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This is the first of two papers dealing with homogeneous complex manifolds;
since the second work is a continuation of this one, we shall let the following in-
troduction serve for both.

The general problem is to study the geometric, analytic, and function-theoretic
properties of homogeneous complex manifolds. The present paper, referred to as
Part I, is concerned mainly with sheaves and cohomology; the results here may be
viewed as the linear part of the solutions to the questions discussed in the second
paper (Part II). In fact, in Part II, using the results of Part I as a guide and
first approximation, we utilize a variety of geometric, analytic, and algebraic construc-
tions to treat the various problems which we have posed. A previous paper [11],
cited as D.G., was concerned with the differential geometry of our spaces, and the
results obtained there will be used from time to time.

The study alone of certain locally free sheaves on these manifolds is a rather
interesting one and has been pursued in [4)], [5], [16], and [21]. The situation is the
following: Let X=G/U=M/V be a homogeneous complex manifold written either
as the coset space of complex Lie proups G, U or compact Lie groups M,V where
M is semi-simple. Then M acts in any analytic vector bundle E? () associated to the
principal fibering U — G — X by a holomorphic representation g:U — GL(E?). (Such
bundles are called homogeneous vector bundles.) The sheaf cohomology groups H*(X, £2)
are then M-modules by an induced representation p*; these modules have been de-

termined in [5] and [21] when g is irreducible and X is algebraic, and in other special

(1) The notations used here are explained in § 1.
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cases in [5] and [16], In §§ 2 and 5, we shall determine ¢* when X is arbitrary and
o is irreducible (thereby giving new proofs in the algebraic case) and shall give in
§ 3 an algorithm for finding o* when g is arbitrary; this algorithm covers the known
results (§ 4) and suffices for most of our purposes. In particular, it plus elementary
Kihler geometry gives an explanation of the “‘strange equality’” observed in [5].
For applications, we need not only the modules and their transformation rule under
M, but also the explicit Dolbeault forms representing cohomology classes; this con-
struction, which turns out to involve a connexion, is given in § 5.

In the remainder of Part I, we give the more immediate and simpler applica-
tions of §§ 2-5. In § 6, the group of line bundles L[X] and function field F[X] are
determined, and in § 7 the characteristic ring and its relation to sheaf cohomology
groups is discussed. In § 8 the endomorphisms and embedding of homogeneous vector
bundles are treated. Also in this section we discuss some extrinsic geometry of C-
spaces, and we give a projective-geometric proof of rigidity in the Kihler case.

In §§ 9 and 10 at the beginning of Part II, the variation of complex structure
of our spaces in examined in some detail; here we come across a rather interesting
mixture of techniques in differential geometry, representation theory, and partial
differential equations, and we outline briefly our treatment of this problem.

It is known that, roughly speaking, the parameters of deformation of X turn
up infinitesimally in HY{X,®), and thus in § 9 we solve the linear part of the prob-
lem by determining completely the M-modules H*(X, @). However, not every y € H{(X, )
is suitable for a deformation parameter, and in the last part we determine those y’s
which are ‘“obstructed”. Then in § 10 we use representation theory (primarily the
Frobenius reciprocity law) and partial differential equations to construct local deformations
through the unobstructed y € HY{(X, ®); these new manifolds are generally non-homo-
geneous. Finally, using the fact that y transforms in a certain way under M, we
discuss which among the new manifolds are biregularly equivalent and in so doing
encounter the phenomenon of “jumping of structures’.

Paragraphs 11 and 12 are a discussion of various properties of homogeneous
vector bundles such as the moduli of homogeneous bundles and the extension theory
and automorphisms of these same bundles. For example, in § 11 we characterize the
homogeneous bundles over a Kahler C-space as being those bundles which; with a
suitable reduction of structure group, are locally rigid. In § 13 bundles over general
homogeneous Kihler manifolds are treated, and § 14 is given to examples of the
general theory and counter-examples to show why some results cannot be sharpened.

It may be well to show how the above applies to a specific manifold. Let



HOMOGENEOUS COMPLEX MANIFOLDS. I 117

X =8U (5) with any left-invariant complex structure; writing X =G/U, G=8L (5, C)

and U is a certain subgroup of the maximal solvable subgroup

Qyy -ee Oy
U=( ) (det (ay;) =1).

0 G55

Any representation of U induces one of U (but not conversely) and we denote the
1-dimensional representation (a;) —>ay by 0. It turns out that, for any A€C*, 16,
defined on ut=complex Lie algebra of U by A0,(ay) = Aaiy((ay;) € 1t) induces a representa-
tion of U and we may form the homogeneous line bundle E** — E** - X. Then
L[X]=C* and the most general line bundle on X is of the form E"®, . EM0:=
El(l=(ll, ...y Az)), there being three relations among the A/s. All these line bundles
have non-zero 8-cohomology class but zero d-cohomology class. It will be seen that,
in general, H*(X, £*) =0 if some 1;¢ Z and H*X, £+ 0 < 1 is integral and 4, > ... > A,
in this case, HYX, &) is the irreducible SU (5) module given by the Young diagram

L1 .. | . (14
2,1 | ... |24,
51| ... 5,1

2
Furthermore, H"(X,S’l)gHO(X,E’i)@C(“) and SU (5) acts by A*®1.
The set of bundles E such that we have 0 —E"% —E —E"% 0 forms a vector
space which is non-trivial <1, —7; is integral and non-negative. If 1,—7,=n>0,
4+
the bundles E are all non-homogeneous and form a space of dimension (n_?); if
A =1,, these bundles E are all homogeneous and form a vector space of dimension 2.
2 2
The groups HYX, ®)%{sl (5, C)®C(‘1)} €B{C2®C(")} and M acts by {Ad®1l} e
{l®1}. We have that dim HY(X, ®)=52; of these 52 parameters, there are a maxi-
mum of 28 which parametrize a local deformation of the analytic structure of X,
and, in fact, 28 such parameters exist. The remaining 24 parameters are obstructed.
Of the 28 suitable parameters, 4 preserve the homogeneous structure on X and 24
do mnot; any two elements in HY(X, ®) differing by an action of M give equivalent
manifolds.
This then is an outline of the confents of this paper. Throughout we have tried

to maintain the dual attitudes of studying in some detail those properties arising
9 — 632932 Acta mathematica. 110. Imprimé le 15 octobre 1963,



118 PH. A. GRIFFITHS

from the homogeneity of our spaces while at the same time keeping an eye on those

properties which seem to have wider applicability. The latter aim was especially in

mind when studying the variation of manifold and bundle structures and its relation

therewith to obstructions.

This paper grew out of the author’s dissertation at Princeton University, and to

D. C. Spencer and many others we express gratitude for generous help given. Some

of

® NS o

10.

11.

12.
13.

the results appearing below were announced in Proc. Nat. Acad. Sci., May 1962.
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1. Review and Preparatory Discussion

(i) Notations and Terminology
If V is a vector space over a field K, and if V,,V,,... are subsets of V, we

denote by x(V;,V,, ...) the smallest linear subspace of V containing V,, V,,.... As

usual, GL(V) is the Lie group of automorphisms of V and gl(V) is the Lie algebra
of endomorphisms of V. The symbols Z,Q,C, R represent the integers, rationals,
complex numbers, and real numbers respzctively. The dual of a vector space V is
denoted by V’; if V is defined over Q or R, its complexification V® ¢C or V®gC is
denoted by V. If A is a Lie group, a° is its real Lie algebra, 0®=0’QgC; if 4 is a

complex Lie group, a is its complex Lie algebra.

For a manifold X,T(X) denotes its tangent bundle; if X is complex, T(X)=

T(X)®rC splits T(X)>L(X)® L(X) into vectors of type (1,0) and (0, 1) respectively.
The symbol E — E— X will denote a vector bundle over X with fibre £; B’ -E — X
is its dual. The usual operations &, ®,AY ... among vector bundles will be used
freely. If £ —E— X is an analytic vector bundle over a complex manifold X, £ is
the sheaf of germs of holomorphic cross-sections of E ([14]); in this case, HYX, &)
denotes sheaf cohomology. The symbol 1 denotes the trivial line bundle and we set
[=Qx(=Q if there is no confusion). Also, we write ®=L(X) and Q%= AL(X)".
The notations and terminology concerning differential geometry are those used in D. G.;

they shall be used without explicit reference.

(ii) Lie Algebras and Representation Theory

We review the structure theory of complex semisimple Lie algebras and some
facts from representation theory ([25]). Let g be a complex semi-simple Lie algebra,
=g a Cartan sub-algebra, (,) the Cartan-Killing form on ) and on §’. Then, if 2
is the system of roots of (g, fj), we may write =10 (® 4exv,) where the v, are one
dimensional and, for €Y, vE€wv,, [h,v]=<a, h>v. As usual, we set h,=[e,, e_,]. One

may choose an ordering in 2 which defines the positive roots 2% and the negative
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roots 2~ = —(2%); furthermore, there exists a minimal set of generators (over Z)
[T<2 M={x,...,s} (I=dim h=rank g) is a system of simple roots.

The Weyl group W(g) acts as a finite group on ) and on §’; one speaks of
singular and regular elements as usual. Having chosen an ordering in 2, we have
the Weyl chamber D(g)={1€}": (1, ¢) =<4, k,> >0 for all p €2*}; the interior D°(g) =
{2€Y: (A, ¢)>0@p€2"}. Then D(g) is a fundamental domain for W(g). The element
g=1312pcx+ @ lies in D%q); 2(g, ®;)/(oy, ;) = (&, ;) for all oy €]]. In W(g), there is the
involution é satisfying d(g9) —g=2,cx- @

An element A€l is integral if 2(4,¢)/(p, @) € Z(p €2); we denote the integral ele-
ments in §)' by Z(g). A complex finite-dimensional representation space E¢ decomposes

into weight spaces:
Et= o, @ B

(2(0) < Z(g) = weights of p); an irreducible representation is uniquely determined by its
highest weight. We set §# =4(Z(g)) and also define the fundamental weights @,, .., &,
by 2(&, o)/ (@, &) = 6}; these @; form a minimal basis for Z(g). If A=21;&,€ Z(g),
A€D(g)<=4,>0(j=1,...,1) and, for 1€ D(g), we denote by E* the irreducible g-module
with highest weight A.

For any g-module E° E¢ is the contragredient g-module with highest weight
8(—p). We may write E?=>,cp( mi(0)E* where m;(o) = multiplicity of 4 in g. Schur’s

lemma then reads:
dim Homyg (E*, E®) = ma(o);

this simple equation will be used time and again.

