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Let k be an algebraic number field of finite degree, A/k a semi-simple finite-dimensional
algebra over k and o a Dedekind ring with quotient field k. We consider o-orders R in 4,
that is, subrings with kR =4 and 1€ R, such that R is finitely generated as an o-module.
An important example is the group ring o@ of a finite group &, which is an order in kG.
An R-lattice M is a finitely generated (unital) R-module, which is torsion-free as an o-
module. The category of R-lattices we denote by Lz. For every prime ideal p in o, let o,
be the p-adic completion and put R,=0,® R, M,=0,@M etc. Then R, is an o,-order in
Ay, and M, is an B-lattice.

Two R,-lattices M and N belong to the same genus—notation M ~ N—if M, >N, as
R_-modules for every p. By G we denote the category of genera of R-lattices. It is well-
known, that M ~N does not in general imply M = N; but the number of isomorphism
classes in a genus is finite. In the present paper, we first give a classification of these
isomorphism classes by means of ideal classes in the integral closure over o of the center
of 4 (Theorem 2.2). This generalizes results of an earlier paper (Jacobinski [9]). The proof
makes use of the classical theory of maximal orders and here we need the assumption,
that k is an algebraic number field and o Dedekind. For a very small exceptional class
of R-lattices, the clagsification is not complete. This is due to the fact, that maximal
orders in a totally definite skew-field of index 2 have rather irregular properties.

We then use our result on the isomorphism classes in a genus to study various prop-
erties of R-lattices. As an immediate consequence we obtain an upper bound—depending
only on BR—for the number of isomorphism classes in a genus (Prop. 2.7).

An R-lattice X is called a local direct factor of M, if for every p, X, is isomorphic to
a direct factor of M,. We show (Theorem 3.3), that then M has a decomposition of the
form M =X'®N, with X'~ X, In a very special case—R =o0@ the group ring of a finite
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group and X a free oG-module—the existence of such a decomposition was shown by
Bass ([2], Prop. 10.2), using results of Swan. Then we deduce a rather mild condition,
referring only to the A-modules k® X and k® M, in order that a local direct factor X of
M be isomorphic to a (global) direct factor of M. (Theorem 3.6). Such a condition can be
obtained from a theorem of Serre ([12], and [2], p. 24), which is valid for a wider class of
modules than R-lattices but only if X is a free R-module. Our result holds for arbitrary
R-attices X and in case X is free it is somewhat stronger than the one deduced from
Serre’s theorem.

In section 4 we study cancellation, i.e. under what conditions does a relation
YOM=Y®N imply M=N. In case Y is projective, such a condition follows from the
well-known cancellation theorem of Bass (Bass [2], p. 28). Our result also holds for non-
projective R-lattices Y and is somewhat stronger for projective Y. This makes it possible
to give a rather complete answer to a question raised by Swan (Swan, [13], § 10) concerning
cancellation in the category of projective modules over a group ring (see 5.3-5.5).

Let B be a category of R-lattices, which is closed under direct sums. We define a
relative Grothendieck group D(B) with relations for split exact sequences only. It turns
out, that two R-lattices are in the same genus if and only if their images in D(Ly) differ
by a torsion element only. We then show that D(B) is the direct sum of a free group and
a finite group, which is isomorphic to a group of ideal classes of the same type as the one
that occurred in connection with the isomorphism classes in a genus. In particular, if
we consider the category Py of finitely generated projective R-modules, then D(Pjy)
coincides with the ordinary Grothendieck group K{Pz) and we obtain a rather explicit
description of K(P;) from our result on D(B).

In the last section we study decompositions into indecomposable E-lattices. We say
that B has unique decomposition, if for every element of B the decomposition into inde-
composable R-lattices is unique, up to an automorphism. It is well-known that Ly has
unique decomposition and that Cp in general has not. We show, that the lack of unicity
has two sources. The first comes from the fact that a genus may contain several different
isomorphism classes. A survey of the various decompositions arising from this source can
be given by means of our result on the isomorphism classes in a genus. The other source
comes from the fact that the category Gp—with addition defined in the natural way—
does not in general have unique decomposition. We are thus led to study decompositions
of genera instead of R-lattices, and we give a survey of the different decompositions of
a genus. As a corollary we obtain that there are only finitely many indecomposable pro-
jective R-modules (up to isomorphism). If Gy has unique decomposition, then decomposi-

tions in Lz are rather regular and easy to describe. We give a sufficient condition for Gg
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to have unique decomposition; it turns out that this is the case e.g. if B =Z@G where G is

a finite p-group and p 2.

Notations. By R-lattice we will in general mean left R-lattice. Every E-lattice M will
be identified with its image in k® M; then we can write kM instead of k@ M. For brevity

we put
E(M)=Hom, (M, M)

and E(kM)=Hom, (kM, kM).

It is easily seen that E(M) is an o-order in E(kM). We consider kM as a right E(kM)-
module; this makes M a right E(M)-lattice.

1. Maximal orders

We congider first lattices over a maximal order £; for the arithmetic of maximal
orders see Deuring [5] or Chevalley [3]. A (fractional) full O-ideal is an D-lattice A< A4,
such that kA =A4. U is integral if A< . The right order of A consists of all x€ A4 such that
< A. This is also & maximal order in 4. When writing a product AB, we will always
assume that the right order of ¥ equals the left order of B.—The following proposition
was proved by Chevalley [3] for 4 a skew-field.

ProrosiTioN 1.1. Let © be a maximal order in A and M €Lp. Then

1)y E(M) is a maximal order in E(kM)
2) if N€ELgp and kN =kM, then there is a unique left E(M)-ideal a, such that

N=Ma.

For a proof see [9], Satz 1 (or [1], p. 12), where only the unicity of a is lacking. If
Ma=Mb, then both ab-! and its inverse ba—! are in E(M) and this implies a=b ([5],
p. 74). The proposition implies that M =~ N if and only if a is a principal ideal, a = E(M)a,
a € E(kM). Passing to the p-adic completion, we obtain

CoroLLARY 1.2, Two O-lattices M and N are in the same genus if and only of kM kN
as A-modules.

If kM =~kN, we may suppose kM =kN. Then N=Maq and M, =N_a, Now E(M,) is
a maximal order and every E{(M,)-ideal is principal. Thus we obtain M, >~ N, and the other
direction follows from the Theorem of Deuring—Noether.

Let I be the genus that contains M. The corollary implies, that the isomorphism clas-

ses in I" are in 1-1-correspondence with the left ideal classes in E(M). Eichler [6] has shown
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that the ideal classes in a maximal order are in 1-1-correspondence with certain ideal
classes in the center, the application being given by the reduced norm. This means that
the isomorphism classes in I' correspond to certain ideal classes in the center of E(M).
‘We are now going to explain this in more detail.

Let A=@® 2 A4, be the decomposition of 4 into simple algebras and let e; be the
identity of 4;. For any R-lattice M put

emw= 2 e
e, i50

Then e, M =M and (1 —ey )M =0. If M~ N, then e, =e¢y and we can write ep instead of
ey. Let K, be the center of 4, and denote by C, the integral closure of oe;, in K,. Then
K=@®2K, is the center of 4, C=@® 2C; the maximal o-order in K and e, K the center
of E(kM). A maximal order always contains the maximal order of its center. Thus, for
MeLp, e, is the center of E(M).

Let I(e,) be the group of invertible fractional e,C-ideals. We embed I(e,,) in I =1(1)
by 2—>2®(1 —ey)C and consider I(e,) as a subgroup of I. Denote by =, the reduced norm
of E(ekM) over K, and put n=2m,;. For x€E(kM) the reduced norm n(z) is then an
element of e, K. The norm n(a) of an E(M)-ideal is the ideal in e,,C generated by all n(a),
a€q. It is well-known (see Deuring [5], VI, § 4) that

7{ab) =n(a)n(b)

provided that the right order of a coincides with the left order of b. Now Proposition 1.1
permits us to define the reduced norm for a pair of O-lattices M and N, provided kM =kN.
For then there is a unique left E(M)-ideal a such that N =Ma and we define

n(M, N)=n(a) for N=Ma.

