L(h) dh

= [7a(x) (D)1 (9) = [7a (%) 7, () 7}]‘(9)-‘ ’

Hence 7,(x) commutes with 7,(£), {€ Ko(@y; @), so that it commutes with the right von
Neumann algebra R(X Uy G)); Hence it belongs‘ to L jC(SZ[o; @)). Since 7,(),) generates
Mm, =, (M) is contained in C(K(Uy; G)).

Let g be an arbitrary fixed element of G. For each &, n€ XUy G), we have

[Ag) 7w, () E1(B) = [; () ] (h—g) = fG[T( —k) &b~ g — k)] n(k) dk

- f [T~ k) (A(g) &) (h— B)] (k) dk = [(A(g) §) ] (h) = v, () 2(g) £1 ().
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Hence A(g) and 7, (y) commute, so that A(g) falls in C(H(U,; ). Therefore, L(K(Up; G))

contains the generators 1(@) and 7, (M) of R(M; «); hence R(M; a)< L(KUp; &)). Thus
we get

RIM; o) = L(K Uy G)). Q.E.D.

COROLLARY 5.13. The commutant of R(M; x) is generated by the operators 7t'(y),
yEM', and A, (g), g€G, which are defined as follows:

(7' (y) &) (B) =y&(h);

5.13
(Ae(g) &) (B)=TU(g) Eh+g), EEL*(H;G), hea.} (5.13)

Remark. The action « of G on N is extended to an action of @ on L£($) induced by
the unitary representation U of @, which in turn defines a continuous action of G on W',
denoted also by «. We note here that the representation z’ of M’ does not depend on the
action «, while the representation A, of G depends on U(g), hence on the action « of G,

which is in contrast with the situation for the covariant representation {r,, A} of {M, o}.
Proof. By Theorem 5.12, we have
JR(M; 0 = R(M; &)’
Hence R(M; «) is generated by Jrx,(M)J and JA(G)J. For each 2 € M, we have by (5.12)

(Ja (%) JE) (9) =T U(—g) (ma(@) JE) (— ) =T U(—¢) a5 () (JE) (— )

: =JU(—g)o;" (x) U(g) J&(g) = JxJ&(g) = 2" (y) £(9),
where y=JzJ €M’. We have next

(JUPTE) () =T U(~h) (Ag) J&) (—h) =T U(—h) (J&) (—h—g)

= Ulg) &k +g) = A(9) &(R);
hence JA(g) J = A.(9), g€G. QE.D.

Definision 5.14. The canonical weight ¢ on R(M; «) associated with the Tomita
algebra K (¥,; G) is said to be dual to the original weight ¢ on .
The dual weight ¢ is given by

IEl? if ==m () mi(8), £€X

) (5.14)
+ oo otherwise

where 9l denotes the full left Hilbert algebra J(,; G)" obtained from the Tomita algebra
:K(%Io; a).

18 — 732907 Acta mathematica 131. Imprimé le 11 Décembre 1973.
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Let A denote the modular operator on L¥($; G) associated with X (y; @). We denote
by {of} the modular automorphism group of R(M; «) associated with the dual weight .

ProrosiTIiON 5.15. The modular awtomorphism group {o‘,;’} acts on m{M) and A(G)
n such a way that

G£5°na(w) =m,00f(x), zEM;

g (5.15)
of (Mg)) =%(9)*Alg), gEG, tER.

Proof. Noticing that (A* &) (g) = X(g)* A*&(g) for £€EL*($; G), we compute
of o1, (x) £(g) = (A, () A4£) (g)
= 2(g)* A¥ (7o (x) A~ 8) (9) = 2(9)" Ao, () 2(g) A~ &(g)
= ofoa; (z) £lg) = o7 0 0f (2) £(g) = (mao0F (%) £) ()
[of (A(9)) £1 (h) = (A*A(g) A £) (k)
= 2R A* (A(g) A= &) () = 2(h)" A* (A~¥£) (h—g)
= X(R)* A*x(h—g) A HE(R — g) = 2(g)*E(h — g) = 2(9)*(A(9)&) ().  QE.D.

We now examine how the dual action & of G on R(M; «) transforms the dual weight @.
To this end, we first observe that u(p), p€G, is a *-automorphism of the Tomita algebra
KWUy; @). Tt is clear that u(p) KUy, &) =KUy; @), p€G. For each & 7€ KUy G), we get

[((p) &) (u(p) )] (9) = f [T~ ) (u(2) &) (9 — 1)) (u(p) ) (B) b
- L<g T (T(— k) &g — k)] Ty 5 (k) dh
= L<g, p)> [T{—h)E(g — h)I1n(h) dh =g, p)> (&) (9) = [u(D) En1 (9);

[u(p) E¥(9) = T(—g) (u(p) &) (—g)¥
=T(—p{{—g, 2> &(—9)}¥=<9, P> T(—g) & — 9)¥ = [u(p) £¥] (g).

Therefore, u(p) is a *-automorphism of X(y; G) which preserves the inner product as

well, being unitary. Thus we have
ayom () =m(u(p)f), PEG, EENWp G). (5.16)

Hence we can state the following result:
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ProrosiTioN 5.16. The dual action & of G on R(M; o) leaves the dual weight ¢
mvariant.

Proof. The assertion is seen immediately by the following:

Po iy (E) mi(E)) = Plavi(p(p) €V (D) E)) = || EI[2 = [1E]]2 = PleriE) i(£)).
Q.E.D.
Lemma 5.17. For each element & of LA($); () and w €C, the following two statements are
equivalent:

(i) & belongs to the domain D(A) of the closed operator Av;
(ii) &(g) belongs to D(A®) for almost every g€G and

le(g)wlz |A&(g)|]* dg < + oo.
It this vs the case, then .
AvE(g) = x(g)» A~ &(g) (5.17)

for almost every g€Q@.

Proof. (i)= (ii): Suppose &€ D(A»). Let w=s+1it, s, t€ R. By Lemma 5.10, we can find
a sequence {£,} in X(¥,; @) such that

lim ||¢ - &,|| =0,
n—>o0Q
lim [|A®£ — A&, || =Tim ||A*£ — A*&, )| = 0.
n-—->o00 n—
Choosing a subsequence, we may assume that

zﬂ"fnﬂ - §n||2< + oo

n

I

M3

]

0ll&*«snﬂ—sn)ll% + oo,

n
where £,=0. Hence we have

[ SMeno-eolids= 3 [ eu - &l dg= 3 60—l + o

fG 2 |19y A% (Ensa(9) — £n (9))IPdg = éoll&'(fm — &< e

Therefore, there exists a locaily null subset N of G such that
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§0||£n+1 (g) - fn (g)”2 < t+ oo

and 3 108 s @)~ Eal@)IP< + o0

for every g¢N. Hence {£,(9)} converges to & (g) and {A“&,(g)} converges to 7(g) in
for every g¢ N, so that &' (g) € D(A®) and A“&'(g) = n(g). For each n<m, we have

&n(g) — &, (g)llkkgn Eks1(9) — & @)%

hence €@ - & @< 2 I6ea @) - & @I

which implies that
f €' @) - & @l*dg< 3 f [66+1() — & @I dg= 2. [[£x:1—&I*
G kzn J& kxn
Hence ¢’ is an §)-valued square integrable function and lim,_, ,||&, —&’|| =0. Therefore, we

have £=§£" in L*§; (). Similarly, the function: g€G—>x(9)” A“E'(g) =x(9)°n(g) is square
integrable and (A“’E) (9) =x(9)° A”&(g) for almost every g€G. Thus (ii) and (5.17) follow.

(ii) = (i): Suppose condition (ii) is satisfied. For every 5 € X(Uy; G), we have
|(&|Aen)| = [ f (@) |16 Aon(g)) dg|
< [ ltarl@vga o)< [ |orllIaeal ol ds
3 3
<{[Jrorriacona { [ Inoraf

¥
~{[L1xrr1aseaiias) ol

thus & belongs to D(A?) by Lemma 5.10. Q.E.D.

LemMA 5.18. Let 5 be an element of KUy, G). For every (ELHD; G), m, ()& is an
H-valued continuous function and given by the formula:

7 () E(9) = fcnr(ﬁ(h)) T(— k) &g —h)dh. (5.18)

Proof. Let {&,} be a sequence in X(¥,; @) such that lim,, ||é— &,||=0. We have
then
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” Lm(n(h)) T(—h)&(g—h)dh— Lnr (k) T'(— k) &a(9 — B) dh"
< L ll72, ((R)) T(— B) (&g — B) — &, (9 — b)) dR
< | Iz~ mlletg 1)~ &= Hl an
<[ Jromiprc-nas) {[ feo-n- eo-niray

b
=& =&l { LHm(n(h))Ilz%(—h) dh} -0

as n-—> oo,

Hence &,7(g) converges to the right hand side of (5.18) uniformly for g€G. Hence
equality (5.18) holds and the function: g €G> (7, (n)&)(g) is continuous. Q.E.D.
Let & be an element of K(Y,; G) of the form E=x¢ with 7, {€ X (y; G). For each
g€G put
(9) = a,om(E(9)),  Y(9) = aomin(g)), 2(g) = x0m(L(9))-

We have then
x(g) = f y(h) oy (2(g — B)) dh. (5.19)

LeMMA 5.19. In the above situation

() = ((0). (5.20)

Proof. The equality is seen as follows:
Pla)=(C|n#) = L(C(g)ln#(g)) dg = L(C(g)lT( —g)n(—9)¥ dg
= L¢[a;l°m (m(—9)) m:(L(9))] dg = Lq’v[y( —9) g (2(9))) dg

= L‘I'?[y(g) %y (2(—g))dg=¢ Ucy(g) %, (2(—9)) dg] =@((0)),

where the last step is justified by arguments similar to the proof in [33; Lemma 3.1].
Q.E.D.
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6. Bi-dual weight

We keep the basic assumptions and notations in the previous section. In this section,
we examine the bi-dual weight § on R(R(M; ); &)). .
By Lemma 5.17, the associated modular operator A and its complex power A,

w€C, are given as follows:

(i) The domain D(Z“’) consists of all £€L3(9; @ x G) such that &(g, p)€ D(A®) for
almost every (g, p)€G x G and

fGIIX(g)“A“‘E(g,p)Ilzdgdp< + o0
(ii) Then A«¢ is defined by

Avt(g, p) = 2(g)*AEg, p), 9€G, PEC. (6.1)

We first consider the Tomita algebra X(¥y; G x @) which is defined by the same

procedure as (5.7) and (5.8). Namely, we adapt the following structure in K(p; G x é):
(éln)=f6 (& Pn(g. p)) dg dp;

6.2
(&n)(g.p)= L CA;<g—h, @ [T(—h) E(g— h, p— @)1 n(h, g) dh dg; (6.2)

&g, p)=<g. D> T(—9) &(—g, — P)¥.

