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1. Introduction 

Undoubtedly ,  the  principal problem in m a n y  field of mathemat ics  is to  unders tand  

and  describe precisely the  s t ructure  of the objects in question in terms of simpler (or more  

tactable) objects. After  the fundamenta l  classification of factors into those of type  I,  

type  I I  and type  I I I  by  F. J .  Murray  and J .  yon  Neumann ,  [25], the s t ructure  theory  of 

yon  N e u m a n n  algebras has remained untractable  in general form. I t  seems tha t  the complete 

solution to th is  question is still out  of sight. I n  the  previous papers [44, 45], however,  

the au thor  obtained a s t ructure  theorem for certain yon  N e u m a n n  algebras of type  I I I  in  

terms of a yon  Ne um a nn  algebra of type  I I  1 and an  endomorphism of this algebra. Also, 

The preparation of this paper was supported in part by NSF Grant GP-33696X MOS Number 46L10. 
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A. Connes further classified the factors of type I I I  into those of type III~, 0 ,~. i ~ 1, based 

on his new algebraic invariant  S ( ~ ) ,  and obtained a structure theorem for factors of type 

III~, 0 <)t < 1, in terms of a yon Neumann algebra of type I I ~  and its automorphism, [10]. 

These two structure theorems are closely related, and encourage us to obtain a general 

structure theorem for a von Neumann algebra of type I I I  in terms of a yon :Neumann 

algebra of type I I ~  and its automorphism group. The present paper is devoted to this task. 

The structure theorems in the papers mentioned above were obtained by  spectral analysis 

of the modular automorphism group associated with a care/ully chosen state or weight. In  

contrast, a general structure theorem for a von Neumann algebra ~ of type I I I  in terms of 

a yon Neumann algebra of type II~o and a one parameter  automorphism group will be 

obtained by  constructing the crossed product, say T/, of a yon Neumann algebra ~ of 

type I I I  by  the modular automorphism group of ~ l  associated with an arbitrary faithful 

semifinite normal weight, and then the crossed product of T / b y  another one parameter  

automorphism group, see w 8. 

Although the crossed product of operator algebras had been treated by F. J .  Murray 

and J.  von Neumann in their fundamental  work as the so-called group measure space 

construction of a factor, it was M. Nakamura  who proposed the investigation of crossed 

products of operator algebras, especially factors of type I I  1, as a possible analogy of crossed 

products of simple algebras, with the aim of describing or constructing more factors of type 

I I  r In  1955, T. Turumaru gave a framework for crossed products of C*-algebras, which 

was published in 1958 [51]. Soon after the work of Turumaru,  Nakamura  and Takeda 

began a serious s tudy of crossed products of factors of type II~, [27, 28, 29], and N. Suzuki 

worked also on this subject at  the same t ime [38]. They considered, however, only discrete 

crossed products of factors of type II~. Continuous crossed products of C*-algebras were first 

proposed by  mathematical  physicists, S. Doplicher, D. Kastler and D. Robinson under the 

terminology "covariance algebra" in order to describe symmetries and the time evolution 

in a physical system, [12]. Continuous crossed products of von Neumann algebras have been, 

however, left Untouched. 

We shall give, in w 3, the definition as well as the construction of the crossed product 

of a yon Neumann algebra by a general locally compact automorphism group, which is 

somewhat different from tha t  of a C. :a lgebra-- i t  has no universal property as in the case 

of C.-algebras. We then restrict ourselves to the case of abelian automorphism groups 

throughout most of this paper. 

In  w 4, we prove our main duality theorem for crossed products, which says tha t  given 

a yon Neumann algebra ~/~ equipped with a continuous action ~ of a locally compact 

abelian group G, the crossed product of ~ by  G with respect to ~, denoted by  ~(://1; g), 
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admits a continuous action & of the dual group G so that  the second crossed product 

~ ( ~ ( ~ ;  :r ~) is isomorphic to the tensor product ~I~| of ~ and the factor 

s of type I. This result, together with Connes' result concerning the unitary co-cycle 

Radon-Nikodym Theorem, [10; Th~or~me 1.21] will enable us to describe the structure of 

a yon ~eumann algebra of type I I I  in w 8. 

Sections 5 and 6 are devoted to analysis of weights on crossed products. The results 

obtained there will be used to show in w 8 that  the crossed product of av o n  Neumann algebra 

of type I I I  by the modular automorphism group is semifinite (actually of type II~). 

We shall show in w 7 a Galois type correspondence between some intermediate yon 

Neumann subalgebras of the crossed product and closed subgroups of the dual group G. 

Sections 8 and 9 are devoted to the study of von Neumann algebras of type I I I  as 

mentioned above. In  w 9, we examine the algebraic invariants S ( ~ )  and T ( ~ )  introduced 

recently by Connes for a factor ~ of type III ,  i n  terms of the structure theorem in w 8. 

In w 10, we shall discuss induced covariant systems for general locally compact auto- 

morphism groups, and prove that  the crossed product of the induced covariant system is 

essentially isomorphic to the crossed product of the original smaller covariant system. 

We shall then apply the result to the structure of a v o n  Neumann algebra of type I I I  

of a certin class in order to describe the algebra in question as the discrete crossed product 

of a yon Neumann algebra of type IIo0 by an automorphism; hence by  the additive group 

Z of integers. This description corresponds to the structure theorems obtained previously 

by A. Connes [10] and t h e  author [45]. 

Section 11 is devoted to discussing the example of hyperfinite factors of type I I I  r 

As an application of our theory, we prove that  the fundamental group of a hyperfinite 

factor :~ of type i I  z in the sense of Murray-yon Neumann [26] is represented by a continu- 

ous one parameter automorphism group of a hyperfinite factor of type I I~  which is the 

tensor product of :~ and a factor of type I~. 

The author would like to express his thanks to Professors tI .  Dye and M. Nakamura 

for their constant encouragement; to Professors A. Hales and S. Takahashi for discussions 

concerning cohomological problems in abstract algebras; to Professor T. Liggett for discus- 

sions concerning ergodic transformations which inspired the author to obtain Lemma 9.5; 

and to Dr. A. Connes for fruitful communications on the present topics. 

2. Prelinlarles 

F o r  a locally compact space G and a topological vector space T, we denote by 

~ ( T ;  G) the vector space of all continuous T-valued functions on G with compact support. 

When the complex number field C is taken as T, then we write :~(G) for :~(C; G). When 
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a yon Neumann algebra ~ is taken as T, then we consider the a-strong* topology in 

for the space :~ ( ~ ;  (7). If  a positive Radon measure dg in (7 and a Hilbert space ~ are 

given, then we consider the inner product in :~(~; (7) defined by  

f (~(g)[v(g)) @, ~, ~ :~(~; (7), (2.t) (~]~) 

which makes ~ ( ~ ;  (7) a pre Hflbert space. The completion of :~(~; G) with respect to this 

inner product is denoted by L2(~; (7, dg), or by L2(~; G) when the measure dg is fixed by the 

circumstances. Of course, the imbedding of ~(~ ;  (7) into L2(~; (7; dg) is not injective 

unless the support of dg is the whole space (7. However in most cases, we consider only such 

measures. Each element ~ in L2(~; (7, dg) is realized by  an ~-valued function ~(. ) with 

the properties: 

(i) gEG~-->(~(g)]~o ) is rig-measurable for each ~0E~; 

(if) for each compact subset K of (7, there exists a separable subspace ~1 of ~ such 

that ~(g)E~I for rig-almost every gEK; 

(iii) f ] [~(g)[ rdg< + oo. 
Ja  

The last integral is equal to II ll *. Each essentially bounded dg-measurable function [ on 

(7 acts on L2(~; G, dg) as a multiplication operator, i.e., 

(/t)(g) =/(g)~(g), ~EL2(~; G). (2.2) 

Such an operator [ is called a diagonal operator on L~(~; (7). The set A of all diagonal 

operators is an abelian yon Neumann algebra isomorphic to L~176 dg). If x is an operator in 

the commutant A' of A, then there exists an l:(~)-valued function x(.) on (7 with the 

following properties: 

(iv) for each pair ~, ~ in ~, the function: gE(Tt---)-(x(!l)~I~) is dg-measurable; 

(v) for each fixed ~ E~ and compact subset K c (7, there exists a separable subspace 

~1 of ~ such that  x(g)~ falls in ~1 for rig-almost every gEK; 

ess sup II (g)ll = H < + oo. 
geG 

Conversely, each s function x(. ) satisfying the above properties gives rise to an 

operator x in A' by 
(x~) (g) = x(g)~(g), ~ EL~(~; (7). (2.a) 

The operators of A' are called decomposable. For details, we refer to papers of Vesterstrom & 

Wills [52] and Mar6chal [22]. 
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Given a faithful semifinite normal weight ~0 on a yon Neumann algebra ~1 ,  we get 

a one parameter automorphism group { ~ of ~ ,  which is uniquely determined by 

subject to the so-called Kubo-Martin-Schwinger condition: for each pair x, y in the defini- 

tion hereditary subalgebra Ili of ~ there exists a bounded continuous function F on the 

strip, 0 ~< Im z~< 1, which is holomorphic in the interior such that  

F(t) = q~(a~(x) y); F(t § i) = qg(ya~(x)). 

The group (a~} is called the modular automorphism group of ~ associated with ~. The 

fixed point subalgebra of ~ under {aT} is called the centralizer of r and sometimes denoted 

by ~ .  For  the details of the theory of weights and modular automorphism groups, 

we refer to the articles, [9], [10], [33], [42], [43] and [50]. 

3. Construction of crossed products 

Let ~r /be a yon Neumann algebra. We denote by Aut ( ~ )  the group of all auto- 

morphisms (*-preserving) of ~/  and by In t  (7~/) the group of all inner automorphisms 

of ~ .  Clearly, In t  ( ~ )  is a normal subgroup of Aut ( ~ ) .  We denote by t the identi ty in 

Aut ( ~ ) .  

De/inition 3.1. Given a topological group G, a continuous action of G o n ~  means a homo- 

morphism ~: GB g~-> aoEAut ( ~ )  such that  for each fixed x6  ~ ,  the map: g 6G~-> ~o(x) 6 

is a-strongly* continuous. The pair { ~ ,  ~} is sometimes called a covariant system on G. 

In particular a continuous action of the additive group R of real numbers is called a 

(continuous) one parameter automorphism group of ~ .  

The following easy proposition says that  the continuity assumption imposed in the 

above definition is weakest as long as we intend to s tudy the relation between unitary 

representations and actions of a topological group. 

PROPOSITION 3.2. Let { ~ ,  ~}  be a yon Neumann algebra acting on a Hilbert space. 

Every continuous unitary representation {U,~}  o/ a topological group G such that 

U(g) ~U(g)*= ~ ,  gEG, gives rise to a continuous action o: o/ G on ~ by 

ag(x) = U(g)xU(g)*, geG, x e  ~ .  

Suppose that  { ~ ,  ~) is a yon Neumann algebra on a Hilbert space, equipped with 

a continuous action a of a locally compact group G. We denote a left invariant Haar  

measure of G by dg. On the Hilbert space L2(~; G), we define representations g~ of 

and )t of G as follows 
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(ga(x)~)(h)=~hl(x)~(h), hEG; 
(3.1) 

(2(g)~)(h) =~(g-lh), gEG, ~EL~(~; G). 

I t  is easily seen that  ga is a normal faithful representation and 

2(g)~(x)2(g)* = ~z~oo~g(x), x e ~ ,  gE G. (3.2) 

In general, if a pair (za, 2} of representations g of ~ and ~t of G satisfies (3.2), then it is 

called a covariant representation of the eovariant system ( ~ ,  6r 

De/inition 3.3. The yon Neumann algebra on L~(~; G) generated by ~ ( ~ )  and 

2(G) is called the crossed product of ~ by G with respect to the action a, or simply the 

crossed product o/ ~ by the action a of G, and denoted by ~ ( ~ ;  a). 

Apparently, the crossed product ~ ( ~ ;  a) depends also on the underlying Hilbert 

space ~. However, the next proposition assures that  the algebraic structure of ~ ( ~ ;  ~) 

is independent of the Hilbert space ~. 

PROPOSITION 3.4. Let ( ~ ,  ~ ) and ( TI, ~ } be two von Neumann algebras equipped with 

continuous actions ~ and fl o / a  ~caUy compact group G respectively. I / there  exists an iso- 

morphism ~ o/ ~ onto Tl such that 

zoaa :flgou, gEG, (3.3) 

then there exists an isomorphism ~ o/ ~ ( ~ ;  ~) onto ~ (~ ;  fl) such that 

~po~(x) = ~o~(x) ,  xe ~ ;  
(3.4) ! ~ ( ~  (g)) = ~ (g), g~ G, 

where 7ca, gB, '~  and ~ mean the representations o/ ~ ,  ~ ,  G and G respectively which are 

used to construct ~ ( ~ ;  ~) and ~ (~ ;  fl). 

Proo/. By the theorem of Dixmier [11, Theorem 1.4.3], there exists a Hilbert space 

and a unitary U of ~ |  onto ~ |  such that  U(x| =u(x) |  x ~ .  Since the 

assertion is trivially true for a spatial isomorphism u, we may assume that  u is an ampli- 

fication: x ~ ~ - > x |  1. Namely, we assume that  the Hilbert space ~ and u are of the forms: 

= ~ |  n(x) = x |  x ~ ,  

for some Hilbert space ~J~. I t  is then clear that  

L~(~; G) =L~(~; G)| 

so we define an amplification ~ of ~(7~/; ~) by 
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~(x) = x Q 1 ,  xE }~(~ ;  :r 

I t  is then  straightforward to see tha t  ~ is the required isomorphism. Q.E.D. 

PROPOSITON 3.5. Let ( ~ ,  ~ } be a yon Neumann algebra equipped with two continuous 

actions ~ and fl o/a locally compact group G. 11/there exists a a-strongly continuous/unction 

u: gEGe->ugE ~ ( ~ ) ,  where ~ ( ~ )  denotes the group o/all unitaries in ~ ,  such that 

u~a=u~o:~(ua), g, hEG; (3.5) 

fl~(x) =ua~(x)u*, x E ~ ,  (3.6) 

then there exists an isomorphism z o/ ~ ( ~ ;  a) onto ~ ( ~ ;  fl) such that 

~o~(x) = ~(x), x E ~ ,  

where ~ and ~ are the representations o/ ~ on L~(~; G) given by (3.1) based on ~ and fl 

respectively. 

Proo/. First  of all, we remark  tha t  R ( ~ ;  ~) and ~ ( ~ ;  fl) both  act  on the same Hi lber t  

space L~(~; G), and the representat ion ~t of G does not  depend on ~ or ft. Define a un i t a ry  

operator  U on L~(~; G) by  

(u~) (g)=%_~(g), g~ G, ~eL~(~; G). (3.7) 

We have then  for each x E 

and 

(U~'~a(x) U$~) (g) = %_l(~a(x) U*~) (g) = Ug_l~gl(x) (U*~) (g) 

= %_1 ~ ~ (x) u*_~ ~(g) = fl~ ~ (x) ~(g) = ( ~  (x) ~) (g), 

(U~(h) U* ~) (g) = %_l (~(h) U* ~) (g) 

u * h -1 u -1 =ug_l(U*~)(h-lg)= g_lug_lh~ ( g)=ug_~( g_lO~g ( U h ) ) * ~ ( h - i g )  

= U g _ l ~ g  I (U~) u;_z~(h-ig)  = fl~z (u*) ~(h-ig) = (7~#(u~) ~t(h) ~) (g). 

Therefore,  we get 

( U ~ ( x )  U*=~p(x ) ,  xE~;  

U~(g) U* = ~p(u*) ~(g), ge  G. 

Hence it  follows t ha t  U~(~; a) u* c ~(~;  ~). 

Using the facts t ha t  * * * Ugh=Ug~g(Uh), g, hEG 

and u* fig (x) u a = ~g (x), x E )?~, 
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we can show U*R(~/; f l )U~  R ( ~ ;  ~t). Therefore, putting u(x)=UxU*, xER(~/~; a), we 

obtain the required isomorphism u. Q.E.D. 

Combining Propositions 3.4 and 3.5, we obtain the following result: 

COROLLiRY 3.6. Let ( ~ ,  a} and (~ ,  fl} be two covariant systems on the same locally 

compact group G. I/there exist an isomorphism ~ o/ ~ onto ~ and a strongly continuous/unc- 

tion u: gEG~-§ ~ l (~)  satis/ying (3.5) such that 

then there exist an isomorphism ~ o/ ~ ( ~ ;  ~) onto ~(~l; fl) such that ~o~(x )  =gpou(x), xE ~ .  

Given two continuous actions a and fl of a locally compact group G on ~ ,  let 

(u~'~: gEG} be a a-strongly continuous ~/(7~/)-valued function on G satisfying (3.5) and 

(3.6). If ? is another continuous action of G on ~ such that  there exists (u~'~: gEG} 

satisfying (3.5) and (3.6) for fl and 7, then the function uV.=: gEG~-->u~. ~ =u~.~u~.~E ?U(7~l) 

satisfies (3.5) and (3.6) with respect to ~ and 7. Furthermore, the function ua'~: g E G~->u~ "~ = 

(u~'~) * satisfies (3.5) and (3.6) for fl and a. Therefore, if we write a-~/~ when the assumption 

of Proposition 3.5 is satisfied, then the relation " ~ f l "  is an equivalence relation among 

the actions of G on ~ .  We say that  ~ and fl are equivalent if a ~fl, and ~ and fl are weakly 

equivalent if there exists an automorphism u of ~ such that  uoaou-l ,~f l .  More generally, 

two covariant systems ( ~ ,  ~} and {~/,fl} on a locally compact group G are said to be 

weakly equivalent if the assumption of Corollary 3.6 is satisfied. 

