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Let k be an algebraic number field of finite degree, A/k a semi-simple finite-dimensional 

algebra over k and o a Dedekind ring with quotient field k. We consider o-orders R in A, 

tha t  is, subrings with k R = A  and 1 ER, such that  R is finitely generated as an o-module. 

An important  example is the group ring oG of a finite group G, which is an order in kG. 

An R-lattice M is a finitely generated (unital) R-module, which is torsion-flee as an o- 

module. The category of R-lattices we denote by  CR. For every prime ideal p in o, let o v 

be the p-adic completion and put  R~=%| M~=op| etc.  Then R~ is an o~-order in 

A n and M v is an R~-lattice. 

Two Rv-lattices M and N belong to the same genus--notat ion M ~  N if My ~ Nv as 

Rv-modules for every p. By ~R we denote the category of genera of R-lattices. I t  is well- 

known, tha t  M~_N" does not in general imply M ~ N ;  but  the number  of isomorphism 

classes in a genus is finite. In  the present paper, we first give a classification of these 

isomorphism classes by  means of ideal classes in the integral closure over o of the center 

of A (Theorem 2.2). This generalizes results of an earlier paper  (Jacobinski [9]). The proof 

makes use of the classical theory of maximal  orders and here we need the assumption, 

tha t  k is an algebraic number  field and o Dedekind. For a very small exceptional class 

of R-lattices, the classification is not complete. This is due to the fact, tha t  maximal  

orders in a totally definite skew-field of index 2 have rather  irregular properties. 

We then use our result on the isomorphism classes in a genus to s tudy various prop- 

erties of R-lattices. As an immediate consequence we obtain an upper bound---depending 

only on R- - fo r  the number of isomorphism classes in a genus (Prop. 2.7), 

An R-lattice X is called a local direct factor of M, if for every p, Xr is isomorphic to 

a direct factor of My. We show (Theorem 3.3), tha t  then M has a decomposition of the 

form M = X ' |  with X ' N X ,  In  a very special case--R=oG the group ring of a finite 
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group and X a free oG-module the existence of such a decomposition was shown by 

Bass ([2], Prop. 10.2), using results of Swan. Then we deduce a rather  mild condition, 

referring only to the A-modules k| and kQM, in order tha t  a local direct factor X of 

M be isomorphic to a (global) direct factor of M. (Theorem 3.6). Such a condition can be 

obtained from a theorem of Serre ([12], and [2], 13. 24), which is valid for a wider class of 

modules than  R-lattices but only if X is a free R,module. Our result holds for arbi trary 

R-lattices X and in case X is free it is somewhat stronger than the one deduced from 

Serre's theorem. 

In  section 4 we study cancellation, i.e. under what conditions does a relation 

Y|  Y| imply M~=N. In  case Y is projective, such a condition follows from the 

well-known cancellation theorem of Bass (Bass [2], p. 28). Our result also holds for non- 

projective R.lattices Y and is somewhat stronger for projective Y. This makes it possible 

to give a rather  complete answer to a question raised by  Swan (Swan, [13], w 10) concerning 

cancellation in the category of projective modules over a group ring (see 5.3-5.5). 

Let  B he a category of R-lattices, which is closed under direct sums. We define a 

relative Grothendieek group D(B) with relations for split exact sequences only. I t  turns 

out, tha t  two R-lattices are in the same genus if and only if their images in D(ER) differ 

by  a torsion element only. We then show tha t  D(B) is the direct sum of a free group and 

a finite group, which is isomorphic to a group of ideal classes of the same type as the one 

tha t  occurred in connection with the isomorphism classes in a genus. In  particular, if 

we consider the category 0n  of finitely generated projective R-modules, then D(~R) 

coincides with the ordinary Grothendieck group K(~R) and we obtain a rather  explicit 

description of K(~n)  from our result on D(B). 

In  the last section we study decompositions into indecomposable R-lattices. We say 

tha t  B has unique decomposition, if for every element of B the decomposition into inde- 

eomposable R-lattices is unique, up to an automorphism. I t  is well-known tha t  l~Rv has 

unique decomposition and tha t  I~R in general has not. We show, tha t  the lack of unieity 

has two sources. The first comes from the fact tha t  a genus may  contain several different 

isomorphism classes. A survey of the various decompositions arising from this source can 

be given by  means of our result on the isomorphism classes in a genus. The other source 

comes from the fact that  the category ~a- -wi th  addition defined in the natural  w a y - -  

does not in general have unique decomposition. We are thus led to s tudy decompositions 

of genera instead of R-lattices, and we give a survey of the different decompositions of 

a genus. As a corollary we obtain tha t  there are only finitely many  indecomposable pro- 

jective R-modules (up to isomorphism). I f  ~n has unique decomposition, then decomposi- 

tions in IZR are rather  regular and easy to describe. We give a sufficient condition for ~R 
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to have unique decomposition; it turns out tha t  this is the case e.g. if R =ZG where G is 

a finite p-group and p #2.  

Notations. By R-lattice we will in general mean left R-lattice. Every  R-lattice M wilI 

be identified with its image in k |  then we can write kM instead of k |  For brevi ty  

we put  

E(M) = Hom s (M, M) 

and E(kM) =Horn  A (kM, kM). 

I t  is easily seen tha t  E(M) is an o-order in E(kM). We consider kM as a right E(kM)-  

module; this mahes M a right E(M)-lattiee. 

1. ] ~ i m a l  orders 

We consider first lattices over a maximal order C; for the arithmetic of maximaI  

orders see Deuring [5] or Chevalley [3]. A (fractional) full C-ideal is an C-lattice 2 c A ,  

such tha t  kg~ =A.  9~ is integral if 9~c C. The right order of • consists of all x E A  such tha t  

~{xc 9~. This is also a maximal order in A. When writing a product 9 ~ ,  we will always 

assume that  the right order of 9~ equals the left order of ~ . - - T h e  following proposition 

was proved by Chevalley [3] for A a skew-field. 

PROrOSITION 1.1. Let C be a maximal order in A and M Es Then 

1) E(M) is a maximal order in E(kM) 

2) i / N  E I:~) and k N  = kM, then there is a unique left E(M)-ideal a, such that 

N =Ma.  

For a proof see [9], Satz 1 (or [1], p. 12), where only the nnicity of a is lacking. I f  

M a = M b ,  then both ab -1 and its inverse ba -a are in E(M) and this implies a = b  ([5], 

p. 74). The proposition implies tha t  M ~ N if and only if a is a principal ideal, a = E(M)a,  

a E E(kM). Passing to the p-adic completion, we obtain 

COROLLARY 1.2. Two C-lattices M and N are in the same genus i] and only i] k M  ~=kN 

as A-modules. 

I f  k M ~ k N ,  we may  suppose k M = k N .  Then N = M a  and M v = N r a  ~. Now E(Mu) is 

a maximal  order and every E(Mr)-ideal is principal. Thus we obtain M~ ~ Nv and the o ther  

direction follows from the Theorem of Deuring-Noether. 

Let  F be the genus tha t  contains M. The corollary implies, tha t  the isomorphism clas- 

ses in F are in I-I-correspondence with the left ideal classes in E(M). Eichler [6] has shown 
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that  the ideal classes in a maximal order are in 1-1-correspondence with certain ideal 

classes in the center, the application being given by the reduced norm. This means that  

the isomorphism classes in 1" correspond to certain ideal classes in the center of E(M). 
We are now going to explain this in more detail. 

Let A = • ~Ai  be the decomposition of A into simple algebras and let e~ be the 

identity of A~. For any R-lattice M put 

e M ~ ~ e~. 
etM~O 

Then eMM:M and (1--eM)M:O. If  M ~ N ,  then eM:e N and we can write er instead of 

e M. Let K t be the center of A~ and denote by C~ the integral closure of oe~ in K~. Then 

K= | ~K~ is the center of A, C= | ~C~ the maximal o-order in K and e~K the center 

of E(kM). A maximal order always contains the maximal order of its center. Thus, for 

M E s eMC is the center of E(M). 
Let l(eM) be the group of invertible fractional eMC-ideals. We embed I(eM) in I=I(1) 

by  x-+x| --eM)C and consider I(eM) as a subgroup of I .  Denote by n~ the reduced norm 

of E(e~kM) over K i and put n=~n~. For xEE(kM) the reduced norm n(x) is then an 

element of eMK. The norm n(a) of an E(M)-ideal is the ideal in eMC generated by all n(a), 
a E a. I t  is well-known (see Deuring [5], VI, w 4) that  

n{aS) =n(a)n(5) 

provided that the right order of a coincides with the left order of 5. Now Proposition 1.1 

permits us to define the reduced norm for a pair of ~-lattices M and N, provided kM = kN. 

For  then there is a unique left E(M)-ideal ~I such that  N = Ma and we define 

n(M, N) = n(tl) for N = M a .  

According to this definition, n(M, N) is an ideal in I(eM). Since we have identified 

I(eM) with a subgroup of I(1), we can as well consider n(M, N) an ideal in I(1). 