However, as we have seen once in § 4, it is more convenient to express our Tomita algebra

in terms of a function system over G x ( instead of G xG.

Levma 6.1, Let F denote the unitary operator of L*; G xG) onto LA($; G xG)
defined by (4.8). If & is an element of Ky; G x @), then FE(g, k) belongs to Uy for every
g, h€G.

Proof. Let n and ¢ be elements in 9, We have then
(70, () (F&) (g, B)|0) = (FE(g, B) |7, ()* 0) = J;}(h, > (g, P)| 7. ()* £) dp

= L <k, p) (e (n) &g, P)[ ) dp = L(h, > (i (&g, ») 10) dp,

so that 7, (n) (FE) (9, ) = fé<h, o> 7 (&(g, p))ndp.
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Hence (F§) (g, h) is left bounded. For each w€C we have

|(F&(g, b)| A®p)| = fé<k, I (£(y,p)l7l“’n)dp’= L(h,m(A‘”&(g, p)|n) dp

<[ Jaea pinlap<lal |, 1a*0. 21 4.

Since the function: p €G—||A%(g, p)|| is integrable, F&(g, k) belongs to D(A®) for every
w€C. Put &,(g, p) =Av&(g, p), g€G, pEG. We have then

(FEu) (9, ) = fé(h,m A“&(g, p)dp=A® L(h, ) Elg, p)dp= A (FE) (g, b),

where the second step is justified by the closedness of A». Hence A“(F§)(g, h) is left
bounded for every w €C, so that F&(g, k) falls in %, Q.E.D.
From the first part of the above proof, it follows that

m(FE(g, b)) = L<h, »> (&g, p)) dp, EEXUp; G % G). (6.3)
It is also seen similarly that

7, (F&(g, b)) = L(’% P> 7, (§(9, P)) dp-

Hence the function: (g, h) €G x G+>F&(g, h) €Y, is continuous.
Let £ and 7 be elements of X(Uy; G x G). We compute F(&7) as follows:

Fien) gk = LW (én) (9, p) dp
=Uféxaxcm<~"‘"’q>[T(—k)&(g~k,p~q)]n(k,q)dkdpdq
szfcc <h,p+q><g—k, q) [T(— k) &g — &, p)In(k, ¢) dk dp dg

f . Kg—h—k,q)[T(— k) F&g— k&, B)]n(k, g) dk dq

f{T ¥) Fe(g— &, b)) {Fn(k, h+ k— g)} dk.

We have also

Fek(g, h)= fé<h, 2> <g, 2> T(—g) &(—g, —p)¥dp

= L(.q—h,}’) T(—g)é(—g, —p¥dp="T(—g)(FE)(—g,h—g)¥.
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Based on the above observations, we define a Tomita algebra structure in the space
KUy G xG) as follows:

En) (9, by = L{T(—k) £ b, B)} (s Bt k— g) d;

G )= T(—g)E(—g, h—g)¥; 64
A(w) &g, k)= x(g)° A“&(g, h); '

(&|n) = ” &(g, b)|n(g, b)) dg dh.

The repetition of more or less the same arguments as in the previous section proves
the following:

LEMMA 6.2. With the above structure (6.4), H(Uy; G x Q) is a Tomita algebra.
THEOREM 6.3. The left von Neumann algebra L(H(Uy; G x @) of the Tomita algebra
HKy; G x @) defined by (6.4) coincides with the von Neumann algebra D=FR(R(M; «); &) F*.

~ Proof. As seen in § 4, D is generated by the operators & x€ M, v(g), €@, and u(p),
p€G, defined by (4.10). We denote by M the set of all #, x € M. The von Neumann algebra
Q generated by M and u(@), the image of @ under u, is isomorphic to the tensor product
MLe(G). Hence if z(-) is a bounded strongly* continuous JN-valued function on @,
then the operator x on L*(§); G x @) defined by

(8) (9, b) = a7 ((h)) &(g, )
belongs to Q. The set of such operators is a o-weakly dense C*-subalgebra of Q.
Let £ be an arbitrary element of X, G x Q). Put z(g, k) =a,0m,(E(g, b)), g, hEG.
For each fixed g€G, x(g, -) is an M-valued strongly*, (even uniformly), continuous function

on G with compact support, so that the operator x(g) defined by
w(g) n(h, k)= " (2(g, ) n(h, k), nEL*(H; G xE),

belongs to Q and z(-) is a Q-valued strongly* continuous function on G with compact
support. Now, we compute, for each 5, CEX(D; G x G),

(m(ﬁ)nlé)=fﬁc . G(a,;lon,(g(g-k, k) y(k, b+ k— g)| (g, b)) dk dh dg
sz (o o0tz (x(g — &, b)) (k, b+ & — g)| L9, b)) dy dh dEe
GxGxG
f f f o @k M) nlg =k b= k)| ¢(g, b)) dg dh dk

HL . G 2 (@(k, b)) (v(k) m) (9, )| L (g, B)) dg dh dk = f (x(k) v(k) 5| ) dk.
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Hence we get (&) 17=f z(k) v(k) ndke, n€XWy; G xG).
¢

so that m(é) = fcw(g) v(g) dg€P.

Therefore, we obtain LAy Gx )< P.

It is now straightforward to see that & xz € M, v(g), g€G, and u(p), p€G, all commute
with 7, (&), £€ H(Uy; G x @), which means that D< C(K(WUyp; G x G)). Q.E.D.

Lremma 64. (i) The real power L:kt, te€R, of the modular operator on L2(,S§;Gxé)
associated with the bi-dual weight § is essentially self-adjoint on F*X(Uy; G x G).

(ii) For each t€R, Z(t) is essentially self-adjoint on Ny G xQ), and ils closure
coincides with FAtF*.

Proof. Let ® be the Fourier transform on L*() defined by

@WM=L@mMM@,ﬁX@-

It’s inverse @* is given by

<@nm=L@mwm@,ﬁxw»

Then the algebraic tensor product K(¥,; @)@®*K(G) is contained in F*H (N, G x ),
since F=1@®, and KU, &)@ K(F)< KU, @ xG). As seen in Lemma 5.10. Z‘ is essen-
tially self-adjoint on K(,; )@ P* K () because ®*K(G) is dense in L*(G). Hence the
first assertion follows. .

By construction, FZ‘F* and Z(t) agree on (U, G x G). Since A(t)=5(t)®1 on the
algebraic tensor product K(,; G)® K(GF), and the latter are essentially self-adjoint on
KUy A ® K(GF), so is Z(t). Therefore, FZ‘F* is the closure of Z(t). Q.E.D.

We denote the closure of Z(l) by Z

TuEOREM 6.5. The weight on D canonically associated with the Tomita algebra
KUy G xG) defined by (6.4) is the image of the bi-dual weight § on R(R(M; «); &) under
the isomorphism: x— FxF*.

Proof. By Lemma 6.4, FX(,G xG) is dense in the domain D(A~w) for each w€C

with respect to the norm in 'D(Z"’), (the graph norm). Furthermore, it is easily seen that
each element of FX(Uy; GxG) is left bounded with respect to the Tomita algebra
X(Ag; G x G). Hence F is an isometric *-isomorphism of the Tomita algebra X(¥y; G x @)
into the full left Hilbert algebra associatec with X(I,; G x G). The image FX(y; G x )
is equivalent to X(y; G x G) in the sense of [42; Definition 5.1]. Hence the weights on P



282 MASAMICHI TAKESAKI

associated with XQly; G x @) and FH(Ny; G x @) are the same. But the weight associated
with F X(,; G x G) is nothing but the image of ¢ under the isomorphism: z+->FzF*. Q.E.D.

In order to see the relation between the bi-dual weight @ and the tensor product
expression M® L(LAG)) of the algebra R(R(M; «); &), we shall further transform the
Tomita algebra structure.

Define
(VE)(g, b) = T(h)é(R—g, —g), E€ KWy G xG). (6.5)

Clearly V is a bijection of KW, G'x@G) to itself. The inverse V-1 is given by

(V%) (g, h) =T(h—g)E(—h,g—h), E€X(Uy G xG). (6.5")
For each pair & 7€ X, G x &), and w€C, compute

V(&) (e.h) = T(h) f (=B Eh=g =k, = )l k= By d
- L[T<h~k> Eh— kg, — g))[T(h) (k. b~ h)] dk

- fG{(Vs) (9. h— B} (V) (h— B, )} b = L[(Vé) (@, BIL(Vn) (&, b)) dE;
Vek(g, hy=Th)y E¥(h—~g, —g)=T(h)T(g—h) E(g—h, — h)}
= T(g) £(g— b, — R = (VE) (b, 9)¥;
(VA®E) (g, h) = T(h) (A*E) (h— g, —g)
= T(h) x(h—g)* A®E(h— g, —g)=1(h— g)° A*VE(g, h;

<v—ls!V“1n>=ﬂG TG )&~ g~ M| Tth=g) (= g W) dg d

- f L k) (&g, W) |n(g. by) dg db.

