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Introduction

Part I of this paper was published in 1970 (see the References [2]). Some of the
results on lacunas of hyperbolic operators announced there depend on the fact, proved in
all generality by Grothendieck [12] that the cohomology of a non-singular affine algebraic
variety can be calculated from its rational differential forms with poles at infinity.
Actually, a more precise result was needed putting a bound on the order of the poles.
This result is now proved in Chapter I of this paper. It starts with a general account of
the whole subject using only the basic results by Serre on algebraic coherent sheaves and
Hironaka’s resolution of singularities. For curves in the projective plane the results are
final (§ 6). To obtain the desired bounds on the order of the poles, we use Grothendieck’s
generalizations of Serre’s theorems to the framework of schemes. _

In Chapter IIT we investigate the behaviour of the fundamental solution of a hyper-
bolic differential operator near the wave front surface. It starts with the observation
that the fundamental solution has an analytic continuation across the wave front surface
-from a given side and at a given point y provided the Petrovsky homology class avoids
the intersection of the corresponding hyperplane and the characteristic hypersurface. This
condition is called the local Petrovsky condition. The global counterpart, appropriate
when y is the origin, is simply that the Petrovsky class vanish. We use the local
Petrovsky condition to verify, among other things that the fundamental solution has
holomorphic extensions from both sides of a hyperplane part of the wave front surface
provided one keeps away from the wave front surface (in the hyperplane) of the cor-
responding localization of the differential operator. There is also a formula for the jump
of the fundamental solution across the hyperplane which shows that the singular support
of the fundamental solution does not contain lacunas of the localization provided certain

conditions of homogeneity are satisfied. This result connects the local Petrovsky condi-
10—~ 732907 Acta mathematica 131, Imprimé le 11 Décembre 1973
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tion with the global Petrovsky condition in one lower dimension. It is probably one of
the keys to a complete investigation of the supports and singular supports of fundamental
solutions of homogeneous hyperbolic differential operators.

The last paragraph of the paper, entitled Local hyperbolicity, is there to take care of
certain technical difficulties in the verification of the local Petrovsky condition. It
can also be read independently. An expanded version written by L. Garding [8] has
appeared in the Israel Journal of Mathematics.

Apart form this general introduction, all our three Chapters have introductory

paragraphs giving motives and main results.
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CHAPTER I. HOMOLOGY OF ALGEBRAIC VARIETIES

§ 1. Introduction
Our aim in this chapter is to give an exposition of the “algebraic”” de Rham theorem,
which asserts that the cohomology of a non-singular affine algebraic variety can be
calculated from the complex of algebraic differential forms (i.e. holomorphic forms with

only poles at o). Since an affine variety is a special kind of Stein manifold, this theorem
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can be regarded as a strengthening of the theorem that the cohomology of a Stein
manifold is given by the complex of all holomorphic differential forms (with no restrictions
at o). As is well known the theorem for Stein manifolds is an easy consequence of the
holomorphic Poincaré Lemma and the vanishing theorem for cohomology of coherent
sheaves (the famous Theorem B of Cartan). In the algebraic case the proof depends simi-
larly on a kind of Poincaré Lemma at oo and on the Kodaira vanishing theorem for
projective varieties: the essential point is that we must work with some projective
compactification X of our affine variety X. In the simplest case X = C¥, X < Py(C) and
X and Y=X—X are both assumed non-singular. Because Y (the part at oo) is non-
singular the ‘“Poincaré Lemma at oo’ is easily dealt with. Because Y is a hyperplane
section of X the Kodaira vanishing theorem applies and the de Rham theorem then
follows. This proof is due to Atiyah—-Hodge [3], as is the slight generalization in which Y
i8 a union of non-singular components which meet transversally (normal crossings). In
general it is not possible to embed X in €¥ so that X, ¥ have the above simple properties.
However, Hironaka’s basic theorem on the resolution of singularities asserts that we can
find a non-singular compactification X of X so that ¥ =X — X has only normal crossings.
We must however drop the condition that Y is a hyperplane section of X (i.e. the com-
pactification is not induced by C¥<Py): in fact X is obtained by taking any compacti-
fication X (induced say by C¥<Py) and then blowing up the singularities of X at oo.
Locally at oo we are in as good a situation as before but the Kodaira vanishing theorem no
longer applies. However Grothendieck [12] observed that there is a slightly weaker
vanishing theorem that can be proved in this case and is sufficient to prove the general de
Rham theorem.

Since Grothendieck’s treatment is rather concise we shall give here a complete proof of
the algebraic de Rham theorem (on the lines indicated above) using only the basic results
of Serre [17], [19] on algebraic coherent sheaves, and of course Hironaka’s resolution of
singularities. _

As explained in Part I, we also need some refinements and extensions of the de
Rham theorem. In one direction we need to consider algebraic families X, (t€7,
algebraic) and to prove that the cohomology of X, can be obtained from forms with
poles of order k at oo where k is independent of t. In application X, =P, ~ Y, where {¥,}
is the family of all hypersurfaces of degree m. To get this bound we need to put a para-
meter into our proof and we then need the analogoues of some of Serre’s theorems
“with parameters”. Such questions fall naturally into the framework of Grothendieck’s
“schemes” and we shall need therefore to use Grothendieck’s generalizations of Serre’s

theorems (notably the finite-dimensionality of cohomology on projective varieties).



148 M. F. ATIYAH, R. BOTT AND L. GARDING

In the preceding theorems the bound on the order of pole required depends on

(a) the resolution process and
(b) the vanishing theorem.

In the non-singular case when (a) is not required it therefore depends only on (b). If
moreover we are dealing (as in our applications) with hypersurfaces in projective space,
then the vanishing theorems are explicit enough to give explicit bounds for the orders of
pole. In these cases therefore we get more explicit results and these in turn give more
refined results on lacunas.

In low dimensions (essentially curves in the plane) it is possible to obtain the refined
results without assuming non-singularity. This leads to correspondingly strong statements
for lacunas in low dimensions. For the convenience of the reader we shall collect in the
next section the various technical results on sheaf cohomology that will be required
(mainly the use of spectral sequences) and in § 3 the basic results from algebraic geometry
that will be required (Serre, Grothendieck, Hironaka). The remaining sections will then
be devoted to deducing the algebraic de Rham theorem and its various refinements.

§ 2. Sheaf Cohomolegy

A general reference for this section is Godement [9].
We recall that a sheaf S on a space X has cohomology groups HYX, S) ¢=0, that
HYX, 8)=I(X, 8) is the space of sections and that an exact sequence of sheaves

0-8~>8~>8"->0
gives rise to a long exact cohomology sequence
0—HYX, §')~ ... H(X, 8') > H{(X, 8§)~ HYX, 8" H*}(X, &) > ...

The H? are defined in general using a resolution of S by injective or flabby sheaves.
However in certain situations, notably when X is paracompact Hausdorff, the H? can
also be defined by the Cech method using open coverings. We recall that if U={U,} is an
open covering we can form a cochain complex C*(X, U) where CYX, U) consists of alter-
nating functions

(Fgs -e» T)> fBgy ooy 3) EC (Ui N ... Uiy, S),
and that the Cech groups H? are defined by

HY(X,8)= lim He(C*(U, 9)).
U

Moreover if for every subset (i, ..., ¢,) (and all g} we have
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(2.1) H (U, N ... Uy, 8) =0 for p>1
then the limit is unnecessary and
H(X, 8) = H/(C*(U, 8)).

The de Rham theorem on a manifold is concerned with the complex Q* of dif-

ferential forms:
0> L0-5L 01 >0

and the proofs of the various de Rham theorems are simplified by using the notion of
hypercohomology of a complex of sheaves. This is a generalization of the cohomology of a
single sheaf, and reduces to it when the complex has only one non-zero term. The
general definition of hypercohomology is due to Cartan—Eilenberg [7] and involves
using a special kind of resolution for the complex. As with ordinary cohomology there is a
Cech definition which works on paracompact Hausdorff spaces and is easier to define.
For any open covering U of X and any complex OQ* of sheaves the cochains C*(U, Q%)
form a double complex, one differential coming from the covering and the other from
Q*. The Cech hypercohomology groups H¢ may then be defined by

He(X, Q) =lim HY(C* (U, Q%)
u

where HYC*(U, 2*)) denotes the cohomology of the single complex associated in the usual
way to the double complex. Again if (2.1) is satisfied with S=Q¢ (for all ¢) the limit is
unnecessary.

As is well known (') the cohomology of a double complex (with total differential
d=d’'+d") can be computed in steps, either starting with d’ or else starting with 4”.
Applied here this gives rise to two spectral sequences converging to the hypercohomology.(?)
In one spectral sequence (using the differential on Q* first) we have

(2.2) Ef = H"(X, h*(Q¥))

where h%(Q*) is the ¢-th cohomology sheaf of Q* i.e. h%Q*) is the kernel of Q?->Q%+!
modulo the image of Q%~*-Q% In the second spectral sequence we have (writing F instead
of E to distinguish)

(2.3) Fy¢=HYX, Q)

(*) See Godement [9], p. 86.

(%) Each covering Y gives a double complex, hence a spectral sequence, and taking direct limits
we obtain a limit spectral sequence. This limit involves no problems since we shall throughout
assume that dim X <co and Q* is a finite complex.
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and the differential d,: HY(X, Q")~H%X, Q**1) is induced by the sheaf homomorphism
(P—-QP+1, Thus, in particular,

(2.4) F3° = DR?(Q*)

is the “pth de Rham group” DR? of the complex Q¥ i.e. the cohomology of the complex
I'X, Q%) of global sections. Note that we always have a natural homomorphism
DR (in speetral sequence terms F5°%— F2.0= /32, but Hp,,=0).

With this machinery let us recall how the usual de Rham theorems are proved. We
take Q* to be the complex of C® forms on a C* manifold X. The Poincaré Lemma asserts
that

(2.5) R(Q*) =0 forallg>1
and, since the Q* are fine sheaves, we have
(2.6) HYX,Q")=0 forg=>1andallp.

Now (2.5) implies that the spectral sequence E, is trivial(*) and so (since h%2*)=C, the
sheaf of constants)

2.7) HY(X,0)=E30= (X, Q%)

Similarly (2.6) implies that the second spectral sequence F, is trivial (for r>2) and so
(2.8) DR (Q*) = F2° =P (X, Q).

The de Rham theorem then follows by combining (2.7) and (2.8). It can of course be
proved without using hypercohomology and spectral sequences: we simply break up
QF into short exact sequences, take cohomology groups and use (2.6). However in more
complicated situations which we shall encounter the machinery of hypercohomology is
very convenient.

On a complex Stein manifold we have a formally similar proof, but this time Q* is
the complex of holomorphic forms, (2.5) is replaced by the holomorphic Poincaré Lemma
and (2.6) is replaced by the much deeper vanishing “Theorem B” of Cartan.

An important property of hypercohomology is the following comparison theorem:

PROPOSITION (2.9). Let ¢: Q* > Q* be a homomorphism of complexes of sheaves which
induces an isomorphism on cohomology sheaves h“(Q*)th(ﬁ*) for all q. Then @ induces
an isomorphism of hypercohomology HYX, QO*) 2 HYX, ﬁ*). In particular, if HY(X, QF)=
HYX, (»)=0 for ¢=1 and all p, then @ induces an isomorphism of de Rham groups
DRYQ* =~ DRYG™).

(*) That is Ey= Ey—... = Eeo.
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Proof. @ induces a homomorphism of spectral sequences E,—~E, For r=2 the
assumption on ¢ and (2.2) shows that we have an isomorphism. Hence E,= E, for all r
and so the end terms of the spectral sequences, namely the hypercohomology groups,
are also isomorphic. If moreover HYX, (%) =0 for ¢>1 then the second spectral sequence
F?? s trivial for »>2 and so WYX, Q*) = DRYQ*). Similarly for Q* and so @ induces an
isomorphism DRY(Q*)—~ DRY(()*) as required.

This proposition will be applied in §4 to deduce the algebraic de Rham theorem
from the % theorem. It will depend on the vanishing theorem (2.6) for the complex Q*
of meromorphic differentials on X with poles on Y. In order to get bounds on the

orders of pole required we shall need to introduce an increasing sequence of subsheaves
Q*k) < Q¥E+1) < ...

with Q*=Ilim Q*(k), where & denotes (roughly speaking) the order of pole. We shall
then need the following rather technical lemma which puts bounds into the spectral
sequence of (2.9).

Leuma (2.10). Let Qxk)cQ¥(k+1)<... be an increasing sequence of complexes of
sheaves (k>0) on X. Assume that

(1) for all E, Q*(k)»Q*(k—FL) induces an isomorphism of cohomology sheaves,
(ii) there is a function k+>f(k) such that

HYX. Qv(k)) > HY(X, Q?(f(k)))
is zero for ¢=1 and oll p,

(iil) HY(X, Q?(k))=0 for q>n and all p, k and Q°(k)=0 for p>n and all k.
Then

(a) the maps of hypercohomology
X, Q*(k)) ~ WX, Q*(k+1))
are all isomorphisms

(b) the natural homomorphism
@4 DRYQ*(N)) —+ e = WYX, Q*(N))
is surjective provided N =>fY(0) (where f* denotes the n-th iterate fofo ... of)

(c) the kernel of @f coincides with the kernel of DRYQ*(N))- DRYQ*(M)) provided
M>pYN).
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Proof. (a) follows from (i) and (2.2). Now consider the spectral sequence F¥ (k) = H.
We have (using (iii))
F}? (k)= H* (X, Q7 (k))
Fhis (k)= F%° (k) = W5 (k) | M5 L (k)
where H* = 3 (k) is filtered
W= k)W (k)= ... o H (k) > W1 (k) =0.
By (i) FY?(k)—~ F7?(f(k)) is zero for ¢>1, and hence the same is true for F%;?. Thus
H+ (k) c WL (f(k)) for g=1.
Iterating this we see that,
W= (k)< (f(k) < ... cH:(f (k) =

and so JE(f(k)) = H°. In other words the filtration on H(f*(k)) consists of just one term,
the last. The same is then true for all integers > f3(k). Thus for all N = f*(0) we have a

surjection
DR?(Q*(N)) = F§°(»)> FE(N) =5 (N) = W ()
proving (b).

The proof of (¢) proceeds in a similar fashion. Since we shall not need (¢) in our

applications the details will be left to the reader.

§ 3. Algebraic Geometry

We begin by recalling some basic results of Serre [17]. We consider algebraic
varieties X defined over C. Then X is endowed with a sheaf o: for each x€X, o, i8 a local
ring—the regular functions near z. A sheaf S of o-modules is called an algebraic sheaf: it is
called coherent if it is locally the cokernel of a homomorphism o”— o? (where o* =0®...®o
p times). For coherent algebraic sheaves Serre defines the cohomology groups HYX, S) as
Cech groups but it has since been shown by Grothendieck that this coincides with the

injective resolution definition. Serre proves (p. 239)
>(3.1) If X is affine and S is coherent then

HYX,8)=0 forallqg=1
and more generally

(3.2) If U is a covering of X by affine open sets and S is coherent then
HYX, 8) = HYC*(U, 8)).

In other words we do not need to take limits over all coverings.
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For projective varieties on the other hand Serre proves (p. 259)
(3.3) X projective and 8 coherent =dim¢ HY( X, S)y< oo for all q.

Now we can also regard X as a complex analytic space (1). As such we shall write X"
(h for holomorphic) and o” for the sheaf of local holomorphic functions. For any o-module §
we define 8" =8 ®, 0" (using the natural map o — 0"). Then the basic comparison theorems
of Serre [19] pp. 17, 19) are

(3.4) If 8 is a coherent algebraic sheaf on X then S" is a coherent analytic sheaf on X"
(8.5) If X is projective algebraic and 8 is coherent algebraic then the natural homomorphism
HYX, 8)—~ HYX", 8"

is an tsomorphism for all q.

We now come to the vanishing theorems. If Y is a closed subvariety of X given
locally by one equation (%), denote by J its sheaf of ideals. The sheaf o(rY)=Hom,, (J", o)
is the sheaf of functions on X with poles of order <= on Y. For any coherent sheaf § on
X we put S(n)=8(nY)=8®,0(rnY). Then Serre’s vanishing theorem asserts (Serre [19],
p- 259)

(3.6) If X is projective and Y is a hyperplane section of X, then, for all ¢=1,
HYX,8(nY))=0 forall large n.

The analogous analytic theorem with X" replacing X is the Kodaira vanishing
theorem.

