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Introduction 

Par t  I of this paper was published in 1970 (see the References [2]). Some of the 

results on lacunas of hyperbolic operators announced there depend on the fact, proved in 

all generality by  Grothendieck [12] tha t  the cohomology of a non-singular affine algebraic 

variety can be calculated from its rational differential forms with poles at infinity. 

Actually, a more precise result was needed putt ing a bound on the order of the poles. 

This result is now proved in Chapter I of this paper. I t  starts with a general account of 

the whole subject using only the basic results by  Serre on algebraic coherent sheaves and 

Hironaka 's  resolution of singularities. For curves in the projective plane the results are 

final (w 6). To obtain the desired bounds on the order of the poles, we use Grothendieck's 

generalizations of Serre's theorems to the framework of schemes. 

In  Chapter I I I  we investigate the behaviour of the fundamental  solution of a hyper- 

bolic differential operator near the wave front  surface. I t  starts with the observation 

that  the fundamental  solution has an analytic continuation across the wave front surface 

-from a given side and at a given point y provided the Petrovsky homology class avoids 

the intersection of the corresponding hyperplane and the characteristic hypersurfaee. This 

condition is called the local Petrovsky condition. The global counterpart,  appropriate 

when y is the origin, is simply that  the Petrovsky class vanish. We use the local 

Petrovsky condition to verify, among other things tha t  the fundamental  solution has 

holomorphie extensions from both sides of a hyperplane par t  of the wave front surface 

provided one keeps away from the wave front surface (in the hyperplane) of the cor- 

responding localization of the differential operator. There is also a formula for the jump 

of the fundamental  solution across the hypcrplane which shows t h a t  the singular support  

of the fundamental  solution does not contain lacunas of the localization provided certain 

conditions of homogeneity are satisfied. This result connects the local Petrovsky condi- 
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t ion  with the global Pe t rovsky  condi t ion in  one lower dimension.  I t  is p robably  one of 

the keys to a complete inves t igat ion of the supports  and  singular supports  of f u n d a m e n t a l  

solutions of homogeneous hyperbolic differential  operators. 

The last paragraph of the paper,  ent i t led Local hyperbolici ty,  is there to take  care of 

certain technical  difficulties in  the verif icat ion of the local Pc t rovsky  condit ion.  I t  

can also be read independent ly .  An  expanded version wr i t ten  by  L. Gs [8] has 

appeared in  the Israel  Jou rna l  of Mathematics.  

Apar t  form this general in t roduct ion ,  all our three Chapters have in t roduc tory  

paragraphs  giving motives and  ma in  results. 
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CHAPTER I. HOMOLOGY OF ALGEBRAIC VARIETIES 

w 1. Introduction 

Our aim in  this  chapter  is to give an  exposit ion of the "algebraic" de R h a m  theorem, 

which asserts t ha t  the cohomology of a non-s ingular  affine algebraic var ie ty  can be 

calculated from the complex of algebraic differential  forms (i.e. holomorphic forms with 

only poles at  c~). Since an  affine var ie ty  is a special k ind  of Stein manifold,  this  theorem 
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can be regarded as a strengthening of the theorem tha t  the cohomology of a Stein 

manifold is given by  the complex of all holomorphic differential forms (with no restrictions 

at ~ ) .  As is well known the theorem for Stein manifolds is an easy consequence of the 

holomorphic Poincar4 Lemma and the vanishing theorem for cohomology of coherent 

sheaves (the famous Theorem ]3 of Cartan). In  the algebraic case the proof depends simi- 

larly on a kind of Poincar~ Lemma at  co and on the Kodaira vanishing theorem for 

projective varieties: the essential point is tha t  we must  work with some projective 

compactification X of our aff ine variety X. In  the simplest case X c C  N, XcPN(C ) and 

and Y = X - X  are both assumed non-singular. Because Y (the par t  a t  co) is non- 

singular the "Poincard Lemma at  co" is easily dealt with. Because Y is a hyperplane 

section of ~ the Kodaira vanishing theorem applies and the de Rham theorem then 

follows. This proof is due to At iyah-Hodge [3], as is the slight generalization in which Y 

is a union of non-singular components which meet  transversally (normal crossings). In  

general it is not possible to embed X in C N so tha t  X, Y have the above simple properties. 

However, Hironaka 's  basic theorem on the resolution of singularities asserts tha t  we can 

find a non-singular compactification X of X so that  Y = X - X  has only normal crossings. 

We must  however drop the condition that  Y is a hyperplane section of )~ (i.e. the com- 

pactification is not induced by  CNcPN): in fact X is obtained by taking any  compacti- 

fication -~ (induced say by CNcPN) and then blowing up the singularities of ~: a t  co. 

Locally at  oo we are in as good a situation as before but  the Kodaira vanishing theorem no 

longer applies. However Grothendieck [12] observed tha t  there is a slightly weaker 

vanishing theorem tha t  can be proved in this case and is sufficient to prove the general de 

Rham theorem. 

Since Grothendieck's t rea tment  is rather concise we shall give here a complete proof of 

the algebraic de Rham theorem (on the lines indicated above) using only the basic results 

of Serre [17], [19] on algebraic coherent sheaves, and of course Hironaka 's  resolution of 

singularities. 

As explained in Par t  I, we also need some refinements and extensions of the de 

Rham theorem. In  one direction we need to consider algebraic families Xt (tET, 

algebraic) and to prove that  the cohomology of Xt can be obtained from forms with 

poles of order/c at  oo where k is independent o/t .  In  application X t = P n -  Yt where (Yt~ 

is the family of all hypersurfaces of degree m. To get this bound we need to put  a para- 

meter  into our proof and we then need the analogoues of some of Serre's theorems 

"with parameters".  Such questions fall naturally into the framework of Grothendieck's 

"schemes" and we shall need therefore to use Grothendieck's generalizations of Serre's 

theorems (notably the finite-dimensionality of cohomology on projective varieties). 
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In  the preceding theorems the bound on the order of pole required depends on 

(a) the resolution process and 

(b) the vanishing theorem. 

I n  the non-singular case when ( a ) i s  not required it therefore depends only on (b). I f  

moreover we are dealing (as in our applications) with hypersurfaees in projective space, 

then the vanishing theorems are explicit enough to give explicit bounds for the orders of 

pole. In  these cases therefore we get more explicit results and these in turn give more 

refined results on lacunas. 

In  low dimensions (essentially curves in the plane) it is possible to obtain the refined 

results without assuming non-singularity. This leads to correspondingly strong statements 

for lacunas in low dimensions. For the convenience of the reader we shall collect in the 

next  section the various technical results on sheaf cohomology tha t  will be required 

(mainly the use of spectral sequences) and in w 3 the basic results from algebraic geometry 

tha t  will be required (Serre, Grothendieck, Hironaka). The remaining sections will then 

be devoted to deducing the algebraic de Rham theorem and its various refinements. 

w 2. Sheaf Cohomology 

A general reference for this section is Godement [9]. 

We recall tha t  a sheaf S on a space X has eohomology groups Hq(X, S) q>~O, tha t  

H~ S) = F(X, S) is the space of sections and that  an exact sequence of sheaves 

O ~ S ' ~ S - + S ~ O  

gives rise to a long exact cohomology sequence 

0 ~ H~ S') ---> ... Hq(X, S') ---> Hq(X, S ) ~  Hq(X, S")JLHq+I(X,  S') . . . .  

The H a are defined in general using a resolution of S by  injective or f labby sheaves. 

However in certain situations, notably when X is paracompaet  Hausdorff, the H q can 

also be defined by  the ~ech method using open coverings. We recall tha t  if ~ /=  {~/~} is an 

open covering we can form a cochain complex C*(X, ~/) where Cq(X, "U) consists of alter- 

nating functions 
(io . . . . .  i~) ~ / ( i o  . . . . .  i~) e F (~ ,0  n ... ~,~, S), 

and tha t  the (~eeh groups /4q are defined by 

Hq (X, S) = lim H q (C* (~, S)). 

Moreover if for every subset (i o . . . . .  iq) (and all q) we have 
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(2.1) H~(~ . f )  ... ~t~,$) = 0  for p~>l 

then the limit is unnecessary and 

Hq(X, S) = H'(C*(?L S)). 

The de Rham theorem on a manifold is concerned with the complex ~* of dif- 

ferential formsi 

0-~ ~~ d-~ ~1 d-~ ~ - ~  .... - + ~ - ~ 0  

and the proofs of the various de Rham theorems are simplified by  using the notion of 

hypercohomology of a complex of sheaves. This is a generalization of the cohomology of a 

single sheaf, and reduces to it when the complex has only one non-zero term. The 

general definition of hypercohomology is due to Cartan-Eilenberg [7] and involves 

using a special kind of resolution for the complex. As with ordinary cohomology there is a 

~ech definition which works on paracompaet  Hausdorff spaces and is easier to define. 

For any  open covering ~ of X and any complex ~* of sheaves the coehains C*(~, ~*) 

form a double complex, one differential coming from the covering and the other from 

s The ~ech hypercohomology groups ~q m a y  then be defined by  

~q(X, ~2") = lim Hq(C * (~, ~*)) 

where Hq(C*(~, ~*)) denotes tile cohomology of the single complex associated in the usual 

way to the double complex. Again if (2.1) is satisfied with S = ~  q (for all q) the limit is 

unnecessary. 

As is well known(1) the cohomology of a double complex (with total  differential 

d=d'+d") can be computed in steps, either starting with d' or else starting with d". 

Applied here this gives rise to two spectral sequences converging to the hypercohomology.(2) 

In  one spectral sequence (using the differential on ~* first) we have 

(2.2) E~,q = H,(X,  hq(~*)) 

where hq(~ *) is the q-th cohomology sheaf of ~*, i.e. hq(~ *) is the kernel of ~ q ~ q + l  

modulo the image of ~q-1._.~q. Ill the second spectral sequence we have (writing F instead 

of E to distinguish) 

(2 .3 )  ~'~,q = Hq(X, ~ )  

(1) See Godement [9], p. 86. 
(~) Each covering ~ gives a double complex, hence a spectral sequence, and taking direct limits 

we obtain a limit spectral sequence. This limit involves no problems since we shall throughout 
assume that dim X < ~ and ~* is a finite complex. 
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and the differential dl: Hq(X, ~ ) ~ H a ( X ,  ~+1) is induced by the sheaf homomorphism 

~ - ~  fF+l. Thus, in particular, 

(2.4) F~ .~ = DR~(~ *) 

is the "p th  de Rham group" D R  ~ of the complex ~*, i.e. the cohomology of the complex 

F(X, ~*) of global sections. Note that  we always have a natural homomorphism 

DR~--->~ ~ (in spectral sequence terms F~'~ ~ ~l~/71-t~+1, but ~/~§ 

With this machinery let us recall how the usual de Rham theorems are proved. We 

take ~* to be the complex of C ~ forms on a C ~ manifold X. The Poincar4 Lemma asserts 

that  

(2.5) ha(R *) = 0 for all q >t 1 

and, since the ~* are fine sheaves, we have 

{2.6) Ha(X, ~ )  = 0 for q >/1 and all p. 

Now (2.5) implies that  the spectral sequence ET is trivial(1) and so (since h~ *) =C, the 

sheaf of constants) 

(2.7) H~(X, C) = E~ "~ ~ ~ ( X ,  ~*). 

Similarly (2.6) implies that  the second spectral sequence Fr is trivial (for r/>2) and so 

(2.8) DR p (~*) = F~ '~ ~ ~/P (X, ~*). 

The de Rham theorem then follows by combining (2.7) and (2.8). I t  can of course be 

proved without using hypercohomology and spectral sequences: we simply break up 

~* into short exact sequences, take cohomology groups and use (2.6). However in more 

complicated situations which we shall encounter the machinery of hypercohomology is 

very convenient. 

On a complex Stein manifold we have a formally similar proof, but  this time ~* is 

the complex of holomorphic forms, (2.5) is replaced by the holomorphic Poincar~ Lemma 

and (2.6) is replaced by the much deeper vanishing "Theorem B" of Cartan. 

An important  property of hypercohomology is the following comparison theorem: 

PROPOSlTIO~ (2.9). Let c?: Q* ~ *  be a homomorphism oJ complexes o] sheaves which 

induces an isomorphism on cohomology sheaves ha(~ *) ~-hq((] *) ]or all q. Then ~ induces 

an isomorphism o] hypercohomology 7tta(X, ~*) ~ ~a(X, (]*). In  particular, i] Ha(X, ~ ' ) =  

Ha(X, (]~)=0 for q>~l and all p, then 9~ induces an isomorphism oJ de Rham groups 

D Ra(~ *) ~ D Ra(~*). 

(1) That is E~ = Es =... = Eoo. 
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Proo]. q~ induces a homomorphism of spectral sequences E r - ~  r. For r = 2  the 

assumption on ~ and (2.2) shows that  we have an isomorphism. Hence E~ ~/~r for all r 

and so the end terms of the spectral sequences, namely the hypercohomology groups, 

are also isomorphic. If moreover  Hq(X, ~P)= 0 for q/> 1 then the second spectral sequence 

F~ 'q is trivial for r>~2 and so ~q(X, ~*)~DR~(~*).  Similarly for ~* and so ~ induces an 

isomorphism DRq(~*)-->DRq(~ *) as required. 

This proposition will be applied in w 4 to deduce the algebraic de Rham theorem 

from the C ~ theorem. I t  will depend on the vanishing theorem (2.6) for the complex ~* 

of meromorphic differentials on X with poles on Y. In  order to get bounds on the 

orders of pole required we shall need to introduce an increasing sequence of subsheaves 

~*(k) c ~*(k+ 1) ~ ... 

with ~ * = l i m  ~*(k), where k denotes (roughly speaking) the order of pole. We shall 

then need the following rather technical lemma which puts bounds into the spectral 

sequence of (2.9). 

LE~MA (2.10). Let ~ * ( k ) c ~ ( k + l ) ~ . . .  be an increasing sequence o/ complexes o/ 

sheaves (k >~0) on X.  Assume that 

(i) /or all k, ~ 2 * ( k ) ~ * ( k +  D induces an isomorphism ot cohomology sheaves, 

(ii) there is a/unction k~--> /(k) such that 

Hq(X, ~'(k))-~ Ha(X, ~'(l(k))) 

is zero /or q >~ 1 and all p~ 

(iii) Hq(x, ~ n ( k ) ) = 0  /or q > n  and all p, k and g2"(k)=0 /or p > n  and all k. 

Then 

(a) the maps o~ hypercohomology 

~4q(X, ~*(k)) -~ ~4q(X, ~*(k + 1)) 

are all isomorphisms 

(b) the natural homomorphiam 

~ :  DR~(a*(;V)) -~ ~4 ~ = 74q(X, ~*(iV)) 

is surjective provided N >~/n(O) (where/v denotes the n-th i terate/o/o ... o/) 

(c) the kernel o/ q~ coincides with the kernel o/ DRq(~*(N))-~DRq(s provided 
M >~/n-l(N). 
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Proo], (a) follows from (i) and (2.2). Now consider the spectral sequence F~'q(k) ~ ~4. 

We have (using (iii)) 

P~,~ (k) = H~ (X, ~ (~) )  

p,q ~+q p+q 
F n +  1 (]r = F ~  q (k) = ~ p  (k) / ~p+l  (]~) 

where ~ '  = ~s (k) is filtered 

~ '  = ~ ( k )  = ~ ( k )  = . . .  = W:(k)  = ~ L l ( k )  = 0.  

By (ii) F~'q(k)-+ F~ "q (/(k)) is zero for q >/1, and hence the same is true for F ~  q. Thus 

v+q v+q >t I. ~ r  (k )c~r+~( / (k ) )  for q 

I terat ing this we see that ,  

and so ~(f~(k))=:H ~. In  other words the filtration on ~ ' ( f ( k ) )  consists of just one term, 

the last. The same is then true for all integers >p(k).  Thus for all N~>/~(0) we have a 

surjection 
D R  v (~* (N) ) = F~2" o (n) ~ F ~  ~ (N) = ~HW (N) = ~H r (N) 

proving (b). 

The proof of (c) proceeds in a similar fashion. Since we shall not need (c) in our 

applications the details will be left to the reader. 

w 3. Algebraic Geometry  

We begin by  recalling some basic results of Serre [17]. We consider algebraic 

varieties X defined over C. Then X is endowed with a sheaf o: for each x e X ,  oz is a local 

r ing- - the  regular functions near x. A sheaf S of o-modules is called an algebraic sheaf: it is 

called coherent if it is locally the cokernel of a homomorphism o v-+ o q (where o v = o | | o 

p times). For coherent algebraic sheaves Serre defines the cohomology groups Hq(X, S) as 

~ech groups but  it has since been shown by  Grothendieck tha t  this coincides with the 

injective resolution definition. Serre proves (p. 239) 

(3.1) I / X  is a/fine and S is coherent then 

Hq(X, S) = 0 /or all q >~ 1 
and more generally 

(3.2) I /  l l  is a covering o / X  by a//inr open sets and S is coherent then 

Hq(X, S) = H'(C*(~I, S)). 

In other words we do not need to take limits over all coverings. 
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For  projective varieties on the other  hand  Serre proves (p. 259) 

(3.3) X projective and S coherent ~ d i m c  Hq(X, S) < ~ /or all q. 

:Now we can also regard X as a complex analyt ic  space Q}. As such we shall write X h 

(h for holomorphic) and o h for the sheaf of local holomorphie functions. For  any  o-module S 

we define S h = S |  oh (using the natural  map  o ~ oh). Then the basic comparison theorems 

of Serre [19] pp. 17, 19) are 

(3.4) I[ S is a coherent algebraic shea/ on X then S ~ is a coherent analytic shea/ on X h 

(3.5) I / X  is projective algebraic and S is coherent algebraic then the natural homomorphism 

Ha(X, S)~  H~(X h, S ~) 

is an isomorphism /or all q. 

We now come to the vanishing theorems. I f  Y is a closed subvar ie ty  of X given 

locally by  one equat ion (2), denote by  J its sheaf of ideals. The sheaf o(n Y )=  H o m  o (jn, o) 

is the sheaf of functions on X with poles of order ~< n on Y. For  any  coherent  sheaf S on 

X we put  S ( n ) = S ( n Y ) =  S |  o o(nY). Then Serre's vanishing theorem asserts (Serre [19], 

p. 259) 

(3.6) I / X  is projective and Y is a hyperplane section o / X ,  then, /or all q >~ 1, 

Hq(X, S(nY))  = 0 /or all large n. 

The analogous analyt ic  theorem with X h replacing X is the Kodai ra  vanishing 

theorem. 

A slight var ian t  of (3.6) which we shall call the Grothendieck vanishing theorem 

can be deduced quite easily f rom (3.1)-(3.3). This is as follows 

PROPOSITION (3.7). I /  X is projective and X - Y  is a//ine then /or q>~l and any 

integer n there exists m > n such that 

Hq(X, S(n)) ~ Hq(X, S(m)) 
is zero. 

Proo/.(a) I n  view of (3.3) it will be enough to  show tha t  lira Hq(X, S(n))=O for all 

q~>l. Now for any  affine open set U of X in which Y is given by  / = 0  and with 

U~ = U -  U 0 Y we have 

(1) In fact we shall always take cohomology on non-singular X so that X h is a complex manifold. 
(2) If  X is non-singular, this simply means Y is of codimension one: then J is locally free of rank one. 
(a) This proof is extracted from footnote 6 of Grothendieck [12]. 