According to this definition, n(M, N) is an ideal in I(e,). Since we have identified
I(ey) with a subgroup of I(1), we can as well consider n(M, N) an ideal in I(1).
Let I" be the set of all N €T such that kN is a fixed A-module. Then T represents all

isomorphism classes in I' and the reduced norm defines a map
n:T xT— I(er).

‘This is an epimorphism because from the arithmetic of maximal orders it is well known,
that every ideal in I(er) is the norm of some left E(M)-ideal. We note some simple proper-

ties of the reduced norm. First we have

(M, N) =n(M, Uyn(U, N) if M, N, U€L. )
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Put U=MDb and N =Ug; then N =Mbhc. Since the right order of b coincides with the left
order of ¢, we have n(bc) =n(b)n(c) which is equivalent to (1).

Now suppose ¥ =X@Y with X, YE€LpH and let N€T be of the form N=X'@® Y’
with kX =kX' and kY =kY’. Since we consider I(ex) as a subgroup of I, n(X, X') is in
I and we have n(X, X')=n(X® Y, X’®Y). Then from (1) we obtain

mXDY, X' ®Y)=n(X, X)n(Y, Y 2)

It is well-known, that maximal orders in a totally definite skew field of index 2 have
rather exceptional properties. As a consequence of this there is a—rather small—class
of £-lattices which behave irregularly and which often must be excluded in the sequel.
We are now going to define the class of well-behaved lattices; since the situation is similar
for non-maximal orders, we do this at once for arbitrary orders R.

Recall that an infinite prime of K, is an archimedian valuation of K, and that the
prime is said to be ramified in 4, if the corresponding algebra over the completion of K;
does not split, i.e. if it is a ring of matrices over the quaternions. Let r(4,, M) denote the
number of irreducible 4;-modules in a decomposition of kM. Then if 4, is a ring of matrices
over the skew-field Q,, E(e kM) is a ring of matrices of degree r(4;, M) over Q,. Then we
define

DEerFINITION 1.3. L3 consists of all R-lattices M such that r(A; M)=+1 whenever
A; 18 @ ring of matrices over a skew-field of index 2 over K, in which every infinite prime of
K, is ramified.

Note that this is a condition on kM only. Equivalently we could say that M is in Lz
if and only if none of the simple algebras in E(kM) is a totally definite skew field of index 2.

Now let S(ey) be the subgroup of principal ideals (@) in I(ey), such that each e,a is
positive at every infinite prime of K;, that is ramified in 4,. Then we have

TeErorREM 1.4. (Eichler) For M €Lp a full left E(M)-ideal a is principal, if and only
if n(a) €S(ey).

For a proof see [6]. Since we are concerned with isomorphism classes in a genus rather
than with ideal classes in a maximal order we reformulate this in the following way. Denote
by Gp the genera in Lo and suppose '€ Go. Put V= I(er)/S(er) and, for M, N€T, let
(M, N) be the image of n(M, N) in V. Now from (1) and the theorem it follows that
v(M, N) does not change if M and N are replaced by isomorphic lattices. Thus we can
extend the definition of v(M, N) to all M, N in I'. Let M be fixed and consider the map
N—v(M, N) for N€T'. Then the theorem says that this map is a bijection of the isomor-
phism classes in I' onto V. In the next section we will derive a similar result for genera

of R-lattices, where R is an arbitrary o-order in 4.
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2. Isomorphism classes in a genus

Let R be any o-order in A. We choose a maximal order ) which contains R and a
two sided D-ideal ¥ contained in R; such ideals exist since both O and R are finitely
generated o-modules and kD =kR=4. We do not suppose that §§ is the maximal two-
sided ©-ideal in R. Recall that we identify M with its image in k@ M. Then we have

KM M<OM.

This relation can be used to give several different characterizations of the lattices that
belong to the genus determined by M (see Jacobinski [9], Satz 2). We will now explain
one of these.

A fractional E(OM)-ideal g is said to be prime to , if for every prime p in o, {§, (1)
implies a,=(1). The same definition applies also to C-ideals or o-ideals. If q is integral,
then a is prime to { if and only if n(a), taken in E(OM), is prime to (), taken in O.

Let a be prime to . Then a=a"la’, with x€e,C, a’ an integral E(DM)-ideal and
both o’ and « prime to . Then we define

M=o (M0 OMa').

M, is an R-lattice and according to [9], Satz 2, we have:

ProrosiTioN 2.1. Two R-lattices M and N are in the same genus if and only if there
s a left BE(DM)-ideal a, which is prime to &, such that N =M.

Now choose an arbitrary element X of T" and let T" be the set of all X, where a runs
through all left E(X)-ideals, prime to . Then every isomorphism class in I' contains
an element of ' and in studying isomorphism classes, we can replace I' by I'. We remark

first that
DX.=DXa (3)

for we have ODXa>O(X)>FXa and if §,=(1) this implies (DX,),=(DXa),. But since
a is prime to , &, +(1) implies a,=(1) and then (0X,),=(DX),=(0Xa),, which proves
(3). From (3) it follows easily that every R-lattice M in I" determines a unique left E(DX)-
ideal a such that M =X,. For X, =Xy implies £Xa=XDb and this implies a =b according
to Proposition 1.1.

Now let M, N be a pair of R-lattices in T'. This pair uniquely determines the pair
OM, ON of D-lattices and for this pair we have defined n(OM, ON) in the preceding
section. Thus for M, N €T we can define

n(M, N) =n(OM, ON).
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According to this definition, n(M, N) seems to depend on the choice of the maximal
order ©. This is, however, not the case, for n(M, N) is already determined by the pair
M, N considered as modules over the center of R (see Jacobinski [9], § 3).

Let Ig(er) be the group of all invertible fractional epC-ideals that are prime to .
If we put M =X, and N =Xy, then from (3) we see that ON=OMa-1b and so n(M, N)
=n(a~1D) is prime to { since a and b are prime to . Thus n(M, N) is in Ig(er) for
M, NeT.

Now let M =X, be fixed and let N vary in I'. Then n(M, N) defines a map

n: T — Ig(er).

This map is an epimorphism. For every ¢ € Ig(er) is the norm of some left E(OM)-ideal c,
which is prime to . Putting b=ac and N =Xy we see from (3) that n(M, N)=n(c)=c
as desired.
Denote by H,, the subgroup of Ig(er) generated by principal ideals of the form (n(a))
with a € E(M) and put
Vu = Ig(er) Hy.

We will show later that M ~ N implies H,,=H,. Assuming this we can write Hr and Vp
instead of Hy and V). Denote by v(M, N) the image of n(M, N) in Vy. Then v defines an
epimorphism

v:T'xT — Vr.

‘We now show

THEOREM 2.2. Suppose ['€Gr and let M be any fixed lattice in T'. Then for N€ET,
the map

N —~ (M, N)
defines a bijection of the isomorphism classes in T onto Vp; in particular, M = N if and only
if (M, Ny=1.

The proof will be divided into several lemmas. The first is

LeEMma 2.3. If o is integral, then M =M, is equivalent to ¢ = E(OM)a with a € E(M).

Since q is integral, M, is contained in M. Thus if M,~ M, then there is an a € E{(M)
such that My=Ma and OM,=OMa=OMa implies a=E(OM)a. On the other hand,
suppose a = E(OM)a with a € E(M) and o prime to 5. Then Ma and M, coincide at every p.
This means Ma =M, and so M >~ M,.
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Lemma 2.4. (Eichler). Suppose M €Ly and define the two-sided E(DM)-ideal | by
SM =OMf. If x€ E(OM) and
n(x)=e (f)
with ¢ a unit in ey,C, then there is a unit w€ E(OM), such that
z=u (f).

For a proof see Eichler [7], p. 239.

Lremma 2.5. If M €Ly, then M =M, if and only if n(a) € H,,.