A slight variant of (3.6) which we shall call the Grothendieck vanishing theorem
can be deduced quite easily from (3.1)-(3.3). This is as follows

Prorosirion (3.7). If X is projective and X-Y is affine then for ¢=1 and any
integer n there exists m>mn such that
HYX, 8(n)) > HYX, 8(m))
1S zero.
Proof.(3) In view of (3.3) it will be enough to show that lim HYX, 8(n))=0 for all

g=1. Now for any affine open set U of X in which Y is given by f=0 and with
U, =U—~-UnNY we have

() In fact we shall always take cohomology on non-singular X so that X" is a complex manifold.
(?) If X is non-singular, this simply means Y is of codimension one: then J is locally free of rank one.
(®) This proof is extracted from footnote 6 of Grothendieck [12].
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lim T(U, S(n))=T(U, 8),~T(U,, 8| U)

where the second term is the module of fractions with respect to all powers of f: in fact,
T' commutes with formation of fractions. Hence for any finite covering U of X by affine

open sets we have(?)
lim He(C* (U, S(n))=H" (lim C*(U, S(n)) = H*(C* (¥,8]1X-71))
where Y is the affine covering of X — Y induced by U. Using (3.2) this gives
lim HYX, 8(n)) 2 HY(X — Y, S|X-7)

and. since X —Y is affine, the result now follows by applying (3.1).

Proposition (3.7) is one which we shall later need to strengthen to obtain uniform
bounds when X depends algebraically on a parameter. As indicated in §1 this
necessitates introducing Grothendieck’s generalizations of Serre’s theorems to the frame-
work of schemes. We shall now review briefly what we need.

We shall consider an affine ground scheme 7' =Spec 4 where 4 is a Noetherian ring
(in application 4 will be the coordinate ring of an affine variety over C) and schemes X
over T. The analogues of (3.1) and (3.2) for schemes hold quite generally and (3.3)

generalizes to
(3.8) X proper(?) over T and S coherent on X =HYX, 8) is a finite A-module for all g.

Replacing (3.3) by (3.8) the proof of (3.7) goes over as it stands to schemes over T,
the hypotheses being now that X T is a projective morphism and that X — Y is affine.
There are analogues of (3.5) but these (due to Grauert-Remmert) are more difficult and
we will avoid them.

We shall also need to use results telling us what happens to sheaf cohomology under
“restriction to a fibre” X, of X~ 7. Recall first that €T =Spec A corresponds to a
prime ideal say p, of 4 and X, has structure sheaf o, =o0/p; 0. For any sheaf S of o-modules
on X we define 8;=8®,0,=8/p,S to be its restriction to the fibre X,;. We have a

natural restriction homomorphism of A-modules
HQ(X’ S) »Hq(Xta St)
inducing a homomorphism of k(¢)-modules

(3.9) HYX, 8) ® 4k(t) > HYX,, 8,)

(1) Recall that the intersection of affines is affine (Serre [17]).
(2) Proper is the analogue of complete and is more general than projective. In fact we shall only
use the projective case.
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where k(f) is the residue field of the prime ideal p,. The following criterion of Grothendieck
[11] Cor. (6.9.10)]) gives conditions under which (3.9) is an isomorphism:

(3.10) If 8 and all HYX, S) are A-flat(}) then (3.9) is an isomorphism.

For the convenience of the reader we shall briefly indicate how (3.10) is proved.

Take a resolution
D*: -»D_y—~D_,—+Dy—=k(t)—~0

of k(t) by finite free A-modules D; and let Y be a finite covering of X by affine open sets.
We then consider the hypercohomology ¥ of the double complex C*(U, S® ,D*). Since
8 and H*(X, 8) are both A4-flat both spectral sequences(2) are trivial. Equating the two
E, terms (and using (3.2) for schemes) (3.9) follows.

Combining (3.10), (3.8) and (3.7) (for schemes) we shall now prove a version of (3.7)

with parameters.

Prorositioxn (3.11). Let T =Spec A with A Noetherian, n: X—T a projective mor-
phism, Y a closed subscheme of X whose sheaf of tdeals is principal, S a coherent sheaf on X.
Assume that all S(m) are(3) A-flat and that X — Y is affine, then for any n there exists m=n

such that
. HYX,, S(n))~HYX, S(m),)
is zero for ¢=1 and all t€T.

Proof. Since 4 is Noetherian the closed subsets of 7' satisfy the descending chain
condition. Using induction on the closed subsets of 7' it will therefore be sufficient (for
given n) to prove the proposition with 7' replaced by some non-empty open subset U.
Moreover we may assume 7' reduced (that is 4 has no nilpotent elements except 0). Now

applying (3.7) for schemes we get an integer m such that
(3.12) HYX, §(n))~H%X, S(m))

is zero for all ¢=1. By (3.8) both these H? are finite A-modules; hence,(%) after tensoring
with a suitable ring of fractions B (of the form 4,), they become free. Thus if we replace T

by U= Spec B, and recall that H? commutes with formation of fractions, we may assume

(*) Recall that an 4-module M is called A-flat if ® M is an exact functor.
(2) These are HP(X, tor? 4 (S, k(t)) >N
and Tor? , (HY(X, 8), k(t)) > H.

(}) This assumption is made in order to simplify the proof and is adequate for our purposes.
By appealing to further results of Grothendieck it could, in fact, be dropped.
(4) This uses the fact that 7' is reduced.
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that the modules in (3.12) are free (and therefore flat). By (3.10) therefore we have isomor-

phisms
HY(X, S(n))@Fk(t) = HY(X,, S(n),)

HYX, S(m))®k(t) = H(X, S(m),)
for all ¢. Since (3.12) is the zero homomorphism (for ¢ 1) the same is true for

) HY(X,, 8(n);)~>H"(X;, S(m),)
completing the proof.

Remark. In application 7z will be flat and § will be locally free. Then all S(m) are locally
free and hence also A4-flat.

Finally, in this section on Algebraic Geometry, we come to the major theorem of
Hironaka [14] on the Resolution of Singularities. We shall state this in the form we
require:

REsorLuTiON THEOREM. Let X be an algebraic variety over C, Y a closed sub-
variety with X —Y non-singular. Then there exists a proper (even projective) morphism m:
X'—X with X' non-singular such that

@) Y'=n"YY) is a finite union of non-singular submanifolds of codimension one with

normal crossings

(i) X'—Y' =Y ~Y is an isomorphism.

We recall that Y =U Y, has normal crossings if in local analytic coordinates (z,, ..., 2,)

its equation is given by 2,z,...2,=0 for some r, (1 <r<n).

§ 4. The Algebraic de Rham Theorem

We begin by considering the extension of the holomorphic Poincaré Lemma to allow for
poles on a subvariety with normal crossings. So let ¥ =C" be given by 2,2,...z,=0 and let
Qi(k) (=2 . (k)) denote the germ at 0 of meromorphic g-forms on C* which have poles on
Y of total order <q+k, ie.

= z i ‘l‘i. . Z;”’
4 |u|<za+k vA Fu
where @, is a holomorphic g-form, u=(y,, ..., #,) and |u] =2Zu,. Clearly dQ¥(k)=Q+(k)
so that we have a complex

Q* (k): Q° (k) = Q1 (k) 2> ... — Q" ().



LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS. IT 157

Then we have ()

Lemuma (4.1). HNQ*(k)) is an exterior algebra generated by dz,jz; (i=1, ..., 7), and is
isomorphic to H¥(C"— 7).

Proof. Let p €Q%k) with dp=0. If ¢=0 then @ =constant. If ¢=>1, writing ¢ in the
form ¢ =dz,«+p and expanding in terms of z,,
=0t oy2i  t a2t ... FoE”
B=0o+ przit+ Bazi i+ ...+ Be2r”

(tgs Bo) holomorphic in z;) we have

d“l =da2 +ﬂ1 =d“3 +2ﬂ2 = = rﬂr =0
dfy = dfy = ... =df. =0

dp, =0 where @y =dz 00 +f,.
Puat 0= —opzy ! — 0g(223) 1 — ... — o, ((r —1)2171)1€Q% (k). Then
@ =27 dz oy + @y +db.

Here «,€Q2-1, (k) is independent of 2z, and @,€QY , (k) has no pole on z;=0. Since

day =d@,=0 induction on r and the usual Poincaré Lemma proves that

=2 0ot (@) 2 (2) 2 T dy

where 1 <4, <...<i,<r, ¢, ..;,€C and p€Q®1(k). This proves that H*(Q(k)) is generated
by the dz/z;, i=1,..,r. On the other hand, H*(C"~Y)=H*B—-BnY) (for any
small ball B around 0) is an exterior algebra on r generators € H' dual to the r generators € H;
given by small circles y, around the hyperplanes z;,=0, (¢=1, ..., r). Since f v, % Y dz, = 270id;
this proves that

H*(Q*(k)) > H*(C"~ T)
is then an isomorphism and completes the proof.

We can now prove the first version of the algebraic de Rham theorem.

PRrROPOSITION (4.2). Let X be a non-singular projective variety, Y a closed subvariety
of codimension one which is a finite union of non-singular subvarieties Y; with mormal
crossings, and such that X —Y is affine. Then H*(X"—Y") is isomorphic to the de Rham
group of the complex of ralional differential forms on X with poles on Y.

(*) This is essentially Lemma 17 of Atiyah-Hodge [3] with attention paid to the order of pole.
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Actually since we are also interested in bounds for the orders of pole, we shall prove
a more precise version of (4.2). Let us denote by QP(k) the algebraic sheaf of p-forms on X
with pole of total order <p-+k on Y. It is easy to see that these are coherent sheaves
(there are obvious finite sets of generators and relations) and we have dQP(k)< QP+(k).
Since X — Y is affine the Grothendieck vanishing theorem (3.7) applies and shows that there

is a function ki—f(k) such that
HYX, Q7(k)) = HYX, Q7(f(k)))

is zero for ¢ 1 and all p, k. By the Serre comparison theorem (3.5) we can replace X, Q?(k)
here by X", Qf(k)*, their holomorphic counterparts. Applying (4.1) and (2.10) to the
sequence of complexes Q*(k) we deduce

Im [DRYQ(N)") ~ DRYQ*(M))"] ~ HYX", Q*(0)")

is an isomorphism for N >f*0), M >f*-}(N). By Serre’s Theorem (3.5) (applied to HY)
we see that the superscript A can be removed from the de Rham groups and hence, if

we now show that
(4.3) X", Q¥(0)) = HY X"~ ™M),

then (4.2) will have been proved with bounds, namely we only need poles of total order
N to represent HY(X" —~ Y") and all equivalences then come from poles of total order M.
To prove (4.3) we introduce the sheaves Q¢ of C® g-forms on X"~ Y" and their direct
images 1,(Q% on X”. Then
HYX"— " = DRY(Y) by 0 de Rham theorem on X" — ¥"
= HYD(X"— Y*, Q%)) = HY(T'(X", i,(Q*)) by definition of i,
= HYX", i,(Q*)) by (2.8) and the fact that i,(()?) is fine(l)
=~ X, QF0Y) by (4.1) and (2.9)
proving (4.3) and so completing the proof of (4.2) and the stronger version with bounds
namely

ProProsiTION (4.2). Let X, Y be as in (4.2) and let k> f(k) be a function such that
HYX, QP (k)) > HY(X, Q°(f(k)))
s zero for =1 and oll p. Then
Im [DRYQ*(N)) - DRYQ*(M))] - HYX"-T")
8 an isomorphism for all ¢, provided N =f*(0) and M = f*-1(N).
(1) Being a module over C*°(X).
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To deduce the general case from (4.2) we now appeal to the Resolution of Singularities.
Given an affine non-singular variety (1) X< (¥ let X be its closure in Py, ¥ =X —X and
apply the Resolution Theorem. We get 7z: X'~ X proper with X’ non-singular, ¥’ =z"(Y)
a finite union of non-singular subvarieties of codimension one with normal crossings,
and X' —Y'=~X. Applying (4.2) to X', ¥’ we deduce

THEOREM (4.4). For any non-singular affine variety X the cohomology groups

HYX™") are isomorphic to the de Rham groups of the rational differential forms on X with
poles at oo,

We want now to show that, for X in an algebraic family, we can put a bound on the

order of poles needed. For our purposes the following version will be adequate.

TurEorREM (4.5). Let 1: X—T be a smooth(2) projective morphism of non-singular
algebraic varieties and let Y be a subvariety of X of codimension one such that X —Y is
affine. Then there exists an integer L so that, for all tET, the rational closed forms on X,
with poles of order <L on Y, generate(3) H*( X — Y}), where X;=a~'(t), Y,=X,nY.

Proof. We shall use induction on dim 7T'. This will enable us to replace T at any stage
by a (Zariski) open subset since () the complement then has lower dimension (and is a
finite union of non-singular pieces). Now resolve the singularities of ¥ and we obtain
p: X', Y'—»X,Y, Y’ having normal crossings. Replacing 7' by an open subset we may
assume that X' ~7 and all ¥;n ¥;n..n ¥;,—~ T are smooth, so that all X; are non-
singular and all ¥; have normal crossings. If J, J' are the ideals of ¥, ¥’ respectively, then
(J')"< p*J<J’ for some m, hence (J,)"< p*J,=J; for all ¢, so that a bound L’ for X', ¥’
will give a bound L=mL’ for X, Y. Hence it is enough to prove the theorem for X', ¥".
For each ¢ consider now the sheaf Qf(k) of ¢-forms on X; having a pole of total order
<g-+k on Y;. Consider also the sheaf Q%kY;) of g-forms on X; having poles of order <q +%
on each component of Y;. This is a locally free sheaf and (because X'—~1T' is smooth)
is also the restriction to X; of a locally free sheaf, say S4k) on X', so that QUkY;)=
8%k),. In fact S%k) is the sheaf of g-forms on X’ with poles of order <g+k on Y’
Moreover this is consistent with our earlier notation used in (3.11), namely S%(k) is in fact
8¢ with poles of order k£ on Y, where §7=_8%0). Applying (3.11) therefore(?) (permissible
since smooth < flat) and using the obvious inclusions

(1) We now make a slight change of notation more natural to the affine situation.
(2) Le. Jacobian 7 has maximal rank =dim 7'
(3) The other bound for the relations (as in (4.2)") also holds but we do not require it.
(4) At least if 7 is irreducible which we may clearly assume since in general 7 is a finite union of
such.
(5) See also the Remark after (3.11).
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(k) = QU (kY") = Qf(n(g + k)
we obtain a function k> f(k) so that for ¢=>1, t€ T and all p
HY(X;, Qp(k)) ~ HY(X;, Qf(n(g+ (k)

is zero. Now apply (4.2)" and the proof is complete.

We shall now consider a mild extension of Theorem (4.4). We suppose X affine
non-singular and Y< X a codimension one subvariety with normal crossings.(!). Then
X — Y is again affine so that its cohomology is, by (4.4), given by the rational differentials
on X with poles on Y (and “at oo”’). However we shall now show that only simple poles on
the components ¥, of Y are required—though we still need high order poles at oo, We
introduce the sheaves Q?<Y> on X of rational ¢-forms w such that w and dw have
only simple poles on each Y. These form a complex Q*(Y>:

0> QY>> ... > QTS5 ..
and Theorem (4.4) is refined by

THEOREM (4.6). If X is a non-singular affine variety, Y a codvmension one subvariety
with normal crossings, then the cohomology groups HY((X —Y)*) are isomorphic to the de
Rham groups of the complex T(X, Q*(Y>) of rational differentials w such that o and dw
have only simple poles on the components of Y.

The proof of (4.6) follows the same lines as (4.4) and we shall just comment on the
differences. First we must use the resolution theorem to obtain a compactification
X of X so that not only Z=X — X has normal crossings, but also ZUY has only normal

crossings. Next we must observe that the sheaves Q?(Y) are algebraic: the equation
d(gw) =dg Aw +gdw

shows that sections of Q% Y) can be multiplied by regular functions. If (z,, ..., 2,) is a
system of local parameters on X with Y given by 2,2z, ...2,=0 then the sections of
Q*(Y) are generated (as an exterior algebra over the functions) by dz;/z, (1<t<s)
and dz, (j>s). Similar remarks apply to the sheaves on X of g-forms w such that w, dw
have simple poles on the Y, and such that o has on ZUY a pole of total order <q + k. Finally
we must modify Lemma (4.1), by replacing the complex Q*(k) by the sub-complex of
forms  such that o and dw have only simple poles on z,_,,, =0, ...2,=0: the conclusion

and proof are the same.

(*) Te. Y= U Y, Y, non-singular and meeting transversally. In fact we can drop the condition
of non-singularity for the Y;: as the proof shows only local hypotheses on Y are used. Thus ¥ could
be a curve with a double point. ’



LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS. IT 161

With these modifications the proof of (4.6) proceeds as before: (4.1) takes care of the
local cohomology and the Grothendieck vanishing theorem still applies because we are
allowed arbitrary poles on Z and X=X —Z is affine.

