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1. Introduction
In this paper we study an extension to compact abelian groups of the two celebrated
theorems of F. and M. Riesz [15] concerning analytic measures on the circle group. The
content of these theorems is as follows:
Let u be a Borel measure on the circle satisfying

-

+7
f M du@)=0 (n=1,2,3, ...).

Then

A. u is absolutely continuous with respect to Lebesque measure.
B. If p vanishes identically (*) on a set of positive Lebesgue measure, then u must be

the zero measure.

It is not hard to see that A and B together are equivalent to the following:
The collection of Borel sets on which u vanishes identically is invariant under rotation.

This is the assertion concerning analytic measures that we extend to compact abelian
groups. Before stating this extension we make the basic definitions.

In all that follows @ is a compact abelian group and @ its discrete dual. An “ordering”
of G is given by a fixed non-trivial (2) homomorphism o of @ into the group R of real num-

bers. The mapping y: G— R is a continuous homomorphism and thus induces a continuous

(*) p vanishes identically on E if u(F) = 0 for all Borel subsets F of E.
(2) We assume that 9(Q)=+{0}.
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homomorphism ¢: B—@ of the associated dual groups; ¢ is the unique mapping of R into
G satisfying

o(p(t)) = €¥*  (t€R, o€G).

By measure on G we shall always mean finite complex regular Borel measure. If u
is a measure on G, we denote by |u| the associated total variation measure. u is said to
vanish identically on a Borel subset E of G if |u|(E)=0. u is called quasi-invariant under
@ if the collection of Borel subsets of G' on which x4 vanishes identically is invariant under
translation by elements of ¢(R).

A measure or function on @ is called p-analytic if its Fourier transform vanishes on the
“negative half” {o: y(c) <0} of G.

MaiN THEOREM. Letu be a p-analytic measure on G. Then u is quasi-invariant under .

This result is established in sections 6 and 7. The method is roughly as follows.
In section 6 a covering group R x K for @ is constructed in which the one parameter sub-
group @(R) is “unwound”, and the Main Theorem for @ is reduced to the corresponding
result for the covering group. In section 7 this result for analytic measures on B x K is
established by decomposing such measures into analytic measures concentrated on fibers
R x{u} and applying the one-dimensional ¥. and M. Riesz Theorems to these measures.

The earlier sections of the paper are devoted to consequences of the Main Theorem.
In section 3 we study extensions of the first F. and M. Riesz theorem stated above. Although
a g-analytic measure need not be absolutely continuous with respect to Haar measure on
G, we obtain a class of Borel sets on which g-analytic measures must necessarily vanish.
These are the Borel subsets of G that intersect each coset of ¢(R) in a set of linear measure
zero. We also obtain an extension of the theorem of Bochner [2] that states that a measure
on the n-torus whose Fourier transform vanishes off the positive octant must be absolutely
continuous.

In section 4 we establish analogues of the second of the F. and M. Riesz theorems. We
obtain a theorem that has as consequences the facts that, if p(R) is dense in G, an absolutely
continuous g-analytic measure cannot vanish identically on a set of positive Haar measure
(due to Helson, Lowdenslager and Malliavin [10]), and an arbitrary g-analytic measure
cannot vanish identically on an open subset of G.

Section 5 is devoted to further consequences of the Main Theorem. The results are in
part refinements of theorems of Helson-Lowdenslager [9] and Bochner [2].

In what follows we shall use without comment the basic results of abstract harmonic

analysis, for which see [13]. We denote Fourier transform by "~ and convolution by .
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We use the fact (see [5} or see the recent paper of Heble and Rosenblatt, Proc. Amer.
Math. Soc., 14 (1963), 177-184) that if u and 1 are measures on G, and E is a Borel subset
of G, then x—>A(—x+ E) is a Borel function on G and

u*AME)= JG M —z+ E)dulx).

For measures u and 4, g < <A will mean that u is absolutely continuous with respect
to A. If u is a measure on &, we shall simply say that u is absolutely continuous or that u is
singular it it is absolutely continuous or singular with respect to Haar measure on G.

The results of this paper have been announced in [6].

2. Properties of quasi-invariant measures

The Main Theorem, proved in sections 6 and 7, asserts the quasi-invariance under ¢
of gp-analytic measures on G. In this section we study group and measure theoretic conse-
quences of quasi-invariance for arbitrary measures. The results obtained are applied,
together with the Main Theorem, in the following three sections to establish properties of
@-analytic measures.

It is not hard to show that a measure y on the circle group is quasi-invariant under
rotation if and only if it is absolutely continuous and does not vanish identically on any
set of positive Lebesgue measure; equivalently, if and only if |x| and A% |u| are mutually
absolutely continuous, for A Haar measure on the circle. The main theorem of this section,
Proposition 2.3, is the analogue of this result in this context we are considering. Before
proving this theorem we must make the appropriate definitions and prove two lemmas.

A Borel subset £ of G will be called null in the direction of ¢ if for each x in E the coset
x+@(R) intersects E in a set of linear measure zero, and will be called thick in the direction
of ¢ if for each x in F the coset x +¢(R) intersects £ in a set of positive linear measure.

More precisely, £ is null (resp., thick) in the direction of ¢ if for each z in K,
{t: tE€ER,x+p(t)EE}

has zero Lebesgue measure (resp., has positive Lebesgue measure).
We shall denote by g the image on G of the measure (1+22)-'dx on R under the

mapping ¢: R—@. Then, for any bounded Borel measurable function f on @, we have

[ o= rowrp

The main property of the measure p that we use in what follows is that for a Borel subset
E of G, {x: x€G, o(—x+ E)>0} is precisely the set of those x that are such that z+¢(R)
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intersects E in a set of positive linear measure. In particular, this set is invariant under
translation by elements of ¢(R).
It will be convenient for us to rephrase the null and thickness conditions in terms of

the measure g. Because of the formula

+ 00

Q(—x+E)=f X_ﬁEdQ:f Xz (x + @(t) dt,
G -0

1+¢

a Borel subset E of @ is null in the direction of ¢ if and only if g(~z+ E)=0, all x in E,
and is thick in the direction of ¢ if and only if o( —z+ E) >0, all z in E.

We shall call a measure p on G absolutely continuous in the direction of ¢ if u(E)=0
for all Borel sets E that are null in the direction of ¢.

LeMma 2.1, Let y be a measure on G. Then the following are equivalent:
1° u is absolutely continuous in the direction of ¢;

2° |u] << e*|ul.