Multiplying a by an element of o, we can assume that q is integral, i.e. M,< M. Then
clearly M =~ M, implies n(a)€ H,,. On the other hand, suppose n(a) € H,,. Since H,,< S(ey,),
Theorem 1.5 implies that a=E(OM)a, with a€E(OM). Then n(a)€H,, means that
there is b€ E(M), such that n(a) =n(b)e, with £ a unit in e, (. Since both ¢ and b are prime
to &, we can find a€eyC, « =1 (f) such that z=w«ab1is in E(DOM). Then n(zx) =n{x)e =¢ (f)
and according to the preceding lemma, there is a unit % in E(OM), such that z=u(l +)
with y €f. This implies ca = E(OM)(1 +y)b. Now y €f implies that M(1 +y)< M + Mfj= M.
Thus (1+y)b is in E(M) and Lemma 2.3 implies that M,,~ M, which is equivalent to
M,=M.

LeMMA 2.6. If MEL, and M~ N, then Hy=H,,.

Let Sy(ey) be the subgroup of Ig(e,) generated by all ideals («) with ¢ =1 () and
such that each ex is positive at those infinite primes of K, that are ramified in 4;. We will
first show that both H,, and Hy contain Sg(e,).

As before, define | by OMfj=FM. Then for x€C the congruences a=1 (F) and
a=1 (f) are equivalent. For {§ is a two-sided integral ©-ideal and so there is an integer
§>0, such that F*=¢gD, with ¢ an ideal in C. But then FM =OM{=OMg and this
implies {*=E(OM)g. Thus for a€e,C, a=1 () is equivalent to (x—1)*=0 (eyg). Since
the same is true for =1 (), these congruences are in fact equivalent.

Now let (x) be an integral ideal in Sg(ey). Because of Theorem 1.4, («) is the norm of
a principal ideal a=E(©2M)a, which can be supposed prime to {§ and integral. Then
n(a) =as=¢ (f) with ¢ a unit in e,C. From Lemma 2.4 we see, that a is generated by an
element 14y, with y€§. Since 1 +y€ E(M), this shows that Sg(e,)< H), for every M €L,

To prove the lemma, we now have to show, that H,, and H are equal modulo Sg(e,).
If N~N’, then certainly Hy=H,. Thus we can suppose N =My, with b integral and
prime to §. Then we can find f€e,C, such that M < My; since b is prime to §, we can
even choose #=1 (f). Then a € E(M) implies fa € E(N). Since n(a) =n(Ba) (f), this means
Hy< Hy. By symmetry we obtain H, =H,, which completes the proof of Lemma 2.6.
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Combining Lemma 2.5 and 2.6, we have shown, that for M and N in I', M=N is
equivalent to n(M, N)€ Hr, that is to v(M, N)=1. For N’ in T, we obtain from (1) that

v(M, Ny =v(M, N)v(N, N').

Since (N, N')=1 if and only if N=~N’, the map '~ Vr, defined by N—v(M, N) is an
injection on the isomorphism classes of T'; it is also surjective, since every ideal in Ig(er)

is the norm of some E(OM)-ideal prime to $J. This completes the proof of Theorem 2.2.

Remark 1. We have defined v(M, N) only if N is in T". Because of the theorem, v(M, N)
depends only on the isomorphism classes and we can extend the definition to arbitrary
M,NinI':if N M,, we put o(M, N)=v(M, M,).

Remark 2. We indicate briefly what happens if M does not belong to C%. Then H,,

Vi and the map N-—>v(M, N) are still well-defined. Since Lemma 2.3 is valid for every

M €Ly, the map T'—>V,, is a map of the isomorphism classes in T and it is still an epimor-

phism. But it need no longer be injective; in particular, o(M, N)=v(M, N') is necessary
but not sufficient for N 2 N’.

We now derive some consequences of the theorem. Let |I'| denote the number of iso-

morphism classes in I". Then we have

ProposiTiON 2.7. There is a number b, depending only on R, such that |I’| <b for

every genus 1" in Gg.(%)

Suppose first that I' € Gr. Then according to the theorem, |I'| equals the order of Vr.
Since Sg(er)=Hr, the group Vr is a homomorphic image of Ig(er)/Sxler). If b is the
order of the group I(1)/Sg(1) we thus obtain that |I'| <b’ for I'€ G.

Now suppose I'¢ Gz and choose M €T". Then for at least one 4, e,kM is an irreducible
A;module and 4, is a ring of matrices over a totally definite skew-field of index 2. Let ¢
be the sum of all these e, and let ¢'=1—¢, Put S=eckM N M and S’ =¢'M; then S'€L;
and we have an exact sequence

0—+8—>M-8 ~0.

If N~ M, we have a similar sequence
0->T—->N->T"-0

and corresponding sequences for M, and N,. Since 7' and 7" are defined by means of the

central idempotents ¢ and ¢’ respectively, an isomorphism M,— N, gives rise to isomorphisms

(*) Another proof of this has recently been given by Roiter, (Roiter [13]) by means of other
methods.



10 H. JACOBINSKI

8,—T, and S,—T,. Thus M ~N implies S~ 7 and S'~7". In other words, the genera
A and A’ that contain § and 8 respectively are uniquely determined by I'. Moreover,
S8=T and 8'=7" together with M ~N imply that M =N (see [4], Theorem 72.25 and
75.27). From this we see that

[T| <|Al|A’| for arbitrary I' € Gg.

Since A’€Gr, we know already that |A’| <b’, where b’ only depends on R. To find

a similar bound for | A |, we observe that if 7'€ A, then each e,k T is either =0 or irreducible.

Thus there is only a finite number of possibilities for the 4-module ¥7'. But then, according

to the theorem of Jordan-Zassenhaus, there is only a finite number of possibilities for the

genus A. If ¢ is an upper bound for the number of isomorphism classes in these genera,
we obtain that |I'| <cb’=b, which completes the proof.

The following proposition gives a global characterization of the lattices belonging to

the same genus (cf. Proposition 5.1). Let zM denote the direct sum of z copies of M.

ProPOSITION 2.8. There is an integer z, depending only on R, such that for M, N €,
M~N if and only if zM =~ 2zN.

Let ¢ be the exponent of the group Ig(1)/Sg(1) and choose z>1 and divisible by ¢.
If M ~N we obtain from (2) that

n(zM, zN)=n(M, N)* € Sxley) < H .

Since z>1, 7(d4,, 2M) is always+1. Consequently, zM is in £z and the theorem implies
that 2 =zN. On the other hand, zM ~zN implies z M, ~2zN, for every p and this implies
M, =N, since L, has unique decomposition ({4], p. 540).

As in {9] we define restricted genera in the following way.

DEerFIiNiTION 2.9. Two R-lattices M and N are in the same restricted genus if M ~N
and OM ~ON.

According to this definition, the division I'= Uy, of a genus I' into restricted genera
v, depends on the choice of £. However, if I'€ G, , the choice of © does not matter (see [9],
§ 3). Suppose '€ G and let M, N €T. Then, according to Theorem 1.4, DM =~ ON if and
only if n(OM, ON)ES(ey). Now n(OM, ON)=n(M, N); putting 7=y NT, we see that
for M, N €y, the map

N—vo(M, N)

defines a bijection of the isomorphism classes in § onto S(er) N Ig(er) [ Hr. Since this group

depends only on I, all the restricted genera in I" have the same number of isomorphism
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classes (provided I' € G%). Moreover, the number of restricted genera in I' equals the order
of Ig(er)/S(er) N Ig(er); it depends only on ep.
The following proposition generalizes an earlier result of the author (see Jacobinski [9],

Corollary 2 of Theorem 5).

ProprosiTIiON 2.10. There is an R-lattice T, such that for every M, N€Ly, M and N

are in the same restricted genus, if and only if

MeT=NoT.

Let T be an D-lattice in Lo such that e;—=1. Then T €L and, since £ is maximal,
we have H;=8(1)Nn Iz(1). Now Hyer>H, and so we obtain Hyer=S8(1) N Ig(1). This
means that the restricted genus y determined by M@ T contains only one isomorphism
class. Thus if M and N are in the same restricted genus, then M @7 and N® T are both
in y,ie. M®T=N@T. Conversely,if M®T=N®@T then first M ~N, since the Krull-
Schmidt theorem is valid for R,-lattices. Moreover, we have QM ®OT =2 ON@OT and
according to (2) and Theorem 1.4 this implies n(OM, ON)€8(e,,). Since we have supposed
M, N €Ly, we obtain OM ~ON, which completes the proof.