4. Duality 

In this section, we shall show a duality for crossed products of yon Neumann algebras 

by locally compact abelian groups. We consider throughout most of this section locally 

compact abelian groups only and denote by  addition the group operation. Given a locally 

compact abelian group G, we denote by ~ the dual group. We fix Haar  measures dg in G and 

dp in G so that  the Plancherel formula holds. 

Let  ( ~ ,  ~} be a yon Neumann algebra equipped with a continuous action ~ of G. 

Consider the crossed product ~ ( ~ ;  a) of ~ by ~ on L2(~; G). We then define a unitary 

representation # of ~ on L~(~; G) by  

~(p)~(g) = (g, p~(g), ~EL'(~; a), geG, pe~, (4.1) 

where (if, p )  denotes the value of p E ~ at g E G. Clearly we have 

~(p)~(x)~(-p) =~(x), x ~ , p E ~ ;  (4,2) 
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/~(p)~(g)/~(-p) = (g, p)~(g), g~G, (4.3) 

so that #(p) ~ ( ~ ;  ~)/z(-p) = ~ ( ~ ;  ~), p~G. (4.4) 

Hence we can define a continuous action 6: of ~ on ~ ( ~ ;  ~) by 

~(x) =~(p)~(-p), x~(~t ;  ~), p~O. (4.5) 

De/inition 4:1. We call 6: the dual action of G on ~ ( ~ ;  a), or more specifically we say 

that the action 6: of ~ ob ~ ( ~ ;  a ) i s  dua/ to  the action ~ of G on ~ .  

P R O P O S I T I O N  4.2. I / { ~ ,  a} and {~, •} are weakly, equivalent covariant systems on a 

locally compact abelian group G, then the isomorphism ~ in Corollary 3.6 intertwines the dual 

actions, 6: on ~ ( ~ ;  o~) and ~ on R(~l; fl): o/ d in the sense that 

~o6:~(x)=~o~(x),  x ~ ( ~ , a ) .  (4.6) 

Proo/. As in the previous section, we can easily reduce the problem to the case where 

and T/are the same yon Neumann alge.bra, denoted again by ~ ,  and u is the identity 

automorphism. Let U be the unitary operator on L2(~; G) defined by (3.7). Put 

~(x)= UxU*, x E ~ ( ~ ;  a). We have then for each x E ~ ,  gEG and peal, 

^ 

~.06:~o~(g) = (g,p> ~o~(g) = (g,p> ~p(u*) ~(g) 
^ $ 

= f l A = B ( u . )  ~(g)) = t i . o ~ o Z ( g ) .  

Hence we have ~o6:~ =/~o~, p E~. Q.E.D. 

Suppose now {Tt[, ~} is a yon Neumann algebra equipped with a Continuous acvmn a 

of a locally compact abelian group G. We shall show that the 'second crossed product 

~(~(:tt[; a); 6:) is isomerphic to Vhe tensor product .~|163 

Put 7Ho=~(~;  a) and TI---~(R(~; a); 6:). By construction, ]1 acts on the Hilbert 

space Z~(~i G~G), and is generated by ~the operators of the following three types: 

(g; orea(x) ~) (g, p)= a~Z (x) ~(g, p), x E ~ ;  / 

~; (2(h)) ~(g,p) = (h,p) ~(g- h,p), bEG; I (4.7) 

~(q)~(g,p)=~(g,p'q), qE~; ] 

We consider the operator F on :K(~; G x ~) defined by 

F~(g,h)~: f<h,p> (a,p)dp, : ~E~(~; G x G). (4.8) 

17 - 732907 Acta mathematica 131. I m p r i m 6  le 11 D 6 c e m b r r  1973 
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I t  is well-known that  F may be extended to a unitary of L~(~; G • ~) onto L~(~; G • G), 

which is also denoted by F,  and that  the inverse F* of F is given on ~ (~ ;  G • G) by 

(F*~) (g ,p)= fa<h,p>~(g,h)dh, ~E~(~ ;  G • G). (4.9) 

We consider the yon Neumann algebra F~F*, say ~), instead of T/itself. We put  

We ha~e then 

v(g) = zv~  o 2 @  F*, g E G; I 
u(p)=F2(p)F*, peG. J 

i (v(k) ~)(g ,h)=~(g-k ,h-k) ,  kEG; 

(u(p)~)(g,h)=<h,p>~(g,h), peal 

(4.10) 

for every ~EL2(~;G~G). The v6n Neumann algebra ~,  which is isomorphic to 

R ( R ( ~ ;  ~); ~), is generated by ~, x E ~ ,  v(g), g E G, and u(p), p E G. These op~rA.tnrs satisfv 

t he  following equa t ion :  : 

(v(~)~v(-g) = (~(x)) ' ,  ~ E ~ ,  gEa; (4.1]) 

(4.12) 

(4.13) 

iu(p)X,u(-p)=~., x E ~ ,  pE~;  

~(g)u(p)v(-g)~(-p) = <g, p>l, gEO, pEO. 

The last equation (4.13) is l~nown as the (generalized) Heisenberg commutation relation. I t  is 

then known, see [18, 19, 30], that  the yon Neumann algebra B generated by {v(g), u(p): 

g E G, p E G} is isomorphic to the algebra F~(L2(G)) of all bounded operators on L2(G), which 

is a factor of type I. Therefore, we have ~ ~ ( 0  N B') |  B. For each x E ~ ,  we define 

g(x)~(g,h) = ~l_h(x)~(g,h), ~EL2(~; G • G). (4.]4) 

L~.~MA 4 . a  The map :~: x E ~-+:~(x) E s G • G)) is a normal isomorphism o/ 

into ~) N B'. 

Proo/. I t  is easy to see that  z is a normal isomorphism of  ~ into B', i.e., :~(x), x E ~ ,  

commutes with v(g) and u(p), gEG and pE~ .  Hence we have only to show the inclusion 

g ( ~ )  c ~). Let  x be a fixed arbitrary element of ~ .  Put  y =:~(x). For each ~ E ~(G) and 

~vE ~/~(~), we define 

u(p) dg dp. 
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I t  is clear tha t  y~.~ belongs to ~ .  For each ~, ~EL2(~; G • G), we have 

(y~.~ $1~) = f f~• yap) (o~g~(x)" u(p) ~lv)dgdp 

= f f f f o o o o<a + p> (x) ,,h, l ,(h, ) @ dh dk dp 

= fffo o 2(a+ [,(h, dgdhdk 
(by Fubini's Theorem) 

where y3 means, of course, the Fourier transform of ~o on ~, i.e., 

r fe gea. 
Put F(g, h, k) = q~(g) (a~ih Ix) ~(h, k)]~(h, k)), g, h, k ~ G. 

The map: gEG~+F(g, -, �9 )ELI(G • G) is then continuous and has compact support. There- 

fore, when the measure ~(9) dg converges to the Dirac measure ~}0 at the origin 0 E G, the 

above integral converges to 

f fa• c of( - k) (a~Jk (x) ~(h, k) i~l(h, k)) dh dk, 

and this converges to (y~]~) as ~ converges to the identity constant function uniformly on 

each compact subset of G. Therefore, y is well approximated weakly by yr ~, so that  y 

belongs to ~). Q.E.D. 

LEMMA 4.4. The yon Neumann algebra ~) is generated by ~t(~) and B; hence 

Proo/. Let x be a fixed arbitrary element of ://$. For each ~0 E ~(G) and ~ E ~(~) ,  we put  

I t  follows then that  xr v belongs to (~t(7~) tJ B)". For each ~, ~/EL2(~; G • G), we have 
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(x~.~ ~1~)= ~ x < g , P >  ~(g) ~(P) (~(~ (x)) @dp 

f f f ~5•215215 <g + k, p> q~(g) y~(p) (at;~_k_g (x) ~(h, k) I~(h, k)) dg dh elk dp 

f f ~•215 + ~) ~(g) (~;5~_~(x) ~(h, ~)]v(h, ~))d4]dhdk 

For the same reason as before, when ~(g) dg converges vaguely to the Dirac measure (~o, 

the last integral converges to 

f fe• -- (as ~ ~(h, k)]~(h, k)) dh dk, k) (~) 

which converges to (~[~)  as r tends to 1 in an appropriate sense. Thus every ~, xq ~ ,  

belongs to (7t(~)0 B)", so that  

~) c (~(~) 0 B)". Q.E.D. 

Combining Lemmas 4.3 and 4.5, we obtain the following duality theorem. 

Tn~.OREM 4.5 ( D u a l i t y ) .  Let ~ bed von Neumann algebra equipped with a continu- 
ous action a o/ a locally compact abelian group G. Then the crossed product ~(}~(~; ~); ~) o/ 
~ ( ~ ;  ~) by the dual action ~ o/the dual group 0 o/ G is isomorphic to the tensor product 
~ |  s o/ ~ itsel/ and the/actor F~(L2(G)) o/ type I o/all bounded operators on L2(G). 
There~ore, i/ ~ is properly in/inite and i/ G is separable, then ~(~(~;  ~); 5:) is isomorphic 
to the original algebra ~ itsel/. 

We now consider the action ~ of G on the second crossed product R( ~ ( ~ ;  a); ~)i say ~, 

which is dual  to the action ~ Of G' on ~ ( ~ i  ~). The relevant unitary representation fi of 

G on :L2(~; G • 0), which gives rise to the action ~ of G on ~, is defined by 

~t(g)~(h; p) = <g, p>~(h, p), geG, ~eL2(~;G • (4.15) 

The action ~ of G on T/is now given by 

~(x) =~ (g)x~ (-g), 

Let w(g)= F~(g)F*, gEG. We have  

w(g)~(h, k) = ~(h, k § g), 

gEG, x E ~  (4.16) 

EL2(~; G • G). (4.17) 
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If we identify ~ and ~ - -  F ~ F * ,  then the corresponding action ~ of G on ~) should be given 

by 
~(x) =w(g)xw(-g), xe  ~), geG. (4.18) 

We have then, for each g, h~G and pEG, 

~a(v(h)) = v(h) } (4.19) 
~ (u(p)) = (g, p)  u(p). 

Hence the action ~ of G leaves B invariant and its restriction to B is induced by the 

unitary representation v of G, that  is 

~(x)  =v(g)*xv(g), x~B, g~G. (4.20) 

We have next, for each x ~ ~ ,  

(~o~(x) ~) (h, k) = (w(g) n(x) w(g)* ~) (h, k) 

= (~(x) w(g)* ~) (h, k +  g) = ~;!k_~(x) (w(g)* ~) (h , /r  

= ~;~-ko~ (x) ~(h, k) = ~ o ~  (x) $(h, k), 

so that  ~r x e ~ ,  gEG. (4.21) 

Therefore, we have ~g = gg| (v(g)*), gEG, (4.22) 

under the identification of ~ and ~ |  B, where, for any unitary u, Ad (u) means the inner 

automorphism defined by  
Ad (u)x = uxu*. 

Thus we obtain the following result: 

THEOREM 4.6. Under the same assumptions as in Theorem 4.5, the isomorphism o/ 

~(~(~;r162 onto ~|163 in Theorem 4.5 trans/orms the action ~ o/ G on 

~ ( ~ ( ~ ;  a); 4) into the action o/ G on ~| given by ag| (v(g)*), gEG, where 

v(.) is the regular representation o/ G on L~(G) defined by 

v(g)~(h) = ~(h-g), g, beG, ~EL2(G). (4.23) 

Suppose now that  ~ is properly infinite and G is separable. By Theorem 4.5, we may 

identify ]~ and ~ ( ~ ( ~ ;  ~); 4). We consider here the problem of how the original action 

of G on ~ and the bidual action ~ of G on ~ are related under the above identification. 

Let  ~ be a properly infinite yon Neumann algebra equipped with a continuous action 

of a locally compact group G. Let  B be a factor of type I with separable predual. Let  
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{en: n = 1, 2 . . . .  } be an  or thogonal  family  of project ions in ~ wi th  e n ~ 1 and  ~ 1  s = 1. 

Le t  (vn: n = 1 ,2  . . . .  } be a sequence of par t ia l  isometrics in ~ with v*vn = 1 and  v,v* =en. 

Le t  (u i . f  i, ~=1 ,  2, ...} be ma t r i x  uni ts  in B. For  each x E ~ ,  pu t  

x,.j=v~xvj, i , ] =  1,2 . . . .  ; /  

a ( x ) =  ~ x,.j| (4.24) 
t.1=1 

I t  is then well-known that ~: x~a(x)E?l~| is an isomorphism of ~ onto ~ |  

Define an act ion fl of G on ~ |  B b y  

f lg(x)=ao~,oa-l(x),  x e ~ |  (4.25) 

We shall show t h a t  the  act ions fl and  {~,| geG} of G on ~ |  are equivalent .  

Put w,  =a(vn), n = 1, 2, ..., and  

u, = ~ wnfl,(w*), geG. (4.26) 

We  have  then  

Uag U a ---~ W * W* 

f l A w n )  * * * * = f l o O )  = = = wnw. f lAw~)  =fig W~WmflAWm) fl.(W~) 1; 
n,m= l nffil 

u . u * =  f l a w  ftAw.,) w : w . f l . (w .w,~)wn = w . w ~  = 1; 
=1 n=l  n ~ l  

n : l  n : l  n ~ l  

Noticing t h a t  1 | = wtw~, i, ~ = 1, 2 . . . . .  we have  

u. f l , ( l |  lWnflo(W*n) f lg(WiW~) ~ f lg(Wm) W*m 
\ m : l  / 

= w ,~ . (w~w,w*w~)  w~ = w ,w*  = ~ | 

Le t  x be an a rb i t r a ry  e lement  of ~ ,  and  pu t  y = x |  1. We  have  then  

a - l (y )  = ~ *. Vn ~'O n 
n = l  
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:,) u g ~ a ( y )  * * ~o ~ ga f f  g (VnXV "ltg 
1 

I= ] 
L t = l  J I_n=l J 1=1  

Hence we get uofla(x| 1)u* =~r174 Thus we have proved the following lemma. 

LEMMA 4.7. In  the above situation the actions fl and {o:o| gEG} o/G on ~ |  B are 

equivalent. 

THEOREM 4.8. Let .~ be a properly injinite van Neumann algebra equipped with a 

continuous action o: o/a separable locally compact abelian group G. Let a be the isomorphism o/ 

onto ~I| given by (4.24). Identi/ying ~|163 and }~(~(~; cr ~t) by 

Theorem 4.5, the action fl o/G given by (4.25) on ~ |  C,(L2(G)), and the second dual action 

o/ G on ~ ( ~ ( ~ ;  o:); ~) are equivalent. 

Proo/. By Theorem 4.6, the action ~ of G is given by  {~a| (v(g)*): gEG}; so it is 

equivalent to {o~o| gEG}. Thus Lemma 4.7 implies the equivalence of ~ and •. Q.E.D. 

Thus, the actions ~ of G on ~ and ~ of G on R ( ~ ( ~ ;  ~); &) are weakly equivalent. 

5. Dual weight 

In  this section, given a van Neumann algebra 7/ /equipped with a continuous action 

of a locally compact abelian group G, we shall establish a canonical way of constructing a 

faithful semifinite normal weight on ~(7//; a) from a faithful semifinite normal weight on 

which is relatively invariant  under the action ~ of G. 

Since we consider only/a i th /ul  semi/inite normal weights throughout this paper, we 

shall omit the adjectives "faithful semifinite normal".  Namely, a weight means always 

in this paper  a faithful semifinite normal one. 

Suppose q is a weight on a van Neumann algebra 7/1. Let  11={xE 7?/: q~(x*x)< + cr 

and m = 11"n, the space spanned linearly by  the elements x'y, x, y E11. The following facts 

are then known: 

(i) 11 is a left ideal of 7~/; 
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(ii) m is linearly spanned by its positive part m+, and m+=(xE 7~/+: r + co}, 

and r may be extended to a linear functional ~b on m; 

(iii) n is a pre-Hilbert space with inner products: (x, y)En • 11~-~(y*x); 

(iv) Denoting the completion of n by ~ and ~the imbedding of n into ~ by 7, 7~ is 

faithfully represented as a yon Neumann algebra on ~ in such a way that 

aT(x ) =u(ax), aE~ ,  xen ;  

(v) The image !~ =70t  N n*) of 1t N 11" in ~ turns out naturally to be a full left Hilbert 

algebra such that  7~/ is the left yon ~eumann algebra 1:(9~) of 9~; 

(vi) The modular operator A of ~ gives rise to the modular automorphism group 

(at ~} Of 7/2 associated with ~ in such a way that  

A't~(x)=~(at~(x)), xe11, ,teR;~j 

aT(x)= A~txA -~, xE~l" 

(vii) The  set of all analytic elements in ?l with respect to (Air: t ER}; or more 'precisely 

the image of all analytic elements in 11 N 11" with respect to (aT}, form the maximal 

Tomita algebra 9~ 0 contained in 2 and JC(9~0) = :~/. For each ~ e9~ 0 (sometimes ~ eP~ 

or ~e9~'), :~z(~)and ~ (~ )  mean respectively the left and r ight  multiplication 

operators by ~. 