154 M . F .  ATIYAH, R. BOTT AND L. GARDING 

lim F(U, S(n)) ~ F(U, S)r~ r ( u r ,  S] ur) 

where the second term is the module of fractions with respect to all powers o f / :  in fact, 

F commutes with formation of fractions. Hence for any finite covering ~ of X by  affine 

open sets we have(1) 

lim H q (C* (~, S(n)) ~= H a (lim C* (~, S(n)) ~- H q (C* (~, S I X  - Y)) 

where ~ is the affine covering of X -  Y induced by  ~ .  Using (3.2) this gives 

lim Hq(X, S(n)) ~ Ha(X - Y, S I X -  Y) 

and. since X - Y  is affine, the result now follows by  applying (3.1). 

Proposition (3.7) is one which we shall later need to strengthen to obtain uniform 

bounds when X depends algebraically on a parameter.  As indicated in w 1 this 

necessitates introducing Grothendieck's generalizations of Serre's theorems to the frame- 

work of schemes. We shall now review briefly what  we need. 

We shall consider an affine ground scheme T = Spec A where A is a Noetherian ring 

(in application A will be the coordinate rb4g of an affine variety over @) and schemes X 

over T. The analogues of (3.1) and (3.2) for schemes hold quite generally and (3.3) 

generalizes to 

(3.8) X proper(2) over T and S coherent on X ~Hq(X, S) is a ]inite A-module/or all q. 

Replacing (3.3) by (3.8) the proof of (3.7) goes over as it stands to schemes over T, 

the hypotheses being now tha t  X-~ T is a p ro j~ t ive  morphism and tha t  X -  Y is affine. 

There are analogues of (3.5) but  these (due to Grauert-Remmert)  are more difficult and 

we will avoid them. 

We shall also need to use results telling us what happens to sheaf cohomology under 

"restriction to a fibre" Xt of X ~ T .  Recall first tha t  t E T = S p e c A  corresponds to a 

prime ideal say pt of A and Xt  has structure sheaf o~ = o/pt o. For any sheaf S of o-modules 

on X we define S t = S |  to be its restriction to the fibre Xt. We have a 

natural  restriction homomorphism of A-modules 

H~(X, S) -~ H'(X~, St) 

inducing a homomorphism of k(t)-modules 

(3.9) Hq(X, S) | ~ Hq(Xt, St) 

(1) Recall that the intersection of affines is affine (Serre [17]). 
(~) Proper is the analogue of complete and is more general than projective. In fact we shall only 

use the projective case. 
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where k(t) is the residue field of the prime ideal Pt. The following criterion of Grothendieck 

[11] Cor. (6.9.10)]) gives conditions under which (3.9) is an isomorphism: 

(3.10) I /  S and all Hq(X, S) are A.]lat(1) then (3.9) is an isomorphism. 

For the convenience of the reader we shall briefly indicate how (3.10) is proved. 

Take a resolution 
D*: -+ D ~ D1--> Do~]c(t)~O 

of k(t) by finite free A-modules Di and let ~ be a finite covering of X by affine open sets. 

We then consider the hypercohomology ~4 of the double complex C*(~, S| Since 

S and H*(X, S) are both A-flat both spectral sequences (3) are trivial. Equating the two 

E 2 terms (and using (3.2) for schemes) (3.9) follows. 

Combining (3.10), (3.8) and (3.7) (for schemes) we shall now prove a version of (3.7) 

with parameters. 

PROPOSITIO~ (3.11). Let T=Spee  A with A Noetherian, re: X - ~ T  a projective mor- 

phism, Y a closed subscheme o / X  whose shea/ el ideals is principal, S a coherent shea/ on X .  

Assume that all S(m) are(a) A-/lat and that X -  Y is a/line, then/or any n there exists m>~n 

such that 
Hq(Xt, S(n)t)-->Hq(Xt, S(m)t) 

is zero ]or q >1 1 and all t E T. 

Proo/. Since A is Noetherian the closed subsets of T satisfy the descending chain 

condition. Using induction on the closed subsets of T it will therefore be sufficient (for 

given n) to prove the proposition with T replaced by some non-empty open subset U. 

Moreover we may assume T reduced (that is A has no nilpotent elements except 0). Now 

applying (3.7) for schemes we get an integer m such that 

(3.12) Hq(X, S(n))-~ H~(X, S(m)) 

is zero for all q >/1. By (3.8) both these H q are finite A-modules; hence,(4) after tensoring 

with a suitable ring of fractions B (of the form A~), they become free. Thus if we replace T 

by U = Spec B, and recall that/-/q commutes with formation of fractions, we may assume 

(1) Recall that an A-module M is called A-flat if | is an exact ftmctor. 

(3) These are H ~ (X, tOrA-q (S, It(t)) --> 

A a n d  T o r _ q  (Hq (X, S), Ic(t) ) -~ ~ .  

(a) This assumption is made in order to simplify the proof and is adequate for our purposes. 
By appealing to further results of Grothendieek it could, in fact, be dropped. 

(4) This uses the fact that T is reduced. 
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tha t  the modules in (3.12) are free (and therefore flat). By  (3.10) therefore we have isomor- 

phisms 
H~CX, SCn))| H~CXt, S(n)t) 

Hq(X, S(m))| ~- Hq(Xt, S(m)t ) 

for all t. Since (3.12) is the zero homomorphism (for q >~ 1) the same is true for 

Hq(Xt, S(n)t)~Hq(Xt,  S(m)t) 
completing the proof. 

Remark. In  application zt will be flat and S will be locally free. Then all S(m) are locally 

free and hence also A.flat. 

Finally, in this section on Algebraic Geometry, we come to the major  theorem of 

Hironaka [14] on the Resolution of Singularities. We shall state this in the form we 

require: 

R~.SOLUTIO~ T ~ O R ~ . ~ .  l e t  X be an algebraic variety over C, Y a closed sub. 

variety with X -  Y non-singular. Then there exists a proper (even projective) morphism ~z: 

X'-->X with X '  non-singular such that 

(i) Y'=~z-I(Y) is a/ ini te  union o/non-singular submani/olds o/codimen~ion one with 

normal crossings 

(ii) X'  - Y' ~ Y -  Y is an isomorphism. 

We recall tha t  Y = U Y~ has normal crossings if in local analytic coordinates (z 1 ... . .  zn) 

its equation is given by  zlz~...zr=O for some r, (1 <~r<~n). 

w 4. The Algebraic de R h a m  Theorem 

We begin by  considering the extension of the holomorphic Poincard Lemma to allow for 

poles on a subvariety with normal crossings. So let y c  C n be given by  zlz~...z, = 0  and let 

~ q ( k ) ( = ~ . r  (k)) denote the germ at  0 of meromorphie q-forms on C n which have poles on 

Y of total order <~ q +k, i.e. 

Igl<<.q+lr 

where ~ is a holomorphie q-form,/z = (~u 1 .. . . .  /z,) and ]/z ] = Z/z~. Clearly d~q(k) c ~q+l(k) 

so tha t  we have a complex 

0 d d ~* (k): f~ (k) --* ~1 (k) . . . .  - -*  ~2 n (k). 
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Then  we have(1) 

LEMMA (4.1). H*(~*(k)) is an exterior algebra generated by dzdzt ( i = 1  . . . . .  r), and is 

isomorphic to H*(C n -  Y). 

Proo/. Le t  Ce~(k) with  dqg=O. If  q = 0  then  ~ = e o n s t a n t .  I f  q>~l, wr i t ing  ~ in the  

form q~=dZl~+ fl and  expand ing  in  t e rms  of z 1, 

ar = ~Xo + ~x~z'~ 1 + o~,~z; z + . . .  + grz; r 

= + + + . . .  + 

(~o, rio) holomorphie  in zl) we have  

d~l = d ~ 2  §  = d ~ s  + 2 f l 2  = -.. = rflr = 0 

= = . . .  = = o 

d~0 = 0 where ~0 = dzl ~o +flo. 

P a t  0 = - ~2z~ 1 _ ~a(2z12)-i _ . . .  _ ~r((r - 1 ) z{- 1)-1E ~q- l (k) .  Then 

qP = z~l dzl al +q~o +dO. 

Here  q- 1 a l E ~ _ L r _ l ( k )  is i n d e p e n d e n t  of z~ and  q~oE~q~.~_1(k) has no  pole on zl=O. Since 

d ~ l = d ~ 0 = 0  induc t ion  on r and  the  usual  Poincar~ L e m m a  proves t h a t  

cf = ~ ci~t~ ... ~ (zt,)-l dzi, ... (zi,)-l dz~q + d~o 

where 1 ~< i x < . . .  < iQ ~< r, c~.. :~q ~ C and  ~ ~ ~q- l (k) .  This proves  t h a t  H*(s is genera ted  

b y  the  dz~/z~, i = 1  . . . .  , r .  On the  o ther  hand ,  H * ( C ~ - Y ) = H * ( B - B O  Y) (for a n y  

smal l  bal l  B a round  0) is an  exter ior  a lgebra  on r genera tors  ~ H  1 dua l  to the  r genera tors  EHx 

given b y  small  circles ?~ a round  the  hyperp lanes  z z = 0, (i = 1, ..., r). Since ~,~ z~" ~ dz~ = 27ei~ 

th is  proves  t h a t  
H*(~*(k)) -+ H*(C n - Y) 

is t hen  an  i somorphism and  completes  the  proof.  

W e  can now prove  the  f i rs t  vers ion of the  a lgebraic  de R h a m  theorem.  

PROPOSITION (4.2). Let X be a non-singular projective variety, Y a closed subvariety 

o/ codimension one which is a ]inite union o] non.singular subvarieties Yi with normal 

crossings, and such that X -  Y is a/line. Then H*(X ~ -  yh) is isomorphic to the de Rham 

group o] the complex o] rational di]]erential /orms on X with poles on Y. 

(1) This is essentially Lemma 17 of Atiyah-Hodge [3] with attention paid to the order of pole. 
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Actually since we are also interested in bounds for the orders of pole, we shall prove 

a more precise version of (4.2). Let  us denote by ~P(k) the algebraic sheaf of p-forms on X 

with pole of total order ~ p  § k on Y. I t  is easy to see that  these are coherent sheaves 

(there are obvious finite sets of generators and relations) and we have d ~ ( k ) c ~ + l ( k ) .  

Since X -  Y is affine the Grothendieck vanishing theorem (3.7) applies and shows that  there 

is a function k~-~/(k) such that  

H~(X, f~(k)) ~ H~(X, ~(/(k))) 

is zero for q >~ 1 and all p, k. By the Serre comparison theorem (3.5) we can replace X ,  ~V(k) 

here by X h, ~V(k) h, their holomorphic counterparts. Applying (4.1) and (2.10) to the 

sequence of complexes ~*(k) we deduce 

Im [DRq(g2*(N) h) ~ DRq(~*(M))  hI ~ :Hq(X h, ~*(0) h) 

is an isomorphism for N ~> [~(0), M >~/~-I(N). By Serre's Theorem (3.5) (applied to H ~ 

we see that  the superscript h can be removed from the de I~ham groups and hence, if 

we now show that  

(4.3) ~q(X h, ~,(0)h) ~ Hq(X h _ yh), 

then (4.2) will have been proved with bounds, namely we only need poles of total order 

N to represent Hq(X ~ -  yh) and all equivalences then come from poles of total order M. 

To prove (4.3) we introduce the sheaves ~q of C ~ q-forms on X h -  yh and their direct 

images i , ( ~  ~) on X h. Then 

H~(X h _ yh) ,,~ D.Rq(~.) by C r176 de Rham theorem on X h - yh 

= Hq(F(X h - Y~,~~*)) ~= Hq(F(X h, i ~ * ) )  by definition of i ,  

=~ :Hq(X h, i ,(~*)) by (2.8) and the fact that  i , ( ~  p) is fine(~) 

~- :H~(X h, ~*(0) h) by (4.1) and (2.9) 

proving (4.3) and so completing the proof of (4.2) and the stronger version with bounds 

namely 

PROPOSI~IO~ (4.2)'. Let X ,  Y be as in {4.2) and let ke-->](k) be a ]unction such that 

Ha(X,  ~ V ( k ) ) ~  Hq(X, ~v(/(k))) 

is zero/or q >~ 1 and all p.  Then 

Im [DRq(~*(N))  ~ DRq(g2*(M))] ~ Hq(X h - yh) 

is an isomorphism/or all q, provided N >~p(O) and M >~/~-I(N). 

(1) Behug a module over C~(X). 
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To deduce the general case from (4.2) we now appeal to the Resolution of Singularities. 

Given an affine non-singular variety(1) X c  C N let )~ be its closure in PN, Y = X - X  and 

apply  the Resolution Theorem. We get  ~: X ' -~J~ proper with X '  non-singular, Y' = x - l ( Y )  

a finite union of non-singular subvarieties of codimension one with normal  crossings, 

and X ' - Y '  ~ X .  Applying (4.2) to X ' ,  Y' we deduce 

T H E O R E ~  {4.4). For any non-singular a/fine variety X the cohomology groups 

Hq(X h) are isomorphic to the de Rham groups o/the rational di//erential /orms on X with 

poles at ~ .  

We want  now to show that ,  for X in an algebraic family, we can pu t  a bound on the 

order of poles needed. For  our purposes the following version will be adequate.  

T~EOREM (4.5). Let ~: X ->T  be a smooth(s) projective morphism o/ non-singular 

algebraic varieties and let Y be a subvariety o] X o] codimension one such that X -  Y is 

a/line. Then there exists an integer L so that, /or all t 6 T, the rational closed/orms on Xt  

with poles o~ order <~L on Y~ generate(s) H*(X~-  Y~), where Xt=x- l ( t ) ,  Y t=Xt f )  Y. 

Proof. We shall use induct ion on dim T. This will enable us to replace T at  any  stage 

by  a (Zariski) open subset since(a) the complement  then has lower dimension (and is a 

finite union of non-singular pieces). Now resolve the singularities of Y and we obtain  

p: X' ,  Y ' ~ X ,  Y, Y'  having normal  crossings. Replacing T by  an open subset we m a y  

assume tha t  X ' - ~  T and all Y~ N Y~, N ... N Y'~,-~ T are smooth,  so tha t  all X~ are non- 

singular and all Y~ have normal  crossings. I f  J ,  J '  are the ideals of Y, Y' respectively, then 

( j , ) m c p , j c j ,  for some m, hence ( J~)mcp*J tcJ  ~ for all t, so tha t  a bound L '  for X',  Y'  

will give a bound L = mL' for X, Y. Hence it is enough to  prove the theorem for X ' ,  Y'. 

For  each t consider now the sheaf ~ (k) of q-forms on X~ having a pole of total  order 

~< q + k on Y~. Consider also the sheaf ~q(k Y~) of q-forms on X~ having poles of order ~< q + k 

on each component  of Y~. This is a locally free sheaf and (because X ' ~  T is smooth) 

is also the restriction to X~ of a locally free sheaf, say Sq(k) on X',  so tha t  ~q(kY't)= 

Sq(kh. In  fact  Sq(k) is the sheaf of q-forms on X '  with poles of order <~q+k on Y'. 

Moreover this is consistent with our earlier nota t ion used in (3.11), namely  Sq(k) is in fact  

S q with poles of order k on Y, where Sq=Sq(O). Applying (3.11) therefore(5) (permissible 

since smooth ~ flat) and using the obvious inclusions 

(1) We now make a slight change of notation more natural to the affine situation. 
(2) I.e. Jacobian z has maximal rank = dim T. 
(8) The other bound for the relations (as in (4.2)') also holds but we do not require it. 
(4) At least if T is irreducible which we may clearly assume since in general T is a finite union of 

such. 
(s) See also the Remark after (3.11). 
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~/~(k) c ~q (k Y'), c ~(n(q + k)) 

we obtain a function k~-> [(k) so tha t  for q ~> 1, t 6 T and all p 

--> q t Hq(X;, ~r(k)) H (Xt, ~f(n(q+ ](k)) 

is zero. Now apply (4.2)' and the proof is complete. 

We shall now consider a mild extension of Theorem (4.4). We suppose X affine 

non-singular and Y c X  a codimension one subvariety with normal crossings.(1). Then 

X -  Y is again affine so tha t  its cohomology is, by (4.4), given by the rational differentials 

on X with poles on Y (and "a t  oo"). However we shall now show tha t  only simple poles on 

the components Y, of Y are required-- though we still need high order poles at  oo. We 

introduce the sheaves ~q<  Y> on X of rational q-forms eo such that  ~o and dw have 

only simple poles on each Yt- These form a complex ~*<Y>: 

O-~0<r> -~ .... ~a<y>-~ a ... 

and Theorem (4.4) is refined by  

THEOREM (4.6). I[ X is a non-singular a/line variety, Y a codimension one subvariety 

with normal crossings, then the cohomology groups H~((X - y)h) are isomorphic to the de 

Rham groups o/ the complex F(X, ~*<Y>) o/ rational di//erentials oa Such that r and do 

have only simple poles on the components o/ Y. 

The proof of (4.6) follows the same lines as (4.4) and we shah just comment  on the 

differences. First  we must  use the resolution theorem to obtain a compactification 

X of X so tha t  not only Z = X -  X has normal crossings, but  also Z U Y has only normal 

crossings. Next  we must  observe tha t  the sheaves ~q<Y> are algebraic: the equation 

d(gw ) =dg A w + gdo 

shows tha t  sections of ~q< Y> can be multiplied by  regular functions. If  (z 1 ... . .  zn) is a 

system of local parameters on X with Y given by  zlz~ ... zs=O then the sections of 

~2*<Y> are generated (as an exterior algebra over the functions) by  dzJz. (l~<i~<s) 

and dzj (]>s).  Similar remarks apply to the sheaves on X of q-forms w such tha t  o~, d o  

have simple poles on the Y~ and such tha t  w has on Z U Y a pole of total order <<- q + k. Finally 

we must  modify Lemma (4.1), by  replacing the complex ~*(k) by  the sub-complex of 

forms co such tha t  oJ and do have only simple poles on zr_~+t=O .... zr=O: the conclusion 

and proof are the same. 

(1) I.e. Y = U Y~, Yt non-singular  and  meet ing transversal ly.  I n  fact we can drop the  condition 

of non-singular i ty  for the  Yt: as the  proof shows only local hypotheses  on Y are used. Thus  Y could 

be a curve wi th  a double point .  
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With these modifications the proof of (4.6) proceeds as before: (4.1) takes care of the 

local cohomology and the Grothendieck vanishing theorem still applies because we are 

allowed arbitrary poles on Z and X = X - Z  is affine. 

An alternative proof of (4.6) can be given, starting from {4.4) and using some exact 

sequences. In the simplest case when Y has only one component we use the exact sequence 

of sheaves on X 

(4.7) O~ ~ q ~  s Y> ~ ~ - ~ - ~  0 

where ~ - ~  is the sheaf of regular ( q -  1)-forms on Y (extended by zero to X) and R is the 

residue map which in local coordinates maps co h dz/z~->2zieolY where z=O is the local 

equation of Y. Since X is affine we have Hi(X, ~ )  =0 and so (4.7) gives a corresponding 

exact sequence of global sections. Thus we have an exact sequence of complexes 

0-~ r ( x ,  ~*) -~ r (x ,  ~*< r>) -~ p ( r ,  ~*)-*0. 

Taking the cohomology of these complexes we get a long exact sequence of de Rham groups 

...-+ DRq(X, ~2") ~ DRq(X, ~*<Y>) ~ DRr Y, ~ )  . . . . .  