An alternative proof of (4.6) can be given, starting from (4.4) and using some exact
sequences. In the simplest case when Y has only one component we use the exact sequence

of sheaves on X

(4.7) 0—->Q‘1—>QQ<Y>—R>Q‘{,“1—>0

where Q%! is the sheaf of regular (¢ —1)-forms on ¥ (extended by zero to X) and R is the
residue map which in local coordinates maps w A dz2/z+—>2niew|Y where z=0 is the local

equation of Y. Since X is affine we have H1(X, Q% =0 and so (4.7) gives a corresponding

exact sequence of global sections. Thus we have an exact sequence of complexes
0-I(X, Q") ->T(X, QK Y))~T(¥, Q%) —~0.
Taking the cohomology of these complexes we get a long exact sequence of de Rham groups
...~ DRYX, Q*)—~ DRYX, Q¥ Y>)~ DRY(Y, Q%) — ...

We now map this into the exact cohomology sequence of the pair (X", (X —Y)") using
the Thom isomorphism

HYX" (X —Y)) = H%(Y").
It is not difficult to verify commutativity of the diagram. Applying (4.4) to X and ¥
we get isomorphisms for two-thirds of the terms and hence, by the 5-Lemma, iso-

morphisms also for the other groups, namely
DRYX, QXY) = H((X - Y)")

proving (4.6), for this case. In general the proof proceeds the same way but using induc-
tion on the number of components of Y.

§ 5. Complements of hypersurfaces

For. the applications to lacunas the algebraic varieties which enter are of the form (%)
X=P, ;—A where A is a hypersurface in projective space P,_,, given by an equation
a(;,...,£,) =0 (a being homogeneous of degree m>0). Let us first observe that such an X
is in fact affine. To see this we use the Veronese embedding s: P, _,—~Py given by
£—>£« where « runs through all n-tuples («y, ..., ) with > a;=m. If a(f)= 3 a,& we
see that s(X) is the part of s(P,_,) lying in the affine space ("< P, where Xa,0, +0 (o,
being the coordinates of Py). Thus X is affine and 4 is a hyperplane section of s(P,_;) > P,

n—1*

(*) From now on we shall drop the distinction between X and XP.

11 — 732907 Acta mathematica 131. Imprimé le 11 Décembre 1973
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We consider next the algebraic differential forms on X. These are just the rational
differential forms on P, ; with poles on 4. To write these explicitly in homogeneous
coordinates we observe that a differential form ¢ on P, ; lifts to a differential form

7*(p) on C*—0 and is characterized there by the two properties
(i) invariance under scalar multiplication,
(ii) annihilation by interior product with the tangent along the fibre of
n: C"—0—~P,_,.

That is, a differential form y on C*—0 is of the form n*(p) if and only if y satisfies (i)
and (ii). If ¢ is rational so that

V=29, (E)dE, A L dE

with the coefficients y,, _; (£) rational, condition (i) asserts that all these y,, , (§) are

homogeneous in & of degree —p, condition (ii) asserts that

where . stands here for interior multiplication. Now it is well known that the complex
0> AMV*) > A P*)» ...> A(V¥) =0

is acyclic, where V is a vector space of dimension » over a field k, and the maps are given
by interior multiplication by a non-zero element w€ V. Apply this with £=C(&,, ..., &,).
V=C®ck, u=(4,, ..., £&,) and we see that condition (ii) is equivalent to saying that v isin
the image of interior multiplication by X £,(0/6¢;). In particular, for p=n—1, v is a
multiple of

7]
w(&)= (251 3_51) d& A .. AdE,
=>(—1Y " EdE N . AdE A NAE A L NdE,

Thus the top degree rational forms on P,_; are of the form f(&)w, where f(£) is a rational

function of homogeneity -n. Those with poles on A4 are therefore of the form

9(&) w(§)

a(§)*
where g(§) is a homogeneous polynomial of degree mq—n.
Applying the algebraic de Rham theorem (4.4) to top degree forms on X we therefore

deduce the special case we need.
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ProrosiTioN (5.1). Every cohomology class of dimension n—1 on P, ,—A can be
represented by a differential form g(&)a(&)4w(&) where g(&) ts a homogeneous polynomial of
degree mg—n and q is sufficiently large.

To get a bound for ¢ in (5.1) we must use Theorem (4.5). Consider therefore the
product X =P, , x Py where Py is the space representing all hypersurfaces of P, ; of
degree m. The equation X, a,&*=0 then defines a codimension one subvariety ¥ of X.
For every a€Py, Y,=YNX, is just the hypersurface in P, , with equation a(£)=0
(Xy=P, , x{a}~P,_;). The projection X P, is of course smooth and so we can apply
(4.5) to every affine submanifold 7' of P,. Since Py is a finite union of such 7' (namely
Py—~Py , for M=N, N—1, ..., 1) we deduce

ProrosiTioN (5.2). There exists an integer gqy(m,n) so that (5.1) holds for all
> qo(m, ).
When we make some non-singularity assumptions we can get more explicit bounds for

¢. First, from (4.6) we deduce

ProrosiTIiON (5.3). Assume that a(£)=0 defines a hypersurface A of P, , with only
normal crossings and let B be any other hypersurface. Then every cohomology class of
dimension n—1 on P, ,—A— B can be represented by a differential form

9(8) (&)
a(§) b(€)?

where g(&) is a homogeneous polynomial of degree q deg b+deg a—n, and q is sufficiently
large.

Returning to (5.1) let us now assume that 4 is non-singular. Then we shall prove.
ProrositiOoN (54). If A is non-singular then (5.1) holds with ¢=>n—1.

Proof. Returning to the proof of (4.2) we consider the sheaf QP(0) of algebraic
p-forms on X =P, _, with a pole of order <p on 4. By a result of Bott [6] p. 228 we have

a more precise vanishing theorem in this case, namely
HY(Ph_1,Q7(0)")=0 for ¢>1 and all p.

Hence (cf. (2.8)) DRYQ*(0)) = HY(P~:_,, Q*(0)*) for all ¢. On the other hand, using Lemma.
(4.1), with k=0, we see that

HYP,_,, Q*(0Y)= HI(P:_, — A").
Thus DRY(Q*(0))~ HY(P"_, — A").
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In particular, for g=n—1, we see that we only need (n—1)-forms with poles of order

n—1 on A. This completes the proof.

Remark. Instead of using the vanishing theorem of Bott we can deduce (5.4) from
(6.1) using a result of Macauley (see Griffiths [10]).

For the applications to hyperbolic systems we need to strengthen (5.1) (in the non-
singular case) by allowing the numerator g(£) to be divisible by a pre-assigned polynomial.
We shall now prove this by some elementary algebraic computations with the rational de

Rham complex. As before write

T(é)=d& A ... NdE,, w(§)=2&7,(E)

where 7,(§)=(—1Yd& A...AdE, y NdE; 4 N NdE, so that w(£)=dE&,AT,(£). Similarly
let 7,4(£) be the product of the d, (k+1, j) ordered so that v(£) =d&; A d&; A 7,,(£) and hence
7,(8) =d&; At;;(E). Then we have

Lemma (5.5). Let (&) be a homogeneous rational function of degree 1 —n, then

(0plo&) w= —d (jgi ®E;T4)-
Proof. With @, =0p/[0&, we get
d(Z‘P§jTﬂ) =dp A 2 &1+ @ 2 dE Ny
i+ i+ i

== ‘Pig}"ﬂj '*‘gi%'fm tn—lori= g0
since 2 @,&=(1—mn).
The (n—2)-form 0=Zgé& 7, is homogeneous of degree 0 and is annihilated by
D =% 7;0/0¢; (because 0= Dgt; and D?=0), hence it represents a rational (n—2)-form on
P,_, with poles at the poles of ¢. Thus (5.5) asserts that the form @, is cohomologous
to zero in P, ;—Y where Y is the polar set of ¢. Using (5.5) and the identity

(b=2ar=ef); = —gb=rafa, +@=(b=7),
we deduce a homology

(5.6) b fa,m~b"*a" ho

in P, ,—A-—B (f and h being homogeneous polynomials of the appropriate degrees).
If a(£)=0 is the equation of a non-singular hypersurface 4 then the equations a,(&)=0
(=1, ..., ») have only £ =0 as a solution. Hence &¢€(ay, ..., a,) for some r, and so every
homogeneous polynomial of sufficiently high degree lies in the ideal (ay, ..., a,). By (5.6)
this implies that all rational (r—1)-forms with poles on AU B are homologous to forms
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with simple poles on A4 (since we may replace b-?f by b-?-"fb" we can assume [ has large

degree). This gives another proof of (5.3) for non-singular 4 (assuming (5.1)).

LemMaA (5.7). Let I be a non-zero homogeneous ideal invariant under all the operations

T h—>ha,—h;a,
(a(&) being fixed). Then
(i) the radical J of I is also invariant under all T,
(i) a€Jd
(iii) if the a;(&) have only £=0 as common zero then J =(a) or J =(&,, ..., &,).

Proof. We have, for any positive integer s,
T4k =s! (T k) mod h.
Hence h€J =k €I for some s
=>TLh€l= (T A€l by (1) =T,h€J proving (i).
Next hGI:}Z&, (hya,— h;a,) €T

= mah, — (deg k) ha,€I = ah,€1

Tterating this and using induction on |a| we deduce
heEl= (—a—)ahalalel
o&

for all a=(ay, ..., &,). Since I+0, there is a h=0 in I and so for some a with [oc] =
deg h=s we deduce that a*€1, i.e. a€J, proving (ii). Now let V<P,_, be the variety de-
fined by I, so that J consists of all polynomials vanishing on V. By (ii) we have V< 4, the
non-singular hypersurface with equation a(£§)=0 in P, ;. We have to prove that V=4
or V=0. We assume therefore that V is a non-empty proper subvariety of A and
propose to derive a contradiction. Let ¥=V,U V,U...U V, be the decomposition of V'
into irreducible components and let % be a non-singular point of V, not lying on any
V; (j>1). Then for any h€J we have, by (i), ha;,—h,a,€J and so k,(n)a;(n) =h;(n)a;(ny
for all 4, j. This means geometrically that the hypersurface =0 touches A at the point 7-
We will show that this cannot be true for all k. Since 7 is a non-singular point of V, we
can find rational functions ¢, ..., "~ forming a system of parameters for P,_; at 5 and
such that V, is given locally by ¢l=¢2?=...=¢*=0; here s=codim V,>2, since V is
assumed a proper subvariety of A. Expressing the ¢ in homogeneous coordinates and
clearing denominators we obtain homogeneous polynomials f1, ..., f*-1. Since the ¢' are

local parameters the vectors grad f'(y), i=1, ..., s, are independent and hence, since
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s>2, for some f'=h we do not have h,(n)a,;(n)=h;(n)a,(n) for all 7, j. Now kb vanishes on
¥, but may not vanish on the other components V, (j=1) of V. However since ¢ -1V,
we can find g vanishing on all ¥, (j >1) but with g((n) +0. Replacing our % above by

h’=hg we now have a polynomial vanishing on all ¥ (and hence in J) but

ki (n) a; () — by () @) = (o) [hu(n) () — by () @ ()]
and so does not vanish for all 4, j. This completes the proof.
Using this lemma together with (5.5) we shall now prove the following refinement
of (5.3):

ProrosITION (5.8). Let a(£)=0, b(&)=0 be the equations of the hypersurfaces A, B
with A non-singular, and let g(&) be any homogeneous polynomial not divisible by a(f).
Then every element of H" (P, ,—A—B) can be represented by a differential form
(&P a(&)2f(£)g(&)w(&) where p is sufficiently large and (&) is homogeneous of the appro-
priate degree.

Proof. Let 8, denote the space of all homogeneous polynomials f of degree k such
that the form b—"a—fw is homologous to one with numerator divisible by g¢; here we must
have k=p(deg b) +m —n (m=deg a). Now by (5.5) we have a homology

b=2a~tf(h;a;—h,a) o~ —h((b~Paf),a,— (bPa1f),a)w =b"1a hw.
This shows that if §=2X8, contains all multiples of & (of degree =m —= mod deg b) it also
contains all multiples of 7T'(k) (of degree =m—n mod deg b). Hence, if I=XI, is the
smallest homogeneous ideal containing g and closed under all T;;, we have I,=S,
for k=m —n mod deg b. But by (5.7) the ideal I defines the variety 0 in €" and so every
polynomial of sufficiently high degree k lies in I and hence also in 8 (if k =m —n mod deg b).
Using (5.3) the result now follows.

Remarks. This proposition can be seen in a more general context by introducing
the relative cohomology groups H(X, U) for X affine and Y a divisor (equation
g=0). It can be proved () that (roughly speaking H(X, Y) can be computed from the
rational forms on X with poles on X and “large” zeros on Y. In top dimension we have
H™"Y)=0 (n=dim X >dim Y) and so H*X, Y)~ H*(X) is surjective. Hence every class in
H™(X) can be represented by a rational form with high zeros on Y (i.e. divisible by a high
power of g). This result holds quite generally but with further non-singularity restrictions
at oo one can be more precise and prove in particular (5.8). We have preferred the more
elementary approach adopted above because we have no application to hyperbolic systems
of the more general results corresponding to singular a(£).

() We are indebted to P. Deligne for this information: the proof uses ideas to be found in the
Appendix to Hartshorne [13]. '
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§ 6. Plane curves

In this section we shall show that, for an algebraic curve X in P,, precise results on

the order of pole can be proved without any assumptions of non-singularity. Namely
we will prove

THEOREM (6.1). H¥P,— X) is generated by the rational differentials ¢ on P, having a
simple pole on X together with their complex conjugates @.

THEOREM (6.2). H3(P,—X) ts generated by the rational differentials on P, having a
double pole on X.

Remarks. (1) For non-singular X (6.2) is just a special case of (5.4). Thus (6.2) asserts
that the general bound g4(m, 3) of (5.2) is equal to 2. We do not know if the corresponding

result is true for higher values of n—it seems unlikely but explicit counter examples seem
difficult to produce.

(2) For non-singular X (6.1) is rather easy to prove. It is essentially equivalent to the
fact that the holomorphic 1-forms on X are all obtained as the residues of the rational
2-forms on P, with a simple pole on X.

(3) In the applications to hyperbolic equations (6.1) is quite important, (6.2) less so.

(4) Note that (6.1) is equivalent to the assertion: & a real 2-cycle on P,—X and
J2@=0 for all rational 2-forms ¢ with a simple pole on X =a~0.

We come now to the proof of (6.1). Consider first the diagram

H o (Pyo— X; C)@H (P, — X; )~ Horp (P, — X; €)= C
(6.3) Je fe
H?(Py, o — X))@ HY(P,, Q¥ (X))~ HE(P,, Q%) = C

where o( —X) is the sheaf of holomorphic functions vanishing on X, Q2 is the sheaf of
holomorphic 2-forms and Q% X) the 2-forms with a simple pole on X. The horizontal
pairings are both dualities: the top row is Poincaré duality and the bottom row is Serre
duality [18]. We claim that via these dualities « and f are adjoints of one another.
This is a routine kind of verification which we will give later. Assuming this we see that
Im g and Im—ﬁ will generate H2P,— X;C)<a is injective on Hoypp(Py— X; R) (cf.

Remark (4) above). To prove this we use the two exact sequences of sheaves on P,

0-C(P,— X)—>C~Cx—0

! bl

O0—-0o(—X) > 02050
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Taking cohomology we get

0=H'(P,, €)~> H (X, €) - Hiymy(P;— X, €) > H¥(P,, €)— H*(X, C)

! I I |

0=H(P,, 0) > H"(X, 0x)> H}(Py, o( — X)) — H*(Py,0)=0

where we have identified H P, C(P,— X)) with HZ%,(P,—X, C) (see Godement [9]
p- 190) and we have used the fact that HYP,, 0)=0 for ¢=1 ([17], p. 258). Since 0 is.
injective (in fact isomorphic onto any irreducible component of X) the diagram reduces to

a square
HY(X, €) = Hiomp(P,— X, C)

I I

HI(X’ OX)EHZ(Pz? 0( _X))

and so we are reduced to showing that y is injective on H(X, R). Now y fits into the

exact cohomology sequence
H° (X, 05/C) > H' (X, €) > BY(X, 05)

and so we must show Im 6N HY(X, R)=0. Suppose d(p) € H{(X, R) and lift ¢ to @ on the
desingularization X of X. Then 6(¢)€H1(i, R) and so the imaginary part Im ¢ is a
single-valued harmonic function on X (determined on each component of X up to an
additive constant). Hence Im ¢ =0, so therefore is ¢ and also ¢. Thus d(p) =0 completing the
proof modulo the verification concerning (6.3) which we now indicate briefly. Since this
has nothing to do with the particular complex manifolds in question nor the dimension
we shall give the argument for any conected compact complex manifold P of dimension »
with X a divisor (the dimension 2 in (6.3) being now replaced by » throughout).