Proof. (2° implies 1°) Let E be a Borel subset of @ that is null in the direction of ¢,
so for each x in G, g(—x + E)=0. Then

9*|#|(E)=fce(—x+E)d|u| (@)=0,
so, by 2°, |u|(E)=0.
(1° implies 2°) Let E be a Borel subset of G with p*|u|(E)=0. We must prove
|| (E)=0. Define the g(R)-invariant subsets G, and G, of G by

Gy={x: z€G, o(—z+ E)=0},
G, ={x: 2€4, o(—x+ E)>0}.

Let E,=ENG,and E,=ENG,. If z is in E,, then
O0<p(—xz+HE)<g(—x+E)=0,

so E, is null in the direction of ¢. And since u is assumed absolutely continuous in the

direction of ¢, we have |u|(E,) =0. Furthermore, by hypothesis

fcé(‘x“'E)dI/‘I(x) =ox|ul(E) =0,
and g(—z+ E)>0 for x in E,, so |u|(E,)=0. This proves that

|| (E) = |u|(Eo) + || (By) = 0.
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We shall call a measure u on G non-vanishing in the direction of @ if |u|(E)>0 for each
Borel subset E of G that is thick in the direction of ¢ and for which(!) |u|(E +¢(R))>0.

LeMwma 2.2. Let y be a measure on G. Then the following are equivalent.
1° u is non-vanishing in the direction of ¢;
2° o |p| <<|ul-

Proof. (2° implies 1°) Assume that 2° is true and 1° false. Then there is a Borel set E,
thick in the direction of ¢, with |x|(E)=0 and |u|(£ +¢(R))>0. Because of 2°,

0 =0 [ul(B) = | o=+ E)alul @)

Since E is thick in the direction of ¢, E +¢(R) is precisely the set of x where o( —2x + £) >0,
and this contradicts |u|(E +¢(R))>0.

(1° implies 2°) Let E be a Borel subset of @ with |u|(E)=0. We must prove
0% || (E)=0. Define the Borel subsets Gy, @,, B, and E, of @ as in the proof of Lemma 2.1.
As in that proof, ¥ is null in the direction of ¢, so

0% |u|(By) =fGQ(—x+E0)d|y|(x) =0,

E, is thick in the direction of ¢, for x is in E, if and only if (x+¢(R)) N E has positive
linear measure, in which case

(x+e(R)NE = (x+¢(R)N H,.

Since 0 <|u|(E,) <|u|(E)=0 and g is non-vanishing in the direction of ¢, we have
|| (B, +(B)) =0. Thus

0% |u] (By) =Lg<~x+E1)d|ﬂ|<x> —o,

since the integrand is positive precigely for those x in E, +¢(R). This completes the proof
that

o*|u|(B) =o0%|u|(Eo) +o*|u|(E,) =0.
We are now able to state the main result of this section.

ProrosiTroN 2.3. Let y be a measure on G. Then the following are equivalent:
1° u is quasi-invariant under p;

(}) If E is thick in the direction of ¢, B +@(R) = {x:0( -z + E) >0}, and thus E +¢(R) is Borel.
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2° u s absolutely continuous and non-vanishing in the direction of @;
3° |u| and g*|u| are mutually absolutely continuous.

Proof. (3° implies 1°) For any measure u, 9% |u| is quasi-invariant under ¢ because of
o< lul(B) = [ o(=2+Bydlul@),

e*|ullp®) +B) =Le(~x+¢(t)+E)dlM|(w),
and the fact that, for each t in R,
{z: x€Q, o(—xz+ E) >0} ={x: 2€G, o(—z+¢(t) + E) >0}

It follows that u is quasi-invariant under @ if |u| is mutually absolutely continuous with
respect 0% |u|.

(1° implies 3°) Assume y is quasi-invariant under ¢. For any Borel set E,

1
dt.
1+

ol ul @)= [ lul(~a+ Do) = [ " lul(—o0+ B)

Thus if |u|(E) =0, so that |u|(—¢(t)+E)=0, all ¢, we have p*|u|(E)=0. And if
0% |u|(E)=0, then |u|(—g@(t)+ E)=0 for some t, and thus |u|(E)=0. This shows |u| anc
0% |p| mutually absolutely continuous.

This completes the proof of Proposition 2.3, as the equivalence of 2° and 3° is a conse.
quence of the preceding two lemmas.

Before stating the last result of this section, which is the analogue in our context
of a result of Plessner [14] for the circle group, one further definition is necessary. We shal

say that a measure y on G translates continuously in the direction of ¢ if
li —ul[=0,
lim || s, — |

where | -|| is the total variation norm, and for each ¢ in R the translated measure g, is
defined by
pd E) = pl@t) + B).

ProrosiTioN 2.4. Let u be a measure on G. Then the following are equivalent.
1° u is absolutely continuous in the direction of ;

2° u translates continuously in the direction of .
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Proof. (2° implies 1°) Let £ be a Borel subset of G null in the direction of ¢. We must
prove u(E)=0. For each positive integer n denote by », the measure on G that is the image
under the mapping ¢: R—>G of the uniform measure of total mass 1 on the interval

{—1/n, +1/n]. Because u translates continuously in the direction of ¢,
Hm [y, %p— pul|=0,
n—»co

and in particular p(E)=1lim v, % u(H).

n—>00

But for each n,

G

n +1/n
(é f Xe(@+ @(t)) dt) du(z) =0,

—1/n

vk p(B) = f val — @+ B) dpu() = f

since K is null in the direction of ¢. This proves u(E)=0.

(1° implies 2°). We shall denote by M(G) the Banach space of measures on G supplied
with the total variation norm ||-||, and by M (@) the subset of M(G) consisting of those
measures that translate continuously in the direction of @. It is easy to check that M (G)
is a closed linear subspace of M(G) and contains », % u, for », defined in the first part of
the proof and u any measure on (. Suppose now that u is a measure on G absolutely con-
tinuous in the direction of ¢. We shall prove that », % u converges to y weakly in the Banach
space M (@G). This will complete the proof that u is in M (@), for each v, %y is in the strongly
closed linear subspace M (G) of M((), and a strongly closed linearly subspace must be
weakly closed (see [7], theorem 13, p. 422). To show that »,%u converges weakly to u
it suffices to demonstrate (see [7], theorem 5, p. 308)

Tim v,5¢p(B) = u(E)
for an arbitrary Borel subset £ of G. Denote by F the subset of ¢ consisting of those x
for which

+1/n

Xe(z + @t)) dt = Xg().

lim =

n—>o00 ~1/n
F is a Borel set, and by the metric density theorem (see for example [8], p. 211) its com-
plement G\F is a set null in the direction of ¢. Thus, since y is absolutely continuousin the
direction of @, |u|(G\F)=0; equivalently

+1/n
lim - Ze(x+ @(8))dt = Xx()
n—>c0 —~1/n

13 — 632918 Acta mathematica 109. Imprimé le 14 juin 1963.
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almost everywhere with respect to |u|. So as a consequence of the Lebesgue bounded con-

vergence theorem we have

lim v, %pu(E)=lim f v( — 2+ E) du(x)
n—»o00 n-s0 J G

n +1/n
= lim (— f Ze(z -+ @(t)) dt) du(x)
¢ \2

n—>oe ~1/n

- |t duta) - 5.
This completes the proof.

