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1. Introduction

1.1. Let @ be a discrete group of Mébius transformations in R*= R {eo} (i.e., sense
preserving conformal automorphisms of R") acting on a domain D<R" and f: D>R" a
continuous mapping. We say that f is automt;rphic with respect to G if f is discrete (i.e.,
fy) is discrete in D for any y €/D), open, and fod =f for all A€@. f is said to be quasi-
regular (gr) in D if D< R, fD< R", f is ACL" (absolutely continuous on lines with partial

derivatives locally in L") and

|f(@)|* <KJ(x,f) ae inD (1)

for some K€[1, o). Here f'(x) is the formal derivative of f at €D, |f'(x)| denotes the
supremum norm of the operator f'(x) and J(z, f) =det f'(z). If cc €D or w0 €fD, (1) and the
ACL" property can be checked at a neighborhood of oo or at neighborhoods of points of

f1(c°) by means of auxiliary Mdbius transformations which map <o to a finite point. If
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(1) and the ACL" property hold in D, D< R" and fD< R", for some K€[l, =), we say
that f is quasimeromorphic (gm). f is said to be quasiconformal (¢gc) in D if f is gm and in-
jective in D. gc, gr, and gm mappings seem to be very reasonable generalizations of con-
formal, analytic, and meromorphic functions, respectively.

The main purpose of this paper is to study automorphic and in particular gm auto-
morphic mappings in B", n>2. One class of automorphic mappings, namely, the family
of periodic mappings, has been studied in [11]. Here we are concerned mostly with auto-
morphic mappings for Mobius groups which act on B"={z€R™ || <1} or on H"=
{x€ R™ 2,>0}. In chapter 4 we present two examples of gm automorphic mappings for
Mébius groups which act on H3. One of the examples is analogous in some respects to the
elliptic modular function.

Given a discrete Mobious group G acting on B", there is a standard way of construct-
ing a canonical fundamental set P in B* which is bounded by (n—1)-spheres or (n — 1)
planes normal to dB". If B*/@ is of a finite volume then, see [15] or [3], P=int P has a
finite number of faces and either P N @B* =@ (when B"/@ is compact) or has a finite num-
ber of points. The points of P N dB" will be called boundary vertices. It is not hard to see
that if f is automorphic with respect to such @, then f has no limit at any boundary point
beoB", and if in addition B"/@ is compact then f has no radial limit at any point b€20B",
We show (in chapter 6) that in the latter case f assumes almost every value the same (fi-
nite) number of times in P. This result which is known for meromorphic automorphic
mappings in R?, follows from a more general theorem (derived in chapter 2) on open and
discrete mappings from n-dimensional pseudomanifolds into B". With this theorem we
prove also the following results, part of which seems to be new even in R2.

Suppose that G is a Mobius group acting on B", with a non-compact orbit space B"/G
of finite volume, and that f: B*->R" is qm automorphic with respect to G. Let P be a
canonical fundamental set for G in B*, and N =sup card (fX(y) N P) over all y€ B™. Then
N < oo if and only f has a radial limit at every boundary vertex of P. Furthermore, N < oo
implies that f has a radial limit at every parabolic fixed point of G and thus on a dense set
on 0B™ and that f(U N B*)=R™\ A for any neighborhood U of any boundary point b€2B"
where A is some fixed set of finite cardinality in B". If in addition » >2, then f has a non-
empty branch set. These results are not true for non-gm automorphic mappings and the
last result is not true for gm mappings in R2. The elliptic modular function is a counter
example.

We also study the growth of gm automorphic mappings f: B"->R" near dB". The
main tools for this aim are serveral modulus and capacity inequalities which we develop

in chapter 5.
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Some properties of Mobius groups, which we need for the study of automorphic map-
pings, are presented in chapter 3.

1.2. Notation and terminology will usually be as in [8], [9], (10] and [11]. For x€ R"
we write € =(x, ..., &,) = i~ T;e; where e,, ..., ¢, is an orthonormal basis in R". For a € R"
and r>0 we denote B“(a,r)={z€R™ |x—a|<r}, B"=B"0,1), S*(a, r)=0B"a,r),
S*1=9B" H"={x€R" x,>0}, and H(h)={x€R™ x,>h}.

The hyperbolic distance in B" or in H" is denoted by d(a, b). The hyperbolic measure
of a set 4 in B” or in H" or in B*/G or in H"/G is denoted by V(A4). Here G is a discrete
Mobius group acting either on B”* or on H”. The euclidean distance between two sets 4
and B in R is denoted by dist (4, B). The closure 4, the boundary 84, and the comple-
ment (A of sets A< R" will always be in R™.

2. Open discrete mappings on psendomanifolds

2.1. Let X and Y be Hausdorff, connected, locally connected, and locally compact spaces
with countable bases of open sets, and let f: X— Y be a continuous, open, and discrete map.
Discreteness of f means that f~(y) is a discrete set in X, whenever y€fX.

A domain (open connected set) D in X is called a normal domain for f if D is compact
in X and 9fD=foD. Note that if D is a conditionally compact domain in X, then D is a
normal domain if and only if f| D defines a closed map D~—fD. D is called a normal neigh-
borhood of z€X if D is a normal domain containing x and D N f-1f(z) = {z}.

The branch set B, of f is the set of points in X where f fails to define a local homeo-
morphism. For y€Y¥ and A< X, we denote N(y, f, 4)=card (f(y) N 4), N(f, A)=sup
Ny, f, A) over all y€ Y, N(y, )=N(y, {, X), and N(f)=N{({f, X).

2.2. LemMA. Lei f, X, and Y be as in 2.1.

() If D is a domain in Y and U is a conditionally compact connected component of
1D, then U s a normal domain and fU = D.
(ii) Every x€X has arbitrarily small normal neighborhoods.

Proof. For (i) see Whyburn [21, 5 p. 5]. (ii) follows from (i), Vaisila [18, 5.1], and the
fact that for conditionally compact domains U in X, 8fU =foU is equivalent to the closed-
ness of f|U.

2.3. LeMMA. Let X and Y be as in 2.1. Suppose that }: X—Y is continuous, open,
discrete, and closed.
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If int {B,=@ and Y \fB; is connected, then N(y, f) is lower-semicontinuous for all
y€Y and Ny, /)= N(f) <o for all ye Y\fB,.

Proof. Some of the arguments are due to Vaisild [18, 5.5]. We first show that
Ny, f)<oo for all y€Y. Suppose that f~1y)={x,, #,, ...} is infinite. Choose metrics d in
X and d’ in ¥ which are compatible with their topologies and a sequence {z,, z,, ...} in
X such that d(z, ;) <1l/k and 0<d'(f(z), y) <1/k. Then {z,, z,, ...} is closed in X and its
image is not closed in Y. Thus N(y, f)<co for all y€Y.

Let y€Y and f-Y(y)={x,, ..., %;}. Choose disjoint conditionally compact connected
neighborhoods V,; of z;, 1=1,...,k and let U be the y-component of the open set
NIVSNFENUT,). Clearly {z), .., x}<fUc UV, Hence Ny, <Ny, f) for all
y'€U.1f y€ Y\\/B,, the sets V, can be chosen so that f| V,i=1, ..., k are homeomorphisms,
and in this case N(y, /) =N(y', f) for all ¥’ €U. Thus N(y, f) is continuous in ¥\ fB, and
lower-semicontinuous in Y.

Now, int fB,=@, N(y, {) is semicontinuous and Y\ fB, is connected; hence N(y, f)=
N(f) < oo for all y€ Y\ fB,.