Let  a be a continuous action of a locally compact abelian group G on :~/. 

De/inition 5.1. A weight ~0, (faithful semifinite normal), on ?~/is said to be relatively 
invariant under the action of a of G if there exist a continuous positive character Z of G 

such tha t  
~o~g = i~(g)~, geG. (5.2) 

In order to construct canonically a weight ~ on the crossed product ~(7/2; a )o f  ~ by 

~, neither the relative invariance of ~ nor  the commutativity of G is essential. But  the 

presentation of the theory  of crossed products in full generalitY is not our purpose in this 

paper, while it should certainly be done. We shall t reat  it on another occasion. We assume 

instead the relative invariance of ~ as well as the commutativity, in order to reach quickly 

a structure theorem of von Neumann algebras of t ype  III .  

Suppose that  ~ is a relatively invariant weight on 7~/. Since the modular automorphism 

groups associated with ~ and g(g)~ are the same, the modular aut0morphism group 

(a~} associated with ~ and the action a of G commute. In fact, we have 

For  each g~G we define operators T(g) and U(g) by 
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T(g) 7(x) = 7 o ~ .  (x); 

U(g) 7(x)= X(g)-~7oa~(x), xEn.  1 
(5.3) 

The operators T(g) and U(g) are t h en  extended to bounded operators on ~ which are 

denoted by the same symbols. 

Lv.MMi 5.2. The map U: gEG~-->U(g) is a continuous unitary representation o/G on 

and the map T: g E G~-->T(g) is a strongly continuous representation o/G by bounded invertible 
operators. 

Proo/. By construction, it is sufficient to prove the first assertion. The assertions for 

T follow automatieMly from the first. Since the group property is obvious, we have only to 

prove the strong continuity of U. By the normality of ~, there exists an increasing net 

(eo~}~ z of normal positive linear functionals on ~ such that  

~(x)-- l im w~(x), x E ~ + .  

There exists then an increasing net (hi}iE1 in (~ ' )+  converging strongly to the identi ty 1 

such that  
co,(y*x)= (~(x)ih,7(y)) , x, yen, iEI. 

We have then 

(U(g)7(x)ih~7(Y)) = g(g) -�89 (7 o o~g(x) lh~7(y)) = Z(g)-J ~o,(y*~g(x)), x, y E 11, i E I.  

Hence the function: g EG~-->(U(g)7(x )]hiT(y)) is continuous. Since 7(11) and U iE1htT(11) 

are both dense ~ and U(g), gEG, are unitaries, U is strongly continuous. Q.E.D. 

The commutativity of (aT} and the action a of G entails the following: 

T(g) A rt = A a T(g), g E G, t E R ;] 
(5.4) 

U(g)  A ~j = A ~t U(g) .  f 
Furthermore, being an algebraic *-automorphism of 9~, T(g) commutes with the involu- 

tion S of 9~, the closure of the S-operation in 9~; hence T(g) and the unitary involution J 

in ~ associated with ~ comute; tha t  is, 

T(g)= JT(g), gEG;]  
(5.5) 

S U(g) J = JU(g). 

Thus, T(g), and hence U(g)=z(g) -�89 T(y), leave the Tomita algebra ~o invariant. 

To consider ~(9~0; G), we equip the Tomita algebra 9~ 0 with the locally convex 
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topology induced by the family (PK: K runs over all compact subsets of C} of seminorms 

on 9~ 0 defined as follows: 

pK( ) = sup {IIA  II + II  z(A  )ll + II (5.6) 
~ E K  

In ~(2o;  G), we define an inner product by 

fo (~(g) l~(g)) dg, ~, ~ E :~(~I o; a). (5.7) (~l~) 

The completion ~ of ~((2o; G) is nothing but LS(~; G). We consider the algebraic structure 

in Y((2o; G) defined by the following: 

(~ )  (g) = I IT( - h)~(g-  h)] ~(h) dh; I 
(g) = T('~ - g) ~( - g)~; J (5.8) 

[/~(oJ) ~] (g) = g(g)=A=~(g), ~EC. 

I t  is clear that  

~(o~)~(~/o;G)=Y((~0;G ), coEC; 

X(2o; G)~= X(2o; G). 

LEMMA 5.3. I /~  and ~ are elements o/X(9~o; G), then the product ~ [alls in X(gXo; G). 

Proo/. Putting ~(g)=A~(~t) and ~(g)=A~(g) for each o~GC and geG, we have 

( ~ )  (g) = fa[T(-h)  A ~ ( g  - h)] [A~ ~(h)] dh 

dh 

= A~fo IT( - h) ~(g- h)] ~(h) dh, 

where the last step is justified by the closedness of the operator A ~. Hence $~(~) belongs to 

the domain D(A ~) 6f A ~ for each g CO. 

For each compact subset K of C, we put 

= sup f [[~, ( ~  (g- h))][ [[~ (~/~ (h))[[ dh. 7~ (~) 
t oeK do 

We have then for any ~ fi 9~ o and co ~ K, 
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{ ( ~ )  (g)} = =r(~)f IT( - h) ~ ( g -  h)] ~(h)  ~ r ( ~ )  dh 

= fo=.(r [~.(- n) ~o+- n)] ,7o<n) an= fo=,<T<- n) r n) =,oTo<n)) Fan 

={fo=r,'o.,(~o,(,-n)).,(,~,(n))an]r 

so that  list(C) [A+#vtg)]ll < rK(g) llr oJeK, ~eg~ o. 

Hence A ~ / ( g )  is left bounded for every toEC. Hence O/(g) belongs to 9~ 0 for every gEG. 

We have next  for each g, goEG, 

sup II,',~,{~,~(g)- ~,7(go)}ll = sup II~~ ( g ) -  ~+~= (go)ll 
mEK oJEK 

~< sup ~ I1~, [a: <~(g- n) - ~(go- n>)]ll IIA~ an 
oJEK do 

< fop:(~(g- h)- ~(go- h)) p:(,gh)) gh-~ 0 

as g tends to go. Similar arguments show that  

lira sup ]]~rt (A~/(g) )  - ~, (A+~](go))]] = O; 
g---~ge r 

lim sup [[~r (A+~/(g)) - ~, (A+~/(g0))[[ = O. 
g-'->'g~ o ~ K  

Hence the function: g EG+-->~(g)Eg~ o is continuous. The fact that  ~ / h a s  compact support 

follows from the usual arguments for convolution. Q.E.D. 

LrMMA 5.4. For each ~, 7, ~E~(9~o; G), we have (~z/)~=~(~) and (~/ l~)=(~[q '~) .  

Proo]. The usual arguments of changing the order in integration based on Fubini's 

theorem verify the equalities, so we leave it to the reader. Q.E.D. 

Thus ~K(9~0; G) is an involutive algebra over C. 

L v . ~  5.5. For each /ixed ~ E ~ ( ~ o ; G  ), the left multiplication operator ~(~): 

e ~(gXo; G) ~-->~ e ~(9~o; G) is bounded. 

Proo/. Taking an arbitrary ~ E :~(9~0; G), we compute as follows: 



268  MASAMICHI TAgESAgT 

<~ ffzxa] ([T( - h) ~(g - h)] y(h)] r dh 

<. f fa• ( - h) ~(9- h)] ~(h)] I ]1~(9)]] dg dh 

<- f fo~O Il~'(~(g-h))ll llT(h)ll ll~(g)ll ~gdh 

= ff~x~ I1~, (~(g))ll Ilk(h) 111~(g- h)ll dg dh 

<- fo [(fo (fo 
= 1171111~llf II~,(~(g))ll ~.  

Hence we have I1~11 = ~ I(~1~)1 < II~llfoll~,(~(a))ll ~. 

Thus z~z (~) is bounded 

L•MMx 5.6. Given a/unction/fiX(G), we put,/or each ~fiL~(~; G), 

([ ~ ~) (9) = f J(g - h) ~(h) dh. 

We conclude then that 

(i) [~(-~/s an ~-valued square integrable continuous/unction on G; 
(ii) /or each ~fi~(9~o; G) /~e~ belongs to ~(9~o; G); 

(iii) /or each ~, ~ fi ~(9~o; G), 

(/-'x-~e)r/=/-)(-(set/) and (/_)(_~e[~,/)= (se[/*_x_r/), 

where [*(g)=/(-9). 

Proo/. Let {$.} be a sequence in ~(9~o; G) with lim=_~ ][$-~]] =0. We have 

II/~ ~(g) - / ~  ~ (g)ll < fol/(~- h) I II~(h) - .x= (h)ll dh 

< {fol/(g- h)l~dh}' {foll~(h) - #.(h)ll~ dh} * 

= [fl/(h)l~ah]'lle-,~ a~ n-,~.  

Q.E.D. 

(5.9) 
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Hence ]~-~ is the uniform limit of {/~-~}, so that  it is continuous since /~(-~n is con- 

tinuous. The square integrability of/~e~ is seen by an argument similar to that  in Lemma 

5.5. I t  is also obvious that  t ~  belongs to 9((9~0; G) if ~ does. The last equalities are 

verified by the usual arguments of changing order of integration based on Fubini's 

Theorem Q.E.D. 

L E ~ x  5.7. The set o t all products ~ ,  ~, ~E:~(~o; G), is total in L~(~; G). 

Proo/. Let ~ be an element of L2(~; G) orthogonal to every ~ ,  ~, ~ E ~(9~0; G) which 

means that  

fa(~(g)l~(g)) dg= O, ~,~E:K(~o; G). 

By Lemma 5.6, we have, for each /E:~(G). 

(~,2[/~)= ((t*-x-~)~i~)= o. 

Let /z and [2 be elements of ~(G). Since the functions: gEG~->/l(g)~(g)=(/l~)(g) and 

gEG~->ta(g)~l(g)=(/a~l)(g ), ~,~E~(~o;  G), belong to :~(~[o; G), we h~ve 

0 = ((/1~) ( /~ ) I /~  ~) = f~ ({ (/1 ~) (1=~)} (g~ It* ~(g)) dg 

= f f G  • (g -- h) /2  (h) ([T( - h) ~(g - h)] ~(h)]/-X" ~(g)) dg dh 

= f fo l  o:, (g):~(h)(IT(- h) ~(g)] ,(h)[: * r + h)) ~jdh. 

Since/1 and /2  are arbitrary, and the function: 

(g, h) e a  • a~+ fiT(-h)~(g)]~(h) I ( /~ ~)(g +h))eC 

is continuous, we have 

(T(:h)~(g)~(h)](/~e~) (g+h)) = 0, 9, hEG. 

Putting h =0, we have (~(g)~(0)]l-x-~(g)) = 0 for every g E G. Since the values of elements of 

~(9~0; G) at a fixed point in G exhaust all of ~0, we have (~l/-)e~(g))=0 for every ~, ~ E~0, 

and gEG, so that  l-)e~(g)=0 for every gEG. For each comp~et neighborhood K of 0 in G, 

we choose a positive ]~rE y{(G) with Sj~.(g)dg = 1. The net {/~e~} converges in norm to ~. 

Hence we have 
= lira lK~e~ = 0. Q.E.D. 
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L ~ M ~ I  5.8. For each eoeC and ~,TG:~(~o; G), we have 

(~(~) ~)~ = ~ ( -  ~) ~ .  

Proof. The first ecluMi~y is seen by the following: 

[h(o~) ~] [~(~o) 7] (g) = f [ T (  - h) (s ~ ) (g -  h)] [s 7] (h) dh 

= f o Z ( g -  h) ~ [T( - h) A ~ ( g  - h)] [Z(h)~ A~7(h)] dh 

= Z(g)~f A ~ {[T( - h) ~(g - h)] 7(h)} dh 

= Z ( ~ ) ~ A ~ f [ T (  - h) ~ (~-  h)] ~(h) ~h = ~(~)(~)  (g), 

where the last step follows from the closedness of A ~. 

The second equality follows from the calculation: 

= T( - g) X ( g ) - ~ - ~  ~( - g)~ = X(g)-~177 g) ~ ( -  g)~ = [~( - ~) ~ ]  (g). 

(5.10) 

Q.E.D. 

LEMMi 5.9. For every pair ~, ~ in :~(~0; G), we have 

(s ~ln)= (n~l ~). (5.11) 

Proo]. We compute as follows: 

(7~1 ~ )  -- f a  (T( - g) 7( - g)#l T( - g) ~( - g)~) dg 

= fo (zig)- ~ u (  - g) 7(  - g)~l z ( g ) - *  u (  - g) ~( - g)~) dg 

= ~ X ( g )  -1 ( V (  - ~) 7( - g)~] U(  - g) ~( - g)~) @ 

= ~cZ(g)(A~(g) I~(g)) dg = (A(1) ~1~). Q.E.D. 
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LEM~A 5.10. For every tER, A(t) is essentially sel/-adjoint on :X(~o; G). 

Proo/. The algebraic tensor product 9~o| :~(G) is canonically imbedded in :~(~; G). 

Let Z be the (not bounded unless X=I)  self-adjoint operator on L2(G) defined by 

(Z/)(g)= )~(g)l(g), /EL=(G) �9 

We have then (1 +Z~):~(G)= :~(G). Identifying L2(~; G) and the Hilbert space tensor 

product ~| we define 

H(t) = (1 -At )  -z | (1 +Z~) -1 + At(1 + At) -1 | Zt(1 +Zt) -1. 

on L2(~; G). I t  is then clear that  H(t) is a bounded positive operator on L2(~; G). Since 

(1 + At)-1| +Z~)-Z is nonsingnlar and H(t) >~ (1 + At) -1 | (1 +Zt) -1, H(t) is nonsingular 

too, i.e., the range of H(t) is dense in L~(~; G). We have 

(1 +/~(t)) ~(9~0; G) D (1 + At| | ~(G)) 

= H(t)[1 + At)~{0| (1 +Z~):K(G)) = H(t) [(1 + At)gv[o| ~(G)], 

where the last two tensor products mean the algebraic ones. Since (1 + A~)9~o is dense in ~, 

the last expression in the above equality is dense in L~(~; G); hence so is (1 + ~(t)):~(9~o; G) 

in L~(~; G). This means that A(t) is essentially self-adjoint. Q.E.D. 

I t  is now clear that  the function: 

w e C ~  (h(~)  2Iv)= fo(Z(g)~ A~ l~(g)) 

is an entire function for every pair 2, ~ in :~i2o; G). Thus combining this with Lemmas 

5.3 through 5.10, we have obtained the following result. 

THEOREM 5.11. The involutive algebra :K(20; G) is a Tomita algebra. 

The associated unitary involution J in L~(~; G) is given by 

(J2) (g) = U( - g ) J 2 ( - g )  = JU(  - g ) 2 (  - g), 2 EL2(~; G). (5.12) 

This is seen by the following, with 2E 3((20; G): 

(32) (g) = (Tx(�89 2~) (g) = Z(g)~A~ 2~(g) = Z(g) ~A~ T( - g) 2( - g)~ 

= U( - g)A�89189 g) = U( - g) J2( - g) = JU(  - g) 2( - g). 

THEOREM 5.12. The left yon Neumann algebra s G)) o/ the Tomita algebra 

(:~9~o; G) coincides with the crossed product ~ ( ~ ;  a) o/ ~ by the action a o/ G. 
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Proo[. Let ~ be a n  element of ~(2o; G). For each gEG, put 

~=fo==(~(~))~(e)dge~(~;=). 

We have then for each ~2, ~ E ~(2o; G), 

ffa• (iT( - a) ~(h- a)] 7(g) l~(h)) dgdh- (~7 [ $) = (=z (~) V IS). 

Hence gz(~) =x belongs to R ( ~ ;  =), so that  s G))c R(7~; =). 

Let x =gz(~o) E ~ for an arbitrary element ~o E 20. For each ~ E :K(2o; G), the function: 

g ~ G~+ (==(x)7) (g) = =;1(x)~(g) = [T( - g)~o]7(g) e2o  

is continuous with respect to the locally convex topology in 20 given by (5.6) and has 

compact support, so that  g=(x)~ 7 belongs to ~(2o; G). For each ~E :K(20; G), we have 

I~ (C) ~= (x) ~1 (g) = I(~= (x) ~) C] (g)= Yo ET(-h) (~= (x) ~ ) (g -  h)l C(h) dh 

- f o (T ( ,  h) { [T(h- g) ~:o] ~(g- h)} ~(h) dh 

= f~ (T( - g) ~.) [Z ( -h )  ~(g-  h)] r ah = ~;'(~) f o [ T ( -  h) ~(g-  h)] ~'(h) dh 

= [~= (x)(~)]  (g) = [:~= (x) =~(~) ~] (g). 

Hence ~=(x) commutes with ~(~), ~E :~o(2o; G), so that i t  commutes with the right yon 

Neumann algebra R(:~(2o; G)); Itence it belongs to s G)). Since ~z(2o) generates 
~ ,  n=(~)  is contained in s G)). 