Let F be the set of all N E F such that  kN is a fixed A-module. Then r represents all 

isomorphism classes in F and the reduced norm defines a map 

n : F  • F-+I(er).  

This is an epimorphism because from the arithmetic of maximal orders it is well known, 

t ha t  every ideal in I(er) is the norm of some left E(M)-ideal. We note some simple proper- 

ties of the reduced norm. First we have 

n ( M , N ) = n ( M , U ) n ( U , N )  ifM, N, UeP. (1) 
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Put  U=M5 and N = Uc; then N =M5r Since the right order of 5 coincides with the left  

order of c, we have n(5r which is equivalent to (1). 

Now suppose M = X |  Y with X, YEI:c  and let N E F  be of the form N = X ' |  Y" 

with kX=lcX' and k Y = k Y ' .  Since we consider l(ex) as a subgroup of I ,  n(X, X') is in 

I and we have n(X, X') =n(X|  Y, X ' |  Y). Then from (1) we obtain 

n(X | Y, X'  | Y') = n(X, X') n( Y, Y') (2) 

I t  is well-known, tha t  maximal orders in a totally definite skew field of index 2 have  

rather  exceptional properties. As a consequence of this there is a - - r a the r  small--class 

of D-lattices which behave irregularly and which often must  be excluded in the sequel. 

We are now going to define the class of well-behaved lattices; since the situation is similar 

for non-maximal orders, we do this at  once for arbi trary orders R. 

Recall tha t  an infinite prime of Ki is an archimedian valuation of K~ and tha t  the 

prime is said to be ramified in A~ if the corresponding algebra over the completion of K t 

does not split, i.e. if it is a ring of matrices over the quaternions. Let  r(A~, M) denote the 

number  of irreducible A~-modules in a decomposition of kM. Then if A l is a ring of matrices 

over the skew-field ~2~, E(e~kM) is a ring of matrices of degree r(At, M) over ~ .  Then we 

define 

DEFINITIO:S 1.3. I:~ consists o/ all R-lattices M such that r(A~, M) =~1 whenever 

A~ is a ring o/matrices over a skew-field o/index 2 over Kt, in which every in/inite prime o/ 

K~ is ramified. 

Note tha t  this is a condition on kM only. Equivalently we could say tha t  M is in 1:~ 

if and only if none of the simple algebras in E(kM) is a totally definite skew field of index 2. 

Now let S(eM) be the subgroup of principal ideals (a) in l(eM), such tha t  each eia is 

positive at  every infinite prime of K~, tha t  is ramified in A~. Then we have 

THEOREM 1.4. (Eichler) For M EI:~ a/ul l  le/t E(M)-ideal a is principal, i /and only 

i] n(a) eS(eM). 

For a proof see [6]. Since we are concerned with isomorphism classes in a genus ra ther  

than  with ideal classes in a maximal order we reformulate this in the following way. Denote 

by  ~ the genera in s  and suppose F e ~ .  Pu t  Vr=I(er)/S(er) and, for M, N e U ,  let 

v(M, 1V) be the image of n(M, N) in Vr. Now from (1) and the theorem it follows tha~ 

v(M, N) does not change if M and N are replaced by isomorphic lattices. Thus we can 

extend the definition of v(M, N) to all M, N in F. Let  M be fixed and consider the map  

N-+v(M, N) for N e F .  Then the theorem says tha t  this map is a bijection of the isomor- 

phism classes in F onto Vr. In  the next section we will derive a similar result for genera 

of R-lattices, where R is an arbi t rary o-order in A. 
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2. Isomorphism classes in a genus 

Let  R be any  o-order in A. We choose a maximal order ~ which contains R and a 

two sided D-ideal ~ contained in R; such ideals exist since both ~ and R are finitely 

generated o-modules and k ~ = k R = A .  We do not suppose tha t  ~ is the maximal two- 

sided ~-ideal  in R. Recall tha t  we identify M with its image in k |  Then we have 

~Mc Mc ~M. 

This relation can be used to give several different characterizations of the lattices that  

belong to the genus determined by  M (see Jacobinski [9], Satz 2). We will now explain 

one of these. 

A fractional E(~M)- ideal  a is said to be prime to ~, if for every prime p in o, ~v#(1)  

implies av=(1). The same definition applies also to C-ideals or o-ideals. If  a is integral, 

then a is prime to ~ if and only if n(a), taken in E(~M) ,  is prime to n(~), taken in 9 .  

Let  a be prime to ~. Then a=a- la  ', with ~EeMC, a" an integral E(~M)-ideal  and 

both a' and a prime to ~. Then we define 

Ma = o:-I(M N ~Ma') .  

Ma is an R-lattice and according to [9], Satz 2, we have: 

PROI 'OSITIO~ 2.1. Two R-lattices M and N are in the same genus i[ and only i[ there 

is a left E(~M)-ideal  a, which is prime to ~, such that N ~Ma. 

Now choose an arbi t rary element X of 1 ~ and let ~ be the set of all Xa where a runs 

through all left E(~X)-ideals,  prime to ~. Then every isomorphism class in P contains 

an  element of ~ and in studying isomorphism classes, we can rep]ace I ~ by r ~. We remark 

first tha t  

~Xa = ~Xa (3) 

for we have C XaD ~(Xa)~ q~Xa and if Up = (1) this implies (~Xa)p = (CXa)p. But since 

a is prime to ~, ~p ~:(1) implies a~ = (I) and then (CXa)p = (~X)p = (CXa)p, which proves 

(3). l~rom (3) it follows easily that every R-lattice M in F determines a unique left E(CX)- 
idea] a such that M =Xa. For Xa =X~ implies ~X[I= ~X~ and this implies a =l~ according 

to Proposition 1.1. 

Now let M,/V be a pair of R-lattices in F. This pair uniquely determines the pair 

~M, ~N of ~-]attices and for this pair we have defined n(~M, ~N) in the preceding 

section. Thus for M, N E F we can define 

n(M, N) = n (~M,  ~N) .  
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According to this definition, n(M, N) seems to depend on the choice of the maximal  

order ~ .  This is, however, not the case, for n(M, N) is already determined by  the pair 

M, N considered as modules over the center of R (see Jacobinski [9], w 3). 

Let  I~(er) be the group of all invertible fractional erC-ideals tha t  are prime to ~.  

I f  we put  M = Xa and N = X~, then from (3) we see tha t  O N  = ~Ma-15 and so n(M, N) 

=n(a-15) is prime to ~! since a and ~ are prime to ~. Thus n(M, N) is in I~(er) for 

M, NEF. 

Now let M = Xa be fixed and let N vary  in 1 ~. Then n(M, N) defines a map 

n: r -+ I~(er). 

This map is an epimorphism. For every c E I~(er) is the norm of some left E(~M)- ideal  c, 

which is prime to @. Putt ing l~=ar and N = X ~  we see from (3) tha t  n(M, N ) = n ( c ) = c  

as desired. 

Denote by  H M the subgroup of /~(e r )  generated by  principal ideals of the form (n(a)) 

with aCE(M) and put  

VM = I~(er)/HM. 

We will show later tha t  M,~ N implies H M = H N. Assuming this we can write H r  and Vr 

instead of H M and VM. Denote by  v(M, N) the image of n(M, N) in Vr. Then v defines an 

epimorphism 

v: [~ xF->  Vr. 

We now show 

THEOREM 2.2. Suppose F 6 ~  and let M be any/ixed lattice in F. Then /or N 6 F ,  

the map 

N -+ v(M, N) 

de/ines a bijection o/the isomorphism classes in r onto Vr; in particular, M ~ N i /  and only 

i/v(M, N)= 1. 

The proof will be divided into several lemmas. The first is 

LEMMA 2.3. I /  ~ is integral, then M~-Ma is equivalent to a=E( ~M)a with a 6 E( M). 

Since a is integral, Ma is contained in M. Thus if M a i M ,  then there is an aEE(M) 

such tha t  Ma=Ma and ~ M a = ~ M a = ~ M a  implies ~=E(~M)a. On the other hand, 

suppose a = E(~M)a with a E E(M) and a prime to ~. Then Ma and Ma coincide at  every p. 

This means Ma = Ma and so M ~ Ma. 
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L~MMA 2.4. (Eichler). Suppose MEs and define the two-sided E(~M)-ideal ~ by 
~M=~M~. I / x e E ( ~ M )  and 

n(x)--e (~) 

with e a unit in eMC, then there is a unit uEE(~M), such that 

x = u  if). 
For a proof see Eichler [7], p. 239. 

L~MMA 2.5. I/MEF~'R, then M~=Ma i/and only i/n(a)EHM. 

Multiplying a by  an element of o, we can assume tha t  a is integral, i.e. MacM. Then 

clearly M ~ M a  implies n(a)E H M. On the other hand, suppose n(a)E HM. Since HM ~ S(eM), 
Theorem 1.5 implies tha t  a=E(~M)a, with aEE(~M). Then n(a)EHM means tha t  

there is b E E(M), such tha t  n(a)= n(b)e, with ~ a unit in eMC. Since both a and b are prime 

to ~, we can find ~EeMC, a ---- 1 ([) such tha t  x = ~ab -1 is in E(~M). Then n(x) =n(~)~ --~ (~) 

and according to the preceding ]emma, there is a unit  u in E(~M), such that  x=u (1  +y)  

with y E ~. This implies aa  = E(~M)(1 + y)b. Now y E ~ implies that  M(1 + y) c M + M~ = M. 

