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1. Introduction 

1.1. Let  G be a discrete group of MSbius t ransformat ions  in  R ~ =  R n U { ~ }  (i.e., sense 

preserving conformai automorphisms of R ~) act ing on a domain  D c R  n and  /: D ~ / ~  n a 

cont inuous mapping.  We say t ha t  ] is automorphic with respect to G if f is discrete (i.e., 

/ - l (y)  is discrete in  D for any  ye/D), open, a n d / o A  = / f o r  all A eG. / is said to be quasi. 

regular (qr) in  D if D c  R n, f D c  R n, ] is A C L  ~ (absolutely cont inuous on lines with part ial  

derivat ives locally in L n) and  

I/'(x)l n <~KJ(x , / )  a.e. in  D (1) 

for some KE[1 ,  ~ ) .  H e r e / ' ( x )  is the formal derivat ive of f a t  x e D ,  I/ '(x)l denotes the 

supremum norm of the  opera tor / ' (x)  and  J ( x , / )  = d e t  f'(x). I f  oo ED or oo E/D, (1) and  the 

A C L  ~ proper ty  can be checked at  a neighborhood of oo or a t  neighborhoods of points  of 

f - l ( ~ )  by  means of auxi l iary  MSbius t ransformat ions  which map  oo to a f inite point .  If  
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(1) and the ACL n property hold in D, D c R  n a n d / D c R ' ,  for some KE[1, oo), we say 

tha t  / is quasimeromorphic (qm). [ is said to be quas~/ormal  (qc) in D ff / is qm and in- 

jective in D. qc, qr, and qm mappings seem to be very reasonable generalizations of con- 

formal, analytic, and meromorphic functions, respectively. 

The main purpose of this paper is to s tudy automorphic and in particular qm auto. 

morphic mappings in R n, n >~2. One class of automorphie mappings, namely, the family 

of periodic mappings, has been studied in [11]. Here we are concerned mostly with auto- 

morphic mappings for MSbins groups which act on Bn={xERn:  ]x I <1} or on H a =  

{x E Rn: xn > 0}. In  chapter 4 we present two examples of qm automorphie mappings for 

MSbius groups which act on H a. One of the examples is analogous in some respects to the 

elliptic modular function. 

Given a discrete MSbious group G acting on B ~, there is a standard way of construct- 

ing a canonical fundamental  se t /5  in B ~ which is bounded by (n-1) -spheres  or ( n - 1 ) -  

planes normal to OB n. I f  Bn/G is of a finite volume then, see [15] or [3], P = i n t / 5  has a 

finite number of faces and either P N ~B ~ = O (when Bn/G is compact) or has a finite num- 

ber of points. The points of P ~ ~B n will be called boundary vertices. I t  is not hard to see 

tha t  if / is automorphic with respect to such G, then / has no limit a t  any boundary point 

bE~B n, and if in addition B'/G is compact then / has no radial limit a t  any  point bE~B n. 

We show (in chapter 6) that  in the latter case / assumes almost every value the same (fi- 

nite) number of times in /5 .  This result which is known for meromorphie automorphie 

mappings in R ~, follows from a more general theorem (derived in chapter 2) on open and 

discrete mappings from n-dimensional pseudomanifolds into /~ .  With this theorem we 

prove also the following results, par t  of which seems to be new even in R ~. 

Suppose tha t  G is a MSbins group acting on B ' ,  with a non-compact orbit space B~/G 

of finite volume, and t h a t / :  Bn-~R n is qm automorphic with respect to G. L e t / 5  be a 

canonical fundamental  set for G in B n, and N = sup card (/-l(y) N P) over all yE/V~. Then 

/V < oo if and only / has a radial limit a t  every boundary vertex of P. Furthermore, /V < oo 

implies tha t  / has a radial limit at  every parabolic fixed point of G and thus on a dense set 

on ~B" and t h a t / ( U  N B n) - - - - ~ A  for any  neighborhood U of any boundary point b E~B n 

where A is some fixed set of finite cardinality i n / ~ .  I f  in addition n > 2, then / has a non- 

empty  branch set. These results are not true for non-qm automorphic mappings and the 

last result is not true for qm mappings in R ~. The elliptic modular function is a counter 

example. 

We also s tudy the growth of qm automorphie mappings /: B n - ~  near 0B n. The 

main tools for this aim are serveral modulus and capacity inequalities which we develop 

in chapter 5. 
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Some properties of MSbius groups, which we need for the s tudy of automorphic map- 

pings, are presented in chapter 3. 

1,2. Notation and terminology will usually be as in [8], [9], [10] and [ l l ] .  For x E R  n 

we write x = ( x  1 ..... x,) =Z~=I x~e~ where e 1 ... . .  en is an orthonormal basis in R n. For aE R  ~ 

and r > 0  we denote Bn(a, r ) = { x e R " :  [ x - a  I <r}, B"=B"(0 ,  1), 8"-~(a, r)=~B"(a, r), 

S'~-X=OB ~, I t~= {xe Rn: x~ >0}, and H(h) = {xe R~: x,~ > h }. 

The hyperbolic distance in Bn or in H n is denoted by  d(a, b). The hyperbolic measure 

of a set A in B ~ or in H" or in B~/G or in Hn/G is denoted by  V(A). Here G is a discrete 

M6bins group acting either on B n or on H ~. The euclidean distance between two sets A 

and B in R" is denoted by  dist (A, B). The closure .z/, the boundary aA, and the comple- 

ment  CA of sets A ~ R" will always be in/~". 

2. Open discrete mappings on pseudomanifolds 

2.1. Let  X and Y be Hausdor]], connected, locally connected, and locally compact spaces 

with countable bases of open sets, and let f: X-~ Y be a continuous, open, and discrete map. 

Discreteness of [ means t h a t / - l ( y )  is a discrete set in X, whenever y EfX. 

A domain {open connected set) D in X is called a normal domain for ] i f / )  is compact  

in X and 0]D = f~D. Note tha t  if D is a conditionally compact domain in X, then D is a 

normal domain if and only if [[ D defines a closed map D ~ f D .  D is called a normal ne~h- 

borhood of x e X  if D is a normal domain containing x a n d / )  f~ f - i f (x)= {x). 

The branch set By of f is the set of points in X where f fails to define a local homeo- 

morphism. For yE Y and A ~ X ,  we denote N(y, [, A) =ca rd  (]-l(y) N A), N(], A ) = s u p  

N(y, f, A) over all ye  Y, N(y, ])=N(y,  ], X), and N(] )=N(f ,  X). 

2.2, LE~MA. Let/ ,  X,  and Y be as in 2.1. 

(i) I /  D is a domain in Y and U is a conditionally compact connected component of 

/-1D, then U is a normal domain and f U = D .  

(it) Every x E X has arbitrarily small normal neighborhoods. 

Proof. For (i) see Whyburn [21, 5 p. 5]. (it) follows from (i), V~is~ls [18, 5.1], and the 

fact tha t  for conditionally compact domains U in X,  ~fU =fOU is equivalent to the closed- 

ness of ]] U. 

2.3. LE~IMA. Let X and Y be as in 2.1. Suppose that ]: X--> Y is continuous, open, 

discrete, and closed. 
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I /  int fBI=~) and Y ' ~ B  s is connected, then N(y , / )  is lower.semicontinuous /or all 

y E Y and N(y , / )  ~ N(/) < oo/or all y E Y " ~ B  I. 

Proo]. Some of the arguments  are due to V~iis~tl~ [18, 5.5]. We first show tha t  

N(y, /) < ~ for all yE Y. Suppose tha t  / - : (y)  = {x:, x~ ... .  } is infinite. Choose metrics d in 

X and d'  in Y which are compatible with their topologies and a sequence {zl, z~ . . . .  } in 

X such tha t  d(zk, xk)< 1]k and 0 <d'(/(zk), y ) <  l/k. Then {Zl, z 2 .. . .  } is closed in X and its 

image is not  closed in Y. Thus  N(y, ]) < ~ for all y E Y. 

Let  yE Y and ]-~(y)={x: . . . . .  xk}. Choose disjoint conditionally compact  connected 

neighborhoods Vt of xi, i = 1  ..... k and let U be the y-component  of the open set 

A ] V ~ ' ~ ( X ~  U Vi). Clearly {x~ ... .  , x ~ } ~ / - : U ~  U V~. Hence N(y, ] )~N(y ' ,  ]) for all 

y '  E U. I f  y E Y~,JBI ,  the sets Vi can be chosen so tha t  ] ] V~ i = 1 .. . . .  k are homeomorphisms,  

and in this case N(y, ]) =N(y ' , / )  for all y '  E U. Thus  N(y, ]) is continuous in Y ~ / B / a n d  

]ower-semicontinuous in Y. 

Now, int ]B r = ~), N(y, ]) is semicontinuous and Y ~ ] B  s is connected; hence N(y, /) =- 

N(]) < oo for all y E Y ~ . J B  r. 