Let g be an arbitrary fixed element of G. For each ~, 7 E ~(2o; G), we have 

[2(g) nr (7) ~] (h) = [~§ (~) ~] (h - g) = f a  [T( -/c) ~(h - g - k)] 7(/c) dlc 

= fo [T( - ~) (~(g) ~) ( h "  k)] ~(k) dk = [(~(g)~) 7] (h) = [~r (~) ~(g) ~] (h). 
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Hence ).(g) and 7er(~) commute, so that  ),(g) falls in s G)). Therefore, s G)) 

contains the generators 2(G) and g~(~)  of ~ ( ~ ;  ~); hence ~ ( ~ ;  a)~/:(~(~lo; G)). Thus 

we get 
~(7~; a) = s G)). Q.E.D. 

COROLLARY 5.13. The commutant o/ ~ ( ~ ;  ~) is generated by the operators g'(y), 

yE T~', and 2'~(g), gEG, which are defined as/ollows: 

(;~ (y) ~) (h) = y~(h) ; } 

(~ (g )~)  (h)= U(g)~(h+g) ,  ~EL2(~;G), bEG. 
(5.13) 

Remark. The action ~ of G on 7~ is extended to an action of G on s induced by 

the unitary representation U of G, which in turn defines a continuous action of G on 7~', 

denoted also by a. We note here that  the representation ~' of 7~' does not depend on the 

action ~, while the representation ~'~ of G depends on U(g), hence on the action a of G, 

which is in contrast with the situation for the eovariant representation {z~, ~t} of {7~, ~}. 

Proo/. By Theorem 5.12, we have 

J ~ ( ~ ;  ~)J = R(~;  ~)'. 

Hence ~(~/;  ~)' is generated by J ~ ( ~ l ) J  and J2(G)J.  For each x E ~ ,  we have by (5.12) 

( J ~  (x) J~) (g) = g U( - g) (~(x) J~) ( - g) = J U( - g) ~ 1  (x) (2~) ( - g) 

= J U (  - g) o~;' (x) U(g) J~(g) = JxJ~(g) = 7e' (y) ~(g), 
where y = J x J  E ~ ' .  We have next 

(J2(g)J~) (h) = J U ( - h) (2(g) J~) ( - h) = J U  ( - h) (J~) ( - h - g) 

= U(g) ~ ( h + g ) =  ~t:(g) ~(h); 

hence J~(g) J=~'~(g), gEG. Q.E.D. 

De/inition 5.14. The canonical weight ~ on ~()~/; :r associated with the Tomita 

algebra ~(9~0; G) is said to be dual to the original weight + on ~/. 

The dual weight + is given by 

~(x) = { il~[I 2 +  ~ ifotherwiseX = ~z(~)*70(~)' ~E~[ (5.14) 

where ~[ denotes the full left Hilbert algebra ~(9~0; G) ~ obtained from the Tomita algebra 

~01o; G). 
1 8 -  732907 Acta mathematica 131. I m p r i m ~  1r l 1 D 6 c e m b r e  1973. 
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Let /~ denote the modular operator on La(~; G) associated with :~(~[0; G). We denote 

by {a~} the modular automorphism group of R ( ~ ;  ~) associated with the dual weight ~. 

PROPOSITION 5.15. The modular automorphism yroup {a~} acts on ~:~(~) and ~(G) 
in such a way that 

1 aTon~(x)=n~,oaT(x), x E ~ ;  (5.15) 

a~(A(g))= Z(g)~tl(g), g6G, t ~ R .  

Proo/. Noticing that  (~u ~) (g) = g(g)~t A u ~(g) for ~ 6 L ~ (~ ; G), we compute 

= Z(g) ~t A ~t (n~ (x) A -  ~ ~) (g) = Z(g) 't A~t a~ ~ (x) ;~(g)-~t A-~t ~(g) 

= ai~o~; ~ (x) ~(g) = a;~oai~(x) ~(g) = ( ~ o a T ( x )  ~) (g); 

= Z ( h / '  a,~ (~(g) s ~) (h) = Z(h) '~ a 't ( s  ~) (h - g) 

=z(h)~tAU)~(h-g)-'tA-'t~(h-g)=Z(g)~t~(h-g)=Z(g)~t(2(g)~)(h). Q.E.D. 

We now examine how the dual action ~ of ~ on ~ ( ~ ;  ~) transforms the dual weight ~. 

To this end, we first observe that/~(p), p ~G, is a *-automorphism of the Tomita algebra 

~(~o; G). I t  is clear that  #(P):~(~o; G)=:~(9~o; G), peG.  For each ~, ~ e :~(9~o; G), we get 

[ (~(P)  ~) (~(p)  n)] (g) = f [T (  - h) (;~(p) ~) (g - h)] (~(p) ~) (h) dh 

= f o < g -  h, p) [T( - h) ~(g-  h)] <h, p> ~(h) dh 

= fa<g, p) [T( - h) ~(g - h)] ~(h) dh = <g, p)  (~)  (g) = [/~(p) ~ ]  (g); 

[~(p)  ~]~ (~) = T( - ~) (~(p~ ~) ( - g)~ 

= T( - g) { < - g, p) ~( - g)}~ = <g, p) T( - g) ~( - g)~ = [/~(p) ~$] (g). 

Therefore, #(p) is a *-automorphism of ~(9/0; G) which preserves the inner product as 

well, being unitary. Thus we have 

~ox~(~) =x,(/~(p)~), p6G, ~6~(9/0; G). (5.16) 

Hence we can state the following result: 
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PROPOSZTIOS 5.16. The dual action & o/ ~ on ~(~l;  ~) leaves the dual weight 

invariant. 

Proo/. The assertion is seen immediately by the following: 

~ o a ~ ( = , ( ~ ) , ~ , ( ~ ) )  = r  i i~,(p)~ll ~ = i1~11,-= ~(=,(~),=,(~)). 
Q.E.D. 

LEMMA 5.17. For each element ~ o/LS(~; G) and eoEC, the/oUowing two statements are 

equivalent: 

(i) ~e belongs to the domain ~) (~)  o/the closed operator A~; 

(ii) ~(g) belongs to O(A ~) /or almost every g eG and 

I /  this is the case, then 

/or almost every g E G. 
~,o~(g) =Z(g)~A~(g) (5.17) 

Proo/. ( i )*  (ii): Suppose ~ E/)(A~). Let w = s + it, s, t E R. By Lemma 5.10, we can find 

a sequence {~)  in ~(9/0; G) such that  

lim I1~- ~JI = o, 
n-..~ oo 

n.---> ~ 7z---> r 

Choosing a subsequence, we may assume that  

n=O 

IIh~(~+l -  ~11~< + ~ ,  
r ~ O  

where ~o = 0. Hence we have 

fo n~011x(g)o= A~(~n+l(g)- ~n(g))li~ = .=0 ~ IIs ~')11~< + ~ 

Therefore, there exists a locally null subset N of G such that  
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and ]l,~(g) (~n+l (g) -- ~n (g)) ]l 2< -~ 
n~O 

for every gEN. Hence {~,(g)} converges to ~'(g) and {A~n(g)} converges to z/(g) in 

for every g(~N, so that  ~'(g)EO(A ~) and A~ ' (g )  = ~(g). For each n <  m, we have 

k>~n 

hence  I I~ ' (g)-  ~n(g)ll 2~'~ ~ I[~k+l(g)-  ~,,(g)ll ~, k>~n 
which implies that  

fG I1~' (g)-- ~n (g)l12 d~ "~ k~n ;G H~k+l (g)-- ~k (g)H 2 dg ~k~n [[~k+l -- ~kH 2. 

Hence ~' is an ~-valued square integrable function and limn-.~oH~,-~'H =0. Therefore, we 

have ~= ~' in L*(~; G). Similarly, the function: gEG~-->z(g)~A~ is square 

integrable and (A~)(g)=z(g)~A~(g) for almost every g eG. Thus (ii) and (5.17) follow. 

(ii) ~ (i): Suppose condition (ii) is satisfied. For every ~/E :~(~0; G), we have 

<< fo]x(g)"l ] (A~ ~(g)I,(g))I dg < f.lz(g)"l IIA ~(g)l[ II,(g)l[ dg 

' {L 
�89 

Z ~,2 A ~ 2 d = I ~ l  (g)'[' ~(g)H g} "r/]], 

thus ~ belongs to ~O(A~) by Lemma 5.10. Q.E.D. 

LEMM). 5.18. Let ~ be an element o/ ~(~0; G). For every ~EL~(~; G), r is an 

~-valued continuous ]unction and given by the /ormula: 

Proo/. 

nr (~) ~ (g) = J ar~r(~(h) ) T( - h) ~(g - h) dh. (5.187 

Let {~n} be a sequence in ~(9/o; G) such that  limn_.r162 ~,1[ =0.  We have 

then 
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z~r(~(h)) T( - h) ~(g - h) dh - foZ~(~(h)) T(  - h) ~n(g - h) dh 

< f II~r(~(h)) T(-  h) [~(g- h ) -  ~=(g- h)]ll dh 

< fG [l~,(v(h))[[ l IT(-  h)H [[~(g- h ) -  ~n(g- hll dh 

< {~oll~(,(h))ll~z(- h) dh}' {foll~(g- h)- ~.(g- h)ll~ dh }' 

Hence ~=~(g) converges to the right hand side of (5.18) uniformly for gEG. Hence 

equality (5.18) holds and the function: g EG~+(~r(~/)~)(9) is continuous. Q.E.D. 

Let ~ be an element of ~(9~0; G) of the form ~=z/~ with ~/, ~E~(9~0; G). For each 

x(g) = ~o~(~(g)), 
gEG put 

We have then 

y(g) = =go~,(~/(g)), z(g) = =gozr,(~(g)). 

x(g) = roY(h) o~h(z(g- h)) dh. (5.19) 

LwMMA 5.19. In  the above situation 

~(~)=~(z(o)). (5.20) 

Proo/. The equality is seen as follows: 

~(x) = (r  = fo(~(g)[ ~ (g)) dg = fo (r [ T( - g) ~( - g)#) dg 

where the last step is justified by arguments similar to the proof in [33; Lemma 3.1]. 

Q.E.D. 
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6. Bi-dual weight 

We keep the basic assumptions and notations in the previous section. In this section, 

we examine the bi-dual weight ~ on ~(~(~/ ;  ~); ~)). 

By Lemma 5.17, the associated modular operator A and its complex power A ~, 

to E (3, are given as follows: 

(i) The domain O(A ~) consists of all ~EL~(~; G • G) such that  ~(g, p) E ~(A ~) for 

almost every (g, p) E G • ~ and 

ollx<g)~ + 

(ii) Then A ~  is defined by 

A~(g,p)  =z(g)~A~(g, p), gEG, pGO. (6.1) 

We first consider the Tomita algebra ~(20; G • ~) which is defined by the same 

procedure as (5.7) and (5.8). Namely, we adapt the following structure in ~(20; G • G): 

(~]~) = fa• (~(g' P)]~(a, p))dg dp;  

(~)  (g'P) = fa• <g - h, q> [T( - h) ~(g-  h, p - q)] ~(h, q) 
(6.2) 

dh dq ; 

~ ( g ,  p )  = <g, p> T(  - g) ~( - g, - p)~. 

However, as we have seen once in w 4, it is more convenient to express our Tomita algebra 

in terms of a function system over G • G instead of G x (~. 

LEMMA 6.1. Let F denote the unitary operator o/ L~(~; G•  onto L~(~; G • 

de/ined by (4.8). I /  ~ is an element o/ :~(2o; G • G), then F~(g, h) belongs to 20 /or every 

g, hGG. 

Proo]. Let ~ and ~ be elements in 2o. We have then 

(~, (~) (F~) (g, h) l ~) = (F#(g, h) l~ , (~)* #) = f~  <h, p> (#(g, P) ]~  (~)* ~) dp 

= I. <h, p> (~,(,)~(g, P)I ~)dp= I. <h, p> (:t,(~(g, P)) C) dp, 
J~ ja 

so that  
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Hence (F~) (g, h) is left bounded. For each eo E C we have 

' (F2(g, h)' A;' v)] = I f ~ (h, P} (~(g, P), TV~,~) dP = l f a(h, P) (A~' 2(g, P)[~) dP I 

< fal(A "~ 2(g, p)I'~)I dp ~ 11'711 fa II t,~ 2(g, p)ll dp. 

Since the function: p~G-~llA'~(g,P)ll i~ integr~ble, F~(g, h) belongs to ~(~'~) for ~ 
o~EC. Put  2~,(g,p)=A~'2(g,p), gEG, pEG. We have then 

(F~) (g. h) = f <h,p~ A.~(g, p) dp = ,~" f <h, p) ~(g, ~,)dp = A"(-~'2)(g, h), 

where the second step is justified by the closedness of A ~. Hence A~(F2)(g, h) is left 

bounded for every wEC, so that  -Y2(g, h) falls in 9/0. Q.E.D. 

From the first part of the above proof, it follows that  

:~t(F2(g, h)) = f~ <h, p} ~,(2(a, p)) dp, ~ E ~(9/0; G • ~). (6.3) 

I t  is also seen similarly that 

7e~(F~(9, h))= f6 <h, p> :~r($(g, P))dp. 

Hence the function: (g, h) e G • GF--> F~(g, h) eg~ o is continuous. 

Let 2 and ~ be elements of ~((~0; G • ~). We compute F(2~) as follows: 

F(2~) (g, h) = f~ <h, p} ( ~ )  (g, p) dp 

= fffo   o<h, p> <g -  k, q> [ T ( -  k) 2 (9 -  k, p -  q)] v(k, q) dkdpdq 

= f f f O Oxo<h' p + q} (g- k' q} [T(- k) 2(g- k' P) ] q) dk dp dq 

= ffO o<g- h -  k, q> I T ( k )  F (g - k, h)] ~ ( 1 r  q) dkdq 

= fc~ {T( -/c) f2(g  - k, h)} {F~(k, h + k - g)} dk. 

We have also 

F2~(g, h) = fa <h, p} <g, p> T( - g) ~( - g, -p)~ dp 

= ; ~ < g  - h ,  "1o7 T (  - g)  2(  - g,  - P )#  d p  = T (  - g)  ( F 2 )  ( - g,  h - g)$ .  
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Based on the above observations, we define a Tomita algebra structure in the space 

3f(9~0; G • G) as follows: 

(g, h) = (T( - k) h)) V(k, h +  k -  g) dk; 

~(g ,  h) = T( - g) ~ ( ,  g, h ,  g)~; 
= (6.4) 
A(~) ~(g, h) = Z(gFA~(g ,  h); 

(~],) = ff~• 
J 

The repetition of more or less the same arguments as in the previous section proves 

the following: 

LEMMA 6.2. With the above structure (6.4), :K(9~0; G • G) is a Tomita algebra. 

TREORWM 6.3. The left yon Neumann algebra ~:(:~(9~0; G • G)) o/the Tomita algebra 

~(9.1o; G • G) de/ined by (6.4) coincides with the yon IVeumann algebra 0 = F ~ ( ~ ( ~ ;  a);~)F*. 

Proo/. As seen in w 4, 0 is generated by the operators ~, x E ~ ,  v(g), g E G, and u(p), 

pEG, defined by (4.10). We denote by ~ the set of all ~, xE ~ .  The yon Neumann algebra 

Q generated by ~ and u(~), the image of ~ under u, is isomorphic to the tensor product 

~|  Hence if x(. ) is a bounded strongly* continuous ~-va lued  function on G, 

then the operator x on L2(~; G • G) defined by 

(X~) (g, h) = a ;  1 (x(h)) ~(g, h) 

belongs to Q .  The set of such operators is a a-weakly dense C*-subalgebra of Q. 

Let  ~ be an arbitrary element of :~(9~0; G • Put  x(g, h)=agoxrl(~(g, h)), g, hEG. 

For each fixed g E G, x(g, �9 ) is an )~-valued strongly*, (even uniformly), continuous function 

on G with compact support, so that  the operator x(g) defined by 

x(g) ~(h, k) = 6gh I (x(g, k)) ~(h, ]~), ~ ~ L $ ( ~  ; G • G), 

belongs to Q and x(. ) is a Q-valued strongly* continuous function on G with compact 

support. Now, we compute, for each ~/, CEX(~; G x G), 

(:Tgl (~) ~ ] ~) = j'~'jGxGxG(O~klO~'gl(~(g-- ]~, h) ) ~(]r h ~- ]g- g)]~(g, h)) dk dh dg 

= ff fa•215 (a~l~ (x(g-  k, h)) ~(k, h + k -  g)] C(g, h)) dg dh dk 

~ffqxGxG (a~i  (X(k, h)) ~(g -- k, h - k) I C(g, h)) dg dh dk 

V(]~) ~l~) dk. 
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Hence we get 7t~(~) ~ = l,x(k) v(k) ~ dk, ~Ej~(~o; G • G). 

so that  ~ (~) = j~ x(g) V(g) cO E ~). 

Therefore, we obtain I~(:~(2o; G• G))c ~). 

I t  is now straightforward to see that  ~, x E ~ ,  v(g), g E G, and u(p), p E G, all commute 

with ~r(~), ~E ~(9~0; G • G), which means that  0 c  s G • G)). Q.E.D. 

LEMMA 6.4. (i) The real power A t, tER, o/ the modular operator on L2(~;G• 

associated with the hi-dual weight ~ is essentially sel/-adjoint on F*~(2o; G • G). 

(ii) For each tER, ~(t) is essentially sel/-adjoint on ~OIo;G• and its closure 

coincides with F~t F *. 