Thus (1 +y)b is in E(M) and Lemma 2.3 implies tha t  M~a~=M, which is equivalent to 

Ma~=M. 

LV.MMA 2.6. I] MEs and M,,~N, then HM=H N. 

Let S~(eM) be the subgroup of I~(eM) generated by  all ideals (~) with ~-=1 (~) and 

such tha t  each e ~  is positive a t  those infinite primes of K~ that  are ramified in A~. We will 

first show tha t  both H M and HN contain S~(eM). 

As before, define ~ by  ~M~=~M. Then for :r the congruences ~- -1  (~) and 

= 1 (~) are equivalent. For ~ is a two-sided integral ~-ideal  and so there is an integer 

s > 0 ,  such tha t  ~ = g ~ ,  with g an ideal in C. But  then ~M=~M[~=~Mg and this 

implies [~=E(~M)g. Thus for aEeMC, a - - 1  (~) is equivalent to (~--1)~--0 (eMg). Since 

the same is true for ~ --- 1 ([), these congruences are in fact equivalent. 

Now let (~) be an integral ideal in S~(eM). Because of Theorem 1.4, (~) is the norm of 

a principal ideal a=E(~M)a, which can be supposed prime to ~ and integral. Then 

n(a) = ~ e - e  (~) with e a unit in eMC. :From Lemma 2.4 we see, tha t  a is generated by  an 

element 1 +y ,  with yE~. Since 1 +yEE(M), this shows tha t  S~(eM)~H M for every M E s  

To prove the lemma, we now have to show, tha t  H M and HN are equal modulo S~(eM). 

I f  1V~=N ', then certainly HN=H~.. Thus we can suppose N=M~, with 1~ integral and 

prime to ~. Then we can find fl~eMC, such tha t  flM~M~; since IJ is prime to ~, we can 

even choose fl-=-i ([). Then aCE(M) implies fla~E(N). Since n(a)--n(fla) (~), this means 

H M C H  N. By symmetry  we obtain H M : H N ,  which completes the proof of Lemma 2.6. 
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Combining Lemma 2.5 and 2.6, we have shown, that  for M and N in 1 ~, M~-N is 

equivalent to n(M, N)EHr ,  tha t  is to v(M, N) =1. For N' in F, we obtain from (1) that  

v(M, N') = v(M, N) v(N, N'). 

Since v(N, N ' )=I  if and only if N"~N ', the map ~-+ Vr, defined by  N~v(M,  N) is an 

injection on the isomorphism classes of F; it is also surjective, since every ideal in I~(er) 

is the norm of some E(~M)-ideal  prime to ~. This completes the proof of Theorem 2.2. 

Remark 1. We have defined v(M, N) only if N is in F. Because of the theorem, v(M, N) 

depends only on the isomorphism classes and we can extend the definition to arbitrary 

M, N in F: if N~-Ma, we put  v(M, N) =v(M, MQ). 

Remark 2. We indicate briefly what happens if M does not belong to s Then HM, 
VM and the map N-+v(M, N) are still well-defined. Since Lemma 2.3 is valid for every 

Mes the map F-+ VM is a map of the isomorphism classes in F and it is still an epimor- 

phism. But  it need no longer be injective; in particular, v(M, N) =v(M, N') is necessary 

but  not sufficient for N ~= N'. 

We now derive some consequences of the theorem. Let J F I denote the number of iso- 

morphism classes in F. Then we have 

PROPOSITIO~ 2.7. There is a number b, depending only on R, such that IF I <.b /or 

every genus F in ~R.(1) 

Suppose first that  F E ~ .  Then according to the theorem, I FI equals the order of Vr. 

Since S~(er)c  Hr ,  the group Vr is a homomorphic image of l~(er)/S~(er). If b' is the 

order of the group I~(1)/S~(1) we thus obtain that  IF I ~<b' for F e ~ .  

Now suppose F ( ~  and choose MEF.  Then for at least one i, e~kM is an irreducible 

A z-module and A~ is a ring of matrices over a totally definite skew-field of index 2. Let s 

be the sum of all these e~ and let s ' = l - s .  Put  S = s k M f i M  and S'=e'M; then S 'Es  

and we have an exact sequence 

O -~ S -+ M -+ S ' -~ O . 

If  N,,, M, we have a similar sequence 

O~ T-+N--> T' ~O 

and corresponding sequences for My and N~. Since T and T'  are defined by means of the 

central idempotents s and c' respectively, an isomorphism My-~ N~ gives rise to isomorphisms 

(1) Another proof of this has recently been given by Roiter, (Roiter [13]) by means of other 
methods. 
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Sp-+ T~ and S~-~ T~. Thus M ~ N  implies SN T and S',~ T'.  In other words, the genera 

A and A' that  contain S and S' respectively are uniquely determined by F. Moreover, 

S~=T and S'~=T ' together with M ~ N  imply that  M~=N (see [4], Theorem 72.25 and 

75.27). From this we see that  

Irl < I AIIA'I for arbitrary F 6 OR. 

Since A ' E ~ ,  we know already that  I A' ] <~b', where b' only depends on R. To find 

a similar bound for I A ], we observe that  if T 6 A, then each e JeT is either = 0 or irreducible. 

Thus there is only a finite number of possibilities for the A-module kT. But then, according 

to the theorem of Jordan-Zassenhaus, there is only a finite number of possibilities for the 

genus A. If  c is an upper bound for the number of isomorphism classes in these genera, 

we obtain that  IF I <~cb' =b, which completes the proof. 

The following proposition gives a global characterization of the lattices belonging to 

the same genus (cf. Proposition 5.1). Let  zM denote the direct sum of z copies of M. 

PROPOSITION 2.8. There is an integer z, depending only on R, such that/or M, N 6 s  R 

M,,,  N i /and  only i/ zM ~= zN. 

Let t be the exponent of the group I~(1)/S~(1) and choose z > l  and divisible by t. 

If M ~ N we obtain from (2) tha t  

n(zM, zN)=n(M,  N) z 6 S~(eM) C HzM. 

Since z > l ,  r(A~, zM) is a lways41.  Consequently, zM is in s and the theorem implies 

tha t  zM ~- zN. On the other hand, zM ~= zN implies zMp ~ zNp for every p and this implies 

M~ ~Np since s has unique decomposition ([4], p. 540). 

As in [9] we define restricted genera in the following way. 

DEFINITION 2.9. Two R-lattices M and N are in the same restricted genus i / M ~ N  

and ~ M  ~- ~ N .  

According to this definition, the division F = IJ~,~ of a genus F into restricted genera 

~,~ depends on the choice of 9 .  However, if F 6 ~ ,  the choice of ~ does not matter  (see [9], 

w 3). Suppose F 6 ~ and let M, N 6F. Then, according to Theorem 1.4, ~ M  ~ ~ N  if and 

only if n(~M,  ~N)6S(eM). Now n(~M,  ~ N ) = n ( M ,  N); putting ~ = ~  N F, we see that  

for M, N e 2 ,  the map 

N-+v(M, N) 

defines a bijection of the isomorphism classes in ~, onto S(er) N I~(er) / Hr .  Since this group 

depends only on F, all the restricted genera in F have the same number of isomorphism 
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classes (provided F E ~ ) .  Moreover, the number  of restricted genera in F equals the order 

of Ii~(er)/S(er) N I~(er); it depends only on er. 

The following proposition generalizes an earlier result of the author (see Jacobinski [9], 

Corollary 2 of Theorem 5). 

PROPOSITION 2.10. There is an R-lattice T, such that/or every M, NEE'a, M and N 

are in the same restricted genus, i /and  only i[ 

M O T ~ - N |  

Let T be an ~-lat t ice in I:~ such tha t  eT = 1. Then T E 1:~ and, since ~ is maximal, 

we have HT=S(1) N 19(1 ). Now HM| and so we obtain HM| ) [11~(1). This 

means tha t  the restricted genus ~ determined by  M O T  contains only one isomorphism 

class. Thus if M and N are in the same restricted genus, then M |  T and N O  T are both 

in ?/, i.e. M O T ~ - N O T .  Conversely, if M O T ~ N O T  then first M ~ N ,  since the Kru l l -  

Schmidt theorem is valid for Rflat t ices.  Moreover, we have ~ M O ~ T ~ N |  and 

according to (2) and Theorem 1.4 this implies n (~M,  ~N)ES(eM). Since we have supposed 

M, N E l:~, we obtain ~ M  ~-~N,  which completes the proof. 