2.4. Now, let Y be a connected oriented n-manifold with countable base of open sets 

and X be a space of a finite oriented pseudo n-manifold K without  boundary,  i.e., X is 

homeomorphic  to a geometric realization of a finite homogeneously n-dimensional simplical 

complex K with, see [16], 

(i) every (n - 1)-simplex of K is the face of exactly two n-simplexes of K; 

(ii) if s and s' are n-simplexes of K, there is a finite sequence s = s  1 .. . . .  s m = s' of n- 

simplexes of K such tha t  s t and st+ 1 have an (n - 1)-face in common i = 1 .. . .  , m - 1; 

(iii) the integral homology group Hn(K) is infinite cyclic; in other  words, K is oriented. 

I n  the sequel, pseudomani/old will mean either the complex K or its space X. Finally, let 

D be a domain in X and l e t / :  D ~  Y be continuous, open, discrete and sense.preserving. 

2.5. THEOREM. Let/:  D ~ Y be as in 2.4. Then dim B f <~ n - 2 and dim / B r <~ n - 2. 

Proo/. Let  F be the set in X which corresponds to the geometric realization of the 

( n -  2)-skeleton in K. Then X 1 = D ~ F  in an oriented n-manifoid a n d / :  = [ I X : :  XI-~ Y 

is continuous, open and discrete, thus, see [18], dim Bf, <~n- 2. 

F is compact  in X, B i c  F U BI, and dim F ~ n - 2. On the other  hand  B n is a F~ set 

in X, thus, see [5], dim Bib<dim (BI, U P) = n - 2 ,  and by [1, 2.1] d i m / B i < - ~ n - 2 .  
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2.6. The local topological index o/open discrete mappings on oriented pseudomanifolds. 

Let 1, D, and Y be as in 2.4, and let xEX.  Then the local topological index i (x , / )  of / at  

x may  be defined by 

i(x, l) = :V(l, u )  

where U is any normal neighborhood of x. The definition of i(x,/) is independent of the 

choice of the normal neighborhood U. Indeed, given two distinct normal neighborhoods 

U 1 and U2 of x, choose a normal neighborhood U a of x with U a c U  1 N U2. The mappings 

[~=[t U~, i = l ,  2, 3, are open, discrete, and closed; and  since dim ] B s ~ n -  2 it  follows by  

2.3 tha t  N(/~)-= N(f3)= N(/~). 

By definition i(x,/) >~ 1 for all xED and i(x,/)  = 1 for all x E D ' ~ B  I. I f  / is continuous, 

open, discrete and sense-reversing we set i(x,/)  = - N ( L  U), where U is any normal neigh- 

borhood of x: 

2.7. Remark. At points x E D ~ F  (see proof of 2.5) where D is locally euclidean the de- 

finition of the local topological index here is equivalent to the classical one, see [12, p. 125]. 

2.8. T~EOREM. Let Y be an oriented n~-mani/old with countable base o/ open sets, D a 

domain in the space X o/ an oriented pseudo n-mani/old without boundary and ]: D ~  Y con- 

tinuous, open, sense-preserving, discrete, and closed. Then 

Z i(x, t) = N q ,  D) < oo 
x e f - l ( y )  

/or all y E Y. 

Pro@ By 2.5 d i m / B i < ~ n - 2  and so by 2.3 N(y, 1, D) =N( / ,  D) < oo for all yEID~.,.JB~. 

Given ~/E]D w i t h / ' l ( y )  fl D = {x 1 ..... xk} , choose disjoint normal neighborhoods Vj of 

xj and let U be the y-component of the open set N / V j ~ ] ( D ' ~  O Vj). Then {x 1 ..... xk}c 

] - IUc  U Vj and since int ]Bs=(D, by 2.3, U~. /B  I has a point y' for which 

k k k ~. , 
i(x, 1)= ~ i(xj, l )= ~ N ( / ,  V~) = ~ .(y ,1, Vj)=N( / ,D) .  

3:e f - l (y )  j ~ l  j = l  j ~ l  

2.9, COROLLARY. 11 /: D -~ Y is as in 2.4 and D = X ,  then Y is compact and 

~: i (x ,  1) = N ( I )  < o ~  

x e f - ~ ( y )  

for all y E Y .  
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2.10. THEOR~.~. Let Y be an oriented n-mani/old with a countable base o/open sets, 

X a space o] /inite oriented pseudo n-mani/old K, n >~2, P = { P l  . . . . .  p k } c  :~, X = : ~ P ,  

]: J~-~ Y continuous,/=]IX: X ~  Y open, discrete, and 8euse.preserving. 

Then t is open and discrete and N(t) =N(/ )  < ~ .  

Prool. Denote X1 = J; \ I -1 tP  and 11 = t l x ,  I is closM and hence Ix: XI-~ 11 X1 = Y ' ~ I  P 

is a closed mapping and therefore by  2.8, N( t l )<  oo. Thus N(y, t)<~N(/1)+k < ~ .  Conse- 

quently t is discrete. 

Since / is open, it suffices to show tha t  each p EP has arbitrarily small neighborhoods 

V such tha t  I(P) Eint IV. Given a neighborhood U of p, choose a neighborhood V c  U of p 

such that  17 N P = {p} = l 7 N I-•(P)- / is open, hence 

= 8 / ( v \ { p } )  c u {/(p)} 

Since k V  and t(P) are disjoint and compact in Y, and Y is an n-manifold with n~>2, I(P) 

has a neighborhood W, homeomorphie to B ~, with W~j(p)  c t(V~{P}).  Thus I(P) E 

int IV and consequently t is open. 

As I is closed and dim ]B/~<n - 2 ,  we m a y  apply 2.3 and conclude that  N(/) =N(/x) = 

iv(I). 

3. MiJbius group 

3.1. In  this chapter we introduce notation, terminology, and some facts about  MS- 

bins groups which are needed in the following sections. 

3.2. MSbius trans/ormations T in R n are defined here as compositions of even number  

of reflections in ( n -  1)-spheres or ( n -  1)-planes in ~,n. Note tha t  the group GM(n) of all 

M6bins transformations in / ~  consists of all sense-preserving conformal automorphisms 

of R n. The subgroups of GM(n) will be called MObius groups. The identity in GM(n) is 

denoted by  I .  Let G be a M6bius group, T E G and x E ~ ,  then Fix T denotes the set of all 

fixed points of T, Fix G =  [9 a~a\(;~ Fix A and G~=(A EG: A(x)=x} is the stabilizer of G 

at  x. 

A MSbins transformation T E GM(n) is called parabolic if T has a unique fixed point, 

called a parabolic point, in I~ .  T is called loxodromic if T has exactly two distinct fixed 

points a, bERn and for some x E ~ ( a ,  b} the limit 

lira Tk(x) = lira (ToTo... aT) (x) 
k.-.~eo k ~  " k t~mea 

is either a or b. a and b are then called loxodromie points. All other elements of qM(n) 

are called elliptic. 

All parabolic and loxodromic transformations are of infinite order while elliptic ones 
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may be either of finite or infinite order. The type (parabolic, loxodromie, or elliptic) of 

M6bius transformations is invariant under conjugation in GM(n). Every parabolic trans- 

formation T E (TM(n) is conjugate to a parabolic transformation P of the form P(x) = Ax + 

h, x E R n, where A E O(n) N GM(n) and h E Rn~{0}. T is said to be strictly parabolic if A ~ I. 

3.3. A M6bius group G, is said to be discrete if no sequence of distinct elements of (7 

converges (pointwise) to I ,  or, equivalently, to any F E(TM(n). A point x E R n is called a 

limit point with respect to (7 if Tk(a)~x for some aE/~" and some infinite sequence of 

distinct elements T~ in G. Other points in R n are called ordinary paints or points of dis- 

continuity of G. The limit set, i.e., the set of all limit points will be denoted by L=L(G) 

and its complement in R ~, i.e., the ordinary set or the set of discontinuity of G, by O. 0 is 

open and L is either finite or perfect, see [17]. If  0 . ~  and aeO, then every point of L 

is in the cluster set of Ga, see [17]. (7 is said to be discontinuous if 0 ~ 0 .  Discontinuity 

implies discreteness. The converse is not true in general; however, see [17, 3.3], if (7 is 

discrete and (TD=D for some domain D c R "  with c a r d ~ D > l ,  then L c R ~ , D .  Thus 

discreteness and discontinuity are the same for M6bins groups which act on such domains 

D. We shall mostly consider the cases where D is either B ~ or H ". 

Let G be discrete MSbius group acting on a domain D c R ~ where D is either B ~ or 

H ~. We say that  two points x, y e D  or two sets A, B c / )  are G-equivalent if y=T(x), or 

B = T(A) respectively, for some T E (7. The canonical proiection of D onto the orbit space 

DIG will be denoted by ~. D/(7 is connected and its local structure is quite simple. More 

precisely, every point z E DIG has a neighborhood which is homeomorphic to Bn/F where 

F is a finite subgroup of O(n) N GM(n). In  fact, F is conjugate in (TM(n) to the stabilizer 

Gx where xE D N ~-l(z). In  particular, if n - -2  or 3 or if B ~ N Fix (7 =O,  then B~/F is always 

homeomorphic to B n and so D/G is an oriented manifold. In  general DIG is not a mani- 

fold. 