2.4. Now, let Y be a connected oriented n-manifold with countable base of open sets
and X be a space of a finite oriented pseudo z-manifold K without boundary, i.e., X is
homeomorphic to a geometric realization of a finite homogeneously n-dimensional simplical

complex K with, see [16],

(1) every (n—1)-simplex of K is the face of exactly two n-simplexes of K;
(ii) if s and s’ are n-simplexes of K, there is a finite sequence s=s,;, ..., s, =s" of n-
simplexes of K such that s; and s, ., have an (» —1)-face in common i=1, ..., m —1;

(iii) the integral homology group H,(K) is infinite cyclic; in other words, K is oriented.

In the sequel, pseudomanifold will mean either the complex K or its space X. Finally, let

D be a domain in X and let f: D— Y be continuous, open, discrete and sense-preserving.

2.5. THEOREM. Let f: D — Y be as in 2.4. Then dim B,<n—2 and dim {B,<n 2.

Proof. Let I' be the set in X which corresponds to the geometric realization of the
(n—2)-skeleton in K. Then X;=D\TI in an oriented n-manifoid and f, =f| X;: X, > Y
is continuous, open and discrete, thus, see [18], dim B, <n - 2.

I' is compact in X, B,<I'U B, and dim I'=n— 2. On the other hand B, is a F; set
in X, thus, see [5], dim B,<dim (B, UI')=n—2, and by [1, 2.1] dim fB,<n - 2.
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2.6. The local topological tndex of open discrete mappings on oriented pseudomanifolds.
Let f, D, and Y be as in 2.4, and let x€X. Then the local topological index i(z, f) of f at
x may be defined by
i, f) = N(f, U)

where U is any normal neighborhood of x. The definition of i(z, f) is independent of the
choice of the normal neighborhood U. Indeed, given two distinct normal neighborhoods
U, and U, of z, choose a normal neighborhood U, of x with Us< U, N U,. The mappings
fi:f[ U,i=1,2, 3_, are open, discrete, and closéd; and since dim fB,<n ~— 2 it follows by
2.3 that N(f,) = N(f) = N ().

By definition i(z, f) >1 for all #€ D and i(z, f)=1 for all x€ D\ B,. If { is continuous,
open, discrete and sense-reversing we set i(z, f) = — N(f, U), where U is any normal neigh-
borhood of x.

2.7. Remark. At points € D I" (see proof of 2.5) where D is locally euclidean the de-
finition of the local topological index here is equivalent to the classical one, see [12, p. 125].

2.8. THEOREM. Let ¥ be an oriented w-manifold with countable base of open sets, D a
domain in the space X of an oriented pseudo n-manifold without boundary and f: D~Y con-

tinuous, open, sense-preserving, discrete, and closed. Then

2. iz, f)=N(f, D)< oo

ZE€STHY)

forall y€Y.

Proof. By 2.5 dim fB;<n—2 and so by 2.3 N{y, f, D)=N{(f, D)< for all yEfD\fB;.

Given y €fD with f~Y(y) N D ={x,, ..., %}, choose disjoint normal neighborhoods V; of
x; and let U be the y-component of the open set NfV,\H(D\ U V,). Then {z,, ..., %} <
fU< UV, and since int {B,=0, by 2.3, U\ fB, has a point y’ for which

K

z ’I/(.’L', f)= Z’l’(xi’f)zj;N(f’ V})zigiN(yI:f’ V1)=N(f,D)-

zef i) i=1
2.9. CorROLLARY. If f: D~ Y is as in 2.4 and D=X, then Y is compact and

2 Hx, f=N(f)< e

refy)

forall y€Y.
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2.10. THEOREM. Let Y be an oriented n-manifold with a countable base of open sets,
X a space of finite oriented pseudo n-manifold K, n>2, P={p,, .., p =X, X=X\P,
f: X~ Y continuous, f=} | X: X~ Y open, discrete, and sense-preserving.

Then | is open and discrete and N(f)=N(f) < .

Proof. Denote X, =X\ f-fP and f, =f| X,. f is closed and hence f,: X,~f, X; = Y\ fP
is a closed mapping and therefore by 2.8, N(f,) <oo. Thus N(y, f) <N(f,) + k < co. Conse-
quently f is discrete.

Since f is open, it suffices to show that each p € P has arbitrarily small neighborhoods
V such that f(p)€int fV. Given a neighborhood U of p, choose a neighborhood V< U of p
such that ¥ N P={p} =V n f-f(p). f is open, hence

of(V\{p}) = (V™ \{p}) = oV U {f(p)}.
Since foV and f(p) are disjoint and compact in Y, and Y is an r-manifold with »>2, f(p)
has a neighborhood W, homeomorphic to B", with W\ f(»)<f(V\{p}). Thus fp)€
int /V and consequently f is open.
As fis closed and dim fB; <n—2, we may apply 2.3 and conclude that N(f) = N(f,) =
Nh.

3. Mébius group

3.1. In this chapter we introduce notation, terminology, and some facts about Mo-
bius groups which are needed in the following sections.

3.2, Mobius transformations T in E" are defined here as compositions of even number
of reflections in (rn —1)-spheres or (n—1)-planes in E". Note that the group GM(n) of all
Mébius transformations in B consists of all sense-preserving conformal automorphisms
of R*. The subgroups of GM(n) will be called Mébius groups. The identity in GM(n) is
denoted by I. Let @ be a Mébius group, 7 €6 and z€R", then Fix T denotes the set of all
fixed points of 7', Fix @= U see\(n Fix 4 and G, ={A €Q: A(x)=z} is the stabilizer of G
at x.

A Mébius transformation T € GM(n) is called parabolic if T has a unique fixed point,
called a parabolic point, in B". 7 is called lozodromic if T has exactly two distinct fixed
points a, b€ B* and for some x€ R\ {a, b} the limit

lim 7%(z) = lim (T'oTo...oT)(z)

oo o e
is either @ or b. @ and b are then called loxodromic points. All other elements of GM(n)
are called elliptic.

All parabolic and loxodromic transformations are of infinite order while elliptic ones
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may be either of finite or infinite order. The type (parabolic, loxodromic, or elliptic) of
Mobius transformations is invariant under conjugation in GM(n). Every parabolic trans-
formation 7€ GM(n) is conjugate to a parabolic transformation P of the form P(x) =Ax +
h, x€ R", where A €0(n) N GM(n) and € R™\ {0}. T is said to be strictly parabolic if A =1.

3.3. 4 Mébius group @, is said to be discrete if no sequence of distinct elements of @
converges (pointwise) to I, or, equivalently, to any FEGM(n). A point € R" is called a
limit point with respect to G if T (a)—~=z for some a € R" and some infinite sequence of
distinct elements 7', in G. Other points in B are called ordinary points or points of dis-
continuity of G. The limst set, i.e., the set of all limit points will be denoted by L=L(G)
and its complement in R", i.e., the ordinary set or the set of discontinuity of @, by 0. O is
open and L is either finite or perfect, see [17]. If O +D and a €0, then every point of L
is in the cluster set of Ga, see [17]. G is said to be discontinuous if O +@. Discontinuity
implies discreteness. The converse is not true in general; however, see [17, 3.3], if G is
discrete and GD =D for some domain D< RB* with card @D >1, then L< E*\ D. Thus
discreteness and discontinuity are the same for Mobius groups which act on such domains
D. We shall mostly consider the cases where D is either B* or H".

Let G be discrete Mobius group acting on a domain D< R" where D is either B" or
H". We say that two points z, y€ D or two sets 4, B= D are G-equivalent if y=T(x), or
B =T(A) respectively, for some T €G. The canonical projection of D onto the orbit space
D/G will be denoted by z. D/G is connected and its local structure is quite simple. More
precisely, every point z€.D/G has a neighborhood which is homeomorphic to B*/I" where
I is a finite subgroup of O(r) N GM(n). In fact, I" is conjugate in GM(n) to the stabilizer
G, where € D N w—Y(z). In particular, if n=2 or 3 or if B" N Fix G =0, then B"[ is always
homeomorphic to B" and so D|@ is an oriented manifold. In general D/G is not a mani-
fold.