3. Local and global decompositions

An R-lattice X is called a local direct factor of M if for every p, X, isisomorphic toa
direct factor of M. This is in fact a property of the genera I'(M) and I'(X) determined
by M and X. We will study the relations between local and global direct factors of an
R-lattice M. First we show that the genus I'(X) always contains a direct factor of M. In
the special case R =o(, the group ring of a finite group and X a free oG-module, this was
proved by Bass, using results of Swan ([2], Prop. 10.2). Then we give a rather mild condi-
tion, which assures that a local direct factor is isomorphic to a direct factor of M. As
already pointed out in the introduction, if X is a projective R-module, such a condition
follows from a theorem of Serre ([2], Theorem 9.3).

We have previously defined two R-lattices to belong to the same genus if M, ~N,
for every p. 1t is easy to see that it is sufficient if p varies in a finite set U, determined by
R (cf. Curtis-Reiner [4], p. 571, where U is the set of primes dividing the Higman
ideal ¢(R)).

LeEvwma 3.1. Let U=+D be a finite set of prime ideals in o, which contains all primes p

such that R, is not @ maximal order. Then M ~ N is equivalent to

M,~N, forpelU.
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Since U =@, M, =N, for p€ U implies kM =kN. But for ¢¢ U, R, is a maximal order
in A, and then kM, =k N, implies M,=N, (cf. Corollary 1.2) and this completes the
proof.

If R is a maximal order, we can choose U @ arbitrarily. For R not maximal, we have
already chosen 2 maximal order © and a two-sided ideal ¥ < R, and we can take U to be
the set of all primes in o such that },<+(1). In the sequel, we will always suppose U to be
chosen in this way.

Note also that in the definition of a local direct factor we need only claim that X,
is isomorphic to a direct factor of M, for p€U. For then we have kM =kX®S. Let ¥
be an O-lattice such that kY =S. Then according to Corollary 1.2 we have

ODM~VXDY.

But for p¢ U, R,=9, and so M, =(OM), and X,= (DX),. This shows, that X, is isomor-
phic to a direct factor of M, for every p.

The lemma implies that any genus I' is completely determined by the set {M,},cv
for M €T’. On the other hand, suppose we are given R -lattices Y? for p€U. If these Y?
are chosen arbitrarily, there will not in general exist an R-lattice M such that M,=~ ¥?
and then the set {¥?} will not define a genus.—The following lemma is a slight generali-

zation of results of Heller (see [8], where o is a valuation ring).

LemmA 3.2. Suppose given for every p€EU a R,-lattice Y. Then there evists M €Ly
such that
M,=Y? forall peU

if and only if there is an A-module S, such that
k,,@kS’;kp@,,p Y? forall peU.

The condition is clearly necessary. To show that it is sufficient, let N be an O-lattice
with kN =8. Replacing every ¥” by an isomorphic lattice we can then suppose Y?< N,
We consider N as a submodule of each N, and put

M= Nn7Y>

pelU

The annihilator of each N /N n ¥Y? is a power of p and from this we see that M, Y”for
p€U and M,=~N, otherwise. It remains to show that M js an R-lattice. Clearly M is a
finitely generated o-module and kM =S8. Let R’ ={x|xM <M, x€A} be the left order of
M. Then M,=Y? implies R,< R, for p€U. For p¢ U we have M,=N, and R,=9,=R,.
Thus for every p the left order of M, contains R, and this implies M € Cp.
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TaeorREM 3.3. Let X and M be. R-lattices and suppose that X is a local direct factor
of M. Then there is a decomposition

M=X'®7Y, with X'~X and Y€L5.()

Since X is a local direct factor of M, there are R,-lattices Y” such that

M,~X,0Y?, pe€U.

Moreover, kX is isomorphic to a direct factor of kM; put kM =kX®S. Then, according
to Lemma 3.2 there is an R-lattice Y such that Y,~Y? for every p€U. This means
M~ X3®Y and the theorem now follows from

Lemwma 3.4. Let X and Y be R-lattices and suppose

M~XDY.
Then there is a decomposition

M=X@Y with X'~X and Y'~ Y.

If X and Y are in Cg. this follows easily from Theorem 2.2. To show it without this
assumption put N =X@® Y. Replacing M by an isomorphic lattice, we can suppose M =N,
with a an integral left E(ON)-ideal prime to 5. Then OM =ONa is contained in ON.
Put OM N OX=0Xb where b is a left E(DX)-ideal prime to §§. Then OM/OXD is an
D-lattice too. Since O is hereditary, every O-lattice is a projective ©-module and so

every exact sequence of D-lattices splits. Thus we obtain
DM =0XbdT with TELp.
Every element of OM is of the form z+y with x€0X and y€DY. Let OXb’ be the pro-

jection of OM on £X. Then we have DX>OXH > OXD and so b’ is prime to . Thus
we can find €0, 6 =1 (), such that b’d<bh. Put

OMbH=DXbd T6.
Then clearly OMb=0Xb@ O Y¢ with ¢ a left E(DY)-ideal prime to {§ and we have
My=X:®7Y..

Since Xy~ X and Y.~ Y, the lemma will be proved if we show that My and M are iso-
morphic. According to Lemma 2.3 this is the case if and only if ) is generated by an ele-
ment of E(M). Consider § as an element of E(T) and put d =idpxs@J. Then d generates

() This theorem, as well as the following lemma can also be obtained from results of Reiner
and Jones (see [4], § 81A).
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p and 6 =1 () implies d € E(M) and the proof is complete. — We note the following corol-
lary of Theorem 3.3.

CoROLLARY 3.5. If a genus ' contains one indecomposable lattice, then every lattice
in I is indecomposable.
Recall that for any R-lattice M we denote by r(4,;, M) the number of irreducible
A ;-modules in a decomposition of kM. We now show
THEOREM 3.6. Let X be a local direct factor of M such that
r(d;, X)<r(A;, M) whenever r(4;, X)=0.
Then X s isomorphic to & direct factor of M, i.e.
M=X®Y with YEL,.(Y)
We know already that there is a decomposition M =X'® Y’, with X~ X’. Put
DY =ex0Y @ (1—ex)0Y".
Then our assumption on r(4,, X) implies, that ey’ affords a faithful representation of

exD. Thus every element of Ig(ey) is the norm of a left E(exOY’)-ideal b, which is prime
to . If X~ X;, we choose b such that n(a)n(b) €Sg(ex) and put

DX'a@ex DY (1—ex)0Y = OMec.

Then clearly, M= X® Y, with ¥ ~ ¥’ and the theorem is proved if we show that M =~ M.
Our assumption on r(A4,, X) implies that 7 =X’ ®exOY" is in Lo. Applying Lemma 2.4
we see that DX'a®ez0Y’'b=Twx, where o induces the identity on T/FT. But then the
ideal ¢ is generated by f=a® (1 —ey) and g induces the identity on OM/FM. This means
that Bis in E(M) and so M.~ M according to Lemma 2.3, which completes the proof.

4. Cancellation

Let X, M and N be R-lattices, such that
XoM=X®N. (*

Under what conditions can X be cancelled here, i.e. when does (*) imply M =N? If E
is a maximal order, Theorem 1.4 and (2) imply that X can be cancelled if M €Lp, but

(1) After the completion of the present paper I found that a similar result has recently been
obtained by Roiter (see [13], Prop. 5) by means of different methods. Roiter assumss, that kM/kX
affords a faithful representation of 4, which is a little more restrictive than our assumption on the
T(Ai, X).
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for M ¢ Co, this is no longer true. Other examples where cancellation is not possible can
be constructed by means of Proposition 2.10. On the other hand, we already mentioned
in the introduction, that if X is a projective R-module, the cancellation-theorem of Bass
([2], § 9) implies, that X can be cancelled if M possesses a local direct factor, which is free
of rank >2. For non-projective X however, no such condition seems to have been known.

We remark first, that (*) always implies M ~ N since Lr, has unique decomposition.