Let @™ denote the sheaf of closed (® n-forms on P— X, ®*(X) its direct image sheaf
on P

p’: HYP, d*(X))~HYP—-X, C)

and we have a pairing
(6.4) Hiomp (P — X, C)Q H* (P, @™ (X)) > Hiomp (P — X, @7).

Moreover, as in the proof of the C* de Rham theorem on P— X, we have isomorphisms

Hiomp(P—~ X, 0" = HiL (P—X, 0" )= . =H2 (P~ X, C)
~C

and the pairing (6.4) induces the pairing on the top row of (6.3) via g’ (1) The compatibility

(*) This assumes some basic facts about how cup products are defined using resolutions.
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of (6.3) (i.e. the adjointness of «, §) will now follow from the compatibility of (6.4) and
the bottom pairing of (6.3). This in turn is proved by interposing the pairing

Hlmp(P— X, C)@HY(P, Q™(X)) > Hmp (P — X, Q)

and using the commutative diagram (see Serre (18 p. 23))

A Hipmp(P—X, 0%
Himp(P— X, QM

N\ 4

H"(P, Q")

We come now to the proof of (6.2) which follows the general lines of § 4. First we

must consider the local situation:

LEMMA (6.5). Let X be an analytic curve in U= {z€C?||z|<e, i=1, 2} and let ;=0
(¢=1, ..., r) be the equations of its branches through 0. Then, for small &, we have

(i) the l-forms dfjf,, i=1, ...,r give a basis of H(U —X),

(ii) the 2-forms df,df,/f.f,, i=1, ...,r—1 give a basis of H(U —X).

Proof. Put X'=X—{0}, U'=U—{0}, then U—X=U'—X' and for small ¢ X’
consists of r punctured discs. The exact cohomology sequence of the pair (U’, U'—X’)

gives
H(U' -X"Y=H*U, U -X")2H"X')=(C

0->H*(U' - X"y-=H¥U',U' - X')-H3(U') >0

R R
HY(X') c
IR
c

This shows that HY(U — X) and H¥U — X) have dimensions 7, r —1, respectively. Morever,
the homomorphisms
H U -X)>H"YX) i=1,2
are given by taking residues (if we start from a meromorphic form with simple poles on X’).
From this it follows easily that the forms described in (i), (ii) give generators.
Passing now to the global situation let X be an algebraic curve in P, with equation

f=0 and consider the complex of sheaves
(6.6) 0050 (X) -5 022 X) >0

where QY(X) denotes meromorphic 1-forms with simple poles on X, Q%2X) denotes
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meromorphic 2-forms with double poles on X (and Q° denotes holomorphic funections).
Let h' denote the cohomology sheaves of this complex and let h' denote the sheaf
U H!(U —X; C). Then we have

LEMMA (6.7). The natural map - h' is an isomorphism‘for t=0,1 and an epi-

morphism for 1=2. Moreover, h? is concentrated at the singular points of X.

Proof. This is trivial for 4=0. For ¢=1, using (6.5) (i), we have only to prove that the
df,/f; generate h'. To see this let w be (locally) a closed 1-form with fw holomorphic. By
(6.5) (i), we can find constants ¢, so that w — X, ¢,df,/f, has no periods in U’—X’, hence is
holomorphic in U’, hence holomorphic in U (Hartog’s theorem), and therefore equal to dg
for some holomorphic ¢. This proves(?) M =ht. Next, b2~ is epimorphic by (6.5) (ii)
—since f*df,df,/f,f, is holomorphic. Finally at a non-singular point of X, taking local
coordinates (z, y) so that X is =0 we see that any local section of Q(2X) is of the form

w =z 2p(y)dedy +xdrdy(y) +0(x, y)dzdy

where @, , § are holomorphic functions. Hence 0(z, y)dzdy =dn with 9 a holomorphic 1-form

and
o = d(—xp(y)dy +y(y)dx) +n)

is in dQY(X), proving that s2=0 outside the singular points of X.

We now compare the complex (6.6) (denoted briefly by Q) with the complex of
sheaves (: the direct image of the de Rham complex of P;—X under the inclusion
t: P,—X—>P,. By the Bott vanishing theorems the cohomology groups H%(g>1) of all
sheaves in Q vanish. Hence for both Q and { the de Rham groups coincide with the hyper-

cohomology. Hence we get two spectral sequences:
B4~ HP (P, 1)~ DR* (Q)
§¢=H?(Py, )~ DR*(Q) = H* (P, — X).

and a homomorphism E,- E,. By Lemma (6.7) we see that EZ?-> E2'7 is an isomorphism
except for (p, ¢)=(0,2) and there it is an epimorphism. From the spectral sequences we
then see that

B0~ F20 EL~ELY

and E%®- £%? is an epimorphism.

(*) This argument (given in Atiyah-Hodge [4]) does not require us to be in dimension 2.
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~

This implies that DR2(Q)-> DR?(Q)= H%P,~ X) is an epimorphism which completes the
proof of (6.2).

q
270000
1| *+ %00
O*O*O*p
012314

Diagram of E5'? with non-zero terms marked *.

CHAPTER II. APPLICATIONS TO THE THEORY OF LACUNAS

§ 7. Intreduction

The results of Chapter I will now be applied to the theory of hyperbolic differential
operators with constant coefficients. The notations and definitions will be those of
Part I, Chapter 3, but we remind the reader briefly of the situation.

Linear differential operators with constant coefficients are written as polynomials
P(D) in the imaginary gradient D =0/idx with respect to n variables x. We employ two
C"-spaces Z=2Z,={,, ...) and Z’'=Z,={x, ..} with biorthogonal coordinates £, ... and
zy, ... and a duality z§=x,§, +... +x,&,. Let 09 €Re Z. We say that P(D) is hyperbolic
with respect to 4 if P(D) has a fundamental solution E(P, x)= E(P, @, x) with support in
a proper cone with its vertex at the orgin which, apart from its vertex is contained in the
half-space 9 >0, x€Re Z'. Here E is a distribution. The class of these operators or their
characteristic polynomials is denoted by hyp (#) and we write hyp (&, m) for the set of
Pehyp (§) of degree m. The subsets of homogeneous elements in each class will be
denoted by Hyp (9) and Hyp (9, m). The class hyp () can be characterized algebraically:
Pehyp (#) if and only if a(#) +0 and P(£ +79) +0 for all real £ when |Im 7| is big enough.
Here a(£) denotes the principal part of P. It is easy to see that P€hyp () implies
a€hyp (#) and that P and a have the same lineality. The lineality L(Q) of a polynomial Q
is the maximal linear subspace of Z along which @ is constant. In particular, if « € Hyp ()
and the degree of b is less than that of a, it is not true in general that a +b€hyp (#). For
this it is both necessary and sufficient that b(& +49)a(& +9)~! be bounded when £ is real
(L. Svensson [20]).

When a €Hyp (9, m), let A be the complex hypersurface a(§)=0, £€Z. The hyper-
bolicity then means that every straight line with the direction & meets Re 4 in m points.
The component of Re Z —Re A that contains ¢ is an open convex wedge ['=I'(4, ) whose
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edge coincides with Re L(a) =Re L(4). The dual cone K =K(A4, #) consists of all z€ERe Z
such that x£>0 for all £€T". It is orthogonal to Re L{A4). In particular, if L(4)=0, i.e.
if a(£) is complete in the sense that if depends on all variables, then I' is a proper cone and
K has a non-empty interior. When P€hyp(9) and a is the principal part of P, put
NP, ) =T'(4, ), K(P,¥) =K(A4,8). A main point of the theory is now that P€hyp (#),
n€I'(P,d) implies PEhyp () and that the fundamental solution E(P) is given by the

formula

(7.1) EP,H,x)=(2 n)_"J‘e”‘g“")P(&%- I3

where 1€ — I'(P, #) — ¢ with ¢>0 large enough. The integral, taken in the distribution
sense, is then independent of the choice of  and K =K(P, ) is the convex hull of the
support SE of E. For this reason, K is called the propagation cone of P. A simple

argument shows that
(7.2) EP,9, x)=EP,¥, 2)Rx")

where P’ and ¢’ are the images of P and # in the quotient Z/L(P), «’ are coordinates in its
dual and the 2" are complementary coordinates in Re Z’. The dimension n(P) of Z/L(P),
i.e. the codimension of L(P) will be called the reduced dimension of P and the polynomial
P’ and the fundamental solution E(P’) the reductions of P and E(P). Writing P=qa+b

we also have the formula

(7.3) E(P,S,2) = g (= 1)*b(DY* B(a***, 8, ).

The fundamental solution E is holomorphic outside the wave front surfage W(P,#)=
W(4, ), contained in K(P,#) and defined as follows. The localization P; of P at £€Z
is a polynomial given by the formula
i~ 0="PE '+ ) =tme Py (L) + O@met).

and the requirement Pg(()#0. The integer m;=m,(P) is called the multiplicity of &
relative to P. It is also the degree of P;. When P €hyp (#) and £ €Re Z it turns out that a, €
hyp () is the principal part of P; and the wavefront surface W(P, #) = W(4, 9) is simply
the union of all the local propagation cones K (P, ?)=K(P;,#) when 0+£€Re Z. When
P is not complete, then W(P, $#)=K(P,#), otherwise 1 +dim W =dim K and W contains
the boundary of K. Notice also the basic fact (I, Theorem 4.10°) that

(7.4) 0+ £€Re Z = S(Q(D) E(Pg)) = SS(Q(D) E(P))

where @ is any polynomial and S and SS denote ‘“‘support of” and “singular support of”’

respectively.
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When a€Hyp (#, m) and z€K(A, $#)— W(A4,#), the fundamental solution of a
power a* of @ and its derivatives are given by the Herglotz-Petrovsky-Leray formulas
(I, Theorem 7.16),

(7.5) DYE(d¥, %, x) = eonstf (z, ) & (&) * w(&), ¢ =0,

(7.5 DYE(d*, &, x) = constJ‘ (z, &) £ a(£) * w(&), ¢< 0.
Y‘

Here const +0, g=mk— |v| —n is the homogeneity of the left side, m being the degree of

a, and

(&) = T(—1)-1E,dE, ... dE, ... d&,.

The integrands are closed rational (n—1)-forms on (n-—1)-dimensional projective space
Z* with poles on 4* and A*U X* respectively where X is the complex hyperplane and a
star denotes the image in projective space. Further a*€H, ,(Z*—A4*, X*) is a relative
homology class with bouhdary B*=p(A4, z, 9)* =0a*€H, o(X*—A*, X*) called the
Petrovsky class and p*=t,8*€ H,_,(Z* — A*U X*) where {, is induced by the tube operation
from chains in X* to chains in Z* — X* generated by the boundary of a small 2-disk in the
normal bundle of X* as its center moves on X*. A brief description of the relative class o*
runs as follows. Let R+ be the positive reals and put Z+=2'/R+ where Z=Z—{0}.
When « is real, let a(x)* be the (n—1)-sphere Re Z+ counted with multiplicity 1 and
oriented by z€w(£) >0. Then a* = a(4, &, x)* is the homology class in H, ,(Z*— 4%, X*)

of the image of «(z)* in Z* under any map
E—>E—iv(f), EEReZ,

where v(£) is a real vector field in C® such that v(§)€T;(A, &) for all & xv(§)=0 when
2E=0 and a(é +itv(£)) =0 when 0<t<1. All such maps are homotopic. The details are
given in Part I, section 6: Vector fields and cycles. We also remind the reader of the
definitions of sharp fronts and lacunas (Part I, section 9). They will be used only in
connection with fundamental solutions of hyperbolic operators but are, in fact, quite
general. When u is a distribution defined in an open subset O of R”, let Su denote the
support of % and SSw its singular support, i.e. the complement of the largest open subset of
O where u is a C®-function. When one of the coordinates is time so that u is a wave, parts of
SSu are called wave fronts. Let L be a component of O —SSu and let y €0L. We say that
% is sharp at y from L if u has a C®-extension from L to LN N for some neighbourhood
N of y. Of course, sharpness is an exception. In general, the wave or derivatives of it do

not have limits at the front. When w is sharp from L at all points of oL, L is said to be a
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lacuna for . A lacuna L is said to be strong if « =0 in L. Petrovsky [16], who seems to
have introduced the word lacuna, only considers strong lacunas. The definition given here
was suggested by L. Hérmander. Note that if 4 has homogeneity g, i.e. if u(iz)=1%(z)
when A>0, then u is sharp from L at the origin if and only if u is a polynomial in L. In
particular, L is a strong lacuna for « unless ¢ is an integer >0. ‘

When applying the definitions above to fundamental solutions K = E(P, &, z) one is
embarassed by the fact that SSE may be smaller than the wave front surface W= W(P, §).
It is therefore convenient to apply them also to components L of the complement of W.
Such components which are lacunas will be called regular lacunas. Every lacuna is then
the union of regular lacunas and parts of W not in SSE. The complement of the propaga-
tion cone K(P,#) is a strong regular lacuna for P called the trivial lacuna. If P is not
complete so that its reduced dimension n(P) is less than n, the propagation cone K(P, )
has no interior and the trivial lacuna is the only regular lacuna. But here, if P’ is the
reduction of P, (7.2) shows that the study of E reduces to that of E'=E(P’, ¥, -). In
particular, the complement of the support of E is the union of the trivial lacuna of E
and all strong lacunas of E’. This union is of course connected.

Sharpness at the origin characterizes the lacunas of any P€hyp (9) and P and its
principal part have, generally speaking, the same lacunas. The essential part of the exact
statement (Lemma 9.6 of Part I) can be paraphrased as follows. Let L be a component
of K(P,$)—W(P,#). Then all E(F¥, 9), (k=1,2,...), are sharp at the origin from L if
and only if L is a lacuna for every @ €hyyp (#) whose principal part is a power of a.

Let a €Hyp (#). When the Petrovsky condition

(7.6) B4, 9, x)* =0 in H, ((X*—X*n A%

holds for one z in K(A4, #)— W(A, #), then, by virtue of (7.5'), all derivatives of E(a*, 9, )
of order >mk—n vanish at x. Hence, if L is the component of K — W that contains
x, E(a¥, 9, x) is a polynomial in L and L is a lacuna for all powers of a hence also for any
@ €hyp (&) whose principal part is a power of a. When P€hyp (¢) has principal part a,
components L of the complement of W(4, 9) for which the Petrovsky condition holds at
all points are called Petrovsky lacunas.

Our main result on lacunas, announced as Theorem 10.9 of Part I, says that the
fundamental solution E(a*, &)= E(a*, &, x) of a high power a€Hyp (¢, m) has only
Petrovsky lacunas, that its support is the propagation cone K(4,#) and its singular
support is the wave front surface W(4, #). Moreover, this happens when & exceeds a certain
function of m and n. The proof of this result is a simple consequence of the Herglotz—

Petrovsky-Leray formulas, the generalized Grothendieck theorem (see Proposition (5.2))
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and the fact that the tube operation is injective and that the class «(4, z, §)* is not zero
when z is inside the propagation cone (see § 8 below). A more detailed version of our main
result will be proved in § 9. It has the following corollary of general interest. The proofs of
(a) and (b) use Theorem 6.2, the proof of (¢) Proposition 5.3. The properties (a) and (c) are

true in all dimensions, (b) and (d) are more special.

THEHEOREM (7.7). Let P€hyp (&, m) have principal part a and let n(a) be the reduced

dimension of a.
(a) If n(a)<3 then

(i) ol lacunas of P are Petrovsky lacunas
(i) SE(P,9)=K(4,9)
(iii) SSE(P, 9y =W(4, ).

(b) If n(a)=4 and a is complete, (i) and (iii) hold.
(¢) If a is complete and A* has only normal crossings, (1) and (iii) hold.
(d) If nlag) <3 for all 0+=EER", (iii) holds.

Note that (ii) says that P has no non-trivial strong lacunas. Since the homogeneous
wave operator in four variables has such a lacuna, (ii) does not hold in the cases (b) and
(¢). According to M. Mathisson [15], when a is this wave operator and P =a, (ii} does in
fact hold. It seems plausible that (ii) holds for non-homogeneous operators in general. On
the other hand, K. G. Andersson (unpublished) has shown that the property SSE(P, #) =
U SE(P;) put forward as a conjecture in Part I is not true in general. There are homoge-
neous operators of order 4 in 6 variables for which the right side is not closed and inhomoge-

neous operators for which its closure is not equal to the left side.

Lacunas of systems

According to Lemma 3.2 of Part I, a differential operator P =P(D) whose coefficients
are square matrices is hyperbolic with respect to a real vector ¢ if and only if its determinant
det P has that property. Further, if Q(D) is the matrix of cofactors of P(D), the formula

(7.8) E(P, 9, x) = Q(D) E(det P, 9, x)

connects the fundamental solutions of P and det P. It follows that the support or singular
support of E(P) is contained in the support or singular support of E (det P). Later
{Theorem 14.20) we shall actually determine the singular support of E(P) in a special case.
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The general case seems to be very complicated and we shall only prove the following

result announced at the end of Part I.