3.4. Simple fundamental polyhedra. Let G be a discrete Mobius group acting on D,
where D is either B” or H" and let x,€ D\ Fix @&. The normal fundamental polyhedron
centered at x, is defined by

P = {x€D: d(z, x,) <d(x, T(z,)) forall TEG{I}}.

P is a hyperbolic convex polyhedron. 0P may have finite or infinite number of (n—1)-
faces. Here we disregard the faces which lie on 8P N 8D. Each (n —1)-face is contained in
a hyperbolic (» — 1)-plane

H(T, 2y) = {x € D: d(x, z) = d(x, T(x,))} (3.4.1)
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for some Te€G\{I}. The faces of P are pairwise G-equivalent by transformations T,
Ty, ..., €G, and G is generated by T, T, ... . The union P of P with part of 0P is a funda-
mental set for @ in D. P with its G-equivalent faces being identified is homeomorphic to
Dja.

The hyperbolic measure of Lebesgue measurable sets 4 < B" is defined by

2% dm(zx)
- [ 2o,
= ) =[Py
and of sets 4< H" by

_ f dm(z)
V(A)_,L xn '

The hyperbolic measure of sets A< D/G, D=B" or D=H" is defined by V(P n=—}(4))
where P< D is any normal fundamental polyhedron for G. With this normalization
V(D|G)y=V(P).

If V(D]G) < oo, then every normal fundamental polyhedron P in D has finitely many
(n—1)-faces and P N D is either empty or consists of finitely many points, depending on
whether D/@ is compact or non-compact, see [15] and [3]. In the latter case the points of
P N 2D are called boundary vertices.

Suppose that D/G is non-compact and V(D/G)<cc. A normal fundamental poly-
hedron P in D will be called simple if no two boundary vertices of P are G-equivalent.

Other properties of simple fundamental polyhedra are described in the following lemma.

3.5. LEMMa. Let G be a discrete Mobius group acting on D, D = B™ or H". Suppose that
D/G is non-compact and V(D|G) <oo. Then

(i) every boundary vertex of a normal fundamental polyhedron P is o fized point for a

strictly parabolic element of G;

(ii) there is a set <D with m,(X)=0 such that every normal fundamental polyhedron
centered in D\ X is simple;

(iii) of P is @ simple fundamenial polyhedron, then every parabolic fixed point of G is
G-equivalent to exactly one boundary vertex of P;

(iv) every parabolic fized point is a boundary vertex of a simple fundamental polyhedron;

(v) if P and Q are simple fundamental polyhedra with boundary vertices {p,, ..., Py}
and {q,, ..., @}, respectively, then k=m and each p, is G-equivalent to one g;:

Proof. For (i) see Garland and Raghunathan [3] or Wielenberg [22]. For a proof of
(ii) in R?, see A. Marden [6, 4.2]. With the notion of isometric spheres this proof can be
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extended to B", n>2 as follows. Let IT denote the set of all parabolic fixed points of G.
For each p €Il and T €A G,, let Z, ; denote the set of all points 2, in D with the property
that p €H(T, x,), see (3.4.1). Note that if D=H" and p= oo, then X, ,=H"n I(T), where
I(T)={x€R™ |T'(x)| =1} is the isometric sphere of T, otherwise X, ;=AY (e, ara-1),
where A4 is a Mo6bius transformation with A(D)‘= H" and A(p)=-cc. In any case X, , is
part of an (n— 1)-sphere or an (n—1)-plane and m,(Z, ;)=0. G and II are countable and
m,(Fix T)=0 for all T €G {I}, hence
Z=FixAHUIU( U 2,2)]
pell TeG\G,
is of measure zero. Moreover, by (i) each boundary vertex of a normal fundamental poly-
hedron is a parabolic fixed point, hence no (n —1)-face H(T, x,) of a normal fundamental
polyhedron P centered at x,€ D\ X passes through a boundary vertex p of P unless
T(p)=p. This proves that P is simple.

(iii) The following argument is due to Leon Greenberg. Let A€G be a parabolic
transformation with a fixed point p€&D. Since P has finitely many faces, there exists
8>0 such that Fix T<oP whenever x€P and T €@ are such that 7 is parabolic and
d(z, T(x)) <6. Indeed, we can first find 6, >0 such that d(z, T'(z)) <6,, z€P, T €Q, implies
that either T fixes a boundary vertex of P or else T maps one (n —1)-face of P onto another
face of P. If such a transformation 7' is parabolic and does not fix a boundary vertex of P,
then é,=inf, ., d(z, T(x)) >0. Finally § can be chosen to be the smallest of these finitely
many §’s. Now choose a point x€D and g€@ such that d(x, A(z)) <6 and g(x)EP. Then
goAogtig parabolic and d(g(x), go 4 oglg(x)) <4, hence g(p)=TFix (goAog™') is a bound-
ary vertex of P. Finally, note that P is simple and so p cannot be G-equivalent to any
other boundary vertex of P.

(iv) Let p €0D be a parabolic fixed point for G. By (ii) G has at least one simple funda-
mental polyhedron, say P, and by (iii) g(p) €P for some ¢ €@, thus g—1(P) is a simple funda-
mental polyhedron with a boundary vertex at p.

(v) By () pys .., 2 and gy, ..., g, are parabolic; hence, by (iii) each p; is G-equivalent
to some ¢, and vice versa. Since P and @ are simple, no two boundary verticés of P (resp.

Q) are G-equivalent, and so (v) follows.

3.6. The action of a Méobius group near a parabolic point. Let G be a discrete Mobius
group acting on H™ with V(H"/G) < oo and suppose that oo is fixed for a parabolic element
of G. By Lemma 3.5 (iv), G has a simple fundamental polyhedron P with a vertex at oo,
and since V(H"/@) < oo, P has finitely many faces. Consequently, P -has no vertices in the
half space H(h,) for some h,>0. The stabilizer G, is a discrete group of euclidean isometries
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mapping each plane 0H(h) onto itself in the same manner. P N 0H (k) is a compact (n —1)-
dimensional euclidean polyhedron of finite diameter which may serve as a fundamental
polyhedron for the action of G, on H{h). It thus follows that for points a €0H(h), h =k,

lim card {Ga N 6H(k) N B a,r)} = oo (3.6.1)

and that for every r€(0, co) there exists an integer k, depending on r and on the poly-
hedron P, such that each ball of radius 7 in H(h,) can be covered by k G-images of P.
Note, also, that T(H(hy)) N H(ky) =D for T €T\ G-

3.7. LemMaA. Let G be a discrete Mobius group acting on D, D=B" or H" with
V(D|@)<oo, P a simple fundamental polyhedron, and b a point in 0D. Then for every
neighborhood V of b there is g€G such that g(P)< V.

Proof. If D/G is compact, then P has a finite euclidean diameter; and since the G-
images of P cluster at b, the result follows.

If D/G is non-compact, then P has a boundary vertex p which is fixed under a para-
bolic transformation 4 €@. Since every point b€4D is a limit point with respect to & and
since G, +G@, it follows, see [17, 3.7], that the G-images of p cluster at every point of 8D,
and in view of 3.6 it is clear that go A*(P)< ¥V for some g €@ and some integer k.

3.8. The cusp compactification of D|G. Let G be a discrete Mobius group acting on
D, D= B"or H* with V(D|@) < oo. M = D|G is either compact or has a natural compactifica-
tion M, called the cusp compactification and defined as follows. Choose a simple fundamen-
tal polyhedron P. Let Q={p,, ..., p,} denote the set of all boundary vertices of P. Then
M =M UQ, where bases for open neighborhoods at the points p€Q are given by the fa-
milies {7(U(m, p)): m=1, 2, ...}, where U(m, p)={z€P: |z ~p| <1/m} for p€Q\ {>} and
U(m, p)={z€P: |x| >m} if p€Q n {oo}.