Therefore, we introduce the second Tomita algebra structure in X(¥y; G x G) as follows;

5

(En) (9. )= LE(Q, k) n(k, k) dk;

E%(g, b) = &(h, 9)¥;
A(&)) £(g, k)= xlg— k)mAw&(g’ h):

(Sln)=ff6 Gx(h)"(é(g, k)| n(g, b)) dg dh

(6.6)
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for each &, 7€ H,; G xG) and w€C. It is then obvious that the operator V is an iso-
metric *-isomorphism of the first Tomita algebra JX(IU,; G x G) defined by (6.4) onto the
second one X(Uyp; G x @) defined by (6.6). To distinguish them, we denote the first one by
B and the second one by €. We denote by K the completion of €. It is clear by construction
that the operator V is extended to a unitary of L%($; G x G) onto &, which we denote
again by V. This unitary operator V gives rise to a spatial isomorphism of D= L(B) onto
the left von Neumann algebra £(€) of € that transforms the canonical weight of £(B)
associated with B into the canonical weight ¢ on L£(€) associated with €. By virtue of
Theorem 6.5, the spatial isomorphism of R(R(M; «); &) onto £(€) induced by the unitary
operator VF transforms the bi-dual weight & into . Therefore, it suffices to study y on
L£(Q) instead of ¢ on R(R(M; «): &).
We define a Tomita algebra structure in (G x G) by the following:

énlg, h) = LE(Q, k) n(k, k) dk v

& (g, h)= E(h, 9);
A(w) &(g, )= 2(g— h) &g, h);

(&)= anx(h)“f(y, h)n(g, h) dg dh

» (6.7)

for each &, n€ X(G x ) and w €C. A slight modification of the proof in Lemma 5.10 shows
that the Tomita algebra € is equivalent, in the sense of [42; Definition 5.1], to the
algebraic tensor product U,® K(G'xG). Hence the left von Neumann algebra L(C)
coincides with the tensor product M@ L(HK(G xG)), and the canonical weight p on
L(€) agrees with the tensor product p®p of the original weight ¢ on M and the canonical
weight ¢ of C(X(G x G)) associated with (G x G).

LumMA 6.6. There exists an isomorphism of the left von Neumann algebra L(K(G x G))
onto the algebra C(L*(G)) of all bounded operators on LA(G) which transforms the canonical
weight o on C(H(G x G)) into the weight on C(LX@)) defined by: x € L(L¥G))—>Tr (H,x),
where H, is the nonsingular positive self-adjoint operator on L*(G) defined by

(H,£)(9) = x(9)£(g), EELXB).

Proof. 1t is clear that if y(g) =1, g€G, then J(Q x G) is a (animodular) Hilbert algebra
such that there exists an isomorphism y of L(X(G xG)) onto L(L*G)) which maps p
into the usual trace Tr of £(L*@)). The isomorphism y is given by the following:

lyem(€) {1(g) = J.Gf(g, h)L(h)dh, EEX(G xG),[EL*(G).
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Since £€X(G x @) is square integrable, y o 7, (£) is of Hilbert-Schmidt class and we have,
for each & n€X(G x G),

Tr (7°nz(7l)*7°m(§))=ffa Gf(g, k) n(g, k) dg dh.
Now, we have, for each £€J(Q x G) and {EL*(G),

[y 0 () Hy L] (9) = f @B U L,
so that for each pair &, 7 in X(G x @),

Tr (y(mi(n)* 7, () Hy) = ffc Gx(h)‘lf(g, k) 11(g, h) dg db= ¢(m:(n)* 7, (£))-

Thus the canonical weight p on L(X(G x @) is transformed by y into the weight Tr (H,-)
on C(LAG)). Q.E.D.
After all these preparations we have proved the following result:

THEOREM 6.7. The second dual weight (fa on R(R(M; a); &) is transformed into
p®Tr (H,-) under the isomorphism of R(R(M; «); &) onto M L(LA(G)) obtained in Theorem
4.5, where H, is defined by (6.8). In particular, if @ is invariant under the action « of G,
ie., if y=1, then § is identified with p®Tr under the above isomorphism.

7. Subgroups and subalgebras

Suppose M is a von Neumann algebra equipped with a continuous action « of a
locally compact abelian group G. In this section, we shall examine the fixed point sub-
algebra of R(7M; «) under the restriction of the action of & to a closed subgroup H of G.

TaeorEM 7.1. Let H be a closed subgroup of G and H be the annihilator of H in @,
that is, H={g€G: {g, p> =1 for every pEH}. If the action « of G on M admits a relatively
invariant weight ¢ on M, then the fized point subalgebra N of R(M; &) under the action
{&,: p€H} is generated by the canonical image 7, (M) of M and {Alg): g€ H}; hence it is
isomorphic to R(M; &), where a|y means the restriction of o to H.

Proof. Let §) be the Hilbert space constructed in § 5 based on the weight . We keep
the notations established there.
We remark first that the covariant representations {m,, A} of {M, G, o} is precisely

the covariant representation induced, in the sense of [39], from the trivial covariant
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representation of {M, {0}, a} on §. Therefore, the stage theorem of induction assures
that the covariant representation {m,, A1} of {M, G, «} is identified with the covariant
representation induced up to @ from the covariant representation {n;, A5} of {M, H, «| z}
which is defined on L¥$; H) by the following:

7z () €(g) =o' (x) E(9), =z€M, g€H, §€L2($§;H);} 7.1)

Iu(k) E(@)=&(R'g), g, hEH.

When necessary, we denote by {n§,A;} the covariant representation of {M, &, o} on
IX(§; G).

It is clear that 75 () and A4(H) are both contained in H. We must show therefore
that N is generated by mo(M) and Ag(H). Let 4 denote the von Neumann algebra on
L%(H; @) generated by u(G), where u is the representation of G defined by (4.1). It is known
that 4 consists of all multiplication operators u(f), fEL®(G), on L¥; G) defined by

(N @) =9)élg), [EL™G), EELAD; G). (7.2)

Hence 4 is the canonical imprimitivity system associated with the induction of {n5, 15}
from {n° 1}, where n° means the identity representation of M on § and 1 means the
trivial representation of the trivial group {0} on ). The canonical imprimitivity system
Ay associated with the induction of {nf,A;} from {nZ, 14} is the subalgebra of A
consisting of all multiplication operators given by functions in L*((), which are constant

on every H-coset. Hence Ay is generated by u(H). It is then clear that
N=Au N R(M; ). (1.3)

The Hilbert space L*(D; G) is regarded as the space of all measurable (in the sense of
[7]) §-valued functions on G x H with the properties:

&g —h, k) =£&(g, k—h) (74)

for every h€H and almost every (g, k)€G x H; and

[ | [ e mapan) ag< + oo, (1.5)

where dg denotes the quotient Haar measure on G/H. Note that by virtue of (7.4), the
first integration in (7.5) is constant on each H-coset so that it may be considered as a
function on the quotient group G/H. The operators m5(z), x€ M, and Agg), gEG, are
defined by
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G =1 5
(7S (2) €] (b, k) = i (@) £(h, B), keG,keH’} (7.6)

(A(9) &) (b, k)= E(h— g, k).

By Corollary 5.13, the commutant R(M; )’ is generated by the operators 7 (y), yE M,
and A¢(g), €@, which are defined by

e (y) &k, k)= y£(h, k), h€G, kEH ;} (1.7)

As(9) &k, k)= U(g) &b + g, k).

Suppose x is an arbitrary element of N. Put y =JxJ € R(M; «)’. We shall show that
y belongs to the von Neumann algebra generated by 7g (1’) and A¢ (H). If this were done,
then our assertion would follow automatically. Since Ju(p)J =u(—p), p€G, we have
J Ay = Ay, so that y commutes with 4. Namely, y belongs to 45N R(M; «)’. By the
modified Blattner-Mackey theorem for induced covariant representations, {39; Theorem
4.3] and [32], there exists a natural isomorphism y of R(M; «|y)' onto AxN R(M; «)".
The construction of p shows that yomy(z)=ng(z), 2€ M, and yoly(k)=2¢(k), hEH,
where 7y and Ay should be naturally understood. Hence y belongs to y(R(M; «|x)),
which is generated by 7 (M) and Ag (H). Q.E.D.

Remark. The above arguments show that R(M; «|y) is canonically imbedded in
R(M; «) for any closed subgroup H of G.

THEOREM 7.2. ff H is a closed subgroup of G, then the subgroup H of G consisting
of all elements p€G which leave R(M; a|y) elementwise fixed is precisely the annihilator of
H in G.

Proof. By definition, R(M; «|) is generated by =S (M) and A(H). Since &,(7s(x)) =
7wglx), x€M, and &p(la(g))=<§,_p>lc(g), an element p€G belongs to H if and only if
{g, p>=1 for every g€H. Q.E.D.

8. The structure of a von Neumann algebra of type IlI

We now come to the stage where we apply the theory established above to the
structure theory of von Neumann algebras of type III. In this section, we shall see that
every von Neumann algebra of type III is uniquely expressed as the crossed product of a
von Neumann algebra of type II,, by a continuous one parameter automorphism group
which leaves a trace relatively invariant (but not invariant).