We now map this into the exact eohomology sequence of the pair (X h, ( X -  y)h) using 

the Thorn isomorphism 
Hq(X h, (X - Y)a) ~= Ha-U(yh). 

I t  is not difficult to verify commutativity of the diagram. Applying (4.4) to X and Y 

we get isomorphisms for two-thirds of the terms and hence, by the 5-Lemma, iso- 

morphisms also for the other groups, namely 

DR~(X, ~,<y> ~ H~((X_ y)h) 

proving (4,6), for this case, In  general the proof proceeds the same way but  using induc- 

tion on the number of components of Y. 

w 5. Complements of hypersurfaees 

For the applications to lacunas the algebraic varieties which enter are of the form (i) 

X = P ~ _ I - A  where A is a hypersurface in projective space P~-l, given by an equation 

a(~l ..... ~n) = 0 (a being homogeneous of degree m > 0). Let  us first observe that  such an X 

is in fact affine. To see this we use the Veronese embedding s: P~_I-+PN given by 

~ - - ~  where ~ runs through all n-tuples (~l . . . . .  ~ )  with ~.a~=m. If a ( ~ ) = ~ a ~  ~ we 

see that  s(X) is the part  of s(Pn_ 0 lying in the affine space CNCPN where Za~o~ 4 0  (w~ 

being the coordinates of P~). Thus X is affine and A is a hyperplane section of s(P~_l) ~=P=-l. 

(1) F r o m  now on we shall drop the distinction between X and X h. 

1 1 -  732907 Acta mathematica 131. Imprim6 le 11 D6cembrc 1973 
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We consider next  the algebraic differential forms on X. These are just  the rat ional  

differential forms on P~-I  with poles on A. To write these explicitly in homogeneous 

coordinates we observe tha t  a differential form ~ on P~-x lifts to  a differential form 

~*(T) on C ' - 0  and is characterized there by  the two properties 

(i) invariance under  scalar multiplication, 

(ii) annihilation by  interior product  with the tangent  along the fibre of 

~: C~ - 0-~P~_r  

Tha t  is, a differential form ~ on (~n-0 is of the form g*(~) if and only if ~0 satisfies (i) 

and (ii). I f  ~0 is rat ional  so tha t  

= Z ~p,....,,($)d~', A. . .  d~:,, 

with the coefficients ~t .... t,(~) rational, condit ion (i) asserts tha t  all these v A .... ~p (~) are 

homogeneous in $ of degree - p ,  condit ion (ii) asserts t ha t  

where . stands here for interior multiplication. Now it is well known tha t  the complex 

0 ~ A ~(V*)  -* A ~-~(V*)  . . . . .  A ~  ~ o 

is acyclic, where V is a vector  space of dimension n over a field k, and the maps  are given 

by  interior multiplication by a non-zero element u E V. Apply  this with k = C($1, ..., Sn). 

V = C~| c k, u = ($1 .. . . .  $~) and we see tha t  condit ion (ii) is equivalent  to  saying tha t  ~ is in 

the image of interior multiplication by  Z$t(~]85~). I n  particular, for p . ~ - n - 1 ,  ~p is a 

multiple of 

= ~ ( - 1)t-1 ~jd~l A . . .  A d$~-1A dSj+l A. . .  A d$~. 

Thus the top degree rational forms on Pn-1 are of the form/(~)o~, where/ ($)  is a ra t ional  

funct ion of homogenei ty  -n. Those with poles on A are therefore of the form 

a(~) q 

where g(~) is a homogeneous polynomial  of degree m q - n .  

Applying the algebraic de R h a m  theorem (4.4) to top  degree forms on X we therefore 

deduce the special case we need. 
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PROPOSITION (5.1). Every cohomology class o/ dimension n - 1  on P n _ I - A  can be 

represented by a di//erential /orm g(~)a(~)-qo)(~) where g(~) is a homogeneous polynomial o/ 

degree m q - n  and q is su//iciently large. 

To get a bound for q in (5.1) we must  use Theorem (4.5). Consider therefore the 

product X=Pn_ 1 XPN where PN is the space representing all hypersurfaees of Pn-1 of 

degree m. The equation Zl~l=ma~ ~ =0 then defines a codimension one subvariety Y of X.  

For every aEPN, Ya = Y N X a  is just the hypersurface in Pn-1 with equation a(~)=O 

(X~=Pn_ 1 x {a} ~Pn-1)- The projection X ~ P N  is of course smooth and so we can apply  

(4.5) to every affine submanifold T of PN. Since PN is a finite union of such T (namely 

PM--PM-1 for M = N ,  N - 1  ..... 1) we deduce 

PROPOSITION (5.2). There exists an integer q0(m, n) so that (5.1) holds /or all 

q >~ qo(m, n). 

When we make some non-singularity assumptions we can get more explicit bounds for  

q. First, f rom (4.6) we deduce 

PROPOSITION (5.3). Assume that a(~)=0 de/ines a hypersur/ace A o/Pn-1 with only 

normal crossings and let B be any other hypersur/ace. Then every cohomology class o/: 

dimension n -  1 on P n - 1 - A -  B can be represented by a di//erential /orm 

g(~) o~(~) 
a(~) b(~) q 

where g(~) is a homogeneous polynomial o/ degree q deg b + d e g  a - n ,  and q is su//iciently ~ 

large. 

Returning to (5.1) let us now assume that  A is non-singular. Then we shall prove. 

PROPOSITION (5 .4 ) .  I /  A is non-singular then (5.1) holds with q>~n-1. 

Proo/. Returning to the proof of (4.2) we consider the sheaf ~P(0) of algebrai~ 

p-forms on X =Pn-1 with a pole of order ~<p on A. By a result of Bot t  [6] p. 228 we have  

a more precise vanishing theorem in this case, namely 

Hq(P~_~, ~ ( 0 )  a) = 0  for q~> 1 and all p. 

Hence (cf. (2.8)) DRq(~*(O)) ~= ~q(P~-l, ~*(0) h) for all q. On the other hand, using L e m m a  

(4.1), with k = 0 ,  we see that  

~.lq i ph  ~ ,  H a h n - l ,  (0)a) ~- ( P n - 1  - -Ah) .  

Thus DR q (~* (0)) ~ H a (P~_ 1 - An). 



164 M. F. ATIYAH, R. BOTT AND L. GARDING 

In  particular, for q = n - 1 ,  we see tha t  we only need (n -1 ) - fo rms  with poles of order 

n - 1  on A. This completes the proof. 

Remark. Instead of using the vanishing theorem of Bot t  we can deduce (5.4) from 

(5.1) using a result of Maeauley (see Griffiths [10]). 

For the applications to hyperbolic systems we need to strengthen (5.1) (in the non- 

singu]ar case) by allowing the numerator  g(~) to be divisible by a pre-assigned polynomial. 

We shall now prove this by some elementary algebraic computations with the rational de 

Rham complex. As before write 

~(~) = dr,  A . . .  ~ d f , ,  ~ (~ )  = Y. f F s ( f )  

where ~s(~) = ( - 1)S-id~l A ... A d~s_ 1 h d~s+ 1 h ... A d~, so that  ~(~) =d~ s h ~s(~). Similarly 

let ~ts(~) be the product of the d ~  (k =#i, ]) ordered so that  v(~)=d~ s A d~i A ~is(~) and hence 

~s(~) =d~i h ~is(~ ). Then we have 

L~.lvi~A (5.5). Let q~(~) be a homogeneous rational /unction o/degree 1 - n ,  then 

( ~ / ~ , )  <,., = - d ( ~  ~ f F J , ) .  

Proo/. Wi th  ~ = a ~ / ~  we get 

= - ~ Z ~j~j + Y ~s~jv~ + ( n -  1) ~v~ = - ~ 

since Y--~sfs = (1 - -n ) .  

The ( n - l ) - f o r m  0:Z~0fs~s~ is homogeneous of degree 0 and is annihilated by 

D = Z ~s ~/~s (because 0 = Dq~ri and D e = 0), hence it represents a rational (n - 2)-form on 

Pn-1 with poles at  the poles of ~. Thus (5.5) asserts that  the form ~ w  is cohomologous 

to zero in P n - 1 -  Y where Y is the polar set of ~. Using (5.5) and the identity 

(b-~al-q]) i = _ qb-~a-q/a i § al-q(b-~/) t 
we deduce a homology 

(5.6) b-~ a-q /ai co,,, b-S a- l  hco 

in P n - z - A -  B (/ and h being homogeneous polynomials of the appropriate degrees). 

I f  a(~)=O is the equation of a non-singular hypersurface A then the equations a~(~)=0 

(i = 1 . . . . .  n) have only ~ = 0 as a solution. Hence ~[i E (a z ..... an) for some rt and so every 

homogeneous polynomial of sufficiently high degree lies in the ideal (al .. . . .  an). By (5.6) 

this implies tha t  all rational (n -1 ) - fo rms  with poles on A U B are homologous to forms 
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with simple poles on A (since we m a y  replace b-V/by b-r-r/b r we can assume / has large 

degree). This  gives another  proof of (5.3) for non-singular  A (assuming (5.1)). 

LEMMA (5.7). Let I be a non-zero homogeneous ideal invariant under all the operations 

Tjj: h~->h~aj-hsa t 
(a(~) being fixed). Then 

(i) the radical J o/ I is also invariant under all Tij 

(ii) aEJ  

(iii) i / the  aj(~) have only ~ = 0  as common zero then J = ( a )  or J = ( ~ x  . . . . .  ~n). 

Proo/. We have,  for any  posit ive integer  s, 

T[jh" - s ! (T~j h) ~ mod h. 

Hence  h q J ~ h 8 E I for some s 

T~jh'EI~ (T~jh)'EI by  (1) ~ T~jhEJ proving (i). 

Nex t  h E I ~ ~ ~j (h~ a t - hj a,) E I 
t 

mah~ - (deg h) ha t E I ~ ah~ E I 

I t e ra t ing  this and using induction on [a[ we deduce 

hEl- (2~)~hai~ iEI  

for all a = ( ~  1 .. . . .  an). Since I 4 0 ,  there  is a h ~ 0  in I and  so for some ~ with [~[ 

deg h=s we deduce t ha t  aSEI, i.e. aEJ, proving (ii). Now let V~Pn-1 be the  va r i e ty  de- 

f ined b y  I ,  so t h a t  J consists of all polynomials  vanishing on V. B y  (ii) we have  V c  A, t he  

non-singular  hypersurface  with equat ion a ( 8 ) = 0  in P~-I .  We have  to prove  t h a t  V = A  

or V=fD. We assume therefore t h a t  V is a n o n - e m p t y  proper  subvar ie ty  of A a n d  

propose to derive a contradiction.  Le t  V = V 1 U V~ U ... (J Vr be the decomposi t ion of V 

into  irreducible components  and let ~/ be a non-singular  po in t  of V 1 not  lying on a n y  

Vj 0">1). Then for any  hEJ we have,  by  (i), hias-hja~EJ and so h~(~)aj(~)=hs(~)a~(~l) 

for all i, ~. This  means  geometr ical ly  t h a t  the  hypersur face  h = 0  touches A a t  the poin t  ~.  

We will show t h a t  this cannot  be t rue  for all h. Since ~ is a non-singular  poin t  of V 1 w e  

can find ra t ional  funct ions ~01 . . . . .  ~O n - 1  forming a sys tem of pa ramete r s  for Pn-1 a t  ~ and  

such t h a t  V1 is given locally by  q)l=q)2=...=qJ=O; here s = c o d i m  V l ~ 2  , since V is  

assumed a proper  subvar ie ty  of A. Express ing the  ~ in homogeneous coordinates and  

clearing denominators  we obta in  homogeneous polynomials  /x . . . . .  /n-1. Since the ~t a re  

local pa ramete rs  the vectors  grad /~07), i = 1  . . . . .  s, are independen t  and  hence, since 
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s>~2, for s o m e / ~ = h  we do not have hs(~)as(~)=hj(~)at(~) for all i, ~. Now h vanishes on 

V 1 but  may  not vanish on the other components Vj (~ ~> 1) of V. However since ~ ~ U j>l Vj 

we can find g vanishing on all Vj (~ > 1) but  with g((~)~:0. Replacing our h above by 

h'  =hg we now have a polynomial vanishing on all V (and hence in J)  but  

h', (7) aj (v/) - h~ (7) a,(v/) = g(~/) [h,(~/) aj(~) - hj(~) a,(v/)] 

and so does not vanish for all i, j. This completes the proof. 

Using this lemma together with (5.5) we shall now prove the following refinement 

of (5.3): 

PROPOSITION (5.8). Let a(~)=0, b(~)=0 be the equations o/the hypersur/aces A, B 

with A non-singular, and let g(~) be any homogeneous polynomial not divisible by a(~). 

Then every element o/ H n - I ( P n _ I - A - B  ) can be represented by a di/]erential /orm 

b(~)-Va(~)-l /(~)g(~)a~(~) where p is su//iciently large and/(~) is hom~geneons o/the appro- 

priate degree. 

Proo/. Let S~ denote the space of all homogeneous polynomials / of degree k such 

tha t  the form b-Va-1/r is homologous to one with numerator  divisible by  g; here we must  

have k=p(deg b ) + m - n  (m = deg  a). Now by  (5.5) we have a homology 

b-~a-1/(hiaj- h ja~) eo ,,, - h( (b-ra-1/)~aj- (b-~a-X/) ja~)eo = b-V-la-Xlho). 

This shows tha t  if S =T.Sk contains all multiples of h (of degree = m - n  rood deg b) it also 

contains all multiples of Ttj(h) (of d e g r e e - m - n m o d d e g b ) .  Hence, if I=Y~I k is the 

smallest homogeneous ideal containing g and closed under all T~j, we have Ik~Sk 

for k - - m - n  rood deg b. But  by  (5.7) the ideal I defines the variety 0 in C n and so every 

polynomial of sufficiently high degree k lies in I and hence also in S (if k -= m - n mod deg b). 

Using (5.3) the result now follows. 

Remarks. This proposition can be seen in a more general context by  introducing 

the relative cohomology groups H(X, U) for X affine and Y a divisor (equation 

g=0) .  I t  can be proved(x) tha t  (roughly speaking H(X, Y) can be computed from the 

rational forms on X with poles on X and "large" zeros on Y. In  top dimension we have 

Hn(Y) = 0  (n = d i m  X > d i m  Y) and so Hn(X, Y)~Hn(X) is surjective. Hence every class in 

H~(X) can be represented by  a rational form with high zeros on Y (i.e. divisible by  a high 

power of g). This result  holds quite generally but with further non-singularity restrictions 

a t  ~ one can be more precise and prove in particular (5.8). We have preferred the more 

elementary approach adopted above because we have no application to hyperbolic systems 

of the more general results corresponding to singular a(~). 

(I) We are indebted to P. Deligne for this information: the proof uses ideas to be found in the 
Appendix to Hartshorne [13]. 
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w 6. Plane curves 

In  this section we shall show that,  for an algebraic curve X in P2, precise results on 

the order of pole can be proved without any  assumptions of non-singularity. Namely 

we will prove 

THEOREM (6.1). H 2 ( p 2 - x )  is generated by the rational di]]erentials 9~ on P2 having a 

simple pole on X together with their complex conjugates ~. 

THEOREM (6.2). H2(P2-X)  is generated by the rational di//erentials on P2 having a 

double pole on X.  

Remarks. (1) For non-singular X (6.2) is just a special case of (5.4). Thus (6.2) asserts 

tha t  the general bound qo(m, 3) of (5.2) is equal to 2. We do not know if the corresponding 

result is true for higher values of n - - i t  seems unlikely but  explicit counter examples seem 

difficult to produce. 

(2) For non-singular X (6.1) is rather easy to prove. I t  is essentially equivalent to the 

fact tha t  the holomorphic 1-forms on X are all obtained as the residues of the rational 

2-forms on P2 with a simple pole on X. 

(3) In  the applications to hyperbolic equations (6.1) is quite important,  (6.2)less so. 

(4) Note tha t  (6.1) is equivalent to the assertion: ~ a real 2-cycle on P 2 - X  and 

S~0=0  for all rational 2-forms ~ with a simple pole on X ~ g ~ 0 .  

We come now to the proof of (6.1). Consider first the diagram 

Hc2omp(P2 - X; C) | - X; C)--> H~omp (P~ - X; C) ~= C 

(6.3) T 
H2 (P2, o( - X)) | H ~ (P2, ~ (X))-~ H ~ (P2, g22) ==- C 

where o ( - X )  is the sheaf of holomorphic functions vanishing on X, ~ is the sheaf of 

holomorphie 2-forms and ~22(X) the 2-forms with a simple pole on X. The horizontal 

pairings are both dualities: the top row is Poincard duality and the bot tom row is Serre 

duality [18]. We claim that  via these dualities a and fl are adjoints of one another. 

This is a routine kind of verification which we will give later. Assuming this we see tha t  
2 I m f l  and I m f l  will generate H 2 ( P ~ - X ; C ) ~ z t  is injeetive on Hr X; R) (cf. 

Remark  (4) above). To prove this we use the two exact sequences of sheaves on P2 

O~ C(P2 - X)  ~ C--> Cx~ O 

O ~ o ( - X )  ~ O~Ox~O 
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Taking eohomology we get 

0 = H 1 (P2, C) ~ H 1 (X,  C) -+ H~o,~ (P~ - X ,  C) ~ H ~ (P2, C) o_~ H2 (X ,  C) 

0 = Hi(p2,  o) -+ H i ( X ,  Ox)-+HS(P2, o( - X) )  -+ HS(p,~, o) = 0 

where we have identified H2(Ps, C(P2-X) )  with H2omp(P~-X,  C) (see Godement [9] 

p. 190) and we have used the fact tha t  Hq(P2, o ) = 0  for q~>l ([17], p. 258). Since 0 is. 

injective (in fact isomorphic onto any irreducible component of X) the diagram reduces to 

a square 
H '  (X, C) ~ H~omp (P2 - X, C) 

H I (X,  Ox) ~ H 2 (P2, o( - X ) )  

and so we are reduced to showing tha t  y is injective on Hi(X ,  R). Now y fits into the 

exact eohomology sequence 

H~ ox/C)gLHl(X, C) ~--+/P(X, ox) 

and so we must  show I m  ~ N Hi(X ,  R) =0.  Suppose 5(~) EHI(X, R) and lift ~ to @ on the 

desingularization ~: of X. Then ~(@)eHl(~:, R) and so the imaginary par t  Ira@ is a 

single-valued harmonic function on X (determined on each component of ~: up to an 

additive constant). Hence I m  @ = 0, so therefore is @ and also ~. Thus (~(~) = 0 completing the 

proof modulo the verification concerning (6.3) which we now indicate briefly. Since this 

has nothing to do with the particular complex manifolds in question nor the dimension 

we shall give the argument for any conected compact complex manifold P of dimension n 

with X a divisor (the dimension 2 in (6.3) being now replaced by  n throughout). 

Let  (I) n denote the sheaf of closed C ~~ n-forms on P - X ,  qbn(X) its direct image sheaf 

on P 
fl': H~ r --> H n ( P - X ,  C) 

and we have a pairing 

(6.4) H2om,~(P - X ,  C)|176 (1)n(X))"+ Hgom,,(P - X ,  Cn). 