THEOREM (7.9). Let P be a matrix-valued hyperbolic differential operator with deter-
minant det P and let E(P) and E(det P) be the corresponding fundamental solutions. Assume
that the complex projective hypersurface given by the principal part of det P is non-singular.
Then E(P) and E(det P) have the same singular support and every lacuna for P is a lacuna
for det P.

§ 8. Homology of hyperbolic hypersurfaces
Lemma (8.1). Let a€Hyp (#), 0+=x€R", and let A*: a(&)=0, X*: 2§=0 be the cor-
responding projective hypersurfaces. Then the tube operation
t;: H, o(X*-X*N A*)~H, ,(Z*—A*U X¥)
is tnjective.
Proof. The tube isomorphism ¢, is isomorphic, via Poincaré duality, to the coboundary
8: Hi 2(X*—X* N A*) > H Y (Z*— A*, X*— X* 0 4%)
where H, denotes cohomology with compact supports. Hence § will certainly be

injective if the preceding term H? %(Z* — A*) in the exact sequence is zero. But this is true
because Z* — A* is a Stein manifold of complex dimension n—1(H? 2 being dual to H").

LEeEMMA (8.2) with the notation of the preceding lemma assume further that x€ W(A4,9)
but x€K(A, D). Then the class (A, x,¥)*€H,_,(Z* — A*, X*) does not vanish.

Proof. Let y*€H, (Z*—X*, A*) be the class of the relative cycle carried by
I'(4, 9)*. Clearly it will be sufficient to prove that a*-y* = 4 1. To compute this intersection
number we shall choose a suitable representative o} for «* such that v€ V(4, X, 9) is given
by
(8.3) (&) = sgn () (x¥)7 (2£)9 —€)

for £*€'(4, 9)*. It is easy to check, from our assumptions on z, that (8.3) does indeed
satisfy the conditions defining V(4, X, #) (Part I § 6) in the region I'(4, #)* (the “inner
oval”): the important point being that this inner oval does not meet the hyperplane
Re X* (so that x£ 40 there). The general construction for vector fields of V(4, X, #) given
in Part I, Lemma 6.7, then enables us to extend v from I'(4, #)* to the whole space. Now

oy is the sum of two cycles(!) arising from the two hemispheres z£ >0 and x& <0 (on the

(1) Recall that in the definition of «, the multiplicity of each hemisphere is  and they are taken
with opposite orientations.
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{n—1)-sphere Z+) by the map £—+£&—iw(£). It is clear that the images by (8.3) intersect
I'(4, 9)* transversally at the point 9*. The only point is to show that the signs are the
same and do not cancel. Now taking coordinates so that #=(1,0, ...,0), z=(1,0, ..., 0),
& =(&,, ..., &) and using formula 6.18 of Part I it follows that the two cycles making up
ay are represented by &' —& —if’ (multiplicity 1/2), &—~& +i&’ (multiplicity (—1)"-1/2)
This shows that the intersection numbers have the same sign.

Remark. Since the question of signs is crucial here the reader may get some re-
assurance from the following alternative argument valid for » even and A* non-singular.
In this case the vanishing of «* is equivalent to the following: the boundary of the inner
oval defines a homology class ¢ on 4* which is not a multiple of the class 7 coming from
intersections of hyperplanes. (1) Since ¢ -71=0 (because Re X does not meet the inner oval)
it is enough to show ¢%+0. But ¢ being one real component of an algebraic variety its
normal bundle is isomorphic (by multiplication by ) to its tangent bundle. Hence the self-

intersection is equal to its Euler characteristic which is 2 since ¢ is a sphere of even
dimension.

§ 9. Lacunas

We shall now give a detailed version of our main result. It uses two rather implicitly
defined functions of which little is known except that they are finite. Let b(&) denote com-
plete real homogeneous polynomials in n variables and let ky(m, ) and k,(m, n) be the
least integer k>0 such that, respectively,

(9.1) all forms £7b(&) *w(£) with |»| =mk —n >0 and their conjugates span H"-}(Z* — B*)

(9.2) all forms & (x£)*b(§) *w(&) with g=mk—n—|y| <O and their conjugates span
H"YZ*— B*U X*) for all b and all real z30.

By proposition (5.2), both functions k, and %, are finite. In fact, they would be finite also
if b is not assumed to be real and the words “and their conjugates’ deleted. Obviously,
ko(m, 2)=k,(m, 2)=1 for all m. When n=1, we put k,=k, =1 by definition. Note that,
also by definition, mky(m, n) —n >0, but that there is no similar restriction on the function
k;. The function ky(m,n) cannot be used directly. Instead we shall employ the least
majorant k% (m, n) of ky(m, n) which does not decrease as m or n increases. It is of course con-
ceivable that kj =k, In any case, the implication

(9.3) m>3=kim,3)=1

is just another way of stating Theorem 6.1.

(1) This is the version given by Petrovsky.
12— 732907 Acta mathematica 131. Imprimé le 11 Décembre 1973
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LemMA (9.4). Let a€Hyp (8, m) be complete and let P, (k=1, 2, ...), be operators in
hyp (&, km) with principal parts a*. Then

(i) k> min (ky(m, n), ky(m, m— 1)) =all regular lacunas of P are Petrovsky lacunas

(i) k>k*(m, n) = SEP®, §)=K(4, D).

Proof. By Lemma 9.6 of Part I, every regular (strong) lacuna of P*® is also a regular
(strong) lacuna of a*. Hence it suffices to assume that the P* =a* are homogeneous. Let L
be a component of K(A4,®)— W(4,?) and a lacuna for a*. If x€L and g=mk —n— |v| <0,
then by (7.5) :

0= f L (EDEaE) i)

where §*=§(4, x, #)* €H,_o(X* — X* A*) is the Petrovsky class. By (I.6.19),E/§;‘ =+t . pB*
and hence the class ¢, 8* is orthogonal to all forms that appear in the integral and their
conjugates. Hence, if k= k,(m, =), then by the definition of &y, t, $*=0 so that, by Lemma
8.1, the Petrovsky condition holds in L. If k>kjj(m, n—1) then mk—n+1>0 so that, if

|»| =mk—n+1, then g= —1 and, taking one residue into X*,
0- | eaerro.@

where w, is defined in X* by w(£)=d(xf)Aw,(§)+ O). Now, by the definition of
ko(m,n — 1), all forms that appearin the integral and their conjugates span ™ —2(X* — A* N X*)
and hence, since B:* = + B* the Petrovsky condition holds in L. This proves (i). To
prove (ii), suppose that L is a strong regular lacuna for a*. Then it is also a lacuna and,
since k(m, n) =>ky(m, n—1), (i) shows that the Petrovsky condition holds in L. Hence
o* can be lifted back to H, ,(Z* - A4*). But then, if €L, putting ¢=0 in (7.5) we have

0= J ‘5"“(5)“1(»(5), |v| =mk—mn.

Since k> ky(m, n), the definition of k, and the fact that «* =+ o* shows that «*=0 in
H, ,(Z*—A*) and hence also a*=0 in H, ,(Z*—A* X*). But this contradicts Lemma

8.2 so that (ii) follows.
We shall now prove a similar result when a is not necessarily complete.

LEMMaA (9.5). Let a€Hyp (8, m) and let P®, (k=1, 2, ...)'be operators in hyp (9, km)
with principal parts a®. Let n{a) be the reduced dimension of a. Then

() k> k¥(m, n(a)) > SE(P®, 9) = K(4, )
(ii) k> ki m—1,n(a)—1)=SSEP™,9)= W(4, )
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Proof. (ii) follows from (i). In fact, by the Localization theorem 4.10" of Part I,

W(A, 8)>SSE(P*§)> EU SE(P‘E"’, ).
+0

Here P¢” has the principal part af and m(a:) < m, n{a:) < n(e) so that if the hypothesis of (ii)
holds, then SE(P{, §)= K(A,, ¥) for all £40 and the conclusion of (ii) follows from the
definition of W(4,8). To prove (i), let z=(a’,x") and &=(§,£") be corresponding
divisions of coordinates such that & =0 characterizes L(4)<+0 and put a'(f')=a(£) and
P (g = PP (&) so that E(P®)= E(P"™)®4(z"). Since the hypothesis of (i) implies the
hypothesis of (ii) of Lemma 9.3 for P’ we have SE(P'®¥)= K(A’,§') and hence also
SE(PW)=K(A',¥)®{0"}=K(4, D).

The two preceeding lemmas constitute our main result on lacunas, support and

singular support in detailed form. We can now produce a

Proof of Theorem 1.7. The items (ii) and (iii) of (a) follow if we combine (9.3) with
Lemma 9.5. The item (i) is trivial unless a is complete and in this case we can again use
(9.3) and Lemma 9.4. To prove (b), use (9.3) and Lemma 9.5. The proof of (c) is not that
immediate. The item (iii), however, follows from the Localization Theorem 1.4.10’,

W(A.9)>SSE(P, #) DEEOSE(Pg, ).

Here, since A* is supposed to have only normal crossings, a, is just a product of linear
factors so that SE(a;, ) =K(A, ) and hence also SE(P, 3 =K(Ag, 9). Item (i) follows
as in the proof of Lemma 9.3 from the fact (Proposition 5.3) that all forms that appear
in (9.4) span H"YZ*—A*U X*) so0 that the Petrovsky condition holds. Finally, (d)
follows from item (ii) of (a) and the Localization Theorem 1.4.10".

Finally, we shall prove Theorem 7.9 about hyperbolic operators P(D) whose coeffi-

cients are square matrices. Let @(D) be the associated matrix so that
(9.6) v P(D)YQ(D) =det P(D)I

where I is a unit matrix. Let a(D) be the principal part of det P(D). Since the complex
projective hypersurface 4*: a(£)=0 is assumed to be non-singular, a(&) =b(&)" is a power
of an irreducible polynomial b(§) with the property that grad b(¢)+=0 when £40. If @
has a factor which is a power of b, then by (9.6), det P has the same factor. Cancelling such
factors we get
P(D)Qo(D) =p(D) I

where @, does not have the factor b and the principal part of P is a power of b, say b°.
According to this formula, the entries of E(P)=Q4(D)E(p)I have the form
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F(x) = M(D) E(p, 9, x)

where M is an entry of @,. Next we shall use the Localization Theorem 4.10" of Part I.

Denoting localizations by an index & we then have

and SSF contains the union of the SF; for 0+£ real. Since the principal part of p, equals
b} (Lemma 3.42 of Part I), and b, is constant or linear, the support of E(p,) is the entire
propagation cone K(p;, ©#). This in turn is a a half-ray when b(£) =0, otherwise it is just
the origin. Now, by assumption, there is an M (&) which is not divisible by 5(¢) and hence the
real algebraic manifold b(&) =0, M(£) =0 has dimension <n—1. Except for this manifold,
M, =M(£)+0 when b(§) =0, £+0, and hence the union of the supports of the F, is dense
in the wave front surface W(det P,3)= W(B,#)=W(4,9). Hence SSE(P) contains
W (det P, ) which, by Theorem 7.7 equals SSE (det P). Since the opposite inclusion is
trivial, the two singular supports are equal and the first part of the theorem is proved.

Next, write M(D)=X M (D) as a sum of polynomials of homogeneity k. Assume that
some component L of K(A4,9)— W(4,#) belongs to a lacuna for E(P, #, x). Then all the
derivatives of F(x) have limits as z tends to zero along a ray in L. Precisely as in the proof
of Lemma 9.6 of Part I this shows that, restricted to L, every F, =M, (D)E@®*, 9, x) is a
polynomial of homogeneity ms—mn—%k, m being the degree of b and, as before, b the
principal part of p. Now choose N(D)= M,(D) not divisible by b. Then, by (7.5"), high
derivatives of F, are integrals over the Petrovsky tube 9* of rational differential forms with
a multiple of N(&) in the numerator and products b(&)* (x€)?, (¢ >0), in the denominator,
Also, all multiples of N (&) of sufficiently large homogeneity do occur. Making them contain
b(£)*~! as a factor and applying Proposition 5.8 shows that 9*=0. Since the tube operation
is injective, L is in fact a Petrovsky lacuna for p(D) and hence also for det P(D)=
b(&Y *p(D). This finishes the proof.

CHAPTER I11.
SHARP FRONTS. THE LOCAL PETROVSKY CONDITION

§ 10. Introduction

In this chapter we shall push the study of fundamental solutions of hyperbolic operators
a bit further by examining their behaviour close to the wave front surface. We shall
focus our interest on sharp fronts. To repeat the definition, let a €Hyp (3), let E(a, ?, )
be the corresponding fundamental solution, let L be a component of the real complement
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of the wave front surface W(A,#) and let y€2L. Then E is said to be (C®) sharp at y
from L if y has a neigbourhood N such that the function z— E(a, &, ), holomorphic in L,
has a O extension from L to L N N. When the function has a holomorphic extension to
LUN we say that E is holomorphically sharp from L (across W(4,d)) at y. Of course
holomorphically sharp implies C* sharp. The two concepts are probably equivalent for
fundamental solutions of hyperbolic operators.

Let B(A, x, 9)* denote the Petrovsky class. As we have seen, the Petrovsky condition
10.1) B(A,x,9)* =0 in H, o(X*—X*n A%

implies that # belongs to a lacuna for all powers of a. There is a similar condition, the Iocal

Petrovsky condition, that implies that £ is holomorphically sharp from L at y, namely
(10.2) B4, z, Oy €H,,_(Y*—T*n 4%

when z €L is close enough to y. The formula should be taken in the sense that the left side
belongs to the image of the right side induced by projections ¥*—Y*N 4*—>X*—X*n A4*.
A more precise statement is given at the end of this section together with a proof that (10.2)
implies holomorphic sharpness from L at y.

Example (10.3). When n=2, all Petrovsky classes vanish and all fronts are sharp.
When n =3, all X* are just complex lines and, if a €Hyp (&, m) is complete and z belongs
to a component § of K(4, ) —W(4,?), then 4*N X*, which is invariant under complex
conjugation, consists of m possibly multiple points whose multiplicities are constant and
the Petrovsky class f(4, z, #)* is represented by one-half times Re X* detached from
Re X*N A* (Part I, p. 167). As z approaches 0 +y€aL and 4 does not contain the plane
&y =0, at least two points of 4* N X* come together. The meaning of (10.2) is then that no
such two points form a conjugate pair converging to a real point. When A contains the
plane &y =0, the right side of (10.2) is zero and the meaning of the formula is that the
Petrovsky class vanishes. By the Herglotz—Petrovsky-Leray formulas (Part I, Theorem
7.16) ,the derivatives of order m —2 of the fundamental solution E(a, &, z) are integrals
over B(4, x,d)* of closed (n—2)-forms with poles only on A*N X* which are rational
functions of « and the coefficients of a. The sufficiency of the local Petrovsky condition
when 7 =3 is an immediate consequence of this statement. It is not difficult to show that
in this ease the condition is also necessary (even for 0 sharpness) but this will not be done
here.

In §12 we shall use Theorem 1.9.3 to prove that the local Petrovsky condition is

necessary when y belongs to a regular piece of the wave front surface with a non-



182 M. F. ATIYAH, R. BOTT AND L. GARDING

degenerate curvature, dual to a similar piece of Re 4. The necessity in the general case
when >3 is an open question.

The main point of this chapter is a study of sharpness at plane parts of the wave
front surface, a case in a sense opposite to sharpness at curved pieces. The results are given
in § 14, the technical preparations in § 11 and § 13. The statements use the reduced wave
front surface fV(A, 9) of a hyperbolic polynomial a € Hyp (&, m) defind as the union of
the local propagation cones K(4,, #) when & is real and does not belong to the lineality
L(A4) of a. The reduced wave front surface has codimension 1 in the propagation cone
K(A,¥) and coincides with the wave front surface W(A4,#) when a is a complete
polynomial (see Lemma 1.5.17). Plane parts of W(4, ) correspond to conical points of
Re 4* i.e. points n* such that the lineality L(4,) of the localized polynomial a, has
minimal dimension, i.e. L(4,)=Cy. The plane part in question is then simply the local
propagation cone K(4,,9)=ReZ’ spanning the hyperplane xn=0. We say that
y€K(A4,,9) is a simple point of W(4, 9) if, close to y, W(4, §) coincides with K(4,, 9).
Our main result (Theorem 14.1) is now that if y€K(4,,d)— I/'I\’(A,,, #) is a simple
point of W(4, #) then, for all k>0, E(a*, §, -) is holomorphically sharp at y from both
sides of K(4,, ). The proof is a somewhat lengthy verification that the local Petrovsky
criterion holds. It employs certain results of a § 15, Local hyperbolicity, which is interesting
in itself and simplifies parts of section 2.5 of Part 1. As a comparatively simple corollary
(Theorem 14.18) we can compute the jump J(a*, ¥, z) of E(a*, &, ) at y, defined as the

equivalence class of £ modulo functions holomorphic close to y. The formula is simply
J(@*, 9, ) = O(an) (@n)*" P~ H(z)

where 0 is the Heaviside function, p =m(a,) the degree of a, and H(z) is a holomorphic
function of homogeneity kp +1 —n. In the special case when y is in a lacuna for all powers
of a,, considered as a polynomial on Z/Cy, i.e. when the Petrovsky condition in dimension
7 —1 holds,

(10.4) B(Ay, 4, 8)* =0 in H, 4(Y*—Y*n 4,)

then H(x) is a polynomial and hence has to vanish when kp<n—1. In this case, then,
E(d*, 9, +) is holomorphic across W(4,d) at y.