3. Extensions of the first Riesz theorem

In this section we establish, as consequences of the Main Theorem and the results of
the preceeding section, absolute continuity properties of analytic measures. The results

given here are extensions of the first of the F. and M. Riesz theorems.

THEOREM 3.1. Let i be a p-analytic measure on G. Then y is absolutely continuous in the
direction of ¢. Equivalently, u translates continuously in the direction of ¢.

Proof. Immediate from the Main Theorem, Proposition 2.3 and Proposition 2.4.
If u is a measure on @G, the y-conjugate of u is defined to be that measure u,, (if such

exists) whose Fourier transform satisfies

o), p(a) >0
fiy(o)=9 0, p(c)})=0
— (o), (o) <0.

Suppose that u is a measure on G that has ay-conjugate u,. Sincey = 3((u +u,,) + (4 — ),
Theorem 3.1 applied to x+u, and p—u, yields the following, which is equivalent to
Theorem 3.1.

TaEOREM 3.2. Let y be a measure on G having a yp-conjugate. Then u s absolutely con-
tinuous in the direction of @ and translates continuously in the direction of ¢.

The following theorem is the extension to our context of a result for the circle group
due to Rudin [16] and Carleson [4].

THEOREM 3.3. Let E be a closed subset of G. Then the following are equivalent:

1° E is null in the direction of @;

2° For each continuous function b on E there is a continuous g-analytic function f on G
that agrees with h on E.
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Proof. (1° implies 2°) Let 4 be any measure on G that is orthogonal to all continuous
p-analytic functions on G. Then in particular, fcodu=0 for each o in G with y(g)>0.
Equivalently, @ vanishes on {o: 6€@, y(c)<0}. So u is analytic and by Theorem 3.1,
w(Ey) =0 for each Borel E,< E, or |u|(E)=0. Since |ux|(E)=0 for any measure u that is
orthogonal to all continuous g-analytic functions, 2° is a consequence of Theorem 1 of [1].

(2° implies 1°) Assume that 1° is false and 2° true. By translating E if necessary we
may assume that ¢(R) N E has positive linear measure. Let K =¢ 1 (E), so K is a closed
subset of E having positive Lebesgue measure. We have assumed that ¢ is a nontrivial
homomorphism and thus ¢ is a non-trivial homomorphism. Consequently, it is possible to
find an interval I of R and a point k of K so that I N K has positive Lebesgue measure and
@(k) is not in ¢(I). By the Tietze extension theorem there is a continuous function » on £
equal to 0 on ENg(l) and 1 at ¢(k). By the assumption of 2° there is a continuous ¢-
analytic function f on G agreeing with A on E. The function fop on R has an analytic
extension to the upper half-plane since f is g-analytic, and it is 0 on I N K and 1 at k. But
this is impossible since a bounded analytic function in a half-plane cannot have boundary
valuez zero on a set of positive Lebesgue measure without vanishing identically. The com-
pletes the proof of Theorem 3.3.

If H is the n-torus, its dual H is the group of lattice points in real n-space. Bochner’s
extension of the first F. and M. Riesz theorem (see [2]) states that any measure on the
n-torus whose Fourier transform vanishes off the positive octant of the lattice points must
be absolutely continuous. The following consequence of Theorem 3.1 is an extension of the
Bochner theorem. To obtain Bochner’s theorem from this result, define v,, for j=1,...,n,
by y,(my,...,m,)=m,. Then if y is a measure on the n-torus whose Fourier transform

vanishes off the positive octant, g, = Ws i=1,...,n.

THEOREM 3.4. Let H be the n-torus, u a measure on H and {y, ...,w,} a linearly independ-
ent(t) set of homomorphisms of H into R. Assume that for j=1,...,n the conjugate measure

Wy, exists. Then p must be absolutely continuous.

Proof. Denote by @;: R—>H the homomorphism dual to y;; H—R. Let M(G) be the
Banach space of measures on @ supplied with the total variation norm. For z in ¢, denote
by T.u the measure on G defined by 7T,u(E)=u(zx+ E). By Theorem 3.2, for j=1,...,n,
the mapping t—>T¢j(t) u of B into M(G) is continuous. Since the y; are linearly independent,
for ¢ small enough, the mapping

(*) We assume there are no constants ¢y,...,¢, s0 that ¢, +... +c,y, is the zero mapping from
H to R.
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(tl’ -'-,tn)_ﬂpl(tl) “'(Pn(tn)

is a homeomorphism of a neighborhood of the origin in n-space with a neighborhood of the
identity element of H. Thus, by the continuity of =T, ¢u for j=1,..,n, 2>T,u is a
continuous mapping of G into M(G). So by the generalized Plessner theorem (see for ex-
ample, Theorem, p. 230, [17]) ¢ must be absolutely continuous with respect to Haar

measure of H.
4. Extensions of the second Riesz theorem

In this section we establish, as consequences of the Main Theorem and the results of
section 2, non-vanishing properties of analytic measures. The results given here are ex-

tensions of the second of the F. and M. Riesz theorems.

THEOREM 4.1. Let u be a p-analytic measure on G. Then u is nonvanishing in the direc-

tion of .

Proof. Immediate from the Main Theorem and Proposition 2.3.

Because of Theorem 4.1, a p-analytic measure vanishing identically on an open subset
U of G must also vanish identically on the set ¢(R)+ U. But we cannot conclude from this
that p is the zero measure unless @(R) is dense in @; or equivalently, that y: G—R is
one-one. Thus we make this assumption below in order to be able to draw the stronger
conclusion.

Part 2° of the following is due to Helson, Lowdenslager and Malliavin in [10]. We have
not been able to obtain a proof of part 1° by their methods.

THEOREM 4.2. Assume @(R) dense in G. Let u be a p-analytic measure on G that either

1° wvanishes identically on an open subset of G or

2° 45 absolutely continuous and vanishes identically on a Borel set of positive Haar
measure.