3. Local and global decompositions 

An R-lattice X is called a local direct factor of M if for every p, X ,  is isomorphic to a 

direct factor of M,. This is in fact a property of the genera F(M) and F(X) determined 

by  M and X. We will s tudy the relations between local and global direct factors of an 

R-lattice M. First  we show that  the genus F(X) always contains a direct factor of M. In  

the special case R =oG, the group ring of a finite group and X a free oG-module, this was 

proved by  Bass, using results of Swan ([2], Prop. 10.2). Then we give a rather  mild condi- 

tion, which assures tha t  a local direct factor is isomorphic to a direct factor of M. As 

already pointed out in the introduction, if X is a projective R-module, such a condition 

follows from a theorem of Serre ([2], Theorem 9.3). 

We have previously defined two R-lattices to belong to the same genus if M,  ~ N ,  

for every p. I t  is easy to see tha t  it is sufficient if p varies in a finite set U, determined by  

R (cf. Curtis-Reiner [4], p. 571, where U is the set of primes dividing the Higman 

ideal i(R)). 

Lv.MMA 3.1. Let U 4:0 be a finite set o/ prime ideals in o, which contains all primes p 

such that R ,  is not a maximal order. Then M,,,  N is equivalent to 

M ,  ~- N~ /or p e U. 
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Since U~:O, My ~Yy  for pE U implies IcM~=bN. But for qr U, Rq is a maximal order 

in Aq and then kqMq"~kqNq implies Mq~Nq (cf. Corollary 1.2) and this completes the 

proof. 

I f  R is a maximal order, we can choose U ~=O arbitrarily. For R not maximal,  we have 

already chosen a maximal order ~ and a two-sided ideal ~ ~ R, and we can take U to be 

the set of all primes in o such tha t  ~y =~(1). In  the sequel, we will always suppose U to be 

chosen in this way. 

Note also tha t  in the definition of a local direct factor we need only claim tha t  X~ 

is isomorphic to a direct factor of M~ for pEU. For then we have kM~-IcXOS. Let Y 

be an D-lattice such tha t  k Y = S .  Then according to Corollary 1.2 we have 

~ M N ~ X |  

But  for p ~  U, R ~ = ~ p  and so M~=(~M)y  and Xy=  (~X)y. This shows, tha t  Xy is isomor. 

phic to a direct factor of My for every p. 

The lemma implies tha t  any  genus F is completely determined by  the set {Mp}y~ u 

for M E F. On the other hand, suppose we are given Ry-lattices YY for p E U. I f  these YP 

are chosen arbitrarily, there will not in general exist an R-lattice M such tha t  My ~ Y~ 

and then the set { YY} will not define a genus. - -The following lemma is a slight generali- 

zation of results of Heller (see [8], where o is a valuation ring). 

LEMMA 3.2. Suppose given /or every pE U a Rp-lattice YY. Then there exists M E s  R 

such that 

My~ Y Y /or all pE U 

i /and only i/there is an A-module S, such that 

ky|174 Y ]or all p e U .  

The condition is clearly necessary. To show tha t  it is sufficient, let N be an D-lattice 

with kN =S. Replacing every Y" by an isomorphic lattice we can then suppose YY~ Ny. 

We consider/Y as a submodule of each Ny and put  

M =  A N n Y  Y. 
p e U  

The annihilator of each _N/_N n YP is a power of p and from this we see tha t  My ~ Y~ for 

pE U and M~ ~ V y  otherwise. I t  remains to show that  M is an R-lattice. Clearly M is a 

finitely generated o-module and kM=S.  Let R ' = { x ] x M c M ,  xEA} be the left order of 

M. Then My = Y~ implies Rp c R~ for p e U. For p ~ U we have My = Ny and R~ = ~y = Ry. 

Thus for every p the left order of My contains Ry and this implies M e s 
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THEOREM 3.3. Let X and M be R-lattices and suppose that X is a local direct/actor 

o/ M.  Then there is a decomposition 

M = X ' |  Y, with X ' , ,~X and YEEn.(1) 

Since X is a local direct factor of M, there are Rp-lattices yv such tha t  

M,~-X,| peV. 

Moreover, k X  is isomorphic to a direct factor of kM; put  kM~=kX|  Then, according 

to Lemma 3.2 there is an R-lattice Y such tha t  Yv ~ Yv for every p E U. This means 

M, ,~X|  Y and the theorem now follows from 

LEMMA 3.4. Let X and Y be R.lattices and suppose 

M ~ X |  

Then there is a decomposition 

M = X '  | Y '  with X '  ,,~ X and Y '  ~ Y. 

I f  X and Y are in s this follows easily from Theorem 2.2. To show it without this 

assumption put  N = X |  Y. Replacing M by  an isomorphic lattice, we can suppose M = N a  

with a an integral left E(~N)- ideal  prime to ~. Then ~ M =  ~ N a  is contained in ~ N .  

Pu t  ~ M  N ~ X  = ~ X 5  where 5 is a left E(~X)- ideal  prime to ~. Then ~ M / ~ X b  is an 

~-lat t ice too. Since ~ is hereditary, every ~-lat t ice is a projective ~-module and so 

every exact sequence of ~-latt ices splits. Thus we obtain 

~ M  = ~XI~ | T with T E I:~. 

Every  element of ~ M  is of the form x + y  with x E ~ X  and y E ~ Y .  Let ~ X 5 '  be the pro- 

jection of ~ M  on ~ X .  Then we have ~ X ~  ~ X w  ~XI~ and so l~' is prime to ~. Thus 

we can find ~ E o, c3-1 (~), such tha t  5 '~c  13. Put  

~ M b  = ~ x b  | T& 

Then clearly ~ M b  = ~ X b  | ~ Yc with r a left E ( ~  Y)-ideal prime to ~ and we have 

Mb = X~ | Yc. 

Since X~ N X and Yc~ Y, the lemma will be proved if we show tha t  Mb and M are iso- 

morphic. According to Lemma 2.3 this is the case if and only if b is generated by  an ele- 

ment  of E(M). Consider ~ as an element of E(T)  and put  d=id~x6| Then d generates 

(1) Th i s  t heo rem,  as  well as  t he  following l e m m a  can  also be  ob ta ined  f rom resu l t s  of Re ine r  

a n d  J o n e s  (see [4], w 81A). 
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b and ~ - 1  (~) implies d E E(M) and the proof is complete. - -  We note the following corol- 

lary of Theorem 3.3. 

COROLLARY 3.5. I /  a genus I ~ contains one indecomposable lattice, then every lattice 

in F is indecomposable. 

Recall tha t  for any  R-lattice M we denote by  r(A~, M) the number of irreducible 

A t-modules in a decomposition of kM. We now show 

Ta~ORV, M 3.6. Let X be a local direct/actor o/ M such that 

r(A~, X) <r(At, M) whenever r(A~, X) +0. 

Then X is isomorphic to a direct/actor el M, i.e. 

M~-X|  Y with YEs 

We know already tha t  there is a decomposition M = X' |  Y', with X ~ X' .  Put  

~ Y '  =ex~Y'  | (1 - e x )~Y ' .  

Then our assumption on r(A~, X) implies, tha t  ex~ Y' affords a faithful representation of 

ex~. Thus every element of I~(ex) is the norm of a left E(ex~Y')-ideal ]~, which is prime 

to ~. I f  X~=X'a, we choose ~ such that  n(a)n(5)ES~(ex) and put  

~ X '  a �9 ex~ Y'b | (1 - ex )~  Y' = ~Mc. 

Then clearly, Mc ~ X | Y, with Y ~ Y' and the theorem is proved if we show tha t  M ~ Me. 

Our assumption on r(A~, X) implies tha t  T = ~ X ' |  is in s Applying Lemma 2.4 

we see tha t  ~X'a| , where ~ induces the identity on T/~T.  But then the 

ideal r is generated by/? = ~ |  and/~ induces the identity on ~M/~M.  This means 

tha t  fl is in E(M) and so Mc ~ M according to Lemma 2.3, which completes the proof. 

4. Cancellation 

Let X, M and hr be R-lattices, such tha t  

X|174 (*) 

Under what  conditions can X be cancelled here, i.e. when does (*) imply M~=N? I f  R 

is a maximal order, Theorem 1.4 and (2) imply tha t  X can be cancelled if M Es but  

(1) Afte r  t h e  comple t ion  of t h e  p re sen t  pape r  I f ound  t h a t  a s imi la r  resu l t  h a s  r e cen t l y  been  

ob t a i ned  b y  Ro i t e r  (see [13], P rop .  5) b y  m e a n s  of d i f ferent  m e t h o d s .  Ro i t e r  a s s u m e s ,  t h a t  kM/kX 
a f fo rd s  a fa i th fu l  r e p r e s e n t a t i o n  of A,  wh ich  is a l i t t le  m o r e  res t r ic t ive  t h a n  our  a s s u m p t i o n  on  t h e  

r(Ai, X). 
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for M (~ s this is no longer true. Other examples where eancellation is not possible ean 

be constructed by  means of Proposition 2.10. On the other hand, we already mentioned 

in the introduction, that  if X is a projective R-module, the cancellation-theorem of Bass 

([2], w 9) implies, tha t  X can be cancelled if M possesses a local direct factor, which is free 

of rank >~ 2. For non-projective X however, no such condition seems to have been known. 