3.4. Simple /undamental polyhedra. Let G be a discrete M6bins group acting on D, 

where D is either B n or Hn; and let x 0 E D~,F ix  6/. The normal fundamental polyhedron 

centered at x 0 is defined by 

P = (xED: d(x, xo) <d(x, T(xo) ) for all TEG"~.(I}). 

P is a hyperbolic convex polyhedron, aP may have finite or infinite number of ( n - 1 ) -  

faces. Here we disregard the faces which lie on DP N ~D. Each ( n -  1)-face is contained in 

a hyperbolic { n -  1).plane 

H(T, zo) = {xED: d(z, zo) = d(x, T(zo))} (3.4.1) 
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for some T E G ~ { I } .  The faces of P are pairwise G-equivalent by transformations T1, 

T 2 ....  , E G, and G is generated by  T1, T 2 . . . . .  The union P of P with par t  of ~P is a ]unda- 

mental set for G in D. P wi th  its G-eqnivalent faces being identified is homeomorphic to 

D/G. 
The hyperbolic measure of Lebesgue measurable sets A ~ B n is defined by 

and of sets A ~ H n by 

2"dm(x) 
V(A)= fA(l_]x[2)n' 

V(A) = fA dm(X)x, ~ 

The hyperbolic measure of sets A ~  D/G, D = B  n or D = H  ~ is defined by V(PNz-I(A))  

where P ~ D  is any  normal fundamental  polyhedron for G. With this normalization 

V(D/G) = V(P). 

I f  V(D/G) < co, then every normal fundamental polyhedron P in D has finitely many  

( n -  1)-faces and P N ~D is either empty  or consists of finitely many  points, depending on 

whether D/G is compact or non-compact, see [15] and [3]. In  the latter case the points of 

P (1 ~D are called boundary vertices. 

Suppose tha t  D/G is non-compact and V(D/G)< c~. A normal fundamental  poly- 

hedron P in D will be called simple if no two boundary vertices of P are G-eqnivalent. 

Other properties of simple fundamental  polyhedra are described in the following ]emma. 

3.5. LEMMA. Let G be a discrete MSbius group acting on D, D= J~ or H n. Suppose that 

DIG is non-compact and V(D/G) < ~ .  Then 

(i) every boundary vertex o/ a normal/u~Mamental polyhedron P is a/ixed point/or a 

strictly parabolic element o/G; 

(ii) there is a set T, c D with m~(~,)=0 such that every normal ]undamental polyhedron 

centered in D ~ ,  is simple; 

(iii) i/ P is a simple/undamental polyhedron, then every parabolic fixed point o/ G is 

G-equivalent to exactly one boundary vertex o/P; 

(iv) every parabolic/ixed point is a boundary vertex o/ a simple/undamental polyhedron; 

(v) i / P  and Q are simple/undamental polyhedra with boundary vertices {Pl . . . . .  Pk} 

and {ql ..... q~}, respectively, then k =m and each Pi is G-equivalent to one q). 

Proo/. For (i) see Garland and Raghunathan [3] or Wielenberg [22]. For  a proof of 

(ii) in R a, see A. Marden [6, 4.2]. With the notion of isometric spheres this proof can be 
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extended t o  JR ~, n i> 2 as follows. Let 11 denote the set of all parabolic .fixed points of G. 

For each p EII and T E G~G~, let Z~. r denote the set of all points x 0 in D with the property 

that  p eB(T,  x0), see {3.4.1). 'Note that  if D-+-H n and p =  o% then Y~p.r=Hn N I(T),  where 

I (T)  = (x E R~: ] T'(x) l = 1} is the isometric sphere of T, otherwise Z~.r = A-~(Z~. ATA-~), 

where A is a MSbius transformation with A ( D ) = H  n and A(p)=  oo. In  any case F,~. T is 

part of an (n-1)-sphere  or an (n-1)-plane and mn(Zp.r)=0. G and H are countable and 

m~IFix T ) = 0  for all T E G ~ ( I } ,  hence 

Z=(~xG) U[U( U ~.~)] 
p~I~ TeG\G~ 

is of measure zero. Moreover, by (i) each boundary vertex of a normal fundamental poly- 

hedron is a parabolic fixed point, hence no (n-1)-face  H(T,  Xo) of a normal fundamental 

polyhedron P centered at x0E D ~ Z  passes through a boundary vertex p of P unless 

T(p) =p. This proves that  P is simple. 

(iii) The following argument is due to Leon Greenberg. Let A E G be a parabolic 

transformation with a fixed point pE~D. Since P has finitely many faces, there exists 

5 > 0  such that  Fix T c ~ P  whenever xEP and TE G are such that  T is parabolic and 

d(x, T(x))<5. Indeed, we can first find 51>0 such that  d(x, T(x))<51, xEP, TEG, implies 

that  either T fixes a boundary vertex of P or else T maps one (n - 1)-fac e of P onto another 

face of P. If such a transformation T is parabolic and does not fix a boundary vertex of P, 

then 5T=infx~ p d(x, T(x)) >0. Finally 5 can be chosen to be the smallest of these finitely 

many 5's. Now choose a point x E D and g EG such that  d(x, A(x))<5 and g(x)EP. Then 

go A og -1 is parabolic and d(g(x), go A og-lg(x) ) < 5, hence g(p) = Fix (yo A og -1) is a bound- 

ary vertex of P. Finally, note that  P is simple and so p cannot be G-equivalent t o  any 

other boundary vertex of P. 

(iv) Let p E ~D be a parabolic fixed point for G. By (ii) G has at least one simple funda- 

mental polyhedron, say P, and by (iii) g(p) EP for some g E G, thus g-l(p) is a simple funda- 

mental polyhedron with a boundary vertex at p. 

(v) By (i) Pl .... , Pk and ql ..... q~ are parabolic; hence, by (iii) each Pt is G-equivalent 

to some qj and vice versa. Since P and Q are simple, no two boundary vertices of P (resp. 

Q) are G-equivalent, and so (v) follows. 

3.6. The action o /a  MSbius group near a parabolic point. Let G be a discrete MSbius 

group acting on H ~ with V(H~/G) < oo and suppose that  oo is fixed for a parabolic element 

of G. By Lemma 3.5 {iv), G has a simple fundamental polyhedron P with a vertex at oo, 

and since V(H~/G) < ~ ,  P has finitely many faces. Consequently, P has no vertices in the 

half space H(ho) for some h 0 > 0. The stabilizer G~ is a discrete group of euclidean isometries 
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mapping each plane OH(h) onto itself in the same manner. P N OH(h) is a compact ( n -  1)- 

dimensional euclidean polyhedron of finite diameter which m a y  serve as a fundamental  

polyhedron for the action of G~o on H(h). I t  thus follows tha t  for points a E~H(h), h >~ho, 

lira card {Ga N all(h) N J~(a, r)} = ~ (3.6.1) 

and tha t  for every rE(0, c~) there exists an integer k, depending on r and on the poly- 

hedron P, such tha t  each ball of radius r in H(ho) can be covered by  k G~o-images of _P. 

Note, also, tha t  T(H(ho) ) N H(ho) =~D for T EG'\. G~. 

3.7. L~-MMA. Let G be a discrete MSbius group actinq on D, D=J5 ~ or H n with 

V(D/G) < o% p a simple /undamental polyhedron, and b a point in DD. Then /or every 

neighborhood lz o] b there is g E G such that g(P)~ V. 

Proo/. I f  DIG is compact, then P has a finite euclidean diameter; and since the G- 

images of P cluster a t  b, the result follows. 

I f  D/G is non-compact, then P has a boundary vertex p which is fixed under a para- 

bolic transformation A EG. Since every point bE~D is a limit point with respect to G and 

since G~:G, it follows, see [17, 3.7], tha t  the G-images of p cluster a t  every point of 0D, 

and in view of 3.6 it is clear tha t  goAk(P)c V for some gEG and some integer k. 

3.8. The cusp compacti/ication o/ DIG. Let  G be a discrete MSbius group acting on 

D, D = B ~ or H n with V(D/G) < c~. M = DIG is either compact or has a natural  eompactifica- 

tion M, called the cusp compacti/ication and defined as follows. Choose a simple fundamen- 

tal polyhedron P. Let  Q = {Pl . . . .  , p~} denote the set of all boundary vertices of P. Then 

~ r = M  U Q, where bases for open neighborhoods at the points pEQ are given by  the fa- 

milies {Te(U(m, p)): m =  1, 2, ...}, where U(m, p)={xEP: ]x--p] < l / m }  for p E Q ~ { ~ }  and 

U(m,p)={xEP: Ixl >m} i f p E Q N  ( ~ } .  