(iii) The C-spaces of Wang

We recall the structure of C-spaces as given in [13] and [24]. A C-space X may
be written a8 X=G/U or X=M/V where G, U are complex Lie groups, M, V are
compact groups. Furthermore, we may assume that G, M are semi-simple and that
@ is the complexification of M; then g=m’ One has a holomorphic principal fibering
U—~G—>@G/U and if o: U-—>GL(E® is a holomorphic representation, we form the
homogeneous vector bundle E°—E¢->G/U where E?=GxyE° (see [5]). The sheaf of
germs of holomorphic cross-sections of E? is denoted by £ the sheaf-cohomology group
by H*(X,£%). Since M acts holomorphically on E¢, H*(X, £ is a finite dimensional
M-module and it is this action we are interested in.

We describe G, U, M,V by giving their complex Lie algebras. If g=m’=he
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(®.cxv.) as above, then there exists a closed subsystem ¥ <2 such that ¥ is a root-
system for V. Furthermore, there exists a rational splitting §h=c@}, such that
Byo olhy: «€W) and a splitting of ¢ into complex spaces: ¢c=p @] such that v°=
By ® (® wey v,) and, setting n=gle_,: a€3" ~¥*), u=pev’@n. The complex vector
space p® By will lie on no rational hyperplane; a€f? and (o, h>=0 for all hEp @
hy=a=0. We denote by an * (or alternatively by a ~ ) the conjugation in 1’
thus, e.g., 1" =¢(e, €27 —¥").

Let now X =G/U be an arbitrary C-space where U is solvable; if T?*->G/U->G/U
is the fundamental fibering, U will be maximal solvable and X =G/U will be a flag
manifold. Let dim ¢X=n so that dim ¢(X=n-+a. A homogeneous line bundle
E*—>FE¢—X is given by a linear form ¢ on §Nu; we recall Theorem 6 of D.G.
where it was shown that if the characteristic class ¢,(E?) was negative semi-defi-

nite of index %, then
HY(X,&=0 (g<n—k). (1.1)

From this and from the argument in Proposition 8.2 of D.G. it follows that, if
{0, hey<0 for all €27, then

HY(X, =0 (g<n—a). (1.2)

If K is the canonical bundle on X, then (D.G., Proposition 5.2, or directly) K=E 2
(g=3%uezra). Since for an integral form g on hNu, —p—2¢ is strictly negative

<»p+g is non-negative, we find that, using Serre duality,
HY(X,EY=0 (a<q) (1.3)

if p+yg is non-negative on fNu.

(iv) Sheaf Cohomeology and Lie Algebra Cohomology

Let X be a C-space (arbitrary) and E®->&?— X a homogeneous vector bundle.
It is due to Bott that H*(X, €% may be written in terms of Lie algebra; we shall
constantly use this and a similar result which we now describe.

Let M,V with V<M be arbitrary compact connected Lie groups and such that
X=M/V is simply connected. Given a representation g: V —>GL(E?), we may form
the differentiable homogeneous vector bundle E¢—>E?—> X where E¢=Mx,Ee. In

o~

particular, if E¢=1°/%" and p = Ad (induced action), then E¢~T(X)="T. If E°=E? ® E*
(as V-modules), then E?~E? @ E?" and we may speak of the cross-sections of E? as
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being of a certain type. For example, if we take a D-reductive splitting m=10"@f
and if ¥ <t is ©%stable, then f=P & ¥ (5°decomposition) and 7' =~T°® T# This
induces a type decomposition on differential forms. Since M acts on Ef, the vector

space A(E?) of O™ cross-sections of E¢is an M-module with induced representation g*:
M — GL(A(E?)).

THEOREM 0. Let D(M) be an index set for the irreducible representations of M and
let B —E°— X be a homogeneous differentiable bundle. Then we have an M-isomorphism

AE)~ 3 Ve E @ VA, (1.4)
AeD(M)
where *IVeE V=181

Proof. Let C*°(M)=C* complex valued functions on M; M acts on C*(M) in

two ways:

(i) BR:M— GL(C*(M)) defined by

(B(m)f) (m")=f(m m) (f€C®(M); m,m €M)
(it) L: M — GL(C®(M)) defined by

(L(m) f) (m) = f (m™* m).

There are induced representations r: 1 —gl(C®(M)) and I: m®—gl(C*(M)). In
the fibering V —>M = M/V, in order that f € C*(M) be of the form fon (fEC®(M/V)),
it is necessary and sufficient that f be constant along the fibres. This is expressed
analytically by R(v)f=f (v € V) or, since V is connected, r(v)f =0 (v € b°). Thus C*(M/ V)=
(as a vector space) (C®(M))*={f€C*(M):r(v)f=0,v€5H}. Since M acts on C*(M|V)
by mo L, the Frobenius reciprocity law together with the Peter-Weyl decomposition
of C*(M) gives (1.4) for =0 (=trivial representation).

In general, we have the fibre bundle diagram

ExM—~E"
| |
M =~ M|V
(Proposition 5.1 below) and the C*® cross-sections of E*x M are given by C*(M)® E".

The same argument as given above shows that, as vector spaces,
AEY) = (C®(M)® E7)° .

Applying the Peter-Weyl theorem again gives (1.4). Q.E.D.
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COoROLLARY. Let ¥ <t and E?—>E¢— X be as given above the statement of Theo-
rem 0. Then

AR AY(THY)~ 3 Vie (Bt @A (H) @ V).
Ae D(M)
Let now X=G/U (complex form)=2M/V (compact form) be a C-space. We may
write m°=0onen* and since [B° nj=mn, [0 n*J<=u*, we may write

ATEX) = 3 (A (nha)) © (A(1a0));

p+a=r

this is simply the decomposition of the complex r-forms on X into type components.(?)
If o: U GI{(E°) gives a holomorphic bundle E°—E’°— X, then it is a priori a
differentiable homogeneous bundle and we may apply (1.4) to conclude that

AR ® A%(1a0)') = A(E° ® AY(L(X))) = AT O yhye (L.5)

Here we write the bundle of (0,¢q) vectors on X as A%(1aq) or AY(L(X)') (using the

decomposition T(X =~ L(X) ® L(X)).

We have §°=g, ® g5, 1°=1u,®u; and, in D.G. § 2, Definition (2.4), we described
explicitly an isomorphism g :11°—g,; it is easily checked that g(n) S u, and thus n
acts on E° by cop or just o. Thus the expressions C%n, E°®V* and Cn,

E® V_'i)g” as defined in the sense of Lie algebra cohomology make sense and
0U(n, B° ® V-H* = (A () @ B° ® V)™, (1.6)

Thus the cohomology module

He(n, E° @ VH» (1.7)
is well-defined.

On the other hand, we have a well-defined mapping

0: AAYL(X)) O E°— A(A"" (I(X)) ® E°),
#=0, and the cohomology groups are simply the Dolbeault groups H*‘(X,E?) (see
[14]); the Dolbeault isomorphism reads: H*?(X,E?)=~H(X, £?). A calculation in local

coordinates gives the following commutative diagram:

C(n, B ® V-4 4 0 (n, B° @ VH»,
! i }
"X, E°) 5, %X, E),

() For convenience, we write M= &) v_ Do.
xe X1
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where C” %X, E°)= AAY(L(X)))®E° and we thus get the M-isomorphisms

C*YX,E)~ 3 Ve oUn E°® VT, (1.8)
Ae D@

HOYX,E)~ 3 Vi@ H(n, E° © VA" (1.9)
Ae DY)

((1.9) is equation (1.6) in [5].)

We return now to the situation described at the end of section (iii) of this §;
X=G/U where U is solvable and 7%*— X — X =G/U is the fundamental fibering.
Referring to (1.9), we have that

H(X, £ =“§@V‘® (B° @ P~y (1.10)

(¢ is now 1-dimensional) and since u2¢(e.,; a€2"), we conclude (as in [5], § 4)

using (1.10) the following:
ProrosiTioN. HYX,E%) =0 unless p€D(g) in which case
Ho(X, £)= Ve (as M-modules) (1.11)
and HY(X,£9=0 (¢>a). (1.12)

Remark. The complete proof of this Proposition was given in D.G., only for a =0.
(However, this “vanishing theorem” for arbitrary e is true for general compact com-
plex manifolds.) Thus, in order to have completeness, we shall use (1.12) only when
a=0. The general statement would allow us to assimilate §§ 2 and 5 into a single

theorem.

2. Homogeneous Bundles Defined by an Irreducible Representation

In this section we shall determine the M-module structure of H*(G/U, £%) when
o is irreducible and G/U is Kahler. These results, for H°(G/U, £%) are due to Borel-
Weil [4] and for HY(G/U, &%) (¢>0) to Bott [5]. Also the same result has been ob-
tained in a purely algebraic manner by Kostant [21]. Our method uses (1.11) and
(1.12) above together with a spectral sequence in Lie algebra cohomology. In [5] the
Leray spectral sequence (which is not the geometric counterpart of the spectral se-
quence given here) was used, however for us the use of the Lie algebra spectral
sequence has two advantages. First, the spectral sequence used here carries the
M-module structure of H*(G/U, £2) (for arbitrary G/U and g) allong with it and



HOMOGENEOUS COMPLEX MANIFOLDS. I 125

secondly, and more important, this same spectral sequence allows us to obtain in-
formation when G/U is non-Kéhler andjor o is not completely reducible. In fact, by
successively applying the same spectral sequence in Lie algebra cohomology, we obtain
(i) the main theorem in [5], (ii) the M-module structure of H*(G/U, %) when p is
irreducible and G/U is non-Kéhler, and (iii) information on the M-module H*(G/U, £°)
when G/U and ¢ are both arbitrary.

Let now X=G/U=M/V be Kihler and let p: U—GL(E®) be irreducible. We ob-
serve that since u=1n® %" where n is a nilpotent ideal, p|n=0 and thus g is essen-
tially the complexification of an irreducible representation of p°. For each &€ W(g),
we define a mapping I,: Z(g)—Z(g) by

I,(A)=0a(A+9)—g (for 1€Z(g)). (2.1)

Furthermore, define I:D(®%)—D(g) U{0} (0 giving the zero M-module) as follows: if
A-+tg is singular in f)#, I(A+g¢)=0; if A+g is regular, there exists a unique o€ W(g)
such that o(1+¢)€D’(g) and we define

1(2) = 1,(2) € D(g) (2.2)

(9 is a “minimal”’ element in D(g)). Finally, we recall that the index |p| of nEf)#
is defined to be the number of roots ¢ €2* such that (1, ¢)<0. If c€EW(g), we de-
fine the index |o| of o as follows: |¢]=cardinality of the set ¢(2*) N 2~ =number of
roots which “change sign” under ¢ (recall that ¢(2)=2). The connection between
these two is the following: if # is regular, there exists a unique ¢,€ W(g) such that
0,(n)€D°(g) and then |p|=|o,]. Finally, if 1€D(g) (o €D(5")), we denote by V*(&e)
the irreducible representation space for the irreducible representation of M(V) with
highest weight A(g).