Let II denote the set of all parabolic fixed points of G. Then, by Lemma 3.5, M=
(D UII)/G holds as a set equivalence, and by the same lemma the space Mis independent
of the choice of P.

In general M or even M are not manifolds. The topological nature of M is described
in the following lemma.

3.9. LEMMA. M is a space of a compact oriented pseudomanifold without boundary, see
3.8 and 2.4.

Proof. We may assume that D= B"* and, by using auxiliary Mobius transformations,
that G has a simple fundamental polyhedron P centered at 0. Then P=B"\UFL.:B,



AUTOMORPHIC QUASIMEROMORPHIC MAPPINGS IN R" 231

where each B, is a ball orthogonal to 8*~'. If B,, B,, i =j, are two such balls, then 8B, 9B,
is contained in a (n —1)-plane through 0. Thus we can triangulate the faces of P by using
a finite number of planes through 0 so that G-equivalent faces of P have G-equivalent
triangulation. Now, this triangulation and 0 as a common vertex define a triangulation
of P so that each n-cell has n (n —1)-faces lying on planes through 0 and one (n—1)-face
on some 0B,. This triangulation clearly defines a triangulation of M. Now 2.4 (i) and (ii)

are automatically satisfied and 2.4 (iii) holds since the elements of G are sense-preserving.

4. Automorphic mappings: Examples and general properties

4.1. A continuous, open, discrete, and sense-preserving mapping f: D— R" is said to
be automorphic for a Mébius group @ if fo A =f for all 4 €G. It is not hard to see that if
f: D—R" is automorphic for @, then @ is discontinuous, @D =D and D is a subset of an
invariant connected component X of the ordinary set 0. Consequently G is a function
group. Furthermore, since ¢ a clusters at all points of L, whenever a €0, see [17), it follows
that L<dD and that each point of L is an essential singularity of f, i.e., there exists no
limit of f(x) as € D tends to bEL.

The simplest non-trivial automorphic mappings are the periodic mappings. These
mappings are invariant under discrete groups of similarities in R® with a unique limit
point at oo. See [11] for more details.

We first present two examples of ¢gr automorphic mappings f: H®— R? for groups G
acting on H2, In the first example G has exactly two limit points and B,=@. In the second
example every point on 9H3 is a limit point for @ and thus H3 is the natural boundary
of f.

4.2. Example. Let G be the cyclic Mébius group generated by the stretching z—2z,
z€R®. G(H®)=H?® and P={x€H?* 1<|x| <2} is a fundamental domain for the restric-
tion of G to H®. Denote S, ={x=H? |x|=2*}, k=0, +1, +2, .... P is homeomorphic to
B3, and there is a continuous mapping f: P— B3 such that f|P is g, f(P) is a closed solid
torus and f(x) =f(2x) €0H? for £€8,. In particular f(S,)=f(S;)<2H®. Now extend f to the
G images of P by means of inversions in 8, and reflections in f(S,)<#8H3. The extensions
are denoted again by f. Note that a reflection in §, maps S;_, onto S,,,. We thus end
with a ¢r mapping f: H3— R3, which is automorphic for G. Note that f(H3) is bounded,
N(f, H)=o0o, f has exactly two essential singularities 0 and o and B,=@, ie., f is a
local homeomorphism.

4.3. Example. Let P, be the semi-infinite prism in H3 which is bounded by the planes
OH®, ;= {x € R® x,=0},i=1, 2, and =y = {x € R®: x, +2,=1}; P, be the prism in H? bounded
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by 8H3, m;, m, and the plane z,={x€ R x; —2,=1}. Denote D;=P\B° ¢=1,2, D=
int (D, U D,), D=D, U D,. The vertices (1, 0,0), (0,1,0),  and (0,0, 1) of D, are de-
noted by p,, t=1, ..., 4, respectively.

Let G be the Mébius group which is generated by the following transformations:
T, =rotation -of 90° about the line I, =m; N7m,={x€ R3: 2;=0, x,=1}, T,=rotation of
180° about the circle 1,=0B% N7, ={x€ R |x| =1, #, =0} (T, can be obtained by com-
posing an inversion in B3 and a reflection in n;), T3 =rotation:of 180° about the line
ly=m Ny={r€R3: 2, =2,=0}. T, T,, T, are elliptic of orders 4, 2, and 2 with the fixed
sets 1, I, and I;, respectively.

The faces of D are pairwise congruent by T4, k=1, 2, 3 (we consider B2 N 2.D, and
75N Dy, i=1, 2 as two pairs of distinct faces of D). Each T maps H3 onto itself. The angle
between any two adjacent faces of D is either 180°, 90°, or 45°. Moreover, the three edges
of D, which meet at p,=(0, 0, 1) are mutually orthogonal at p,. It thus follows that G
is a discrete group acting on H3, D is a fundamental domain for &, V(H3|G) = V(D) < oo,
and L=0H?3.

We now construct a gr mapping f: H*— R3 which is automorphic with respect to G.
Noting that the neighborhoods of p;, i =1, 2, rel. D, are conformally equivalent to a neigh-
borhood of p;= e rel. D, it is not hard to apply [4, sec 8] to conclude that there is a con-
tinuous and injective mapping f: D,—>H? such that f| Dy is ge, foD, =0H? and f(o°) = oo,
Denote f(p;) =a; 1=1, ..., 4. Now extend f to D by means of reflections in s, and 0H3,
respectively, and then cbnﬁnue and extend f infinitely many times by means of all pos-
sible reflections and inversions with respect to dH? and to the faces of T'D,, T €@, respec-
tively. We end with a ¢gm mapping, denoted again by f, which is well defined everywhere in
H3, fH3=R*\ {a,, a5, a;} = B%\{a,, a,}. { is automorphic with respect to &, and since
L =9H3, it follows that every point in dH? is an essential singularity of f; and so 0H3 is the
natural boundary of f. B,=Urec US.1 T(s,) where s;, i=1, ..., 6, are the edges of D,.
fB; is rather simple. It consists of a topological triangle with vertices at the points a,, a,,
and a, and three curves which extend from a,, 1=1, 2, 3, to oo,

In some respect, f is analbgous to the elliptic modular function in R2,

4.4. Remark. The last two examples prove that the class of gm automorphic mappings
in R3%is not empty. In a forthcoming paper we shall prove that every discrete M6bius group
which acts on D, D= B" or H*, with V(D/G) <o, n>2, has ¢gm automorphic mappings.
We do not know whether every discrete Mébius group acting on B* has a gm automorphic

mapping.

4.5. Let @ be a discrete Mébius group acting on D, D= B" or H", with V(D/G) <o,
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P< D a simple fundamental polyhedron and suppose that P N 3D +@. Let @ ={p,, ...; P}
be the set of all boundary vertices of P. Finally, let f: D— R" be an automorphic mapping
with respect to G.

We say that f has the limits ay, ..., a; in P if lim f(x) =a,; as x—p, in P, i=1, ..., k. The
existence of the limits a;, i=1, ..., k in P implies that the induced mapping f: M R
M =D|Q, which satisfies f=foz, has a continuous extension f: MR with fip)=a,,
=1, ..., k.

Since 7 is continuous, G is discontinuous in D, and f is open and discrete, it follows that

f is open and discrete, and thus Theorem 2.10 yields that f is open and discrete and that
N(fy=N(fy = N(f, P) < o=. 4.5.1)

Furthermore, we may use 2.6 to define the local topological index i(z, f) of f at points

rE€EM.
It is not hard to see that

i(e, f) = Nz, ®)il(iom) (@), ) (4.5.2)

for € B", where N(x, G)=card G, and ¢: M —~M. Moreover by Corollary 2.9 and (4.5.1)

it follows that
S iz, H=N({, P)< oo (4.5.3)

zef~i(y)

for all yE R™.