Let  H denote the set of all parabolic fixed points of G. Then, by Lemma 3.5, M = 

(D U II)[G holds as a set equivalence, and by the same lemma the space M is independent 

of the choice of P. 

In  general ill or even M are not manifolds. The topological nature of l ) / i s  described 

in the following lemma. 

3.9. L•MMA. J~l iS a space o] a compact oriented pseudomani]old without boundary, see 

3.8 and 2.4. 

Proo/. We may  assume tha t  D = B n and, by  using auxiliary M6bius transformations, 

tha t  G has a simple fundamental  polyhedron P centered a t  0. Then P = B ~ [ . ) ~ = I  Bt 
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where each B~ is a ball orthogonal to ~.~a-1. I f  B~, Bj, i ~:j, are two such balls, then OB~ fl OB~ 

is contained in a ( n -  1)-plane through 0. Thus we can triangulate the faces of P by  using 

a finite number  of planes through 0 so tha t  G-equivalent faces of P have G-equivalent 

triangulation. Now, this triangulation and 0 as a common vertex define a triangulation 

of P so tha t  each n-cell has n (n-1) - faces  lying on planes through 0 and one (n -1 ) - face  

on some ~B~. This triangulation clearly defines a triangulation of Af. Now 2.4 (i) and (ii) 

are automatically satisfied and 2.4 (iii) holds since the elements of G are sense-preserving. 

4. Automorphic mappings: Examples and general properties 

4.1. A continuous, open, discrete, and sense-preserving mapp ing / :  D - ~ R  n is said to 

be automorphic for a MSbins group G i f / o  A = / f o r  all A E G. I t  is not hard to see tha t  if 

/: D - ~ R  n is automorphic for G, then G is discontinuous, G D = D  and D is a subset of an 

invariant connected component Z of the ordinary set O. Consequently G is a function 

group. Furthermore, since G a clusters at  all points of L, whenever aEO, see [17], it follows 

tha t  L c ~ D  and tha t  each point of L is an essential singularity of ], i.e., there exists no 

limit of/(x)  as x E D tends to b EL. 

The simplest non-trivial automorphic mappings are the periodic mappings. These 

mappings are invariant  under discrete groups of similarities in R" with a unique limit 

point a t  ~ .  See [11] for more details. 

We first present two examples of qr automorphic mapp ings / :  Ha-~R 3 for groups G 

acting on H 3. In  the first example ( /has  exactly two limit points and Br=  ~ .  In  the second 

example every point on aHs is a limit point for G and thus ~H 3 is the natural  boundary 

o f / .  

4.2. Example. Let G be the cyclic MSbius group generated by  the stretching x ~ 2 x ,  

x e R 3. G(H a) = H 3 and P = {x e Ha: 1 < Ix] < 2} is a fundamental  domain for the restric- 

t ion of G to H 3. Denote S~={x=Ha: Ixl =2~}, k = 0 ,  +_1, + 2  . . . . .  P is homeomorphic to 

~a, and there is a continuous m a p p i n g / : P - ~ R  3 such tha t  l IP  is qc, / (P)  is a closed solid 

terns and/ (x)  = / (2x)e~H a for xE S  o. In  particular/(So) = / ( S 1 ) ~ H  a. Now extend / to the 

G images of P by means of inversions in S~ and reflections in/(Sk) c OH a. The extensions 

are denoted again by /. Note tha t  a reflection in Sk maps Sk-1 onto Sk+l-We thus end 

with a qr mapping /: Ha->R a, which is automorphic for G. Note tha t  / (H a) is bounded, 

AT(/, H a ) = ~ ,  / has exactly two essential singularities 0 and oo and B I = ~ ,  i.e., / is a 

local homeomorphism. 

4.3. Example. Let 1)1 be the semi-infinite prism in H a which is bounded by  the planes 

~H a, zr~ -~- {x e R~: x, = 0), i = 1, 2, and :r a = {x e Ra: xl + x~ -- 1 }; P~ be the prism in H a bounded 
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by ~H 3, ~ri, zr z and  the plane ~z4={xER3: x t - x z = l  }. Denote D ~ = P ~ B  s, i = 1 ,  2, D= 

int  (/)t  U/)2), D = / ) t  tJ/)2. The vertices (1, 0, 0), (0, l ,  0), co and (0, 0, 1) of D 1 are de- 

noted by Pt, i = 1 . . . . .  4, respectively. 

Let G, be the  M5bius g r o u p  which is generated by  the following transformations:  

T l = r o t a t i o n  .of 90 ~ about  the line l l=glN~a=(xERa:xl=O,  xz=l} ,  T 2 = r o t a t i o n  of 

180~ about  the circle 12 = ~B a A 7r 1 = (x e R3: I x I = 1, x t ~ 0} (T~ can be obtained by  com- 

posing an inversion in aB  s and a reflection in gl), T a = r ~ 1 7 6  iof 180~ about  the line 

/3 =7rl N T r 2 = ( x E R 3 : x l = x 2 = 0  }. T1, T2, T a are elliptic of orders 4, 2, and 2 with the fixed 

sets l~, 12, and Is, respectively. 

The faces of D are pairwise congruent  by  Tk, k = 1, 2, 3 (we consider ~B a N ~D t and 

z~ fl Dr, i = 1, 2 as two pairs of distinct faces of D). Each  Tk maps H a ont  O itseff. T h  e angle 

between any  two adjacent  faces of D is either 180 ~ 90 ~ or 45 ~ Moreover,  the three edges 

of D 1 which meet  a t  p4=(0 ,  0, 1) are mutua l ly  orthogonal  at  p~. I t  thus follows tha t  G 

is a discrete group acting on H a, D is a fundamenta l  domain for G, V(Ha/G) = V(D) < co, 

and L = a H  a. 

We now construct  a qr m a p p i n g / :  H a-~ R a which is automorphic  with respect to G. 

Not ing  tha t  the neighborhoods of Pt, i = 1, 2, rel. D 1 are conformally equivalent  to  a neigh- 

borhood of P3 = ~ rel. D1, it is not  hard to apply  [4, see 8] to conclude tha t  there is a con- 

t inuous and injective m a p p i n g / : / ) I - ~ R a  such t h a t / ]  D 1 is qc, [ODt=~H a and [ ( ~ ) =  ~ .  

D e n o t e / ( p ~ ) = a t  i = 1 ,  ..., 4. Now extend / to  / )  by  means of reflections in ~r2 and ~H a, 

respectively, and then continue and extend / infinitely m a n y  times by  means of all pos- 

sible reflections and inversions with respect to ~H a and to the faces of TD1, T E G, respec- 

tively. We end with a qm mapping,  denoted again by [, which is well defined everywhere in 

H a, [HS=l~a~{al, az, aa}=RS~(at ,  a2}. / is automorphic  with respect to G, and  since 

L = ~H a, it follows tha t  every point  in ~H s is an essential singularity o f / ;  and so ~H ~ is the 

natural  boundary  of /. B f =  [.Jr~[.J~_l T(st) where s t, i=1 ..... 6, are the edges of D I. 

/ B  I is ra ther  simple. I t  consists of a topological triangle with vbrtices at  the points a 1, a2, 

and a a and three curves which extend from at, i = 1, 2, 3, to  ~ .  

I n  some respect, / is analogous to  the elliptic modular  function in R 2. 

4.4. Remark. The last two examples prove tha t  the class of qm automorphic  mappings 

in R ~, is not  empty .  I n  a for thcoming paper we shall prove tha t  e v e r y  discrete M6bius group 

which acts on D, D = B ~ or H", with V(D/G)< co, n >/2, has qm automorphic  mappings. 

We do not  know whether  every discrete MSbins group acting on B n has a qm automorphie  

mapping.  

4.5. Let  G b e  a discrete MSbius group acting on D, D - - B  n or H ~, w i t h  V(D/G)< ~ ,  
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p c  D a simple fundamental  polyhedron and suppose tha t  P N ~D :~D. Let  Q = (Pl, ...~ P ~  

be the set of all boundary vertices of P. Finally, let f: D-~_~ n be an automorphic mapping 

with respect to G. 

We say tha t  f has the limits a 1 ..... ak in P if lira ](x) =a~ as x-+p~ in P, i =1,  ...,/c. The 

existence of the limits a~, i~- I  ..... /c in P implies tha t  the induced mapping ~: M-~PJ ,  

M=D/G,  which satisfies f=loz~, has a continuous extension l: 3I -*R~ with / (p , )=a , ,  

i = 1  .. . . .  k. 

Since x is continuous, G is discontinuous in D, and [ is open and discrete, it follows tha t  

] is open and discrete, and thus Theoreni 2.10 yields tha t  [ is open and discrete and tha t  

N(])  = ~v(t) = N(f,  P)  < ~ .  (4.5.1) 

Furthermore, we may  use 2,6 to define ~he local topological index i(x, ~) of ] at  points 
X E / ~ .  