We remark first, tha t  (*) always implies M,~N since I:R~ has unique decomposition. 

Now suppose X fixed and let Y vary  in the genus F(M) tha t  contains M. Then 

Y ~ X |  Y 

induces a map ] of the isomorphism classes in F(M) into those of F (X |  I f  this map j 

is injective, then X can be cancelled in (*) even if M is replaced by  some M ' ~ M .  Now 

suppose that  both M and X |  belong to I:~. Then from Theorem 2.2 and (2) we see 

tha t  j is injective if and only if 

H M = I~5(eM) (] HX(~M. 

Using this condition we can show 

T~EOR~M 4.1. Suppose M EF~'R and let X be a local direct/actor o~ zM /or some z>0 .  

Then/or N E F~n 

X | M ~- X | N implies M ~ N. 

Since X is a local direct factor of zM, r(Ai, X) >0  implies r(Ai, M) >0.  From this we 

see, tha t  eM=ex| M and that  X |  is in 1:~ too. According to the remark above, we must  

show tha t  HM=I~(eM) NHxeM. But I~(eM)=I~(eX@M)DHxeM and so the theorem is 

equivalent to 

H M = Hx@ M. 

We need one more reduction. Since X is a local direct factor of zM, we obtain from 

Theorem 3.6 that  there is a decomposition 

( z+I )M~-X|  with T6s 

This implies (z + 2 ) M =  ~ (X|174 T and s o  Hx@ M is a subgroup of H(z+U)M. Thus we have 

H M C  HX@M ~ H(z+2)M. 

Now the theorem follows from 

LEMMA 4.2. For any MEF~'n and any integer s>O, HM=HsM. 

We know already tha t  Sg(eM) is contained in every HsM (Lemma 2.6) and so we need 

only show tha t  H,M/S~(eM) does not depend on s. As before, define ~ by  ~ M  = ~M~. Then 
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for xEE(~M), x - 1  (~) implies n(x) - 1  ([). This is easily seen to be true if ~ is generated 

by  an ideal of the center; the general case follows from this by extending/c to a splitting 

field of A. Put  Q = E(M)/~ and let E*(M) be the subset of elements prime to ~ in E(M). 

Then the map E(M)-~Q takes every xEE*(M) into an invertible element of Q and so we 

have an epimorphism 
qJl: E*(M)-~GL(1, Q). 

In  the same way, if we define ~ by  ~(sM)=~(sM)~, the map  E(sM)-~E(sM)/~s induces 

an epimorphism 
q~8: E*(sM)-~GL(s, Q). 

We embed E*(sM)in E*( (s + I )M) by a-~a| and in the same way GL(s,Q) in 

GL(s + 1, Q). Now Q is an Artin-ring and so n = 1 defines a stable range over Q (see [2], 

p. 14). I f  e(s, Q) denotes the subgroup generated by  the elementary matrices in GL(s, Q), 

we have ([2], Theorem 4.2) 

GL(s, Q)=GL(1,  Q)e(s, Q). 

Now E(sM) is the ring of s x s matrices over E(M). Every  element of e(s, Q) lifts to an 

elementary matr ix  e in E*(sM) and n(e)= 1. Thus for every g~ E E*(sM) we have g~ =glex 

with glEE*(M) and x EKer ~s- But  then x-=1 (~) and n(x)-  1 (~), which implies n(gs)= 

n(gl) (~). Consequently, H~M/SI~(eM) =HM/S~(eM) and this completes the proof of the lemma 

and of Theorem 4.1. 

Remark 1. I f  M ~ i:~, then at any  rate sM E F~'n for s > 1 and from the lemma we see 

tha t  HsM : H2M for every s > 1. 

Remark 2. I f  we apply the cancellation theorem of Bass ([2], Theorem 9.3) to R-lat- 

tices, we obtain: I f  X is projective and M has a local direct factor, which is R-free and 

of rank >/2, then X|174  implies M~M' .  This is a special case of our theorem, 

since the hypothesis implies tha t  M E i:~ and tha t  X is a local direct factor of some zM. 

As an application, we consider the following special situation. Let  M EFE OR and 

consider the genus sF, tha t  contains sM for a fixed integer s > 1. Choose s -  1 R-lattices 

M s in F and let N denote their direct sum. Then N is a local direct factor of every YEsF, 

and we obtain from Theorem 3.6 tha t  Y has a decomposition 

Y ~ M10...(~MS-10X, with X N M .  (4) 

In  particular we can choose M 1 . . . . .  M 8-1= M and this yields 

Y~=(s-1)M| with X,~M. (4') 
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From the cancellation theorem it follows immediately tha t  in both these decompositions, 

Y determines X uniquely, up to an isomorphism, provided M is in E~. I f  this is not the 

case, then from Y-~ Y' we can only infer tha t  M~(~X~=M~|  ' for every i. 

In  some special cases the decompositions (4) or (4') are well-known. Let  first A be a 

skew-field, R = ~  a maximal order in A and take M ~ .  Then for every YEF~3, k Y  is 

isomorphic to the direct sum of s copies of A. According to Corollary 1.2, this implies 

tha t  Y ~ Fs, where .F s is a free ~-module of rank s. Thus every Y E I:~ has a decomposition 

Y ~ F~_I |  

where 9~ is a left ~-ideal with k 2 = A .  This was proved by  Chevalley ([3], p. 12). I f  A is 

any simple algebra and ~ a maximal  order in A, we take M such tha t  k M  is an irreducible 

A-module. Then in the same way as above we see, that  to every Y E ~ there is an integer 

such tha t  Y , ~ s M  and Y has decompositions of the form (4) and (4') (Jacobinski [9]). 

Another example is furnished by  projective modules over a group ring oG if no prime 

dividing the order of G is a unit in o. Swan [13] has shown tha t  such a module P is locally 

free everywhere. This means that  P-~ Fs, where F~ is free of rank s. Then from (4') we 

see tha t  

p ~= Fs_l |  

where I is a projective ideal with k I  =kG (Swan [13], Theorem 7.2). I f  none of the simple 

algebras in kG is a totally definite quaternion skew field, then ~'1 is in s and I is uni- 

quely determined (up to an isomorphism) by  P. From this we can obtain conditions for 

cancellation of projective oG-modules. We prefer however to discuss this later (see 5.3). 

5. The group D(B) 

We now define a kind of relative Grothendieck-groups with relations for split exact  

sequences only. Let  B c  s be closed under direct sums and let Y(B)  be the free abelian 

group with a generator YM for every M E B. Denote b y  Y'(B)  the subgroup generated by  

all elements YM--YN--Ys such tha t  M---N | S, for N, S E B. Then we put  

D(B) = Y(B) /Y ' (B) .  

I f  we consider B as a category with only direct injections and direct projections as mor- 

phisms, D(B) is the usual Grothendieck-group of B. To avoid confusion with the Grothen- 

dieek-group K(B)  of B as a subcategory of s we prefer the notation D(B). Of special 

interest is the case B = ~)~ the category of finitely generated projective R-modules; then 

the two groups coincide. 

2 -- 682903 Acta mathematica. 121. I m p r l m ~  le 16 s e p t e m b r e  1968. 
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I f  R=oG is the group ring of a finite group G, one can define a ring structure 

on D(s by means of the tensor product. This ring has been studied in several papers  

by Reiner; see Reiner [11] and the literature cited there. In  this paper, which was published 

after the completion of the present work, Reiner also gives a proof of a par t  of Theorem 

5.6 in the special case tha t  B= s 

The image of ME B in D(B) we denote by  [M]s or simply by [M]. Clearly, [MJB = [N]s 

if and only if there is XEB, such that  M | 1 7 4  Let es be the central idempotent 

in A such tha t  
esM=M and (1- -eB)M=0 for a l ] M E B ,  

and let HB be the subgroup of I~(es) generated by all groups H M for M E B. H s  is generated 

by  a finite number  of groups HMt , M~EB and then T=| is in B and HB=HT. 

Replacing if necessary T by 2T  we see tha t  

HB=Hr with TEBNs (*) 

As before we put  VB = I~(es)/HB. 

Then VB(M, N) is defined for M:,~N and M, NEB (cf. Remark  1 after Lemma 2.6). We 

now show 

PROPOSITIO~ 5.1. Let B~F~R be closed under direct sums and denote by [M]B the 

image o /MEB in D( B). Then/or M, N E B we have 

1) [MJB--[NJB is torsion i/and only i /M, , ,N 

2) [MJB=[N]B q and only i /M,~N and VB(M , 2V)=1. 

According to Proposition 2.8, M ~ N  implies zM~-zN and so [M]~- [N]B is torsion. 

Conversely, if [ M ] s - [ N ] B  is torsion, we have 

zM|174 X 6 B  and z>0 ,  

and this implies M ~ N,!since the Krul l -Schmidt  theorem holds for Rv-lattices. To prove 2), 

suppose first M ~ N and vB(M, N) = 1 and choose T as in (*). Then also vB(M| T, N | T) = 1 

and since HB=HT=HMeT, this implies M|174  and so [M]B=[N]B. Conversely, 

if [M]B = [N]B then there is X 6 B such tha t  N |  ~ M | X. Replacing if necessary X by  

X|  we can assume X 6 C ~  and Hx=HB. But  then we obtain from Theorem 2.2 that  

vB(M | X, N | X) = 1 and this implies VB(M, N) = 1, which completes the proof. 