5. Modulus and eapacity inequalities in B"/G
In this chapter we prove several modulus inequalities in M = D[G where ‘D is either

B"or H" and & is a discrete Mobius group acting in D with V{D/@) < co. These inequalities
will be used in chapter 6.

5.1. Modulus of paih families in B"|@. Let @ be a discrete Mobius group acting on B"
with V(B"/G)<oo. Let I' be a path familyin M = B"/@, i.e., each y€I" is a-non-constant
continuous mapping y: A—>M where A< R! is an interval. The modulus - M(I") of T is
defined by

MyD)= inf | o"dm. (5.1.1)

eeFg(I) J p

where P is a simple fundamental polyhedron for G, see 3.4, and F4(T") is the set of all non-
negative Borel-functions g: B"~ R such that

o(@) =o(T(@) | T"(%)| (5.1.2)
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for all T€@ and

f ods>1 (5.1.3)
y‘

where y*: A— B" is any locally rectifiable (maximal) lift of v under the canonical projec-
tion z: B"—~ B"/G, i.e., moy* =y. For more details on the line integral (5.1.3) see [19, sec.
4]. Note that M (") is independent of the choice of the fundamental polyhedron P. In fact

J g"dm = f o dm (5.1.4)
D P

where D is any measurable fundamental set for @. To show this let G@={T,, T, ...}, D;=
DN TyP), and P,=Ti (D), i=1,2, .... Now D;N D;=@ for i+j and D= U D, since P
is a fundamental set. The same reason yields P, P,=@ for ¢ <j and P=UP, Now (5.1.2)
implies

f o"dm=3 f o"dm=73, f o(T (@) (, T) dm(z) =3 f o(T ()| Ti(z) ["dm(z)
D t JDg t JPs i JPs

=Zf o"dm= f_ g"m=f g"dm.
i JPi P P

Note also that if (5.1.3) holds for some lift y* then it holds for all lifts. Indeed, if y7: A—> B"
is another lift of y, then the subarcs y*(A) N T(P), T,€@, are in one to one correspondence
with the subares ¥5(A) N T,(P), T,€G. Since corresponding subarcs are G-equivalent, the
result follows from (5.1.2) and the transformation formula for line integrals, see [19, sec.
4]. Observe that in general z: B*-> B"/@ need not be a covering mapping, hence there
may not exist T €G with T'oyf =y*.

The same definitions hold when B" is replaced by H™.

5.2. A path y: A~ M is said to be rectifiable or absolutely continuous, if it has a lift
p*: A—>B" which is rectifiable or absolutely continuous, respectively. Clearly these pro-
perties do not depend on the choice of the lift. In the same way a set A<M is called meas-
urable, a set of measure zero, or a Borel set if 7z~1(4) has a corresponding property in B"
with respect to the Lebesgue measure and the usual topology of B". Recall that M denotes

the cusp compactification of M and 2: M — M the natural inclusion.

5.3. LEMMA. Let T" be a family of paths y: [a, b)—~ M such that either y is nonrectifiable
or ioy(t) tends to a limit in M\iM as t—b. Then M4T)=0.
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Proof. Let TV be the family of all the paths in I' which satisfy the second condition
stated in the lemma. Then M (I")=M(I"), for if y €I\ I, then the function o(y)=
e|T'()|. T(y)EP, TEQ, belongs to Fe(I'™\I"). Hence

MM\ < f &"dm < e"m(P)
P

which shows M (I™\I")=0. To prove that M I")=0, let the boundary vertices of a
simple fundamental polyhedron P be {p,, ..., p,} < 8B". Pick 4,€GM (n) such that 4,(B") =
H" and 4,(p;) =o°. Let hy >0 be so large that for all ¢, H(h,) meets only those faces of 4,(P)
which terminate at oo, see 3.6. Clearly, it is enough to show that for large A, M(I';)=0
where I, = {y €I": 4,(y*(a)) € CH () for some ¢}. Fix h >hysolarge that the sets P N A;*(H(h))
are disjoint. Let £¢>0. Denote P, =P N A;Y(H(h)\H(h +1/¢)). Define g,: P— Rl as g ()=
e|dix)|, x€P;, and o,(x)=0, z€P\ UP,. Extend g, to of: B~ R! by setting o} (y)=
0:(®)| T"(y)| where T€G is such that T(y) ==, x€P. Now g € Fy(I',), since if y* is any
rectifiable lift of v €I'), terminating at p,, then
h+1lle
[ atts= [, petts= [certartontar@liast >e [ lasl =1

i

where A4,09*=y7. On the other hand

k k k
f cirdm=¢" Y | |4i@)|rdmx)=¢* 3 | J(x, 4;)dm(x) =" > m(A(P))<e"'C
P i=1JP; i=1

i=1,JP;

where, by 3.6, C is independent of ¢. The lemma follows.

5.4. Capacity of condensers in B"|@ or in B"|G. Let G and M =B"/@ be as in 5.1. A
pair £ =(A, C) is called a condenser in M if 4 is open in M and C is a non-empty compact
subset of A. The capacity caps E of E is defined as follows: If C=M we let capy E =0,
otherwise capg E = My(I'z) where I'y is the family of all paths y: [a, b)—4 in M such that
y(@) €8C and iop(t)—>8i(A) as t—~b. Here ¢ is the natural inclusion of M into its cusp com-
pactification M.

A pair £=(4, C) is called a condenser in Mif Ais open in M and C+0 is compact
in A. Furthermore, for the sake of simplicity we shall always assume that 2C is compact in
i(M). Such a compact set C will be called admissible. The capacity of E is defined by
capg B =capg(et4, i-%0).

In the same way we define condensers and their capacities in H"/G and in H" /G if

@G acts on H™
16 — 752906 Acta mathematica 135. Imprimé le 15 Mars 1976
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5.5. Some special condensers in B*|G or in B*"|G. Lemma 5.3 implies that caps(M, C) =
0= capg(lﬂ , O) for all admissible compact sets C in M or in M, respectively. The same lemma
also implies that capg(4, C)=capg(i—24, i-1C) for any condenser (4, C) in M such that

1~1C is compact in $714.

5.6. Suppose now that G acts on H", that P is a simple fundamental polyhedron with
a boundary vertex at oo, and that £=(4, C) is a condenser in M =H" [G. Note that oo
is a point in M as well as in B,

Lemma. There exists hy>0 such that if

(i} C and BA are connected,
(ii) oo €C and 8H(h,) < (107)104,
(iii) (fom)C and (s07m)-10A both meet H(h) for some h=h,
then capg E >4 for some 6 >0 which is independent of h.

Proof. Let b’ >0 be such that H(h') only meets those faces of &P which terminate at
o and let d=diam (P N0H(%)) =diam (P N&H(k,)), h, >k, see 3.6. Define hy=h'+2d
and let &> h,.

Fix 2,€0H(k) N P. By 3.6 there exists an integer k depending only on G such that

4
Bz, 2d)<int X, Ty(P)=8,
=1

where T, €@ and T (o) = oo,
Let E'=(i714, i19C) and let I'=T'z.. Fix g€ F(I'). Then by (5.1.2)

1
J o"dm= —f odm.
P kJs

The proof will now be completed if we find a lower bound for [p"dm.
Let d <r<2d. Then (i)-(iii) imply that S*~}(,, ) meets both (io7)~12C and (ion)~1 4.
Hence [19, sec. 10] yields

"ds=d,[r,
fs”-l(:o.r)g g
where d, >0 depends only on . Integrating from d to 2d gives
f g"dm>d, log 2.
s

Since g € F(I") was arbitrary, this gives the required estimate.
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5.7. Capacity of condensers in B*. A pair E=(4, C) is called a condenser in E" if A
is open in R™ and C is a non-empty compact subset of 4, cf. [8, 5.2], [9, 2.7]. We define the
capacity cap E of E as follows: If A =C we let cap E =0, otherwise, we let cap E =M(I'z)
where I'; is the family of all paths which join C and 64 in 4, i.e., paths y: [a, b)—~ 4 such
that y(a)€C and y(i)—>84 as t—>b. Here M(I';) denotes the usual modulus of I'g, see [19].
This definition is equivalent to the potential theoretic definition in [8, 5.4].