THEOREM B [5]. To each V-module E°, there is associated an irreducible M-module
H*X,E,).

This transformation takes irreducible V-modules into irreducible M-modules and
the transformation of D(1°) into D(g) U {0} is simply I given in (2.2). Thus H%(X,E%) =0
for at most one ¢ and in fact ¢=|o+g|=|o| where I(g)=1,(0) or H*(X,E%)=0 it
o +g is singular. Restated:

VZ®Hq(TL,EQ® V—l)f)o:O q=}=|0’l or A=%I(p), } 2.3)

V@@ Hol(n, B0 @ V- 1@) = plo,
Now we turn Theorem B around. Since  is irreducible, 1 0 B2=0 and H'(n, EB¢® V *) =
H'n,V)®E°. On the other hand, if 1= Ip)=0(o+9)—9g, c(A+g)—g=¢ and
applying Schur’s lemma to (2.3), we have
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TeEOREM K [21). As a 9°-module,

HmyH= 3y, (2.4)

ae{ W@ W(py}?
where V¥ s the representation space for the irreducible representation of V with lowest
weight —{o™ (A+g)—g} and {W(8)/W(EB")} ={c€W(9):|oc|=q and o7} (D(g))< D(¥°)}.

Since (2.4) implies (2.3), it will suffice to prove either. Note that for a homo-
geneous line bundle E° where g €D(g), we have already proven (2.3). The spectral
sequences used now were motivated by those in [5]. We proceed in a sequence of
steps. First we treat line bundles over a flag manifold /7.

(i) Let E°—>Ee—>M/T be given by a character g of T such that ¢ +g€ D(g).
Then

HY(X,E)=0 if ¢>0 or ¢g=0 and p+g is singular, } (2.5)
HY(X,E%=7Ve¢ (as an M-module) p€D(qg), '
HY(M/T,£% and H" °(M/T,E°®E™) (2.6)

are dual M-modules where n=dim ¢M /7. This is just Serre duality where K=E".
HY(M/T,E)=H"*"(M/T, E?) (2.7)
as an M-module if p +g€.D(g). Indeed, since
—Is(e)—29= —do—29+9) —g= — (o), H"(M/T, E'¥®)
is dual to H*(M/T,E %®) which in turn is dual to H*(M/T, E°). Now use (2.5):
(2.3) is true for M/T<p+g€D(g)=H'(M/T, E)=H"*1\(M /T, E?) (2.8)

as M-modules.
If €2, we set D(a)={n€Z(g):(n, «)>0}; then D(g)= Naecx+-D(x) and (2.8)
will be true if we can prove

0€D(a;)~ HY(M/T, £)= H* (M /T, E?) (2.9)
as M-modules (here a;€x). Indeed, we may write 0™ =7a, Ta, ... To, (') (a4 €7) and
if (2.9) holds, we may proceed inductively to (2.8) since 74(2*)N 2" = —a;.

If we consider M/T where g=v_, @) o0, (2.10)

(*) Here 7o, € W(g) is the reflection across the root plane of the simple root o, .
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(i.e., dim¢g=3), then since § =1, (2.7)=(2.9)= (2.8). In other words, Serre duality
on P,(C) gives the theorem.

Remark. If |6|<2, (2.7) may be proven using the Nakano inequality only (Pro-
position 8.1 in D.G.).

(i) For a flag manifold M/T, n=gle_,: x€2") and 1* =¢(e,:x€2"). For o, €],
we set Ny =c(¢,: €2  —{}); then 1, is an ideal in n. Thus, for any n-module F,
there exists a spectral sequence {E,} such that E, is associated to H*(un, F) and
E3?=H"(n/n,,, H*(n,, F)). Using this spectral sequence and (2.10), we shall prove (2.9).
Indeed, if g€D(x), we have n-modules F,=V *®E° and F,=V *®E%? and to

prove (2.9), we must show:

Hi(n, F)o=H""'(n, F,). (2.11)

There are two spectral sequences {'E,} and {*E,} corresponding to the n-modules F,
and F,. Here

1B = P (n/n,,, H (M, Fy)) = BP (n/n,,, HO(n,,, V) © B9),

If we set 52i=v_“i ehe Vs, then H"(nai,V“‘) is a completely reducible ﬁg{-module
and we write
Ho(n,, V= 3 Vgt

SED(mi)

since D(82 )= D(e;) Thus
'BYi= 3 H'(n/n., Vit?)® Ee

&eD(x)

and similarly, 2Pri= S H'(M,1,, Vi*?) @ E°=@.
EeD(x) :

We may derive both spectral sequences throughout by § to get new spectral sequences
{'E;}, {’E;} with 'E., associated to H*(n, V *® E°)), *F, associated to H*(n, V*®
E'49y0. Bug

H (1/1,, V™ © EO)) = HP*' (n/1,,, Vit ® @) =0
unless p=0 by (2.10), Thus both spectral sequences are trivial and
H%n, Vi Eg)f) =1ga_ L L et (, Ve ET“i(Q))h

and Theorems B and K are established for flags.
(ili) For a general Kahler C-space M/V, we use the fiberings V/T—~M/T—>M/V;
knowing the theorem for the total space and the fibre, we shall deduce it for the
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base space. Let E¢—E¢—M/V be given by an irreducible V-module E° with highest
weight @;E‘; is the irreducible 7-module with character ¢. In the notation of §0 (iii),
we set t=gle ,:x€2T), i=cle—n:a €27 —¥*) so that 1 is an ideal in n. Then, for
an fi-module F, there exists an {E,} with E, associated to H*(n, F) and Ef ‘=
H°(nw/1, H(#, F)). If F=V"% then

H@vh= 3 vi*e (2.12)
EeDOY
and H/i B\, VH= 3 H /R, Vb= X 3 Vpk
£e D% EeD" ae{WaMH}»

(applying Theorem K to n/fi, i.e. ¥/T). On the other hand,

H@VH=_ 5 poo
fe{W(g}e

(applying Theorem K to M/T). Now we tensor the spectral sequence throughout by

E¢ and derive by §) as above to get {E;} where
B t= 3 2 (V;»;E(?r)® Eé)b

EeD(W") ae{Wm)}P

-9 o BV if p—

_[rHeemy if p=0 o 2.13)
0 if p+0 since g€D(%").

On the other hand,

HM VA @ Ep= 5 (V" g i
oe{ W}t

o Is-1(A)+p or g+|6],
(Vq,1(0)®E6)f) if Ie(é)=}b’lelzq

Thus the spectral sequence {E;} is trivial and

{(V(;‘:gwe)ﬁ#o if Io(0)=2, |0|=g,

0 otherwise.

Then by Schur’s lemma,
H? (ﬁ, V”l) — Z Ve.l(o)
0 e { Wi/ WHH}T
which is just the statement of Theorem K.
Needless to say, the essential point in the above derivation was Schur’s lemma
which allows us to pass from the dimension of a vector space to the multiplicity of

a representation.
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3. Homogeneous Bundles Defined by Non-Irreducible Representations

In this section, we treat the question of determining the cohomology of a homo-
geneous vector bundle E?—>E?—X over a Kihler C-space X =@/U where gp: U—>GL(E?)
may not be irreducible. There are several ways of doing this; one may use a spectral
sequence in a fashion similar to above; this is a method slightly different from the

one used here. We have chosen this one solely because of its applications.

THEOREM 1. Let B¢ —>Ee->X=G/U=M/T be a homogeneous vector bundle over
a flag manifold M/T. If the weights of o: w—H(E®) are Ay, ..., Ans1, each A; gives a
homogeneous line bundle E%—>F%—M/T. If any of the conditions «, B, y given below

are sabisfied, then

H*(X, 89)=n§H*(X, &Y (as M-modules) (3.1)
() I(A)+1(4;)  (i=7)
®) Nargl=l4+gll>2 @)
() [A+gl=|4+g| (for all i,7).

Furthermore, H (X, E) =0 if
() i{min |A;+g¢|, iy max|4+g| or i|4+g| (forall §).

Proof. We are considering the flag manifold X = G/U =M /T; u is thus a (maximal)
solvable subalgebra over an algebraically closed field and hence there is a simultaneous

eigenvector e, for g(u); i.e., p(uy=4,(u)e, for all w€u. Note that

(i) ol[u, u']) e, =2, (w) A, (w') e, ~ A (u) A, (u) e, =0;

(11) olu+u') e, =2 (u) e, + A (u')e, u,uw €

and thus, by restricting o to §), 4, lies in §)’. Set B¢ = C(e,) = ¢(e,) so that o(u) B¢'< Ee'.

LeMma 3.1. There exists an exact sequence of homogeneous vector bundles 0 — E¢'—

Ee—TFel 50 over X.

Proof. Let Fe'=E¢/E®'; then F*' is a u-module via p and we may form
Gx B =Ee', GxyE*=%e, and GxyFel=F! Exactness is easily verified by taking
the obvious maps.

Now, still denoting by p the induced representation on Fe¢!, we see that p(u)<

H(F*',C) is a solvable subalgebra and there is a common eigenvector e, € F¢'; setting



130 PH. A. GRIFFITHS

cley) =E®? and Fo?=Fe'/Ee? we get as above the exact sequence of homogeneous
vector bundles 0->E¢*—>Fe!-—sFe% >0, Continuing this process until dim Fe"=1, we

end up with
0—>Fel —Ee —Fel 0,

0—>Ee? —»Fe! —»>Fe? 0,
: (3.2)

0—Ee:" 15 Fem 25 Fe "1 5,

0—>Ee" —FelsFet 0.

Now (i) above implies that

1
oles) e = @) o([he, €4]) €, =0;

ie., 4, is the weight of o on E®! and thus E®' is the homogeneous line bundle E*.
Similarly, E¢%, ..., E®", F" are the homogeneous line bundles B, E*+1 where Ay oeerAnsa
are precisely the weights of the original representation g. From the exact cohomology

sequences (these being exact sequences of M-modules) we get

o> H(ER) —HP(E)  —>HY(F') —>HUNEM) ...

o> HP(EM) —HP(FY) —HP(Fe?) —HYEM) — ...
: (3.3)
o> HP(E1) > HP (07 %) > HP (307> HP L (E-3) > ..

o> HP (4 — HP(Fe " N HP (EMn+1) — HP Y&y .
() If () is satisfied, then
H*(:;g-"—l)= H*(Sln) @H*(81n+1)'

Indeed, there are groups in H*(E*) in at most one dimension for each 1; (Theorem B).
Our assertion is clearly true unless [An41+g|+1=|4,+g¢| in which case the non-

trivial piece of the exact sequence is (setting Mn a+ g] =p)
0—HP (Fo " 1) Pln+D Viaw » gP+i(Fe 1) 50
and since VI are irreducible g-modules, we see that
HP (g:e, n~1) — V1(1n+1)
H17+1 (39 n—l) — VI(An)

and we are done. This same reasoning allows us to proceed inductively up through

the above system of exact sequences to get our conclusion.
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f) The argument is similar where now our hypothesis serves to sever the exact

sequences into disjoint sequences of the form 0 —+A4 - B—0.