I t  is not hard to see tha t  

i(x,  f) = 1V(x, a ) / ( ~ 0 ~ ) ( x ) ,  1) (4.5.2) 

for x E B  n, where N(x, G) =card  Gx and i: M ~ M .  Moreover by  Corollary 2.9 and (4.5.1) 

it follows tha t  
Z i(x, ~) = N(], P) < co (4.5.3) 

for all y E R ~. 

5. Modulus and capacity inequalities in Bn/G 

In  this chapter we prove several modulus inequalities in M = DIG where D is either 

B~or  H 7~ and G is a discrete MSbius group acting in D with V(D]G) < co. These inequalities 

will be used in chapter 6. 

5.1. Modulus o] path ]amilies in Bn/G. Let G be a discrete MSbius group acting on B n 

with V(Bn/G) < oo. Let  F be a path  family in M = Bn/G, i.e., each ~ E F is a. non-constant 

continuous mapping y: A-+M where A ~  R 1 is an interval. The modulus,Me(I ' )  of I '  is 

defined by  

= inf | (5.1:1) Ma(F) pndm. 
QeFo(F) JP 

where P is a simple fundamental  polyhedron for G, 'see 3.4, and Ya(F) is the set of all  non- 

negative Borel-functions Q: B~-*R 1 such tha t  

@(x) =@(T(x)) I T'(x)[ (5.1.2) 
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for all T E G and 

fy .  ~ds >~ 1 (5.1.3) 

where y*: A-~B ~ is any locally rectifiable (maximal) lift of y under the canonical projec- 

tion re: Bn-~Bn/G, i.e., reoy*=y. For more details on the line integral (5.1.3) see [19, sec. 

4]. Note tha t  Ma(F) is independent of the choice of the fundamental  polyhedron P. In  fact 

D ~'dm = fl" o"dm (5.1.4) 

where D is any  measurable fundamental  set for G. To show this let G = { T  1, T 2 .... }, Dt= 

DO Tt(P), and Pt=T~I(D~), i = l ,  2 . . . . .  Now Dtfl D j = O  for i~:~ and D =  U Dr since P 

is a fundamental  set. The same reason yields Pt  ~ Pj  = ~ for i 4~" and P = U P v  Now (5.1.2) 

implies 

o' m. 

Note also tha t  if (5.1.3) holds for some lift y* then it holds for all lifts. Indeed, if y~: A - ~ B  n 

is another lift of y, then the subares y*(A) n T,(P), T, EG, are in one to one correspondence 

with the subarcs y~(A)N Tj(P), TtEG. Since corresponding subarcs are G-equivalent, the 

result follows from (5.1.2) and the transformation formula for line integrals, see [19, sec. 

4]. Observe tha t  in general re: Bn~B~/G need not be a covering mapping, hence there 

may  not exist TEG with Toy~ =y*. 

The same definitions hold when B n is replaced by  H n. 

5.2. A path  Y: A-~M is said to be rectifiable or absolutely continuous, if it has a lift 

y*: A-~B n which is rectifiable or absolutely continuous, respectively. Clearly these pro- 

perties do not depend on the choice of the lift. In  the same way a set A c M is called meas- 

urable, a set of measure zero, or a Borel set if re-l(A) has a corresponding proper ty  in B ~ 

with respect to the Lebesgue measure and the usual topology of B n. Recall tha t  J~/denotes 

the cusp compactification of M and i: M-~3~/the natural  inclusion. 

5.3. L~.MMA. Let F be a ]amily o / /~ ths  y: [a, b)-~ M such that either Y is nonrecti/iable 

or ioy(t) tends to a limit in ~ ' , ~ i M  as t ~ b .  Then Ma(F) =0.  
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Proo/. Let r '  be the family of all the paths in F which satisfy the second condition 

stated in the lemma. Then M~(F)=M~(F ' ) ,  for if ~eF\F', then the function ~(y)= 
e I T'(y)[,  T(y)EP, TEG, belongs to F ~ ( F ~ F ' ) .  Hence 

which shows M a ( F ~ F ' ) = 0 .  To prove tha t  M~(F ' )=0 ,  let the boundary vertices of a 

simple fundamental  polyhedron P be {p~ ..... Pk} ~ ~B~. Pick A i E GM(n) such tha t  A ~(B n) = 

H ~ and A~(p~) = ~ .  Let h 0 >0  be so large that  for all i, H(ho) meets only those faces of Ai(P) 
which terminate at ~ ,  see 3.6. Clearly, it is enough to show tha t  for large h, M(Fn)=0  

where Fh = {y E F':  A~(7*(a)) E CH(h) for some i). Fix h >~ h 0 so large tha t  the sets/5 fl A~I(H(h)) 
are disjoint. Let e >0. Denote P,=P n A:(I(H(h)~H(h+ I/e)). Define ~:  P~R ~ as e~(x) = 

elAn(x)], xEP~, and ~ (x )=0 ,  xEP~UP,. Extend Q~ to ~*: B~-~R ~ by setting ~*(y)= 

O~(x)lT'(y)l where TEG is such tha t  T(y)=x, xEP. Now * ~, e Fa(Fn), since if ~* is any 

rectifiable lift of Y EFn terminating at  p~, then 

fv.Q*ds= fA(lor,~*ds= fr, P*~(A?1(x))[A?1'(x)l ldxl>~ 8~+ll~ldxl= l 

where A~oT* =7".  On the other hand 

i |~1 i ~ l  

where, by 3.6, C is independent of e. The lemma follows. 

5.4. Capacity o/condensers in B~/G or in Bn/G. Let G and M=JBn/G be as in 5.1. A 

pair E = (A, C) is called a condenser in M if A is open in M and C is a non.empty  compact 

subset of A. The capacity capaE of E is defined as follows: I f  C=M we let c a p a E = 0 ,  

otherwise cap~E = Mc(Fe) where Fe is the family of all paths ?: [a,b)-~A in M such tha t  

y(a) E~C and io?(t)~i(A) as t-~b. Here i is the natural  inclusion of M into its cusp com- 

pactification ill. 

A pair E=(A, C) is called a condenser in ~ / i f  A is open in ~r  and C 4 ~  is compact 

in A. Furthermore, for the sake of simplicity we shall always assume tha t  ~C is compact in 

i(M). Such a compact set C will be called admissible. The capacity of E is defined by  

eapa E = capa(i-lA, i-l~C). 
In  the same way we define condensers and their capacities in Hn]G and in Hn'/G if 

G acts on H n. 

1 6 - 7 5 2 9 0 6  Acta mathematica 135. I m p r i m ~  le 15 M a r s  1976 
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5.5. Some special condensers in Bn/G or in Bn~/G. Lemma 5.3 implies that  capa(M, C) = 

0 = capa(2~, C) for all admissible compact sets C in M or in M, respectively. The same lemma 

also implies tha t  capo(A , C)=cap~(i-lA, i-lC) for any condenser (A, C) in M such that  

i-lC is compact in i-~A. 

5.6. Suppose now that  G acts on H n, that  P is a simple fundamental polyhedron with 

a boundary vertex at 0% and that  E=(A,  C) is a condenser in M=H~'/G. Note that  oo 

is a point in M as well as in f~ .  

LEMMA. There exists h0>0 such that if 

(i) C and ~A are connected, 

(ii) ~ eC and OH(ho)~ (iog)-'CA, 

(iii) (io~)-lC and (ioz)-XCA both meet OH(h)/or some h >~ho, 

then eapo E >~ ~ /or 8orne ~ > 0 which is independent o/h. 

Proo/. Let h' >0 be such that  H(h') only meets those faces of ~P which terminate at  

r and let d=diam (PN~H(h'))=diam (P~OH(hl)), hl>~h', see 3.6. Define ho=h'+2d 

and let h ~> ho- 

Fix x o EOH(h) n P. By 3.6 there exists an integer k depending only on G such that  

k 

Bn(x0, 2d) ~ int ~. Tt(i 5) = S, 

where T~EG and T~(~)=oo. 

Let E'=(i-IA,  i-l~C) and let P=FB..  Fix q e_Fa(F). Then by (5.1.2) 

The proof will now be completed if we find a lower bound for Ss~ndm. 

Let d < r < 2 d .  Then (i)-(iii) imply that  S~-l(x0, r) meets both (io~)-l~C and ( ioz)- lA.  

Hence [19, sec. 10] yields 

f s , -  ~ (z~ ~n ds >~ dr/r' 

where d r > 0 depends only on n. Integrating from d to 2d gives 

f sOndm >1 dr 2. log 

Since Q E Fa(F ) was arbitrary, this gives the required estimate. 
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5.7. Capacity o/condensers in R ". A pair E = (A, C) is called a condenser in R" if A 

is open in _~" and C is a non-empty compact subset of A, ef. [8, 5.2], [9, 2.7]. We define the 

capacity cap E of E as follows: If A =C we let cap E =0, otherwise, we let cap E =M{FE) 

where r e  is the family of all paths which join C and aA in A, i.e., paths 7: [a, b)--*A such 

that  ?(a)6C and ? ( t ) ~ A  as t-~b. Here M(FE) denotes the usual modulus of FE, see [19]. 