Moreover, as in the proof of the C ~ de Rham theorem on P -  X, we have isomorphisms 

H~omp(P-X, dpn) ~r4n+l= -- comp ,--t P-- X, (1)n-l) -~ ... = H~co~p(P- X, C) 

=c 

and the pairing (6.4) induces the pairing on the top row of (6.3) via fl' (x) The compatibility 

(1) This assumes some basic facts about how cup products are defined using resolutions. 
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of (6.3) (i.e. the adjointness of ~,/~) will now follow from the compatibility of (6.4) and 

the bottom pairing of (6.3). This in turn is proved by interposing the pairing 

Ho~o~p (P - X, C) | H ~ (P, ~"  (X)) -~ Hc~o~p (P - X, ~") 

and using the commutative diagram (see Serre (18 p. 23)) 

~ H~omp(P-X, ~9 n) ~,~ 
Ho~omp (P-  X, ~n) C 

Hn( P, ~'~) z// 

We come now to the proof of (6.2) which follows the general lines of w 4. First we 

must consider the local situation: 

LEMMA (6.5). Let X be an analytic curve in U= {zEC~I I ,1 i= l ,  2} an~ l a / , = 0  

(i = 1 ... . .  r) be the equations o/ its branches through O. Then, ]or small e, we have 

(i) the 1-]orms d]J]t , i= 1 ..... r give a basis o] H i ( U - X ) ,  

(ii) the 2-]orms d]~d]r/]J, i = l  ..... r - 1  give a basis o] H 2 ( U - X ) .  

Proo]. Put X ' = X - { 0 } ,  V ' = V - { 0 } ,  then U - X = U ' - X '  and for small e, X'  

consists of r punctured discs. The exact cohomology sequence of the pair (U', U ' - X ' )  

gives 
HI(U ' - X ' )  ~" H2(U ', U ' - X ' )  ~- H~ ') ~- f f  

O~ H2(U ' - X')-> Hs(U ', U ' -  X') -> H3( U')~O 

HI(X ') C 

O" 

This shows that  Hi( U - X )  and H2(U-  X) have dimensions r, r -  1, respectively. Morever, 

the homomorphisms 
H ~ ( U ' - X ' ) ~ H ~ - I ( X  ') i = 1 , 2  

are given by taking residues (if we start from a meromorphic form with simple poles on X'). 

From this it follows easily that  the forms described in (i), (ii) give generators. 

Passing now to the global situation let X be an algebraic curve in P2 with equation 

] =0 and consider the complex of sheaves 

0 d (6.6) 0-+ ~ --* ~ (X) d_~ ~2 (2 X) -~ 0 

where ~21(X) denotes meromorphic 1-forms with simple poles on X, ~a(2X) denotes 
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meromorphic 2-forms with double poles on X (and ~0 denotes holomorphie functions). 

Let  h * denote the eohomology sheaves of this complex and let ~t denote the sheaf 

U~->H*(U-X;  C). Then we have 

Lv.~n~A (6.7). The natural map h t -+h ~ is an isomorphism/or  i = 0 ,  1 and an epi- 

morphism /or i =2.  Moreover, h 2 is concentrated at the singular points o / X .  

Proo/. This is trivial for i =0.  For i = 1, using (6.5) (i), we have only to prove that  the 

d/~//~ generate h 1. To see this let co be (locally) a closed 1-form with/co holomorphie. By  

(6.5) (i), we can find constants e2 so tha t  o~ - E t  c~d/J/t has no periods in U ' - X ' ,  hence is 

holomorphic in U', hence holomorphic in U (Hartog's  theorem), and therefore equal to d~ 

for some holomorphie ~. This proves(1) h 1 =~1. Next,  h~-~h ~ is epimorphie by  (6.5) (ii) 

- -s ince Pd/ld/r/ /d~ is holomorphic. Finally at  a non-singular point of X, taking local 

coordinates (x, y) so tha t  X is x = 0  we see tha t  any local section of ~(2X) is of the form 

co = x-~cf(y) dxdy + x - l  dxd~p(y) + O(x, y) dxdy  

where ~0, % 0 are holomorphie functions. Hence O(x, y) dxdy = d~ with ~ a holomorphic 1-form 

a n d  
co = d(-x- l(q~(y)dy+y:(y)dx)  +~) 

is in d~l(X),  proving tha t  h2=0 outside the singular points of X. 

We now compare the complex (6.6) (denoted briefly by  ~)  with the complex of 

sheaves (2: the direct image of the de Rham complex of P ~ - X  under the inclusion 

i: P ~ - X - > P  2. By the Bot t  vanishing theorems the cohomology groups Hq(q>~l)of  all 

sheaves in ~ vanish. Hence for both ~ and ~ the de Rham groups coincide with the hyper- 

cohomology. Hence we get two spectral sequences: 

E~.q = H~(Pz, hq)~  D R * ( ~ )  

~ '  q = H~ (P2, hq) --> DR* (~2) = H ~ (P~ - X) .  

and a homomorphism Er-+~r.  By Lemma (6.7) we see tha t  E~'q=+E~ 'q is an isomorphism 

except for (p, q)=  (0,2) and there it is an epimorphism. From the spectral sequences we 

then  see tha t  
~1,1 E~0 ~ ~ ; 0 ,  E ~  1 = E ~  

and ~0 2 n0 2 ~;~ -+ ~ is an epimorphism. 

(1) This argument (given in Atiyah-Hodgo [4]) does not require us to be in dimension 2. 
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This implies that  DR~(~)-+DR2(~)~H~(P2-X) is an epimorphism which completes the 

proof of (6.2). 

q 
2 * 0 0 0 0  

1 * * * 0 0  

0 * 0 * 0 * p  

0 1 2 3 4  

D i a g r a m  of E~'  q wi th  non-zero  t e r m s  m a r k e d  *. 

C H A P T E R  I I .  A P P L I C A T I O N S  T O  T H E  T H E O R Y  O F  L A C U N A S  

w 7. Introduction 

The results of Chapter  I will now be applied to the theory of hyperbolic differential 

operators with constant coefficients. The notations and definitions will be those of 

Par t  I, Chapter 3, but  we remind the reader briefly of the situation. 

Linear differential operators with constant coefficients are written as polynomials 

P(D) in the imaginary gradient D=8/i2x with respect to n variables x. We employ two 

Cn-spaces Z=Zn={~ .... ) and Z'=Z'={x . . . .  } with biorthogonal coordinates ~1 .. . .  and 

Xl .. . .  and a duality x~ = xi~ ~ +.. .  + Xn~n. Let  0 # v  ~ E Re Z. We say that  P(D) is hyperbohe 

with respect to v ~ if P(D) has a fundamental solution E(P, x)=E(P, ~, x) with support in 

a proper cone with its vertex at the orgin which, apart  from its vertex is contained in the 

half-space xv ~ > 0, x ERe Z'. Here E is a distribution. The class of these operators or their 

characteristic polynomials is denoted by hyp (v~) and we write hyp (v~, m) for the set of 

P Ehyp (vq) of degree m. The subsets of homogeneous elements in each class will be 

denoted by Hyp (v~) and Hyp (v~, m). The class hyp (vq) can be characterized algebraically: 

P E h y p  (vq) if and only if a(vq) # 0  and P(~+~0) 4 0  for all real ~ when Jim v[ is big enough. 

Here a(~) denotes the principal part  of P.  I t  is easy to see that  P Ehyp (v q) implies 

aEhyp  (v~) and that  P and a have the same lineahty. The linealityL(Q) of a polynomial Q 

is the maximal linear subspace of Z along which Q is constant. In particular, if a E Hyp (vq) 

and the degree of b is less than that  of a, it is not true in general that  a + b q h y p  (vq). For 

this it is both necessary and sufficient that  b(~ +i~)a(~ +itS) -1 be bounded when ~ is real 

(L. Svensson [20]). 

When a E H y p  (vq, m), let A be the complex hypersurfaee a(~)=0, ~EZ. The hyper- 

bolieity then means that  every straight line with the direction v ~ meets Re A in m points. 

The component of Re Z - R e  A that  contains v~ is an open convex wedge F =F(A,  vq) whose 
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edge coincides with Re L(a )=Re  L(A). The dual cone K = K ( A ,  it) consists of all x 6 Re  Z 

such that  x~>0  for all ~EF. I t  is orthogonal to ReL(A).  In particular, if L(A)=O, i.e. 

if a(~) is complete in the sense that  if depends on all variables, then F is a proper cone and 

K has a non-empty interior. When PEhyp(vq) and a is the principal part  of P,  put  

F(P, v~) = F(A, vq), K(P, ~) = K(A,  vq). A main point of the theory is now that  P E h y p  (vq), 

~EF(P ,v  q) implies PEhyp(~)  and that  the fundamental solution E(P) is given by the 

formula 

E(P,  t$, x) = (2 ~)-nfe'X('+'~'P(~ + i~)-ld~ (7.1) 

where ~ E -  F(P, vq)- cvq with c > 0  large enough. The integral, taken in the distribution 

sense, is then independent of the choice of ~ and K = K ( P ,  v a) is the convex hull of the 

support S E  of E. For this reason, K is called the propagation cone of P. A simple 

argument shows that  

(7.2) E(P, v ~, x) = E(P', v ~', x')| 

where P '  and v~' are the images of P and v ~ in the quotient Z/L(P), x' are coordinates in i t s  

dual and the x" are complementary coordinates in Re Z'. The dimension n(P) of Z/L(P), 

i.e. the codimension of L(P) will be called the reduced dimension of P and the polynomial 

P '  and the fundamental solution E(P') the reductions of P and E(P). Writing P = a + b  

we also have the formula 

(7.3) E(P, v q, x) = ~ ( - 1)k b(D)k E(a k+ l, v ~, x). 
0 

The fundamental solution E is holomorphic outside the wave front surfaqe W(P, v ~) = 

W(A, v~), contained in K(P, v q) and defined as follows. The localization P~ of P at ~EZ 

is a polynomial given by the formula 

t -+ 0 => WP(t -  1~ + ~) = tmgpg (~) + o(tm~ + 1). 

and the requirement P~(r The integer m~=m~(P) is called the multiplicity of 

relative to P. I t  is also the degree of Pg. When P E hyp (v q) and ~ E Re Z it turns out that  ag E 

hyp (vq) is the principal part  of P~ and the wavefront surface W(P, v ~) = W(A, v ~) is simply 

the union of all the local propagation cones Ke(P, v ~) =K(P~, v ~) when 0 # ~ERe  Z. When 

P is not complete, then W(P, O) =K(P,  v~), otherwise 1 +d im W =dim K and W contains 

the boundary of K. Notice also the basic fact (I, Theorem 4.10') that  

(7.4) 0 #- ~ e Re Z ~ S(Q~(D) E(P~)) c SS(Q(D) E(P)) 

where Q is any polynomial and S and SS denote "support  of" and "singular support of" 

respectively. 
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When a E H y p  (vq, m) and xEK(A, ~) - W(A, ~), the fundamental  solution of a 

power a k of a and its derivatives are given by the Herglotz-Petrovsky-Leray formulas 

(I, Theorem 7.16), 

(7.5) D~E(a ~, v~, x) = const I (x, ~)q ~ a(~)- k o(~), q/> 0, 

(7.5') D~E(a k, ~, x) = const I (x, ~)q ~'a(~) -k o(~), q<  0. 

Here const ~=0, q=mlc-  [v] - n  is the homogeneity of the left side, m being the degree of 

a, and 
OJ(~) = ~-~( - -  1 ) k - i  ~ k d ~ l  . . .  d $ k  . . .  d~n. 

The integrands are closed rational (n -1 ) - fo rms  on (n-1)-dimensional  projective space 

Z* with poles on A* and A* U X* respectively where X is the complex hyperplane and a 

star denotes the image in projective space. Further  a*EHn_I(Z*-A*, X*) is a relative 

homology class with boundary fl*=fl(A,x,t$)*=aa*EHn_u(X*-A*, X*) called the 

Pet rovsky class and ~* = txfl* E Hn_I(Z* --A* U X*) where tx is induced by  the tube operation 

from chains in X* to chains in Z * - X *  generated by  the boundary of a small 2-disk in the 

normal bundle of X* as its center moves on X*. A brief description of the relative class a* 

runs as follows. Let  R + be the positive reals and put  Z + = Z ' / R  + where ~ = Z - ( 0 } .  

When x is real, let a(x) + be the (n-1) -sphere  R e Z  + counted with multiplicity �89 and 

oriented by  x~eo(~) > 0. Then a* = a(A, v q, x)* is the homology class in Hn_I(Z* - A*, X*) 

of the image of ~(x) + in Z* under any map 

~ - ~ - i v ( ~ ) ,  ~ E R e 2 ,  

where v(~) is a real vector field in C ~ such tha t  v(~)EF~(A, v~) for all ~, xv(~) =0  when 

x~ = 0  and a(~ +it v(~))40 when 0 < t  ~< 1. All such maps are homotopic. The details are 

given in Par t  I, section 6: Vector fields and cycles. We also remind the reader of the 

definitions of sharp fronts and lacunas (Part I, section 9). They will be used only in 

connection with fundamental  solutions of hyperbolic operators but are, in fact, quite 

general. When u is a distribution defined in an open subset O of R", let Su denote the 

support  of u and SSu its singular support, i.e. the complement of the largest open subset of 

O where u is a C~176 When one of the coordinates is t ime so tha t  u is a wave, parts  of 

SSu are called wave fronts. Let L be a component of O - S S u  and let yElL. We say tha t  

u is sharp at  y from L if u has a Coo-extension from L to L N N for some neighbourhood 

N of y. Of course, sharpness is an exception. In  general, the wave or derivatives of it do 

not have limits at the front. When u is sharp from L at  all points of ~L, L is said to be a 
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lacuna for u. A lacuna L is said to be strong if u = 0  in L. Pet rovsky [16], who seems to 

have introduced the word lacuna, only considers strong lacunas. The definition given here 

was suggested by  L. HSrmander.  Note tha t  if u has homogeneity q, i.e. if u(]tx)=).qu(x) 

when 2 > 0, then u is sharp from L at  the origin if and only if u is a polynomial in L. In  

particular, L is a strong lacuna for u unless q is an integer ~>0. 

When applying the definitions above to fundamental  solutions E = E(P, v ~, x) one is 

embarassed by the fact tha t  SSE may  be smaller than the wave front surface W = W(P, v~). 

I t  is therefore convenient to apply them also to components L of the complement of W. 

Such components which are lacunas will be called regular lacunas. Every  lacuna is then 

the union of regular lacunas and parts of W not in SSE. The complement of the propaga- 

tion cone K(P,  v a) is a strong regular lacuna for P called the trivial lacuna. I f  P is not 

complete so tha t  its reduced dimension n(P) is less than n, the propagation cone K(P,  v ~) 

has no interior and the trivial lacuna is the only regular lacuna. But  here, if P' is the 

reduction of P, (7.2) shows tha t  the s tudy of E reduces to tha t  of E ' =  E(P',  v ~', �9 ). In  

particular, the complement of the support of E is the union of the trivial lacuna of E 

and all strong lacunas of E'. This union is of course connected. 

Sharpness at  the origin characterizes the lacunas of any P E h y p  (v~) and P and its 

principal par t  have, generally speaking, the same lacunas. The essential par t  of the exact 

s tatement (Lemma 9.6 of Par t  I) can be paraphrased as follows. Let  L be a component 

of K(P, v~)-W(P,  v~). Then all E(P ~, v~),.(]c=l, 2 . . . .  ), are sharp at  the origin from L if 

and only if L is a lacuna for every QEhyp (~) whose principal par t  is a power of a. 

Let  a E Hyp  (v~). When the Petrovsky condition 

(7.6) fl(A, v q, x)* =0  in Hn_2(X*-X*N A*) 

holds for one x in K(A,  O) - W(A,  v~), then, by  virtue of (7.5'), all derivatives of E(a ~, v~, �9 ) 

of order > m k - n  vanish at  x. Hence, if L is the component of K - W  tha t  contains 

x, E(a k, v ~, x) is a polynomial in L and L is a lacuna for all powers of a hence also for any 

QEhyp (v~) whose principal par t  is a power of a. When P E h y p  (v~) has principal par t  a, 

components L of the complement of W(A, v ~) for which the Petrovsky condition holds at  

all points are called Petrovsky lacunas. 

Our main result on lacunas, announced as Theorem 10.9 of Par t  I, says that  the 

fundamental  solution E(a k, v ~) = E(a ~, v~, x) of a high power a E H y p  (v~, m) has only 

Petrovsky lacunas, that  its support is the propagation cone K(A,  ~) and its singular 

support  is the wave front surface W(A, v~). Moreover, this happens when/c exceeds a certain 

function of m and n. The proof of this result is a simple consequence of the Herglotz-  

Pe t rovsky-Leray  formulas, the generalized Grothendieck theorem (see Proposition (5.2)) 
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and the fact tha t  the tube operation is injective and tha t  the class a(A, x, vq) * is not zero 

when x is inside the propagation cone (see w 8 below). A more detailed version of our main 

result will be proved in w 9. I t  has the following corollary of general interest. The proofs of 

(a) and (b) use Theorem 6.2, the proof of (c) Proposition 5.3. The properties (a) and (c) are 

true in all dimensions, (b) and (d) are more special. 

THEOREM (7.7). Let PEhyp (z$, m) have principal part a and let n(a) be the reduced 

dimension o/a. 

(a) I / n ( a ) < 3  then 

(i) all lacunas o / P  are Petrovsky lacunas 

(if) SE(P, v ~) =K(A, z$) 

(iii) SSE(P, v q) = W(A, ~). 

(b) / / n ( a ) = 4  and a is complete, (i) and (iii) hold. 

(c) I / a  is complete and A* has only normal crossings, (i) and (iii) hold. 

(d) / / n ( a g ) ~ 3  for all 0 : ~ E R  ~, (iii) holds. 

Note tha t  (if) says tha t  P has no non-trivial strong lacunas. Since the homogeneous 

wave operator in four variables has such a lacuna, (if) does not hold in the cases (b) and 

(c). According to M. Mathisson [15], when a is this wave operator and P 4a ,  (if) does in 

fact hold. I t  seems plausible that  (if) holds for non-homogeneous operators in general. On 

the other hand, K. G. Andersson (unpublished) has shown tha t  the property SSE(P, v ~) = 

0 SE(P~) put forward as a conjecture in Par t  I is not true in general. There are homoge- 

neous operators of order 4 in 6 variables for which the right side is not closed and inhomoge- 

neous operators for which its closure is not equal to the left side. 

Lacunas of systems 

According to Lemma 3.2 of Par t  I, a differential operator P =P(D)  whose coefficients 

are square matrices is hyperbolic with respect to a real vector v q if and only if its determinant 

det P has that  property.  Further,  if Q(D) is the matr ix  of cofactors of P(D), the formula 

(7.8) E(P, ~, x) = Q(D) E(det  P, v~, x) 

connects the fundamental  solutions of P and det P. I t  follows that  the support  or singular 

support  of E(P) is contained in the support or singular support  of E (det P). Later  

(Theorem 14.20) we shall actually determine the singular support  of E(P) in a special case. 
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The general case seems to be very complicated and we shall only prove the following 

result announced at  the end of Par t  I. 

THEOREM (7.9). Let P be a matrix-valued hyperbolic di//erential operator with deter- 

minant det P and let E(P) and E(det  P) be the corresponding/undamental solutions. Assume 

that the complex projective hypersur/ace given by the principal part o /det  P is non-singular. 

Then E(P) and E(det  P) have the same singular support and every lacuna ]or P is a lacuna 

/or det P. 

w 8. Homology of hyperbolic hypersudaces 

Lv.••A (8.1). Let aEHyp (0), 0~=xER ~, and let A*: a ( ~ = 0 ,  X*: x~=O be the cor- 

responding projective hypersur/aces. Then the tube operation 

tx: H~_~(X* - X *  N A*) ~ H~_I(Z* - A *  U X*) 
is injective. 