(y) The exact sequences become, reading from bottom to top and setting p=|1;+g]|
(for all 1)

0 — P __),Hp(;g,n—l)__)I/I(A,..;.l) -0

0__)VI(1,.71)__>H17(3:Q,1L*2)_)Hp(gg,n—l)_>0

0._)_'.[11(12) __>H17(39,1) _)Hp(ggj) -0
0__>Iﬂ(ll) — HP (ee) — H? (gq.l) -0

From this we again get Theorem 1.

(r) I ¢ is in the specified range, then
H'(F*" =0, H'(F*"")=0,...,H (IF*")=0,
and H'(E?)=0 which was required. Q.u.D.

There is one difference from the above discussion when we consider E¢—Ee—
M/V=X=G/U where X is Kihler but where ¥ may be non-abelian so that u is
not solvable. In this case, we consider the nilpotent radical n=g¢(¢_,:x€2"— ¥ cu.
Then p(1t)<gl(E?) is nilpotent and annihilates some non-trivial subspace E®'c E°
(ie., p(n)e,=0 for all n€n, e, €Ee"). Since n is an ideal in u, p(u) B’ Ee'; as
above we have the sequence of U-modules

0~ Ee' > E°— Fe'—>0 (Fel=Ee¢/Ee?)
and the associated exact sequence of homogeneous vector bundles
0—>Ee!—Fe—~TFel 0,
ﬁere we assume that any u-module F such that no F=0 (i.e., F*=F) is a semi-

simple 5°-module. Continuing the above process, we end up with a semi-simple 5%-module
Fe™ described by the following sequences:

0—->Eel 5Fe STl

0—>Ee? >Fe! _Fe?

(3.4)

0——>]<']9’"——>F9'"‘1—>F9‘"—>0.

Now E®’ (j=1,...,n) and F&"=Ee"*! are by assumption semi-simple 5°-modules,
and by theorem B we know H*(X,€&¢’) (j=1,...,n+1) as M-modules. By reasoning
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as in Theorem 1, we may derive information on the modules H*(X, £). Thus, letting

01; ---»0m be the weights of g, if

() (@) +1(g;) (vsj) or

#) lle:tgl—les+g)|>2 (i+j) or

(") lo:+g|=|o;+g] (foralls, ;) or

() i (min |g;+g|, i) max |g;+g|, or ¢+]|g+g| (all §),

then H*(X, €)= ® H*(X, 7). (3.5)
=1

4. Applications of §§ 2 and 3

We shall now give some applications of (3.1) and (3.5). In general, we shall use
Theorem 1 to prove results for M/7 and only make the statement of the corre-
sponding result for M/V. In all cases, the proofs will be easy from (3.5).

We give a preliminary proposition which will be quite useful later.

Let X be a C-space G/U and let U >U be such that G/U is again a C-space
(all groups involved are connected) and U/U is a homogeneous complex manifold.
In general U/U may not have a finite fundamental group; however, it will be com-

pact. There is the usual analytic fibre-space diagram:

62> @/U
N K H
/0
Suppose now that g: O —GL(E?) is a holomorphic representation of U'; then §|U =
0:U— GL(E®) = GL (E°) is a holomorphic representation of U and we may form the
homogeneous vector bundles
B> EEq/0
Ee—>Ee >G/U.

On the other hand, denoting by ¢ the projection in the fibering U/U—~G/U—G/U,

we may form the analytic vector bundle a"l(Ez’) over

G/U: ¢ (B 2> G/U
o1 t e 4.1)
B "> G/U
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ProProsiTION 4.1. In the above notation, o‘l(Ea) ts a homogeneous vector bundle
and indeed o' (EP)=Ee.

Proof. We first recall the construction of ¢~ '(E¢). Setting X =G/U, X =G/0,
consider the product XXEa; then a‘l(Ea) XxE? consists of those pairs (x, €) such
that o(z)=n(é). By defining n(x, é)=x we get a projection map x :a‘l(Ea)—->X which
gives rise to the analytic vector bundle o"l(Eé). Writing points of X(X) in the form
gU (respectively gU), the map ¢ is given by o(gU)=gU. On the other hand, we de-
note points of EQ(EQA) by [g,€], ([g.el;) where, by definition, [g,e],=[g’, ¢'], < there
exists €U such that ¢’ =gu, e=p(u) e’ ([g,el; =[g’, ¢']; <> there exists 4€U such that
9’ =gi, e=p(#)e’). With this clearly understood, a'l(Eé) consists of those pairs
(9U, 19, €];) such that gU=z[g,é]1=40. Thus in order that (gU, [§,¢];) € X xE? lie in
o 1(B9), it is necessary and sufficient that there exist a #€0U such that gi=g. We
define a mapping f:Ee —>a‘1(Ea) by f([g,el,)=(gU,[g,el;); f is thus a mapping of E°
into X xE¢ whose image clearly lies in o (E¢).

(i) f is surjective :indeed let (gU,[g,¢é];) lie in G‘I(Ea); then there exists 4€0
such that gid=¢ and since [§, &];=1[g, o(4™") €], (9U, (4, €1;) = (9U, [g, o(@7") €5) =
(g, o(a™) é1,).

(i) f is injective : suppose that f([g,el,) = (gU, (g, el) = (¢’ U. g, ¢'ly) = (g, €)y);
this implies first of all that g=gu and hence [¢’,¢']; =[g, o(u"")€']; =g, €]; which in
turn implies that e=g(x )¢’ and thus [g',¢'},=[g, €], Q.E.D.

CoroLLARY. Let X=G/U be an arbitrary C-space and let ¢: G— GL(E®) be
holomorphic representation. Then upon restricting o to U we get a holomophic representa-
tion o : U—>GL(E®) (E’Q=E9A) and the homogeneous vector bundle E—~E—>Q/U is ana-
Iytically trivial.

Proof. Take U=@ in (4.1) and apply Proposition 4.1.

In the applications to be given, we shall need a property of the Weyl group
W(g) which is found in [3]. For any subset ® <2, we set (D> =D,cq . If c€W(g),
we set ®;=0(27) N 27; then it follows that

o(g) =g —<D@s). (4.2)
Thus, for example, if «€[], then 7,(9)=g—« since (g, a)=3(x, «).

ProrosiTION 4.2. If ® =27, then (@) +g is M-regular <> (®>= —(D,> for some
o EW(g) in which case ®=®,. Thus, I{®>=0 unless ®= — D, and then
10— 632932 Acta mathematica. 110. Imprimé le 15 octobre 1963.
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() I(—(D,>)=0 (=0 element in §7) } (43)

(i) |—<@>+g|=]0o].

In particular there exists a unique 8 € W(g) such that 27 =8(27) N 2* =Dy, this is

the same & as discussed in § 1.
We now give our first application. The exact sequence of U-modules
0—>u—>g—>g/u—>0 (4.4)
gives an exact sequence of homogeneous vector bundles

0->L—-Q—~L—0, 4.5)

where L= IL(X) is the holomorphic tangent bundle of X and L=End(L)=Hom (L, L)
is the bundle of endomorphisms of L. This is the Atiyah sequence; see D.G., section 7.

ProrosiTION 4.3. The bundle Q is analytically isomorphic to Xxg (ie. Q 4s

analytically trivial).

Proof. Corollary to Proposition 4.1.
Letting Q=sheaf of germs of holomorphic functions on X and @=L, we have
from (4.5)

0—-H"X,L)~H(X,Q)eg¢+H(X,0)>HY(X,L) } .6)

...~ HY(X,0)—>H(X,Q)®q—>HYX,0)—...

Now we assume that X =G/U is Kihler; then we will see in Theorem 3 below that
HY(X,Q)=0 (g>0). Thus we have from (4.6)

0—->H"X,L)—>g—>H"X,0)>H (X,£)—>0
and HY(X,0)~H"YX,L) (¢>0) (4.7)
TurorEM 2. HY(X,L)=0 for all q.
CororLLARY 1 (Bott). HY(X,®)=0 (¢ >0).
CoroLLARY 2. H%(X,Q)=g.

Thus the connected component of the group of analytic automorphisms of X is G.
We prove Theorem 2 for M/T; the general case is the same. The weights of
the U-module u are the 0-weight with multiplicity ! and the negative roots «€2".
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Furthermore, if « €27, then a+g is M-regular < a={(®, >= —a; for some o;E]] by
Proposition 4.2. Thus for «€27, |x+g|<1 and 1) of Theorem 2 tells us that
HY(X,L£)=0 (¢=2) which gives Corollary 1.
Referring now to the proof of Theorem 1, there are I bundles E®’ such that
H°(X, &) is the trivial one-dimensional M-module
HY(X,E%')=0 (g>0) (these are the 0-weights) }

and there are ! bundles E¢*=E % gsuch that
HY(X,E*)=0 (g=1) and }

HY(X,E %) is the trivial one-dimensional M -module.

From this one checks without too much trouble that the coboundary maps applied
to H°(X,E&2’) knock out the terms H'(X,E *) (one looks into the exact sequences
of Lie algebra cohomology modules). Thus H*(X, £)=HY(X,£)=0. Q.E.D.(})

¥rom Theorem K, it follows that
dim H%(n, V*) = {number of o € {W(g)/ W(5°}~ 4.7)
In particular, if n=g(e_,:x€2"), Bott observed the “strange equality”
dim H(n,V*) =dim H**(M /T, C) = {number of ¢ € {W(g)}*}. (4.8)
We explain this inequality by applying Theorem 1 coupled with the Dolbeault Theorem
(in the Ké&hler case). If Q°= sheaf of germs of (s,0)-forms on X, then (see [14])
HY(M/T,C) = Tg_qH’(M/T, Q). (4.9)

THEOREM 3. H?(M/T,Q%) =0 unless p=q and
dim HY(M /T, Q%) = dim H* (M /T, C) = {number of o € {W(g)}*}.

Proof. A'L’(X) is the homogeneous vector bundle derived from the U-module
A%(g/u) (here the prime signifies contragredient action). There roots of A?(g/u) are
the elements (®> € where ® =~ and ® contains g roots. Thus in (3.2) the bundles
Ee’ are of the form E ™ @ E™* ®...® E% where %, €2* and a; oy (k=1). For
O={~a,,...—a}, (P>+g is regular <= ®= —P, for some oc€{W(g)}* and then
|{=®s>+g|=¢. Thus (y) of Theorem 1 is satisfied and we are done.