Proo/. Let (I) be the Fourier transform on L~(G) defined by 

(g) = I (g, p>/(p) dp, (~/~ 1 ~ ( ~ ) .  
It 's  inverse (I)* is given by 

/ .  

(r (p) = ja(g, p) /(g) dg, /E~(G). 

Then the algebraic tensor product ~(gj[0; G)| is contained in F*:K(9~o; G• 

since/v = 1 | and ~(~0; G)| X(G)c ~(2o; G • G). As seen in Lemma 5.10. ~t is essen- 

tially self-adjoint on ~(9~o; G)| because (I)*~(G) is dense in L2(0). Hence the 

first assertion follows. 

By construction, FAtF * and A(t) agree on ~(9/0; G • G). Since A(t )=~( t ) |  on the 

algebraic tensor product :/~(9~o; G)| ~(G), and the latter are essentially self-adjoint on 

~/((9~o; G)| so is /~(t). Therefore, F~tF * is the closure of ~(t). Q.E.D. 

We denote the closure of /~(1) by ~. 

THV.OREM 6.5. The weight on 0 canonically associated with the Tomita algebra 

X(9~o; G • G) de/ined by (6.4) is the image o/the hi-dual weight ~ on ~ ( ~ ( ~ ;  or); ~t) under 

the isomorphism: x~-> FxF*. 

Proo/. By Lemma 6.4, F~(OIoG• is dense in the domain O(A~) for each eo~C 

with respect to the norm in O(A~), (the graph norm). Furthermore, it is easily seen that  

each element of F~(9~o; G • G) is left bounded with respect to the Tomita algebra 

:/~(A0; G • G). Hence F is an isometric *-isomorphism of the Tomita algebra :/~(2o; G • 0) 

into the full left Hilbert algebra assoeiatec with ~(~o; G • G). The image F~(9~o; G • 0) 

is equivalent to ~(9~0; G • G) in the sense of [42; Definition 5.1]. Hence the weights on 0 
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associated with ~(~0; G • G) and F~(~0;  G • ~) are the same. But the weight associated 

with F~((~o; G • ~) is nothing but the image of ~ under the isomorphism: x~+FxF*. Q.E.D. 

In order to see the relation between the bi-dual weight ~ and the tensor product 

expression 7~ |163  of the algebra ~ ( ~ ( ~ ;  ~); &), we shall further transform the 

Tomita algebra structure. 

Define 
(v~)(g, h) = T(h)~(h-g,  -g ) ,  ~CiK(~/o; G • (6.5) 

Clearly V is a bijection of ~(9~0; G x G) to itself. The inverse V -1 is given by 

(V-'~) (9, h) = T(h - g)~( - h, 9 - h), ~ q ~(2o; G • G). (6.5') 

For each pair ~, ~E ~(~o; G • G), and oJfiC, compute 

= T ( h ) f  ~ [T( - k) ~(h-  g -  k, - g)] ~(k,  k -  h) dk  [ / ( ~ ) ]  (q, h) 

= f i T ( h -  k) ~ ( h -  k -  g, - g)] ITCh) n(k ,  k - h)] dk  

fo {(r h -  ~)} {(v , ) (~-  k, h)} ~k --- fo ~(v~)(g, klj c(v,)(k, k)l ~ ;  

V~#(y,  h) = T(h)  ~ # ( h -  g, - g ) =  T(h)  T(g  - h) ~ ( g -  h, - h)# 

= T(a) ~ ( g -  h, - h)~ = (V~) (h, a)~; 

( V ~ ' ~ )  (g, h) = T(h)  (~o,~) ( h -  g, - g) 

= T(h)  )~(h - g)'~ A '~ ~(h - g, - g) = 7,(h - g)'~ A ~ V~(g, h); 

(V-~ ,,) = f fo  o (T(h  - q) ~( - h, ~ - h) I T ( h  - g) ~( - h, g - h)) dg dh 

= ffoxo~(h)-i (~(y, h) in(g, h)) dg dh. 

Therefore, we introduce the second Tomita algebra structure in ~(~0;  G • G) as follows; 

~ ( g ,  h) = ~(h, g)~; 
} (6.6) 

A (aO ~(g, h) = )~(g-  h)'~ A~'~(g, h); ] 

(~{n) = 
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for each ~, ~E:K(20; G • G) and eoEC. I t  is then obvious that  the operator V is an iso- 

metric *-isomorphism of the first Tomita algebra ~(9~0; G • G) defined by (6.4) onto the 

second one ~(9~0; G • G) defined by (6.6). To distinguish them, we denote the first one by 

and the second one by ~. We denote by ~ the completion of ~. I t  is clear by construction 

that  the operator F is extended to a unitary of L~(~; G • G) onto ~, which we denote 

again by V. This unitary operator V gives rise to a spatial isomorphism of ~) = s onto 

the left yon Neumann algebra I~(~) of ~ that  transforms the canonical weight of s  

associated with ~ into the canonical weight %v on s associated with ~. By virtue of 

Theorem 6.5, the spatial isomorphism of ~(~(://l; a); &) onto s induced by the unitary 

operator VF transforms the bi-dual weight ~ into %0. Therefore, it suffices to study yJ on 

~(~) instead of ~ on ~ ( ~ ( ~ ;  a): ~). 

We define a Tomita algebra structure in ~K(G • G) by the following: 

~/(g, h) = f ~ ( g ,  k) ~/(k, h) dk 

~(g, h)= ~(h, g); 
A (eo) ~(g, h) = Z(g-  h)~(g,  h); (6.7) 

I 

for each ~, ~e  ~(G • G) and ~ofiC. A slight modification of the proof in Lemma 5.10 shows 

that  the Tomita algebra ~ is equivalent, in the sense of [42; Definition 5.1], to the 

algebraic tensor product 9~0|215 ). Hence the left yon Neumann algebra E(~) 

coincides with the tensor product ~ | 1 6 3 2 1 5  and the canonical weight ~0 on 

s agrees with the tensor product q |  of the original weight ~0 on 71~ and the canonical 

weight 0 of s  • G)) associated with ~(G • G). 

LEM~A 6.6. There exists an isomorphism o] the le/t yon Neumann a~ebra E(~(G • G)) 

onto the algebra s o/all  bounded operators on L~(G) which trans/orms the canonical 

weight 0 on s x G)) into the weight on s de/ined by: xEs Tr (Hxx), 

where H x is the nonsingular positive sel/-adioint operator on L=(G) de/ined by 

(Hx~)(g) = x(g)-~(g), ~ EL~(G). 

Proo/. I t  is clear that  if ~(9) =1, geG, then ~(G x G) is a (unimodular) Hflbert algebra 

such that  there exists an isomorphism ~ of I~(~(G• onto I:(L~(G)) which maps 

into the usual trace Tr of E(L~(G)). The isomorphism ~ is given by the following: 

o ~t~ (~) $] (g) = ~ ~(g, h) ~(h) dh, ~ e ~ ( G  • G), ~ e L ~ (G). [r Ja  
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Since ~E~(G • G) is square integrable, ~ o gz (~) is of Hilbert-Schmidt class and we have, 

for each ~ ,~E~(G • G), 

( y  o =,(v),r o = ff • h) v(g, h) dg Tr dh. 

Now, we have, for each ~E~(G x G) and $EL2(G), 

[~ o ~(~) ~ ]  (g) = S ~(g, h) g(h) -1 ~(h) dh, 

so that  for each pair ~, ~ in ~ (G  • G), 

(~ (~  (~)* ztt (~) ) H x) = f f ~ -1 ~(g, h) ~(g, h) dg dh = ~(ztt (V)* zt~ (~) ). Tr 

Thus the canonical weight ~ on I : (~(G • G)) is .transformed by ~ into the weight Tr (H z.) 

on s Q.E.D. 

After all these preparations we have proved the following result: 

THEORE~ 6.7. The second dual weight ~ on ~(~(~1~; o~); ~) is trans/ormed into 

~v | Tr  (H z �9 ) under the isomorphism o / ~ ( ~ (  ~ ;  ~); 6) onto ~ | l~(L~(G)) obtained in Theorem 

4.5, where H x is defined by (6.8). In  particular, i/q~ is invariant under the action ~ o/G,  

i.e., i / Z = I ,  then ~ is identi/ied with q~| under the above isomorphism. 

7. Subgroups and subalgebras 

Suppose 7~/is a yon Neumann algebra equipped with a continuous action ~ of a 

locally compact abelian group G. In this section, we shall examine the fixed point sub- 

algebra of ~(??/; ~) under the restriction of the action of ~ to a closed subgroup H of G. 

THE OR r ~ 7.1. Let I:I be a closed subgroup o /G  and H be the annihilator o / f I  in G, 

that is, H={gEG: <g,p> =1 ]or every pEI:I). Jr] the action o: o] G on ~ admits a relatively 

invariant weight qJ on 71~, then the fixed point subalgebra ~ o] ~ ( ~ ;  ~) under the action 

(~v: pEI:I} is generated by the canonical image zta(~ ) o/ ~1~ and {,~(g): gEH}; hence it is 

isomorphic to ~(~1~; ~IH), where zr means the restriction o/ ~ to H, 

Proo/. Let ~ be the Hilbert space constructed in w 5 based on the weight q9. We keep 

the notations established there. 

We remark first that  the eovariant representations {~ta, 2} of (~//, G, ~r is precisely 

the covariant representation induced, in the sense of [39], from the trivial eovariant 
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representation of { ~ ,  {0}, :r on ~. Therefore, the stage theorem of induction assures 

that  the covariant representation {7t~, 2} of { ~ ,  G, a} is identified with the covariant 

representation induced up to G from the covariant representation { ~ ,  2H} of { ~ ,  H, cr ]H} 

which is defined on L2(~; H) by the following: 

~H (X) ~(g) = ~ 1  (X) ~(g), X E ~ ,  9 E H, ~ E L 2 (~ ; H) ; l (7.1 ) 
).H(h) ~(g)= ~(h-ig), g, hEH. J 

When necessary, we denote by {~ ,  2a} the covariant representation of { ~ ,  G, a} on 

L~(~; G). 
I t  is clear that  ~r~(~) and 2a(H) are both contained in T/. We must show therefore 

that  T/is generated by 7tG(~) and 2a(H). Let J4 denote the yon Neumann algebra on 

L2(~; G) generated by #(G), where/x is the representation of G defined by (4.1). I t  is known 

that  A consists of all multiplication operators #(/), /EL~~ on L2(~; G) defined by 

(#(/)~)(g) =/(9)~(9), /EL~(G), ~EL~(~; G). (7.2) 

Hence A is the canonical imprimitivity system associated with the induction of (zt~, 2a} 

from (~r ~ 1}, where 7e 0 means the identity representation of ~ on ~ and 1 means the 

trivial representation of the trivial group {0} on ~. The canonical imprimitivity system 

AH associated with the induction of (~,) ta} from ( ~ ,  2H} is the subalgebra of A 

consisting of all multiplication operators given by functions in Lc~(G), which are constant 

on every H-coset. Hence ~4H is generated by #(/4). I t  is then clear that  

=A~ N ~ ( ~ ;  ~). (7.3) 

The Hilbert space L~(~; G) is regarded as the space of all measurable (in the sense of 

[7]) ~-valued functions on G • H with the properties: 

~(g-h, k) =~(g, k-h) (7.4) 

for every hEH and almost every (g, k)EG• and 

where d~i denotes the quotient Haar measure on G/H. Note that  by virtue of (7.4), the 

first integration in (7.5) is constant on each H-coset so that  it may be considered as a 

function on the quotient group G/H. The operators ~(x) ,  x E ~ ,  and Ira(g), gEG, are 

defined by 
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[grog (X) ~] (h, k ) =  6r ~(h,  k) ,  bEG, ]r 
(7.6) 

J ()to(g) ~) (h, ~) = ~ ( h -  g, k). 

By Corollary 5.13, the commutant ~ ( ~ ;  ~)' is generated by the operators g~(y), y E ~ ' ,  

and )t~ (g), g E G, which are defined by 

~'a (Y) ~(h, k) = y~(h, ]r h E G, k E H ; 
(7. 7) 

J )t~ (g) ~(h, k) = U(g) ~(h + g, k). 

Suppose x is an arbitrary element of ~/. Put  y =JxJe ~ ( ~ ;  a)'. We shall show that  
! p y belongs to the yon Neumann algebra generated by ga ( ~ )  and )~ (H). If this were done, 

then our assertion would follow automatically. Since J/~(p),]=~(-p), pE~,  we have 

J A , J  = A, ,  so that  y commutes with ~4z. Namely, y belongs to J4~ N ~ ( ~ ;  ~)'. By the 

modified Blattner-Mackey theorem for induced covariant representations, [39; Theorem 

4.3] and [32], there exists a natural isomorphism ~ of ~ ( ~ ;  a[~)' onto A~(I ~ ( ~ ;  a)'. 

The construction of r shows that  70~tH(Z)=~(Z), ZE://$', and ro)t~(h)=)t~(h), hEH, 

where gH and )tH should be naturally understood. Hence y belongs to ~ ( ~ ( ~ ;  a]H)'), 
s p ! which is generated by ~ o ( ~  ) and )to(H). Q.E.D. 

Remark. The above arguments show that  ~ ( ~ ;  al~) is canonically imbedded in 

~ ( ~ ;  g) for any closed subgroup H of G. 

THEOREM 7.2. i /  H is a closed subgroup o/ G, then the subgroup f=t o/ ~ consisting 

o/all elements pEG which leave ~(~1~; O: l H) elementwise /ixed is precisely the annihilator o/ 

H inG.  

Proo/. By definition, ~(~/~; aiH) is generated by ~r~(~/~) and )to(H). Since ~v(~o(x))= 

~ra(X), x E ~ ,  and ~v()to(g))=(g,p>)to(g), an element pEG belongs to / t  if and only if 

<g ,p>=l  for every gEH. Q.E.D. 

8. The structure of a yon Neumann algebra of type HI 

We now come to the stage where we apply the theory established above to the 

structure theory of von Neumann algebras of type III .  In this section, we shall see that  

every yon Neumann algebra of type I I I  is uniquely expressed as the crossed product of a 

yon Neumann algebra of type IIoo by a continuous one parameter automorphism group 

which leaves a trace relatively invariant (but not invariant). 

Let ~ be a yon Neumann algebra of type III .  Let ~0 be an arbitrary (faithful semi- 

finite normal) weight on ~ ;  the existence of such a weight is well-known; for example, the 
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sum of a maximal family of positive linear funetionals with mutually orthogonal sup- 

ports. Let {aT} denote the modular automorphism group of 9~/ associated with q0. We 

consider the crossed product ~(~/;  a ~) of ~t  by the action {o~t} of R. Trivially, the dual 

group of R is the additive group R itself. We denote by {0T} the dual action of R on 

~()~/; a~). An important feature of the eovariant system is seen in the following: 

THEORV.M 8.1. The covariant system {~()~/; a~), 0 r ks independent o/the choice o / a  

weight ~o on ~ .  In  other words, {~(9~/; a~), 0 ~}/s determined uniquely, up to weak equivalence, 

by the algebraic type o/ ~1. 

Proo/. Let ~0 be another weight on :it/. By Connes' result, [10; Thdor~me 1.2.1], the 

actions a ~ and a v of R on 7~/ are equivalent in the sense of w 3. Hence Proposition 4.2 

immediately yields our assertion. Q.E.D. 

By virtue of the above theorem, we denote the covariant system {}~(Tt/; a~), 0 ~} 

simply by (Tt/0, 0}. By the duality theorem, Theorem 4.5, the second crossed product 

~(Tt/0; 0) of ~0  by 0 is isomorphic to ~ |  s so that  the original algebra ~ ,  being 

purely infinite, is isomorphic to ~(~0;  0). Therefore, t he  algebraic structure of 7t/is, in 

principle, completely determined by the eovariant system {:~t0, 0}. Hence the rest of the 

present section is devoted to studying {~/0,/9}. 

We begin with the following lemma: 

LEM•A 8.2. The von Neumann algebra ~ is properly in/inite but semi/inite and 

admits a/aith/ul semi/inite normal trace T such that 

voOt=e-tT, teR. (8.1) 

Proo]. We apply the results in w 5 to the crossed product ~ =R(7~i; a*). We use the 

notations established in w 5. The yon Neumann algebra 7~/acts on the Hilbert space 

which is obtained by the weight 99, and 7?/0 acts on L~(~; R). We denote by ~* the represen- 

tation of 771 corresponding to ~ .  The weight ~0 is invariant under a*; so we do not have 

to bother with the character Z. The modular operator A associated with the dual weight 

on 77/0 is given by 

(~)(s)=At(s), ~L~(~;R). 

a5 The modular automorphism group { t} of ~ associated with q~ is of the form: 

at (x) = A~txA -" ,  xE:tt/o, rEG. 

Let x be an arbitrary element of ~ .  We have then 
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= A ~t ( ~  (z) X -  ~ ~) (s) = A ~ a ~  (z)  (7~-~t ~) (s) 

= A~t(~-~ (x) A -~t ~(s) = atv_s (x) ~(s) = zt ~ o (It ~ (x) ~(s) ; 

hence a~ (~z ~ (x)) = ~r v o at ~ (x) = ~(t) ~r ~ (x) 2(t)*, x q N ,  t ~ It, 

where the last equal i ty  follows from (3.2). For  each r e R ,  we have 

= A~t [2(r) ~ - * ~ ]  (s) = A~t(~-~t~) (s - r) = A~tA-*t~(s - r) = (Jl(r) ~) {s); 

hence a~(~(r}) = ~(r) = 2(t) 2(r) 2(t)*, r, tEIt .  