Now suppose X fixed and let ¥ vary in the genus I'(M) that contains M. Then
Y-Xo¥Y

induces a map j of the isomorphism classes in T'(M) into those of I'(X @ M). If this map j
is injective, then X can be cancelled in (*) even if M is replaced by some M’ ~ M. Now
suppose that both M and X@M belong to Lz. Then from Theorem 2.2 and (2) we see
that j is injective if and only if

Hy=1Ig(ey) N Hygy
Using this condition we can show

TarorEM 4.1. Suppose M €Ly and let X be a local direct factor of zM for some z>0.
Then for N €Ly

XOM=X®N implies M=N.

Since X is a local direct factor of zM, r(4,, X)>0 implies 7(4;, M)>0. From this we
see, that e, —exq, and that X@ M is in Ly too. According to the remark above, we must
show that Hy=Ix(ey) N Hygy But Ig(ey)=Ig(exgou)> Hxou and so the theorem is
equivalent to

Hy=Hygp.
We need one more reduction. Since X is a local direct factor of zM, we obtain from
Theorem 3.6 that there is a decomposition '

G+)M=~X®T with T€L,

This implies (z+2)M =(X®M)® T and so H yg,, is a subgroup of H,,,),. Thus we have
Hy<Hyxou<H o
Now the theorem follows from
Lemma 4.2. For any M €Ly and any integer s>0, Hy—Hg,,.

We know already that Sg(e,,) is contained in every H,,, (Lemma 2.6) and so we need
only show that H,,/Sg(e)) does not depend on s. As before, define | by FM = OMf. Then
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for € E(DOM), =1 (f) implies n(z) =1 (f). This is easily seen to be true if { is generated
by an ideal of the center; the general case follows from this by extending k to a splitting
field of 4. Put Q=E(M)/f and let E*(M) be the subset of elements prime to ¥ in E(M).
Then the map E(M)—@Q takes every x€ E*(M) into an invertible element of @ and so we

have an epimorphism
¢ B (M)~>GL(1, Q).

In the same way, if we define f, by F(sM)=O(sM)f,, the map E(sM)—E(sM)/f, induces
an epimorphism
s B*(sM)—~GL(s, Q).
We embed E*(sM) in E*((s+1)M) by a—>a®id,, and in the same way GL(s,Q) in
GL(s+1, Q). Now @ is an Artin-ring and so =1 defines a stable range over @ (see [2],
p- 14). If &(s, @) denotes the subgroup generated by the elementary matrices in GL(s, @),
we have ([2], Theorem 4.2)
GL(s, @) =GL(1, Q)e(s, Q).

Now E(sM) is the ring of s x s matrices over E(M). Every element of &(s, @) lifts to an
elementary matrix e in E*(sM) and n(e)=1. Thus for every g,€ E*(sM) we have g,=g,ex
with g, € E*(M) and z€XKer g,. But then z =1 (f,) and =n(z) =1 ({), which implies n(g,) =
n(g,) (%). Consequently, H ,,/Sg(es) = H,/Sg(es) and this completes the proof of the lemma
and of Theorem 4.1.

Remark 1. If M ¢ Ly, then at any rate sM €Ly for s>1 and from the lemma we see
that H,=H,, for every s>1.

Remark 2. If we apply the cancellation theorem of Bass ([2], Theorem 9.3) to R-lat-
tices, we obtain: If X is projective and M has a local direct factor, which is R-free and
of rank > 2, then XM =Xe M’ implies M = M’. This is a special case of our theorem,
since the hypothesis implies that M €Cj and that X is a local direct factor of some zM.

As an application, we consider the following special situation. Let M €I'€(, and
consider the genus sI', that contains sM for a fixed integer s>1. Choose s —1 R-lattices
M'in I and let N denote their direct sum. Then N is a local direct factor of every Y €sI’,

and we obtain from Theorem 3.6 that ¥ has a decomposition
Y2Me.oM '0X, with X~M. 4)
In particular we can choose M1=...=M*"*= M and this yields

Y=~(s-1)M®X, with X~ M. @)
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From the cancellation theorem it follows immediately that in both these decompositions,
Y determines X uniquely, up to an isomorphism, provided M is in Cy. If this is not the
case, then from Y=Y’ we can only infer that M'® X =M@ X’ for every .

In some special cases the decompositions (4) or (4’) are well-known. Let first 4 be a
skew-field, R=% a maximal order in A and take M =~ . Then for every Y€Lp, kY is
isomorphic to the direct sum of s copies of 4. According to Corollary 1.2, this implies
that ¥ ~ F, where F is a free £-module of rank s. Thus every Y € Ly has a decomposition

Y>F,_, 0%,

where U is a left O-ideal with k% =A4. This was proved by Chevalley ([3], p. 12). If 4 is
any simple algebra and £ a maximal order in 4, we take M such that kM is an irreducible
A-module. Then in the same way as above we see, that to every Y € Lp there is an integer
s such that ¥ ~sM and Y has decompositions of the form (4) and (4') (Jacobinski [9]).

Another example is furnished by projective modules over a group ring o if no prime
dividing the order of G is a unit in 0. Swan [13] has shown that such a module P is locally
free everywhere. This means that P~ F, where F, is free of rank s. Then from (4') we
see that

P=F, ol

where I is a projective ideal with kI =kG (Swan [13], Theorem 7.2). If none of the simple
algebras in kG is a totally definite quaternion skew field, then F, is in L,¢ and I is uni-
quely determined (up to an isomorphism) by P. From this we can obtain conditions for

cancellation of projective oG-modules. We prefer however to discuss this later (see 5.3).

5. The group D(B)

We now define a kind of relative Grothendieck-groups with relations for split exact
sequences only. Let B< ; be closed under direct sums and let Y(B) be the free abelian
group with a generator y,, for every M € B. Denote by Y’(B) the subgroup generated by
all elements y,, —yy—ys such that M =N®8S, for N, S€ B. Then we put

D(B)=Y(B)|Y'(B).

If we consider B as a category with only direct injections and direct projections as mor-
phisms, D(B) is the usual Grothendieck-group of B. To avoid confusion with the Grothen-
dieck-group K(B) of B as a subcategory of C;, we prefer the notation D(B). Of special
interest is the case B =] the category of finitely generated projective R-modules; then

the two groups coincide.
2 — 682903 Acta mathematica. 121. Imprimsé le 16 septembre 1968,
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If R=0G is the group ring of a finite group G, one can define a ring structure
on D(L,;) by means of the tensor product. This ring has been studied in several papers
by Reiner; see Reiner [11]and the literature cited there. In this paper, which was published
after the completion of the present work, Reiner also gives a proof of a part of Theorem
5.6 in the special case that B=(.

The image of M € B in D(B) we denote by [M]p or simply by [M]. Clearly, [M]z=[N]y
if and only if there is X € B, such that ¥ X =2 N®X. Let ¢z be the central idempotent
in A such that

exgM=M and (1-—eg)M=0 forall MEB,
and let H ; be the subgroup of Ig(ey) generated by all groups H,, for M € B. H 5 is generated
by a finite number of groups H,,, M,€B and then T=@®2M,is in B and Hy=H,.
Replacing if necessary T' by 2T we see that

Hz=H, with T€BNLh. (*)
As before we put Vg=1Ix(ep)/Hp.

Then vg(M, N) is defined for M ~N and M, N€B (cf. Remark 1 after Lemma 2.6). We
now show

ProPoSITION 5.1. Let BS L, be closed under direct sums and denote by [M]p the
tmage of M € B in D(B). Then for M, N € B we have

1) [M]—[N]5 is torsion if and only if M~N
2) [M]z=[N]p if and only if M ~N and vz(M, N)=1.

According to Proposition 2.8, M ~ N implies zM ~2N and so [M]z—[N] is torsion.

Conversely, if [M];—[N]p is torsion, we have
M X=2NpX, X€B and 2z>0,

and this implies M ~ N 'since the Krull-Schmidt theorem holds for R,-lattices. To prove 2),
suppose first M ~ N and vz(M, N) =1 and choose T as in (*). Then alsovz(M @ T, N®T)=1
and since Hp=H;=Hygy, this implies M®T=N@T and so [M]z=[N]s. Conversely,
if [M]5=[N]p then there is X € B such that N X~ M ® X. Replacing if necessary X by
X®T, we can assume X €Ly and Hy=Hy. But then we obtain from Theorem 2.2 that
va(M ®X, N®X)=1 and this implies vz(M, N)=1, which completes the proof.