This definition is equivalent to the potential theoretic definition in [8, 5.4]. 

5.8. Condensers and automorphic mappings. Let G and M = Bn/G be as in 5.2. Suppose 

that  ]: Bn-+R n is a qm automorphic mapping with respect to G. The induced mapping 

[: M-~R n is then continuous and open, thus, if E =(A, C) is a condenser in M, then [ E =  

(~A, [C) is a condenser in _R~. If, in addition, [ has a continuous extension ]: M - ~ R  ~, then 

by 2.10 f is open. I t  thus follows that  for any condenser E = ( A ,  C) in l~/, ]E=(]A,  ]C) is 

a condenser in R ~. 

A condenser E = (A, C) in M (resp. in 2~/) is called normal if A is a normal domain of 

(resp. ~). In this case [ (resp. [) defines a closed mapping A-~[A (resp. A-~[A). 

Let E = (A, C) be a condenser in M. The minimal multiplicity of [ on C is defined by 

M(], C) = inf 7 i(x, ]) (5.S.1) 

see [7, 3.5]. Clearly M(/, C)< co and M(~, 6)<N(~, A). If ] has a continuous extension ] 

to M, then M(], C) is defined for condensers E = (A, C) in 2~ in the same way. Observe 

that  in this case N(], A) is always finite. 

5.9. TH~ORV.M. Suppose that ]: B~-~R ~ is a qm automorphic mapping/or a discrete 

group G acting on B n with V(M) < ~ ,  M = Bn/G. Then 

capa E ~ Ko(/)N(T, A) cap [E (5.9.1) 

/or all normal condensers E = (A, C) in M, and 

cap]E-< KI(/) ~, "~ M(---(], C) capa~ (5.9.2) 

/or all condensers E = (A, C) in M. Furthermore, i / ~  has a continuous extension f to ~I, 

then (5.9.1) and (5.9.2) hold with ~ and M being replaced by ~ and J~, respectively. 

Proo/. Since the details of the proof are similar to those in [8, 6.4], [7], and [20, 3.17], 

we shall only give an outline. 

For (5.9.1) suppose that  E = (A, C) is a normal condenser in M. If A = C there is noth- 

ing to prove. Suppose A ~ C  and let ~'6F(FT~). Define ~: B"-~/~ 1 by setting @(x)= 
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e'(/(x))L(x,/) for x Ez-~(A) and ~o(x) = 0 otherwise. Here L(x,/) = lima_w ]/(x + h) - ](x) l/I hi. 
Let F 0 be the family of all paths 7 E FE such that the corresponding lift 7'* in B n is rectifi- 

able and / is absolutely continuous on ~*. By Fuglede's theorem [2], see also [19], Mo(F0) = 

Mc(FE). The change of variables in a line integral shows that  

~y, ~ds >~ fTo ~'d~. (5.9.3) 

A is a normal domain of T, hence ]o~,EFf~ and thus the right-hand side of (5.9.3) is ~>1. 

On the other hand 

p(x) = e'(/(x))L(x, /) = e'(/(T(x)))L(x, /o T) = ~'(/(T(x)))L(T(x), /)l T'(x) I = ~(T(x)) ] T'(x) l 

for all xE~'-I(A) and TEG. Since the last formula holds trivially for xEB'~zt-~(A), it 

follows that  ~ E F~(F0). This gives 

capaE=Ma(F)=Ma(Fo)<~f~ndm=fl, n,r,(~)Q'(/(x))=L(x,/)dm(x) 

<~ K~ f l, ~ ~,-~(,4) ~' (/(x) )=J (x, ]) dm(x) 

<. K.(/) f z . e' (y)'N (y, ], A ) dm(y) <~ Ko(/) N (], A )fan ~'dm" 

Since this holds for every #' e F(Ff~), (5.9.1) is proved. Clearly the same proof applies when 

[ and M are replaced by [ and M. 

:For (5.9.2) set m =M(T, C) and let y': [a, b)---,-]A be a path in FTE. Then C/3/-1(7/(a)) 

consists of finitely many points x I ..... xk with ~ = i  i(xj, D ~>m. A result by Riekman [14] 

on path lifting, see also [20, 3.12], imphes the existence of paths 7j: [a, bj)~A in F~ with 

To~,scT,' and such that  card {]: yj(t) =x} < 1 whenever xeM\..B7 and te  (Ji[a, bj). 

Let  Q E Fg(F~). Denote by E the set of all points x E B ~ where / is differentiable and 

J(x, 1)>0. Then E is a Borel set, m(B"~E)=0, and Bfc Bn~E by [8, 2.26 and 8.2]. 

Define ~': R=-+/~ 1 by 

ra/' sup Y~ e(x)/l(/'(x)), r 
B x t : B  

e ' ( y )  = , r ~=/- ' (y)r  Z, 

, /-'(y)- r 
(5.9.4) 
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where B runs through all subsets of P f3 l-l(y) such that  card B<m. One can follow the 

proof in [20, p. 6] to conclude that  ~' is a Borel function. 

Let  F 0 be the family of all paths fl in/~'~ such that  either fl is non-rectifiable or there is 

a path u in B ~ such that  ]o ~ c  fl and I is not absolutely precontinuous on ~ in the termino- 

logy of [20, p. 4]. Then M(P0)=0 and so for F' = F T ~ P 0 ,  M(F')=M(FTE ), Hence it suf- 

fices to show 

M(F') ~< K~{I) Ma(P~). (5.9.5) 

Arguing as in [20, pp. 6-7] it is not hard to see that  

f r ~ ds 1 

for eYery y EF', and consequently ~'E F(I~'). This in turn implies 

M(F') ~< fn '~ , q rim, (5.9.6) 

and the estimate 

fR q'~dm<<.m-lKM) f Qndm (5.9.7) 

follows from (5.9.4), Hhlder's inequality, a transformation formula for Lebesgue integrals, 

and from the facts that  m(P~E) = 0 a n d / ] ( P ~ E )  is locally quasiconformal, see [20, p. 8]. 

Now (5.9.6) and (5.9.7) imply the required inequality (5.9.5). The same proof applies to 
condensers in ~/. 

5.10 .  COROLLARY.  I f  E is a condenser in M, then 

cap TE ~< KI(/) cape E. (5.10.1) 

Here M and T may be replaced by ~I and f, respectively. 

5.11. Remarks. 
(a) I t  is possible to prove more general modulus inequalities than {5.9.1) and (5.9.2). 

For instance, using the arguments of 5.9 one can show that  

Mo(F) ~< go(f)N([, A)M(/F),  

where F is any path family in a Borel set A ~ M ,  see [8, sec. 3]. H e r e / F = { / o y :   er}. 
However, we shall only need the special inequalities (5.9.1) and (5.9.2). 

(b) Theorem 5.9 and Corollary 5.10 are true as well if G acts on H n. 
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6. Automorphic mappings: Value distribution, boundary behavior 
and the branch set 

I n  this chapter  we s tudy  several aspects of qm automorphic  mappings in the hyper-  

bolic space D, D = B a or H a. We star t  with theorems about  the radial and angular  limits 

of such mappings. We then s tudy  the value distr ibution of qm automorphic  mappings.  

Next,  we consider the branch set B I of an  automorphic  qm mappings  ]. I t  turns  out  tha t  

in this point  there are differences between n = 2 and n ~> 3. Finally, we describe the growth 

of qm automorphic  mappings near parabolic points. Our main  tools are the theorems on 

open discrete mappings of chapter  2 and  the capaci ty  inequalities t ha t  we derived in 

chapter  5. 

6.1. Radial and angular limits. Let  ]: D ~  R a be a qm automorphic  mapping  for a di- 

screte M6bius group G acting on D, D = B" or H a, with V(D[G) < co. Let  p c  D be a simple 

fundamenta l  polyhedron with respect to G, see 3.4, and let Q = P  N 0D denote the set of 

all boundary  vertices of P ,  possibly Q = ~ .  Recall, see 4.5, t ha t  ] is said to have a limit at  

TEQ in /5  if lim ](x) exists as x-~p in/5.  Due to the nature  of G, the s tructure of Pncarp ,  

and the invariance of / under  G it follows tha t  if / has a limit a t  p EQ in P then / has an  

angular limit at  p in D. I f  in addit ion D = B n then / has a radial limit at  p.  

One of the main results in the next  four sections is Theorem 6.5 which says tha t  ] 

has limit at  all boundary  vertices of P in P if and only if N(/,/5) < ~ .  

6.2. THEOREM. Let G, P, Q, and / be as in 6.1. I /  p E Q = ~  and N(],/bf) U)< c~ /or 

some neighborhood U o/p,  then ] has a limit at p in/5. 