Proo]. The tube isomorphism tx is isomorphic, via Poincar~ duality, to the coboundary 

: H~ -~ (X* - X* N A*)-~ H~-I  (Z* - A*, X* - X* N A*) 

where H c denotes cohomology with compact supports. Hence (~ will certainly be 

injective if the preceding term H~-2(Z * - A * )  in the exact sequence is zero. But  this is true 

because Z * - A *  is a Stein manifold of complex dimension n - I ( H ~  -2 being dual to Hn). 

Lv.~MA (8.2) with the notation o/the preceding lemma assume/urther that xE W(A, z~) 

but xEK(A,  0). Then the class a(A, x,O)*eH~_~(Z*-A*, X*) does not vanish. 

Proo/. Let  7*EH~_I(Z*-X*,A*) be the class of the relative cycle carried by 

F(A, v~) *. Clearly it will be sufficient to prove tha t  a* "7* = • 1. To compute this intersection 

number we shall choose a suitable representative ~* for a* such tha t  v e V(A, X, ~) is given 

by 

(8.3) v(~) = sgn (x~) ((xt~) -1 (x~)v~ - ~) 

for ~*EF(A, v~)*. I t  is easy to check, from our assumptions on x, tha t  (8.3) does indeed 

satisfy the conditions defining V(A, X, v q) (Part I w 6) in the region F(A, v~) * (the "inner 

oval"): the important  point being tha t  this inner oval does not meet the hyperplane 

Re X* (so tha t  x~ ~:0 there). The general construction for vector fields of V(A, X, v q) given 

in Par t  I ,  Lemma 6.7, then enables us to extend v from F(A, v~) * to the whole space. Now 

~v is the sum of two cycles(1) arising from the two hemispheres x~>0  and x~<0  (on the 

(1) Recall that in the definition of % the multiplicity of each hemisphere is �89 and they are taken 
with opposite orientations. 
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(n -1 ) - sphe re  Z+) by  the map ~ - i v ( ~ ) .  I t  is clear t ha t  the images by  (8.3) intersect  

F(A, v~) * transversal ly at  the point  v~*. The only point  is to  show tha t  the signs are the 

same and do not  cancel. Now taking coordinates so tha t  v~=(1, 0 .. . . .  0), x=(1 ,  0 . . . . .  0), 

~'=(~2 . . . . .  ~n) and using formula 6.18 of P a r t  I it follows tha t  the two cycles making up 

a* are represented by  ~ ' - ~ '  - i ~ '  (multiplicity 1/2), ~ ' - ~ '  +i~' (mult iphcity ( - 1)n-1/2) 

This shows tha t  the intersection numbers  have the same sign. 

Remark. Since the question of signs is crucial here the reader m a y  get  some re- 

assurance from the following al ternative a rgument  valid for n even and A* non-singular.  

I n  this case the vanishing of :r is equivalent  to the following: the boundary  of the inner 

oval defines a homology class a on A* which is not  a multiple of the class 7~ coming from 

intersections of hyperplanes. (1) Since a . g = 0  (because Re X does no t  meet  the inner oval) 

i t  is enough to show a 2 #0 .  But  a being one real component  of an algebraic var ie ty  its 

normal  bundle is isomorphic (by multiplication by  i) to  its tangent  bundle. Hence the self- 

intersection is equal to its Euler characteristic which is 2 since a is a sphere of even 

dimension. 

w 9. L acu n as  

We shall now give a detailed version of our main  result. I t  uses two ra ther  implicitly 

defined functions of which little is known except t ha t  they  are finite. Let  b(~) denote com- 

plete real homogeneous polynomials in n variables and let k0(m , n) and k1(m, n) be the 

least integer k > 0  such that ,  respectively, 

(9.1) all forms ~b(~)-km(~) with I vl = m k - n  >~0 and their conjugates span Hn-I(Z * -  B*) 

(9.2) all forms ~(x~)~b(~)-kco(~) with q = m k - n - I v  I < 0  and their conjugates span 

Hn-I(Z * - B* U X*) for all b and all real x #0 .  

By  proposit ion (5.2), both  functions k 0 and k 1 are finite. I n  fact, they  would be finite also 

if b is no t  assumed to be real and the words "and  their conjugates"  deleted. Obviously, 

ko(m, 2 ) =  ]ci(m , 2 ) =  1 for all m. When  n = 1, we pu t  k o = ]r = 1 by  definition. Note  that ,  

also by  definition, mko(m , n) - n  >~0, but  tha t  there is no similar restriction on the funct ion 

k 1. The funct ion ko(m , n) cannot  be used directly. Ins tead  we shall employ the least 

majoran t  k*o(m , n) of ko(m, n) which does not  decrease as m or n increases. I t  is of course con- 

ceivable t ha t  k 0 - k  0. I n  any  case, the implication 

(9.3) m ~> 3 ~ k*(m, 3) = 1 

is just  another  way  of s tat ing Theorem 6.1. 

(1) This is the version given by Petrovsky. 

12 - 732907 Acta mathematica 131. Imprim6 le 11 D6combrr 1973 
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LEMMA (9.4). Let a E H y p  (tg, m) be complete and let p(k), (k= 1, 2 .... ), be operators in 

hyp (v q, kin) with principal parts a k. Then 

(i) k >/rain (kl(m, n), k0(m, m -  1)) ~ all regular lacunas o/p(k)  are Petrovsky lacunas 

(ii) k>~k~(m, n) ~ S E ( P  (k), vq) = K ( A ,  vq). 

Proo/. By Lemma 9.6 of Par t  I, every regular (strong) lacuna of p(k) is also a regular 

(strong) lacuna of a k. Hence it suffices to assume that  the p(k)=a ~ are homogeneous. Let  L 

be a component of K(A ,  sT) - W(A,  •) and a lacuna for a k. If x e L  and q = m k - n -  Iv] <0, 

then by (7.5') 

where fl* =fl(A, x, v~)* EHn_~(X*-X* N A*) is the Petrovsky class. By (I.6.19), tx fl*= ++_ tx fl* 

and hence the class tx fl* is orthogonal to all forms that  appear in the integral and their 

conjugates. Hence, if k/> kl(m, n), then by the definition of k 1, tx fl*= 0 so that,  by Lemma 

8.1, the Petrovsky condition holds in L. If k~>k~(m, n - l )  then m ] c - n + l  >10 so that,  if 

[v I = m k - n + l ,  then q= - 1  ariel, taking one residue into X*, 

o = fB,~Va(~)-~x (~) 
where w~ is defined in X* by eo(~) = d(x~) A o~x(~) + O(x~). Now, by the definition of 

k0(m, n - 1), all forms that  appear in the integral and their conjugates spanH~-~(X* - A* f3 X*) 

and hence, since ~ = +_fl*, the Petrovsky condition holds in L. This proves (i). To 

prove (ii), suppose that  L is a strong regular lacuna for a k. Then it is also a lacuna and, 

since ko(m , n)~>k0(m, n - l ) ,  (i) shows that  the Petrovsky condition holds in L. Hence 

~* can be lifted back to H~_~(Z*-A*). But  then, if x e L ,  putting q = 0  in (7.5) we have 

0=~a .~Va(~) - l~0 (~  ), IYl=mk--n. 

Since k~>k0(m, n), the definition of k 0 and the fact that  a *= ___a* shows that  a*=0  in 

H~_~(Z*-A*) and hence also ~*=0 in H~_~(Z A , X*). But this contradicts Lemma 

8,2 so that  (ii) follows. 

We shall now prove a similar result when a is not necessarily complete. 

L~MMA (9.5). Let a E H y p  (~, m) and let p(k), (]c=1, 2, ...)'be operators in hyp (v a,/cm) 

with principal parts a k. Let n(a) be the reduced dimension o/ a. Then 

(i) k >~ Ir n(a)) ~ SE(P (k), z$) = K(A,  zg) 

(ii) ]c >~ b~(m - 1, n(a) - 1 ) ~ SSE(P (~, ~) = W (A, z$) 
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Proo/. (ii) follows from (i). In fact, by the Localization theorem 4.10' of Par t  I, 

W (A, v ~) ~ SSE(P k v~) ~ (J SE(P(~ ~), vq). 

Here P~) has the principal part  a~ and m(a~) < m, n(a~) < n(a) so that  if the hypothesis of (ii) 

holds, then SE(P~ k), v ~) = K(A~, v ~) for all ~ 4 0  and the conclusion of (ii) follows from the 

definition of W(A, va). To prove (i), let x = ( x  ', x ~) and ~=(~', ~") be corresponding 

divisions of coordinates such that  ~' =0  characterizes L(A)=4=0 and put  a'(~')=a(~) and 

p,tk)(~,) =p(k)(~) so that  E(P (k)) = E(P'Ck~)| Since the hypothesis of (i) implies the 

hypothesis of (ii) of Lemma 9.3 for p,(k) we have SE(P '(k)) = K(A' ,  v ~') and hence also 

SE(P (k)) = K(A' ,  v a') | (0"} = K(A,  v~). 

The two preeeeding lemmas constitute our main result on lacunas, support and 

singular support in detailed form. We can now produce a 

Proo/o/  Theorem 7.7. The items (ii) and (iii) of (a) follow if we combine (9.3) with 

Lemma 9.5. The item (i) is trivial unless a is complete and in this ease we can again use 

(9.3) and Lemma 9.4. To prove (b), use {9.3) and Lemma 9.5. The proof of (c) is not tha t  

immediate. The item (iii), however, follows from the I~calization Theorem 1.4.10', 

W (A. v ~) ~ SSE(P, 0) D (J SE(P  ~, v~). 

Here, since A* is supposed to have only normal crossings, a~ is just a product of linear 

factors so that  SE(a~, v ~) =K(A~, v ~) and hence also SE(P~, v~=K(A~, vq). I tem (i) follows 

as in the proof of Lemma 9.3 from the fact (Proposition 5.3) tha t  all forms that  appear 

in (9.4) span Hn-I (Z*-A*U X*) so that  the Petrovsky condition holds. Finally, (d) 

follows from item (ii) of (a) and the Localization Theorem 1.4.10'. 

Finally, we shall prove Theorem 7.9 about hyperbolic operators P(D) whose coeffi- 

cients are square matrices. Let  Q(D) be the associated matrix so that  

(9.6) P(D)Q(D) = det P(D) I 

where I is a unit matrix. Let a(D) be the principal part  of det P(D). Since the complex 

projective hypersurface A*: a(~)=0 is assumed to be non-singular, a(~)=b(~) r is a power 

of an irreducible polynomial b($) with the property that  grad b(~)~0 when ~ 0 .  If Q 

has a factor which is a power of b, then by (9.6), det P has the same factor. Cancelling such 

factors we get 
P(D)Qo(D ) = p ( n )  I 

where Q0 does not have the factor b and the principal part  of P is a power of b, say b s. 

According to this formula, the entries of E(P)=Qo(D)E(p ) I  have the form 
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F(x) = M(D) E(p, v q, x) 

where M is an entry of Q0. Next we shall use the Localization Theorem 4.10' of Par t  I. 

Denoting localizations by an index ~ we then have 

F~ = M E E(pE) 

and SSE contains the union of the SF  E for 0 4=~ real. Since the principal part  of PE equals 

b~ (Lemma 3.42 of Par t  I), and b E is constant or linear, the support of E(pE) is the entire 

propagation cone K(p~, vq). This in turn is a a half-ray when b(~) =0, otherwise it is just 

the origin. Now, by assumption, there is an M(~) which is not divisible by b(~) and hence the 

real algebraic manifold b(~)=0, M(~)=0 has dimension < n - 1 .  Except  for this manifold, 

M~ =M(~)4=0 when b(~) =0,  ~ 4=0, and hence the union of the supports of the F E is dense 

in the wave front surface W(detP,  O)= W(B, vq)=W(A,v~). Hence SSE(P) contains 

W (det P, vq) which, by Theorem 7.7 equals SSE (det P). Since the opposite inclusion is 

trivial, the two singular supports are equal and the first part  of the theorem is proved. 

Next, write M(D)=Y~ Mk(D) as a sum of polynomials of homogeneity k. Assume that  

some component L of K(A, v q) - W(A, v a) belongs to a lacuna for E(P, v ~, x). Then all the 

derivatives of F(x) have limits as x tends to zero along a ray in L. Precisely as in the proof 

of Lemma 9.6 of Par t  I this shows that,  restricted to L, every Fk = Mk(D) E(b s, ~, x) is a 

polynomial of homogeneity m 8 -  n - k ,  m being the degree of b and, as before, b 8 the 

principal part  of p. Now choose _N(D)= Mk(D ) not divisible by b. Then, by  (7.5'), high 

derivatives of F k are integrals over the Petrovsky tube ~,* of rational differential forms with 

a multiple of N(~) in the numerator and products b(~) s (x~) q, (q > 0), in the denominator. 

Also, all multiples of N(~) of sufficiently large homogeneity do occur. Making them contain 

b(~) s-1 as a factor and applying Proposition 5.8 shows that  y* =0. Since the tube operation 

is injective, L is in fact a Petrovsky lacuna for p(D) and hence also for det P(D)= 

b(~)r-Sp(D). This finishes the proof. 

C H A P T E R  I I I .  

S H A R P  F R O N T S .  T H E  L O C A L  P E T R O V S K Y  C O N D I T I O N  

w 10. Introduction 

In  this chapter we shall push the study of fundamental solutions of hyperbolic operators 

a bit further by examining their behaviour close to the wave front surface. We shall 

focus our interest on sharp fronts. To repeat the definition, let a E H y p  (vq), let E(a, v ~, x) 

be the corresponding fundamental solution, let L be a component of the real complement 
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of the wave front surface W(A,v  ~) and let yEOL. Then E is said to be (C ~) sharp a t  y 

from L if y has a neigbourhood h r such tha t  the function x ~ E( a ,  v ~, x), holomorphic in L, 

has a C ~ extension from L to L N h r. When the function has a holomorphie extension to 

LU hr we say that  E is holomorphically sharp from L (across W(A, v~)) at  y. Of course, 

holomorphically sharp implies C ~~ sharp. The two concepts are probably equivalent for  

fundamental  solutions of hyperbolic operators. 

Let  fl(A, x, v~)* denote the Petrovsky class. As we have seen, the Petrovsky condition 

(10.1) fl(A, x, v~) * =0 in Hn_2(X*-X*N A*) 

implies tha t  x belongs to a lacuna for all powers of a. There is a similar condition, the IoeaI 

Petrovsky condition, tha t  implies tha t  E is holomorphieally sharp from L at  y, namely 

(10.2) fl(A, x, v~)* EH,_~(Y * - Y*N A*) 

when xEL is close enough to y. The formula should be taken in the sense tha t  the left side 

belongs to the image of the right side induced by  projections Y* - Y* N A * ~ X *  - X *  N A*. 

A more precise s ta tement  is given at  the end of this section together with a proof tha t  (10.2} 

implies holomorphic sharpness from L at  y. 

Example (10.3). When n=2, all Petrovsky classes vanish and all fronts are sharp. 

When n = 3, all X* are just complex lines and, if a E Hyp  (~, m) is complete and x belongs 

to a component ~ of K(A, v~) - W ( A ,  v~), then A* N X*, which is invariant  under  complex 

conjugation, consists of m possibly multiple points whose multiplicities are constant and 

the Petrovsky class ~(A, x, v~) * is represented by  one-half times Re X* detached from 

Re X*fl A* (Part I, p. 167). As x approaches O~=yEaL and A does not contain the plane 

~y =0,  at  least two points of A* fl X* come together. The meaning of (10.2) is then tha t  no 

such two points form a conjugate pair converging to a real point. When A contains the  

plane ~y~0 ,  the right side of (10.2) is zero and the meaning of the formula is tha t  the  

Petrovsky class vanishes. By  the Herg lo tz -Pe t rovsky-Leray  formulas (Part  I, Theorem 

7.16) ,the derivatives of order m - 2  of the fundamental  solution E(a, ~, x) are integrals 

over fl(A, x, va) * of closed (n -2 ) - fo rms  with poles only on A*NX* which are rat ional  

functions of x and the coefficients of a. The sufficiency of the local Petrovsky condition 

when n = 3 is an immediate consequence of this statement.  I t  is not difficult to show thab 

in this case the condition is also necessary (even for C ~ sharpness) but  this will not be done 

here. 

In  w I2 we shall use Theorem 1.9.3 to prove tha t  the local Petrovsky condition is 

necessary when y belongs to a regular piece of the wave f ront  surface with a non- 
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degenerate curvature, dual to a similar piece of Re A. The necessity in the general case 

when n >3  is an  open question. 

The main point of this chapter is a s tudy of sharpness at  plane parts of the wave 

front surface, a case in a sense opposite to sharpness at  curved pieces. The results are given 

in w 14, the technical preparations in w 11 and w 13. The statements use the reduced wave 

front  surface ~V(A, ~9) of a hyperbolic polynomial e EHyp (~, m) defind as the union of 

the local propagation cones K(A~, zg) when ~ is real and does not belong to the lineality 

L(A) of r The reduced wave front  surface has codimension 1 in the propagation cone 

K(A,  ~) and coincides with the wave front  surface W(A, ~9) when r is a complete 

polynomial (see Lemma 1.5.17). Plane parts  of W(A, ~) correspond to conical points of 

Re A*, i.e. points 7" such tha t  the lineality L(A~) of the localized polynomial r has 

minimal dimension, i.e. L(A~)=C~. The plane par t  in question is then simply the local 

propagation cone K(A~,v~)cReZ '  spanning the hyperplane x~]=0. We say tha t  

yEK(A~, v q) is a simple point of W(A, v q) if, close to y, W(A, v q) coincides with K(A~, v~). 

Our main result (Theorem 14.1) is now tha t  if yEK(A~,vq) -W(A~,v  q) is a simple 

point of W(A, v q) then, for all k > 0, E(a k, v ~, �9 ) is holomorphically sharp at  y from both 

sides of K(A~, vq). The proof is a somewhat lengthy verification tha t  the local Petrovsky 

criterion holds. I t  employs certain results of a w 15, Local hyperbolicity, which is interesting 

in itself and simplifies parts  of section 2.5 of Par t  I. As a comparatively simple corollary 

(Theorem 14.18) we can compute the jump J(a k, v q, x) of E(a k, v q, �9 ) at  y, defined as the 

equivalence class of E modulo functions holomorphic close to y. The formula is simply 

J(a ~, v q, x) = O(x~) (x~)k(m-~)-l H(x) 

where 0 is the Heaviside function, p =m(a~) the degree of a~ and H(x) is a holomorphic 

function of homogeneity ]cp + 1 - n. In  the special case when y is in a lacuna for all powers 

of a~, considered as a polynomial on Z/Off, i.e. when the Petrovsky condition in dimension 

n -  1 holds, 

(10.4) fl(A, 1, y, vq) * =0  in H n - s ( Y * -  Y*N A~) 

then H(x) is a polynomial and hence has to vanish when ]cp < n - 1 .  In  this case, then, 

E(a k, v q, �9 ) is holomorphic across W(A, v q) at  y. 

We give an application of this to symmetric hyperbolic systems in three variables 

(Theorem 14.20). 