Since H is generated by norms of principal ideals prime to , we always have
Hyz<8(eg) N Ig(ep). In particular, if B=L, we have Hp=8(1)N Ig(1) and then, according
to Theorem 1.4, v5(M, N)=1 is equivalent to DM =~ ON, provided M € L. Thus we obtain
(cf. Definition 2.9 and Proposition 2.10)
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COROLLARY 5.2. Two R-lattices M, N €Ly, are in the same resiricted genus if and only
if they have the same image in D(Lg).

The second part of Proposition 5.1 can éasily be rephrased as a condition for can-

cellation in the category B. We say that M € B is cancellative in B, if every relation
X®M=X®N, with X, NEB (**)

implies M = N. If every element of B is cancellative, we say that B has cancellation.

PrOPOSITION 5.3. An element M € BN Ly, is cancellative in B if and only if
CHy=Hpgn Ig(ey).

For a relation (**) is equivalent to [M]5=[N]; and this in turn is equivalent to M ~ N
and vy(M, N)=1. But according to Theorem 2.2, M and N are isomorphic if and only if
oM, N)=1. Thus M is cancellative in B if and only if for every N in B with M~ N,
vp(M, N)=1 implies v, (M, N)=1. From the definition of ¥V and V, it follows imme-
diately that this is the case if and only if H, =HzN Ig(ey).

As an application of this proposition, let G be a finite group and consider the category
P of finitely generated projective oG-modules. Swan (see [15]) has raised the question
whether P has cancellation or not. He himself showed (Swan [16]) that this is not always
the case by constructing—for a special group G—a non-cancellative projective oG-module.

From the proposition above we see, that there are two possibilities for a PE D to be
non-cancellative. The first is that P¢L,; and this is actually the case in the counter-
example given by Swan. The second possibility is that Hp+Hp N Ig(ep) and I do not know
whether this can actually occur. If instead of ) we consider the subcategory PP, consisting
of all P€P such that kP is kG-free, we can show

COROLLARY 5.4. Every element of P°N L,¢ is cancellative in P.

Let F; denote a free oG-module of rank s. According to a theorem of Swan (Swan [15],
Theorem 6.1), P€ P°® implies P~ F, for some s>0. If none of the simple algebras in k&
is a totally definite skew-field of index 2, such a P is automatically in £,¢; otherwise this
is the case only if s>1. But then Lemma 4.2 and the remark after it implies that the
group Hpis the same for all PE€ PN L,¢. This means Hp=H, and this implies that P is
cancellative in P°. Since every Q€ P is a direct factor of some F,, we see that Hy=Hpe

and consequently every PED°N L,¢ is cancellative also in .

COROLLARY 5.5. Suppose that none of the rational primes dividing the order of G is

a unit in o and that none of the simple algebras in a decomposition of kG is a totally definite
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skew-field of index 2. Then the category of finitely generated projective 0G-modules has can-
cellation.
For our assumptions imply that D= D° (Swan [15], Theorem 8.1) and that P°c Coq.
We define the sum of two genera I'; and T, to be the genus which contains M, ® M,
with M, €I’ and M,€T,. Clearly ', + T, does not depend on the choice of M, and M,.
Moreover, Theorem 3.3 implies that every R-lattice X in I'; +I', has a decomposition
X=X ®X, with X,€I'; and X,€I,. Thus we could equally well define

I+ ={X,0X,, X, €I}, X €I}

We denote by B the set of genera, which contain elements of B. In the same way as
for R-lattices we can define the group D(B) with relations corresponding to all sums
I'=T,+T, in B. Since I'+IV=T+T" implies I =T, the map B — D(B) is an injection.
Moreover, if D,(B) denotes the torsion subgroup of D(B), the first part of Proposition 5.1
implies that the sequence

0 D,(B)—D(B)—D(B)~0

is exact. As we will see, D(B) is free and so this sequence splits. Moreover, we will show,
that D,(B) is isomorphic to a subgroup of V. As already mentioned, a special case of this
was shown by Reiner, who proves that D({y) is free and that D,(Lg) is a finite group
(see Reiner [11]).

TaEOREM 5.6. For any B< Ly, which is closed under direct sums the group D(B) is
free and
D(B)=W ;@ D(B),

where Wp={v3(X, X'), X~ X', X, X'€ B} is a subgroup of V.

We show first that D(B) is free. If M €T, then I' is completely determined by the
set {M,}ycv (Lemma 3.1). Thus I'>{M,},.y induces an injection

o: D(B) > ] D(La,).

Now every R,lattice has a unique decomposition into indecomposable lattices. This
means that each D(Cp) is free with the images of indecomposable B, -lattices as generators
and so D(B) is free too.

It remains to show that D,(B) is isomorphic to W . Choose m pairs S, S; in B with
8;~8; such that W is the set of all v5(S;, 8;), t=1, ..., m and put S=8,®...®8,,. Then
S€B and Wy consists of all v4(S, S’) such that 8'~S and 8’€B. Now v5(S®8, §'®8")

is in W and equals vg(8, 8')v5(S, 8”). This shows that Wy is a group.
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Replacing if necessary S by S@ 7', we can assume that moreover Vg=V 5. According
to Proposition 5.1, every T€.D,(B) is of the form [X];—[X']z with X ~ X’. Then we have

also
T=[S0X]-[S®X]s.

We choose 8’ € B such that vy(X, X')=vg(S, 8). Since Vy=Vs=Vyss we see from
Theorem 2.2 that S@ X’ =8 ®X. Thus we obtain that every 7 €.D,(B) is of the form

7=[815—[8"]s with §'~S and §'€B.

But now it is easy to see that the map p:t—>v5(8, §') defines a group homomorphism
D,~ W, which clearly is onto. Because of Proposition 5.1, ¢ is also injective and this
completes the proof.

Remark. Tf the category B is also closed under direct factors in Lz, then Wy="Vp,
for then every isomorphism class in the genus determined by S contains elements of B
(cf. Prop. 2.8). But in general Wz and ¥V, will not be equal. For instance, if X is any fixed
R-lattice and B={sX, s>0}, then W is trivial.

The injection ¢ defined above identifies D(B) with a subgroup of [, v D(Cp,). Tt is
not hard to describe this subgroup explicitly. For simplicity, we consider only the case
B =L, Let k' be a splitting field of 4 and let K(4’) be the Grothendieck groupof A’ =k'® 4,
or equivalently, the group of characters of finitely generated A’-modules. If k" is any
extension field of k and A" =k"® A4, then we can consider K(A4") as a subgroup of K(4');
in particular, K(4,) is a subgroup of K(A4') for every p.

Let X be an R,-lattice. Then the map Xk, X induces a homomorphism

Xt D(Lgy)—> K(4')

Let a={a,},cv be an element of [[ D(Lz,). We extend y, to a homomorphism []D(Lz,)~>
K(A’') in the obvious way. Then we have

ProrosiTION 5.7. The map D(Gr)~>]1, e v D(Cg,) induced by I'~>{M,}, ¢ v identifies
D(Gr) with the subgroup of all a €[] D(Lz,), such that

1) y (@) =x.a) for all p, g in U, and

2) x,(a) is already in K(A).

These conditions are clearly necessary and from Lemma 3.2 it follows immediately
that they also are sufficient.

With a view to applications in the next section, we now specialize B in the following
way. For M €C,, we put

By={X, XoX'=sM, X,X'€Ls s>0}
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Let T' be the genus that contains M. Writing Br instead of B,, we have
Br={A, A+A’'=sI', A, A'€Gg, s>0}.

Clearly, By,= B, for every z>0. Thus, replacing if necessary M by 2M we can assume that
Megs.

ProrosiTION 5.8. Suppose MEL, and let T' be the genus which contains M. Then
D(B,) = Vy ® D(Br)

and D(Bry) is free and finitely generated.