If ¢g=1, HY(X,Q")>H*(X,() and dim H'(X,Q')=I!=rank g. Thus the elements
in 7 are paired to H*(M/T,C) and one checks that for o; €[], a;—~>pex (), ) 0* A &*.

(*) We have proven that, for a flag magnifold G/U, G is the connected automorphism group.
In general, we write X =Q/U where @ is the connected automorphism group; G is semi-simple by
what we have just shown.
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From D.G., section 6, we see that D, ex+(a;, ) 0 A d)“=cl,(E‘), where AEE)# is defined
by <A, k> =(a, ). Since (over €) the 2-classes generate H*(M/T,C), H*(M /T, C)
coincides with its characteristic sub-algebra.

Similar statements hold for an arbitrary Kahler C-space X=M/V.

TreorEM 3. H(M/V,Q%=0 unless p=q and H(M/V,Q)>H¥M/V,C) and
dim HYM/V,Q%) = {number of a€{W(g)/W(1°}%}.

COROLLARY. X(M/T)=order of W(Q), X(M/V)=order W(g)/order W(0°).

5. Homogeneous Bundles in the Non-Kiihler Case

We shall now obtain the M-modules HY(X, £?) where X =G/U is a non-Kéhler
C-space and p: U—>GL(E? is a holomorphic representation. We shall do this first
when g is irreducible and then proceed as in § 3. To a non-Kéhler C-space X =G(U =
M/V, we may associate a Kihler C-space X =G/0=M/V by increasing V to the
full centralizer of a torus. We then have a fundamental fibering T?* — X —> X where
T** is a complex a-torus. To this fibering, we shall apply the spectral sequence of § 2.

Indeed, our calculations will be based upon the following:

Lemma 5.1. Let g be a complex Lie algebra and ec g be a complex sub-algebra.
Suppose that we are given an ideal f<e such that e={®b where b is a sub-algebra.
Furthermore let ac g be a sub-algebra such that [a, 1<, [0, e]Se and this latter action
ts reductive. Finally let M be a ¢(a U e)-module which is a semi-simple a-module. Then
there exists a speciral sequence {'E,} such that

(i) "B is associated to H* (e, M)S, } (5.1)

(il) ‘B3 7= H*(b, H(f, M))°.

Proof. There exists a spectral sequence {E,} such that E. is associated to
H*(e, M) and E%°=~H*®b, H(f, M)). Now by assumption, the action of a on the chain
group C(e, M) is semi-simple as is the action of a on C(b, C(f, M)); hence the process
of taking a-invariant factors commutes with derivations. Q.E.D.

Let B°—E?—>G/U be a homogeneous vector bundle defined by an irreducible
U-module E°. We denote by " everything associated to X; e.g., i=c(e_,: 2 €2* —¥")
and n=1®p (cf. section 1). By irreducibility, 1 0o B®=0 and E° is an irreducible
5°® p-module. By Schur’s lemma, g(p)e=y(p)e for p€p, e€E?, and some y €Y', E®
is an irreducible b’-module. We must describe briefly this representation g : u —>gl(E®).
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Now peocel,(!) is a maximal abelian sub-algebra of u and upon restricting ¢ to
pocel,, we get a decomposition of E? into “weight” spaces; E¢= & ;E3 where the
A’s are linear forms on p®ceh,=hNu. One of two things happens:

(i) Each A such that E$40 is the restriction to p@®c@®l, of a unique weight
form 1 on pepeceb,=b;
(i) Some A for which E§+0 is not the restriction of a weight form on J.

Clearly (i) is a necessary and sufficient condition that ¢ on u be the restric-
tion of a representation ¢ on fi arising from ¢:0 — GL(E®), E¢=E°. In this case
if E% is an irreducible u-module, E? is an irreducible fi-module. Case (i) is, by Pro-
position 4.1, the group theoretic analogue of the geometrical situation described by

the following diagram of analytic fibrations:

B - 6/U
te? o
B > ¢/0

Definition. If o satisfies (i), we call g a rational representation; in the alterna-

tive case satisfies (ii) and we call p an rrational representation.

THEOREM 4. Let E°—E?— X be a homogeneous vector bundle over a non-Kihler
C-space X=@/U given byv an irreducible U-module E°. Then:

(i) If o is irrational, H*(X, £%)=0;

(ii) If o is rational, then as above we have E*>E¢—>X and, if é € Z(1) is the highest weight
of o and I(é)=I¢,(é), lo|=gq, then as M-modules, H**YX, E)=HU/U,Q) ® V’(Z’ where
HU/U,Q) is acted upon trivially by M and by convention HP(U/U,Q)=0 for p<O0.

Proof. To determine H*(X, &%) as an M-module, it will suffice to know
H*(n, V“1®EQ)~"° since we are assuming that E? is a semi-simple 5°-module. But V%
as the representation space of the compact group M and hence of the compact sub-
group V, is a completely irreducible §°-module; since #t is also a semi-simple 5%-module,
the conditions of Lemma 5.1 are met by taking g=g, e=1n, f=1i, b=p, a=1° and
M=V *@E°. Thus there is a spectral sequence {'E,} such that

(i) ‘B is associated to H*(n, V *® o),

(i) "EZ*=H>(p, H'(R, V@ Eo))".

(1) Here we write hy=c@Yy, where c=center of ;)" and §, is the complement of ¢ under the
Cartan-Killing form.
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Returning to the spectral sequence (5.1) with 'E,, associated to H*(n, V-te Boy

and whose 'E, term is given by 'EY?= H"(p, H(1i, V*® E°)*, we have from Theo-
rem K that

HYt, V*QE)=H'H, VY Ee = > veOgEe.
oe{W(g)/W(vo)}¢
Thus B2 = > H?(p, yeio g geyw;
o e {W(g)/W(to)}e

but p<Z(v’) and furhermore p itself is abelian and thus

By~ 3 H(p,0)e (VMo B)er ()
ae{ W(g)/W()}¢
We consider cases:

Case (ii). In this situation, (V%*®® E?)»®>=( because the form y defined by
pre=y(p)-e for pEP, e€E? is not the restriction of a weight form on § to unbh.

Case (i). Here (V&' @ Fo)P®p = (P0i® @ Fo)op0p — (4@ @ o) gsince p @
coh, lies on no rational hyperplane. In this case, if g~ is the highest weight of
6 :1t— H(E®), and if I(p)=I,(p) with |¢|=g, then 'E5’ =0 unless j=g and the spectral
sequence is trivial in either Case (ii) or Case (i). Finally, in Case (i), "E%'?= H"(p, C)

and since the action of M is trivial here, we are done.

CoROLLARY 1 (Bott). For any homogeneous vector bundle E°—E¢— X over a

non-Kéihler C-space,
X, &) =0, (52)

where X is the sheaf Euler characteristic.

Proof. One simply applies the Euler—Poincaré principle to the spectral sequence
given in the proof of Theorem 4 where ¢ may be arbitrary.

Remark. Let E*® = AP(g/u)’ where the representation g(p) is Ad” of U on A”(g/u)’.
In standard notation, &%(p)=QP(X). Since u is an ideal in ii, it follows that
2UX, (X)) =D (— 1) dim HYX, QX)) = (—1)?h"?=0 and thus 3, .(—1)?A"?=0.
This says that the index 7(X)= 2, ¢(—1)?A"? as defined by Hodge of a non-Kéhler
C-space is zero.

(1) See § 14, section (ii) for a discussion of this point.
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CorOLLARY 2. Let E°—>E'—X be a rational homogeneous vector bundle and
assume that H*(X,E% is a triviel M-module. Then H*(X, £ is a trivial M-module.
A special case of this corollary is Theorem 2 in [5].

The following proposition follows from the proof of Theorem 4:

ProrosiTioN 5.1. Let X be a non-Kdihler C-space with basic fibering T°* —~ X 5%

Take E° to be a rational homogeneous vector bundle over X so that we have a homo-

geneous vector bundle E¢ over X and the following diagram:

B - X
Yo' o
B - X
Suppose furthermore that E° is a semi-simple 5°-module and that H*(X, £ =0 unless p=gq

and H(X,E%) is an M-module by a representation o* (in gemeral we will denote the in-

duced representation by *). Then H*YX,E)=~HU/U,Q)® H' (X, £%) and o* =1 ®p*.

CoRrROLLARY. If our fundamental fibering is T** — X — X, then

HY(X, Q=0 (p<gq)
HY(X,Q% is a trivial M-module of dimension (5.3)
(Moo (M/V, where x (M/V) is given by Theorem 3.

In particular H'(X,Q) %O’(g) (trivial M-module). (5.4)

We shall now give a geometric interpretation of the Dolbeault forms representing
classes in HY(X, £9) =~ H**(X, E?); this interpretation depends upon results obtained in D.G.,
§8 VI and VIII, concerning the canonical complex connexion in the fibering U — G — G/U.
We recall briefly the construction. Writing X =Q/U=M/V, there is in the fibering

UG5 G/U a canonical M-invariant connexion which respects the complex struc-
tures involved. To give this connexion, we must define a splitting L,(G) = V(g) & H(g)
(9 € @) which is M-invariant (on the left) and V-invariant (on the right in U -G — G/U);
here V(g)< L,(Q)= vertical space at g € G=Kker m, where m, : L)(Q) = L,y(X). At g=e,
the splitting of the canonical complex connexion is given by g=ue&n*; we refer to

§ VI in D.G. for a further discussion of this connexion.

ProPOSITION 5.2. Let T**—>X > X be the fundamental fibering of X where
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X=G/U,X=@/0. Then there exists a holomorphic representation p:U —T** such that
ker o=U, T**=U/U, and X is the homogeneous principal bundle Gx zT*".

Proof. Let T**=U/U and g =projection homomorphism; g(u)=4U for 4€U.
Then GxT** is the set of pairs [g, (4U)] factored by the equivalence relation
[g, (@' U)]~[g& ™, 4 o (4'U)]=[gd?, (#4'U)]. We define a mapping 7: X —Gx 3T%* by
7(gU) =[g,(U)]; 7 is clearly surjective. Furthermore, t(gU)= (9’ U)<=[g,(U)] ~
g, (U))<g=g u for some v €U and thus 7 is injective. Q.E.D.

The canonical complex connexion U —G—G/U induces a complex connexion in
7% X% %X in the usual way. Letting p=complex Lie algebra of 7% the con-
nexion form ® in T?*—>X->X is an M-invariant p-valued (1,0) form on X. Since
b is abelian, we may choose an isomorphism p=C® and then write w=w, +... +t w,
where the w; are global scalar M-invariant (1,0) forms on X. The Cartan structure

equation giving the curvature E of w is
E=dw+}[w, w]=dw (since p is abelian).