Then p is the zero measure.

Proof. (1°) Suppose u vanishes identically on the open subset U of 7'. U is thick in the
direction of @, so by Theorem 4.1, u vanishes identically on @(R)+ U. But ¢(R) is dense in
G, so p(R)+ U =@.

(2°) We shall denote normalized Haar measure on G by m;. Let E be a Borel subset
of G with mg(E)>0 and |u|(E)=0. We must show y is the zero measure. By Theorem 4.1
and Lemma 2.2, 9% |u|(E)=0. Thus

0 =gp*|u|(E) =JG(—x+E)d|,u|(x),
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so |u|(Gy) =0, if G, is defined to be
{z:2€Q, o(—x+E) >0},

a Borel set invariant under translations by elements of @(R). Since g % ms =myg,
[ (ot Bramete) = me o,
¢

8o that mg(G,) >0. Consequently the characteristic function y., of G, is a non-zero element
of L,(G) fixed under translations by elements of ¢(R); and since elements of L, (G) translate
continuously, g, is left fixed by translation by any element of p(R)” =@. Evidently then

me(G4) =1, which proves g is the zero measure since mq(G;) =1, |u|(Gy) =0, and |u| < <mg.

5. Further properties of analytic measures

In this section we establish some further properties of measures on G that are absolutely
continnous in the direction of . As a consequence of Theorem 3.1, these results are valid
for all p-analytic measures on ¢. For such measures, the results that we state are in part
extensions of results of Bochner [2] and Helson-Lowdenslager [10].(%)

Throughout this section, for 4 a measure on G, u =u, -+, is its decomposition into parts
absolutely continuous and singular with respect to Haar measure on G. It is clear from the
definition of absolute continuity in the direction of ¢ that u, and u, will be absolutely

continuous in the direction of ¢ if u is.

ProrositioN 5.1. Let y be a measure absolutely continuous in the direction of ¢. Let
K be a closed subset of R. If g vanishes off y=(K), then ji, and fi, also vanish off K.

For y a g-analytic measure and K ={t:¢<0}, this result is essentially Theorem 7
of [9].

It is convenient to establish a lemma before the proof of Proposition 5.1.

LemwmA 5.2. Let y be a singular measure on G absolutely continuous in the direction of .
Let A be the image under p: B—G of some measure v on R. Then A% p is also singular.

Proof. Since u is singular we can find a Borel subset B of G having Haar measure 1
and |u|(B)=0. Let B, be the intersection of

{p(t) + B: ¢ rational},

() Bochner has informed us that he is able to obtain the conclusions of Proposition 5.1, 5.3 and
5.4 for g-analytic measures using the results of [9]. Frank Forelli has obtained a special case of Lemma
5.2 for @-analytic measures using quite different methods.
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so0 B, has Haar measure 1 and |u|( —g(t) + B,) =0 for rational . | x| is absolutely continuous

in the direction of ¢, so by Proposition 2.4, t—|u|(—g¢(t)+ B,) is continuous and thus

|| (—@@#)+By) =0 for all teR. Let D be an arbitrary Borel subset of B,. Then
u(—o(t)y+D)=0 for all tE R, so

+00
Axu(D) = fa u(—z+ D)dMz)= le u(— @(t) + D)dw(t) =
This proves |A%u|(B,) =0, and since B, has Haar measure 1, 1% u must be singular.

We now proceed to the proof of Proposition 5.1. Suppose the proposition false. Then
there is an element 6, of G not in y~1(K) with f,(c,) +0. Since K is a closed subset of R
and y(o,) is not in K it is possible to find a measure » on R with »=0 on K and #(y(o,)) +0.
Let A be the image of v under ¢: R—G. Then ] =voy, and as a consequence A% =0, since
(A%u)" =ip, p vanishes off yp-1(K) and A vanishes on p~1(K). So we have A%y, = —A%u,.
A pu, is absolutely continuous, and by Lemma 5.2 applied to u,, A%y, is smgular Thus
AXpu, =A% p,=0. But

N R
A% pa(0g) = i ao) ftalGo) = ¥(1(0,)) fAal0y) +0,

so we have a contradiction, completing the proof of Proposition 5.1.

In the following two results, we assume for simplicity of statement that G is R with
the discrete topology and y: G—R the identity mapping, so that G is the Bohr compacti-
fication of the reals. For the validity of the results it would have sufficed to assume y

one-one.

PrOPOSITION 5.3. Let y be a singular measure on G that is absolutely continuous in the
direction of . Then {o: 6€R, p(0) +0} is a subset of R containing no isolated points.(*)

Proof. Suppose ¢, were an isolated point of {o: 0 € R, a(d) +0}. Let » be a measure on
R with 7(cy) +0 and =0 at all other points where f is non-zero. Let 4 be the image of »
under the mapping ¢: R—G, so that } =», since we have identified G with R under p. Then

Axulo) = Ao)a(o) =¥(0)i(o),
which is zero if ¢ +0, and non-zero for ¢ =0,. So A% u must be a non-zero multiple of a
character times Haar measure on G. But by Lemma 5.2, A%y is singular, so we have our

contradiction.

(1} We assume it contains no isolated points considered as a subset of R with the usual topology.
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ProrosirioN 5.4. Let K be a countable closed subset of R. Let y be a measure on G
that is absolutely continuous in the direction of p and whose Fourier transform vanishes off K.
Then p is absolutely continuous.

Proof. By Proposition 5.1, g, also vanishes off K. And by Proposition 5.3, {o: cER,
2s(0) =0} can have no isolated points. But the only subset of K having no isolated points
is the empty set since K is countable and closed. Thus u,=0.

The final result of this section is a refinement of Lemma 5.2, which is valid for measures

that are quasi-invariant under ¢, and thus by the Main Theorem, for all p-analytic measures

on G.

ProPoSITION 5.5. Let y be a measure on G that is quasi-invariant under . Let 4 be

the ymage under ¢: R—@ of some measure v on R. Then A*u< <pu.

Proof. Let E be a Borel subset of G with |z |(E)=0. Then for any Borel subset F of E,

A% u(F) = fc u(—x+ FydA(z) = f+°°lu( —@(t) + F)dv(t) =0,
since the last integrand is identically zero. This proves that A% u< <gu.