Let M be a von Neumann algebra of type III. Let ¢ be an arbitrary (faithful semi-

finite normal) weight on ; the existence of such a weight is well-known; for example, the
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sum of a maximal family of positive linear functionals with mutually orthogonal sup-
ports. Let {of} denote the modular automorphism group of M associated with ¢. We
consider the crossed product R(M; o®) of T by the action {o?} of R. Trivially, the dual
group of R is the additive group R itself. We denote by {0f} the dual action of R on

R(M; 6%). An important feature of the covariant system is seen in the following:

TuEOREM 8.1. The covariant system {R(M; 6%), 6%} is independent of the choice of a
weight @ on M. In other words, {R(M; 6%), 0%} is determined uniquely, up to weak equivalence,
by the algebraic type of M.

Proof. Let p be another weight on M. By Connes’ result, [10; Théoréme 1.2.1], the
actions ¢? and ¢¥ of R on 7 are equivalent in the sense of § 3. Hence Proposition 4.2
immediately yields our assertion. Q.E.D.

By virtue of the above theorem, we denote the covariant system {R(M; ¢®), 0%}
simply by {M,, 6}. By the duality theorem, Theorem 4.5, the second crossed product
R(M,; 0) of M, by 6 is isomorphic to M® L(L3R)), so that the original algebra N, being
purely infinite, is isomorphic to R(M,; 6). Therefore, the algebraic structure of M is, in
principle, completely determined by the covariant system {M,, 0}. Hence the rest of the
present section is devoted to studying {M,, 6}.

We begin with the following lemma:

LEMMA 8.2. The von Neumann algebra M, is properly infinite but semifinite and
admits a faithful semifinite normal trace v such that

100, =ett, tER. (8.1)

Proof. We apply the results in § 5 to the crossed product My =R(M; o%). We use the
notations established in § 5. The von Neumann algebra M acts on the Hilbert space §
which is obtained by the weight ¢, and M, acts on L¥H; R). We denote by #? the represen-
tation of 7N corresponding to z,. The weight @ is invariant under ¢%; so we do not have
to bother with the character y. The modular operator A associated with the dual weight
¢ on M, is given by

(A8)(s) = Ak(s), EELX; R).

The modular automorphism group {a't;} of M, associated with @ is of the form:

of (x) = AtzA-*,  x€M,, tEG.

Let x be an arbitrary element of TH. We have then
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(of (7 (2)) &) (s) = [ A% (x) A~ £] (s)
= A*(n?(2) A" £) (s) = A¥o”, (2) (A" &) (5)
= A*6? (2) A" &(s) = 0f_, () &(s) = n® 0 oF (%) £(5);

hence of (n® (2)) = % 0 of () = A(t) 7% (x) A()*, wEM,LER,

where the last equality follows from (3.2). For each r€R, we have

(0F (A() &) ()= [A*A(r) A= £] (s)
= A*[A(r) A ] (5) = A (A~&) (s— 1) = AYAH E(s— 1) = (A(r) &) (5);

hence oF (A(r)) = A(r) = A(t) A(r) A®)*, 7, LER.

Therefore, the automorphisms {of’} and {Ad (A(t))} agree on the generators =®(1M) and
AR) of M, so that they agree on the whole algebra M,. Thus by [42; Theorem 14.1],
(see also [33; Theorem 7.4]), M, must be semifinite.

By Stone’s Theorem, there exists a nonsingular positive selfadjoint operator %
affiliated with M, such that A(f) =A%, tER. By the proof of [33; Theorem 7.4], the weight
7 of M, defined by 7(z) =¢(h1z) is a faithful semifinite normal trace. For each s, t€R, we
have 6,(A{t))= et A(t) by (4.3) and (4.5), so that we have 0, (A~1)= *h~1, where 0, (A1) =
p(8Yh1u( —s). Therefore, we have

100, ()= P 0,(x)=goe b (0_s(A ) x)=ePh  x)=e 1(x), EM,.

Thus, the trace 7 satisfies equality (8.1).

The fact that I, is properly infinite follows from the observation that M, contains
7%(M), which is isomorphic to M, and M contains an orthogonal infinite family {e,} of
projections with e, ~1. Q.E.D.

THEOREM 8.3. Let N be a semifinite von Neumann algebra with o one parameter auto-
morphism group {6;}. If v is a faithful semifinite normal trace of N with 100, =e-t7, then
the modular automorphism group {o‘%} of the crossed product R(M;0) of N by the action O
associated with the dual weight 7 is the action of R dual to the original one 6 on . Hence,
N is the centralizer My of the dual weight %.

Proof. Let y denote the dual weight 7 on R(M;0). Let § denote the Hilbert space
obtained from the trace 7 on . The modular operator on L¥$); R) associated with the
weight y is then, by (5.17), of the form
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(A"E)(s) = e™"*E(s), EELXH; R).

Hence, in this context, the one parameter unitary group A% coincides with the one
parameter unitary group u(f) defined by (4.1). Therefore, the modular automorphism
group {of} of R(M;0) associated with ¢ coincides with the dual action § of R. Q.E.D.

COROLLARY 8.4. Let M, and M, be two properly infinite semifinite von Neumann
algebras with one parameter automorphism groups {0;} and {67} respectively. If My and M,
admit faithful semifinite normal traces T, and T, respectively, such that

700l =ett,

and 1,007=e"t1,,

then the following two statements are equivalent:

(i) R(My; 6%) =R(My; 6%);
(ii) The covariant systems {My, 6*} and {M,, 02} are weakly equivalent.

Proof. The implication (ii)= (i) is shown in Corollary 3.6.

Suppose R(M;; 61) = R(M,; 62). The dual action § of R on R(M,; 0", i=1, 2, is the
modular automorphism group {ci} of R(M; 6") associated with the dual weight %,, by
Theorem 8.3. Hence we have, the Theorem 8.1,

{R(R(My; 6%); 6),6'} = {R(R(My; 6%); 6), 6%}.

By Theorems 4.5 and 4.8, M, and M, are identified with R(R(M,;0Y); o') and
R(R(My; 0%); 0?) respectively, in such a way that the actions § and 6! (resp. 62 and 62) are
equivalent. Hence {M,, 6} and {M,, 62} are weakly equivalent. Q.E.D.

Throughout the rest of this section, we consider a properly infinite semifinite von
Neumann algebra M, equipped with a one parameter automorphism group {6,} and a
faithful semifinite normal trace v satisfying (8.1). We denote by Z, the center of M,
and by 0, the restriction of 6 to Z, for each tER. Let M= R(M,; 0). We identify M,
and its canonical image ms(M,) in M. We denote by {u(s)} the one parameter unitary
group {A(f)} defined in (3.1). We denote by ¢ the weight on 7 which is dual to 7, and by
¢ the modular automorphism group of N associated with ¢. By Theorem 8.3, {0} is
dual to {0;} on M,. '

THEOREM 8.5. In the above situation, the center Z of M is precisely the fixed point
subalgebra of Z, under {0,}. Hence M is a factor if and only if {6,} is ergodic on Z,.
19 — 732907 Acta mathematica 131. Imprimé le 11 Décembre 1973.
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Proof. Let a€Z, be fixed by {f,}. Then we have u(t)au(t)*=0,(a)=a, so that a
commutes with T, and {u(¢)}; hence it commutes with every element in M. Hence it is
in the center Z. '

Suppose a is an arbitrary element of Z. Then a is fixed by the modular automorphism
group {g,}. By Theorem 7.1, a belongs to M,; hence a€Z,, being central in . Being
central in M, @ commutes with {u(t)}, which means that a is left fixed under {6,}. Q.E.D.

THEOREM 8.6. In the same situation as before, the following two statements are
equivalent: ’ ‘

(1) M is semifinite;

(i) There exists a continuous one parameter unitary group {v(t)} in Z, such that
b (v(#)) = €"(t), s, tER. (8.2)

Proof. (i) = (ii): Suppose M is semifinite. There exists then a continuous one parameter
unitary group {v(¢)} in M such that

o, (x) = v(t)zv(t)*, tER.
Of course, we have

a, (v(t)) = v(s)v(E)v(s)* =v(t), s, tER..

By Theorem 7.1, o(f) is contained in M,. Since M, is the fixed point subalgebra of M
under {o,} by Theorem 7.1 again, v(f) and M, commute, which means that {v(t)} is con-
tained in Z,. For each, s, f€ER, we have .

: e 5 u(s) = o, (u(x)) = v(t)u(s)v(t)*;

hence we have

B, (v(0) = u(s)(t)u(s)* =€ olt).

(ii)= (i): Suppose {v(t)} is a continuous one parameter unitary group in Z, satisfying
(8.2). We have then, for éach z€7M, and s, tER, i

L0 (@) =2z = v(t)2v(t)";
0, (u(s)) = e tu(s) = v(t)u(s)v(t)*;

hence o, and, Ad (»(t)) agree on the generators M, and {u(s)} of M, so that o,= Ad (v(t)).
Thus 1 is semifinite by [42; Theorem 14.2]; see also [33; Theorem 7.4]. Q.E.D.

CorROLLARY 8.7. In the same situation as before, the following two- statements are
equivalent:
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i) ‘M s of type 111; ,
(ii) For any nonzero projection e € Z, which is fized under {0}, there exists no continuous

one parumeter unitary group {v(t)} in Zye satisfying (8.2).

We are now going to show (in Theorem 8.11) that M, must be of typé I, if ‘'m
is of type III. To this end, we need a few lemmas. We owe the following lemma to
H. Dye.

LemMma 8.8. Suppose 6 is an automorphism of an abelian von Neumann algebra A.
If A admits a faithful semifinite normal trace y with o0 =Xy for some 0 <A<1, then there
exists a projection e€ A such that {0™(e): n€ L} are orthogonal and Jnez6™e)=1.