By, is clearly closed under direct sums and direct factors, so that Wy, =V, and

we obtain
D(By) = V 5,,® D(Br).

We show first that Vg, =V, or equivalently, Hz,=H,. Since M € By, this amounts to
showing that Hy<H,, for every X€B,,. According to the definition of B, we have
X@® X' ~sM and this implies H y< H,,,. But H = H, (Lemma 4.2) so that in fact H y< H,,.
— It remains to show that D(Bry) is finitely generated. As in the proof of the theorem, we

have an injection
o: D(By) —->p]e_LD(CRD)

and here Im ¢ is contained in [],. v D(By,). Now each D(B,,,) is finitely generated—
namely by the images of those indecomposable R, -lattices, that appear in a decomposition
of M,—and so D(Br) is finitely generated too.

We apply our results to the category P =Py of finitely generated projective R-
modules. Let again F; denote a free R-module of rank s. If none of the simple algebras
A; in A is a totally definite skew-field of index 2, then every F| is in Lz; otherwise we
must suppose s>1. Depénding on this we put T=F, or T=F, Then P,=DB; and the
group D(B;) coincides with the usual Grothendieck-group K(Pgz). From Proposition
5.8 we obtain

E(Ds) = V@ D(Da),

where D( ‘])R) ~ Z“ is a free abelian group of finite rank ¢. In case T'=F,, V; is simply
the factor group of the group of ideals prime to g% in the integral closure of the center of
A modulo the subgroup of ideals of the form (n(z)) with x€ R; if T'=F, then 2 must vary
in the ring of 2 x 2 matrices over R.

Let again D} be the subcategory of all P€ Dy, such that &P is a free A-module. D%
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satisfies the condition of Theorem 5.6. Moreover, Hpo = Hp=H; and so we obtain
E(D%) = V,@D(Dh),

where D(b%) ~ Z“ is a free abelian group of rank o,.

The projective class group C(R) is defined as the factor group of K(P;) modulo the
subgroup generated by the image of F, (see Rim [12]). Let I" be the genus that contains
F,. Then it may happen that I'=zA with A€Gz and z>1 and then A isin ‘i)E too. Ifag

denotes the maximal value of such a z, we obtain from the expression for K(Djy) that
ORY=2V,0Z]|azZ ®ZC™D

Similarly the reduced projective class group C%(R) is defined as the factor group of
K(P%) modulo the subgroup generated by the image of F,. Since here a decomposition
T'=2A with z>1 and A€ ‘i)% is impossible, we obtain

CO(R) ~ VT@Z("o—l)

Specializing once more, we consider the case R=o0@, G a finite group. Then Swan
({15], Theorem 6.1) has shown that if P, Q€ D, and kP =£kQ as kG-modules, then P and
@ are in the same genus. This means that D(ﬁoa) is isomorphic to the additive group
generated by the characters of projective o@-modules. This group has been determined
explicitly by Swan ([17], Theorem 4). In particular we see that every genus in D¢ con-
tains some F. This means that ¢,=1. Moreover, a,;=1 since the trivial representation of

G occurs only once in the regular representation. Thus we obtain
CloQ)=V,@Z°
and Coo) =V,

The second formula implies in particular that C%o@) is a finite group for which fact
different proofs have been given by Reiner, Rim and Swan, see for instance Swan [17].
Because of the importance of the reduced projective class group, we state our result
explicitly.

COROLLARY 5.9. Let @ be a finite group and denote by f the product of all primes p in
o such that o0,G is not a maximal order (this f divides the order of G). Let 1, denote the group
of all invertible ideals prime to f in the integral closure over o of the center of kG. Let H denote
the subgrowp of 1, generated by ideals of the form (n(x)), where x varies in oG if none of the
stmple algebras in kG is a totally definite skew-field of index 2 and in the ring of 2 x 2 matrices

over oG otherwise. Then
C%oG)=1I/H.
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6. Decompositions into indecomposable lattices

We have repeatedly used the fact that g bas unique decomposition, i.e. that every
R,-lattice is uniquely decomposable into indecomposable R -lattices (up to an automor-
phism). It is well-known that this is not true for L, (Reiner [10]). Examples of R-lattices
that have essentially different decompositions follow immediately from Proposition 2.8
and 2.10. In this section we will give a survey of the different possible decompositions of
a given R-lattice into indecomposable R-lattices.

In the previous section we have already defined the sum of two genera I'; and I',
to be the genus generated by X, ® X, for X, €T", and X,€I',. A genus A is indecomposable
if A=A, +A, implies A; =0 or A,=0. From Theorem 3.3 and Corollary 3.5 we know, that
A is indecomposable if it contains an indecomposable R-lattice and that then every ele-
ment of A is indecomposable.

Now take M € Lz and let

M=M®..0M, (*)

be a decomposition of M into indecomposable R-lattices. Let I, I'; be the genera that con-

tain M and M, respectively. Then from (*) we obtain a decomposition

=0, +..4+T, (**)

Here the I'; are indecomposable genera since each of them contains an indecomposable
R-lattice, viz. M ;. Now let us start with a decomposition (**) of the genus I into indecom-
posable genera. Then Theorem 3.3 implies, that there is at least one decomposition (*)
with M ,€I';. Thus our problem of finding all decompositions of a given R-lattice M falls
into two parts. First we have to determine all the different decompositions (**) of the
corresponding genus and then to every such decomposition, we must find all different
decompositions (*) with M,€T";. The first problem, viz. decompositions in Gp, we will
discuss later in this section; the second one is easily solved by means of Theorem 2.2,
provided I'; € Gy, for all <.

Take a fixed decomposition (**) and suppose that we have already found one corre-
sponding decomposition M =M, @...® M, with M,€T",. Let X, vary in I';; then we have
to find all different decompositions M =X, @...@X,. In the same way as after Proposi-
tion 2.1, we denote by T, the set of all R-lattices of the form OM,a N M, with a prime
to . Since I'; contains representatives of all isomorphism classes in [';, it is sufficient to
let X; vary in T',. Then n(M;, X,;) ==, is defined; this is an ideal in I g(er,)- Recall that for
every genus A we identify Ig(es) with a subgroup of Ig(l) by means of the injection

a~a®(1 —e,)C. Thus z; becomes an element of Ig(er) and the map (z,, ..., 2,) >z, ... %,
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defines an epimorphism
[T Ig(er,) = Ig(er).

The image of [ Hr, is clearly in Hr and so we obtain an epimorphism
@: [[Vr,~Vr.

Now suppose I',€Gr for i=1, ..., ¢; then T’ is in G too. The isomorphism classes in
I';and I are in 1-1-correspondence with the elements of Vr, and Vrresp. Thus X, ®...® X,
is isomorphic to M if and only if the corresponding element of [] Vr, is in Ker ¢. This
means, that every element of Ker ¢ corresponds to a class of equivalent decompositions
of M.Some of these may differ only by the arrangement of the factors. Discarding these,
we have solved the first problem mentioned above.

Before proceeding to the second problem, we deduce a necessary (but not sufficient)

condition in order that £y has a unique decomposition

ProProsIiTION 6.1. If L, has unique decomposition then |I'| =1 for every I'€Gp,
that is M ~ N implies M =N for arbitrary M, N € .

If M~N, then for some integer z we have zM ~2N (Proposition 2.8) and, since £,

has unique decomposition, this implies M =2 N. — A consequence of this is

CoROLLARY 6.2. If L has unique decomposition, then the maximal order C of the

center of A is a principal tdeal ring.

Let T" be a genus in (g such that ep=1. Then I' is also a genus of R-lattices, since
R< D. If £, has unique decomposition, we have |I'| =1. According to Theorem 1.4, this
implies I(1) =8(1), which is a little more than asserted.

We now turn to the question of finding all decompositions of a given genus I' into

indecomposable genera. Clearly, every such decomposition takes place in the category
Br={A, A+AN =zD, A, AN€Gg 2>0}

which we introduced in the preceding section. Instead of only I', it is more convenient to

study decompositions of all elements of Bp at the same time. We show

THEOREM 6.3. For arbitrary I' €y, the category By contains only a finite number of
indecomposable genera.