Since HB is generated by  norms of principal ideals prime t o  ~, we always have 

HB c S(eB) N l~(eB). In  particular, if B = s we have H s  = S(1) f~ I9(1) and then, according 

to Theorem 1.4, v~(M, 2V) = 1 is equivalent to Q M  =~ QN, provided M 6  ~ .  Thus we obtain 

(cf. Definition 2.9 and Proposition 2.10) 
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COROLLARY 5.2. Two R.lattices M, N Es are in the same restricted genus i /and only 

i/they have the same image in D(ER). 

The second par t  of Proposition 5.1 can easily be rephrased as a condition for can- 

cellation in the category B. We say tha t  M E B is cancellative in B, if every relation 

X | 1 7 4  w i t h X ,  N E B  (**) 

implies M-~ N. I f  every element of B is cancellative, we say tha t  B has cancellation. 

PROPOSITION 5.3. An element M EB N I:'~ is cancellative in B i/and only i/ 

HM = HB N l~(eM). 

For a relation (**) is equivalent to [M]B = [N]8 and this in turn is equivalent to M ~ N  

and VB(M, _N) = 1. But  according to Theorem 2.2, M and N are isomorphic if and only if 

VM(M , N) :  1. Thus M is cancellative in B if and only if for every N in B with M ~ N, 

vB(M, N ) =  1 implies VM(M , A-V): 1. From the definition of VB and VM it follows imme- 

diately tha t  this is the case if and only if H M = H  B N I~(eM). 

As an application of this proposition, let G be a finite group and consider the category 

~) of finitely generated projective oG-modules. Swan (see [15]) has raised the question 

whether ~) has cancellation or not. He himself showed (Swan [16]) tha t  this is not a lways 

the case by  cons t ruc t i ng~ o r  a special group G- -a  non-cancel]ative projective oG-module. 

From the proposition above we see, that  there are two possibilities for a P E ~) to b~ 

non-cancellative. The first is tha t  P~!s and this is actually the case in the counter- 

example given by  Swan. The second possibility is that  He =4=H~ N I~(ep) and I do not know 

whether  this can actually occur. If  instead of 0 we consider the subcategory ~0, consisting 

of all P E ~ such tha t  kP is kG-free, we can show 

COROLLARY 5.4. Every element o/ ~o N s is cancellative in ~. 

Let F 8 denote a free oG-module of rank s. According to a theorem of Swan (Swan [15], 

Theorem 6.1), PE~)  ~ implies P ~ F s  for some s > 0 .  I f  none of the simple algebras in k(~ 

is a totally definite skew-field of index 2, such a P is automatically in s otherwise this  

is the case only if s > 1. But  then Lemma 4.2 and the remark after it implies tha t  th~ 

group Hp is the same for all PE ~)o N/:~a. This means Hp=H~o and this implies tha t  P is 

cancellative in ~)0. Since every Q E ~ is a direct factor of some Fs, we see tha t  Ho = H~, 

and consequently every Pe00n s is cancellative also in ~). 

COROLLARY 5.5. Suppose that none o/the rational primes dividing the order o/ G is 

a unit in o and that none o/the simple algebras in a decomposition o/kG is a totally de/inita 
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skew-field o/index 2, Then the category o/finitely generated projective oG-modules has can. 

cellation. 

For our assumptions imply that  ~) = ~)0 (Swan [15], Theorem 8.1) and that  ~)0c s 

We define the sum of two genera F 1 and F~ to be the genus which contains M I |  2 

with M 1 E F 1 and Ms E F 2. Clearly F1 + F~ does not depend on the choice of M 1 and M2. 

Moreover, Theorem 3.3 implies that  every R-lattice X in FI+F~ has a decomposition 

X = X  I| with X 1 E F 1 and X2 E F~. Thus we could equally well define 

r l  + F2 = (X I o i l ,  XI @ r I, 22 E F2}. 

We denote by /~  the set of genera, which contain elements of B. In  the same way as 

for R-lattices we can define the group D(/~) with relations corresponding to all sums 

F = F I + F  2 in B. Since F + F ' = F + F "  implies F ' = F " ,  the map /~  ~ D(/~) is an injection. 

Moreover, if Dr(B) denotes the torsion subgroup of D(B), the first par t  of Proposition 5.1 

implies that  the sequence 

O-+ Dt(B)~ D(B)-+ D(B)~O 

is exact. As we will see, D(t}) is free and so this sequence sphts. Moreover, we will show, 

tha t  Dt(B ) is isomorphic to a subgroup of VB. As already mentioned, a special case of this 

was shown by Reiner, who proves that  D(On) is free and that  Dr(Ca) is a finite group 

(see Reiner [11]). 

THEORV.M 5.6. For any B c  s which is closed under direct sums the group D(B) is 

]ree and 

D(B) ~ WB| D(/~), 

�9 where WB={VB(X, X'), X ,~X' ,  X, X ' e B }  is a subgroup o/ Vs. 

We show first that  D(/~) is free. If M E F, then F is completely determined by the 

set {M~}w ~ (Lemma 3.1). Thus F->{Mv}~ v induces an injection 

a:  D(/}) -+ I-[ D(s 
p e u  

Now every R~-lattice has a unique decomposition into indecomposable lattices. This 

means that  each D(s is free with the images of indecomposable R~-lattices as generators 

and so D(B) is free too. 

I t  remains to show that  Dr(B) is isomorphic to WB. Choose m pairs S~, S~ in B with 

S~,,,S~ such that  WB is the set of all vB(S~, S~), i= l ,  ..., m and put  S=SI |174  m. Then 

S E B  and W~ consists of all vB(S, S') such that  S ' ~ S  and S'EB. Now vB(S| S' |  

is in WB and equals %(S, S')vz(S, S"). This shows that  WB is a group. 
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Replacing if necessary S by  S |  T, we can assume tha t  moreover Vs = Vs. According 

to Proposition 5.1, every TEDt(B ) is of the form [X]s--[X']B with X,, ,X' .  Then we have 

also 
= [S| - [S |  

We choose S 'E  B such tha t  vB(X, X')=vs(S,  S'). Since V s =  Vs= Vxes, we see from 

Theorem 2.2 tha t  S |  ~ S ' |  Thus we obtain that  every ~EDt(B) is of the form 

v=[S]B--[S']B, with S',, ,S and S'EB. 

But now it is easy to see tha t  the map q):v->vs(S, S') defines a group homomorphism 

Dv+ Ws which clearly is onto. Because of Proposition 5.1, ~0 is also injeetive and this 

completes the proof. 

Remark. I f  the category B is also closed under direct factors in I:R, then Ws---Vs, 

for then every isomorphism class in the genus determined by  S contains elements of B 

(cf. Prop. 2.8). But  in general WB and VB will not be equal. For instance, if X is any  fixed 

R-lattice and B =  {sX, s >0) ,  then Ws is trivial. 

The injection a defined above identifies D(B) with a subgroup of l-[~ G v D(I:R~). I t  is 

not hard to describe this subgroup explicitly. For simplicity, we consider only the case 

B = l:n. Let  k' be a spir t ing field of A and let K(A') be the Grothendieek group of A '  = k'  | A, 

or equivalently, the group of characters of finitely generated A'-modules. I f  k" is any  

extension field of k and A" =k"| then we can consider K(A") as a subgroup of K(A') ;  

in particular, K(A~) is a subgroup of K(A') for every p. 

Let  X be an R~-lattice. Then the map X-~k~X induces a homomorphism 

Zp: D(s K(A') 

Let a = {ap}~e v be an element of 1-[D(~R~ ). We extend Z~ to a homomorphism 1-[D(l~s,) -~ 

K(A') in the obvious way. Then we have 

PROPOSITION 5.7. The map D(~R)~I~  E v D(s induced by F~{M~}~ ~ v identifies 

D(~n) with the subgroup o/all a6 [I D(s such that 

1) xp(a) =zq(a) /or  all p, q in U, and 

2) zp(a) is already in K(A). 

These conditions are clearly necessary and from Lemma 3.2 it follows immediately 

tha t  they also are sufficient. 

With a view to applications in the next  section, we now specialize B in the following 

way. For M 6 s we put  

B M : { X  , X|  X ,X 'es  
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Let  F be the genus that  contains M. Writing' B r  instead of BM we have 

B r = ( A ,  A + A '  =sF, A, A 'E~R, s>0} .  

Clearly, BM = BzM for every z >0.  Thus, replacing if necessary M by  2M we can assume that. 

MEs 

PROFOSITIO~T 5.8. Suppose MEs and let F be the genus which contains M. Then 

D(BM) ~= VM | D(Br)  

and D(Br)  is/tee and finitely generated. 