Proof. Let:: B denote the fixed point subalgebra of 4 under 6. Suppose p is a nonzero
projection in A4 with p(p)< +oo. Let ¢=V,5,0"p). We have then

o0 -] 1
p(g) < gow(ﬂ"(p)) = Eol”w(p) == Y@< oo

Clearly, 0(g)<gq. Let p,=¢ —6(¢q). We have
Y(p1) =9(@) —p0(@) = 1-Dy(@) +0

and p, < p. Furthermore, {0(p,): n€Z} are orthogonal and ..z 0"(p,) belongs to B. Let
{p;: 1€} be a maximal orthogonal family of projections in 4 such that {§*(p,): n€ Z, 1€}
are orthogonal. By the maximality of {p,} and by the above arguments, we have
Dier 2mezb™(p;)=1. Putting e=>,,p,, we obtain the desired projection e. Q.E.D.

Lemma 8.9. Let {0,} be a continuous one parameter automorphism group of an abelian
von Neumann algebra A. If A admits a faithful semifinite normal trace v on A with
yob,=e""y, tER, then A has a faithful semifinite normal trace vy, invariant under {0,}.

Proof. We apply the previous lemma to {4, 6,}. There exists then a projection e in 4
such that {0,(¢): n € Z} are orthogonal and 2 ,.70, (e) =1. Let B be the fixed point subalge-
bra of A4 under {0,: n€Z}. Let e,=0,(¢), n€Z. We have then

B=Be,= Ae,, n€l;
A=2%Be,.

neZ

Let A, be the algebraic direct sum >,z Be,. For each 2€4,, put

e@)= 2 0,(x).

neZ
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Since {n€Z: 0,(x)e, =0} is finite for each m€ Z, ¢ is well-defined, and we have &(A4,)< B.
Let I' be the spectrum of B, which is a hyperstonean space. We identify B and C(T"),
the algebra of all continuous functions on I'. Let B . denote the set of all [0, oo]-valued
lower semicontinuous functions on I'. For each n=1, 2, ..., let f, =2 lkj<n€ We define, for

each 2€ A4,
£(x) = sup &(zf,) €§+.

The one parameter automorphism group {f,} induces naturally a one parameter auto-

morphism group {6} of the cone B ., which satisfies the equality:
O,0e(x) =e00,(x), xE€A,.

We first consider the case where 4 is o-finite. Let w be a faithful normal state on 4.
Define

1
wo(x)=Jr woy(x)dt, x€A.
0

‘We have then a faithful normal state w, on 4, whose restriction to B is invariant under
{0.} since 6,,;(x) =0,(x) for every x€ B and n€ Z. The normal state w, induces a normal
measure on I'; hence it is extended to a [0, co]-valued additive and positively homo-

geneous function on §+ which is also denoted by w,. Put

Yol@) = wgoe(x), TEA,.
It is then clear that 9, is a trace on A4,. Since y,(x) < + oo for each z€ A4, and A, is
o-weakly dense in A4, y, is semifinite. If we define g, on A4, by v,(2) =w(e(zf,)), n=1,2, ...,

then {y,} are normal positive linear functionals on ,4 and y,(x) =sup y,(z), *€4,; hence
¥, 1s normal. Since w, and ¢ are both faithful, so is y,. Finally, we get

Y000: (2) = wy(e00(2)) = wy(f.08(x)) = wole(®)) =), zE€A,,
so that y, is invariant.

We now drop the assumption that 4 is o-finite. Let C denote the fixed point sub-
algebra of 4 under the whole group {0,}. Let p be a nonzero o-finite projection in 4. Put
q=V:cq0y(p), where Q denotes the set of all rational numbers. The countability of @
implies that g is o-finite. Since 6,(¢) =g for every ¢€Q, and ¢t+0,(q) is strongly continuous,
we have 0,(g) =q for every t€R. Hence q falls in C. Therefore, any o-finite projection in 4
is majorized by a o-finite projection in C. Thus, we can find, by the usual exhaustion
arguments, an orthogonal family {q,:¢€I} of o-finite (in A4) projections in C with
2ierqi=1. By the result for the o-finite case, each ¢, admits a f-invariant faithful
semifinite normal trace y;. Putting yo= >, v, We obtain the desired trace y,. Q.E.D.
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Levma 8.10. Under the same assumption as in Lemma 8.9, A contains a continuous
one parameter unitary group {v(t)} such that

0, (v(2)) = e**v(t), s, tER.

Proof. By the previous lemma, »4 has an invariant faithful semifinite normal trace
3. By the Radon—Nikodym theorem for traces (in the abelian case), there exists a
nonsingular positive self-adjoint operator % affiliated with 4 such that y(x)=yp4(h),
€ 4. We have then

Yo (e~ tha)= e‘t'l/)o (hx)= e_‘qp(x) = (0, (x)) = 9o (R0, (x)) = o 0 0,(0_, (k) )
=po(0_:(h)x), €A, LER,

so that we have 0,(h) =¢*h. Putting v(f)=%", t€R, we obtain the desired one parameter
unitary group {v(#)} in A. Q.E.D.

Returning to the original situation, we have the following result.

TaEOREM 8.11. Under the same assumptibn as in Theorem 8.5, if M is of type 111,
then M, must be of type 11,

Proof. Since any automorphism of M, leave invariant the greatest central type I
projection of M, we may, by virtue of Theorem 8.5, assume that M, either of type I or
type IL. Suppose M, is of type 1. For the same reason as above, we may assume that
M, is homogeneous in the sense that M, is isomorphic to the tensor product
Z,® B of the center and a factor B of type 1. So we identify M, and Z,® B. Let Tr denote
the usual trace on B. It is known that any faithful semifinite normal trace on M, is of the
form y®Tr for some faithful semifinite normal trace y on Z,. Thus the trace v is written
as 7=y®Tr. The one parameter aufomorphism group {6,} of Z, is extended uniquely to
a one parameter automorphism group of M, leaving B elementwise fixed, which is ob-
tained as 0,®¢ and denoted again by {0,}. Since §_,00,, t€R, leaves Z, elementwise fixed
and M, is of type I, there exists a unitary w, in M, such that 6_,00,(z) =w,zw}, x€ M,.
Hence we have

0, () = 0,(w;) 0,() By(wy), %€My, tER.
Choose a positive nonzero b€B with Tr (b) < +occ. We have for each a€Z}, tER,

e”'p(a) Tr (b) = e~ v(ab) = v 0 b,(ab) = v(B, (w;) B, (ab) B,w}) = (B, (ab))
=1(0.(a)b) = [y 00,(a)] Tr (b),

so that po0,=e~*y. Hence Lemma 8.10 assures that there exists a continuous one para-
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meter unitary: group {v(f)} in Z, satisfying (8.2); hence M is semifinite by Theorem 8.6, a

contradiction. Thus M, has no direct summand of type I. Hence it must be of type 1.

' QE.D.

A more practical criterion for M to be of type III is given by the following result,
although the proof will not be given until § 10.

THEOREM 8.12. In the same situation as before, the following two statements are
equivalent:

(i) M s a factor of type 111;

(ii) The one parameter automorphism group {8,} of Z, is ergodic but not equivalent to
the translation automorphism group on the abelian von Neumann algebra L®(R)
of all essentially bounded measurable functions on R.

9. Algebraic invariants S(71) and T(M) of A. Connes

We keep the notations, the terminologies and the basic assumptions of the previous
section. In this sections, we shall examine the connection between the structure of a
factor M of type III descrived in the previous section and the algebraic invariants
S(M) and T(M) introduced recently by A. Connes, [10].

For each weight ¢ on a von Neumann algebra M, let A, denote the associated
modular operator. The following algebraic invariant was introduced by A. Connes, [10].

Definition 9.1. (A. Connes) The intersection S(7M) of the spectra of all possible A is
called the modular spectrum of M. The intersection of the spectrum of A, when ¢ runs
over all possible faithful positive normal linear functionals on M is denoted by S,(M)
and called the proper modular spectrum of M. Of course, Sy(M) makes sense only for a
g-finite von Neumann algebra.

Both S(M) and 8y(M) are algebraic invariants of M, and they are interesting when
M is of type III. However, if ) is o-finite and of type III, then S(M)=8,(M). It is also
easily seen that S(M)={1} if and only if 7 is semifinite; for a o-finite von Neumann
algebra M, Sy(M)={1} if and only if M is finite.

A. Connes and van Daele have proved [54], that both S(7M) and S,(1), (with {0}
deleted), are closed subgroups of the multiplicative group 10, [ of positive real numbers.
Making use of S(M), A. Connes further classified the factors of type III into those of
type III,, 0<A<1.

Definition 9.2. (A. Connes) A factor M of type III is said to be of type I1T,, 0<A <1,
if S(M)={A"n€Z} U {0}; of type III, if S(M)={0, 1}; of type III, if S(M)=R,.
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The following algebraic invariant is also due to A. Connes.

Definition 9.3. Given a von Neumann algebra M, T(M) is the set of all t€ER such
that there exists a (faithful semifinite normal) weight ¢ on M with of =:. We call T(M)
the modular period group of M.

He proved, [10; Théoréme 1.3.2], that for any weight ¢ of M,
T(M)={tER: 6f € Int (M)} ‘ 9.1)

where Int (1) means the group of all inner automorphisms of M as defined in §3.
Hence T'(M) is a subgroup of the additive group R. However, by [45; Theorem 5.1}, ()
need not be a closed subgroup of R. However, it may be said that S(M) and T'(M) are
almost dual algebraic invariants; when the duality between S(M) and T'(M) breaks down,

they serve as complementary algebraic invariants.

THEOREM 9.4. Under the same assumptions as in Theorem 8.5, a real number t falls in
T(M) if and only if there exists a unitary v€ Zy with ,(v)=e'*v.

‘The proof follows the same line as Theorem 8.6, so we leave it to the reader.