Proo/. We m a y  assume tha t  D = H a and p = ~ .  Let  U be a neighborhood of ~ with 

N(/, 15 N U) = N < oo. Choose y e R n such tha t  N(y , / ,  D N U) = N and  let /-l(y) N/5 fl U = 

{yl .. . . .  yN). Choose disjoint normal  neighborhoods U~ of y*, i = 1 . . . . .  N,  see 2.1. Let  U'  = 

N U~ and V =  N/U~. Then V ~  C[((U N/5)~G(U')). Pick h > 0  so large tha t  H(h)~ R a ~ U  ' 

and H(h) does not  contain a ny  vertices of P .  Denote R = {x q R": ] xyl < 1, ] = 1 . . . .  , n}. 

Let  x ~, i = 1 ,  2 . . . .  , be a sequence of points  in P such tha t  x * - ~  as i - ~ .  We m a y  

>i+h,  otherwise choose a subsequence. For  each integer i let ]~: R - ~ R  a assume tha t  xa 

be the mapping  defined b y / ~ ( x ) = ] ( i x + x t ) ,  xER.  Then K(/O<K(/)  and  each/~ maps  R 

into R n ~ V ;  hence {/,) is a normal  family, see [9, 3.17]. 

Let  {/~k} be a subsequence of {/,} which converges uniformly on compact  subsets of 

R. B y  [13] the limit func t ion/0  is qm. Let  

1 ,1<�89 i = 1 ,  2 ..... n - l } .  
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Then, by  (3.6.1), limk-~o N(/l~, R') = ~ ,  and since R'  is compact in R, ~0 cannot be discrete 

[12, p. 131], see also [11, 8.3]. Hence f0 is a constant, say ~. We may  assume ~ o o .  We 

shall show tha t  lim ](x) = ~ as x-~ o~ in P. 

Let  s > 0  and let P ' :  R ~ R ~ - I = a H  ~ denote the projection x~-~x-xne ~. By 3.6 the 

euclidean diameter d o of P'(P) is finite, therefore there exists an integer k 0 such tha t  

diam ( ikR')>2d o and ]~k(R')c B~(~, s) for all k>~/c 0. Fix x t such tha t  x~>ik ,+h  and then 

pick k > k 0 so tha t  ik + h > x~. Define 

z~ = {zeP: i~. <x~-h <i~}. 

Then ](~Sk)cflk(R')Uf~k,(R')c Bn(~, e); and since f is open and omits V, ](Sg)~B~(~, e). 

Since x t e Sk, this implies lim~_~o/(x l) = a. 

6.3. For the sake of simplicity we state the following theorem only for mappings in 

BL The corresponding result in H n follows at  once. 

THEOREM. Let ]: B n ~ R "  be a qm automorphic mapping with respect to a discrete MS- 

bins group G acting on B n with V(B~/G)< oo. I f  Bn[G is non.campact and i/~V([, F ) <  oo 

/or some fundamental set .F c B ~ with respect to G, then 

(i) the set of all parabolic fixed points o /G is dense in ~B n, and 

(ii) f has a radial limit at every parabolic fixed point of G. 

Proo]. For {i) see the proof of Lemma 3.7. For (ii), let pEOB ~ be a parabolic point. 

By  3.5 (iv), G has a simple fundamental  polyhedron P with a boundary vertex at  p. Hence 

N([, R ~ f~ P) =iY([, P) =N([, F) < ~o and thus (ii) follows by  6.2. 

6.4. Remark. Let  [: B ~ R  n a qm automorphic mapping for a discrete M6bins group 

acting on BL I f  B~/G is compact then ] has no radial limit at  any  point of ~B n. 

6.5, THEOREM. Let ]: D ~ . R  '~ be a qm automorphic matrping with respect to a discrete 

Mhbius group G acting on D with V(D[G) < oo, where D = B  n or H'*; and let P be a simple 

[undamental polyhedron with non-empty set of boundary vertices Q = P  fi ~ D. 

Then [ has a limit at each p EQ in P if and only i /N([ ,  P) < oo; or equivalently: the in- 

duced map ]: M-~ R ~ has a continuous extension ]: M-~ R '~ q and only q N(])=N([, P ) <  oo. 

Here ~I is the cusp compacti[ication of M = D/G, see 3.8 and 4.5. 

Proof. I f  [ has a limit at  each point of Q, then [ has a continuous extension [ on 

and by 2.10, N(/, P)=iY(D =N([)<o0. Conversely, if At(/, P ) = h r ( f ) <  ~o, then, by  6.2, [ 

has a limit at  each point pEQ in P and thus [ has a continuous extension f on ill. 
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6.6. Value distribution o / q m  automorphic mappings. In  the next  five sections we ex- 

tend the results of [9, 4.4 and 4.6] and [11, 8.2] to qm automorphic  mappings. 

6.7. A compact  set C in R = is said to be of zero capacity if either C = Q or else if 

cap (A, C ) = 0  whenever A c R  = is open and C ~ A ,  see [9, 2,12]. In  this case we write 

cap C = 0. 

6.8. THEOREM. Let /: D ~ R  ~ be a qm automorphic mapping /or a discrete Mhbius 

group G acting on D, D = B  n or H ~, with V(D/G)< ~ .  Then cap C/(U N D)=0,  whenever 

U c R n is open and U N SD # O .  

Proo/. We m a y  assume tha t  D = B ~. Let  p c  B ~ be a simple fundamenta l  polyhedron 

for G. Since g(_P)c U for some gEG, see 3.7, and t iP )=] (B~) ,  it suffices to show tha t  

cap C/B ~ =0.  Le t  C be a non-degenerate cont inuum in P .  Consider the condenser E = 

(B~/G, z(C)) in M=B~/G,  and I E = ( ] B  ~, ]C) in R ~. Then (5.10.1) and 5.5 imply  

cap (O/C, C]B ~) = cap (/B y,/C) = cap ]E <- KI(/) capaE = 0; 

and since [C is a non-degenerate cont inuum in R =, it follows by  [9, 3.11] tha t  cap C/U =0.  

6.9. COROLLA~r .  Let [: D-+P~" be a qm automorphic mapping/or  a discrete Mabius 

group G acting on D with V(D/G) < ~ ,  where D = B  ~ or H n. Then cap C/D = 0  and in parti- 

cu lar /D = R ~. 

6.10. T ~ O R E M .  Let /: D-+R ~ be a qm automorphic mapping /or a discrete Mabius 

group G acting on D, D = B ~ or H n, with V(D/G) < oo. 

I / N = N ( f ,  .F) < c~ [or some/undamental set F c  D, then card ( R n ~ / D )  < c~ and 

i(x, h _ N (6.12.1) 
~ - ~ )  ~ ~ iV(x, G) 

/or all points y in R ~ with the possible exception o/ a /inite set o/ points. Here N(x, G)= 

card G~ and i(x, /) denotes the local topological index o/ / at x, see 2:6. 

Proo/. I f  D / G = M  is compact  then / D = f M = R  ~. I f  M is non-compact  then N <  

implies, by  6.5, t ha t  T has a continuous extension [ on M, see 4.5. By  2.10, f is open and so 

f~r  = / ~  and consequently /D = f M ~  [~' .~[Q = P ~ , ] Q .  Thus card ( - ~ / D )  ~< card fQ <~ 

card Q. The rest of the theorem follows from (4.5.2} and (4,5.3). 

6.11. Remark. The assumption V(D/G)< ~ in 6.8-6.10 is essential as shown by 

example 4.2. 
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6.12. The branch set o] qm automorphic mappings. One of the main differences between- 

plane and space qm mappings is the branch set, cf. [10]. This difference also occurs in auto- 

morphic mappings and is described in this section. 

THEOREM. Let ]: D--->R n be a qm automorphic mapping/or a discrete M6bius group G 

acting on D, D = B n or H ~, with V(D/G) < ~ .  

Then BI=~O and ~D~ B r whenever at least one o/the/ollowing conditions holds: 

(i) n>~2 and D/G is compact. 

(ii) n>~3 a n d / ( D ) c  R ~. 

(iii) n ~3  and N(/, F) < ~ / o r  some/undamental set F ~  D with respect to G. 

Proo/. (i) If  B f = O ,  then / defines a covering map D-+/~ ~ and since R n is simply con- 

nected it follows tha t  / is a homeomorphism. But D is not homeomorphic to R ~. Hence 

Br~:O, and 3.7 implies that  ~ D c / i s '  

(ii) Note that  in this case D/G is non-compact since otherwise/D-~T(D/G ) =p~n con- 

t rary  to the assumption / D c  R n. Let P be a simple fundamental  polyhedron. We may  

assume tha t  D = H ~ and that  P has a boundary vertex at  ~ .  Then G~o has a strictly para- 

bolic transformation say A ( x ) = x + h  where h:~0 and normal to en. I f  B / = O  and n>~3 

then by [10, 2.3] there is aE(0, 1) depending only on n and on K(/) such t h a t / ]  B~(a, aR) 

is injective whenever B~(a, R ) c  H a. Choose a EH ~ and R >0  such that  B~(a, R ) c  H ~ and 

such tha t  ]hi <2aR.  Then Bn(a, aR)-contains at least two points x and A(x) which are 

G-equivalent and which are thus mapped by / onto the same point, contradicting the in- 

jectiveness of l iB ' (a ,  o~R). I t  thus follows tha t  Br~:O , and 3.7 implies tha t  ~ D c  Bf. 