Note tha t  the condition (10.4) together with k p < n - 1  implies that  E~(ak, v q, x ) =  

E(a~, v~, x) vanishes close to y. Hence our result indicates tha t  the inclusion (Part  I ,  

p. 145) 
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may be an equality. This, however, is not true. As pointed out in the introduction, 

examples by K. G. Andersson show tha t  the inclusion may  be strict. 

We end this section by  stating a precise form of (10.2). 

THE LOCAL PETROVSKY CONDITION (10.5). 

Let a E Hyp (~) be complete, let L be a component o/ the real complement o/ W(A, ~) 

and let O4yE~L. Let 7~ be di//eomorphisms Y - ~ X  continuous in x close to y such that 7~y 

is the identity and let ly be a smooth path in L ending at y. Suppose that,/or some choice o/ly 

and the/amily xl x we hai~e 
z~ly ~ ~(A, x, ~)* ~ *  

where t* is a (n-2)-cycle in Y* avoiding A*. Then E(a, ~, x) is holomorphicaUy sharp at y 

/tom L. 

Proo/. I t  suffices to show tha t  ly has a neighbourhood Ly in L such tha t  when x ELy 

is close to y, the class txfl(A, O, x)*EHn_I(Z*-A*UX*) contains a cycle 7* which does 

not depend on x. In  fact, in this case the Herglo tz-Pet rovsky-Leray  formulas show tha t  

the derivatives of E(a, v ~, x) of order > m - n  have holomorphic extensions from Ly to a 

complex neighbourhood of y. Now, by  assumption, there is a (n - 2)-cycle t*  c Y* - Y* N A* 

such tha t  ~ f l*  is in the Petrovsky class fl(A, x, 0)* for all x Ely. I t  follows from Lemma 

1.6.23 tha t  if x' is sufficiently close to such an x, then ~,f l*  = ~ ,  ~-1 ~z t*  is in the Petrovsky 

class fl(A, x', v~) *. Hence the previous s ta tement  holds for all x in a certain neighbourhood 

Ly of ly. Let  7*=ty f l*cZ*-A*U Y* be a small tube around fl*. When x is very close to y, 

this is also a tube in Z*-A*U X* around ~f l*  and hence 7*Etxfl(A, x, v~)* provided, in 

addition, x ELy. This completes the proof. 

w 11. Representatives of the Petrovsky class 

Let a E Hyp  (v~) and x E W(A, ~). According to the general theory, representatives of 

the Petrovsky homology class fl(x)* =fl(Ai x, zg)*EHn_2(X*-X*N A*) may  be obtained 

as follows. Let V(A, X,  ~) be all real C~-vector fields 

Re , ~  -~ v(~) e r e  X 

which are homogeneous of degree 1, ~t>0~v(~t~)=~tv(~) and are such tha t  

v(~) E F(A.~, v~) N Re X 
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for all ~. Then fl(x)* is the homology class in Hn_2(X*-X*f i  A*) of the image in projective 

space of the cycles 

(11.1) Re X~ ~ ~ ~-itv(~) 

with t > 0  sufficiently small, oriented by wx(~)>0. Here cox(~ ) is a (n -2 ) - fo rm on X 

defined by ~(~)=d(x~)Aeox(~)+0(x~). The map or cycle (11.1) is said to represent the 

class ~(x)*. We shall now construct other maps with the same property. 

LEMMA (11.2). Let S c R  n-~ be a (n-2)-sphere and a C r176 mani/old and let 

: S -+ ~(S) c Re X 

be a di//eomorphism and assume that every hal/-ray through the origin in Re X meets ~(S) 

precisely once. Let I be an interval around the origin in R and let 

$ =  $(t): S x I - + X  

be a C ~176 map such that E(O)=~ and 

(11.3) DE(0) EF(A~, v ~) N X, D = -~/i2t, 

/or all ~ and let ~(t) be the cycle 
E(t): s - ~ X  

oriented by ~ox(~) >0. Then ~(t)*Efl(A, x, ~)* provided t>O is small enough. 

Proo/. When $(t) = ~ -  itv(~), v(~)= DE(O), is linear in t, this is just the definition of/~*. 

Further, it follows from Lemma 1.5.9 (the inner continuity of the local F-cones) and a 

covering argument that  
a(~ +q~(~)--it(v($) + ~v(~))) + 0 

for all real ~, all sufficiently small real functions ~ and ~v of homogeneity 1 and all small 

t ~0.  Hence, if t > 0  is small enough, the maps E(t) and $-i tv(~)  are homotopic in Z - A  

and the lemma follows. Note also that  if U is an open subset of S and ~0: U • I - + X  has 

the desired property (11.3), then there is a E: S x I -+X satisfying (11.3) everywhere and 

coinciding with E0 on any given compact subset of U when t is small. The proof goes by a 

partition of unity and the interior continuity of the local cones. 

We shall now use the preceding lemma to specify a situation where the generalized 

Petrovsky condition holds. We shall encounter it both in w 12 and w 14. 

A point y E W ( A , ~ )  is said to be simple if yEK(A~,O), i.e. F(A~,v~)NRe Y=~D, 

implies that  ~ is a multiple of precisely one z/E Re A. In case there is a finite number of 

such rays R~, y is said to be quasi-simple. We shall only consider simple points but  make 
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occasional remarks about quasi-simple ones. Now, let L be a component of the complement 

of the wave front surface and let y EaL be a simple point. Let  ly be a smooth path in L 

ending at y and, for x close to y define a projection ~x: Z ~ X  by ~rx~ = ~ - ( x ,  ~)(x, 2)-12 

where 2 E R e Z  is not in Y. We are going to define a (n-2)-cycle  7* in Y* - Y*n A* such 

that  ~rzT* represents the Petrovsky class/~(A, x, v~) * when xEl  u is close to y. This can only 

be done under certain conditions and 7" is obtained by deflecting a cycle 7~ in 

( Y * - Y * n  A*)U~* from the point ~/*EA*. Our conditions are now as follows. 

There are orientable manifolds $(t), O ( t ) cY  of dimensions n - 2  and n - l ,  C ~ 

functions of t when t ~>0 and t > 0 respectively such that  

(i) ~(0)cRe Y is transversal to rays through the origin and contains +~/. 

(ii) There is a projective neighbourhood M* of ~/* such that,  putting D = - d / i d t  

and letting ~ and Z be corresponding points of ~(0) and D~(0), 

xely or x= y ,  ~*eM* ~zxxeF(A~x~,~ ) 

when x is close enough to y, except when x=y ,  ~* =~*. 

(iii) There is a projective neighbourhood N* of ~* such that  

~-(t)* n A*  n N *  = , p ,  ~x~(t)* n A*  n N *  = 

for all x Ely close enough to y and all small enough t > 0. Also, 

co(t)*  n N *  = r n N,  

when t >0  is small enough. 

(iv) For every small enough t > 0  there is a projective neighbourhood N(t)*c V* of 

~* such that  

O(t)* n A* n N(t)* = ~7", ~O(t)* N A* n ;v(t)* = o 

when x Ely is close enough to y. 
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The schematic figure 1 illustrates the relative positions of 0(0)*, $(0)*, A*, ~*, N*. 

L]~MMA (11.4). Under these hypotheses, E(a, ~,. ) is holomorphically sharp at y/rom L. 

Proo/. Arguing as at  the end of the proof of the preceding lemma, we may  suppose tha t  

$(0) is a sphere S around the origin in Re Y and tha t  (ii) holds for all ~ES. By the 

preceding lemma we then know tha t  to every x Ely close enough to y, there is a t(x)>0 
such tha t  ~rx~(t)*, oriented by  c%(~)>0, represents the Petrovsky class fl(A, x, va) * when 

O<t<.t(x). Also, given any neighbourhood M* of ~*, we can assert tha t  

~ ( t ) *  n ( Z * - M * )  n A* = O 

when x is close enough to y and t > 0  is small enough. Combining this with (iii) it follows 

tha t  z~z~(t)* represents fl(A, x, vq)* for all xEly close enough to y and all sufficiently small 

t >0.  We now fix a t > 0  and a neighbourhood N*(t) of ~/* according to (iv), chosen so tha t  

~N*(t), 0(t)*, 80(t)* are in general position. Dropping the argument t we then put  

~0" = 0* fq N*. Then a~* = - ~* fl N* + 0* fl ~N* so tha t  

7" = ~* +~v* = ( ~ * - ~ *  n N*) + 0 "  n ~N* 

does not meet A*. Also, by  (iii) and (iv), z~q* fl A * = O  when xEly is close enough to y. 

Hence, under the same hypothesis, gW* belongs to the 1)etrovsky class ~(A, x, vq)*. Since 

the class of 7* belongs to H~_z( Y* - Y* fl A*), this shows tha t  the local Petrovsky criterion 

holds so tha t  E is holomorphically sharp at y from L. 

Note. When y E W(A, vq) is quasi-simple, Lemma 11.4 holds provided the conditions 

(i) to (iv) hold at every ~*q A* such tha t  y ~ K(A~, ~). The proof is immediate and reflects 

the fact tha t  when x is close to y, E(a, v q, �9 ) can be written as the sum of a holomorphic 

function and integrals extended over neighbourhoods of the points r/*. 

w 12. Sharpness at points of the wave front surface with non-degenerate curvature 

Let F be a conical regular hyper-surface in R e Z ' = R  n, let yEF and let ] (x)=0 

with I x = g r a d / # 0  at y be the equation of F close to y. Let  /xx denote the matr ix  

(~2//~xj~xk) and /~x[z] the corresponding quadratic form Z(~2]/axjaxk)zjz~ and put  

]~z=Z(a]/~zs)z j. The curvature form of F at  x is then the form /~[z] restricted to the 

tangent plane ]~z =0.  I t  depends on the sign of /. We assume tha t  it is not degenerate. 

Taking / to be homogeneous of degree m # 1, an equivalent condition is tha t  ]~  be non- 

degenerate. Then the map x-+~=f~ is invertible close to y and maps F locally onto its 

dual surface F* defined b y / *  = 0  where/*(~) =/(x), ~ close to ~ =]~(y). I t  is easy to see tha t  

F* is independent of the choice of / and m and for convenience we choose m =2  in the 

sequel. Then /* has homogeneity 2 also. We shall see that  the maps x ~ = / ~  and 
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~ x = / ~ ,  the matrices/x~ a n d / ~  and the curvature forms of F and F* at corresponding 

points are inverses of each other. In fact,  ~=/x gives d~=/xzdx, i.e. ~ / ~ = / ~ 1 ~ / ~  and 

~*~ ~ , 1 ~  =ax/a~ =/;~ ax/ax =/;~. Finally, hence ]~ = / ~  (alex)/(x)=/2~ =/~l/~zx=x. Also,/~ = /~/ 

putting u=/~xz we have/~x[z] =/~[u]  a n d / x z = ~ z = ~ / ~ l u = ~ / ~ u = / ~ u .  

The present situation applies when F* is a neighbourhood of ~ in Re A and y is 

simple point of W(A, O) so that  F is a full neighbourhood of y in W(A, 0). By Theorem 

1.9.3, whose assumptions should include also the nature of F*, the fundamental solution 

E(a, ~) is sharp at y from the side s g n / = c o n s t  if and only if ( s g n / ) n = ( - 1 )  v where v 

is the negative signature of the curvature form. We shall now see that  this is equivalent 

to the local Petrovsky condition. 

THEOREm (12.1). Let aEHyp (~) and let yE W(A, ~) be a simple point such that the 

corresponding piece o / R e  A is regular with a non-degenerate curvature. Then, i /E(a,  z~) is 

C~176 at y /rom one side o/ W, the local Petrovsky condition holds there. 

Note (12.2). Theorem 1.9.3 is proved in the real domain simply by using the method 

of stationary phase to compute an asymptotic expansion of x ~  E(a, z$, x) as x approaches 

y. The theorem above is a homological counterpart. I t  is intimately connected with the 

classical Picard-Lefschetz theorem according to which one turn in Z around the complexifi- 

cation of W induces an isomorphism of Hn_~(X*-X*NA*) tha t  takes fl* into 

fl*• (fl*, e*)e* where e* =e(x)* is a so-called vanishing class and the parenthesis denotes 

intersection number. The class e* is a tube around ~e(x)* where e(x)*EHn_2(X*, A*N X*) 

is another vanishing class introduced at the end of the proof. The condition that  fl* be 

invariant, i.e. that  (fl(x)*, e(x)*)=0 is in the present situation equivalent to the local 

Petrovsky condition. 

Note (12.3). Theorem (12.1) shows that  for non-degenerate points we have a topological 

criterion for sharpness. If A* is non-singular then this accounts for most points (i.e. for a 

dense open set of the wave-front set). Moreover we can also characterize sharpness at the 

* should be invariant under the local exceptional points by the criterion that  ~z 

fundamental group gl  (of the complement of the dual of A* in complex projective 

space). The argument runs briefly as follows. Sharpness ~ invariance is a consequence 

of the Hergiotz-Petrowsky formula together with the Grothendieek theorem. For the 

opposite implication we use the Picard-Lefsehetz theory as above to extend over all 

non-degenerate points and then extend over the remainder (having complex codimensions 

~>2) by the Hartogs extension theorem for several complex variables. Note that  the local 

Petrowsky condition implies invariance under ~1, but  the converse is a difficult unsolved 
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problem in general. For  singular A* the wave-front  set W contains m a n y  regions no t  

covered by  our  discussion of sharpness so f a r - - n o t a b l y  W m a y  contain flat pieces (open 

sets in hyperp lanes ) - -and  ou r  main  aim will be to  get  information on these. 

Proo/. We can choose linear coordinates and the equa t i on /*  = 0  of Re A at  ~ such 

tha t  ~ = (1, 0, ..., 0), y = (0, 1, 0 .. . . .  0) and when ~2,/~1 ... .  are small 

(12.4) , ~r~) "~- ~ 1 H  (~3/~1 . . . .  )" 1 .  (~) = 2 ~ 1 ~ 2 _ F  Q ( ~  a . . . .  2 , 

Here Q = - } ~ - . . . - } ~  +}~+~ + ..., p =~ +2 ,  is a non-singular quadrat ic  form of signature 

and H* vanishes of order 3 at  the origin. Hence 

/(x) = 2xl  x 2 -t-Q-l(x3 ... . .  xn) ~-x~ H (xa/X2, ...) 

where now xl/x2, xs/x2, ... are small and H vanishes of order 3 at  the origin. We  are going to  

verify the hypotheses of Lemma 11.4. First, let ly=l~ consist of all x =  (xl, 1, 0 . . . .  ) 

with x 1 + 0  small and given e = s g n x  1. Since s g n / ( x ) = e  for these x, t hey  lie in a 

component  of the real complement  of W ( A ,  v~) which we denote by  L e. B y  Theorem 1.9.3, 

E(a,  O) is sharp at  y f rom L e if and only if sn = ( _ 1)~. Changing if necessary / to  - / 

it  suffices to consider the case e = 1. The projection gx on X will be given by  ~x ~ = 

- (x, ~) (y, ~)-1~ where ~ = (0, 1, 0 .. . .  ). Hence 

xEly ::~ 7/:x~ = (~1, - x 1 ~ 1 ,  ~3 . . . .  ). 

We shall first define the chain O(t), t > 0  small. I t  is given by  the map  

% u, s-~O(t) = (vs+i t ,  O, (~s+i t )Tu  a . . . . .  u~+ 1 . . . .  ) 

where T = • 1, 0 ~<s ~< 1 and u a .. . .  are real. The orientat ion induced by  ~duds >0 ,  changes 

with ~. The boundary  aO(t) has two par ts  corresponding to s =  1, 0, namely  

(12.5) ~(t) = 0 ( t ,  1, T, U) = (T-~i t ,  0, (T'~-$t)ZU 3 . . . .  , %+1, "") 

oriented by  d v d u > O  and 

~o(t) = ( i t ,  O, i t v u 3  . . . .  , % + 1  . . . .  ) 

oriented by  d~du<O.  Changing the signs of % u a .. . . .  up does no t  change the range of 

~0(t) bu t  changes the orientat ion by  a factor  of ( - 1) v-1. Hence ~0(t) vanishes if and only i f p  is 

even, i.e. if and only if E is sharp at  y f rom L = L  1. I n  the sequel we consider this case. 

Pu t  
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and measure the distance in projective space Z* o /0*  = 0(t}* --- 0(t, s, ~u)* from 7" by 5(0*) 

where 
5(0*) 3= 512 + 522 1 ~,  + ~t1-2. 

Assuming ~)(0") small we then have 

(12.6) /* (~xO) = ( t3-  s~) ( ~  + 5~) - 2 itvs (xl + hf) + O(1) ]s + it13 5(O*)s 

We shall now verify the conditions (i) to (iv) of Lemma (11.4), ~(t) being defined by  

(12.5). The condition (i) is then obvious. To verify (ii) note tha t  

-D~(0)  = (1, 0, vua, ..., vu~, 0 ... . .  0) 

is homogeneous of degree 0 in 

~(0) = (3, 0, u 3  . . . . .  u~) 

and that,  close to -+7, r(A~, v ~) is at  least a half-space. Changing if necessary 0(0 to 

0(0 this means tha t  it suffices to verify tha t  there is a neighbourhood M* of 7" such that  

(12.7) /*(7ez~(0)) = 0, Dl*(~z$(O)) = 0 

implies tha t  x = y  when xElyUy  is close to y and ~(0)*EM*. A short computation using 

(12.6) shows that,  put t ing 2 -  ~ 2 5 -51 +5- ~ (12.7) implies 

- 2 Xl - 5~ + 5~ + o ( 5  3) = o 

- -  2 X 1 = 5 2 -~ 0 ( 5  3) = 0 

so tha t  2x 1 +52..<cSha with some fixed c when 5 and x 1 are small enough. Hence Xl= 5 = 0  

or else 5~>c -1. This proves (ii). The properties (iii) and (iv) follow in the same way 

(with IV(t)* independent of t) if we can show tha t  /*(~r.0)=0 imphes 

x~ +5(0*) 2 ~< c~(0") ~ 

for some fixed c > 0  when Xl>~0 and 5(0")~>0 are small enough. But  this follows from 

(12.6). We get, in fact, 

(t ~-8) 2(z 1§ § = 0 ( 1 ) ( t  § 3 

so tha t  the desired inequality results by  the definition of Q(0*). Hence, by Lemma (11.4), 

the local Petrovsky condition holds when p is even. 
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W e  shall  now prove  the  converse using the  fac t  t h a t  there  is a homology  class in  

Hn_~(X*, A*) conta in ing  a cycle e(x)* con t rac t ing  to  the  po in t  7" as x belongs to  ly and  

t ends  to  y. This  is the  vanish ing  class of the  P ica rd -Lef sche tz  t h e o r y  and  can be got  as 

follows. B y  the  classical Morse l emma  there  are ana ly t i c  coord ina tes  ~ = ~3 + ... . . . . .  ~'= = ~ + . . .  

def ined for smal l  ~3 . . . .  such t h a t  Q(~a, ..., ~=) + H* (~3 . . . . . .  ) = Q(~  . . . . .  ~ )  and  hence, if 

~ = 1, /*(~) = 2~2 + Q(~  . . . . .  ~ )  so t h a t  

/* (~r~ ~) = - 2 x 1 - Q ( ~  . . . . .  ~ ' )  

Define e(x)*=X* b y  the  m a p  (~3 . . . .  , ~ n ) - ~ x ~  where 

! ! 
/* (gx ~) ~< 0, Re  ~ = . . .  = Re ~p = 0, Im ~+ l  = . . .  = 0 

and  or ient  i t  in some way.  Then  ~e(x)*=A* and  e(x)* cont rac t s  to  7" as x I r 0. Next ,  

consider  ~x~(t)* = X* - A* f3 X* p a r a m e t r i z e d  b y  

(1, - x .  ~:~3 . . . .  , ~ + 1 ,  (~ + i t ) - l } . + ~  . . . .  ) 

with  T = _ 1 and  small  real  ~3, -.., ~n. This  cycle has  two sheets  t h a t  mee t  only  a t  7" and  

induce  equal  or  opposi te  o r ien ta t ions  of the  mani fo ld  I m  ~3 ... = I m  ~p = 0, Re  ~+1 = . . - = 0  

according as p is odd  and  even. Also, close to  7*, r~x~(t)* meets  e(x)* only  a t  7~x~*. Hence  

the  in te rsec t ion  number  (e(x)*, text(t)*) equals  _ 2 or 0 according  as p is odd  or even. Hence,  

if p is odd,  the  class of ~x~(t)* canno t  conta in  a cycle of the  form ~x~* where 

~ * c  y* - y* N A*. I n  fact ,  eve ry  such cycle avoids  a ne ighbourhood  of 7" and  hence does 

no t  in te rsec t  e(x)* when x 1 is small .  

w 13. Weak sharpness across plane parts of  the wave front surface 

W e  shall  f i rs t  define sharpness  of general  d i s t r ibu t ions  across a hyperp lane .  