LeEMMA 9.5. Let 4 be an abelian von Neumann algebra equipped with a continuous one
parameter automorphism group {0.}. If 0,,%+ 1, t,€R, then there exist £¢>0 and a nonzero
projection e€ A4 such that 0,(e)e=0 for |t—t,] <e.

Proof. Let A, be the set of all z€ 4 such that lim,,||0(x) —z|| =0. It is easily seen
that 4, is a C*-subalgebra of 4. For each >0 and z€ A, put

-]
x,= n*n‘*f exp (— nt?) 0,(x) dt.
-
Then z, falls in 4, and {z,} converges o-strongly* to z as n—co. Hence A, is o-strongly*
dense in 4. Let Q be the spectrum of 4,. Since A4, contains the identity 1, Q is compact.
We identify 4, with the algebra C(Q) of all continuous functions on Q. For each ¢€R, 0,
induces a homeomorphism 6f of Q such that

07! (a) ()= a(0F w), €Ay WEQ.

If {w,} is a net in Q converging to w and {s,} is a sequence in R converging to s, then we

have, for every a € 4,, -
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|a(03,, ;) — I I | (wi)_ s{(a) (w)|
<0, (@) (@) — 0_s (@) ()| +[0_¢ (@) (w;) — 0_; (a) ()]
< "0 0_s(a)|] + Ie—s (@) (w;) — 0_s(a) (w)l_’O;

hence the map: (£, w)ER X Q>0 w € Q is continuous.

By the density of A, in A4, we have 0|4+t so that 6%, +id. on Q. Hence for
some wy €L, 6%, wy=+ w,; so there exist ¢ >0 and an open neighborhood U of w, such that
UNO*,(U)=0 for |t—ty| <e. Let a be a positive element of A4, such that a(w,)=1 and
a(U°)=0. We have then 0,(a)a=0 for |¢—t,] <. Let e be the spectral projection of a
corresponding to the interval [, 1]. We have then a>e, so that 6,(e)e=0 for [t —£,] <e.

Q.E.D.

THEOREM 9.6. In the same situation as in Theorem 8.5, if M is a factor, or equivalently
if {0,} is ergodic on Z,, then the following two statements for t,€ R are equivalent;

(@) 0=

(ii) ePeS(M).

Proof. Let §, be the Hilbert space constructed from the trace v of M, which is
sometimes denoted by L% M,; 7). The Hilbert space §) on which N acts is L3(§,; R). The
modular operator A and the unitary involution .J associated with the dual weight # on 1 are
given, by (5.12) and (5.17), as follows:

Ad(s) =" E(s), £EL*(Do: R), sen;} 02)
JE@s) = p(— ) JE(— ),
where {u(s)} is the continuous one parameter unitary group on §, given by
p(8) 12 (x) = e¥7:(0,(2)), s€R, (9.3)

for every x€M with 7(z*x)< +co, and J is the canonical unitary involution on §,
associated with the trace 7, i.e., the “L2-extension” of the involution: x € M,—=z*€ M,.
By Theorem 8.3, M, is the centralizer of the dual weight ¥ on . Hence by [10,
Corollary 3.2.5(b)], we have
S(m)y= n {Sp (AeJeJ): e runs over honzero projections of Zo}-
For a nonzero projection e€Z,, we have

(eJeJE) (s) =0_,(e) (JeJE) (5) =0_,(e)ek(s), EEL(Hy; R), sER.

Therefore, Sp (Aej eJ) consists of all ¢! such that for any £>0 6,(e)e+0 for some
s€[t—¢, t+¢]. Thus, by virtue of Lemma 9.5, (i) and (ii) are equivalent. Q.E.D.
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CoroLLARY 9.7. The following two statements are equivalent:

(i) M, is a factor of type I1;
(ii) ‘M is a factor of type III;, ie., S(M)=R,.

Proof. If ‘M, is a factor, then S(M)=Sp (A) because no nontrivial projection is in Z;
hence S(M)=R,. It S(M)=R,, then §,=¢ for every tER by Theorem 9.6, and {,} is
ergodic on Z,; this is impossible unless Z,=¢. Q.E.D.

10. The crossed products by the induced actions

We have seen so far that every von Neumann algebra of type III is represented
uniquely, up to weak equivalence, as the crossed product of a von Neumann algebra of
type I, by a one parameter automorphism group leaving a trace relatively invariant but
not invariant. Since it is not such an easy task to analyze a continuous crossed product,
(actually most of theories of crossed prbduets of opera,tor algebras, such as [13, 14, 27, 30, 38,
51, 53], have been restricted to the discrete case), it is, of course, desirable if we can
further reduce the continuous crossed product to a discrete one based on the group Z of
integers. Unfortunately, this is, however, not always the case. Nevertheless there are
many cases where one can reconstruct a given von Neumann algebra of type III as the
discrete crossed product of a von Neumann algebra of type II,, by a single automorphism,
as seen in [2, 10, 45]. This section is devoted to the study of this problem. In.the search
for the solution we are eventually led to the comparison of the crossed product of a
covariant system and that of a smaller covariant system. It turns out that this is closely
related to Mackey’s theory of induced representations of a locally compact group.

Suppose G is a locally compact separable group with a left Haar measure dg. The
separability assumption here is not essential; one can get rid of this restriction at the cost
of somewhat longer arguments, see for example [5, 6, 32]. For applications, we shall take
the additive group R of real numbers anyway.

Let H be a closed subgroup of &. We denote by dgg and dyh left invariant. Haar
measures of G and H respectively, and by 8, and 05 the modular functions of G and H.
It is known that (a) there exists a continuous function p(g)>0 on G such that

Ou(h) olg), h€H,gEG; (10.1)

o(gh) =<1
¢ (k)
{b) with such a function g, there is associated a quasi-invariant measure dg on the left
homogeneous space G/H such that

20— 732907 Acta mathematica 131. Imprimé le 11 Décembre 1973
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Lf(g) o(g) dg = L/H ( Lf(gh) dHh) &, FEXO); 10.2)

(c) Foreach g,, g,€G, 0(g:95)/0(9) depends only on g; and g, =g, H, so that we may define a
continuous function y on G x (G/H) by

2(91,92) = 0(9192)/0(g2)- (10.3)

We consider the Hilbert space LG, ») of square integrable functions on G with respect
to the new measure dy(g) =p(g)dg. Using the unitary operator U of L*(g,v) onto L*(G)

defined by
(U€)(9) =e(9)*&lg), EEL¥G, ), (10.4)

we realize the left and right regular representations 4 and 4’ of G on L¥@, v) as follows:

= =Y o(a-1h)E Elo— ;
Mg k)= o(h)Holg~ ) é(gh), EELz(G’V)’} (105)

N (@)E(R) =dq(g) o(h) Fo(hg)tE(hg), g, hEG.

Since » and the Haar measure are equivalent, we have L®(@, v»)=L*(G). In the von
Neumann algebra L®(G) on L*@, v), we consider the von Neumann subalgebra L®(G/H)
of all functions in L®(G) which are constant on each left H-coset gH, g €G. We denote it by
Ag.

By the separability assumption, @ is identified, as a Borel space, with the cartesian
product (G/H) x H and L?(G, ») is identified with the tensor product L*(G/H, dg)®L3(H)
by equality (10.2).

Lemma 10.1. In the above situation, the von Neumann algebra T(G/H, A(GQ)) on L¥(@, v)
generated by Ay and MG) coincides with the tensor product C(LA(G/H, dg))® M(H) of the
algebra of all bounded operators on L%G/H,dd) and the von Neumann algebra (H)
generated by the left regular representation Ag(H) of H on L2(H).

Proof. By the separability of G, there exists a Borel subset £ which meets with every
left H-coset at one and only one point. Hence the homogeneous space G/H is identified
with F and G=EH. By [41}], the commutant Y(G/H, A(@))' of M(G/H, A(®)) is generated
by A'(H). Hence M(G/H, (@)’ coincides with 1@ M'(H), where M'(H) is the von
Neumann algebra on L% H) generated by the right regular representation of H. Thus we get

MENG, AE) = MENG, X)) = LILHENG), dg)© M(H) QE.D.

Let {H,, &} be a von Neumann algebra equipped with a continuous action § of a
closed subgroup H of G'. We consider the tensor product L®(G)® H, of N, and the abelian
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von Neumann algebra L®(G), whose elements are regarded as bounded H,-valued functions

with the properties described in § 2. We define actions y and « of H and G as follows

Yr(®)(9) = Bu(x(gh)), g€G, hEH; }
(10.6)

() (g)=x(k™'g), ¢,kEG, zEN,®L*(G).

Let M, denote the fixed point subalgebra of L*(G)® M, under {y,: h€H}. Since y,, hEH,
and o, g€G, commute, M, is invariant under «, The restriction of a, to M, is also

denoted by a,.