(iii) Let  Q = ~ l ~ i M ,  where i: M-~2kr denotes the inclusion map from M =D/G into 

its cusp compactification 2l;/. Note tha t  N(D = N(/, F), hence the assumption N(/, F ) <  

implies, by  Theorem 6.5, t h a t / :  M-~_~ ~ has a continuous extension f: 3 I -+R  n. 

Suppose that  Bs=O.  Then / defines a covering map D'~.J-lfQ-->.R~fQ. Indeed, let 

P be a simple fundamental  polyhedron for G. Fix y EP~n~]Q and let {x~ ..... Xm} = 

[P f l /- l(y)]~f-l]Q. Since / is a local homeomorphism, there exist neighborhoods U, of x, 

such tha t  ]] Ut are homeomorphisms, / U i =  V for some neighborhood V of y, i =  1 ... . .  m 

and such tha t  z(U,) ~7~(Uj) for i ~:~. Then {gU,: 1 <~i <~m, gEG} is a set of disjoint compo- 

nents o f / - 1 V  required in the definition of a covering map. The assumption n ~> 3 implies 

that  R ~ ] Q  is simply connected and thus ]]D~..]-I]Q is a homeomorphism contradicting 

the fact that  / is automorphic. I t  thus follows tha t  B r ~ O  , and 3.7 implies tha t  ~D~/~f .  

6.13. Remarks. (a) The assumption V(D/G)< ~ in Theorem 6.12 is essential as shown 

by example 4.2. 
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(b) The assumption n >~ 3 is essential in 6.12 (ii) and (iii). The elliptic modular function 

in R 2 is a counterexample. 

(e) We do now know whether the cond i t ions / (D)~  R '~ and N(], F ) <  ~ in 6.12 (ii) 

and (iii), respectively, are essential. Our guess is tha t  they are not. 

6.14. Behavior o /qm automorphic mappings at their natural boundary. In  the following 

sections we consider qm automorphic mappings /: D-~R"  for discrete M6bius groups 0 

acting on D, D = B n or H ' ,  with V(B'/G) < oo and s tudy their growth near 0D. In  view of 

Remark  6.4 and Theorem 6.3 we shall consider only the case where DIG is non-compact 

and N(/, F ) <  oo for some fundamental  set F c  D with respect to G. We show here tha t  

the rate of growth of / near parabolic points is similar to the growth of (n-1)-per iodic  

qm mappings near 0% see Theorem 8.7 and Corollary 8.11 of [ l l ] .  The main tools are the 

capacity inequalities of section 5. 

6.15. Let  ]: H n - * ~  be a qm automorphie mapping for a discrete M6bius group q 

acting on H n with V(Hn/G)< 0% and suppose tha t  oo is fixed for a parabolic element of 

G. Then, by Lemma 3.5 (iv), G has a simple fundamental  polyhedron P with a boundary 

vertex at  0% Suppose tha t  N(], t5)< oo. Then by Theorem 6.3 ] has a limit at  oo in t5. 

Suppose tha t  the limit is co. In  this case the induced mapping [: M-+R"  has a continuous 

extension f : /~r -+/~  with f(oo)= oo. Here )11 denotes the cusp compactification of M =  

H'/G, see 3.8 and 4.5. 

For h > 0 let 
M(h)  = sup {I/(~)1: �9 ~H",  ~ .  = h}, 

m(h) = i ~  { l / ( z )  l: ~ H " ,  ~ .  = h}. 

6.16. THEOREm. Under the assumptions of 6.15 

(i) Ale "h <<- M (h ) <-- A2e ~ ,  

(ii) Aae =h <-<re(h) <<-A4e ~n, 

/or all su//ieiently large h, where A~ i = 1 ..... 4 are positive constants depending on ], 

r ,,oo 1, 
~ = i ~ ~ --5 ( """""~ A J , t~= 

where A and os are the ( n -  1)-measures o/ (xfiP: xn=h } and S '*-1, respectively, and i(oo, [) 

denotes the local topological index o /]  at 0% see 2.6. 

Proo/. Pick AEGM(n)  with [A(x)[ =l/[z[ and let g = A o  l, ~ = A o l a n d g = A o [ ,  then 

g is qm automorphic mapping with respect to G, g has the dilatations of / ,  N(/, 15) =N([7,/5) 

and ~(oo) = 0. 
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For r > 0 let U(r) denote the c~-component of ~-lBn(r). Choose r o > 0 so small that  for 

0 < r  ~<ro, U(r) is a normal neighborhood of c~ and 0U(r) is connected, see 2.2. Since gl U(r) 

is a closed map, Theorem 2.8 implies that  for all r E (0, to] 

N(~, U(r)) = i(~o, ~) = M(g, U(r)); 

where M(~, U(r)) denotes the minimal multiplicity of ~ on U(r), see (5.8.1). 

Let C=(x~: xE(iore)-l(~U(ro))}, bl=inf  C, and b2=sup C. For h > 0  let /~(h)  be the 

closure of the set (iog)H(h) in M. Choose h0>0 such that  the requirements in 5.6 are 

satisfied and such that  the compact set ~7/t(h)c B'(ro) for all h;~h o. For h>0 ,  let 

M'(h) = sup {]g(x)]: x n =h},  

m'(h) = inf {[9(x)[: xn = h}. 

Then M(h) = lira'(h) and re(h) = 1/M'(h). 

For h>ho, E=(U(ro), U(m'(h)) is a condenser in 2~r and ~E=(Bn(ro), J~(m'(h))) is a 

condenser in _~n. Since U(m'(h))c/ t (h) ,  Theorem 5.9 implies 

/ r \a-~ ~.,< KI([) E-< KI( / )A 
~ o ( l o g m ~ )  = c a p g , ~ c a p a  ~ i (oo ,~ ) -~_b , ) , _  1. 

This yields Ale ~h <<. 1/m'(h) and the left side of (i) follows. 

For the left side of (ii) it suffices to show that  

M'(h)<~cm'(h) (6.16.1) 

for all h > h 1 for some c > 0. Fix h >h  0 and suppose that  M'(h)> m'(h). Then E = (U(M'(h)), 

~](m'(h))) is a normal condenser in/~r and ~E = (Bn(M'(h)), ~(m'(h)))  and by Theorem 5.9 

/ M'(h)\  1-~ 
capa E <. Ko(/) i( ~ ,  ]) cap 0E = K0(/) i( + ,  l) co (log m - - ~ )  " (6.16.2) 

On the other hand the condenser E satisfies the assumptions of Lemma 5.6, thus 

cap E >~ >0  where (~ depends on G. This combined with (6.16.2) yields (6.16.1). 

To prove the right side of (ii), consider the normal condenser E=(U(ro), (](M'(h))) 
in M, h >h0, and its image OE= (Bn(ro), Bn(M'(h))) in/~n; then Theorem 5.9 implies 

[ r \ l - n  
A ( h - b l ) l - n  ~ eapGE= K0(]),(~:),/) cap gE = Ko(])i(c~ , /) (D (log T ( h ~ )  * 

This gives m(h)= 1/M'(h)<~Aae an, and by (6.16.1) the right side of (i) follows, too. 



246 OL~Z MARTIO AND URI SREBRO 

6.17. COROLLARY. Let ]: B ~ R  n be a qm automorphic mapping [or a discrete MSbins 

group G acting on B ~ with V(B~/G)< oo and with a parabolic ]ixed point  at p E ~ B  ~. For 

re(0, 1/2), let S(r)={xeB~: Ix-(1 - r )p  I =r}. 
I] N(/,  F )  < co ]or some ]undamenta/~ set F c  B ~, then: 

(i) The radial l imit  a = limt-,l_0 [(tp) exists. 

(ii) For all su]]iciently small r > O, 

A i  er~ <~ m(r) <~ M(r)  <~ A~e ~, 

where M ( r ) =  sup ]/(x)l and m ( r ) =  inf I/(x)l when a-~ co 
x e S ( r )  x r S ( r )  

and M(r)---- sup I [ ( x ) -  a[ and m(r) = inf If(x) - al otherwise. 
xeS(r) xeS(r) 

Here A i and A e are positive constants which depend on [, ? and (~ are positive constants when 

a = co and negative constants otherwise. I n  any case ? and ~ depend only on G, N(/,  F )  and 

the maximal  dilatation of [. 

Proo/. (i) is conta ined  in Theorem 6.3 (ii). F o r  (ii), f i rs t  replace / b y  B o / o A  where A 

is a M6bius t r ans fo rma t ion  with  A ( H  n) = B ~ and  A ( ~ ) = p  and  B E G M ( n )  with  B ( a ) =  ~ .  

This brings us to  the  s i tua t ion  in 6.15, where the  punc tu red  spheres S(r) correspond to the  

( n -  1)-planes ~H(h), h > 0. The  result ,  then,  follows b y  6.16. 
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