5.8. Condensers and automorphic mappings. Let @ and M = B*/@ be as in 5.2. Suppose
that f: B*~>R" is a gm automorphic mapping with respect to G. The induced mapping
f. M R" is then continuous and open, thus, if E=(4, C)is a condenser in M, then fE =
(FA, C) is a condenser in E*. If, in addition, f has a continuous extension f: M — K", then
by 2.10 f is open. It thus follows that for any condenser E=(4, C) in M, fE=(f4, f0) is
a condenser in B2,

A condenser K =(A4, C)in M (resp. in M } is called normal if 4 is a normal domain of
f (vesp. f). In this case f (resp. f) defines a closed mapping A—fA (resp. A—f4).

Let B=(4, C) be a condenser in M. The minimal multiplicity of { on C is defined by

M({f,0)=inf 3 i,]) (5.8.1)
vefC zefrumac
see [7, 3.5). Clearly M(f, C) <o and M(f, C)<N(f, A). If { has a continuous extension f
to M, then M(f, C) is defined for condensers E=(4, C) in M in the same way. Observe
that in this case N(f, 4) is always finite.

5.9. TuroREM. Suppose that f: B"—~R" is a gm automorphic mapping for a discrete
group G acting on B" with V(M) <eo, M = B"|G. Then
capg B < Ky(f)N(f, 4) cap JE (6.9.1)

for all normal condensers E =(A, C) in M, and

cape X (5.9.2)

for all condensers E=(4,C) in M. Furthermore, if | has a continuous extension f to M,
then (5.9.1) and (5.9.2) hold with f and M being replaced by f and M, respectively.

Proof. Since the details of the proof are similar to those in [8, 6.4], [7], and {20, 3.17],
we shall only give an outline.

For (5.9.1) suppose that E = (4, C) is a normal condenser in M. If 4 =C there is noth-
ing to prove. Suppose A<+C and let o' € F(I';;). Define o: B R! by setting o) =
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o (f(x)) L(z, f) for x€x3(4) and o(z) =0 otherwise. Here L(x, f) —lim ., |f(@+h)—f(z)|/]|R].
Let I'y be the family of all paths y €I'; such that the corresponding lift * in B" is rectifi-
able and f is absolutely continuous on y*. By Fuglede’s theorem [2], see also [19], M (y) =
M(T'g). The change of variables in a line integral shows that

f gds)f_ o'ds. (5.9.3)
y‘

foy

A is a normal domain of f, hence foy €I'7; and thus the right-hand side of (5.9.3) is >1.
On the other hand

e(@) =¢'(f@) L(z, f) =o' (T @) L(z, fo T) =o' (T (@) L(T(x), )] T"(x)] = o(T(x))| T"(x)]

for all z€n1(4) and T €Q. Since the last formula holds trivially for x€ B*\z~1(4), it
follows that g € F¢(I'y). This gives

capg = M o(I') = M(T'y) < L p"dm = . o' (f(@))"L(x, f) dm(z)
< Kof) s _l(A)Q'(f(x))"J(x, 1) dm(z)

<Kqf) f;Ae'(y)"N(y, f, Aydm(y) < Ko() N(F, 4) fme’dm-

Since this holds for every o’ € F(I'7z), {5.9.1) is proved. Clearly the same proof applies when
f and M are replaced by f and M.

For (5.9.2) set m=M(f, C) and let 3’: [@, b)~fA4 be a path in I'r;. Then C N f-1(y'(a))
consists of finitely many points z,, ..., , with > % i(z,, f)>m. A result by Rickman [14]
on path lifting, see also (20, 3.12], implies the existence of paths y;: (@, b;)~+4 in I'y with
foy;<v’ and such that card {j: y,(t) =2} <1 whenever z€E M~ _B; and t€ U,[a, b,).

Let g€ Fo(I'z). Denote by E the set of all points € B where f is differentiable and
J(x, f)>0. Then E is a Borel set, m(B"™\ E)=0, and B,< B"™\ ¥ by [8, 2.26 and 8.2].
Define ¢": R*— R! by

mtsup 3 o@llf @), $+ W<,
e'y)=1 o , ¢y FE, (5.9.4)
0 ; =4,
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where B runs through all subsets of P N f~1(y) such that card B<m. One can follow the
proof in {20, p. 6] to conclude that o’ is a Borel function.

Let I'y be the family of all paths 8 in R™ such that either § is non-rectifiable or there is
a path o in B” such that foa<f and f is not absolutely precontinuous on « in the termino-
logy of [20, p. 4]. Then M(I'g) =0 and so for I" =I';;»\Ty, M(1")=M(I';z). Hence it suf-
fices to show

K,/
m

MTI)< M Ty). (5.9.5)

Arguing as in {20, pp. 6-7] it is not hard to see that

j ods=>1
¥

for every y €I, and consequently o’ € F(I'). This in turn implies

MI)< f o'dm, (5.9.6)

Rn

and the estimate

L o'"dm ém'lK,(f)f o"dm (5.9.7)
" P

follows from (5.9.4), Holder’s inequality, a transformation formula for Lebesgue integrals,
and from the facts that m(P_E)=0 and f| (P~_E) is locally quasiconformal, see [20, p. 8].

Now (5.9.6) and (5.9.7) imply the required inequality (5.9.5). The same proof applies to
condensers in M.

5.10. CoroLLARY. If E is a condenser in M, then
cap fE < K,(f) capg E. (5.10.1)
Here M and | may be replaced by M and f, respectively.

5.11. Remarks.
(a) It is possible to prove more general modulus inequalities than (5.9.1) and (5.9.2).

For instance, using the arguments of 5.9 one can show that
Mo(T) < Kof)N(f, 4) M(T),

where I is any path family in a Borel set 4< M, see 8, sec. 3]. Here fI"={foy: y€I'}.
However, we shall only need the special inequalities (5.9.1) and (5.9.2).
(b) Theorem 5.9 and Corollary 5.10 are true as well if G acts on H".
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6. Automorphic mappings: Value distribution, boundary behavior
and the branch set

In this chapter we study several aspects of gm automorphic mappings in the hyper-
bolic space D, D= B" or H*. We start with theorems about the radial and angular limits
of such mappings. We then study the value distribution of gm automorphic mappings.
Next, we consider the branch set B, of an automorphic gm mappings f. It turns out that
in this point there are differences between n=2 and »>3. Finally, we describe the growth
of gm automorphic mappings near parabolic points. Our main tools are the theorems on
open discrete mappings of chapter 2 and the capacity inequalities that we derived in
chapter 5.

6.1. Radial and angular limits. Let f: D E™ be a gm automorphic mapping for a di-
screte Mébius group @ acting on D, D= B* or H", with V(D|G) <oec. Let P< D be a simple
fundamental polyhedron with respect to G, see 3.4, and let Q=P naD denote the set of
all boundary vertices of P, possibly @ =@. Recall, see 4.5, that f is said to have a limit at
p€Q in P if lim f(z) exists as x—>p in P. Due to the nature of G, the structure of P near p,
and the invariance of f under @ it follows that if f has a limit at p €¢ in P then f has an
angular limit at p in D. If in addition D= B" then f has a radial limit at p.

One of the main results in the next four sections is Theorem 6.5 which says that f
has limit at all boundary vertices of P in P if and only if N{(f, Py<co,

6.2. THEOREM. Let G, P, Q, and f be as in 6.1. If p€Q+D and N(f, Pn U)<co for
some neighborhood U of p, then f has a limit at p in P.