Let [A] denote the image of A in D(Br). The map A—[A] is an injection and
thus identifies By with a semigroup D+(By) contained in D(Br) and D+(Br) generates
D(Br). We first show
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LeMMma 6.4, There are a finite number of Z-homomorphisms
fi: D(Bp)—~Z%Z, j=1,.., N
such that an element x of D(By) is in D+(By) if and only tf f;(x)=0 for j=1, ..., N.

For each A€ Br, choose an R-lattice X €A, and map A onto X,,. This induces a homo-
morphism :
0y: D(Br)—D(By,).

The group D(B,,) is free; a basis is formed by the images of the indecomposable R,-

lattices T';, that occur in a decomposition of M. Thus we have
opx=2[T]+..+2[T,] withz,€Z.

Let {f;}i be the set of all projections x—z; for p varying in U. Then clearly f;(x)=>0 is
necessary for x€D+(Byr). Conversely, suppose that f,(z)>0 for all §. This means that
each o, is in D¥(By, o) for p€U and so there exist R,-lattices Y?, such that g,z =[Y"]
for p€ U. Now it is easy to see, that there exists an A-module S, such that £,®,S ng,@,,p Ve
for each p € U (cf. Proposition 5.7) and then Lemma 3.2 implies the existence of an R-lattice
Y, such that ¥,= Y? for each p€Y. Let A be the genus that contains ¥ and let y be the
image of that genus in D+(Br). Then we have o,2 =0,y for every p€ U. But we have seen

earlier that the map
o: D(Br) - [1 D(By,)
peU

induced by the ¢, is an injection. Consequently, we have x=y and z is in D*+(Br).

Let m be the number of generators of D(Br). Then the rank of {f;}{ is m too;
for otherwise D+*(Br) would contain a subgroup =0 of D(Br). But if x€ D+(Br) and
—ax € D¥(Br) then x=0. We view D(Br) as an m-dimensional point-lattice. Then the in-
equalities f,>>0 define a non-degenerate convex cone in D(Br). Such a cone is the

union of a finite number of cones C,, each of which has exactly m faces. Thus we have

D¥Br)=UC,

and each O, is defined by m independent inequalities g,>0 with g;€Hom (D(Br), Z).
Now take an indecomposable genus in Br and let « be its image in D+(Br). Then z lies in
some C; and is a fortiori indecomposable in (', that is x=a +b with a, b€C, implies a =0
or b=0. Thus we need only show that such a cone C only contains a finite number of
indecomposable elements. But this is easy to see. Suppose C is defined by the inequalities
g;=0, 7=1, ..., m. Since the g, are independent, we can find integers a,>0, such that the
system
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9;=9;
g:=0 fori=j
has a solution ¢;. If  is an element of C such that g,(x) >a; for some j, then z—¢;is in C
too and so z is decomposable. This means that the indecomposable elemerts of C satisfy
the system
0<gx)<a;, j=1,..,m,

which has only a finite number of solutions. This completes the proof of Theorem 6.3.

Nowlet A, ..., A, be the indecomposable genera in By, and let ,, ..., z; be their images
in D(Br). Since every genus has at least one decomposition into indecomposable genera,
these z; generate D(Br) and so s=m. If s happens to be=m, then the x; are a basis of
D(Br) and every element of D+(Bry) is uniquely representable in the form z, 2, +... +-z,%;
with z,>0. This means that Br has unique decomposition.

If s>m, there is at least ohe non-trivial relation 2,z, +... +2,x,=0. Separating posi-
tive and negative z;, we obtain a non-trivial relation

Seii=2z A,

Thus, for s>m, Br does not have unique decomposition. But this does not imply, that
every element of Bp has several different decompositions into indecomposable genera.
In particular, the genus I with which we started, may or may not have a unique decom-
position into indecomposable genera. The situation can be described in the following way.
Let Y be the free abelian group with basis 9, ..., , and denote by Y+ the elements of ¥
that have non-negative coefficients with respect to this basis. Then y,—~[A,] induces
an epimorphism @:Y—D(Br) and it is easily seen that the different decompositions
of a genus A are in 1-l.correspondence with the elements of @~'([A])N Y+. Thus if
@:Y—D(Br) is known, we can find all decompositions of a genus A€ Br. — To describe
those genera, which have more than one decomposition into indecomposable genera, let
a=2zy,+...+2y; be an element+0 in Ker . Separating positive and negative z;, we
can write a=t—¢', with £, ¢ € Y+. Let C be the subcategory of genera in Br, whose image
in D(Br) is of the form ¢(t). Then clearly, a genus A has more than one decomposition
into indecomposable genera if and only if it has a decomposition A =A'+ A" with A'€C.

— We now mention a simple case where (j has unique decomposition.

PROPOSITION 6.5. Suppose that U contains only one element p (i.e. B, is a marimal
order for q=+p) and that moreover K(A)=K(k,®A). Then Gp has unique decomposition.
In other words, if M, and N, are indecomposable R-lattices such that

M®.0M,~N,®..®N,
then s=t and the N can be rearranged such that M,~ N, for i=1, ..., s.
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First from Proposition 5.7 we see that our conditions on R imply that D(Gg) = D(Lg,).
Then from the construction of the f; in Lemma 6.4 we see that also D*((g) and D+(Lg))
are isomorphic. But L, has unique decomposition and so Gy has unique decomposition
too. — Clearly if moreover every genus in ( has only one isomorphism class, then Cg
has unique decomposition, (cf. Heller [8), who proved this if o is a valuation ring and
K(4)=K(k,oA4))

COROLLARY 6.6, Let G be a finite p-group with p=+2 and put R=7ZG. Then (i has
unique decomposition.

The discriminant of Z@, with respect to the trace of the regular representation is a
power of p. This implies that Z,Q is a maximal order for g #p. Let 4, be one of the simple
algebras in QG and let K, be its center. Since K, is a subfield of the field of p™-th roots of
unity, p is completely ramified in K;. Thus Q,® K, is a field and then K(QG)=K(Q,4)
follows from the well-known fact that A, is a complete ring of matrices over K,.(1) We
sketch a proof of this, following the method of Schilling, which is based on the fact that
an algebra that does not split is ramified at two primes at least. Suppose that H,=G/G,
is represented faithfully by 4;. Since the center of H, is not trivial, we see that K; con-
tains a p-th root of unity and because of our assumption p +2, this implies that K, is
completely imaginary. Let p be the (single) prime in K, that divides p. Since the discrim-
inant of Z@G is a power of p, this p is the only finite prime of K; that could be ramified
in 4;. Thus at most one prime of K, is ramified in 4, and so 4, splits. — From Theorem
6.3 we obtain immediately

TuEoREM 6.7. For an arbitrary R-laitice M, the category By={X, X®Y =z2M,
X, YELy, 2>0} contains only a finite number of indecomposable R-latlices (up to isomor-
phisms).

This follows from the fact that indecomposable R-lattices determine indecomposable
genera and that B, is closed under direct factors in L. Let 7', ..., T'; be representatives
of the different indecomposable R-lattices in By,. Then in a similar way as for genera, we
can give a description of the different decompositions of a R-lattice N € B,,; the only com-
plication arises from the fact that the map X ~[X]€ D(B,,) is not injective. Define ¥, ¥+
and @:Y—>D(B)) in the same way as for genera. Take a fixed N€B, and suppose
2+ T2y € NN N Y+, Put N' =2, T,+...+2,T,. Then we know, that [N']=[N],
and this means that there is an R-lattice X € B,,, such that

XON=X®N'.

(1) See Schilling, J. reine angew. Math., 174, 1936, p. 188 or Roquette, Arch. Math. (Basel), 9,
1958, 241-250.
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According to Theorem 4.1, X can be cancelled here if N€L; and if X € By. Thus, for
N€Ly and By=B,, the different decompositions of N into indecomposable R-lattices
are in 1-1-correspondence with the elements of ¢—}([N]) N Y+.

Finally, we note a special case of the preceding theorem. If M is a free R-module,

then B, is the category of finitely generated projective R-modules and we have

CoROLLARY 6.8. The category Dy of finitely generated projective R-modules contains

only a finite number of indecomposable modules (apart from isomorphism).
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