Theorem 5.4 leads easily to an analogue of Bochner’s Theorem for the (countably)
infinite dimensional torus T'*. Indeed, since we may identify 7%~ with the (weak) direct
sum of countably many replicas of the integers, let the positive “octant” in 7" consist
of those sequences of integers n =(n,,n,,...) with #,>0 (only finitely many n, are non-zero).
Then if g in M(T) has its Fourier transform g vanishing off the octant, u is absolutely
continuous with respect to Haar measure; in fact |u| is equivalent to Haar measure if
u=*0.

For let a,,a,,... be an increasing sequence of independent positive real numbers tending
to oo, Then the isomorphism y of 7' into R defined by

W(n) zz n;a;,

maps the octant onto a closed countable subset of the non-negative reals, as is easily seen.
Thus with ¢ the dual map of R into T, y is clearly gp-analytic, so that by Theorems 3.1
and 5.4, u is absolutely continuous. Moreover, since y is one-one, ¢(R) is dense in 7%, and

s0 Theorem 4.2 applies, and |u| cannot vanish on a set of positive Haar measure if u + 0.



192 K. DE LEEUW AND I. GLICKSBERG

6. Reduction to the covering group

In this section we construct a covering group for ¢ and show that the Main Theorem
is a consequence of an analogous result for the covering group. This result for the covering
group is established in the following section, completing the proof of the Main Theorem.

In order to clarify matters we shall outline our procedure in this section. We find a
closed subgroup K of G so that the homomorphism y: R X K—G defined by

p(t,u) =¢@(t)+u (ER, u€kK),

is a covering mapping for G; that is, y is onto, has as kernel a discrete subgroup, and is a
local homeomorphism. (This construction was suggested to us by [11], p. 451.) A measure
A on RxK is called analytic if its Fourier transform }, defined on the dual group R x K,
satisfies }(s,0) =0 for s<0. And A is called quasi-invariant if the collection of all Borel sets
on which 1 vanishes identically is invariant under translation by the subgroup R x {e} of
R x K, where ¢ is the identity element of K. We define a mapping u—>4, of measures on ¢
into measures on R X K which satisfies 1°. If u is p-analytic, then A, is analytic; 2°. If 4, is
quasi-invariant, then u is quasi-invariant under @. Thus the Main Theorem is reduced to the
assertion that each analytic measure on R x K is quasi-invariant. And this result is Theorem
7.1 of the following section.

We first construct the subgroup K of G. Choose any element y, of G with y(y,) >0.
By changing the scale of y if necessary we may assume y(x,) =1. K is defined to be the
annihilator in @ of the subgroup of G generated by y,; that is,

K={z: z€G, yo(x)=1}.

K is a closed subgroup of G and thus a compact abelian group. We shall denote by T’
the locally compact abelian group R x K and by y: T—>G the mapping defined by

y(t,u) =@)+u (tER, uEK).

y is clearly a continuous homomorphism; its kernel will be denoted by D. Since yo(p(¢)) =

V@’ =gl for all t€ R, g(t) is in K if and only if ¢ is an integer multiple of 27. Thus
D={2an, —¢2an)):n=0, +1,..}.

In particular D is a discrete subgroup of 7.
Throughout this section we shall denote by I the interval {# —z<t< +x} in E. The
next lemma shows that y: R x K—G is a covering mapping and has I X K as fundamental

domain. The result is essentially Theorem 2.3 of [11].
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Lrmma 6.1. y maps I XK one-one onto G and is a homeomorphism on the interior of
IxXK.

Proof. Let x€G. Suppose that yo(x) =e¥, where ¢ is chosen in I. Let uw=x —g(t), so
rolw)=e®e ®=1, and u€ K. Then # =y(t,u), proving the onto part of the assertion. For the
one-one part, suppose that (¢,,%,) and (¢,,%4,) in I X K have the same image under y. Then
o(t,) +u, =@(t,) +u, and as a consequence @(t, —t,) =u, —u, €K, so t,— ¢, must be an integral
multiple of 2z. But ¢; and ¢, are both in I, so ¢, =t,, which implies %, =u,.

To see y is a homeomorphism on the interior of I x K, suppose g{fs) +us—>¢@(t) +u,
—m<t, t;<s. Then any cluster point of {p(t;—)} ={@(ts) —@(t)} is a cluster point of
{u—us}, hence in K. So if # is a cluster point of {#;} then ¢(i’ —t)€K, whence ¢’ —¢ is an
integral multiple of 27; since —n<t'<m and —n<t<m, we must have t'—¢=0. Thus
ts—>t, so that @(f;)—>@(t), whence us—>u and (¢, us)—(2, u).

We shall denote by §: G—I X K the mapping inverse to the one-one correspondence
y: I x K—>(@. Haar measure on G, D and T will be denoted by mg, my, and m, respectively.
We assume m, normalized to have total mass 1, and m, normalized to give each point of D
mass 1. Lemma 6.1 shows that G is naturally isomorphic to the quotient group 7'/D.

Thus by p. 131 of [13], it is possible to normalize m, so that (1)

f fdmg = f (mp% ) o B)ime (6.1)

for each continuous f on 7' having compact support.

We proceed next to the construction of the mapping u—2, from measures on G to
measures on 7. We denote by C(Gf) and Cy(T) the Banach spaces of continuous functions
on G and continuous functions on 7' zero at infinity. Their duals are the spaces M(G) and
M(T) of measures on G and 7. We denote by C(T') the space of continuous functions on
T having compact support.

To define the mapping u—A, we shall make use of a fixed function ¢ in Cy(7). In

order to construct the mapping u—>4, we need only assume that ¢ satisfies
g(ul!t) = g(uz;t) (ub ’U/ZGK, tER)’
and g(u,t) =02 as t->+ oo,

Later in order to establish properties of u—4,, we shall put further conditions on g.

(1) mpXf(u)= ZdeD fu+d).
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If u is absolutely continuous, so u =fmg for some m; integrable function f on G, we
want the associated measure 1, to be (foy)gms. So one way of proceeding would be by
extending the mapping fme—(foy)gm; by continuity to all of M(@F). Instead we use a
somewhat more indirect method which is more convenient.