Therefore,  the automorphisms {a~} and {Ad (~(t))} agree on the  generators ~r and 

2(R) of N0, so tha t  they  agree on the whole algebra N0. Thus by  [42; Theorem 14.1], 

(see also [33; Theorem 7.4]), N0 must  be semifinite. 

B y  Stone's  Theorem, there  exists a nonsingular positive selfadjoint operator  h 

affiliated with 7?/o such tha t  2 ( t )=h  ~t, tER. By the proof of [33; Theorem 7.4], the weight 

of N0 defined by  ~(x) =qS(h-lx) is a faithful semifinite normal  trace. For  each s, tER,  we 

have 0~ (~(t))= e -~t ~(t) by  (4.3) and (4.5), so tha t  we have 0~ (h -~) = d h -~, where 0~ (h -~) = 

/~(s)h- l#(-8) .  Therefore,  we have 

vo Os (x) = ~(h-~Os(x)) = ~ o Os(O_ s (h- ' )  x) = e-~(h-~x)  = e-S'r(x), xENo.  

Thus, the trace ~ satisfies equal i ty  (8.1). 

The fact tha t  ~ is properly infinite follows from the observation tha t  ~ contains 

~r  which is isomorphic to N ,  and ~ contains an orthogonal  infinite family {e~} of 

projections with en~ 1. Q.E.D. 

THEOREM 8.3. Let ~ be a semi/inite yon Neumann ahyebra with a one parameter auto- 

morphism group (Or}. I f  v is a/aith/ul semitinite normal trace ot ~ with ~oOt=e-tv, then 

the modular automorphism group (~}  o[ the crossed product ~(~;  O) o/ ~ by the action 0 

associated with the dual weight ~ is the action o / R  dual to the original one 0 on ~. Hence, 

is the centralizer N~ o] the dual weight ~. 

Proo/. Let  ~0 denote  the dual  weight ~ on ~ ( ~ ;  0). Le t  ~ denote  the Hi lber t  space 

obtained from the trace v on 7//. The  modular  operator  on L~(~; ~) associated with the 

weight ~ is then,  by  (5.17), of the  form 
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(A'~)(s) = e - ' ~ ( s ) ,  ~eL2(~; R). 

Hence, in this context, the one parameter unitary group /~u coincides with the one 

parameter unitary group ~u(t) defined by (4.1). Therefore, the modular automorphism 

group {a~} of ~(7~; 0) associated with y~ coincides with the dual action ~ of R. Q.E.D. 

COROLLARY 8.4. Let ~1 and ~ 2  be two properly in/inite semi/inite von Neumann 

algebras with one parameter automorphism groups {0~ } and {0~} respectively. I /  ~ 2  and ~ 2  

admit /aith/ul semi/inite normal traces v 1 and v 2 respectively, such that 

~10 O~ = e-~ vl  

a n d  ~2 0 02 = e-~ v2, 

then the /ollowing two statements are equivalent: 

(i) R(~I ;  01) ~ R ( ~ 2 ;  02); 

(ii) The covariant systems {~x, 01} and {~*/~2, 03} are weakly equivalent. 

Proo/. The implication (ii)~ (i) is shown in Corollary 3.6. 

Suppose R(~I ;  01) ~ R(~2; 02) �9 The dual action 0~ of R on ~ ( ~ t ;  0~), i= 1, 2, is the 

modular automorphism group {a~} of R ( ~ ;  0 ~) associated with the dual weight ~, by 

Theorem 8.3. Hence we have, the Theorem 8.1, 

{ ~ ( ~ ( ~ 1 ;  01); O'1), (T1} ~" { ~ ( R ( ~ 2 ;  02); 0"2), (~2}. 

By Theorems 4.5 and 4.8, ~ 1  and 7~/2 are identified with ~(~(7~1;01);a 1) and 

~(~(7~2; 0u); a2) respectively, in such a way that  the actions 01 and ~1 (resp. 03 and (T 2) are 

equivalent. Hence {7~/1, 01} and {7~/2, 02} are weakly equivalent. Q.E.D. 

Throughout the rest of this section, we consider a properly infinite semifinite yon 

Neumann algebra 7~/0 equipped with a one parameter automorphism group (Or} and a 

faithful semifinite normal trace v satisfying (8.1). We denote by ~0 the center of 

and by 0t the restriction of 0 to ~0 for each tERI Let ~??/= R(7~/o; 0). We identify 

and its canonical image ~(7~0) in 7~. We denote by {u(s)} the one parameter unitary 

group {X(t)} defined in (3.1). We denote by ~ the weight on 7~ which is dual to v, and by 

a the modular automorphism group of 7~/ associated with q. By Theorem 8.3, {at} is 

dual to {Or} on 7~/0. 

T~WOREM 8.5. In  the above situation, the center ~. o/ 7~l is precisely the /ixed point 

subalgebra o/ ~o under {Or}. Hence ~ is a/actor if and only i/(Or} is ergodic on ~o. 
19 - 732907 Acta mathematica 131. Imprim6 le I 1 D~cembrc 1973. 
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Proo]. Let aEE0 be fixed by (0t}. Then we have u(t)au(t)*=Ot(a)=a, so that  a 

commutes with ~ o  and (u(t)}; hence it commutes with every element in ~ .  Hence it is 

in the center E. 

Suppose a is an arbitrary element of E. Then a is fixed by the modular automorphism 

group (at}. By Theorem 7:1, a belongs to ~0;  hence aEE  0, being central in ~ .  Being 

central in ~ ,  a commutes with (u(t)}, which means that  a is left fixed under (0t}. Q.E.D. 

THeOReM 8.6. I n  the same situation as be/ore, the ]ollowin9 two statements are 

equivalent: 

(i) ~ is semi]inite; 

(ii) There exists a continuous one parameter unitary group (v(t)} in ~o such that 

O,(v(t)) =e~%(t), s, t e R .  (8 .2)  

Proo]. (i) ~ (ii): Suppose ~ is semifinite. There exists then a continuous one parameter 

unitary group (v(t)} in ~ such that  

a t ( x ) = v ( t ) x v ( t ) * ,  t e R .  
Of course, we have 

at(v(t)) = v(s)v(t)v(s)* = v(t), s, t e R .  

By Theorem 7.1, v(t) is contained in ~0.  Since ~ is the fixed point subalgebra of 

under (at} by Theorem 7.1 again, v(t) and ~ commute, which means that  (v(t)} is con- 

tained in E0. For each, s, tER, we h a v e  

e:~t u(8) = at (u(x))  = v(t) u(s )~( t )* ;  
hence we have 

0~ (V(t)) = u(8)  v( t )u(s )*  = e ~ v ( t ) .  

(ii) ~ (i): Suppow {v(t)} is a continuous one parameter uni tary group in ~0 satisfying 

(8.2). We have then / fo r  each xE~lo and s, tER, 

at  (x) = x = v(t)xv(t)*; 

as(u(s)) = e-"tu(s) = v(t )u(s )v( t )*;  

hence at and~ Ad(v(t))agree on the generators ~ and (u(s)} of ~ ,  so that  at--Ad(v(t)). 

Thus ~ is semifinite by [42; Theorem 14.2]; see also [33; Theorem 7.4]. Q.E.D. 

~OROLLARY 8.7. I n  the same situation as be/ore, the ]ollowinq two  statements are 

equivalent: 
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(i) ~ is o / t ype  I I I ;  

(ii) For any nonzero projection e E Eo which is [ixed under (Or}, there exists no continuous 

one parumeter unitary group (v(t)) in ~.o e satis/ying (8.2). 

We are now going to show (in Theorem 8.11) that  ~ must b e o f  type I I~  if 

is of type III .  To this end, we need a few lemmas. We owe the following lemma to 

H. Dye. 

LEMMA 8.8. Suppose 0 is an automorphism o/ an abelian you Neumann algebra .,4. 

I] .,4 admits a ]aith/ul semi/inite normal trace v 2 with ~o0 =2v 2/or  some 0 <~ < 1, then there 

exists a projection eE.,4 such that {on(e): nE Z) are orthogonal and ~nGzOn(e)=l. 

Proo]. L e t  ]~ denote the fixed point subalgebra of A under  0. Suppose p is a nonzero 

projection in ~4 with ~0(p)< + ~ .  Let q=Vn>.oOn(p). We have then 

1 

n~O n~O - -  

Clearly, O(q) <~ q. Let Pl =q -O(q). We have 

~o(pl) = ~(q)  -~(O(q)) = (1 -~)~(q)  # o 

and pl~<p. Furthermore, {o(p~): nE Z) are orthogonal and ~nEzOn(p,) belongs to ]~. Let 

{p,: i E I )  be a maximal orthogonal family of projections in M such that  {o'(p,): n E Z, i E I )  

are orthogonal. By the maximality of {p~) and by the above arguments, we have 

~15n~z0n(P~) = 1. Putting e = 5~IPi,  we obtain the desired projection e. Q.E.D. 

LEMMA 8.9. Let {or) be a continuous one parameter automorphism group o /an  abelian 

yon Neumann algebra .4. I /  .,4 admits a ]aith/ul semi/inite normal trace v 2 on A with 

~ooOt=e-t% tER, then .,4 has a ]aith/ul semi/inite normal trace v2o , invariant under {or}. 

Proo/. We apply the previous lemma to {~4, 0x). There exists then a projection e in ~4 

such that  {0n(e): n E Z) are orthogonal and 5n,z  On (e) = 1. Let B be the fixed point subalge- 

bra of ~4 under (On: nEZ) .  Let en=0n(e), nEZ.  We have then 

B"Be ,= . ,4en ,  nEZ;  

.,4 = 5 5 Be n. 
n~Z 

Let .40 be the algebraic direct sum ~'nEz Ben. For each xE~40, put 

e(z)= Y. On(x). 
nGZ 
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Since {nE Z: 0n(x)em#0 } is finite for each mE Z, ~ is well-cIefined, and we have e (~0)c  ~. 

Let  F be the spectrum of B, which is a hyperstonean space. We identify B and C(F), 

the algebra of all continuous functions on F. Let  ~+ denote the set of all [0, col-valued 

lower semicontinuous functions on F. For each n = 1, 2 ..... le t /n  = ~ Ikl< n ek. We define, for 

each x E z4+, 

~(x) = sup ~(xln) e ~ + .  
n 

The one parameter  automorphism group {0t} induces naturally a one parameter  auto- 

morphism group {0t} of the cone ~+, which satisfies the equality: 

Oto~(x)=~oO~(x), xeA+. 

We first consider the case where ,4 is a-finite. Let  to be a faithful normal state on ~4. 

Define ;1 
t~176 J0 o~~ dt, xq.,4. 

We have then a faithful normal state to o on ~t, whose restriction to B is invariant  under 

(Or} since On+t(x)=Or(x) for every x e  B and n e  Z. The normal state w 0 induces a normal 

measure on F; hence it is extended to a [0, co]-valucd additive and positively homo- 

geneous function on B+ which is also denoted by  w 0. Put  

~o(x) =~o0oe(x), xeA+. 

I t  is then clear t h a t  ~o is a trace on M+. Since ~vo(x ) < + ~ for each x E,4o, and J4o is 

a-weakly dense in M, Y;o is semifinite. I f  we define yJ= on A+ b y ~ ( x )  =eOo(e(x/=)), n = 1, 2 ..... 

then {yJn} are normal positive linear functionals on ~4 and ~vo(x)=sup ~v~(x), xfi~4+; hence 

~P0 is normal. Since to o and e are both faithful, so is ~o 0. Finally, we get 

~oOOt (x) = coo(coOt(x)) = %(0~oe(x))  = ~Oo(e(x)) = ~0(x), x e A+,  

so tha t  Y~o is invariant.  

W e  now drop the assumption that  M is a-finite. Let  C denote the fixed point sub- 

algebra of ~4 under the whole group (Or}. Let  p be a nonzero a-finite projection in M. Put  

q=VteQOt(p)  , where Q denotes the set of all rational numbers. The countability of Q 

imphes tha t  q is a-finite. Since Or(q)=q for every t E Q, and t~-->Ot(q) is strongly continuous, 

we have Or(q) =q for every t E It. Hence q falls in C. Therefore, any a-finite projection in t4 

is majorized by  a a-finite projection in C. Thus, we can find, by  the usual exhaustion 

arguments, an orthogonal family {q~: i fiI} of a-finite (in A) projections in C with 

~e~q~= 1. By the result for the a-finite case, each ,4q~ admits a 0-invariant faithful 

semifinite normal trace y~. Put t ing ~o= ~ r  we obtain the desired trace ~o. Q.E.D. 
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LEMMA 8.10. Under the same assumption as in Lemma 8.9, ,,4 contains a continuous 

one parameter unitary group {v(t)} such that 

O~(v(t)) =emv(t), s, tER.  

Proo]. By the previous lemma, ~4 has an invariant  faithful semifinite normal trace 

y% By the Radon-Nikodym theorem for traces (in the abehan case), there exists a 

nonsingular positive self-adjoint operator h affiliated with A such tha t  yJ(x)=y~o(hx), 

x E A. We have then 

YJo (e-thx) = e-t Y~o (hx) = e-t~v(x) = v2(O t (x)) = V2o (hOt (x)) = v2o o Ot (O_t (h)x) 

=y)o(O_t(h)x), xE.,~, tER,  

so tha t  we have Ot(h)=eth. Putt ing v(t)=h ~t, tER,  we obtain the desired one parameter  

uni tary group {v(t)} in A. Q.E.D. 

Returning to the original situation, we have the following result. 

THEOREM 8.11. Under the same assumption as in Theorem 8.5, i/  ~ is o / type  I I I ,  

the n ~ must be o / t ype  ITs. 

Proo/. Since any  automorphism of ~ 0  leave invariant  the greatest central type I 

projection of ~0 ,  we may,  by  virtue of Theorem 8.5, assume tha t  ~ 0  either of type I or 

type I I .  Suppose  ~ 0  is of type I. For the same reason as above, we may  assume tha t  

is homogeneous in the sense tha t  ~ 0  is isomorphic to the tensor product 

~0 |  of the center and a factor B of type I. So we identify ~ )  and ~0|  Let  Tr  denote 

the usual trace on B. I t  is known tha t  any faithful semifinite normal trace on ~ 0  is of the 

form ~0 | Tr  for some faithful semifinite normal trace yJ on ~0- Thus the trace v is written 

as ~ =~0@Tr. The one parameter  automorphism group (0t} of ~0 is extended uniquely to 

a one parameter  automorphism group of 7~) leaving B elementwise fixed, which is ob- 

tained as O~| and denoted again by  {Or}. Since O_toOt, tER,  leaves ~0 elementwise fixed 

and ~ 0  is of type I,  there exists a unitary w t in ~ 0  such tha t  O_toOt(x)=wtxw~, x E ~  o. 

Hence we have 
O~(x) = Ot(wt) Or(x) Ot(w~), x~ 7no, t~It.  

Choose a positive nonzero b E B with Tr  (b)< + oo. We have for each a E Z~, t E R, 

e-rye(a) Tr (b)= e-t T(ab)= v oOt(ab) = T(Ot(wt) Ot(ab) Otw~) = v(Ot(ab) ) 

= T(Ot(a)b)= [~voOt(a)] Tr (b), 

so tha t  y~oOt=e-t% Hence Lemma 8.10 assures tha t  there exists a continuous one para- 
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meter uni tary  group {v(t)} in ~0 satisfying (8.2); hence ~ is semifinite by Theorem 8.6, a 

contradiction. Thus ~ has no direct summand of type I. Hence i t  must be of type IIoo. 

Q.E.D. 

A more practical criterion for ~ / t o  be of type I I I  is given by the following result, 

although the proof will not be given until w 10. 

THEOREM 8.12. l n  the same situation as be/ore, the /ollowing two statements are 

equivalent: 

(i) ~/1 is a ]actor o] type III ;  

(ii) The one parameter automorphism group {Or} o/ Zo is ergodic but not equivalent to 

the translation automorphism group on the abelian yon Neumann algebra L~176 

o/al l  essentially bounded measurable ]unctions on R. 

9. Algebraic invadants S ( ~ )  and T(7~/) of A. Connes 

We keep the notations, the terminologies and the basic assumptions of the previous 

section. In this sections, we shall examine the connection between the structure of a 

factor ~ of type I I I  descrived in the previous section and the algebraic invariants 

S(:~/) and T ( ~ )  introduced recently by A. Connes, [10]. 

For each weight q on a yon Ncumann algebra 7/~, let Az denote the associated 

modular operator. The following algebraic invariant was introduced by A. Connes, [10]. 

De]inition 9.1. (A. Connes) The intersection S(7/1) of the spectra of all possible A~ is 

called the modular spectrum of )~/. The intersection of the spectrum of A~ when q runs 

over all possible faithful positive normal linear functionals on ~ is denoted by S0(~  ) 

and called the proper modular spectrum of )~/. Of course, S0(~  ) makes sense only for a 

a-finite yon Neumann algebra. 