Definition 10.2. The action « of G on M, is said to be induced up to G from the action
p of H, and we write
{My, o} = Ind {Ny, B}
TareorREM 10.3. Given a von Neumann algebra N, equipped with a continuous action

B of a closed subgroup H of a locally compact separable group G, let

{My, o} = Ind§ {M,, B}.
Then the crossed product R(My; ) is isomorphic to C(LAG/H))® R(Hy; B)-

Proof. We identify, as in the previous lemma, the homogeneous space G/H with the
Borel cross section . Suppose H, acts on a Hilbert space &,. Then the von Neumann
algebra M, is regarded as the algebra of bounded ,-valued functions on G/H =E with
the properties described in § 2, that is, M,=L®(G/H)® H,. The von Neumann algebra
Lo(G)® N, acts on LK,; G, v) in the canonical fashion. The crossed product R(L*(G)®
MNy; ), hence R(My; ), is faithfully represented on L(R,; G x @, y®v). We shall represent
RIL®(G)® Ny; @), hence R(My; @) too, on LAK,; G,v). The von Neumann algebra
RILXGY® Ny; ) on LAK,; G x G, v®v) is generated by three kinds of operators:

(£&) (g, h)= x&(g, h), €My, g, hEG;
(a,E)(g, k)= flgh)E(g, k), [EL®(G); (10.7)
(Ak) £) (g, k)= o(g) to(k1g) E(k g, h), kEG,

for each £€LYR,; G x G, v®v). We define a unitary operator W on L¥(Ry; G x G, v®v) by

(WE)(g, b) =ds(h) ¥ o(g) tolgh) £gh, b), g, hEG. (10.8)
We have then
W*sW =&, z€HN,;

W*a, W =2(hi@l, f€Lo(Q) (10.9)
W*A(k)W = A(k), kEG,
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where - 7(f) - denotes the ~multiplication operator on L*@,v) defined by f. Hence
W*R(LP(GQ)® Ny; ) W is generated by the operators & z€MH,, n(f)®@1, fEL®E), and
A(k), k€@, which is obviously isomorphic to the von Neumann algebra on L¥R; G, »)
generated by the following three kinds of operators:

3E(9) = v(g), =€ Mo, EEL(Re; G, 9);
() E(g) = 1(9)&(g), FEL®(G); : (10.10)
A)EG) = o(g) totk g) ek g), g, kEG.
Therefore, the crossed product R(M,; «) is isomorphic to the von Neumann algebra on
L¥(Ry; G, v) generated by the operators:

(28) (9) = %(9)E(g), - %€ My, §ELP(Re; G, V”} (10.11)

AR)E) (9)=olg) Tk 9 E(k "), k,g€G.
According to the decomposition G = EH, we decompose L3(R;; @) into the tensor-product

L¥G[H, dj)®LX(Ry; H). With respect to this decomposition, the algebra M, on
L¥R,; G, ) is generated by two kinds of operators:

b), §EG/H=E, heH,z€
(@) (g, )= " () &g B), GEG €= n"} (10.12)

7n(f) &gy h) =f(g) &g, h), [EL™(GIH).

By the previous lemma the. von Neumann algebra on L%@OlG ») generated by . yr(f)
fEL®(G/H), and /1( ), gEG coincides with 1@ C(L¥ G/H dg))® M(H). Therefore, R(My; @)
is lsomorphlé to the tensor product of L(L¥G/H, dg)) and the von Neumann algebra on
LRy H) ggnerated by the operators:

(@Y (h) = B l(x)E(h); xEMN,, REH, EELA(R,; H)}
(R (R)ER) = E(kh), B, kEH.
But the latter is nothing but R(H,; B). Q.E.D.
We keep the notations in the previous theorem. Each elements x of L2(G)®H, is
regarded as a bounded 7l,-valued function on G with the properties described in § 2. An
-element x. of LG ®MN, falls in M, if and only.if for every h€H
(gh) = pr* (x(9)) (10.13)
for almost every g€G. The algebra 4, +L®(G/H) is contained in the center of M.

ProPoSITION 10.4. In- the above situation, if My is. a von Neumann subalgebra of
My such that (i) M, is invar%}ant under the action o of G wnd (i) M, contains Ay, then
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there exists a unique von Neumann subalgebra N, of M, such that N, is invariant under the
action § of H and
{M,, o} =Ind§ {N,, 8}.

Proof. For each f€XK(G), we define
“/(x)=faf(9)“g(x)dg: z€M,.

Let A be the C*-subalgebra of all z such that lim,.,.| e,(x) — x| =0. Clearly A4 contains
o (x) for every f€ J(G) and x € M,; hence AN M, is o-weakly dense in M,. Every element
% €4 is represented by a bounded norm continuous H,-valued function z(-) on G. Let },
be the von Neumann subalgebra of M, generated by B={z(e): €A N M,}. Let y=u(e)
with an z€4NM,. We have then, for each h€H, B,(y)=z(h"1)=ay(x)(e). Since
an () EAN My, B (y) belongs to N,. Hence N, is invariant under the action 8. If  is an
element of 4N M,, then x(g) =« (x)(e) belongs to N, since (AN M,)=A4N M,. Hence
each element x of 4 N Y, is represented by a bounded norm continuous },-valued function
x(-) with x(gh)=p8;"(2(g)), g€G, h€H. Let g, and g, be elements of G with g, +g,, and
¥; and y, be two arbitrary elements in B. There exist two elements x, and z, in 4N M,
such that x,(g,) =y; and x,(g,) =y,. Let U, and U, be open neighborhoods of g, and g,
respectively such that U,nU,=@, U, H=U, and U,H=U,. Choose two functions f,
and f, from J(G/H) such that f,(g,)=1 and f,(U$) =0, i=1, 2. Let x=f,, +f,2,€4 N M,.
Then we have y,=z(g,) and y,=x(g,). Hence if z(-) is a norm continuous B-valued
function on G satisfying (10.13), and vanishes outside the inverse image of a compact set
in G/H, then z belongs to 4N M,. Hence we conclude that M, is the subalgebra of M,
consisting all elements in 7, with values in #,. Thus we get {M,, «}=1Ind§ {N,, B}
Q.E.D.

This result indicates that the abelian von Neumann subalgebra 4, plays an im-
portant role in the analysis of the covariant system {M,, «}. We call the action of &

on 4, canonical.

TueorEM 10.5. Let {M, «} be a covariant system on a locally compact group G.
Let H be a closed subgroup of Q. If there exists an isomorphism of the abelian von Neumann
algebra L*(G[H), say Ay, onto an a-invariant von Neumann subalgebra A of the center
Z of M, which transforms the canonical action of G on Ay into o on A, then there exists
covariant system {N, B} such that

{M, «}=Ind§ {N, g}
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Proof. We may assume that M acts on a Hilbert space §) and « is implemented by a
unitary representation U of G on §. We identify 4 and Ay Then 4 turns out to be a
transitive imprimitivity system for the representation {U, £} of G. By the Mackey-Blattner
theorem for induced representations, there exists a unitary representation {L, &} of H

such that
{U, H}=~1Indg {L, !}

Therefore, the Hilbert space & is identified with the Hilbert space of all $-valued

measurable functions & such that

&(gh)=L(k)"*£(g), 9€G,h€EH,;

10.14
[ lewiraz= i<+ e 1019
GlH
The representation U is given by
(Uk)€)(9) =0lg) to(k~g)t E(kYg), g, kEG. (10.15)

The arguments of O. Nielsen in [32] show that to each z€.4’ there corresponds an
essentially bounded L£(f)-valued measurable, in the sense of § 2, function x(-) on G such
that, for each £€9 and h€H,

(@) (9) = =(9)&(9); } (10.16)
x(gh) = L(h)= x(g) L(h)
for almost every g€@. It is then clear that for each € M and g€@, we have
o,() (k) = 2(g3k) (10.17)

for almost every k€G.

Let A be the set of all x€ M such that the function: g€ G—a,(x) € M is continuous in
norm. As in the previous proposition, 4 is a ¢g-weakly dense C*-subalgebra of . Each
x€4 is represented by a bounded norm continuous £(§)-valued function x(-) satisfying
(10.16) and (10.17). Let ¥ be the von Neumann algebra on & generated by B={xz(e): x€4}.
We have then for each x€4

L(k)1a(e) L(h) = z(h) = a7 (x)(e), hEH.

Hence the unitary representation {L, &} of H induces a continuous action § of H on .
By the same reasoning as the last part of the previous proposition (or applying it to
Ind§ (M, B)), we conclude that

{M,«}=Ind§5(N, ). QE.D
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Now we apply Theorems 10.3 and 10.5 to the diserete crossed product description
of a factor of type III of a certain class.

Let M, be a von Neumann algebra of type II, equipped with a continuous one
parameter automorphism group {f,} such that rof,=e 'z for some faithful semifinite
normal trace 7. Let M= R(My; 0). We denote by Z, the center of M, and by {f,} the
restriction of {0,} to Z,. Suppose there is a 7>0 such that 07 is not ergodic on Z,,
that is, the fixed point subalgebra 4 of Z,under 7 is not reduced to the scalars. Of course,
A is invariant under {f,}, and the action {f,} on A4 is ergodic and periodic. Hence the
action {0,} on A is transitive, in other words, there exists a T>0 such that the action
{6,} on A4 is isomorphic to the canonical action of R on L®(R/T,Z). Hence there exists,

by Theorem 10.5, a von Neumann algebra M, equipped with an action ¢ of T, Z such that

{mo, 6} = Indvll‘{oz {nO’ Q}

Putting o=, we have an automorphism of M, with g,r,=g" n€Z. Since M,=
LoR/TyZY® Ny, N, is also of type I .