We define a mapping L: Co(T)—C(G) as follows. For each f in Cy(T'), Lf is the function
{my* (fg))oB on G. It is simple to check that, because of the conditions assumed on g, L
is a continuous linear transformation of Oy(T') into C(@). The adjoint mapping L*: M(G)—
M(T), defined by

f Lz - f (L (€T,

is continuous in both the norm and weak™® topologies of M(G) and M(T).
For each u in M(G) we define 1, to be L*u.
We first show, for a large class of absolutly continuous y, that A, is the measure we

wanted.
Lumma 6.2. Let b be a function in C(G). Then
L*(hmg) = (hoy)gmy.
Proof. It suffices to show, that for each function b in C(T'),
JT bd(L*(hme)) = fT (ko y)bgdmy. (6.2)
By the definition of L and L*

f bd(L*(hmg)) = f (Lb)hdme
T G

= fc ((mp*(bg)) o B)hdme = L ((mp*(bg)) 0 )((hoy) 0 f)dme

(6.3)
= L ((Roy)(mpx(bg)) o fdms = L (mp*((hoy)by)) o fdme.
Formulas (6.1) is valid for f =(koy)bg, so
fG (mp*((hoy)bg)) o fdmg = fr (hoy)bgdmy. (6.4)

(6.3) together with (6.4) implies (6.2).
We define a measure 4 in T to be quasi-tnvariant if the collection of Borel sets on

which A vanishes identically is invariant under translation by elements of R X {e}.
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A further condition on g is necessary in order to relate quasi-invariance on G and T';

we shall assume that the function ¢ never vanishes on 7.

Lemma 6.3. Let u be a measure on G, U a Baire subset of G, V=8(U) and d an element of
D. Then

f (1/9)dA, = w(U). (6.5)
a+v
Proof. By the definition of 4,, for any f in Cy(T),

f i, = f o) o B (6.6)

Thus for any & in C(T"), taking f =b/g in (6.6), we get

f (b/9)dA, = f (mp*b) o pdpu. (6.7)
T G

For any bounded open interval J of R, denote by B; the class of all bounded Baire func-
tions b on T', vanishing off J x K, that satisfy (6.7). B, contains all b in C (T} with support
in J X K, and is clearly closed under monotone convergence of bounded sequences. Thus
B; contains all bounded Baire functions on 7' vanishing off JJ x K. This shows in particular
that (6.7) holds for b the characteristic function of d+ V. But in this case, m,%b is the
characteristic function of y=XU), so (m,* b)of is the characteristic function of U and the
equality (6.7) becomes (6.5).

COROLLARY 6.4. Let u be a measure on G, E a Baire subset of G. Then u vanishes

identically on E if and only if A, vanishes identically on y=1(E).

Proof. Suppose y does not vanish identically on E. Then there is a Baire subset U of
E with y4(U) +0. By Lemma 6.3,

| (1/g)dh, = p(U) +0,

where V =p§(U) is a subset of y~1(E), so 1, cannot vanish identically on y~1(E). For the
converse, suppose that 1, does not vanish identically on p~'(E). Let

F=B(B)=y=(E) 0 (I % K).

Then, since y~(H)=U(d+F), there is some d, is D so that 4, does not vanish
deD
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identically on d,+ F. Let V be a Baire subset of F such that (4, v(1/g)dA, =+ 0, and let
U =y(V). Then, by Lemma 6.3,

)= f  W/gya+o0,

8o u cannot vanish identically on E.

ProOPOSITION 6.5. Let u be a measure on G. If 2, is quasi-invariant, then p is quasi-

invariant under @.

Proof. Let E be a Baire subset of @ on which g vanishes identically, ¢ an element of R.
By Corollary 6.4, 1, vanishes identically on y~(E). 4, is quasi-invariant, so 1, vanishes
identically on (£,e) +y~(E), which is y~(p(t) + E)). Again using Corollary 6.4, u vanishes
identically on ¢(t) + E. This proves that the collection of Baire subsets of ¢ on which y
vanishes identically is invariant under translation by elements of ¢(R). As a consequence,
since y is regular, the collection of Borel subsets of ¢ on which u vanishes identically is
invariant under the translation by elements of ¢(R); that is, 4 is quasi-invariant under ¢.

The same sort of proof establishes the converse of Proposition 6.5. However we shall
not need this result.

The dual group 7' of =R X K can be identified with R x K; we associate with the
element (s,0) of R X K the character y of R x K defined by

tu) =eo(u) (tER, u€K).

A function or measure on R X< K will be called analytic if its Fourier transform vanishes
on the “negative half” {(s,0): <0} of R X K.

We require one final condition on the function g in order to relate analyticity on &
and T'; we assume the function g to be analytic.

We first show that functions satisfying all of the conditions that we have imposed on g
actually exist. Let » be any continuous function on R, nowhere vanishing, satisfying
|R()] <1/(1-+¢2), all ¢, and h(s)=0 if s<0. Then we can define g on R x K by g(t,u) =h(¢).
It is simple to check that this function satisfies the conditions.

We now proceed to the proof that g-analyticity of u implies analyticity of 4,. We
establish first two lemmas. We shall denote by M, (G) and M (T) the subsets of M(G) and

M(T) consisting of measures that are g-analytic and analytic respectively.
LEMMA 6.6. M (T) is a weak™® closed linear subspace of M(T).

Proof. Let h be a Lebesgue integrable continuous function vanishing at infinity on
R satisfying /i(s) =0 if s>0 and /(s) = 0 if s <0. Define the function f on R x K by f(t,u) =
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h(t). Then feCy(T), { is integrable with respect to m;, and its Fourier transform f, defined
on R xR, satisfies f(s,0)=0 if s>0 and f(s,0) +0 if s<0. Let A be a measure in M(T).

Then A% f=jf will be the zero function on R x K precisely when } vanishes on the subset
{(s,0): s<<0} of R X K; that is, when 1 is analytic. This shows that M,(7T') consists of those
A in M(T) satisfying A% f=0. But A%f=0 if and only if 1 is orthogonal to all translates
of f, and f is in Oy(7T"), which proves that M (T') is weak™ closed. It is clear that M (T') is a
linear subspace of M(T), so the proof is complete.

LeMMA 6.7. Let x in G satisfy w(y)>0. Then L*(ymg) is an analytic measure on T.

Proof. By Lemma 6.2, L*(ymg) =(x07y)gms. So it suffices to show that the function
(xoy)g is analytic. Denote by y, the restriction of the character y of G to the subgroup K,
50 7, € K. Then for (s,0) in Rx K,

/\ ist —r—y
(Xoylgls, o) = L e o(u)[(X o )gl(t, w)dmz(t, u)

zf e olule @ L(ulg (e, uhdmalt, w)
T
=§(s — (), ofs)- (6.8)
Since we have assumed w(y) >0, if s is negative, (6.8) together with the analyticity of ¢
N
shows that (yoy)g(s,0) =0. This proves (yo7)g analytic.
ProrosiTioN 6.8. Let u be a measure on G. If u is p-analytic, then A, is analytic.