Both S ( ~ )  and S0(~/) are algebraic invariants of 7~/, and they are interesting when 

is of type III .  However, if 7~/is a-finite and of type III ,  then S()T/) = S0(~). I t  is also 

easily seen that  S(~/)={1} if and only if ~ / i s  semifinite; for a a-finite yon Neumann 

algebra ://1, S0(~)={1} if and only if ~ is finite. 

A. Connes and van Daele have proved [54], that  both S ( ~ )  and ~q0(~), (with {0} 

deleted), are closed subgroups of the multiplicative group ]0, co[ of positive real numbers. 

Making use of S (~ ) ,  A. Connes further classified the factors of type I I I  into those of 

type III~, 0 ~< 2 < 1. 

De]inition 9.2. (A. Connes) A factor :~/of type I I I  is said to be of type IIIa, 0<~ t< l ,  

if S(~)={~tn: neZ} U {0}; o] type I I I  0 if S ( ~ ) = { 0 ,  1}; o] type I I I  1 if S(~/)=R+.  
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The following algebraic invariant is also due to A. Connes. 

Definition 9.3. Given a yon Neumann algebra 7/~, T ( ~ )  is the set of all tER such 

that  there exists a (faithful semifinite normal) weight ~ on ~ with a[=t. We call T ( ~ )  

the modular period group of )~/l. 

He proved, [10; Thdor~me 1.3.2], tha t  for any weight q of ~ ,  

T ( ~ )  = {tER: a r e  In t  (~ )}  (9.1) 

where In t  ( ~ )  means the group of all inner automorphisms of ~ as defined in w 3. 

Hence T(://I) is a subgroup of the additive group R. However, by [45; Theorem 5.1], T()~/I) 

need not be a closed subgroup of It. However, it  may he said that  S(7/1) and T(://I) are 

almost dual algebraic invariants; when the duality between S(:ffl) and T(:~I)breaks down, 

they serve as complementary algebraic invariants. 

THEOREM 9.4. Under the same assumptions as in Theorem 8.5, a real number t/alls in 

T ( ~ )  i /and  only q there exists a unitary vE~ o with O,(v)=eUtv. 

The  proof follows the same hne as Theorem 8.6, so we leave it to the reader. 

LEMMA 9.5. Let A be an abelian von Neumann algebra equipped with a continuous one 

parameter automorphism group {Or}. I /Oto#t ,  toER, then there exist e > 0  and a nonzero 

pro~ection eE A such that Ot(e)e=O /or ]t-tol <e. 

Proo I. Let  Ao be the set of  all x E A  such that  I t  is easily seen 

that  Ao is a C*-subalgebra of A. For each n >0  and x E A, put  

x ,  = n~ ~r- j exp ( - nt 2) Ot (x) dr. 

Then xn falls in Ao and {x,} Converges a-strongly* to x as n-+ ~ .  Hence A0 is a-strongly* 

dense in A. Let  ~ be the spectrum of M0. Since A0 contains the identi ty 1, s is compact. 

We identify A0 with the algebra C(~) of all continuous functions on s For each t ER, Ot 

induces a homeomorphism 0~ of s such that  

O~-l (a) (o~) = a(O~ eo), aE Ao, eoEs 

If ~ {oJ,} is a net in s converging to r and {sn} is a sequence in R converging to s, then we 

have, for every a E Ao, 
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la(O*, o)3-  a(O* a,)l = I O-~.(a) (co,)- O_8(a)(~,)l 

< iO_8.(a)(oJ,)- O_s(a)(w~) I + [O_8(a)(co,)- O_s(a)(oJ)l 

< 110-8.(a)- 0-8 (a)ll + 10-8(a)(~,,)- O_s(a)(co)i-+ o; 

hence the map: (t, w)ER • ~ -~0~wq ~ is continuous. 

By the density of /to in A, we have Oto].4o#t , so that  O*-to#id. on ~.  Hence for 

some w0e~, 0* to COo # e%; so there exist e >0  and an open neighborhood U of wo such t h a t  

U N 0"t (U)= O for It-t0[ <e. Let  a be a positive dement  of ~4o such that  a(wo)= 1 and 

a(UC)=0. We have then Ot(a)a=O for I t - to]  <e. Let  e be the spectral projection of a 

corresponding to the interval [�89 1]. We have then a>~e, so that  Ot(e)e=O for I t - t0]  <e. 

Q.E.D. 

TEEOI~WM 9.6. I n  the same situation as in Theorem 8.5, i] 77l is a ]actor, or equivalently 

i/  {Or} is ergodic on Z0, then the following two statements ]or toe It  are equivalent; 

(i) Oto = t; 

(ii) et~ ES(~ ) .  

Proo]. Let ~o be the Hflbert space constructed from the trace 7 of ~ which is 

sometimes denoted by L2(~/0; 7). The Hilbert space ~ on which 7/1 acts is L2(~o; It). The 

modular operator 7t and the unitary involution J associated with the dual weight ff on ~ are 

given, by (5.12)and (5.17), as follows: 

~ ( 8 )  = e-8~(8), ~e L2 (~o; R), sER; 
(9.2) 

J ~ 

J~(s) = p( - 8) J~( - s), 

where {/~(s)} is the continuous one parameter unitary group on ~o given by 

I t ( s ) ~ ( x )  =e�89 sER, (9.3) 

for every xET~ with 7(x 'x)< +c~, and J is the canonical unitary involution on ~o 

associated with the trace 7, i.e., the "L2-extension '' of the involution: x E ]m0~->x* E 7~o. 

By Theorem 8.3, T/10 is the centralizer of the  dual weight ~ on 7~. Hence by [10, 

Corollary 3.2.5(b)], we have 

S(7/1) = N {Sp ( / ~ J J ) :  e runs over nonzero projections of ~o}- 

For a nonzero projection e E Z0, we have 

( e J J ~ )  (8) = 0-8 (e)(JeJ~)(8) = 0-8 (e)e~(s), ~ e L  2 (~o; It), s eI t .  

Therefore, Sp(TkeJeff) consists of all e t such that  for any e > 0  0~(e)e#0 for some 

s E [ t - e ,  t +e]. Thus, by virtue of Lemma 9.5, (i) and (ii) are equivalent. Q.E.D. 



DUALITY FOR CROSSED PRODUCTS AND STRUCTURE OF VOl~" NEUMANN ALGEBRAS 297 

COROLLARY 9.7. The/ollowing two statements are equivalent: 

(i) ~o is a/actor o/type I I~;  

(ii) 7~/is a/actor o/type III1, i.e., S ( ~ ) = R + .  

Proo]. If ~ is a factor, then S ( ~ ) = S p  (/~) because no nontrivial projection is in E0; 

hence S ( ~ ) = R + .  If S ( ~ ) = R + ,  then Ot=t for every tER by Theorem 9.6, and {0t} is 

ergodic on Z0; this is impossible unless Z0 = C. Q.E.D. 

10. The crossed products by the induced actions 

We have seen so far that  every yon Nenmann algebra of type I I I  is represented 

uniquely, up to weak equivalence, as the crossed product of a yon Neumann algebra of 

type I I~  by a one parameter automorphism group leaving a trace relatively invariant but  

n o t  invariant. Since it is not such an easy task to analyze a continuous crossed product, 

(actually most of theories of crossed products of operator algebras, such as [13, 14, 27, 30, 38, 

51, 53], have been restricted to the discrete case), it is, of course, desirable if we can 

further reduce the continuous crossed product to a discrete one based on the group Z of 

integers. Unfortunately, this is, however, not always the case. Nevertheless there are 

many eases where one can reconstruct a given yon Neumann algebra of type I I I  as the 

discrete crossed product of a yon Neumann algebra of type II~o by a single automorphism, 

as seen in [2, 10, 45]. This section is devoted to the study of this problem. In. the search 

for the solution we are eventually led to the comparison of the crossed product of a 

covariant system and that  of a smaller covariant system. I t  turns out that  this is closely 

related to Mackey's theory of induced representations of a 'locally compact group. 

Suppose G is a locally compact separable group with a le f t  Haar  measure dg. The 

separability assumption here is not essential; One can get rid of this restriction at  the cost 

of somewhat longer arguments, see for exan~ple [5; 6, 32]. For applications; We shall take 

the additive group R o f  real numbers anyway.  

Let  H be a closed subgroup of G. We denote by dGg and dH h lef.t inyariant Haar  

measures of G and H respectively, and by ~a and OH the mo:chtlar functions of G and ~ H, 

I t  is known tha t  (a) there exists a continuous function Q(~)>0 on G such that  

(~,(h) . , 
Q(gh) = ~ e!g), hEH, gEG; (10.1) 

(b) with such a function ~, there is associated a quasi-invariant measure d~ on the left 

homogeneous space G/H such tha t  

20-732907 Acta mathematica 131. Imprim6 le 11 D6ccmbre 1973 
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fj(g)~(g)dg=f~m(fH/(gh)dHh)d~, /E:~(G) ; (10.2) 

(c) For each gl, g2 fiG, ~(g~g~)/~(g2) depends only on gx and r =g~H, so tha t  we may  define a 

continuous function Z on G • (G/H) by 

z (g .  ')~) = e(g~ gg /e(g~). (10.3) 

We consider the Hilbert  space L~(G, v) of square integrable functions on G with respect 

to the new measure dr(g)=Q(g)dg. Using the uni tary operator U of L~(g, ~,) onto LZ(G) 

defined by 
(U~) (g) =0(g)�89 ~ fL~(G, v), (10.4) 

we realize the left and right regular representations A and 2' of G on L2(G, v) as follows: 

A(g)~(h)= e(h)-te(g-~h)�89 ~(g-~h), ~ fL~(G, v); 
(10.5) 

J 2'(g)8(h) =Oa(g)�89189 g, hfG. 

Since v and the Haar  measure are equivalent, we have L~(G, v)=L~(G). In  the yon 

Neumann algebra L~(G) on L~(G, v), we consider the yon Neumann subalgebra L~(G/H) 

of all functions in L~176 which are constant on each left H-coset gH, gfG. We denote it by  

A~. 

By the separability assumption, G is identified, as a Borel space, with the cartesian 

product (G/H) • H and L~(G, v) is identified with the tensor product L~(G/H, dg) | 

by equality (10.2). 

L~MMA 10.1. In the above situation, the yon Neumann algebra ~(G/H, 2(G)) on L~(G, v) 

generated by .,4H and 2(G) coincides with the tensor product s dg))| ~(H)  o/ the 

algebra o/ all bounded operators on L~(G/H, d~) and the yon Neumann algebra ~(H)  

generated by the left regular representation 2H(H) o/ H on L~(H). 

Proo/. By the separability of G, there exists a Borel subset E which meets with every 

left H-coset at one and only one point. Hence the homogeneous space G/H is identified 

with E and G = EH. By [41], the commutant  ~(G/H, 2(G))' of ~(G/H, ~(G)) is generated 

by  2'(H). Hence ~(G/H, 2(G))' coincides with 1 |  where ~ ' ( H )  is the yon 

Neumann algebra on L~(H) generated by  the right regular representation of H. Thus we get 

~ ( H ~ G ,  2(G)) = ~ ( H ~ G ,  2(G))" = s d~)| ~(H)  Q.E.D. 

Let  {~/0, ~0} be a yon Neumann algebra equipped with a continuous action fl of a 

closed subgroup H of G. We consider the tensor product L~(G) | no of n0 and the abelian 
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yon Neumann algebra L~(G), whose elements are regarded as bounded no-valued functions 

with the properties described in w 2. We define actions ~ and a of H and G as follows 

rh (x) (g) = flh (x(gh)), g E G, h E H; ] 
(10.6) 

~(X)  (g)= x(]c-ig), g, k~G, xE ~ o |  ~r (G). 

Let ~ denote the fixed point subalgebra of L~(G)| ~o under {~a: h E H}. Since 7a, h E H, 

and ~a, gEG, commute, ~ is invariant under aa. The restriction of ~ to ~ )  is also 

denoted by a~. 

De/inition 10.2. The action g of G on ~ is said to be induced up to G from the action 

fl of H, and we write 
{~o, ~} = Ind~ {no, fl}- 

TH~.ORW~ 10.3. Given a yon Neumann algebra ~to equipped with a continuous actiou 

fl o/ a closed subgroup H o /a  locally compact separable group G, let 

{~tlo, a} - Ind~ {~o, fl}. 

Then the crossed product ~(~to; a) is isomorphic to E(L~(G/H))| ~(~o; fl). 

Proo/. We identify, as in the previous lemma, the homogeneous space G/H with the 

Borel cross section E. Suppose ~ acts on a Hilbert space ~o- Then the yon Neumann 

algebra ~ is regarded as the algebra of bounded n0-valued functions on G/H = E with 

the properties described in w 2, that  is, ~o=L~176174 The yon Neumann algebra 

L~(G)| acts on L~(~o; G, v) in the canonical fashion. The crossed product ~(L~176174 

no; a), hence ~(~o;  a), is faithfully represented on L~(~0; G • G, v@~). We shall represent 

~(L~176174 hence ~()~o;a) too, on L~(~0; G, u). The yon Neumann algebra 

~(L~176174 ~) on L2(~o; G • G, v| is generated by three kinds of operators: 

(2~) (g, h) = x~(g, h), x E n0, g, h E G; ] 

(a~)(g, h)= /(gh)~(g, h), /EL~(G); l (10.7) 
(~(]r ~)(g, h ) =  ~(g)- �89189 h), ]r 

for each ~EL2(~0; G • G, v| We define a unitary operator W on L~(~0; G • G, v| by 

We have then 
(w~) (g, h) = Oo(h)�89189 ~(gh, h), 

W*~W= ~, xETlo; 

W*arW= ~(/)| /EL~(G); 

w*~(k)w= ~(k), ~ o ,  

g, hEG. (10.8) 

(10.9) 
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where ~ ( [ ) d e n o t e s  the multiplication operator on L~(G,v) defined b y  /. Hence 

W*R(L~(G)| ~)W is generated by the operators ~, x E ~  0, 7~(/)| /EL~~ and 

2(k), kEG, which is obviously isomorphic to the yon Neumann algebra on L~(~0; G, ~) 

generated by the following three kinds of operators: 

~(g)=  x~(g), xE?~0, ~EL~(~0; G, v); 
~(/) ~(a) =/(g)~(g),  /EL ~176 (a); (10.10) 
~(~)~(e)=~(g)-~e(k-Ig)~(k-~g), g, ~e~. 

Therefore, the crossed product ~(7/~o; cr is isomorphic to the von Neumann algebra on 

L~(~o; G, v) generated by  the operators: 

(x~) (g) = x(g)~(g,), . x E ]~0, ~ EL2 (~o; G, v);/ 
(10.11) f 

According to the decomposition G~ Eli ,  we decompose L~(~0; G) into the  tensor-product 

L2(G/H,d$)| H). With respect to this decomposition, the algebra ~ 0  on 

L2(~0; G, v) is generated by two  kinds of operators: 

(~)  (O, h) = fl;~ (x) ~(d, h), ~ E G/H = E, h E H, x e ~o; 
(lo. 12) 

J :~(1) ~(~;h) --1(r ~(~), h), / e L  ~ (G/H). 

By the previous ~!emma, the yon Neumann algebra on L~(~o; G, v) generated by st(/), 

] EL~176 and ).(g), g E G, coincides with 1 | C(L~(G/HI d~)) | ~7~(H). Therefore, ~ (~0 ;  ~) 

is isomorphic to the tensor product of s dr))) and the yon Neumann algebra on 

L~(~o; H) generated by the operators: 

i 

But the latter is nothing but  ~(~/o~'fl). Q.E.D. 

We keep the notations in tlae prewous theorem. Each ~ elements x of L~~174 ~o is 

regarded as a bounded T/0-valued function on ( / w i t h  the-properties described in w 2. An 

element x: of L~ | falls ir~ ~ ir and only. if for every, h E H 

x(gh) = tiff) (x(a)) (10.1S) 

for almost every g EG. The algebra ~4~z~L~176 is contained in the center of ~?~o. 

PROI'OSI~ION 10.4. In~t!ie, fzb'ove sity~ation, i/ ~ l : i s a  von Neumann subalgebra o/ 

~o  such that (i) ~/~t /s invar~nt under .the a~tiou a .Of, :G" ttnd (ii) ~1 contains AH, then 
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there exists a unique von Neumann subalgebra ~ o/ ~o such that ~t  is invariant under the 

action fl o / H  and 

{ ~ , ,  ~} = IndH ~ {~1, fl}. 

Proo[. Fer  each [E~(G), we define 

:~Ax)= fJ(g)ag(x)@, ~e~o. 