Proof. We may assume that D=H" and p=oc. Let U be a neighborhood of o> with
N(f, PnU)=N < oo, Choose y€R" such that N(y,f, PNU)=N and let fYy)NPnU=
{#", ..., ¥"}. Choose disjoint normal neighborhoods U, of ¢, i=1, ..., N, see 2.1. Let U’ =
NU;and V=nfU, Then V< Of((U NPY\QU")). Pick h>0 so large that H(h)= R\ U’
and H(h) does not contain any vertices of P. Denote R ={xz€R™ ]x,l <1, j=1,..,n}

Let 2%, i=1, 2, ..., be a sequence of points in P such that z'~ oo as i—~co. We may
assume that x} >¢+h, otherwise choose a subsequence. For each integer ¢ let f,: R—->R"
be the mapping defined by f(x)=f(ix+z'), € R. Then K(f,)<XK(f) and each f, maps R
into BR™\_V; hence {f,} is a normal family, see [9, 3.17].

Let {fi.} be a subsequence of {f,} which converges uniformly on compact subsets of
R. By [13] the limit function f, is gm. Let

R ={z€oH™ |x,l<}, j=12,..,n—-1}
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Then, by (3.6.1), lim,_,,, N(fu, B’)=co, and since R’ is compact in R, f, cannot be discrete
[12, p. 131], see also [11, 8.3]. Hence f, is a constant, say o«. We may assume a0, We
shall show that lim f(z) = « as z— oo in P.

Let £¢>0 and let P: R"~R""'=0H" denote the projection z+>x—z,e,. By 3.6 the
euclidean diameter dy of P'(P) is finite, therefore there exists an integer k, such that
diam (¢, R')>2d, and fi(R')< B™«, ¢) for all k>k,. Fix ! such that 2! >4,,+h and then
pick k >k, so that 4, +h >z, Define

Sk = {xEP: ‘iko <xn-’h <ik}'

Then f(28,)< fi( R') U fur,(R')< B™, £); and since f is open and omits V, f(S;)< B™(a, ¢).

Since z!€S8,, this implies lim, ,,, {(x')=a.

6.3. For the sake of simplicity we state the following theorem only for mappings in
B". The corresponding result in H" follows at once.

THEOREM. Let f: B*—>R" be a gm automorphic mapping with respect to a discrete Mé-
bius group G acting on B" with V(B"/G)<co. If B*/@ is non-compact and if N(f, F)<co
for some fundamental set F'< B™ with respect to G, then

(i) the set of all parabolic fixed points of G is dense in 0B", and
(ii) 1 has a radial limit at every parabolic fixed point of G.

Proof. For (i) see the proof of Lemma 3.7. For (ii), let p€2B" be a parabolic point.
By 3.5 (iv), G has a simple fundamental polyhedron P with a boundary vertex at p. Hence
N(f, R*nP)=N(f, P)=N(f, F)< oo and thus (ii) follows by 6.2.

6.4. Remark. Let f: B*~>R" a gm automorphic mapping for a discrete Mébius group
acting on B*. If B"/( is compact then f has no radial limit at any point of o.B".

6.5. THEOREM. Let f: D->R" be a gm automorphic mapping with respect to a discrete
Mobius group @ acting on D with V(D|@) < oo, where D= B" or H*;, and let P be a simple
fundamental polyhedron with non-empty set of boundary vertices Q=P N &D.

Then | has a limit at each p€Q in P if and only if N(f, P)<oo; or equivalently: the in-
duced map J: M->R" has a continuous extension f: M- R" if and only if N(f)=N(f, P)<oo.
Here M is the cusp compactification of M = D|G, see 3.8 and 4.5.

Proof. If f has a limit at each point of Q, then f has a continuous extension f on M
and by 2.10, N(f, P)=N(f)=N(f) <oc. Conversely, if N(f, P)=N(f)<oo, then, by 6.2, f
has a limit at each point p€Q in P and thus f has a continuous extension f on M.
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6.6. Value distribution of gm automorphic mappings. In the next five sections we ex-
tend the results of [9, 4.4 and 4.6] and [11, 8.2] to gm automorphic mappings.

6.7. A compact set C in R" is said to be of zero capacity if either C =@ or else if
cap (4, C)=0 whenever A< R" is open and C< A4, see [9, 2.12]. In this case we write
cap '=0.

6.8. TaEoREM. Let f: D~ R" be a gm automorphic mapping for @ discrete Mébius
group G acting on D, D=B" or H", with V(D|G)<oo. Then cap Gf(U N D) =0, whenever
Uc R" is open and U N oD +Q.

Proof. We may assume that D= B". Let P< B" be a simple fundamental polyhedron
for G. Since g(P)< U for some g€G, see 3.7, and j(P)=f(B"), it suffices to show that
cap 0fB*=0. Let C be a non-degenerate continuum in P. Consider the condenser E =
(B"@, n(C)) in M = B*/G, and fE = (}B", {C) in R*. Then (5.10.1) and 5.5 imply

cap (CfC, GfB") = cap (B, f0) = cap B < K (f) cape B = 0;
and since fC is a non-degenerate continuum in R", it follows by [9, 3.11] that cap §fU =0.

6.9. CoroLLARY. Let f: D—~R" be a gm automorphic mapping for a discrete Mobius
group G acting on D with V(D|G) < oo, where D= B" or H". Then cap 0fD =0 and in parti-
cular {D =R

6.10. THEOREM. Let f: D~R" be a gm automorphic mapping for a discrete Mobius
group G acting on D), D= B™ or H*, with V(D|G) < oo.
If N=N(f, F) <o for some fundamental set F< D, then card (R*\fD) < o and

Gy .

6.12.1
cerSnn Nz, ) (6.12.1)

for all points y in R"™ with the possible exception of a finite set of points. Here N(x, G) =
card G, and i(x, f) denotes the local topological index of f at x, see 2.6.

Proof. It D/{G=M is compact then fD~fM =R" If M is non-compact then N < co
implies, by 6.5, that f has a continuous extension f on M, see 4.5. By 2.10, fis open and so
fM =R* and consequently fD=fM> FM\JQ=E*\JQ. Thus card (B" fD)<card fQ <
card §). The rest of the theorem follows from (4.5.2) and (4.5.3).

6.11. Remark. The assumption V(D/@)<oo in 6.8-6.10 is essential as shown by
example 4.2,
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6.12. T'he branch set of gm automorphic mappings. One of the main differences between-
plane and space gm mappings is the branch set, ef. [10]. This difference also occurs in auto-

morphic mappings and is described in this section.

THEOREM. Let f: D—R" be a qm automorphic mapping for a discrete Mobius group G
acting on D, D= B" or H", with V(D|G) < <o,
Then B,=D and 8D< B, whenever at least one of the following conditions holds:

(i) n=2 and D|Q is compact.
(i) n =3 and f(D)< R™

(iii) n =3 and N(f, F)<oo for some fundamental set F< D with respect to G.

Proof. (i) If B,={, then f defines a covering map D— R" and since R" is simply con-
nected it follows that f is a homeomorphism. But D is not homeomorphic to R*. Hence
B;+0, and 3.7 implies that 6D< Bf.

(ii) Note that in this case DG is non-compact since otherwise fD=f(D/G)=R" con-
trary to the assumption fD< R". Let P be a simple fundamental polyhedron. We may
assume that D= H" and that P has a boundary vertex at oo. Then G, has a strictly para-
bolic transformation say A(x)=x+% where 2+0 and normal to e,. If B,=0 and n>3
then by [10, 2.3] there is 2 €(0, 1) depending only on % and on K(f) such that f| B"(a, «R)
is Injective whenever B"(a, R)< H". Choose ¢ € H" and R >0 such that B"(a, R)< H" and
such that |k| <2aR. Then B(a, aR) contains at least two points = and A(z) which are
G-equivalent and which are thus mapped by f onto the same point, contradicting the in-
jectiveness of f| BMa, «R). It thus follows that B,+@, and 3.7 implies that D< B,.