On the other hand, it is given in D.G., § VI, eq. (6.2), that E is of type (1,1) and
is given by
E(n, @)= —}olln,a)) (n,n €n’).

1t follows from this that E is non-zero and thus dw=0, E=3w*0, and the con-
nexion in 7®*->X->X is not holomorphic. Using again the isomorphism p=(C? we
may write E=E, +... + E,, where E;=9(w;)*0.

If we consider the forms @,(j=1,...,a), they are global M-invariant (0, 1) forms

with the following properties:

(i) 8mw;=dw;=0,

(ii) 8®;=dw, %0, and thus

(i) da,=0.
We introduce the notation @, j,= @, A ... A @y,-

Let o:0 —>G’L(Ea) give rise to E°—>X and suppose that £ is an Et.valued form
on X representing a class [£] € H*9(X, BY)~ HY(X, £%). Then | U induces g: U— GL (E?)
(E9=E‘;) and applying propositions 4.1 and 5.2, we see that ¢*(£) is a well-defined
d-closed Ef-valued form on X giving rise to a class [6*(§)] € H*Y(X, E®) =~ HYX, &°).
From the explicit calculations in Theorem 4 coupled with the explicit form of the

canonical connexion given above we conclude:
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ProrosiTION 5.3. In the above notations, assume that HY(X, 86):|=0 for at most

q=4q, and let the induced representation of G on H®(X,E?) be o*. Then

H(X,E)=0 g<gq,

. (6.5)
H'? (X, €)= He (X, €) & H* (X, Q),

the induced representation is (0*)®1, and the Dolbeault forms representing H” %*? (X, €°)

may be chosen to be ¢*(&)® @y, .. s,

6. Line Bundles and Functions on C-Spaces

If X is a compact complex manifold, we denote by F[X] the field of meromorphic
functions on X. As an application of Theorem 4, we determine F[X] when X=G/U
is a non-Kihler C-space. Recall that a rational algebraic variety is by definition an
n-complex dimensional submanifold X of a complex projective space Py(C) (N > =) such that
the meromorphic function field F[X] is isomorphic (qua abstract fields) to F[P,(C)].
Now the Kihlerian C-spaces are algebraic varieties (a positive line bundle was exhib-

ited in D.G); that they are moreover rational varieties was proven by Goto [9].

THEOREM 5. The non-Kihler C-spaces are rational mon-algebraic varieties. If X

is one such of complex dimension n with basic fibering T — X -6—>X, then
F(X)=F[P,_4(C)].

Proof. The proof will be done in three steps.
(i) Every line bundle E~>E—X is homogeneous.

There is a different proof of this in [16]. Let £(X) denote the group of complex
line bundles on X and set P(X) equal to the Picard variety of X. Then ([18])
L(X)/DX)~H%,, (X,Z), where H3,, (X,Z) are the integral classes whose harmonic
representatives are of type (1,1). In our case, H 1, (X, Z)=H*X, Z) and D(X)=0,
ie., a line bundle E is uniquely determined by its characteristic class ¢,(E). The

result now follows from the discussion following Theorem 3.

(ii) Every line bundle F—E-+>X is homogeneous. From the exact sheaf se-
quence 0>Z—>05 0" >0 we get 0—HY(X, Q)ng(X, Q*)gﬂg(X, Z)—... (since
7,(X) is finite) and thus any line bundle E over X is determined by ¢;(E) modulo

j-H X, Q). But from Theorem 4, H'(X, Q)= H%X,Q)® HYU/U, Q)~}’. The mapping
11 — 632932 Acta mathematica 110. Imprimé le 16 octobre 1963.
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7y —L(X)~HYX,Q* given by n(4)=E* is the counterpart of j,, is clearly injec-
tive, and since dimensions check out, (ii) is proven.

For a divisor D on X, we denote HYX,[D]) by L(D) where [D]=line bundle
determined by — D.

(iii) For every divisor D on X for which L(D)+0 the associated line bundle
[D] is rational. Indeed [D] is homogeneous and since H%X,[D])+0 we see from
Theorem 4 that [D] must be rational since if [D] is irrational, H{(X, [D])=0 for all s.
Thus there is a divisor D such that ¢ '[D]=[D]; from Theorem 4 again we have that
L(Dy=HYX, [D])~H%X, [67'[D]) = H%X, [D]) = L(D). This all says that for any divisor
D on X such that L(D)==0, there exists a divisor D on X with ¢7Y(D)=D and
L(D)~ L(D) which proves Theorem 5.

Remark. The above situation seems to be general in the following sense. Let
T** B~V be an analytic fibration where T?* is homologous to zero. Then one
would like every subvariety of B to be n' of a subvariety of V so that F[V]=F[B].
If W< B is one such subvariety, and if € W, then we want a Yn(x)) N W=n"Yn{(z)).
Setting T,=n"'(n(r)), if n '(n(x)) N W+T,, then one may argue that the intersec-
tion number 7, oW >0, which is impossible since 7,~0. We have given the above
proof because it is more explicit and we hope shows the undefinitive role the irra-
tional bundles play.

We take this opportunity to record and give a geometric proof of the result on

line bundles used in Theorem 5.

ProprosiTIoN 6.1. Let X be a C-space and let E—>E—X be a line bundle; then
E s homogeneous.

Proof. By D.G., §9, it will suffice to show: let 6 € H°(X, ®) be a holomorphic
vector field induced by a I-parameter subgroup ¢g;< G and let & be a scalar-valued
(1.1) form representing the characteristic class of E; then ¢(0)E=20f, for some func-
tion fo on X. If 7% — X = X is the fundamental fibering, then (see § 7 below)
—7*E for some d-closed (1,1) form E on X; by Proposition 5.2 i0)E=i@O)a*E=
n*i(e)é. However, i(@)fi is a d-closed (0,1) form on X; by Theorem 3, i(G)é'—‘éﬁ,
for some function f; on X and, setting fo=n"f5, {(0)E=3f,. QE.D.

{11
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7. Some Properties of the Characteristic Classes of Homogeneous Bundles

We now use the results of D.G. to discuss the position of the characteristic sub-
ring in the complex cohomology ring of a C-space X and we also prove a theorem
stated in D.G. (Theorem 7) giving a geometric interpretation of the Chern class of a
line bundle as defined by Atiyah in [1].

We recall here a few definitions from [14]. Let X be a compact complex mani-
fold of complex dimension n and suppose that V—V—>X is an analytic fibre bundle
with an r-dimensional vector space V as fibre. Let ¢,=1, ¢,,...,¢, be the Chern
characteristic classes of X (i.e., the characteristic classes of the fibering €*—> L(X)— X}

and let d;=1, d,,...,d, be the characteristic classes of ¥ —V—>X. Writing formally

n

L+ X+ .t X" =3 (L+9;X)

j=1
1+d x4+ ...+d, =2 (1+6:%),
k=1

the Todd genus T(X,V) is defined by

T(X,V)= (e"‘ +o e ] —7——) [X] (7.1)
i=11—e %
{{X] means to evaluate a cohomology class on the fundamental cycle determined by

the orientation of X). Then the Hirzebruch-Riemann-Roch (hereafter written H-R-R)

identity reads
X, W=T(X,V). (7.2)

In view of (5.2) and the fact that (7.2) is true for algebraic manifolds, to prove (7.2)
for homogeneous vector bundles over C-spaces, we must show

TagoreM 6. If E°—>E—X is a homogeneous vector bundle over a non-Kdihler
C-space X=G/U=M/V, then
T(X,E)=0. (7.3)

The proof will be done by writing down the Chern classes ¢, ...,c, of X and
dy,...,d, of Efas invariant differential forms at the origin and then observing that
(7.1) is zero. Since X is non-Kahler, we must choose a complex connexion (see D.G.)
to write down the ¢; and d); by the Theorem of Weil (see [10] for a discussion of

these points), we need not be restricted to a metric connexion and we shall actually
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use the canonical complex connexion discussed in D.G. With these remarks in mind,
the rest is computational and we do not belabor the details.
From section 1, we may choose a complex subspace p<Jj and a subsystem ¥'< 2
such that
g=he(e »),
xeX

h=p@ﬁ®bw

u=ﬁ@f)1® ( & vu),
xeX-¥

and then LyX)=n*ep, LyX)=nep,
where N*=¢le,:a €27 —W"), n=cle_ :x€2"—¥").
Letting e,€v, be root vectors, w*€v, dual to ¢,, and & (j=1,...,a) be a basis for

p’, we claim that to prove (7.3), it will suffice to show that for any p,
cx(B?) = Py(w® &%) (0*=w% a€2 =), (7.4)

where P, is an exterior polynomial of degree 2k involving only the w* and &* and
not & and &. This is clear since the component of degree 2n in (7.1) evaluated at the
origin is of the form
AC A (@ AB)AENEY)
aeX Tyt j

and if (7.4) holds, then 4=0.

From the form of the Chern-Weil theorem as given in [10] together with equa-
tion (6.2) in D.G. giving the curvature of the canonical complex connexion in E?, it

will suffice to show: if p€)p, vE€EP@n, then
oi(olp, v]u) =0, (7.5)

where ¢, denotes the kth elementary symmetric function of the operator g[p, v], € gl (E°).
This will imply (7.4). However, since [p, p1=0, [b,n]<n, and g|n is nilpotent, it is
clear that (7.5) is true. Q.E.D.

CoroLLARY. 7(X)=0 for non-Kihler X where v is the topological index [14].

Proof. Same as Theorem 6 together with the fact that (1 —p, +p,+...)=
(I1+c¢,+...)(1—¢;—...) where the p, are the Pontrjagin classes of X.
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This corollary coupled with the corollary to Proposition 5.1 says that the Hodge
index theorem holds for C-spaces.

We refer to D.G. (section 7) for a discussion of the Atiyah definition of the
first Chern class ¢,(E?) of a homogeneous line bundle. The theorem stated there
without proof is:

TarorREM 7. Let X be a non-Kihler C-space and let T**— X — X be the fibering
of X over a Kdihler C-space X. Then there are independent line bundles E®, ..., E% (see

(#1) in the proof of Theorem 5) whose Atiyah Chern class is =0 but whose usual Chern
class is 0.

Remark. 1If X=8U(3), a=1 and we have the example given in [5].

Proof. We keep the notation used in the proof of Theorem 6. Then, if X=M|V,
X=m/V,

=he( @ w)
aeX -y

=fhe( ® v)="epep.

xEX-y

We also set bﬁ =¢(hg:x €2 —¥); then h=30 bff, where 3= Z(go).