BM is clearly closed under direct sums and direct factors, so tha t  WBM = V B  M and 

we obtain 
D(BM) ~- VBM| 

We show first tha t  VBM = VM or equivalently, H B M = H  M. Since MEBM, this amounts to 

showing tha t  H x C H  M for every X E B  M. According to the definition of B M we have 

X~)X'  ~ s M  and this implies HxCH~M. But HsM=H M (Lemma 4.2) so tha t  in fact H x ~ H  M. 

- -  I t  remains to show that  D(Br)  is finitely generated. As in the proof of the theorem, we 

have an injection 
a :  D(Br) -~ I~ n(s  

p e U  

and here I m  a is contained in 1-~v~ vD(BMr). Now each D(BMv ) is finitely genera ted- -  

namely by the images of those indecomposable Rv-lattices, that  appear in a decomposition 

of Mp- - and  so D(Br)  is finitely generated too. 

We apply  our results to the category D =  DR of finitely generated projective R- 

modules. Let  again F~ denote a free R-module of rank s. I f  none of the simple algebras 

A, in A is a totally definite skew-field of index 2, then every F s is in 1:~; otherwise we 

mus t  suppose s > 1. Defending on this we put  T = F 1 or T = F2. Then DR = BT and the 

group D(BT) coincides with the usual Grothendieck-group K(Dn). From Proposition 

5.8 we obtain 

K(Da) ~ VT | D(~n), 

where D(~R) ~ Z (a) is a free abelian group of finite rank a. In  case T=F1, VT is simply 

the factor g roup  of the group of ideals prime to ~ in the integral closure of the center of 

A modulo the subgroup of ideals of the form (n(x)) with x E R; if T = F2 then x must  vary  

in the ring of 2 • 2 matrices over R. 

Let  again D ~ be the subcategory of all P e D~, such tha t  kP is a free A-module. D~ 
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satisfies the condition of  Theorem 5.6, Moreover, H~. = H ~  = H r  and so we obtain 

g ( o  ~ = Vr|176 

where D ( ~  ~ ~ Z ("~ is a free abelian group of rank a 0. 

The projective class group C(R) is defined as the factor group of K(0R) modulo the 

subgroup generated by  the image of  2' 1 (see Rim [12]). Let  F be the genus that  contains 

F 1. Then it may  happen tha t  F = zA with A E ~R and z > 1 and then A is in ~R too. I f  aR 

denotes the maximal value of such a z, we obtain from the expression for K(0R) tha t  

C(R) ~ V T @ Z / a R Z @ Z  <a-l) 

Similarly the reduced projective class group C~ is defined as the factor group of 

K ( 0  ~ modulo the subgroup generated by  the image of F 1. Since here a decomposition 

F =zA with z > 1 and A E ~ o  is impossible, we obtain 

C~ = Vr | Z(a~ 

Speciahzing once more, we consider the case R=oG, G a finite group. Then Swan 

([15], Theorem 6.1) has shown tha t  if P, QEOo a and kP~-kQ as kG-modules, then P and 

Q are in the same genus. This means tha t  D(#oa ) is isomorphic to the additive group 

generated by the characters of projective oG-modules. This group has been determined 

explicitly by  Swan ([17], Theorem 4). In  particular we see tha t  every genus in ~)~ a con- 

tains some 2'~. This means tha t  a0 = 1. Moreover, aov = 1 since the trivial representation of 

G occurs only once in the regular representation. Thus we obtain 

C(oG) = Vr |  (~ 

and C~ = VT. 

The second formula implies in particular tha t  C~ is a finite group for which fact 

different proofs have been given by  Reiner, Rim and Swan, see for instance Swan [17]. 

Because of the importance of the reduced projective class group, we state our result 

explicitly. 

COROLLARY 5.9. Let G be a finite group and denote by [ the product o[ all primes p in 

o such that o~G is not a maximal Order (this / divides the order o/G). Let I r denote the group 

o/all invertible ideals prime to / in the integral closure over o o/the center o/kG. Let H denote 

the subgroup o / I f  generated by ideals o/the [orm (n(x)), where x varies in oG i/none o/the 

simple algebras in ]cG is a totally definite slcew-field o/index 2 and in the ring o/ 2 • 2 matrices 

over oG otherwise. Then 
O0(oG) ~ Zr/H 
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6. Decompositions into indeeomposable lattices 

We have repeatedly used the fact that  s has unique decomposition, i.e. that  every 

Rp-lattice is uniquely decomposable into indecomposable R,-lattices (up to an automor- 

phism). I t  is well-known that  this is not true for ER (Reiner [10]). Examples of R-lattices 

that  have essentially different decompositions follow immediately from Proposition 2.8 

and 2.10. In this section we will give a survey of the different possible decompositions of 

a given R-lattice into indecomposable R-lattices. 

In  the previous section we have already defined the sum of two genera F 1 and I~ 

to be the genus generated by XI | for X1 e P1 and X 2 E l~. A genus A is indecomposable 

if A =A~ +As implies i 1 =0  or As =0. From Theorem 3.3 and Corollary 3.5 we know, that  

A is indecomposable if it contains an indecomposable R-lattice and that  then every ele- 

ment of A is indecomposable. 

Now take M E ~R and let 

M = M 1 0 . . . |  ~ (*) 

be a decomposition of M into indecomposable R-lattices. Let  F, F~ be the genera that  con- 

tain M and Mi respectively. Then from (*) we obtain a decomposition 

F = I~1 -k ... + F  t. (**) 

Here the F~ are indecomposable genera since each of them contains an indecomposable 

R-lattice, viz. M~. Now let us start with a decomposition (**) of the genus F into indecom- 

posable genera. Then Theorem 3.3 implies, that  there is at  least one decomposition (*) 

with M~ EFt. Thus our problem of finding all decompositions of a given R-lattice M falls 

into two parts. First we have to determine all the different decompositions (**) of the 

corresponding genus and then to every such decomposition, we must find all different 

decompositions (*) with M~EFi. The first problem, viz. decompositions in ~R, we will 

discuss later in this section; the second one is easily solved by means of Theorem 2.2, 

provided 1~ E ~ for all i. 

Take a fixed decomposition (**) and suppose that  we have already found one corre- 

sponding decomposition M = M I |  ... |  t with M~ E Ft. Let X~ vary in F~; then we have 

to find all different decompositions M ~ X I ( ~ . . . O X  t. In  the same way as after Proposi- 

tion 2.1, we denote by r~ the set of all R-lattices of the form ~M~a N M~ with a prime 

to ~. Since r~ contains representatives of all isomorphism classes in I~, it is sufficient to 

let X~ vary in 1~. Then n(M~, X~) =x~ is defined; this is an ideal in I~(er~). Recall that  for 

every genus A we identify I~(eA) with a subgroup of I~(1) by means of the injection 

a-->a| --eA)C. Thus x~ becomes an element of I~(er) and the map (x 1 . . . . .  xt)->Xl ... xt 
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defines an epimorphism 

I ]  I~(er,) -~ I~(er). 

The image of YIHr~ is clearly in H r  and so we obtain an epimorphism 

qD: [I V r i ~  Vr. 

Now suppose Fl E ~ for i = 1 ..... t; then F is in ~ too. The isomorphism classes in 

l~ and F are in 1-1-correspondence with the elements of Vr~ and Vr resp. Thus X 1| (~ Xt 

is isomorphic to M if and only if the corresponding element of [ I  Vr~ is in Ker ~. This 

means, tha t  every element of Ker  ~ corresponds to a class of equivalent decompositions 

of M. Some of these may differ only by the arrangement of the factors. Discarding these, 

we have solved the first problem mentioned above. 

Before proceeding to the second problem, we deduce a necessary (but not sufficient) 

condition in order that  Ca has a unique decomposition 

PROPOSITION 6.1. I /  F~ R has unique decomposition then ]F I =1 /or every FeaR, 

that is M ~ N implies M ~- N /or arbitrary M, N E s 

If M,,~N, then for some integer z we have zM~=zN (Proposition 2.8) and, since Ca 

has unique decomposition, this implies M ~ N. - -  A consequence of this is 

COROLLARY 6.2. I /  I:R has unique decomposition, then the maximal order C o/ the 

center o / A  is a principal ideal ring. 

Let F be a genus in ~ such that  er = 1. Then F is also a genus of R-lattices, since 

R c  ~.  If I:R has unique decomposition, we have I FI = 1. According to Theorem 1.4, this 

implies I(1)=S(1),  which is a little more than asserted. 

We now turn to the question of finding all decompositions of a given genus F into 

indecomposable genera. Clearly, every such decomposition takes place in the category 

B r = { A ,  A + A ' = z F ,  A , A ' E ~ , z > 0 }  

which we introduced in the preceding section. Instead of only F, it is more convenient to 

study decompositions of all elements of B r  at the same time. We show 

THEOREm 6.3. For arbitrary FEAR, the category Br contains only a/inite number o/ 

indecomposable genera. 