We give an application of this to symmetric hyperbolic systems in three variables
(Theorem 14.20).

Note that the condition (10.4) together with kp<m—1 implies that E,(a, 3, x)=
E(a’"‘, #, x) vanishes close to y. Hence our result indicates that the inclusion (Part I,
p- 145)
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SSE> USE,

n+0
may be an equality. This, however, is not true. As pointed out in the introduction,
examples by K. G. Andersson show that the inclusion may be strict.

We end this section by stating a precise form of (10.2).

THE LOCAL PETROVSKY ¢cONDITION (10.5).

Let a€Hyp (8) be complete, let L be a component of the real complement of W(A, )
and let 0=y €0L. Let m, be diffeomorphisms Y~ X continuous in x close to y such that m,
18 the identity and let I, be a smooth path in L ending at y. Suppose that, for some choice of I,

and the family ;, we have
z2€l, = p(A, x, ¥)* 37, f*

where 8* is a (n—2)-cycle in Y* avoiding A*. Then E(a,?, ) i3 holomorphically sharp at y
from L.

Proof. Tt suffices to show that I, has a neighbourhood L, in L such that when z€L,
is close to y, the class ¢, 5(4, 9, z)*€H,_,(Z*— A*U X*) contains a cycle y* which does
not depend on z. In fact, in this case the Herglotz—Petrovsky-Leray formulas show that
the derivatives of E(a,d, z) of order >m —n have holomorphic extensions from L, to a
complex neighbourhood of y. Now, by assumption, there is a (n —2)-cycle 8y = Y*—Y*n 4*
such that 7,85 is in the Petrovsky class f(4, z, #)* for all z€l,. It follows from Lemma
1.6.23 that if «’ is sufficiently close to suchan , then m,. f; =7, 77 ' v, B is in the Petrovsky
class (4, «', 3)*. Hence the previous statement holds for all z in a certain neighbourhood
L, of . Let y*=¢, By <Z*—A*U Y* be a small tube around S3. When « is very close to y,
this is also a tube in Z*—A*U X* around x,8; and hence y*€t, (A, z, 9)* provided, in
addition, z€L,. This completes the proof.

§ 11. Representatives of the Petrovsky class

Let a€Hyp (9) and € W(4, #). According to the general theory, representatives of
the Petrovsky homology class f(z)*=f(4, z, #)*€H, ,(X*— X*N A*) may be obtained
as follows. Let V(4, X, 9) be all real O®-vector fields

Re X536 > v(E)€ERe X
which are homogeneous of degree 1, 4>0=v(A&)=Av(£) and are such that

v(E)El(4,, )N Re X
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for all £. Then B(x)* is the homology class in H,_,(X*—X*N A*) of the image in projective
space of the cycles

(11.1) Re X3& > &—itv(§)

with £>0 sufficiently small, oriented by w.(£)>0. Here w,(£) is a (n—2)-form on X
defined by w(&) =d(z&) A w(£)+O(x£). The map or cycle (11.1) is said to represent the

class f(z)*. We shall now construct other maps with the same property.
LeEmma (11.2). Let S<R™2 be a (n—2)-sphere and a C® manifold and let
E:8->ES)cRe X

be a diffeomorphism and assume that every half-ray through the origin in Re X meets £(S)

precisely once. Let I be an interval around the origin in R and let

(=C@):8xI—+X
be a C® map such that {(0)=¢& and

(11.3) DE(0)ET(A,, 9)N X, D= —afidt,

for all & and let y(t) be the cycle
Ziy:8-X

oriented by w,(§)>0. Then y(1)*€P(A4, z, 9)* provided t>0 is small enough.

Proof. When [(t) =& —idtv(£), v(§) = DC(0), is linear in £, this is just the definition of §*.
Further, it follows from Lemma 1.5.9 (the inner continuity of the local I'-cones) and a

covering argument that

al& +@(€) —it(v(E) + (&) + 0

for all real &, all sufficiently small real functions ¢ and 1 of homogeneity 1 and all small
¢ #+0. Hence, if >0 is small enough, the maps {(t) and & —utw(£) are homotopic in Z—A4
and the lemma. follows. Note also that if U is an open subset of S and {,: U x I>X has
the desired property (11.3), then there is a : § x I>X satisfying (11.3) everywhere and
coinciding with £, on any given compact subset of U when ¢ is small. The proof goes by a
partition of unity and the interior continuity of the local cones.

We shall now use the preceding lemma to specify a situation where the generalized
Petrovsky condition holds. We shall encounter it both in § 12 and § 14.

A point ye€W(4,9) is said to be simple if y€EK(4,, &), ie. I'(4;,9)NRe Y =0,
implies that £ is a multiple of precisely one n€Re A. In case there is a finite number of

such rays E,, y is said to be quasi-simple. We shall only consider simple points but make
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occasional remarks about quasi-simple ones. Now, let L be a component of the complement
of the wave front surface and let y€2L be a simple point. Let l, be a smooth path in L
ending at y and, for z close to y define a projection n,: Z—X by m,£=£&— (=, &) (2, )14
where A€Re Z is not in Y. We are going to define a (n—2)-cycle y* in ¥*—Y*N 4* such
that 7, p* represents the Petrovsky class f(4, z, #)* when z€l, is close to y. This can only
be done under certain conditions and p* is obtained by deflecting a cycle y5 in
(Y*=Y*n A*)Un* from the point #*€A4*. Our conditions are now as follows.

There are orientable manifolds ((f), 6(f)<Y of dimensions n—2 and n—1, C®
functions of ¢ when ¢>0 and >0 respectively such that

(i) C(0)<Re Y is transversal to rays through the origin and contains +7.
(ii) There is a projective neighbourhood M* of #* such that, putting D= —d/ids
and letting & and y be corresponding points of [(0) and DZ(0),

w€l, or x=y, FEM* >m,y €E(A, ¢, 9)
when z is close enough to y, except when z=y, &*=n*.
(iii) There is a projective neighbourhood N* of 5* such that
LEy N A*NN* =9*, m,L)*N A*NN* =0
for all €, close enough to y and all small enough ¢>0. Also,
0ty N N* =L(t)*N N*
when ¢>0 is small enough.

(iv) For every small enough ¢>0 there is a projective neighbourhood N(f)*< V* of
7* such that

BN A*ONE)* =5*, m 0@ NA*NNE>* =0

when z€l, is close enough to y.
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The schematic figure 1 illustrates the relative positions of 0(0)*, £(0)*, A*, n*, N*.
LemMma (11.4). Under these hypotheses, E(a, 3,-) is holomorphically sharp at y from L.

Proof. Arguing as at the end of the proof of the preceding lemma, we may suppose that
{(0) is a sphere 8 around the origin in Re ¥ and that (ii) holds for all £€S. By the
preceding lemma we then know that to every x€l, close enough to y, there is a #(x)>0
such that 7r,{(t)*, oriented by w,(£) >0, represents the Petrovsky class (4, x, #)* when

0 <t<t(x). Also, given any neighbourhood M* of #* we can assert that
a LN (Z¥—M*N A* =D

when « is close enough to y and >0 is small enough. Combining this with (iii) it follows
that 7,((¢)* represents §(4, z, 9)* for all z€1, close enough to y and all sufficiently small
t>0. We now fix a £>0 and a neighbourhood N*(t) of #* according to (iv), chosen so that
ON*(t), 0(t)*, 00(t)* are in general position. Dropping the argument ¢ we then put
@*=0*N N*. Then dp*= —{*N N*+6*NON* so that
y*=C*+op* =(L*—C*N N*)+6*noN*

does not meet A*. Also, by (iii) and (iv), n,¢* N A*=0 when z €[, is close enough to y.
Hence, under the same hypothesis, 7z,* belongs to the Petrovsky class (4, z, #)*. Since

the class of y* belongs to H,_o(¥*— Y*N A4*), this shows that the local Petrovsky criterion
holds so that F is holomorphically sharp at y from L.

Note. When y€W(A, ) is quasi-simple, Lemma 11.4 holds provided the conditions
(i) to (iv) hold at every #*€A* such that y € K(4,,3). The proof is immediate and reflects
the fact that when x is close to y, E(a, &, -) can be written as the sum of a holomorphic

function and integrals extended over neighbourhoods of the points n*.

§ 12. Sharpness at points of the wave front surface with non-degenerate curvature

Let F be a conical regular hyper-surface in Re Z'=R", let y€F and let f(x)=0
with f,=grad f==0 at y be the equation of F close to y. Let f,, denote the matrix
(0%f/0x;07,) and f..[2] the corresponding quadratic form X (8%[ox;0m,)2;2, and put
f.2=2(0f/0x,;)z;. The curvature form of F at z is then the form f,[z] restricted to the
tangent plane f,z2=0. It depends on the sign of f. We assume that it is not degenerate.
Taking f to be homogeneous of degree m =1, an equivalent condition is that f,, be non-
degenerate. Then the map z—£&=f, is invertible close to ¥ and maps F locally onto its
dual surface F* defined by f*=0 where f*(&) =f(), & close to 7 ={,(y). It is easy to see that
F* is independent of the choice of f and m and for convenience we choose m =2 in the

sequel. Then f* has homogeneity 2 also. We shall see that the maps z—>&=f, and
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&—z={f, the matrices f,, and f; and the curvature forms of F and F* at corresponding
points are inverses of each other. In fact, £=f, gives df=f,.dx, i.e. 8/0E=f;'0/0, and
hence ff =1! (0/ex) f(x) = [z &=z frex =a. Also, ff:=0ff/0& =0x|0& =, ox[ox={. Finally,
putting u=/,.z we have f,[2]=f[u] and f,z=E& =& u=Efpu=ffu.

The present situation applies when F* is a neighbourhood of # in Re 4 and y is
simple point of W(4, ) so that F is a full neighbourhood of y in W(4, #). By Theorem
1.9.3, whose assumptions should include also the nature of F*, the fundamental solution
E(a,¥) is sharp at y from the side sgn f=const if and only if (sgn f)*=(—1)" where »
is the negative signature of the curvature form. We shall now see that this is equivalent

to the local Petrovsky condition.

TuEOREM (12.1). Let a €Hyp (3) and let yE W(A, I) be a simple point such that the
corresponding piece of Re A is regular with a non-degenerate curvature. Then, if E(a,d) is
C®-sharp at y from one side of W, the local Petrovsky condition holds there.

Note (12.2). Theorem 1.9.3 is proved in the real domain simply by using the method
of stationary phase to compute an asymptotic expansion of z— E(a, 9, z) as x approaches
y. The theorem above is a homological counterpart. It is intimately connected with the
classical Picard-Lefschetz theorem according to which one turn in Z around the complexifi-
cation of W induces an isomorphism of H, ,(X*—X*NA*) that takes §* into
B* L (f*, €*)e* where ¢*=¢(x)* is a so-called vanishing class and the parenthesis denotes
intersection number. The class ¢* is a tube around ode(x)* where e(zx)*€ H, 5(X*, A*N X*)
is another vanishing class introduced at the end of the proof. The condition that §* be
invariant, i.e. that (8(x)*, e(x)*)=0 is in the present situation equivalent to the local

Petrovsky condition.

Note (12.3). Theorem (12.1) shows that for non-degenerate points we have a topological
criterion for sharpness, If A* is non-singular then this accounts for most points (i.e. for a
dense open set of the wave-front set). Moreover we can also characterize sharpness at the
exceptional points by the criterion that «f should be invariant under the local
fundamental group =, (of the complement of the dual of A* in complex projective
space). The argument runs briefly as follows. Sharpness = invariance is a consequence
of the Herglotz-Petrowsky formula together with the Grothendieck theorem. For the
opposite implication we use the Picard-Lefschetz theory as above to extend over all
non-degenerate points and then extend over the remainder (having complex codimensions
2>2) by the Hartogs extension theorem for several complex variables. Note that the local

Petrowsky condition implies invariance under 7,, but the converse is a difficult unsolved
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problem in general. For singular 4* the wave-front set W contains many regions not
covered by our discussion of sharpness so far—notably W may contain flat pieces (open

sets in hyperplanes)—and our main aim will be to get information on these.

Proof. We can choose linear coordinates and the equation f*=0 of Re A at 7 such
that #=(1,0, ..., 0), y=(0, 1, 0, ..., 0) and when &,/&,, ... are small

(12.4) &) =268+ Qs ..., &)+ EH* (&lE, ...).

Here Q= —&—...—&+&,,+..., p=vr+2, is a non-singular quadratic form of signature

v and H* vanishes of order 3 at the origin. Hence
f(@) = 22, 2, + QY ..., ) + 25 H (24/,, ...)

where now x,/x,, &3/%,, ... are small and H vanishes of order 3 at the origin. We are going to
verify the hypotheses of Lemma 11.4.- First, let I, =1} consist of all x= (2, 1,0, ...)
with z; 40 small and given e=sgnz,. Since sgn f(x)=¢ for these z, they lie in a
component of the real complement of W (4, #) which we denote by L*. By Theorem 1.9.3,
E(a, ) is sharp at y from L if and only if ¢*=(—1)". Changing if necessary f to —f
it suffices to consider the case ¢=1. The projection 7z, on X will be given by n, &=
&—(z, E)(y, )4 where 1=(0, 1,0, ...). Hence

x€l, > m, &= (&, —2:61, &5, -.).
We shall first define the chain 0(¢), >0 small. It is given by the map
T, %, 8 > O(t) = (vs+it, 0, (vs +t)Tug, ..., Upyy, ...)

where 7= 41, 0<s<1 and uj, ... are real. The orientation induced by rduds >0, changes

with 7. The boundary 20(f) has two parts corresponding to s=1, 0, namely
(12.5) L@y =0, 1,7, u) = (v +1it, 0, (v +it)Tu,, ..., Upyyy, -..)

oriented by drdu>0 and
Lolt) = (it, 0, itTug, ..., Upyy, -..)

oriented by drdu <0. Changing the signs of 7, us, ..., %, does not change the range of
{o(¢) but changes the orientation by a factor of ( —1)?-1, Hence {,(¢) vanishes if and only if p is
even, i.e. if and only if E is sharp at y from L=L'. In the sequel we consider this case,
Put
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2 2 2 2 2 2
p1=us+ ...t U, Qz=Upg1t+ ...+ U

and measure the distance in projective space Z* of 6* = 0(t)* = 0(¢, s, Tu)* from 7* by p(0*)
where
0(6*) = o} + o3 [vs + it| 2.