Let A be the C*-subalgebra of all x such that  limg~eHag(x)-xl[ =0. Clearly A contains 

at(x ) for eve ry /E  ~(G) and xE 7~1o; hence A N ~ 1  is a-weakly dense in ~1 .  Every element 

xEA is represented by a bounded norm continuous ~0-valued function x(. ) on G. Let  ~ 

be the yon Neumann subalgebra of ~0 generated by B={x(e): xEA n ~1}. Let y=x(e) 

with an x E A N ~ I .  We have then, for each hEH, fl~(y)=x(h-1)=orn(x)(e). Since 

oth(x)EA N ~1,  fin(Y) belongs to ~1. Hence ~x is invariant under the action ft. If x is an 

element of A N ~1,  then x(g)=a~l(x)(e) belongs to ~1 since ag(A N ~ I ) = A  N ~1.  Hence 

each element x of A N ~ 1  is represented by a bounded norm continuous ~l-Valued function 

x(.) with x(gh)=fl;l(x(g)), gEG, hEH. Let gl and g~. be elements of G with Ot#O~, and 

Yl and Ys be two arbitrary elements in B. There exist two elements x 1 and x~ in A N ~ 

such that  xl(gl)=Yl and xs(gs)=Yv Let U~ and U s be open neighborhoods of gl and g.a 

respectively such that  U1N Us= 0,  U1H= U 1 and UsH= Uv Choose two functions /1 

and Is from ~(G/H) such that  [i(g~)=1 and [i(C rc) =0,  i=1 ,  2. Let  X=/lxx+/sxsEA N ~ t .  

Then we have yt=x(gl) and ya=x(gs). Hence if x(.) is a norm continuous B-valued 

function on G satisfying (10.13), and vanishes outside the inverse image of a compact set 

in G/H, then x belongs to A N ~ t .  Hence we conclude that  )~t is the subalgebra of ~ 0  

consisting all elements in ~ 0  with values in ~, .  Thus we get {~1, a}=IndH ~ {~1, fl}. 
Q.E.D. 

This result indicates that  the abelian yon Neumann subalgebra AH plays an im- 

portant  role in the analysis of the covariant system {~0,  a}. We call the action of 

on An canonical. 

THEOREM 10.5. Let { ~ ,  o:} be a covariant system on a locally compact group G. 

Let H be a closed subgroup o/G. 1[ there exists an isomorphism o/the abelian yon Neumann 

algebra L~ say AH, onto an o~-invariant von Neumann subalgebra A o[ the center 

Z o[ ~ ,  which trans/orms the canonical action o/ G on An into ot on A, then there exists a 
covariant system {~, fl} such that 

{'nL oc} = Ind~ {~, #}. 
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Proof. We may assume that  ~ acts on a Hilbert space ~ and ~ is implemented by a 

uni tary representation U of G on ~. We identify A and AH. Then A turns out to be a 

transitive imprimitivity system for the representation { U, ~} of G. By the Mackey-Blattner 

theorem for induced representations, there exists a unitary representation (L, ~} of H 

such that  
{U, ~} ~ Ind G {L, ~}. 

Therefore, the Hilbert space ~ is identified with the Hilbert space of all ~-valued 

measurable functions ~ such that  

$(gh)=L(h)-l$(g), gCG, hCH;] 

fo ll (g)ll  do = II ll < + 
(10.14) 

The representation U is given by 

(U(k)~)(g) =~(g)-�89 �89 ~(k-lg), g, keG. (10.15) 

The arguments of O. Nielsen in [32] show that  to each x C•' there corresponds an 

essentially bounded s measurable, in the sense of w 2, function x(-) on G such 

that,  for each ~ C ~ and h C H, 

(x~) (g) = x(g)~(g); ] 
(10.16) 

J x(gh) = L(h)-I x(g) L(h) 

for almost every g C G. I t  is then clear tha t  for each x C ~ and g C G, we have 

~g(X) (k) = x (g- lk )  (10.17) 
for almost every k C G. 

Let  A be the set of all xC ~ such that  the function: gEG->~g(x) C ~ is continuous in 

norm. As in the previous proposition, A is a (~-weakly dense C*-subalgebra of ~ .  Each 

x CA is represented by a bounded norm continuous s function x(. ) satisfying 

(10.16) and (10.17). Let T/be the yon Neumann algebra on ~ generated by B = {x(e): x CA}. 

We have then for each x CA 

L(h) -lx(e)L(h) = x(h) = gh  1 (x)(e) ,  h C H .  

Hence the unitary representation (L, ~} of H induces a continuous action fl of H on T/. 

By the same reasoning as the last part  of the previous proposition (or applying it to 

Ind~ (T/, fl)), we conclude that  

{ ~ ,  6} = India (~, fl). Q.E.D 
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Now we apply Theorems 10.3 and 10.5 to the discrete crossed product description 

of a factor of type I I I  of a certain class. 

Let  ~ 0  be a v o n  Neumann algebra of  type II~o equipped with a continuous one 

parameter  automorphism group (0t} such tha t  voOt=e-t~ for some faithful semifinite 

normal trace 3. Let  ~ = ~ ( ~ o ;  0). We denote by Eo the center of ~ 0  and by  (0t} the 

restriction of (0~} to E0. Suppose there is a T > 0  such tha t  Or is not ergodie on Z0, 

tha t  is, the fixed point subalgebra A of Zo under 0T is not reduced to the scalars. Of course, 

A is invariant  under (0t}, and the action (0~} on A is ergodic and periodic. Hence the 

action (0t} on A is transitive, in other words, there exists a T0>0  such tha t  the action 

(0t} on A is isomorphic to the canonical action of R on L~176 Z). Hence there exists, 

by Theorem 10.5, a yon Neumann algebra ~0 equipped with an action Q of T O Z such tha t  

(m0, 0} = Ind,0 z (~0, Q}. 

Putt ing ~=~r. ,  we have an automorphism of ~o with ~ r . = ~  =, n EZ. Since ~ o  ~ 

L~176174  ~o is also of type IIoo. 

We assume, for the moment,  that  7~1o, is separable, tha t  is, the predual of ~ o  is 

separable as a Banach space. In  this case, there is no measure-theoretic difficulty in 

regarding ~ o  as the von Neumann algebra of all essentially bounded ~o-valued 

a-strongly* measurable functions on the half-open interval [0, To). The action 0 of t t  is 

given by  

I 
Q ~ + l ( x ( t - r +  To)), O~<t<r;  

Os(x ) (t)= (10.18) 

[ e~ (x ( t  - r)), r <  t <  To, 

for s = n T o + r  , O~ < r< T  o. Let 

f T = Tt dt (10.19) 
~ t  < To 

be the disintegration of the trace ~ with respect to the diagonal algebra A = L ~162 (it/T0 Z) = 

L ~176 (0, To). For each positive xE ~0 ,  we have, for s = n T  o § r, 0 <~ r< T o, 

]o e-S'c(x)='coO~(x)= " c t o ~ + l ( x ( t - r +  To) )d t+ "~toon(x( t - r ) )d t  

~ To- r f /. = Tt+ro~n(x( t ) )dt+ vt+r_r. Oen+l(x(t))dt.  
J O  e - r  

Putt ing s = n T  o, we have 

e- n r~ = fo r. ~ o on (x(t)) dt, 
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so that  we get VtO~n=e-nT~ n6Z,  (10.20) 

for almost every t6[0, To). If 0~<s< T o, we get 

? To-s 
jr0I ~~ ' 3t+8- ~, (~(x(t))) e- '~(x)= | 3t+,(x(t))dt+ dt 

dO 

[. r o - s  f T o = e 3t+8- To (x(t)) dt. I 3S+t(x(t)) dt3c --To 
.10 0-8 

Ts+t=e-S3t, O ~ t <  T o - 8  

3s+t_T,=eTo-s~t, To--S<.t<To, 

for each s 6 [0, To) and almost every t 6 [0, To). Hence we have 

3s+t = e-S3t, - t ~<s < T o - t  (10.21) 

for almost every t6[0, To). By Fubini's theorem for almost every s 6 [ - t ,  To- t ) ,  (10.21) 

holds. Hence we conclude that  there is a unique faithful semifinite normal trace 30 on 7/0 

such that  

fo r~ ~(x)= e-tTo(X(O)dt, x67~'1o. (10.22) 

We have, by (10.20), 3o o Q = e-rO3o . (10.23) 

Therefore, % is relatively invariant under ~. By Theorem 10.3, we have 

= R(~o;  O) ~ R(7/o; Q). 

Now, we drop the separability assumption for ~/o- Let {)v//~}~ z be the family of all 

O-invariant separable yon Neumann subalgebras of ~ such that  ?//~ contains .4 and the 

trace 3 is semifinite on 7~. Of course, {~}l~z is an increasing net with respect to the 

inclusion ordering, and Wio is generated by [J,~W/~. By Proposition 10.4, to each i 6 I ,  

there corresponds uniquely a @-invariant yon Neumann subalgebra 7/t of 7/0 such that  

{~, ,  O} ---- IndTR0Z {7/~, ~}. 

From the proof of Proposition 10.4, it follows that  7/~ c 7/j if and only if ~ c ~/j. To 

each i E I ,  there corresponds a unique faithful semifinite normal trace x, on 7/, such that  

3 ( x ) = ~  e-tvi(x(t))dt, x6"mt; 
d0 
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By the unicity of v~, v~ is the restriction of v~ if ~ c  ~ .  Hence there exists a unique 

faithful semifinite normal trace % on ~o such that  3o1 u~ = ~, i ~ I.  Hence we have 

f "~(X) = f oT*e-t'~O (X(t) ) dr; 
.goOd= e-r~.ro . 

Thus we have reached the following conclusion: 

TH~ORV.~I 10.6. Let ~lo be a yon Neumann algebra of type IIoo equipped with a con- 

tinuous one parameter auttrrru~phism group (Or} and a /aith/ul semi/inite normal trace 

such that ~oO~=e-t~. Let ~ = R ( ~ ;  0). Z! the re~trietion {0,} o/ {0~} ~ the cen~er Z0 o/ 
71~o is ergodic, but Or is not ergodic /or some T > 0, then there exists a yon Neumann algebra 

Tlo o! type I I~  equipped with an automorphism ~ and a ]aith/ul semi/inite normal trace 

zo such that 

{ T~176176176176 T0>0 ;  

I n  particular, i/ 7~1 is a/actor o/ type IIIa, 0 <2 < 1, then there exists a/actor ~o of 

type IIoo equipped with an automorphism Q and a/aith/ul semi~inite normal trace z o such that 

~ =  R(~ ;o ) ;  
Zo o ~ = e-fro, 

where T = - log 2. 

Proo/. The first half of the theorem has been already proven. By Theorem 9.6, 

OT is the identity automorphism t. Hence {0~} is periodic and ergodie on E0 with period T. 

Hence {0t) must be transitive, that  is, ~o~L~176 and the action 0 of R on ~o is iso- 

morphic to the canonical action on L~176 Therefore, there exists a yon Neumann 

algebra ~/o of type IIoD equipped with an automorphism Q and a faithful semifinite normal 

trace Zo such tha t  
T oQ = e-r~o, (7//0, O} = IndRz (~/o, e}" 

Hence we have 
~ ~ ( ~ ;  5). 

Since 7/1o =~,~| ~/o, and ~4=E0 in this ease, ~/o must be a factor. Q.E.D. 

I t  is now easy to prove Theorem 8.12. Suppose statement (ii) in Theorem 8.12 holds. 

By Theorem 8.5, ~ is a factor. Suppose that  ~ is not of type III.  Then ~ is semifiuite, 

so it admits a faithful semifinite normal trace ~0. The modular automorphism group 

(aT) of ~ associated with ~0 is the trivial group. Hence we have R ( ~ ;  a ~) - ~ | 1 7 6 1 7 6  

However, (7~/o, 0} is weakly equivalent to ( ~ |  ~| where (0t} is the canonical 
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action, (translation), of R on L~(R). Hence {7~0, 0} is isomorphic to {L~(R), 0). But this 

is excluded by the assumption. 

Conversely, suppose that  {Z0, 0} is isomorphic to {L~(R), 0). By Theorem 10.5, the 

covariant system {~/o, 0) is induced from another eovariant system {~/0, e)- But in this 

case, being an action of the trivial group {0~, o must be the identity automorphism t. 

Hence {~/0, 0} is isomorphic to {7/0| t| Hence we have 

~ / ~  ~0 | ~ ~0" 
Thus )~/ is semifinite. 

We close this section with discussion of the relation between Theorem 10.6 and 

the structure theorem in the previous paper, [45]. In [45], we showed that  a yon Neumann 

algebra ~/equipped with a homogeneous periodic state ~ may be written as the crossed 

product of the centralzier ~ of ~ by an endomorphism 0 which is an isomorphism of 

~ onto the reduced algebra e ~ e .  Let T be the period of ~. Then this 0 is given by an 

isometry u in ~ with a~(u)=e~ltlTu in such a way that  O(x)=uxu*, xE ~ and e=uu*. 

Let ~ / b e  the tensor product ~ |163 of ~ and the factor of type Ioo, and q~=~| 

Then q~ is a faithful semifinite normal weight on ~/. Since e| 1 is a properly infinite 

projection of the IIoo-von Neumann algebra ~ / g |  ~?/0, there exists a co-isometry 

w in ~ o  such that  w*w=e| Put ~=w(u |  We get a unitary ~ in ~ such that  

(rt~(~) = e2~t/~ and ~ 0  ~*= ~/o- Putting 0(x)=~x~*, we obtain an automorphism 0 of 

~o.  I t  is now straightforward that  ~ / ~ ( ~ 0 ;  (~). Since ~/  is of type III,  we have 

~ / ~  R(~o; 0). Hence ~ / i s  the crossed product of a IIoo-von Neumann algebra ~ 0  by an 

automorphism 0. Since 0 transforms the restriction ~o of ~0 to :~/o ~, (which is a faithful 

normal trace), in such a way that  ~oO0=2~o with 2=e - ~ ,  we have ~oO~=,~o, where 

q~0 is the restriction of ~ to ~/o, because q5 o (wxw*) = q~0 (x), x ~ ~/o. Therefore, the structure 

theorem in [45] coincides essentially with Theorem 10.6 in this ease. 

11. Example 

By the Araki-Woods classification theory, [3] and [10], a type I I I  1 factor ~ /which  

is an infinite tensor product of finite factors of type I is unique. In this section, we shall 

examine this factor ~/. 

Let (~/n} be an increasing sequence of subfactors of type Ira. such that  ~ is generated 

by (Jn%1~/~. Let ~ be a faithful normal state whose modular automorphism (aT} leaves 

each ~/~ invariant. Let 7~0 be the crossed product ~(~/;  a~). Since ~ is of type IIIt ,  

we know, by Corollary 9.7, that  ~/0 is a factor of type IIo~. We denote by v(t) the regular 

representation 2(t) of R which together with the canonical image of ~ generates ~0.  
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We identify ~ with the canonical image of ~ in ~0. Hence we have aT(x)=v(t)xv(t)*, 

xE ~ ,  tER. Let ~ be the yon Neumann subalgebra of ~0  generated by ~ and (v(t)~. It  

is obvious that ~ n = ~ ( ~ n ;  a~), and ~ is generated by U ~ l ~ .  Let hn be the Radon- 

Nikodym derivative of ~I ~ with respect to the trace of ~n.  Then we have 

~t( )= x ~ n .  

Hence ~ n ~ | 1 7 6 1 7 6  so that each ~ is homogeneous yon Neumann algebra of 

type I~,. Let A denote the abelian yon 1Neumann subalgebra generated by (v(t)}, which is 

isomorphic to L~(R). Let ~ be the weight on ~/o dual to ~. 

LE~IMA 11.1. The restriction ~P],4 o/(p to .,4 is semi/inite. 

Proo/. Since the Tomita algebra 9J 0 based on q contains an identity, say ~0, the Tomita 

algebra ~((~0; R) constructed in w 5 contains the convolution algebra ~(R). For each 

~E~(R), we have ~(~)=~R~( t )v( t )d t ,  so that {~z(~): ~E~(R)} generates J[; hence ~]A is 

semifinite. Q.E.D. 

Identifying A with L ~176 (R), we see by construction that the dual action (Or} on A 

nothing but translation. Since ~]~ is semifinite and 0-invariant, ~l~ is nothing but in- 

tegration with respect to Lebesgue measure. Namely, we have 

/EL~176 

The unitary group {v(s)} is given by 

v ( t ) ( s )=e  i~t, s, tER. 

The action 0 of R turns out to be: 

Ot ( / ) ( s )= / ( s - t ) ,  / EL~176 

Define h ( s ) = e  s, sER.  

Then we have v( t )=h ~, Hence the restriction via of the trace on ~0 onto A is given by 

Hence the projection p in A given by the characteristic function [0, c~ ) is finite because 

~(p) = e -s ds = 1. 
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The projection Or(p) corresponds to the interval  [t, c~). Hence 0t(p)~<p for t >/0. Since A 

is contained in 7~n, n = 1, 2 . . . .  and p belongs to  every 7~n. Therefore, the reduced factor  
o0  PT~oP of type  I I  1 is generated by  the union (J~ffi~pT~l~p of reduced finite type  I yon  

Neum a nn  algebras. Since each p ~ p  is approximated  by  finite dimensional subalgebras, 

PT~oP is approximated by  finite dimensional subalgebras. Hence by  M u r r a y - y o n  

Neumann ' s  Theorem [26; Theorem X I I ]  pTltop is a hyperfini te  factor  of type  I I  1. Thus  

we have obtained the following conclusion by  the uniei ty  of a hyperfini te  factor  of type  I I  1. 

THEOREM 11.2. Let ~ be a hyper/inite /actor o/ type II~. There exists a decreasing 

one parameter /amily {Pt}t>~o o/projections in ~ and a continuous one parameter semigroup 

{Ot;t-->O} o/ endomorphisms such that Ot(p~)=p~+t, p 0 = l ,  and ~(ps)=e -8, s, tER+, where 

means, o/ course, the canonical trace on ~. 
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