Let [A] denote the image of A in D(Br) .  The map A ~ [ A ]  is an injection and 

thus identifies B r  with a semigroup D+(Br) contained in D(Br)  and D+(Br) generates 

D(Br).  We first show 
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LEM~A 6.4. There are a finite number o/Z-homomorphisms 

/j: D(Br)~Z,  ] = 1  ..... h r 

such that an element x o/ D(Br) is in D+(Br) i/ and only i//j(x) >~0 /or j = l  ..... hr. 

For each A E Br, choose an R-lattice X E A, and map A onto Xp. This induces a homo- 

morphism 

~:  D(Br)~ D(BM~). 

The group D(BMp) is free; a basis is formed by the images of the indecomposab]e Rp- 

lattices T~, that occur in a decomposition of M~. Thus we have 

(rpx=zl[T1]q-... +zr[T~] with z~EZ. 

Let {/j}~ be the set of all projections x-+z~ for p varying in U, Then clearly/j(x) >10 is 

necessary for xED+(Br). Conversely, suppose that  /~(x)~O for all j .  This means that  

each a~x is in D+(BMp) for pEU and so there exist R~-lattices Y', such that  (r~x=[Y ~] 

for p E U. Now it is easy to see, that  there exists an A-module S, such that  k~ | k S =~ kp | % YP 

for each p E U (cf. Proposition 5.7) and then Lemma 3.2 implies the existence of an R-lattice 

Y, such that  Yp ~ Y" for each p E Y. Let A be the genus that  contains Y and let y be the 

image of that genus in D+(Br). Then we have apx =a~y for every pE U. But we have seen 

earlier that  the map 

a:  D(Br)  -~ FI D(B~) 
p e U  

induced by the cr~ is an injection. Consequently, we have x = y  and x is in D+(Br). 

Let m be the number of generators of D(Br). Then the rank of {/s}l N is m too; 

for otherwise D+(Br) would contain a subgroup ~=0 of D(Br). But if xED+(Br) and 

- x E  D+(Br) then x=0 .  We view D(Br) as an m-dimensional point-lattice. Then the in- 

equalities /j~>0 define a non-degenerate convex cone in D(Br). Such a cone is the 

union of a finite number of cones C~, each of which has exactly m faces. Thus we have 

D+(Br) = U C~ 

and each C, is defined by ,m independent inequalities gj~>0 with gjEHom (D(Br),Z). 

Now take an indecomposable genus in B r and let x be its image in D+(Br). Then x lies in 

some C, and is afort iori  indecomposable in C,, that  is x = a  + b with a, b E C, implies a = 0 

or b =0. Thus we need only show that  such a cone C only contains a finite number of 

indecomposable elements. But this is easy to see. Suppose C is defined by the inequalities 

gj>~0, j = l  ..... m. Since the gj are independent, we can find integers a j>0,  such that  the 

system 
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g t  = a j  

g t=0  for i4=j 

has a solution t r If  X is an element of C such that  gs(x)>as for some j, then x - t j  is in C 

too and so x is decomposable. This means that  the indecomposable elements of C satisfy 

the system 
O<gj(x)<~aj, ~=1 ..... m, 

which has only a finite number of solutions. This completes the proof of Theorem 6.3. 

Now let A 1 ..... As be the indecomposable genera in Br, and let x 1 ..... x~ be their images 

in D(Br). Since every genus has at least one decomposition int O indecomposable genera, 

these x~ generate D(Br) and so s>m.  If  s happens to be=m,  then the x~ are a basis of 

D(Br) and every element of D+(Br) is uniquely representable in the form ZlXl+... +zsx~ 

with z~ >0. This means that  B r  has unique decomposition. 

If  s>m,  there is at least one non-trivial relation ZlX i + ... +z~xs=O. Separating posi- 

tive and negative z,, we obtain a non-trivial relation 

y. z;A,= X z;'A,. 

Thus, for s >m, Br  does not have unique decomposition. But this does not imply, that  

every element of Br  has several different decompositions into indecomposable genera. 

In  particular, the genus F with which we started, may or may not have a unique decom- 

position into indecomposable genera. The situation can be described in the following way. 

Let Y be the free abelian group with basis yx .... , y~ and denote by Y+ the elements of Y 

that  have non-negative coefficients with respect to this basis. Then y ,~[A, ]  induces 

an epimorphism ~: Y ~ D ( B r )  and it is easily seen that  the different decompositions 

of a genus A are in 1-1-correspondence with the elements of 9-1([A])A Y+. Thus if 

9 : Y - +  D(Br) is known, we can find all decompositions of a genus A E Br. - -  To describe 

those genera, which have more than one decomposition into indecomposable genera, let 

a = z l y i + . . . + z s y  ~ be an element4=0 in Ker~.  Separating positive and negative z~, we 

can write a = t - t ' ,  with t, t 'E Y+. Let C be the subcategory of genera in Br, whose image 

in D(Br) is of the form ~(t). Then clearly, a genus A has more than one decomposition 

into indecomposable genera if and only if it has a decomposition A = A ' +  A" with A'E C. 

- -  We now mention a simple case where 0n has unique decomposition. 

PROPOSITION 6.5. Suppose that U contains only one element p (i.e. Rq is a maximal 

order /or q4=p) and that moreover K(A)= K(kp |  Then On has unique decomposition. 

In  other words, i] M,  and N,  are indecomposable R-lattices such that 

Mi  |174 NI |174 

then s= t  and the IY~ can be rearranged such that M,,,~N, /or i = 1  ..... s. 
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First from Proposition 5.7 we see tha t  our conditions on R imply tha t  D(~R) ~ D(l:n~). 

Then from the construction of t h e / j  in Lemma 6.4 we see that  also D+(~a) and D+(s 

are isomorphic. But  l:a~ has unique decomposition and so 0'a has unique decomposition 

too. - -  Clearly if moreover every genus in Ca has only one isomorphism class, then l: R 

has unique decomposition. (cf. Heller [8], who proved this if o is a valuation ring and 

K(A) = K ( k , |  

COROLLARY 6.6. Let G be a finite p-group with p =4=2 and put R =ZG. Then OR ha8 

unique decomposition. 

The discriminant of ZG, with respect to the trace of the regular representation is a 

power of p. This implies tha t  ZtG is a maximal order for q ~:p. Let  A~ be one of the simple 

algebras in QG and let Ki  be its center. Since K~ is a subfield of the field of pm-th roots of 

unity, p is completely ramified in Ki. Thus Q~| is a field and then K(QG)=K(Q~G) 

follows from the well-known fact tha t  At is a complete ring of matrices over Ki.(1) We 

sketch a proof of this, following the method of Schilling, which is based on the fact tha t  

an algebra tha t  does not split is ramified at  two primes a t  least. Suppose tha t  H~ = G/G 1 

is represented faithfully by  A i. Since the center of Hi  is not trivial, we see tha t  K~ con- 

tains a p- th  root of unity and because of our assumption p 42,  this implies tha t  K~ is 

completely imaginary. Let p be the (single) prime in K~ tha t  divides p. Since the discrim- 

inant of ZG is a power of p, this p is the only finite prime of K i tha t  could be ramified 

in As. Thus at  most one prime of Ki is ramified in A~ and so Ai splits. - -  From Theorem 

6.3 we obtain immediately 

THEOREM 6.7. For an arbitrary R-lattice M, the category BM={X, X |  Y~=zM, 

X, YE~:R, z>0}  contains only a finite number o/ indecomposable R-lattices (up to isomor- 

phisms). 

This follows from the fact that  indecomposable R-lattices determine indecomposable 

genera and tha t  BM is closed under direct factors in ~:R. Let T 1 ..... Ts be representatives 

of the different indecomposable R-lattices in BM. Then in a similar way as for genera, we 

can give a description of the different decompositions of a R-lattice N s BM; the only com- 

plication arises from the fact  tha t  the map  X ~  [X] E D(BM) is not injective. Define Y, Y+ 

and ~: Y~D(BM) in the same way as for genera. Take a fixed -NEBM and suppose 

ZlYl +.-. + zsy~ E~-I([N]) 0 Y+. Pu t  N '  = z 1 T 1 +., .  + z~ T~. Then we know, tha t  [N'] = [N], 

and this means tha t  there is an R-lattice X E BM, such tha t  

X |  ~- X |  

(1) See Schilling, J. reine angew. Math., 174, 1936, p. 188 or Roquette, Arch. Math. (Basel), 9, 
1958, 241-250. 
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According to  Theorem 4.1, X can be cancel led here if hrEC~ a n d  if X E BN. Thus,  for  

h r Es  a n d  B~= BM, t he  di f ferent  decomposi t ions  of hr in to  indecomposab le  R- la t t ices  

a re  in 1-1-correspondence  wi th  the  e lements  of ~0-1([N]) N Y+. 

F ina l ly ,  we no te  a special  case of the  preceding  theorem.  I f  M is a free R .module ,  

t hen  BM is the  ca tegory  of f in i te ly  genera ted  pro jec t ive  R-modules  a n d  we have  

COROLLARY 6.8. The category ~R o// ini tely generated projective R.modules contains 

only a finite number o/indecomposable modules (apart ]rom isomorphism). 
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