Assuming o(6*) small we then have
(12.6) ¥ (71, 0) = (1 — &%) (aF + o}) — 2 itrs (x, + o) + O(1) |s + it [? (0%)°

We shall now verify the conditions (i) to (iv) of Lemma (11.4), {(f) being defined by
(12.5). The condition (i) is then obvious. To verify (ii) note that

—D{(0) =(1, 0, Tus, ..., 71, 0, ..., 0)

is homogeneous of degree 0 in
£(0) = (7, 0, us, ..., u,)

and that, close to +#, ['(4,, @) is at least a half-space. Changing if necessary 6(t) to

6(t) this means that it suffices to verify that there is a neighbourhood M* of #* such that
(12.7) f*(,0(0)) =0, Df*(7.{(0)) =0

implies that =y when 2€[,Uy is close to y and {(0)*€M*. A short computation using
(12.6) shows that, putting o? =g} +03, (12.7) implies

~ 24— i+ g3+ 0(g®) =0
— 22, =0+ 0(e%) =0

so that 2z, +92<c®o® with some fixed ¢ when g and =, are small enough. Hence x;, =¢ =0
or else p>c¢1. This proves (ii). The properties (iii) and (iv) follow in the same way
(with N(t)* independent of ¢) if we can show that f*(sz,0) =0 implies

1 +0(6%) < co(6*)°

for some fixed ¢>0 when z;>0 and g(6*)>0 are small enough. But this follows from
(12.6). We get, in fact,

(t+8)2(x, +01) +05 = 0(1) (¢ +9)%0(6%)

so that the desired inequality results by the definition of ¢(6*). Hence, by Lemma (11.4),

the local Petrovsky condition holds when p is even.
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We shall now prove the converse using the fact that there is a homology class in
H, ,(X*, A*) containing a cycle e(z)* contracting to the point #* as = belongs to 7, and
tends to y. This is the vanishing class of the Picard-Lefschetz theory and can be got as
follows. By the classical Morse lemma there are analytic coordinates&s =&, + ..., ..., &, =&, + ...
defined for small &,, ... such that Q(&,, ..., &,) + H*(&s, .-, ») =@(&3, ..., &) and hence, if
£1=1, ) =25 +Q(&, ... &) so that

f*(r8)= —22,— Q(&s, ..., &)
Define e(x)*< X* by the map (&, ..., &,)>7, & where
f*(m, £)<0, Reé&s=...=Re&,=0, Im¢, 1=...=0

and orient it in some way. Then de(x)*< A* and e(x)* contracts to #* as z, + 0. Next,
consider 77, ((t)*< X*—A*N X* parametrized by

(1, _xl, T§3, ceey T§p+1, (T+it)_1§p+1, ...)

with 7= 41 and small real &,, ..., &,. This cycle has two sheets that meet only at #* and
induce equal or opposite orientations of the manifold Im &, ... =Im £,=0, Re &,,,=...=0
according as p is odd and even. Also, close to n*, 7, {(t)* meets e(x)* only at 7.n*. Hence
the intersection number (e(x)*, . {(t)*) equals +2 or 0 according as p is odd or even. Hence,
if p is odd, the class of z,l(t)* cannot contain a cycle of the form m,»* where
y*< Y*—Y*N A*. In fact, every such cycle avoids a neighbourhood of #* and hence does

not intersect e(x)* when x; is small.

§ 13. Weak sharpness across plane parts of the wave front surface
We shall first define sharpness of general distributions across a hyperplane.

Let M <Re Z’' be an open part of the hyperplane x, =0, let N denote neighbourhoods
of M in ReZ’ and let N, be the parts of N where 2,>0 and =, <0 respectively. Let
C% (M) be the space of all f€C®(N _UN_) which have C® extensions f, from N, to
N,_UM. Such a function, then, has a C® jump f,(0, 2")—~f_(0, ") at M. Next, put

(13.1) O™ (M) = YO (M)

where OF °(M)=(8/0x,)*Co (M) with k an integer of arbitrary sign and (2/0z,)~*
denoting differentiation or integration in the distribution sense. The elements of (13.1)
are said to be sharp across M. Clearly, C% (M) > C*+1-©( M) is a filtration of the space (13.1)

and we have
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DA% (M)=CF = (M)
The intersection = (M)= UC*> (M)
k
consists of all 0 functions defined in neighbourhoods of M. Note that if f is a bounded
function close to M and all derivatives of f of some order p belong to C®*(¥ U N_) and have
C» extensions to N, UM and N_U M, then f€CO=®(M).

The class of €0~ (M) modulo C® (M) is called the jump of f and is denoted by
J(f). It is represented by an asymptotic series.

(13.2) TP~ S0, @)t fa), # = @ s %),

with coefficients f;€C®(M). Here 0, denotes successive derivatives and integrals of the

one-dimensional Heaviside function 6(f)=(1 +sgn ¢)/2 so that if k>0,
Bult) =0(0)F/kY, 6, (t) =5 ().

The formula (13.2) has to be taken in the sense that

k
(13.3) f=2 8z, (") ECHH-(M).
One verifies that the series is unique, that it vanishes if and only if f€C® (M) and that
(13.4) J(QD)]) =Q(D)J(f)

for all polynomials Q.

When n=1, M is simply the origin of the z;-axis and f€C-®'©(0) if and only if
f=1(z,) is sharp at 0 from both sides. When > 1, this statement is no longer true as shown
by the example f=6(x,)g(z’) where ¢ +0 is a distribution. In this case it is convenient to
introduce also a wider class of distributions f(z) in neighbourhoods of M with the property
that

(1, 9) (@)= ff(xp ') g(x') da’ €077 (0)

for all g€CY(M). We denote this class by C,* (M) where w stands for “weak”. Its
elements are said to be weakly sharp across M. Clearly, €, (M) > C-*-<(M) and the
example f=¢/l"I"1 €0 (M) shows that the first space is much bigger than the second.
When f if weakly sharp across M, the coefficients (f;, g) of the jump

J(, 9) = 2.0;(z)) (f;, 9)
are distributions in M and (13.2), (13.3) hold in the distribution sense. Of course, if
JEC— (M) and (13.2) holds in the distribution sense, then the coefficients f; are

C>-functions and (13.3) holds in the strict sense.
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Weak sharpness of fundamental solutions across hyperplanes
corresponding to conical points

Let a€Hyp (4, m) and let a, be the localization of ¢ at some 0<+xn€ReZ. The
point n* is said to be a conical point of Re 4* if the lineality L(4,) is minimal, i.e. if
L(4,)=Cn. It follows that only complete polynomials possess conical points and that a,
is a complete polynomial on Z/Cy. If the coordinates are chosen so that #=(1,0,...,0)
and p=m,(a) is the multiplicity of #, then # is a conical point if and only if ()=
£i™?a,(l') mod {,"*-1 where {'=(l,,...,{,) and a,=a, is a complete polynomial of
homogeneity p. The dual cone K(4,,) is then contained in and spans the hyperplane
2, =0. The following lemma shows that E(a, ¢, «) is weakly sharp across this hyperplane

and gives an explicit formula for its jump.

LemMma (13.5). Let a€Hyp (4, m), let n*ERe A* be a conical point and a, the cor-
responding localization. Choose coordinates such that n=(1,0,...,0), 9=(9,..) with

9,>0. Then the distribution
xz— E(a, 9, z)

18 weakly sharp across the hyperplane x,=0 and the asymptotic expansion of its jump is
(13.6) 3 On-p-s4s(ar) Hpsroyon (@)

where the indices denote homogeneity,

(13.7) Hyi1gn (@)= 0<1<}Q71(DI) B, )

and where the Q;, are polynomials given by the formal expansion of a()™" in terms of rational
functions whose denominators are powers of {, and a,,

a(Q)™ = 2 8§ a, ()" Qu(d).

oIy

Before proving this lemma we state a corollary involving hypotheses which imply
that (13.6) converges pointwise to the jump J(a, #, ) of E(a, #, x) across the hyperplane

2, =0.

CoROLLARY (13.8). Suppose that for all large k and some y =0 with y, =0, the functions
xz—~ B(a¥, 9, x) are holomorphically sharp at y from both sides of the hyperplane x, =0. Then
the asymptotic series (13.6) converges for small x—y to the jump J{a, &, ) =0,_, (%) H(x)
of E(a, ¥, x), H(x) being holomorphic at y. Note that since p <m, the jump is a locally bounded

function close to y, continuous when p>m—1.
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Proof of the corollary. Assume first that E is continuous across x; =0 at y. Then close
to y, then jump J(a, ?, z) is the function 6(z,)(E,(a, ?, ) — E_(a, #, x)) where E, denote
the holomorphic extensions of & from x, >0 and x, <0 respectively. The difference £, — E_
being holomorphic, a comparison with the weak asymptotic series (13.8) proves the
assertion in this case. Now, since a is a complete polynomial, E(a¥, &, -) is continuous for
large k. Hence the corollary holds for such powers. In the formula for the jump, this changes
m, p to km, kp. Since, by (1é.4), J(a, ?, x) = a*-Y{(D)J(a*, ¥, ) and a(D)= D7 "a,(D’)
mod DF~?71, the corollary follows.

Proof of the lemma. We have
a(l) =177 (a, (") = b(0))
where » =Ly - Cq)
and b=, 3 ().
Applying the identity
(A—B)y'=A4"'+BA'+...+ B A"+ B¥'4"""1(4 - B)!
with 4 =a,, B=b gives
a(Q) ' = ™ay +bay + .+ WYa N ) + BV e e
Expanding b in terms of {;, the first sum om the right equals

g™ 3 Qul) e, (vt

O<ISIN
and hence, since 9, >0,

(139) E(a, '19, x) =o<1<Z,<N 0m—p-—1+](x1) th (D') E(aﬁ,“, 19" x/) + F(x)
where F(x) - (2 n)—nfeiJCb(c)N+la” (CI)_N_IQ(C)-]dC

with {=&—143. Here the last integrand is majorized by

O(l& M ™)
and hence, if geCY (R*™Y),

fF(x) 9(z’ydz’ = O(|z, [N Y).
Since the terms of (13.9) with j>N —m +p satisfy the same inequality, the lemma is

proved.
13 —~ 732907 Acta mathematica 131, Imprimé le 11 Décembre 1973
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§ 14. Holomorphic sharpness across plane parts of the wave front surface

We shall now state and prove the main result of this chapter. Recall that if
a€Hyp (4), the reduced wave front surface W(A4, #) is the union of the local propagation
cones K(Ag, d) for & real not in L(A4).

THEOREM (14.1). Let a €Hyp (9), let 04n€ERe A be a conical point and let
(14.2) ' yeK(A,, 8)—W(A,, D)

be a simple point of W(A, #). Then, for all k>0, E(a*, D, -) ts holomorphically sharp at y from
both sides of W(A,3).

Note (14.3). The theorem is almost immediate when n=3. In fact, then (14.2) means
that the line Re Y* does not touch any branch of Re 4* (or 4*) at #*. When « approaches
¥ in such a way that Re X* has the same property then, since y is simple, the non-real
part of A*N X* stays away from Re X* while som of its real points collapse. Hence the
assertion of the theorem follows from Example (10.3).

Proof. We are going to verify the hypotheses of Lemma 11.4. Let us choose

coordinates so that
n=(,0,..,0), y=(0,1,0,..,0), 4=(1,1,0,..,0)

Then, close to y, #, =0 is the equation of K(4,, ?). We let I; be the lines x=(x,, 1, 0, ..., 0)
with sgnx,=¢ and x; small and let L* be the corresponding component of the real
complement of W(A,#). The projection w,: ¥~ X is defined by =, &=&— (=, £)(y, 1)~1A
where 1=(0, 1, 0, ...). In particular,

xEl;, Ee Y 3”15 = (51: _xl’ 537 ey én)
We shall now choose the chains {(t), 6(()< Y of Lemma 11.4. We put
L) =E—ity, 6() = £—itw

with >0 and &, y, o real and depending on certain parameters. The chain {(0) =& should
contain +% and be transversal to rays through the origin. We put £=(r, 0, u) where
=21, u=(ug, ..., u,) ER"2 We should now have y€I'(4,,J) when £ is close to +7.
Since a and A4 are approximated at # by their localizations b=a, and B=4,, a

reasonable choice of y is to take real homogeneous C® map u—v{u)€ER"2 such that

2 =(%,0, v(u) E['(Bg, 9)
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for all w. By virtue of (14.2) this is possible and, since @, is independent of the first

7
coordinate, we can here replace the star by any number. We now put x = —ag and, for

technical reasons, replace w by gu where |u|=(uj+...+u)*=1 and ¢>0. This gives
mE=(1, —ay7, 0u) My =(—o0e, |z, ov(u))
where, since (0,1, 0, ..., 0)€I'(B, )
|2,| +0>0 =7,y €T(By ¢, 9)

if «>0. Further, if a— o, {(f)* contracts to the point (—e¢, [z,[, 0, ..., 0)* which is &
good reason for constructing 6(t) from ((¢) by replacing the parameter « by a variable

B> o. Finally, we shall put
£(t) = (v +eode, 0, o(u —itv(u)))

where 7=+1, p>0, w€R""? with |u|=1 are variables and ¢>0 and a>0 parameters at

our disposal. Also, with the same { and «,
0(t) = (7 +1fte, 0, o(u —tv(u)))
where the variables are 7, g, u, > a. In all this,
(14.4) 0, 0, v(w)) €TY(By, 9), & = (1, 0, u),
for all v and u. Then, with I={r;7=+1},
t@): Ix B—2=Y, 6(t): IxR-2x{B;p>a}>Y

are orientable manifolds as required by Lemma 11.4 and 20(¢) =(¢). The verification that
they have all the desired properties (i) to (iv) of this lemma depends on another lemma to
be stated now and proved later. Let p be the homogeneity of the localization a,. We
introduce the polynomial

(14.5) h(s, u, z2) =z"%a(l, zs, zu)

and factor off those zeros of s—h(s, u,2) which are close to the zeros of s—a,(s, u)
when z€C is small. We get

(14.6) h(s, u,z)= If[ (s+ A, (u, 2)) H(s, u, 2)

when 2, zs are small and u bounded. Here 4,, ...,4,, H are continuous functions and
H 0. This gives
D

(14.7) a(éy, &a, u) = 1:1 (&2 + 0 (u, 2)) 77 H(E5/4y, u, 2)
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where z=p/§, and &,/§, are small and % is bounded. In the lemma that follows, u, v{u)

are as in (14.4).

LeMMA (14.8). Consider the functions t, z, u—>w=2A(u+tv, z) when Im t =0 and t, z€C
are small. There are positive numbers ¢, ¢,, ¢y such that

(14.9) [t] <ec, |z] <e¢, |Imz| <¢|Im¢]| = |Im w| <¢,|Im ¢
(14.10) same hypothesis and |Re w| <c¢ =Im w/Im ¢ > c,.

If a function t—2z(t) is small af the origin, analytic in ¢ and real for real argument,
then the functions t—w(t) = A, (u -+ tv, 2(8)) are differentiable at the origin and hence, if z=2(t)
also satisfies the above hypotheses, then D Im w(0), where D= —id/dt, is majorized according
to (14.9) and (14.10).

Verification of the hypotheses of Lemma 11.4 (i) Obvious. (iii) The last part is obvious
since {(t)=00(t). Factoring according to (14.7) we get

a(m, Lty = (Il;[ Ay (t+iade)y"PH(— 2;, 4, 2)

where
(14.11) Ay = ~—z (7 +itae) + oA (u —ity, 2), z=p(7 +itog)?
so that Re Ay= —zv+o Re dy, Im A= —t|2;|a+p Im 4.

Since |z| < and |Im z| <p« |t|, (14.9) and (14.10) of the lemma show that, if a>1,
(14.12) 0<t<c, pa<c, |2| <c=|ImA| <,
(14.13) same hypothesis and |Re 4| <c¢ =Im 4, < —c,t.
Hence, under the hypotheses of (14.12), we have the logical chain
Ae=0=|Re ] >c=|2;|>co=Im A, < — max (|2,], cp) ot + ¢, ot.

But the chain is contradictory when ca>c¢, and |z,| +¢>0. Hence there is an a>1,
e.g. a=(c, +c)/c, such that a(x,((¢)) +0 when |x,| +0>0 and ¢>0 are small enough. This
proves (iii).—(iv) Repeat the same arguments with «>1 fixed as above but now also
with some fixed small enough ¢>0 and with z=g(v+ifef)~t. Then |Imz|<ct is
equivalent to gf(1 +f%¢2)~1 <c and this is true for all $>0 if, e.g. o <cf. We arrive at the
conclusion that a(z,6(t)) +0 for every fixed small enough ¢>0 when |z,| +0>0 is small
enough depending on ¢. This proves (iv).—(ii) Let «>1 be as under (iii), let §=0 and
#'=(0,1,0, ..., 0) and consider
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Ca(t) =7, () —upd’.
Factoring according to (14.7) we get, when ¢>0 and z, ft are small
a(l, () = Iﬁ (Ay,— ##B) (v + itae)" PH(— % ,u —itv, 2)
where x = —x, —ift(r +itee) ! and A,, 2z are as in (14.10). By the lemma, the functions
t-> A, —itp are differentiable for =0 and (14.12), (14.13) show that
(14.14) ox<c, || <c=|DImi|<c¢
(14.15) same hypothesis and |Re 4,| <c = DiIm 4, >c,
where D= —id/dt taken at t=0. We claim that
(14.16) A —itf=0=D(A,—itf) >0
when |z;| +9>0 is small enough. In fact,
D(Ay—itp) = ||+ 8+ Di Im 4,

is positive when the last term is positive and hence, in view of (14.15), we need only
consider the case |Re 4| >¢, Ay —itf=0, in particular |z,| =gp|Re 4] > gc. But then, by
(14.14),

D(Ay—itf) > max (|z,|, co)a+B—cy0,

which, by our choice of « is positive for all >0. Now by (14.16), the degree at zero of the
polynomial ¢—>a({.(t)) is independent of the choice of § and, when g is large,

—Im ,(¢) =t(—ae, |2;| a+p, ov(w))

belongs to I'(4,, #) and hence also to T'(4, ¢, #) when |z,| +¢ is small. It follows that,
putting
x = Di(0) = (—az, 0, gv(u)), & = (7, 0, gu),

then 7,y €I'(4, ¢, #) when |2;| +¢>0 is small enough and this proves (ii).
Proof of Lemma 14.8. Since a€Hyp (#), h as defined by (14.5) belongs to
Hypioe (@), =(1,0, ..., 0) and (14.6) gives

h(s, u +tv, 2) =I—p[(s +2.(u+tv, 2)) - H(s, u+tv, 2)
1

when s, 2s, t are small enough.Hence (14.9) follows from Corollary 15.16. To prove (14.10)
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we shall use Theorem 15.19. Let £ =(0, u, 0) and define S by |u| =1, u real, put { =(s, 0, 2)
and
K= {((Im s),, v(u), 0)ET(T¢ Ph, ¥')}.
Then, by the theorem quoted,
(14.17) h{ps, pz, o(u +1tv)) =0

when >0, s, 2, ¢, (Im s)_/Im ¢ and Im 2/Im ¢ are small enough. Now, by the definition
of A, (14.17) is equivalent to (s, p2z, +tv) 40 and hence it holds with p=1 when s, 2, ¢,
{(Im s)_/Im ¢, Im z/Im ¢ are small enough. But this is just another way of stating (14.10).
To prove the last part of the lemma we remark that the functions t—>w(t) can be developed
in Puiseux series for small ¢ and that if all these series are real for real argument, they must
be power series.