Proof. We must prove that L* maps M (@) into M,(T). Let {0,: «€J} be an approxi-
mate identity on G consisting of trigonometric polynomials;(!) that is, a net of trigonometric
polynomials satisfying 0,% f—f in C(G) for each f in C(G). Choose u in M (). Then each
p#*8, is a linear combination of characters y with w(y)>0, so by Lemma 6.7, each
L*((u*0,)mg) is in M,(T). Since {,: «€J} is an approximate identity, (u*0,)ms—>u
weak™*. L* is continuous in the weak™ topologies, so L* u is the weak™ limit of {L* (1 %0,)m):
«€J}, and thus by Lemma 6.6, is in M (7).

7. Completion of proof of Main Theorem

As a consequence of Proposition 6.5 and 6.8, the Main Theorem will be established
once we have proved the following.

(1) A trigonometric polynomial is a linear combination of characters.
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THEOREM 7.1. Let u be a measure on T. If u is analytic, then u is quasi-invariant.
This section is devoted to the proof of Theorem 7.1. The method is roughly as follows.
By Lemma 6.6, the space M (T) of analytic measures in 7' is a weak® closed linear sub-

space of the space M(T) of all measures on 7. Thus, by the Alaoglu theorem, its unit ball
B={u: u€My(T), |ll| <1}

is compact in the weak® topology. We denote by B, the set of extreme points of B and
by B, the weak* closure of B,. Itis a consequence (see Proposition 7, p. 87 of [3]) of the

Krein-Milman theorem that each measure u in B will have a representation of the form (1)

u= [ aavit (7.1)
Be

for some non-negative measure v of total mass 1. The measures in B, are shown to be con-
centrated on lines R X {u} in R X K; and the one-dimensional F. and M. Riesz theorems
applied to these measures demonstrates that they are quasi-invariant. The quasi-invariance
of each measure in M,(7') is then obtained as a consequence of the quasi-invariance of the
measures in B, and the existence of the representation (7.1).

Qur first aim is the establishment of the quasi-invariance of the measures in B,.

This will be achieved by a sequence of lemmas.
LeMMA 7.2 Let v be a measure on R whose Fourier transform vanishes on {s: s<0}. Then

{D: D Borel, |v|(D) =0} (7.2)

18 invariant under translation.

Proof. We can assume v is not the zero measure. By the one-dimensional F. and M.
Riesz theorems for R, v must be absolutely continuous and not vanish identically on any
set of positive Lebesgue measure. Thus (7.2) is simply the collection of Borel subsets of B

having Lebesgue measure zero.

LemmA 7.3. Let u be a measure in M (T) with carrier contained in R x{u}. Then u

18 quasi-invariant.

Proof. Define the measure v on R by »(D)=u(D x {u}) for each Borel subset D of R.
Then, for any s in R,

(*) The meaning of this integral is discussed after Proposition 7.7.
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»(s) =f e St dy(t) =f e~ duft, v)
RxK

= L Ke‘“‘ La(@)dult, v) =fls, 1), (7.3)

where y, is the character of K identically equal to 1. u is analytic, and thus j(s,x,) =0 if
§<0. So, by (7.3), »(s) =0 if <0, and the conclusion of Lemma 7.2 applies to ». Now let.
E be any Borel subset of T with |u | (E) =0, ¢, an element of R. We want to show | 2] (2o, €) +
E)=0. Let D={t: (t,u)€E}, so |v|(D)=|u|(E)=0. The collection of null sets of » is
translation invariant; thus |[u|((f,€) +E)=|»] (¢, +D)=0.

LevmA 7.4. Let y be a measure in M, (T). If h is a bounded continuous function on T'
satisfying
Rt u) = hity,w) (¢, L,ER, u€K) (7.4)
then hu is also tn M (T).

Proof. Let H be the collection of all continuous functions % on T satisfying (7.4) which
are such that hu is in M (7). If y is a character of K and % on 7T is defined by A(f,u) = X(%),
then % is in . For, if s<0, 6€ K, then

N\

hu(s, o) =JR Ke"“t olu)h(t, u)du(t, u)
= f e o) (w)du(t, w) = fls, of) =0
RxK

by the analyticity of u. # is clearly a linear space of functions and closed under uniform
convergence. Thus, since each continuous function on K can be approximated uniformly

by linear combinations of characters, H consists of all continuous functions A on 7' satis-
fying (7.4).

LemMA 7.5. Let u be a measure in B,. Then there is some w in K for which u has carrier
contained in R X {u}.

Proof. Since u is an extreme point of B, ||u| =1. Assume that there are points (f,,%,)
and (¢,,%,) in the carrier of u with %, =u,. We must show that this contradicts the assumption
that u is in B,. Let f be a continuous function on K, 0<f<1, f=0 near u, and f=1 near
%;. Define the function % on T by k(t,u) =f(u). Then b satisfies (7.4), so by Lemma 7.4, the

measures hy and (1 —h)u are in M (T'). These measures are non-zero and not multiples of
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each other. For u, is in the carrier of (1 — k) and not the carrier of Au; and u, is in the carrier

of hy and not the carrier of (1 —-h)u. We have

1 1
=lrull iR —mu|| (i (1 = R)),
u il (Il’mll ")”“1 el (Il(l—hmll( ”‘)

Il + =gl = [ [mlalsl+ [ 11=A1a]l

and

- [ halut+ [ a-malul=lulm -1

which shows that 4 could not be an extreme point of B.

Lemma 7.6. Let u be a measure in B,. Then there is some u in K so that y has carrier

contained in R x {u}.

Proof. Let {u,: «€J} be a net in B, converging weak® to u. By Lemma 7.5, there is
for each €J a point u, in K so that y, has carrier contained in R X {u,}. By the compact-
ness of K, the net {u,: «€J} has at least one cluster point. Let u be such a cluster point.
We will prove the carrier of u is contained in R x {u}. Let f be any continuous function on

T having compact support contained in the complement of R x {u}. Then the net

v

of real numbers has a cofinal subnet consisting of zeros. But

[ ttu=tim s
T we J T
so [7fdu=0. This proves the carrier of u contained in R x {u}.

We can now assert the quasi-invariance of the measures in B,.
PROPOSITION 7.7. Let u be a measure in B,. Then y is quasi-invariant.

Proof. Immediate from Lemmas 7.3 and 7.6.

We now proceed to the second part of the proof of Theorem 7.1, which reduces the
question of the quasi-invariance of an arbitrary measure in M(7T) to that of measures in
B,, which has been settled.