We assume, for the moment, that #,, is separable, that is, the predual of M, is
separable as a Banach space. In this case, there is no measure-theoretic difficulty in
regarding M, as the von Neumann algebra of all essentially bounded H,-valued
o-strongly* measurable functions on the half-open interval [0, 7). The action § of R is
given by

o™t @(t—r+T,y)), 0<t<r;
O,(x) (t)= (10.18)
o" (x{t— 1)), r<t<T,,
for s=nTy+r, 0<r<T, Let

@
r=f 7, dt (10.19)
0<t<T,

be the disintegration of the trace 7 with respect to the diagonal algebra 4 = L* (R/T,Z)=
L*(0,T,). For each positive € M,, we have, for s=nTy+r,0<r<T,

r To

e”sr(x)=r°0s(x)=f 00" N @(t—r+ To))dt—l-f T, 00" (x(t— 1)) dt

0

To—-1 Te
=f THTOQ"(x(t))dt—i—J. Terr_1, 00" (2(2)) dt.
0

Te-71

Putting s=nT,, we have

e "Tor(z) = f " o0 (wlt) dt
0
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so that we get r,00"=e "Tor,, n€Z, (10.20)

for almost every {€[0, T,). If 0<s< T, we get

To

e r(a)= f s alt)) dt+ f Tere_r,(0(2(2))) db
0

To—s

= fTo_sTsH(x(t)) dt+ fTo e T Ty1 51, (2(t)) di.
0

To—-s
Therefore, we get
Tsrt=€ °Tp 0<t<Ty—s

Torer, =€ 7, To—8<t<T,,
for each s€[0, T,) and almost every t€[0, T';). Hence we have
Toe=e 7, —t<s<T,—t (10.21)

for almost evéry t€[0, T'y). By Fubini’s theorem for almost every s€[—¢, T, —t¢), (10.21)
holds. Hence we conclude that there is a unique faithful semifinite normal trace 7, on #,
such that

(z) = JToe‘tro (@(t) &, =EM,. (10.22)
0

We have, by (10.20), ,00=e"T1,. (10.23)

Therefore, 7, is relatively invariant under g. By Theorem 10.3, we have

m=R(My; 0) = R(N,; 0)-

Now, we drop the separability assumption for M, Let {M;};c; be the family of all
f-invariant separable von Neumann subalgebras of M, such that 7, contains ,4 and the
trace 7 is semifinite on M;. Of course, {M,},c; is an increasing net with respect to the
inclusion ordering, and M, is generated by U;.;M;. By Proposition 10.4, to each €1,
there corresponds uniquely a g-invariant von Neumann subalgebra #; of 1, such that

{m,, 6} = ma} ,{M, o}

From the proof of Proposition 10.4, it follows that ¥, < , if and only if M, < M,. To

each 1€1, there corresponds a unique faithful semifinite normal trace 7; on }, such that

-r(x)=f ue‘tri(x(t))dt, z€EM,;
[1]

T,00=¢To1,.
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By the unicity of 7;, 7, is the restriction of 7; if W, < H,. Hence there exists a unique
faithful semifinite normal trace 7, on M, such that 7oy, =7, ¢1€1. Hence we have

7(2) = fne“rom(t»dt;
0

To

700=€ "1,

Thus we have reached the following conclusion:

TEEOREM 10.6. Let M, be a von Neumann algebra of type 11, equipped with a con-
tinuous one parameter automorphism group {0.} and a faithful semifinite normal trace v
such that tof,=e 'r. Let M=R(My; 0). If the restriction {f,} of {0,} to the center Z, of
M, is ergodic, but Oz is not ergodic for some T >0, then there exists a von Neumann algebra
Ny of type 11, equipped with an automorphism ¢ and a faithful semifinite normal trace

T, such that
{1:00 o=eT1, for some Ty>0;

M=R(N,; 0).

In particular, if M is a factor of type 111, 0 <A <1, then there exists a factor H, of
type 11, equipped with an automorphism o and a faithful semifinite normal trace T, such that

M=R(Ny; e);
{ To0=e"1,

where T = —log A.

Proof. The first half of the theorem has been already proven. By Theorem 9.6,
0y is the identity automorphism (. Hence {f,} is periodic and ergodic on Z, with period 7.
Hence {f,} must be transitive, that is, Z,~ L*(R/T'Z) and the action § of R on Z, is iso-
morphic to the canonical action on L®(R/T'Z). Therefore, there exists a von Neumann
algebra N, of type II_, equipped with an automorphism p and a faithful semifinite normal

trace 7, such that
To0= e 1y, {mo’ 0} = Ind?z {no’ o}

m=R(Ny; 0)-

Since My~ A® H,, and 4 =Z, in this case, N, must be a factor. Q.E.D.

It is now easy to prove Theorem 8.12. Suppose statement (ii) in Theorem 8.12 holds.
By Theorem 8.5, TN is a factor. Suppose that M is not of type III. Then M is semifinite,
so it admits a faithful semifinite normal trace ¢. The modular automorphism group
{07} of M associated with ¢ is the trivial group. Hence we have R(M; o®) = ML*(R).
However, {M,, 0} is weakly equivalent to {INQ@L*(R), t®0}, where {6,} is the canonical

Hence we have
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action, (translation), of R on L®(R). Hence {Z,, §} is isomorphic to {L®(R), §}. But this
is excluded by the assumption.

Conversely, suppose that {Z,, 6} is isomorphic to {LZ*(R), §}. By Theorem 10.5, the
covariant system {7M,, 0} is induced from another covariant system {H,, o}. But in this
case, being an action of the trivial group {0}, ¢ must be the identity automorphism .
Hence {M,, 6} is isomorphic to {H,®L*(R), :®0}. Hence we have

m=n,® L(L*R)) = H,.

Thus M is semifinite.

We close this section with discussion of the relation between Theorem 10.6 and
the structure theorem in the previous paper, [45]. In [45], we showed that a von Neumann
algebra M equipped with a homogeneous periodic state ¢ may be written as the crossed
product of the centralzier M§ of ¢ by an endomorphism 6 which is an isomorphism of
M onto the reduced algebra eM%e. Let T be the period of . Then this § is given by an

Ty in such a way that O(x) =wau*, € ME and e =uu*.

isometry » in M with of (u)=e¢
Let M be the tensor product N® L(He) of M and the factor of type I, and g=¢p®Tr.
Then ¢ is a faithful semifinite normal weight on M. Since e®1 is a properly infinite
projection of the Il -von Neumann algebra M§® L£(H) =M, there exists a co-isometry
w in 7_’)_10 such that w*w=e®1l. Put 4=w(u®1). We get a unitary % in M such that
of(@)=™Tq and @Myi@* =M, Putting §(x)=wxa*, we obtain an automorphism 0 of
M,. Tt is now straightforward that ‘ffl;R( 7’710; 6). Since M is of type III, we have
me R(i’}_’lo; 6). Hence M is the crossed product of a II-von Neumann algebra ﬁ’lo by an
automorphism f. Since § transforms the restriction ¢, of ¢ to MZ, (which is a faithful

normal trace), in such a way that gy00=Ap, with 1=e¢ >*7

, we have @y00 =A@,, where
@, is the restriction of ¢ to 7710, because @, (wrw*)= @y(x), € ﬁlo. Therefore, the structure

theorem in [45] coincides essentially with Theorem 10.6 in this case.

11. Example
By the Araki-Woods classification theory, [3] and [10], a type III, factor ¥ which

is an infinite tensor product of finite factors of type I is unique. In this section, we shall
examine this factor M.

Let {M,} be an increasing sequence of subfactors of type I, such that 7 is generated
by U7Z1M,. Let @ be a faithful normal state whose modular automorphism {6} leaves
each M, invariant. Let M, be the crossed product R(M; o?). Since M is of type III,,
we know, by Corollary 9.7, that M, is a factor of type II,,. We denote by v(¢) the regular
representation A(f) of R which together with the canonical image of 7N generates M.
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We identify 7 with the canonical image of M in M,. Hence we have of (x) =v(t)zv(t)*,
Z€ M, tER. Let ‘M, be the von Neumann subalgebra of M, generated by M, and {v(f)}. It
is obvious that M, = R(M,; o®), and M, is generated by Unxy M,. Let &, be the Radon-
Nikodym derivative of |, with respect to the trace of ,. Then we have

of(x)=hExh,t, xz€EM,.

Hence ‘ﬁ’ln;mn@Lw(R), so that each 'ﬁ'ln is homogeneous von Neumann algebra of
type In,. Let 4 denote the abelian von Neumann subalgebra generated by {v(¢)}, which is
isomorphic to L®(R). Let ¢ be the weight on M, dual to ¢.

LemMmA 11.1. The restriction ¢|, of § to A is semifinite.

Proof. Since the Tomita algebra ¥, based on ¢ contains an identity, say &, the Tomita
algebra J{(U,; R) constructed in §5 contains the convolution algebra J(R). For each
£€ X(R), we have 7,(&) = [g £(t)v(t)dt, so that {m,(£): £€ K(R)} generates A4; hence @], is
semifinite. Q.E.D.

Identifying A4 with L (R), we see by construction that the dual action {0;} on 4
nothing but translation. Since §|, is semifinite and 0-invariant, @|, is nothing but in-

tegration with respect to Lebesgue measure. Namely, we have

wn= [ fords, rer=m, o

The unitary group {v(s)} is given by
v(t)(s) =e*t, s, tER.
The action 6 of R turns out to be:

0f)(s) =f(s—t), fEL™(R).

Define h(s) =¢°, s€ER.

Then we have v(t) =ht. Hence the restriction 7|4 of the trace on M, onto A is given by

o= f ef(s)ds, [EL*(R).

—oQ

Hence the projection p in 4 given by the characteristic function [0, o) is finite because

(p)= fwe”sds= 1.

0
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The projection 0,(p) corresponds to the interval [¢, o). Hence 6,(p)<p for > 0. Since 4
is contained in 'ﬁ'l,,, n=1, 2, ... and p belongs to every ‘fr—ln Therefore, the reduced factor
PM,p of type II, is generated by the union UZ;pIM,p of reduced finite type I von
Neumann algebras. Since each pﬁlnp is approximated by finite dimensional subalgebras,
pM,p is approximated by finite dimensional subalgebras. Hence by Murray—von
Neumann’s Theorem [26; Theorem X II] pM,p is a hyperfinite factor of type II,. Thus
we have obtained the following conclusion by the unicity of a hyperfinite factor of type IT,.

THEOREM 11.2. Let F be a hyperfinite factor of type I1I,. There exists a decreasing
one parameter family {p;};>o of projections in F and a continuous one parameter semigroup
{0+ t—>0} of endomorphisms such that 0,(py) =Dsss, Do=1, and 7(p)=e*, s, tER,, where
T means, of course, the canonical trace on F.
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