(iii) Let Q:M M, where - M —M denotes the inclusion map from M = D|G into
its cusp compactification M. Note that N (i =N{(f, F), hence the assumption N(f, F) < oo
implies, by Theorem 6.5, that f: M- B* has a continuous extension f: MR,

Suppose that B,=@. Then | defines a covering map D\ j-fQ—E"\ fQ. Indeed, let
P be a simple fundamental polyhedron for G. Fix y€ "™\ fQ and let {z,, ..., x,} =
[P N0 ) \J1fQ. Since f is a local homeomorphism, there exist neighborhoods U; of x;
such that f|U; are homeomorphisms, fU;=V for some neighborhood V of y, i=1, ..., m
and such that w(U,;) (U ;) for ¢ 4. Then {gU;: 1 <i<m, g€G} is a set of disjoint compo-
nents of f~1V required in the definition of a covering map. The assumption » >3 implies
that R"™\ fQ is simply connected and thus f| DN\J/fQ is a homeomorphism contradicting
the fact that f is automorphic. It thus follows that B,+@, and 3.7 implies that 0D< B;,.

6.13. Remarks. (a) The assumption V(D/G) < oo in Theorem 6.12 is essential as shown
by example 4.2.
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(b) The assumption n >3 is essential in 6.12 (ii) and (iii). The elliptic modular function
in R? is a counterexample.
(¢) We do now know whether the conditions f(D)< R" and N(f, F)<co in 6.12 (ii)

and (iii), respectively, are essential. Our guess is that they are not.

6.14. Behavior of gm automorphic mappings at their natural boundary. In the following
sections we consider gm automorphic mappings f: D—R" for discrete Mébius groups @
acting on D, D= B" or H", with V(B"/G) < o and study their growth near 8D. In view of
Remark 6.4 and Theorem 6.3 we shall consider only the case where D/G is non-compact
and N(f, F)< oo for some fundamental set F< D with respect to G. We show here that
the rate of growth of f near parabolic points is similar to the growth of (n —1)-periodic
gm mappings near oo, see Theorem 8.7 and Corollary 8.11 of [11]. The main tools are the

capacity inequalities of section 5.

6.15. Let f: H*—~R" be a gm automorphic mapping for a discrete Mébius group ¢
acting on H® with V(H"/Q) <o, and suppose that oo is fixed for a parabolic element of
G. Then, by Lemma 3.5 (iv), @ has a simple fundamental polyhedron P with a boundary
vertex at co. Suppose that N(f, P)<oo. Then by Theorem 6.3 f has a limit at oo in P.
Suppose that the limit is oo. In this case the induced mapping f: M — E" has a continuous
extension f: M—R* with f(o0) =oco. Here M denotes the cusp compactification of M =
H"/@, see 3.8 and 4.5.

For A>0 let

M(h) =sup {|f(x)|: z€EH", x, = h},

m(h) = inf {|f(z)|: z€H", x, = h}.

6.16. THEOREM. Under the assumptions of 6.15
(i) A e*® < M(h)< A4,e",
(i) Age™ <m(h)<A,ef",
for all sufficiently large h, where 4,1=1, ..., 4 are positive constants depending on f,

o= [wi( oo, f)] 1(n-1y g [E"M’_ﬁ] Un—1)
KI(;)A ’ A ’

where A and w are the (n—1)-measures of {x€P: x,=h} and 8", respectively, and i(, )
denotes the local topological index of f at o, see 2.6.

Proof. Pick A€GM(n) with |A(z)| =1/|x| and let g=Aof, j=Aof and §=Aof, then
g is gm automorphic mapping with respect to @, g has the dilatations of f, N(f, P)=N(g, Py
and §(o0)=0.
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For >0 let U(r) denote the co-component of §—1B"(r). Choose ry>0 so small that for
0 <r<r,, U(r) is a normal neighborhood of « and (U(r) is connected, see 2.2. Since §| U(r)

is a closed map, Theorem 2.8 implies that for all r€(0, ry]

N(g, U(r)) = (0, §) = M(g, U(r));
where M (4, U(r)) denotes the minimal multiplicity of § on U(r), see (5.8.1).
Let C={x,: x€(iom)~1(0U(ry))}, b,=inf C, and b,=sup C. For h>0 let H(h) be the

closure of the set (tom)H(h) in M. Choose hy>0 such that the requirements in 5.6 are
satisfied and such that the compact set § H (k)< B*(r,) for all h=h,. For >0, let

M'(h)= sup {|g(x)|: z, =h},
m'(h) = inf {|g(x)|: x, =h}.
Then M(h)—1/m’(k) and m(h)—1/M" (k).

For h>h, E=(U(ry), U(m'(k)) is a condenser in M and GE =(B"r,), BMm'(h))) is a
condenser in R". Since U(m’(h))< H(h), Theorem 5.9 implies

K.(f)
i(o, f)

This yields 4,e** <1/m'(k) and the left side of (i) follows.
For the left side of (ii) it suffices to show that

K,(Hh4
i(o0, f) (h—by)" V"

1-n
) (log 7—;?(‘1’]’—)) =cap §E < capg & <

M (h)<cm'(h) (6.16.1)

for all &> A, for some ¢ >0. Fix A>h, and suppose that M'(h)>m'(h). Then E=(U(M’'(h)),
U(m'(h))) is a normal condenser in M and §E = (BY(M’'(h)), B*(m’(h))) and by Theorem 5.9

. . . M'(h) 1-n

cap B < Ky(f)i(oo, f) cap B = Ky(f)i(o°, f)w | log wwy) (6.16.2)
On the other hand the condenser E satisfies the assumptions of Lemma 5.6, thus
cap E>0d>0 where § depends on G. This combined with (6.16.2) yields (6.16.1).

To prove the right side of (i), consider the normal condenser E=(U(ry), U(M'(h)))
in M, h>hy, and its image §E = (B™(r,), BYM'(h))) in B*; then Theorem 5.9 implies

7

1-n
0
M'(h)) )

A(h—by)"~" < cape B = Kyff)i(>, f) cap éE=Ko(f)i(°°,f)w(10g

This gives m(h)=1/M’ (k)< A,e’*, and by (6.16.1) the right side of (i) follows, too.
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6.17. CorOLLARY. Let f: B*—> R be a qm automorphic mapping for a discrete Mdbius
group G acting on B" with V(B"/G)<oo and with a parabolic fixed point at p€2B". For
r€(0,1/2), let S(r)={x€B™ |x—(1—r)p| =r}.

If N(f, F)< oo for some fundamental set F < B", then:

(1) The radial limit @ =lim, ,;_o f({p) exists.
(ii) For all sufficiently small r>0,

Ae’" <m(r) < M(r) < Aye”,

where M(r)= sup |f(x)| and m(r)= inf |f(z)| when a=co
zeS(r) ze8(r)

and M(r)= sup |f(x)—a| and m(r)= inf |f(x)—a| otherwise.
r€eS(r) TeS(r)

Here A, and A, are positive constants which depend on f, y and d are positive constants when
a=c0 and neqative constants otherwise. In any case y and 6 depend only on G, N(f, F) and
the maximal dilatation of f.

Proof. (i) is contained in Theorem 6.3 (ii). For (ii), first replace f by BofoA where 4
is a Mobius transformation with 4(H™) = B" and 4(oc)=p and B€GM (n) with B(a)= co.
This brings us to the situation in 6.15, where the punctured spheres S(r) correspond to the
(n—1)-planes 0H(h), h>0. The result, then, follows by 6.16.
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