This finishes the proof of Theorem 14.1 and we proceed to an important corollary.

TuEOREM (14.18). (a) Under the hypotheses of Theorem 14.1, lei p be the homogeneity
of a,. Then the jump J(a*, &, x) of E(a*, &, x) at y across W (A, 9) equals Orpm_py—1(n%) Hypyy_n()
where the indices indicate homogeneity and H 1is holomorphic.

(b) Suppose in addition that the Petrovsky condition for a, holds at y, namely
(14.19) B(Ayy, =0 in H, o(¥*—Y*n A%)

where a, is considered as a polynomial in Z mod Crn. Then H,,,, .(x) is a polynomial. In
particular, if kp<n-—1, E(a*,®, -) is holomorphic across W(A,d) at y and if Q&) is a
homogeneous polynomial vanishing q times when £ = and if ¢ > kp + 1 —n, then Q(D) E(a*, 9, *)
s holomorphic across W(A,9) at y.

Proof. (a) This is just a restatement of Corollary 13.8 whose ssumption holds by virtue

of Theorem 14.1.
(b) Since the Petrovsky condition (14.19) holds, the fundamental solutions E(a,*!, 2’,8")
(notation of Lemma 13.5) are polynomials near y’ so that, by virtue of (13.6), (13.7),

Ly, n(x) is a polynomial. The same argument works for powers of a.

Application to hyperbolic first-order symmetric systems

Put B(£) =3} B, where the B, are hermitian m x m matrices, let #€Re Z and as-
sume that B(#)>0 is positive definite. Then a(£)=det B(£) belongs to Hyp (¢, m) and
the fundamental solution of B(D) with support in K(4, ) is E(B, #, z)=C(D) E(a, &, )
where C(£) is the matrix of minors of B(£). The homogeneity of C(§) is m—1 and, by
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elementary spectral theory, when % is so close to & that B(y)>0 and if {—~a(tn+§)
vanishes k+1 times for some ¢, then t—C(ty+£) vanishes at least k& times for the same
value of . Hence this is true independently of ¢. In particular, if a, y, 5, 8*=4(4,, y, 9)*
meet the requirements of (b) of the preceding theorem and @(§) is an entry of C(£), then
g=p—1>p+1—n when n>2. Hence, if n>2, E(B,#, x) is holomorphic across W(4, ¢)
at y. When »n=3, the condition on f§* is automatic so that in this case E(B,¥, x) is
holomorphic across all plane parts of W(4, #)=W(det B,+}). Hence we have the inclu-
sion from left to right, first observed by Bazer and Yen [4] of the following

THEOREM (14.20). Let B=2X3 B,£, be as above and let a(£)=det B(§). Then
SSE(B,,-)=closure of U K(dg &),

ns(a)=1
Here ng(a) is the reduced dimension of a; so that the right side is indeed W(det B, )
minus its relatively open plane parts. That the left side cannot be smaller than the right
side is an easy consequence of the Localization Theorem 1.4.10. The details are left to the
reader.

§ 15. Local hyperbolicity

A homogeneous polynomial a(£) is, by definition, hyperbolic with respect to ¢€R"
if a(#) +0 and the equation a(£ +#%) =0 has only real roots ¢ for real £&. We shall now study
the situation when only all the small roots, i.e. those tending to zero with &, are required
to be real. This gives us the notion of local hyperbolicity. We shall study it here for its own
sake and in order to prove two results (Corollary 15.16 and Theorem 15.19 below) that

have been used in the preceding paragraph. The basic definitions are as follows.

Definition (15.1). Let 4 be the space of functions i(£), £€C", analytic at the origin
and, when k€4, define its principal part Pk as the first non-vanishing term %, in the
expansion h=2Xh; of k in terms of polynomials %, of homogeneity k. The number m is
also called the degree of & (at zero). An k€ A4 is said to be locally hyperbolic with respect
to #ER™ if

(15.1) EER" Tmt 40 = h(& +t8) +0

when &, ¢ are small enough. When the degree of % is m, the class of these functions will be
denoted by Hyp,, (¢, m) and by Hyp,., (#) when the degree is not specified.
We shall see later that (15.1) implies (1)

(15.2) Ph(9) +0.

(1) This was pointed out to us in May 1973 by T. Kawai and M. Kashiwara. Our original defini-
tion required both (15.1) and (15.2).
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If » is a homogeneous polynomial, (15.2) holds without restriction if it holds for
small £, ¢ and says that A is hyperbolic with respect to ¢, i.e. R€Hyp (). Hence Hyp (9)
and Hyp (9, m) are precisely the homogeneous elements of Hyp,, (#) and Hyp,,. (9, m)
respectively. Since r—"h(r(£ +t3)) tends to Ph(& +t9) when »—0 and m is the degree of k,

(15.2) shows that
h€Hypioo (9) = PREHyp ().

We shall now put I'(h, ) =1'(Ph, 9),

where, by Definition 1.3.14 and 1.3.21, the right side is the component of the real comple-
ment of the real hypersurface Ph(£)=0 that contains &.

Note. Local hyperbolicity has also been considered by K. G. Andersson (1971). His defini-

tion is essentially the same and he proved the Main Lemma below.

The continuity lemma

All the properties of locally hyperbolic functions that we shall state and prove
depend on two elementary facts: (1) the small zeros of a convergent power series f in one
variable are continuous functions of f when one of its coefficients stays away from zero
and the preceding ones are small (2) a Puiseux series which is real for real argument
is a power series.

We shall first use the second fact to prove (15.2). Fix £€R" such that Pk (£)=0 and
consider the function f(s, s) = h(t# + s£) of two small complex variables ¢ and s. Since, by
(15.1), f(¢, 0) does not vanish identically, f(¢, 0)=ct™(1 + O(#)) for some c=+0 and some in-
teger m and hence there is a factorization f(¢, §) = F(¢, s) [ I (¢ + A, (s)) where F is analytic
at the origin, F(0,0)= ¢ and the 1,(s) are Puiseux series without constant terms. By virtue
of (15.1) they are real for real s and hence they are ordinary power series, 4, (s)= O(s).
This shows that the degree of f(t,s) is m so that P (t,s)=Ph(t®+ s£). In particular,
Ph(3)=Pf(1,0)=c=+0.

Both facts above will now be employed to prove a lemma that will be used many

times later on.

CoNTINUITY LEMMA (15.3). Let s, t€C, u€RM, vERY. Suppose that f(s, t, u, v) is
analytic tn s, t and continuous when s, t, u are small and v belongs to some connected compact
part K of RY. Suppose that

(i) the degree of t—£(0,t, 0, v) at the origin is constant for all vEK.
(i) Im sIm >0, Im s=+0=f(s, t, 0, v) =0
when s, t are small enough and vEK
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(iit) Im s=+0, Tm £=0=f(s, ¢, u, v) =0

when s, t, w are small enough and vEK.
Then

(iv) Im s Im £>0, Im (s+2) =0 =>f(s, £, u, v) +0
(v) s—=>f(s, 0, u,v) and t—>f(0,t, u, v) have the same degree at the origin when s, ¢, u
are small enough and vEK.

Note. When {(0, 0, 0, v) %0 for all » in K, the conditions are fulfilled but the conclu-
sions are void.

Proof. According to (i), f(0, ¢, 0, v) =c,(v)t* +higher terms where p>0 is an integer
and Icp(v)| has a positive lower bound on K. Hence the analytic function t—f(s, t, u, v)
has precisely p zeros t= —A4,, ..., —A,, continuous functions of s, u,v that tend to zero

with s, 4, uniformly when v€ K. Hence
D

(15.4) K5, t, 4, 0) = 6, (0) L1+ A (s, w, 0)) Fs, t, %, v)
1

where 4, ...,4,, F are continuous for small arguments and F(0,0, 0, 0)=1. According
to (ii),
Ims>0=ImA s, 0,v)>0,1<k<p,

when v€K and s is small and according to (iii),
Im s>0 = Im A,(s, u, v) =0, 1 <k <p,

when v€K and s, u are small. In other words, when s, # are small and Im s>0, none of
the numbers 4,, ..., A, cross the real axis and when % =0, they all lie in the upper half-plane.
Hence they are always in the upper half-plane. The same argument with Im s <0 also

works and hence

(15.5) sgn Im Ay s, u, v) =sgn Im s

for all s, u,v, k¥ when Im s==0 and s, » are small enough. Combining (15.4) and (15.5)
we get (iv). By classical function theory, the functions s—A4,(s, 4, v) have convergent

Puiseux series expansions
(15.6) A(s, u,v) =2 ¢,y 1<k<p,
[
when v€K and s, » are small enough. Some reflection shows that (15.5) and (15.6) are
consistent if and only if
Ads, w, ©) = 2,(0, u, v) +c(u, v)s +0(s?)

where all ¢,>0. Inserting this into (15.4) proves (v). More precisely, the degree at the

origin of #—>f(t,0, %, v) and s—f(0, s, u,v) equals the number of vanishing 4,(0, u, v).
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The main theorem

The most important properties of locally hyperbolic functions follow from the conti-

nuity lemma. We shall first prove
Maix LemMMA (15.7). Let h€Hyp,,, (#) and let K be compact part or I'(h,9). Then
(15.8) EER™, n€K, Im s Im ¢20, Im (s+1t) +=0 = h(&E+s0 +1n) 0
(15.9) s = h(&+59) and ¢ - W& +tn) have the same degree at zero
when £, s, t are small enough. When h=Ph, these statements hold without restriction.
Proof. Let b have the degree m. The function
f(s, &, u, v) = r—""h(r(§ + 58 +in)),

where u=r, & and v =1, satisfies the requirements of the continuity lemma. In fact, since

I'(h, ¥) is connected, K can be assumed to be connected,
#(0, ¢, 0, v) = Phity) = t"Ph(y)

shows that (i) holds, (iii) holds by definition and (ii) since

f(s,t,0,v)=Ph (s +tn)=Ph (19)1:1 (s+t2;(n, 3)

where, by the definition of I'(Ph, §), all numbers A,(z, ) are positive. The last statement
of the lemma follows since Pk is homogeneous.
We can now state and prove the main result. When A(() is a function defined close to

£€C", we denote by Tk the function A transported to 0, i.e. the function
n— Tgh(n) =h(E+n)

defined in a neighbourhood of the origin. When % is a homogeneous polynomial, its
localization at & as defined in Part I (Definition 3.36) is then h;=PTh.

MaiNn THEOREM (15.10). Let h€Hypy, (#). Then I'(h,#) is an open convex cone
containing 9 and, if K is a compact part of I'(h,9), then

(15.11) n€K = T¢h€Hyp,y (1)
(15.12) Tk, ®)>K

when £ ER™ is small enough. If h=Ph is homogeneous, these statements hold without restriction.
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Note. The statement about I'(k, &) =1'(Pk, #) is of course part of the theory of hyper-
bolic polynomials of Part I.

Proof. That Im ¢t+0=h(&+{+in) =0 when n€K and when & (ER" and ¢ are small
enough follows from (15.8) and (15.9) shows that PT; k() +0 on K when K contains .
Hence, since K can be chosen to have a non-empty interior, the degree at 0 of
t—>h(§+1tn) is also the degree of T h. Hence (15.11) and (15.12) follow. When A is
homogeneous, both these statements are of course valid without restriction. The
formula (15.8) applied with £=0 and A replaced by Pk shows that I'(h, #) is star-shaped
with respect to ¢ and hence according to (15.11) with respect to all its points and hence

convex. This finishes the proof.

Two corollaries

Before proceding further we shall give two corollaries of the Main Theorem. The
first one uses a slight variant of the definition of inner and outer continuity (Part I, p. 151)
which we shall employ also later in this paragraph. A function 7— C, from a topological
space to open sets in R" is said to be inner continuous at 1, if every compact part K of R"
contained in C,, is also contained in O, when 7 is close enough to 7, When the sets C,
are compact, the function is said to be outer continuous at 7, if every open part N of R*

containing C,, also contains C'; when 7 is close enough to 7,. Our first corollary is

CoroLLARY (15.13). When h€Hypy,, (9), the function
(15.14) R*35->D(Tch, 9)
s tnner continuous for all sufficiently small &. When h=Ph, this is true without restriction.

Note. The last statement is identical with Lemma 5.9 of Part I in the special case
and when a=b>. The key lemmas 5.1 and 5.9 of Part I are in fact consequences of the

continuity lemma.

Proof. According to (15.12), the function (15.14) is inner continuous at the origin
and hence by (15.11) for all sufficiently small & The proof of the last statement is left to
the reader.

Our second corollary has to do with the factorization

(15.15) WE+ty) = PR L (¢ + 406, ) HCE, & )

where h€Hyp,,, (#) has degree m and 5 €T(Ph, ). A special case of it (when =3) has
been used by Bony and Schapira [5] who deduce it from a theorem by Kashiwara.
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CoroLLARY (15.16). Factor h€Hyp,,, (&, m) according to (15.15). Then
€3¢0 =1Im A&, ) = O(|Im £])
locally uniformly when n€L'(Ph, 9).
Proof. According to (15.11),
B +ity) = h(Re £ +i(ty +Im &) +0

when &, £ are small enough, ¢ =0 is real and 7+t Im & belongs to a given compact part
of I'(Ph, ).

A sharpening
We shall now sharpen the Main Theorem (15.7) by permitting # to depend on §&.
LemMma (15.17). Let h€Hyp,,, (9), let S<R"—{0} be compact and let
83&—> K < I(T;Ph, )
be an outer continuous function whose values are compact sets. Then
(15.18) >0, €R" m€K;, Im ¢ +0 = h(o(§++1n)) +0
for all £€8 and all sufficiently small C, t, o.

Proof. Since the function &—I'(T ¢ Ph,¥) is inner continuous and S is compact, there

is an outer continuous function
RNE) §—>K§‘ <I(T¢Ph, )

such that K} is a neighbourhood of K, for all £ We could for instance let K7 consist of
all 7 whose distance to K; is <e where ¢>0 is sufficiently small. Consider the function

(s, t, u, v) = 0~"h(o(& + +s9 +1tn))

where m is the degree of h at the origin, w=(g, (), 00, ER", v=n€K? and £€8
fixed. The hypotheses of the continuity lemma are then satisfied. In fact, the degree

at 0 of
t—f(0, ¢, 0, v) =Ph(&+itn)

does not depend on # and, according to the Main Lemma,
ImtIms>0,Ims>0=fs,¢0,v)=Ph+sd+in) £0

and, finally, Ims=+0,Imé¢=0=f(s, ¢t u,v)+0
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when g, s, £, £ are small enough. Hence, by the continuity lemma, (15.18) holds when
& is fixed, €K} and , o, t are sufficiently small depending on & But Kf > K;.; when
Z9R" is sufficiently small and hence

0>0, CER", €Ky, Tmt =0 = hig(E+¢ +tn)) £0

for every £€8 when (,t,p are sufficiently small depending on & A covering of §
completes the proof.

Finally we shall give the lemma in a form convenient in the applications.

TaEOREM (15.19). Let hEHyp,, (9), let S be a compact part of R*— {0} and let
83&—> K < (T ¢Ph,9)
be as in the previous lemma. Then
0>0,£€8, n€K,, L€C", Imt =0 =hiop(§++tn) +0
when o, t, Re { and Im {/Im ¢t are small enough.

Proof. We have
E+L+tn=E+Re ({+in)+¢ Im ¢(n+Im {(Im t)72)

so that the theorem follows immediately from the lemma.
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