Le t  M c Re Z '  be an  open p a r t  of the  hype rp l ane  x 1 = 0, let  N denote  ne ighbourhoods  

of M in R e Z '  and  le t  N~ be the  pa r t s  of N where  X l > 0  and  x l < 0  respect ively .  Le t  

C~ be the  space of all /EC~(N+U N_) which have  C ~ extens ions  ]• f rom N•  to  

N• M.  Such a funct ion,  then,  has  a C ~~ j u m p  /+(0, x')-/_(O, x') at  M.  Next ,  p u t  

(13.1) C . . . .  (M) = U C  k'= (M) 
k 

where Ck'~(M)=(~/~Xl)-kC~176 with  k an  in teger  of a r b i t r a r y  sign and  (O/aXl) -k 

deno t ing  d i f fe rent ia t ion  or in teg ra t ion  in  the  d i s t r ibu t ion  sense. The  e lements  of (13.1) 

are said to  be sharp  across M.  Clearly, Ck'~~ DCk+I'~176 is a f i l t ra t ion  of the  space (13.1) 

and  we have  
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D~'C k' ~r (M) = C k . . . . .  (M) 

The intersection C ~ '~  (M) = (J C k" ~ (M) 
k 

consists of all C ~ functions defined in neighbourhoods of M. Note tha t  if / is a bounded 

function close to M and all derivatives of / of some order p belong to C~ (J N_) and have 

C ~ extensions to N + U M  and N _ U M ,  t h e n / E C ~  

The class of /E C -~176 ~(M) modulo C ~176 ~176 is called the jump of / and is denoted by 

J(/). I t  is represented by  an asymptotic  series. 

(13.2) J(/) ,.~ ~ Os(xl)/j(x'), x' = (x 2 . . . . .  x,) ,  

with coefficients /j E C ~176 (M). Here O k denotes successive derivatives and integrals of the 

one-dimensional Heaviside function O(t)=(1 +sgn  t)/2 so tha t  if k ~>0, 

Ok(t) = O(t) t~lk !, O_l_k(t)  = ~(k) (t). 

The formula (13.2) has to be taken in the sense tha t  

k 
(13.3) / -  ~ 0~(xi)/j(x') E C k+~. ~(M).  

One verifies tha t  the series is unique, that  it vanishes if and only i f /EC~176 and tha t  

(13.4) J(Q(D)/)  = Q(D)J(/)  

for all polynomials Q. 

When n = 1, M is simply the origin of the xl-axis and /EC-~'~176 if and only if 

/ =/(xl) is sharp at  0 from both sides. When n > 1, this s tatement  is no longer true as shown 

by  the example/=~(Xl)g(x '  ) where g 4 0  is a distribution. In  this case it is convenient to 

introduce also a wider class of distributions/(x) in neighbourhoods of M with the property 

tha t  

= ~ / (X l ,  Z ')  g(x') d x ' E e  . . . .  (0) (/, a) (XI) 

for all gEC~(M) .  We denote this class by CwC~'~r where w stands for "weak".  I t s  

elements are said to be weakly sharp across M. Clearly, C ~ ' ~ ( M ) ~ C - ~ ' ~ 1 7 6  and the 

example / =  e ~M/x' E C~'~C(M) shows tha t  the first space is much bigger than the second. 

When / if weakly sharp across M, the coefficients (/j, g) of the jump 

J((/,  g)) Oj (xl) (It, g) 

are distributions in M and (13.2), (13.3) hold in the distribution sense. Of course, if 

/EC-~176 and  (13.2) holds in the distribution sense, then the coefficients /s are 

C~-functions and (13.3) holds in the strict sense. 



192 M. F. ATIYAH, R. BOTT AND L. G/~RDING 

Weak sharpness of fundamental solutions across hyperplanes 
corresponding to conical points 

Let aEHyp(v~,m)  and let a T be the localization of a at some 0=#~EReZ.  The 

point ~/* is said to be a conical point of Re A* if the lineality L(A~) is minimal, i.e. if 

L(A,)  =C~?. I t  follows tha t  only complete polynomials possess conical points and tha t  a ,  

is a complete polynomial on Z/C~. I f  the coordinates are chosen so tha t  ~ =(1, 0 .... ,0) 

and p=m,(a)  is the multiplicity of 7, then ~ is a conical point if and only if a ( ~ ) -  

$1m-Pa,(~ ' )mod$1TM where ~'=(~2 ..... ~n) and a~=a~ is a complete polynomial of 

homogeneity p. The dual cone K(A, ,  ~) is then contained in and spans the hyperplane 

x 1 = 0. The following lemma shows tha t  E(a, v~, x) is weakly sharp across this hyperplane 

and gives an explicit formula for its jump. 

LV.MMA (13.5). Let aEHyp (v~, m), let ~I*ERe A* be a conical point and a T the cor- 

responding localization. Choose coordinates such that ~7=(1,0 ..... 0), ~=(~91 .... ) with 

z~l > O. Then the distribution 
x ~ E(a, z~, x) 

is weakly sharp across the hyperplane x 1 =0 and the asymptotic expansion o/ its jump is 

(13.6) ~ Om_p_l+](Xl) Hp§ (x') 

where the indices denote homogeneity, 

(13.7) H~+l_j_n(X,)= ~ Qn(D,)•, l+J ~(a, , x') 
0<~l<~t 

and where the Qjl are polynomials given by the/ormal expansion o/ a( () -1 in terms o/rational 

/unctions whose denominators are powers o/ (1 and aT, 

a(~) - 1 =  ~ ~-~-Ja,($')-l-lQjl(~'). 

Before proving this lemma we state a corollary involving hypotheses which imply 

tha t  (13.6) converges pointwise to the jump J(a, ~, x) of E(a, ~, x) across the hyperplane 

X 1 =O. 

COROLLARY (13.8). Suppose that/or all large k and some y =~0 with Yl =0,  the/unctions 

x ~  E(a k, ~, x) are holomorphically sharp at y /rom both sides o/the hyperplane xl=O. Then 

the asymptotic series (13.6) converges/or small x - y  to the jump J(a, z$, x) =Om_p_l(Xl)H(x) 

o/ E(a, z$; x), H(x) being holomorphic at y. Note that since p <m,  the jump is a locally bounded 

/unction close to y, continuous when p > m - 1 .  
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Proo /o / the  corollary. Assume first that  E is continuous across x 1 = 0 at y. Then close 

to y, then jump J(a, v~, x) is the function O(xl) (E+(a, ~, x) - E_(a, v$, x)) where E+ denote 

the holomorphic extensions of E from x~ > 0 and x~ < 0 respectively. The difference E + -  E_ 

being holomorphic, a comparison with the weak asymptotic series (13.6) proves the 

assertion in this case. Now, since a is a complete polynomial, E(a ~, 0, �9 ) is continuous for 

large k. Hence the corollary holds for such powers. In  the formula for the jump, this changes 

m, p to km, kp. Since, by (13.4), 

mod DT -r- i ,  the corollary follows. 

Proo/ o/ the lemma. We have 

J(a, iS, x) = ak- l (D)J(a  k, O, x) and a(D) = DTI-Pa~(D ') 

a(~)  = ~ - r  (a~ (r - b(~))  

where ~ '=  ($~ . . . . .  ~ )  

and b(~)= ~ ~ b j  (~'). 
O</~m--p 

Applying the identity 

(A - B) -1 = A -1 + B A  -1 + . . .  + B~r A-N-1 + BN+XA -N-1 (A - B)  -1 

with A = aT, B = b gives 

a (~)  -1 = ~11-m (a~  1 + ba~ 2 + ... + bt~ an N-l) + bN+la~N-l a -1. 

Expanding b in terms of ~1, the first sum om the right equals 

$~-m ~ Q~(~,)~;%(~,~-~-1 
O~I~I~N 

and hence, since v~l > 0, 

(13.9) E(a ,v%x)= ~ O,~_~_~+/xl)Qj,(n')E(a~§ F(z) 

where F(x) ~ (2 ~T]~)-rtfeix~ b(~) N+ 1 aT (~,)-N-1 a(~)- 1 d~ 

with ~ = ~ -  iv q. Here the last integrand is majorized by 

0(1~,1 -N-11 r 

and hence, if gEC o (Rn-1), 

f F ( x )  g(x') dx' = IN-l). O( ] Xl 

Since the terms of (13.9) with ] > ~ 2 V - m + p  satisfy the same inequality, the lemma is 

proved. 

1 3 -  732907 Acta mathematica 131. Imprim6 le 11 D6cembre 1973 
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w 14. Holomorphie sharpness across plane parts of the wave front surface 

We shali now state and prove the main result of this chapter. Recall tha t  if 

a EHyp (v~), the reduced wave front surface IV(A, v ~) is the union of the local propagation 

cones K(A~, ~) for ~ real not in L(A). 

THEOREM (14.1). Let a E H y p  (v~), let 0 # ~ E R e A  be a conical point and let 

(14.2) y EK(A~, vq) - W(A,, t~) 

be a simple point o /W(A,  ~). Then,/or all k > O, E(a k, ~, �9 ) is holomorphically sharp at y/rom 

both sides o/ W(A, ~). 

Note (14.3). The theorem is almost immediate when n = 3 .  In  fact, then (14.2) means 

tha t  the line Re Y* does not touch any branch of Re A* (or A*) at  ~*. When x approaches 

y in such a way tha t  Re X* has the same property then, since y is simple, the non-real 

part  of A* N X* stays away from Re X* while som of its real points collapse. Hence the 

assertion of the theorem follows from Example (10.3). 

Proo/. We are going to verify the hypotheses of Lemma 11.4. Let  us choose 

coordinates so tha t  

~ = ( 1 , 0  . . . .  ,0), y = ( 0 , 1 , 0  ..... 0), v ~ = ( 1 , 1 , 0  ..... 0). 

Then, close to y, x 1 = 0 is the equation of K(A,,  ~). We let l~ be the lines x = @1, 1, 0 ... . .  0) 

with sgn x l =  e and x I small and let L e be the corresponding component of the real 

complement of W(A, ~). The projection ~rx: Y ~ X  is defined by ~ = ~ - ( x ,  ~)(y, 2)-12 

where ~t = (0, 1, 0 . . . .  ). In  particular, 

xEl~, ~E Y ~:%~ = (~1, - z 1 ,  ~3 . . . .  , ~:n) 

We shall now choose the chains ~(t), O(t)c y of Lemma 11.4. We put  

~(t) = ~ - i t  x ,  Off) = ~ - i ~  

with t > 0  and ~, Z, ~o real and depending on certain parameters. The chain ~(0)=~ should 

contain +~  and be transversal to rays through the origin. We put  ~=(~, 0, u) where 

3 = + 1 ,  u=(u a ..... un)ER n-2. We should now have zEF(A~,v~) when ~ is close to ___~. 

Since a and A are approximated at  */ by  their locahzations b = %  and B = A , ,  a 

reasonable choice of g is to take real homogeneous C ~ map u~v(u)ER n-~ such tha t  

g = (~e, O, v(u))EF(B~,O) 
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for all u. B y  vi r tue  of (14.2) this is possible and,  since a ,  is independen t  of the  f i rs t  

coordinate,  we can here replace the s tar  by  any  number .  We now pu t  * ~- - ~e and,  f o r  

technical  reasons, replace u b y  ~u where lul = (u~+ . . .  +u~)�89 1 and e ~ 0 .  This gives  

:T~X$=(T , --X, IT  , ~U) 3"gz~ : (--G(~, [Xl[  ~,  ~V(U)) 

where, since (0, 1, 0 . . . . .  0 )EF(B,  v~) 

]xx[ + ~ > 0  ~ u ~ g E F ( B . ~ ,  ~) 

if ~<>0. Fur ther ,  if ~ - ~ ,  $(t)* contracts  to the  point  ( - e ,  Ixl[ ,  0 . . . . .  0)* which is 

good reason for construct ing O(t) f rom $(t) b y  replacing the p a r a m e t e r  ~ b y  a var iabl~  

fl > :r Finally,  we shall pu t  

~(t) = (~ + i ~ ,  O, Q(u-itv(u)))  

where ~ =  +_1, Q~>0, u E R  n-~ with [u[ = l  are variables  and  t > 0  and g > 0  pa ramete r s  a t  

our  disposal. Also, wi th  the same t and  ~, 

O(t) = (~ + iflte, O, e ( u - i t v ( u ) ) )  

where the  variables  are ~, r u, fl > ~. I n  all this, 

(14.4) (0, 0, v(u))EF(B~, #), ~ = (~, O, u), 

for all ~ and  u. Then,  with I = (v; �9 = +__ 1}, 

$ ( t ) : I x R n - ~ Y ,  0 ( t ) : I x R " - ' x { f l ; f l > a } - ~ Y  

are or ientable  manifolds  as required b y  L e m m a  11.4 and ~O(t)= ~(t). The verif icat ion t h a t  

they  have  all the desired propert ies  (i) to (iv) of this l emma depends  on another  l emma  to  

be s ta ted  now and proved  later. Le t  p be the  homogene i ty  of the localization %. W e  

int roduce the  polynomial  

(14.5) h(s, u, z) = z-~a(1, z.s, zu) 

and  factor  off those zeros of s-~h(s, u, z) which are close to  the  zeros of s~a~(s,  u)  

when z E C is small. We get 
P 

(14.6) h(s, u, z) = 1-I (s + 2~ (u, z)) H(s, u, z) 
1 

when z, zs are small and  u bounded.  Here  ~t I . . . .  ,2~, H are cont inuous funct ions a n d  

H * 0 .  This gives 
P 

(14.7) a(~el, ~z, ~u) = 1-[ (~2 + e2~( u, z)) ~T-PH(~2/~I, u, z) 
1 
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where z=Q/~l and ~/~1 are small and u is bounded. In the lemma that  follows, u, v(u) 

are as in (14.4). 

LEMMA (14.8). Consider the/unct ions  t, z, u ~ w  =2k(u +tv, z) when I m t  ~=0 and t, z EC 

are small. There are positive numbers c, el, c 2 8 ~ h  tha~ 

(14.9) Itl ~<c, I~1 ~<c, IIm~l ~<clImtl * l I ~ w l  ~<c~lI~tl 

(14.10) same hypothesis and IRe w I ~< c o I m  w / I m  t >~ cz. 

I /  a / u n c t i o n  t ~ z ( t )  is small at the origin, analytic in t and real /or  real argument, 

then the/unct ions t ~ w(t) = 2k (u + tv, z(t)) are di//erentiable at the origin and hence, i / z  =z(t) 

also satis/ies the above hypotheses, then D I m  w(0), where D = - id /d t ,  is ma]orized according 

to (14.9) and (14.10). 

Verification o / the  hypotheses o / L e m m a  11.4 (i) Obvious. (iii) The last part  is obvious 

since $(t)=~O(t). Factoring according to (14.7) we get 

p 
a(z~r = (1-[ Ak)(3 + i~te)m-~ H ( - x 1, u, z) 

1 

where 

(14.11) 

so tha t  

Ak = -- x1(3 + itae) + Q2k(u -- itv, z), z = ~(3 + itae) -1 

Re Ak= --x13+~ Re2k, Im Ak= - - t [ x l l a +  ~ Im Ak. 

Since Iz[ ~<~ and lira z I ~ga  ]t I, (14.9) and (14.10) of the lemma show that,  if a~>l, 

(14.12) 0<t  <c, ea <c, Ixll <c  ~ lira akl <~lt, 

(14.13) same hypothesis and IRe 2k[ < c ~ Im  2~ < -c2t. 

Hence, under the hypotheses of (14.12), we have the logical chain 

A~=0~ IRe 2~1 > ~  Ixll >~ ce--" I m  A k  ~ < - -  m a x  (Ix, I, ce) at+ cxqt. 

But the chain is contradictory when c a > c  a and Ix1 /+~>0 .  Hence there is an a > l ,  

e.g. a = (c l+c)/c,  such that  a(~xr when I x, I +Q >0 and t >0  are small enough. This 

proves (iii).--(iv) Repeat the same arguments with a >  1 fixed as above but  now also 

with some fixed small enough t > 0  and with z=p(3+if le t )  -x. Then IImzl<ct is 

equivalent to ~fl(1 +fl~t2)-l~<c and this is true for all f l>0  if, e.g. p<~ct. We arrive at the 

conclusion that  a(~xO(t)):~0 for every fixed small enough t > 0  when Ix1[ + ~ > 0  is small 

enough depending on t. This proves ( iv) . - - ( i i )Let  a > l  be as under (iii), let fl>~0 and 

zg'= C0, 1, 0 ..... 0) and consider 
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~ , ( t )  ffi ~ x  ~ ( t )  - ~ t / ~ ' .  

Factoring according to (14.7) we get, when t > 0  and z, fit are small 

P 
a(~ x (t)) = I~ (A~ - itfl) (~ + ito~)m-rH( - %,  u - itv, z) 

1 

where ~e = - x x - i f l t ( v + i t ~ e )  -1 and Ak, z are as in (14.10). By the lemma, the functions 

t ~ A k - i t f l  are differentiable for t = O and (14.12), (14.13) show that  

(14.14) e:r ~<c, ]Xl] ~<c ~ ]D Im2~[ ~<c 1 

(14.15) same hypothesis and ]Re ~k] <~ c ~ D i  Im 2~ >~ c~ 

where D = -  id/dt taken at t =0. We claim that  

(14.16) Ak-i t f l  = 0 ~ D(Ak - i t f l )  > 0 

when [xl] +~ >0 is small enough. In fact, 

D(Ak - itS) = Ix 1 ] ~ + fl + Di  Im 2k 

is positive when the last term is positive and hence, in view of (14.15), we need only 

consider the case ]Re2k] >c, A k - - i t ~ = O ,  in particular Ix1] =e]Re2k] ~>ec. But then, by 

(14.14), 

D(Ak-/tfl) ~> max (Ix, I, ce )~+p-c~e ,  

which, by our choice of ~ is positive for all fl~>0. Now by (14.16), the degree at zero of the 

polynomial t~a($~(t))  is independent of the choice of fl and, when fl is large, 

- I m  ~x(t) -- t( - a e ,  Ix1] ~+e,  ev(u))  

belongs to F(A~, v~) and hence also to F(A,~,  O) when ]Xl[ +~ is small. I t  follows that, 

putting 
Z = D~(O) = ( - a ~ ,  O, ev(u)),  ~ = (% O, eu), 

then ~ z E F ( A ~ , v ~ )  when [Xl[ +Q>0 is small enough and this proves (ii). 