ProPOSITION 7.1. Every inmvariant closed form o on M/V may be written at the
origin as
> koA &% (7.6)
aeTf W+

where n€Y and 7 is orthogonal to f)ﬁ

Proof. It is easily checked that o must be of type (1,1); = D shgo*A &’
By invariance (under M), >, sh5{x—f,h) w*A & =0 (h€h) and thus hz=0 (x=+p).
Setting h,z = A, we have @ = Jgexn+-w+ Ae ©* A @% we would like to define a linear form
Aon f) by <A hk>=2. We must show that if a+f=17, 4, +43=4,; and this is so
since dw =0. Indeed,

0=dwle,, ¢, )
= w([eq, €], eﬁ) ([ eﬂ]’ &) +w([e‘n eﬂ]’ €x)
= i—Nu,ﬁ(Aﬁ_}-t_*'zu)
and since N, 3+0, l,=A,+45. QE.D.

From (7.6), the Dolbeault theorem (see Theorem 3 above), and (5.3), it follows
that a basis for HY(X, Q") consist of forms w,= Jaex+-w+ {7, he) 0*® @ where 5 €R’
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is orthogonal to f)f It is easily checked that dw,=0, dw,=0, and w, is ~0 < 7=0.
Now if 5€p’ (then {(n,b,>=0), it follows from D.G., eq. (6.1), that ¢,(E")=w,. On
the other hand, 7 is an invariant (1,0) form on M/V and dy = Jaex+—w+ 7 ([ta €-0)) =
Daezt—w+ (N, by ©*® &% Theorem 7 follows from this.

8. Some Properties of Homogeneous Vector Bundles

(i) Endomorphisms of Homogeneous Vector Bundles

Let Y be a compact complex manifold and let £—~E—Y be an analytic vector
bundle. Then H°(Y, Hom (E, E)) is not only a vector space but also a finite dimen-
sional algebra, the (associative) algebra of endomorphisms of E denoted a(E). As
usual, E is termed indecomposable if no exact sequence 0 —>E —E—E"—0 splits
analytically. Now a(E) is related to the indecomposability of E as follows: If E is in-
decomposable and ¢ €a(E), the characteristic equation of ¢ has holomorphic, hence
constant, coefficients. Thus the eigenvalues of ¢ are constant, and, if ¢ has two
distinct eigenvalues, this would give a splitting E=E ® E”. Thus a(E) is an algebra
consisting of multiples of the identity (l-dimensional subspace) plus a nilpotent ideal;

ie., a(E) is a special algebra ([1]). The converse is clearly true and we have

ProrosiTIiON 8.1 (Atiyah.). E is indecomposable < a(E) is a special algebra.

Let now E®—>E°—>X be a homogeneous vector bundle over a C-space X =M|V =
G|U. Then if ¢:U-—>GL(E®) is reducible, E¢ is decomposable; on the other hand, p
may not be irreducible and E® may still be indecomposable (L(U(r)/T™)). Thus we
may ask:if o:U—>GL(E®) is irreducible, then is E? indecomposable?

ToreorEM 8. If E°—>E2—>X is a homogeneous vector bundle over a C-space
X=G/U=M/V, then, if o is irreducible, E* is indecomposable.

Proof. The proof is done in five steps.

(i) We shall show that a(E?) is a special algebra; by Theorem 5, it will suffice
to do this when X is Kihler. If then u=ne ° @]n=0 and ¢ is the complexifica-
tion of an irreducible representation of the compact group V. If g is 1-dimensional,
the result is trivial and thus we may assume that g|Z(b°) =0 where Z(1°) = center of
v°. Thus g is essentially the complexification of an irreducible representation of a

compact semi-simple group and we may use the theory of weights ([26]).
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(ii) We denote by V2, V°,... irreducible g-modules with highest weights 4,0, ...
and by E¢ E°,... irreducible 5%-modules with highest weights g, 7, .... Then, by Theo-
rem K (§2), 3

a(Ee) =le—g@ Ve H°(1, V' ©@ Hom (E°, E%)”

= 5 V*e (H°(n, V) ® Hom (B, EO)”
AeD(g)

= 3 V*® (E*® Hom (E°, E%))™.
AeD(g)

Now those @ €a(E) such that ¢ €V°® (E°® Hom(E?, E%))*=~Hom (E°, Ee);"’ are simply
the multiples of the identity automorphism (Schur’s Lemma). It will suffice to show: if
Zkv_lj ® (e, ® g) €V ® (E* © Hom (B, E))™ (A+0),

5
then each g, is nilpotent. For this we may prove: if
S(es, ® gi) € (B* ® Hom (B¢, E9)* (A+0),
k
then each g, is nilpotent. We prove this latter statement assuming that b° is semi-
simple ((i) above).

(iii) Let Et= 5 E4, Ee= 3> Eu
LEZ() 2 SZ(0)

be decompositions into weight spaces relative to a Cartan sub-algebra Hci° and let
eA’EE’lf, eo, € E% be weight vectors. For an E%, there will be in general several 6/17.’8

If ¢ €(E"® Hom (E°, E?))”, then by Schur’s lemma
=2 e, ®¢; (9;€Hom (E?, E°)).
7

Since ho@p=0, we have for A €D,

0=3 Chy By 3, @ g (e0) + 3, ® 0 (B)g5(eq) ~ , ® ous 1> s (e

which implies that, for each j and all k, either
(%) g5(e,)=0 or
(23) gi(eo)F0 and o(R)g;leq,) = <ox— 4 h) gi(e 0x)-
We may examine («,), and, in this case, gj(egk)EE'gk_lf and either
CAN (¢g,)=0 for all k and some N) or
(o) 4;,=0.

It will suffice to examine (a,); i.e., g,.



148 PH. A. GRIFFITHS
(iv) Now ¢, 09p=0 (for all x€Y') and thus
0=e, 0(; e, ®4g;)
=2 Mea)er, ® g; + €3, ® o(ea)g; — €1, ® g;0(¢a)-
The terms with an e, (0-weight) occurring here are
ZMex)e @ et 2 ey ® 0(e2)go — €y ® Jp 0(€2)

and since the ¢; are a basis for E’, this term must =0. Thus having picked out a
particular term e, ® g,, there exists e€E~* (¢ may=0) and g_,€ Hom (£°, E° such
that A(e_.)e=¢, and then

Mex)e® g+ e, ® oler)gp — €0 @ goo(es) =0; or

(o5) 9-a= Q(ea)go ~ 9o 0(€a)-
(v) From (ay) in (iii), it follows that, for a+0, (g-.)"=0 (large N) and thus the

mapping gf : 5°—~gl(E°) defined by gf () =[gy» 0(€2)] (=(a5)) gives a nilpotent repre-
sentation of 5°. But then g# =0 and g,€Hom (E°, E®)™ and either g,=0 or all g, =0

((ec5)); in either case, we are done.

(ii) The Embedding Theorem for Homogeneous Bundles

Let X be a complex manifold and L—L—>X a holomorphic line bundle. For a
suitable covering {U,} of X, we may take a local nowhere zero section g; of L|U;
then any section of L|U, is given by Z—>§'(z)0,(2) (2€U,). Let H°(L)=H"(X,L); if
for each z€X, there exists a ¢ €H%L) such that o(z)+0, then we may classically
define 2: X—Py_,(C), where N=dim H°(L). Indeed, if &,...,&y give a basis of
H°(L), then 3|U, is given by the mapping Z—>[& (2), ..., &v (2)] where [&,, ..., &n-1]
are homogeneous coordinates in Py_;(C). If H—>Py_,(C) is the hyperplane bundle,
then X '(H)=L. The same remarks hold for a vector bundle, provided that the
global sections generate the fibre at each point.

Now if X=G/U is a C-space, then L—L—X is a homogeneous line bundle,

and thus the canonical complex connection (§ 5 and [11]) is defined in L.

TakorEM 8. Let L be such that there exists a non-zero g in H°(L). Then the above
mapping 2 : X —>Py_1(C) is defined. Furthermore, 2 gives a projective embedding of X if
and only if c, (L), when computed from the canonical complex connexion, is positive definite.

Proof. Since L is homogeneous, we may write L=L¢ for same holomorphic
0:U—GL(L* (dim L°=1). Let ¢:X—L? be such that o(x)£0;if 2’ €X, and if g€G
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is such that g(x)=2', then (g 00) (x')=¢ (o(x)) =0 in (L?),. (Similarly, for homogeneous
vector bundles if the global sections generate the fibre at one point, they do so at
all points.) From this, the first statement in the theorem is clear.

We now define 7: H° (L?)— L®—0 as follows: for ¢ € H®(L#), then 7(c) = o(e) where
we consider ¢ as a holomorphic function from G to L¢ satisfying o(gu)=po(u™") o{g)
(9€G,u€U). Then, for u€U, o€ H* (L%, o(u)7(0) =7 0" (1) o (¢* =induced representa-
tion on cohomology). Indeed, 7p* (u)o= (0" (u)0)(e)=0(u"e)=p(u)o(e)=p ()1 (0).
Thus, if K%=ker 7, the sequence 0— K°->H®(18)—1°—0 is an exact sequence of
U-modules. Let G'=GL(H®(L?) and V={y€G|y(K®) <= K?}; then G/V=Py_,(C). Now
the holomorphic representation ¢*:G->@ satisfies ¢* (U)<= ¥ the induced mapping of
G/U to Q/V is just 2:G/U~>Py_1(€). If U =(p*1)(V), then U'2U and 2 is in-
jective if and only if U'=U. But ¢:U—>GL(L?) extends to o :U’ —GL(L?), and
thus to prove the Theorem, we must show:

LemMmA. Let X=M/V be a C-space, let ¢:V—>GL(L?) be a I-dimensional repre-
sentation. Let E° be the curvature of the canonical complex connexion in the bundle
L—>M/V. Then Q,= (2nVT1)~1 E represents ¢, (12) and Q, is positive-definite if and
only if p does not extend to a C-subgroup 175 V.

Proof. Inthenotationsof§1, (},= (2 nl/TI) st —w+ {0, x> »* A &% Since H*(L2) =0,
we have that (p,a)>0 for « €2 —W'"; if, for some «, {p, &> =0, then we may extend
o to V where 5° =%’ .90, If, conversely, we may extend g to ¥, then, for some

x€3T—W*, ¢, €5~ 1 and then ole,, e_,] = p(hs) = <0, x> =0. Q.E.D.

DeriniTion 8.1. A holomorphic mapping 2:G/U—Py_1(C) is called equi-
variant if there exists ¢*:G@—SL(N,C) such that, for any g€G, 0*(g) 2 ()= 2 (gx)
(x€G/U).

ProrosiTION 8.1. Any mapping 2:G/U~>Py_1(C) is analytically equivalent to
an equivariant mapping.

Proof. If 2 is defined by means of global sections of a homogeneous line bundle
L?—@/U, then o¢* may be taken to be the induced representation on H(L?) and
then, from the proof of Theorem 8, 3 is equivariant. But any mapping 2: G/U— Py_,(C)
is by global sections of 2'(H), and any line bundle is analytically equivalent to a
homogeneous line bundle. Q.E.p.