Proo] of L e m m a  14.8. Since aEHyp(v~), h as defined by (14.5) belongs to 

Hyploc(V~'), ~ ' = ( 1 ,  0 ... .  ,0) and (14.6) gives 

P 
h(s,  u + tv, z)  = I-I (8 + 2~(u + tv, z)  ) . H (s, u + tv, z) 

1 

when s, zs, t are small enough.Hence (14.9) follows from Corollary 15.16. To prove (14.10) 
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we shall use Theorem 15.19. Let  ~=(0,  u, 0) and define S by lu] =1,  u real, put  ~=(s,  0, z) 

and 
K~ = {((Im s)+, v(u), 0)E F(T~Ph, ~')}. 

Then, by the theorem quoted, 

(14.17) h(~s, Qz, ~(u + tv) ) ~ 0 

when ~ >0, s, z, t, (Ira s)_/Im t and Im z/Im t are small enough. Now, by the definition 

of h, (14.17) is equivalent to h(s, ~ z ,  u + t v ) ~ 0  and hence it holds with ~=1 when s, z, t, 

(Ira s)_/Im t, Im z/Im t are small enough. But  this is just another way of stating (14.10). 

To prove the last part  of the lemma we remark that  the functions t~w(t)  can be developed 

in Puiseux series for small t and that  if all these series are real for real argument, they must 

be power series. 

This finishes the proof of Theorem 14.1 and we proceed to an important  corollary. 

THEOREM (14.18). (a) Under the hypothe~ses o/ Theorem 14.1, let p be the homogeneity 

o/a~. Then the jump J(a k, ~, x) o/E(a k, ~, x) at y across W(A, ~) equals Ok(m_v)_l(~x)Hkv+l_n(X) 

where the indices indicate homogeneity and H is holomorphic. 

(b) Suppose in addition that the Petrovsky condition /or a~ holds at y, namely 

(14.19) fl(A~,y, zg)*=O in H n - a ( Y * -  Y* NA~) 

where a~ is considered as a polynomial in Z rood C~. Then H~+l_n(X ) is a polynomial. In  

particular, i/ kp < n - 1 ,  E(a ~, ~, �9 ) is holomorphic across W(A, ~) at y and i/Q(~) is a 

homogeneous polynomial vanishing q times when ~ =~ and i /q  > kp + 1 - n, then Q( D) E(a k, v~, . ) 

is holomorphic across W(A, O) at y. 

Proo/. (a) This is just a restatement of Corollary 13.8 whose ssumption holds by virtue 

of Theorem 14.1. 

(b) Since the Petrovsky condition (14.19) holds, the fundamental solutions E(a~ + 1, x',~') 

(notation of Lemma 13.5) are polynomials near y' so that,  by  virtue of (13.6), (13.7), 

L~+l_n(X ) is a polynomial. The same argument works for powers of a. 

Application to hyperbolic first-order symmetric systems 

Put  B ( ~ ) = Z ~ B ~  t where the Bt are hermitian m •  matrices, let v~EReZ and as- 

sume that  B(v~) >0  is positive definite. Then a(~) =d e t  B(~) belongs to Hyp (v~, m) and 

the fundamental solution of B(D) with support in K(A,  zT) is E(B, ~, x )=C(D)E(a ,  v ~, x) 

where C(~) is the matrix of minors of B(~). The homogeneity of C(~) is m - 1  and, by 



LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS. I I  199 

elementary spectral theory, when ~ is so close to v~ tha t  B(~)>0  and if t~a(t~+~) 

vanishes k + l  times for some t, then t~C(t~ +~) vanishes at  least k times for the same 

value of t. Hence this is true independently of t. In  particular, if a, y, 7, fl* =fl(A~, y, ~)* 

meet  the requirements of (b) of the preceding theorem and Q(~) is an entry  of C(~), then 

q>~p-1 > p + l  - n  when n > 2 .  Hence, if n > 2 ,  E(B, ~, x) is holomorphic across W(A, ~) 

at  y. When n=3, the condition on fl* is automatic  so tha t  in this case E(B, O, x) is 

holomorphie across all plane parts  of W(A, v a) = W(det B, v~). Hence we have the inclu- 

sion from left to right, first observed by  Bazer and Yen [4] of the following 

THEOREM (14.20). Let B=Z~ B ~  be as above and let a(~)=det B(~). Then 

SSE(B, v~,. ) = closure of U K(Ag, v~). 
n~(a)ffil 

Here n~(a) is the reduced dimension of a~ so tha t  the right side is indeed W(det B, v~) 

minus its relatively open plane parts. Tha t  the left side cannot be smaller than the right 

side is an easy consequence of the Localization Theorem 1.4.10. The details are left to the 

reader. 

w 15. Local  h y p e r b o l i c i t y  

A homogeneous polynomial a(~) is, by  definition, hyperbolic with respect to v~ E R n 

if a(v~) 4 0  and the equation a(~+tv ~) =0 has only real roots t for real ~. We shall now study 

the situation when only all the small roots, i.e. those tending to zero with ~, are required 

to be real. This gives us the notion of local hyperbolicity. We shall s tudy it here for its own 

sake and in order to prove two results (Corollary 15.16 and Theorem 15.19 below) tha t  

have been used in the preceding paragraph. The basic definitions are as follows. 

Definition (15.1). Let  ~4 be the space of functions h(~), tEC n, analytic at  the origin 

and, when hEA, define its principal par t  Ph as the first non-vanishing term h m in the 

expansion h = Z hk of h in terms of polynomials hk of homogeneity k. The number  m is 

also called the degree of h (at zero). An h E,,4 is said to be locally hyperbolic with respect 

to v~ E R n if 

(15.1) ~ER n, I m  t :4:0 ~ h(~ +t~) :~ 0 

when ~, t are small enough. When the degree of h is m, the class of these functions will be 

denoted by  Hyploc (v ~, m) and by Hyplor (v ~) when the degree is not specified. 

We shall see later tha t  (15.1) implies (1) 

(15.2) Ph(#) ~0. 

(1) This was pointed out to us in May 1973 by T. Kawai and M. Kashiwara. Our original defini- 
tion required both (15.1) and (15.2). 
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If  h is a homogeneous polynomial, (15.2) holds without restriction if it holds for 

small ~, t and says tha t  h is hyperbolic with respect to v~, i.e. h E H y p  (v~). Hence H y p  (v ~) 

and Hyp  (v ~, m) are precisely the homogeneous elements of Hyploc (v ~) and Hyploc (v ~, m) 

respectively. Since r-mh(r(~ +t~)) tends to Ph(~ +tt?) when r ~ 0  and m is the degree of h, 

(15.2) shows tha t  
h fi Hyploc (0) ~ Ph e H y p  (0). 

We shall now put  F(h, ~) = F(Ph, v~), 

where, by  Definition 1.3.14 and 1.3.21, the right side is the component of the real comple- 

ment  of the real hypersurface Ph(r 0 tha t  contains v% 

Note. Local hyperbolieity has also been considered by  K. G. Andersson (1971). His defini- 

tion is essentially the same and he proved the Main Lemma below. 

The continuity lemma 

All the properties of locally hyperbolic functions tha t  we shall state and prove 

depend on two elementary facts: (1) the small zeros of a convergent power series ] in one 

variable are continuous functions of ] when one of its coefficients stays away from zero 

and the preceding ones are small (2) a Puiseux series which is real for real argument  

is a power series. 

We shall first use the second fact to prove (15.2). Fix ~ER n such tha t  Ph (~ )#0  and 

consider the function ](t, s) = h(t~ + s~) of two small complex variables t and s. Since, by 

(15.1), [(t, 0) does not vanish identically, ](t, O) = ct m (1 + O(t)) for some c # 0 and some in- 

teger m and hence there is a faetorization ](t, s)= F(t, s)I-IF (t + 2k(s)) where F is analytic 

at  the origin, 2'(0, 0) = c and the 2~(s) are Puiseux series without constant terms. By virtue 

of (15.1) they are real for real s and hence they are ordinary power series, 2k(s)=O(s). 

This shows tha t  the degree of /{t, s) is m so tha t  P (t, s)= Ph (t~+ s~). In  particular, 

Ph(~)= P] (1, O)=c:~O. 

Both facts above will now be employed to prove a lemma tha t  will be used many  

times later on. 

CONTINUITY LEMMA (15.3). Let s, t6C, u 6 R  M, v 6 R  N. Suppose that/(s, t, u, v) is 

analytic in s, t and continuous when s, t, u are small and v belongs to some connected compact 

part K o] R N. Suppose that 

(i) the degree of t~/(O, t, 0, v) at the origin is constant/or all v e K .  

(ii) I m s I m t ~ > 0 ,  Ims~=O=~/(s, t, 0, v)=#0 

when s, t are small enough and v E K 
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(iii) I m  s=~0, I m t  = 0  ~/(s ,  t, u, v)~=O 

when s, t, u are small enough and v E K.  
Then 

(iv) I m  8 I m t  >~ 0, I m  (s + t) =~0 =~t(8, t, u, v) ~:0 

(v) 8-+/(s, O, u, v) and t~/(O, t, u, v) have the same deqree at the origin when 8, t, u 

are small enough and v E K.  

Note. When  ](0, O, O, v) veO for  all v in K,  the  condit ions are fulfilled b u t  the  conclu- 

sions are void. 

Proo/. According to (i), /(0, t, 0, v )=%(v) t  p +h ighe r  t e rms  where p ~>0 is an integer  

and  I%(v)l has a posit ive lower bound  on K.  Hence  the  analyt ic  funct ion t~](8,  t, u, v) 

has precisely p zeros t = -21  . . . . .  -2~,  cont inuous funct ions of s, u, v t h a t  t end  to zero 

wi th  8, u, uni formly  when v E K.  Hence  

(15.4) /(8, t, u, v) = % (v) I~ (t + 2k (s, u, v)) F(s, t, u, v) 
1 

where  21 . . . . .  2p, F are cont inuous for small  a rguments  and  F(0, 0, 0, 0 ) =  1. According 

to (ii), 
I m 8 > 0  ~ I m  2k(s, 0, v) > 0 ,  1 ~<k < p ,  

when v E K  and s is small  and according to  (iii), 

I m  s > 0  ~ I m  2k(s, u, v) 4 0 ,  1 <k<.p,  

when v E K and s, u are small. I n  other  words, when s, u are small and  I m  8 > 0, none of 

the  number s  21, ..., 2, cross the real axis and  when u = 0, they  all lie in the  upper  half-plane. 

Hence  t h e y  are a lways  in the  upper  half-plane.  The  same a rgumen t  wi th  I m  8 < 0  also 

works and  hence 

(15.5) sgn I m  2k(s, u, v) ~ sgn I m  8 

for all s , u , v ,  k when I m s ~ 0  and s , u  are small  enough. Combining (15.4) and  (15.5) 

we get  (iv). B y  classical funct ion theory,  the  funct ions s~2k(8, u, v) have  convergent  

Puiseux series expansions  
oo 

(15.6) 2~(8, u , v ) = ~ c k j s  jl~, l~<k~<p,  
0 

when v ~ K  and s, u are small  enough. Some reflection shows tha t  (15.5) and  (15.6) are 

consistent  if and onIy if 

2k(s, u, v) = 2k(0, u, v)+e~(u, v)8+O(s~) 

where all ck>0.  Inser t ing  this in to  (15.4) proves  (v). More precisely, the  degree a t  the  

origin of t~ / ( t ,  O, u, v) and s ~ / ( 0 ,  s, u, v) equals the  n u m b e r  of vanishing 2~(0, u, v). 
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The main theorem 

The most important properties of locally hyperbolic functions follow from the conti- 

nuity lemma. We shall first prove 

MAIN LEMMA (15.7). Let hEHyploc (z$) and let K be compact part or F(h, vq). Then 

(15.8) ~ER n, 7EK,  Im s Im t~>0, Im ( s + t ) # O  ~h(~+svq+tT)#0  

(15.9) s ~ h(~ + s~) and t ~ h(~ § tT) have the same degree at zero 

when ~, s, t are small enough. When h =Ph,  these statements hold without restriction. 

Proo/. Let h have the degree m. The function 

/(s, t, u, v) = r-mh(r(~ +sz$+t~])), 

where u =r,  ~ and v =7, satisfies the requirements of the continuity lemma. In fact, since 

F(h, vq) is connected, K can be assumed to be connected, 

/(0, t, 0, v) = Ph(tu) = tmPh(7) 

shows that  (i) holds, (iii) holds by definition and (ii) since 

m 

/(s, t, 0, v) = Ph (sv ~ + t~7) = Ph (tg) 1-[ (s + t2~ (7, vq)) 
1 

where, by the definition of F(Ph, vq), all numbers 2k(7, vq) are positive. The last statement 

of the lemma follows since Ph is homogeneous. 

We can now state and prove the main result. When h(~) is a function defined close to 

E C n, we denote by T~ h the function h transported to 0, i.e. the function 

7 -+ T~h(~) = h(~+7) 

defined in a neighbourhood of the origin. When h is a homogeneous polynomial, its 

locahzation at ~ as defined in Par t  I (Definition 3.36) is then h ~ = P T ~ h .  

MAI~ THEOR]~M (15.10). Let hEHyPloc (v~). Then F(h,v q) is an open convex cone 

containing z$ and, i / K  is a compact part o / F ( h ,  z$), then 

(15.11) r] E K ~ T~ h E Hyploc (r/) 

(15.12) F(T~h ,  ~) D K  

when ~ E R n is small enough. I / h  = P h  is homogeneous, these statements hold without restriction. 
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Note. The s ta tement  about F(h, vq) =F(Ph,  v ~) is of course par t  of the theory of hyper- 

bolic polynomials of Par t  I. 

Proo/. That  I m  t#O~h(~+~+t~)#0 when ~ E K  and when ~, ~ER" and t are small 

enough follows from (15.8) and (15.9) shows tha t  PT~ h(~)=4=0 on K when K contains 0. 

Hence, since K can be chosen to have a non-empty interior, the degree at  0 of 

t~h(~+t~) is also the degree of T~h. Hence (15.11) and (15.12) follow. When h is 

homogeneous, both these statements are of course valid without restriction. The 

formula (15.8) applied with ~ = 0  and h replaced by  Ph shows tha t  F(h, vq) is star-shaped 

with respect to vq and hence according to (15.11) with respect to all its points and hence 

convex. This finishes the proof. 

Two corollaries 

Before proceding further we shall give two corollaries of the Main Theorem. The 

first one uses a slight variant  of the definition of inner and outer continuity (Part  I ,  p. 151) 

which we shall employ also later in this paragraph. A function r-+ C~ from a topological 

space to open sets in R n is said to be inner continuous at  30 if every compact par t  K of R n 

contained in C~, is also contained in C~ when 3 is close enough to 30. When the sets C~ 

are compact, the function is said to be outer continuous at  30 if every open par t  N of R ~ 

containing C~. also contains C~ when T is close enough to v0- Our first corollary is 

COROLLARY (15.13). When hEI-Iyploc (t$), the/unction 

(15.14) R" ~ ~-~ F(T~h, v~) 

is inner continuous/or all su//iciently small ~. When h =Ph, this is true without restriction. 

Note. The last s tatement  is identical with Lemma 5.9 of Par t  I in the special case 

and when a=b. The key lemmas 5.1 and 5.9 of Par t  I are in fact consequences of the 

continuity lemma. 

Proo[. According to (15.12), the function (15.14) is inner continuous at  the origin 

and hence by  (15.11) for all sufficiently small ~. The proof of the last s ta tement  is left to 

the reader. 

Our second corollary has to do with the faetorization 

(15.15) h(~ + t~/) = Ph (~1) f i  (t + Ik (~, 7)) H(t, ~, ~1) 
1 

where hEHIyploc (v ~) has degree m and ~EF(Ph, 0). A special case of it (when ~ = v  ~) has 

been used by  Bony and Schapira [5] who deduce it from a theorem by  Kashiwara. 



2 0 4  M . F .  ATIYAH, R. ROTT AND L. GARDING 

COROLLARY (15.16). Factor hEHyploc (~, m) according to (15.15). Then 

c ~ - ~ o  ~ Im ~(~, v) =O(lIm ~1) 

locally uni/ormly when ~ E F(Ph, ~). 

Proo/. According to (15.11), 

h(~ + its) = h(Re ~ + i(t~ + Im ~)) =~ 0 

when ~, t are small enough, t =~0 is real and ~ +t  -~ Im ~ belongs to a given compact part  

of F(Ph, ~). 

A sharpening 

We shall now sharpen the Main Theorem (15.7) by permitting ~ to depend on ~. 

L~MMA (15.17). Let hEHyploc (v~), /et S c R ' - ( O }  be compact and let 

S ~  ~ K ~ c  F(T~Ph, z$) 

be an outer continuous/unction whose values are compact sets. Then 

(15.18) ~ > O, ~ER n, gEK~, Im t ~:0 ~ h(~(~+~+t~)) =4=0 

/or all ~ E S and all su//iciently small ~, t, Q. 

Proo]. Since the function ~ F ( T ~ P h ,  ~) is inner continuous and S is compact, there 

is an outer continuous function 

$9  ~-~K* c F(T~ Ph, ~) 

such that  K~ is a neighbourhood of K~ for all ~. We could for instance let K~ consist of 

all ~ whose distance to K~ is ~<e where e > 0  is sufficiently small. Consider the function 

/(~, t, u, v) = e - ~ h ( e ( ~ + ~ + s ~  +t~))  

where m is the degree of h at  the origin, u=(~,~) ,  ~>~0, ~ER n, v=~EK~ and ~ES 

fixed. The hypotheses of the continuity lemma are then satisfied. In fact, the degree 

at 0 of 
t-~ /(O, t, O, v) = Ph(~ +t~) 

does not depend on ~ and, according to the Main Lemma, 

Im t I m s  ~> O, I m s  > 0 ~/(s, t, O, v) =Ph(~+s~+t~)  r  

and, finally, I m s  ~: 0, Im t -- 0 ~/(s ,  t, u, v) ~: 0 
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when Q, s, t, ~ are small enough. Hence, by the continuity lemma, (15.18) holds when 

is fixed, ~EK~ and ~, Q, t are sufficiently small depending on ~. But K~DK~+r when 

~9 R n is sufficiently small and hence 

Q > 0, ~ER n, ~EK~+~, Im t ~:0 ~ h(Q(~+~+t~)) # 0  

for every ~ES when ~, t, ~ are sufficiently small depending on ~. A covering of S 

completes the proof. 

Finally we shall give the lemma in a form convenient in the applications. 

THEOREM (15.19). Let hEHyp~oc (v~), let S be a compact part o / R "  - {0} and let 

S ~ ~ -~ K~ ~ F(T~Ph, ~) 

be as in the previous lemma. Then 

Q>O, ~fiS, ~eK~,  ~eC',  I m t  ~ 0  =~ h(~(~+~+t~/)) # 0  

when ~, t, Re ~ and Im ~/Im t are small enough. 

Proo[. We have 

~ + $ + t ~ / = ~ + R e  (~+t~) + i  Im t(~ + I ra  ~(Im t) -~) 

so that  the theorem follows immediately from the lemma. 
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