The following theorem was given without proof in § 1, where it was stated that
a differential-geometric proof could be given. Using the proof of Theorem 8, we give

a direct proof.
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THEOREM. Let X=G/U be a C-space and let Lf— 18— X be a homogeneous line
bundle. Let Q, be as in the proof of Theorem 8 (Q,=c, (L)), and assume that Q, has

n—r negative eigenvalues and r O-eigenvalues (n=dim ¢X). Then
HY(X,L%=0 for g<mn—r.

Proof. By the remarks in the proof of Theorem 8, we may find a C-subgroup
V>V such that g extends to ¥ and furthérmore dim V/V=2r and V/V is a C-
space. Then we have a holomorphic fibering V/V—>M/V—>M/P. As in § 2, there
is an {E"} such that E®~H*(M/V,L% and E3°=He(M/V,L)@H V/V,Q). Thus
E2=0 (g+0) and H?(M/V,L%)=H"(M/V, L) =0 for 0<p<n—r=dim ¢M/V, since
12— M/V is a negative line bundle. Q.E.D.

Remark. This theorem seems to hold, in some extent, for general compact, com-
plex manifolds. We can prove it for r=n—1,n—2, and for all » provided that we
replace L by L* for a suitable y4>0.

(iii) Extrinsic Geometry of C-Spaces and a Geometric Proof of Rigidity in the Kiihler Case

We shall now use the above proposition about equivariant embeddings to have
a look at some homogeneous sub-manifolds of Py(C), Let X and X' be compact
homogeneous complex manifolds and write X =G/U, X'=G"/U’, where G,U,@, and
U’ are connected complex Lie groups. Furthermore, let g:G~>G’ be a holomorphic

homomorphism, and let f: X -+ X’ be a proper holomorphic mapping.

DEFINITION 8.2. The mapping f is said to be egquivariant with respect to g if,

for any z€X and g€G,
Hg - z)=o(g) - f(x)-(") (8.1)

Since f is proper, f(X) is a sub-variety of X', and equivariance implies that f(X)
is in fact a non-singular sub-variety. Thus we may define the normal bundle N; of

HX) in X’. Indeed, we have over f(X) the exaet sequence
0~ Lyx,—> Lx- | (X)—>N;—0. (8.2)

We remark now that we may assume in the sequel that f is an embedding. In fact,
f(X) is clearly a homogeneous complex manifold, and the mapping f: X — f(X) is a
homogeneous fibration. More precisely, in the cases we shall be considering, & and ¢
will be semi-simple, ¢ may be assumed faithful, and hence we may write HX)=G|0
for some analytic subgroup 0 =2U.

(1) It is due to Blanchard that any surjective f with connected fibres is equivariant.
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Then f is just the projection in the fibration
0/u—-q/utla/0
X LX)

All statements we shall make about injections {(X)— @' /U’ will “lift” to X=G/U.

We may describe an equivariant f as follows. Let x,€ X be the origin; then any
x€X may be written as gr,(g €G) and f(zx) = f(gx,) = o(g) f(z,). In particular, for u€ U,
f(@o) = f(ux,y) = o(u) f(x,), which implies that, taking x;=f(x,) to be the origin in X',
o(U)SU’. Thus the equivariant mappings are given by the representations g :G—+G"
such that o(U)<U’, and this mapping is an embedding if and only if o(U)=
o(G)nT'".

ProrosiTioN 8.2. The normal bundle N; of an equivariant embedding is a homo-
geneous vector bundle.

Proof. Lsx =Ly is the homogeneous bundle obtained from the adjoint representa-
tion Ad of U on g/u, and Ly |f(X)=f"(Ly) is the homogeneous bundle obtained
by the representation Adogp of U on ¢'/u’. Now since f is an embedding, the injec-
tion g:g—¢  induces an injection of U-modules g/u—>g'/u’ and we have the exact

sequence of U-modules

0—>g/u—>g'/u'—q-—0, (8.3)

and N; is just the homogeneous bundle obtained by the action U on q. Q.E.D.
For a U-module t, we denote by (r) the corresponding homogeneous bundle and
by H%(r) the groups H?(X,(r)). We have an exact diagram of U-modules

0 0 0
4 4 0
0 —~g/u—>g/w—> q -0
0 0 ()
0—>g — ¢ —g/g—>0 (8.4)
0 () )
0> u - u —->u/u>0
0 0 )
0 0 0

From §1V, we get the two diagrams of M-modules:
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0 0 ]
) 0
00— HW@) —>H@Ww/u— 0
1 0 0
0—>g—H/9)> H@a) —0
0 0 te (8.5)
0>g~> ¢ —> g/g —0
0 ty 1
0 — H@W) —HW/u)y—> 0
0 0
0 0
and 0 - H*(w') - H*(w'/u) — 0
T
HY(@q) — 0 (8.6)
T
0

We want to use (8.5) and (8.6) to obtain geometric information about the position
of f(X) in X’. Clearly the key to the situation lies in the groups H%(u’) (¢=0,1,2,...),
and we have, unfortunately, been able to treat these groups only in very special cases.

Case I. We assume that [g,u']<1u’. Then H°w')=u’ and H*(')=0 (¢>0). We
let i< g’ be the sub-space spanned by g and u'.

ProrosiTioN 8.3. @/U is a C-space and the injection f:G/U—G' /U’ is the

injection of a fibre in the homogeneous fibration
e/uta/UEe)0. (8.7)

Proof. The fact that it is a complex sub-algebra of g’ follows from the relation
fg,w']<u’. The rest of the Proposition is then clear.

Remarks. q=g'/ii and the normal bundle N, is just the restriction of 7~ (Le-,5) to
a fibre in (8.7). This is the homogeneous bundle given by the action of U <U on
g’'/ii. For example, if we let F(n)=U(n)/T" then the inclusion U(rn—1)—U(n) in-
duces a fibering
Fn—1)—F@n)—P,_1(C) as given in (8.7).
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Let Y be a compact non-singular sub-manifold of a complex manifold X, and
let Ny be the normal bundle of ¥ in X. One may consider the deformations of Y
in X; a l-parameter family of such is given by a family Y,((€C,|t|<¢) of compact
complex sub-manifolds of X such that ¥;= Y. The manifolds Y, as abstract manifolds
will not in general have the same complex structure as that on X, although they
are all differentially equivalent. It was shown in [18] that, if H'(Y, Hy)=0, then a
neighborhood of 0 in H°(Y, My) parametrizes a complete local family of sub-manifolds
varying Y< X; we shall use this fact to give a geometric proof of the rigidity of
Kihler C-spaces.

Case I1I. Let X=G/U=M/V be a Kihler C-space. We shall prove:

THEOREM. The complex structure on X is locally rigid.

The proof is done in two steps:
(i) Let f: X - Py=Py(C) be an equivariant projective embedding of X (§8, (ii)),
and let X,(X,=X) be a l-parameter variation of the complex structure on X. Then

we shall show:

ProrosiTION 8.4. There exist projective embeddings f,: X — Py such that the family
(f{(X3)) gives a variation of the sub-manifold f{(X) of Py.

ProrosiTioN 8.5. For a suitable projective embedding f: X — Py, there exisis a
complex curve g, < SL(N +1,C)=G" such that f,(X,)=g:(fo(Xo))-

Remark. Intuitively we shall show that any deformation X; of X can be “covered”
by projective embeddings f, of X;, and then we shall show that the variations of
the equivariantly embedded sub-manifold f(X)< Py are given by the orbits of f(X)

under ¢, and this shows that the manifolds all have the same complex structure.

Proof of Proposition 8.4. Let X be a compact complex manifold with H'(X, Q)=
0=H*X,Q) and let E->E—>X be a positive line bundle such that the global sec-

tions of E give a projective embedding. If X, is a variation of X = X, then we know:

(i) HYX,, Q)=0=H*(X,,Q,) (upper-semi-continuity, see [16]),
(i) HA(X,,Q%)=H*X,,2) by (),
(iii) there are positive line bundles E,—E,— X, by (ii) and since the X, are
differentiably‘ equivalent,
(iv) dim H*(X,, £)=dim H*(X, &;) (by upper-semi-continuity and since the sheaf

Euler-characteristic X(X, &) is constant) and
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(v) the global sections of E,— X, give projective embeddings f,: X;— Py and the
sub-manifolds f,(X,) give a deformation of f,(X,) by (i)-(v) (for more details, see
[16], §13). Finally, by §IV, if X is a Kihler C-space, then

HY(X,Q)=0=H*X,Q). Q.E.D.

Proof of Proposition 8.5. We first remark that, for a suitable equivariant em-
bedding f: X — Py given by global sections of a positive line bundle B¢ —E¢—G/U =X,
it will suffice to prove that

HY(X,M,)=0 (¢>0) and H°(X,M,)=g'/o(g) (3'=sl(N+1,0)).

This is so, since by Kodaira’s theorem, this will prove that all variations of {(X) in
Py are given locally by the action of G'=S8SL(N+1,C) on f(X) (the stability group
being o(@)S ). From (8.5) and (8.6), it will suffice to find a ¢:U—GL(E") such
that o€ D°(g) (i.e., E” is positive) and H?(u')=0 for ¢=0,1,2. We suspect that this

is in fact true for all g €D°(g), but we do not know a proof. However, if
g=f)®(€9ba), 50=k$(®bz)’
xeZ xe'l

and if we take 0=9,=% o,

PO
then we may use Lemma 5.9 of [21] and a calculation just as in the proof of Theo-
rem 4 to prove that H(u')=0 for all q. (Then the bundle E®=K™' where K is the
canonical bundle—the embedding is classically called the canonical embedding.) We

shall not go into the details now, and thus we conclude the proof of the theorem.

Remarks. (i) In Case I above, the normal bundle is trivial; N~ X xg’/{i and
H*(X,N,)=g/l, which is just as it should be.

(i) We may give in any case a geometric proof of the fact that H°(u')=0.
Indeed, we make a g-reductive decomposition g'=g®f and in (8.5) it is seen that
y(H°(w))SE Let t=Hw') and let 3=g@t<g’. Now H°(1) is a g-module and thus
8 is a g-module; since t is a sub-algebra, 3 is a sub-algebra and in (8.5), ker v=g'/3.
Geometrically, this means that S (with Lie algebra 3) is the stability group of the
variety f(X)< Py. Since G = automorphism group of X (see § IV), there is an analytic
onto homomorphism ¢:8—+@ and if we let K=kero, K is a closed analytic sub-
group of SL(N +1,C) which leaves f(X)< Py pointwise fixed. However, this is im-
possible unless dim X =0 or dim K =0, provided that f(X)< Py is in general position.
Q.E.D.
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