Let p be an arbitrary measure in M,(7T) with ||u|| =1, so g is in B. To complete the

proof of Theorem 7.1 we must show u quasi-invariant. By Lemma 6.6 and the Alaoglu
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theorem, B is compact in the weak % topology of M(T'). It is a consequence (see Proposi-
tion 7, p. 87 of [3]) of the Krein-Milman theorem that there will be a non-negative measure

» of total mass 1 on the compact space B, so that

= f_ Adv(d). (7.5)
Bg

The integral in (7.5) is to be interpreted in the following sense;(!) for each f in Ci(T),
p(f) =L AMfdv(2).

One further lemma is needed before we are able to complete the proof of Theorem 7.1.

This lemma states roughly that, in the situation we are considering, the formula

ul= [, 1210wt

is meaningful and valid.
LeMma 7.8. Let E be a Baire subset of T. Then

A—>||(B)

s a Borel function on B and

lﬂl(E)=f§e|l|(E)dv(l).

Let us assume the lemma true and complete the proof of Theorem 7.1; the lemma will
be proved last.

Since y is regular, to establish the quasi-invariance of u it suffices to show that the
collection of Baire subsets £ of T with |u| () =0 is invariant under translation by elements
of R x{e}. So suppose E is Baire, |u|(E)=0 and ¢{€ R. We must show |u|((t,e) + E)=0.
By Lemma 7.8, since |u|(E)=0,

{A: 2€B,, |A|(E) +0} (7.6)
is Borel and has » measure 0. By Proposition 7.7, the set

{2: A€ B,, |A| ((t,e) + E) +0}

(!} We now use the notation A(f) = J‘fdl, uh= _ffd,u.

14 - 632918 Acta mathematica 109. Imprimé le 14 juin 1963.
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is identical with (7.6), and thus in particular has » measure 0. As a consequence, again using

Lemma 7.8,

|#]((t,e)+ E) =L |A]((t,e) + E)dw(A) = 0.

So except for the proof of Lemma 7.8, we have completed the proof of Theorem 7.1,
and thus of the Main Theorem. We now prove this lemma.

We continue to use ||-|| to denote the total variation norm for measures in M(T)
and will use ||-||c for the supremum norm for Cy(T). Let f be any bounded continuous

function on 7' with f>0. Then, for any measure 7 on 7,

19 [ taln] <l sup]| [ han:pecum, fales1}.

For each & in Cy(T) with ||k]| <1 define the function L, on B by L,(n) = |n(fh)|. Each
L, is continuous on B. And (7.7) shows that the function

n=>|n|(f) (MEB),

is the pointwise supremum of the family {L,} of continuous functions, and is thus a Borel

function on B. In particular, it is possible to form the integral
f_ |41 (w4,
B
We have, using the representation (7.5) and the validity of (7.7) for n =g,

|| (f) = sup

lirlloo <1

J' fhd,ul= sup f_l(fh)dv(l)'

1172]loo <1

< sup L|1|(f)dV(l)=f§ | 2] (hdr(A).

l12lloo <1
this proves that lu|(h< f_ [ 2] (Hdw(4) (7.8)

for all bounded continuous f on 7' with f>0. Suppose that the inequality (7.8) were strict

for some f,. We may assume 0<f,<1. Then

“lull= [ 1alal= [ nalal+ [ a-ralul 1.9)
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We have assumed

[ttt [ 121 doameny 710

and
L(l-fo)dlﬂKfE |41 (1= fo)dv(2) (7.11)

because of (7.8) applied to the non-negative function 1 —f,. (7.9), (7.10) and (7.11) lead to
the contradiction

< [l + [ 1410 i

=f_ I/ll(l)dv(l)=f; 1dw(A) =1.

This shows that we have the equality

L1} () =L |A] (f)dv(2) (7.12)

for all non-negative bounded continuous f on 7, and thus for all bounded continuous fon 7'.
Let us denote by B the collection of all bounded Baire functions f on T for which the
mapping

A=~|Al(f) (A€B),
is Borel and the equality (7.12) holds. We have shown that B contains all bounded con-
tinuous functions on T'; and because of the bounded convergence theorem, B ié closed under
pointwise convergence of bounded sequences. Thus B consists of all bounded Baire functions

on T'. Since the characteristic function of a Baire subset of T is a Baire function, the lemma
is established.

8. Some further questions

There are several questions connected with the above results which deserve mention.
First, most of our deductions from the Main Theorem are valid in the context of one-
parameter groups of homeomorphisms of compact topological spaces. In particular, the
results of sections 2 and 5 can be established in this generality. It is conceivable that a
version of the Main Theorem itself is also valid in the context. Here is a possible generali-
zation. Let X be a compact space and {T';} a one-parameter group of homeomorphisms of
X. Call a measure y on X {7';}-analytic if the vector valued integral
fﬂo AT, udt

—e0
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is zero for all  in L(R) whose Fourier transforms vanish for ¢ <0. (In the case that X =G
and T, is translation by g(t), this agrees with our previous definition of analyticity.) Then
a generalization of our Main Theorem would be the assertion that a {T';}-analytic measure
4 is quasi-invariant under {7'}; that is, the collection of | w}-null sets is {7';} invariant.
Indeed, with this definition of analyticity (and 7', right translation by g¢(¢)), the Main
Theorem continues to hold even when @ is non-commutative.(?)

Another possible extension of some of our results is to the context of Dirichlet algebras
(for the relevant definitions, see [12]). The collection of @-analytic continuous functions on
@ is a Dirichlet algebra on G. Theorem 3.1 says precisely that each Borel subset of G that
is of measure zero for all of the representing measures for the algebra must be of measure
zero for all of the annihilating measures for the algebra. It is conceivable that a correspond-

ing result holds for a wider class of Dirichlet algebras.

9. Locally compact abelian groups

We have neglected the (seemingly) more general situation in which G is a locally
compact abelian group simply because the main results in this case follow easily from
the compact case. Here we shall only note how the Main Theorem and the analogues of
A and B (Theorems 3.1 and 4.1) are obtained.

Suppose that ¢: R—G is a continuous homomorphism into the locally compact
abelian group G, and y is a p-analytic measure on G (where “p-analytic” is defined as earlier
in terms of the dual of ¢). Let 7: G—>G° be the (1 —1) continuous homomorphism of & into
its Bohr compactification G°. The induced map of measures on G into measures on G°,
which we may as well again call 7, takes x into a measure 7u which is 7g-analytic on G%,
as is easily seen. Thus 7u is quasi-variant under 7g; since T maps Borel subsets of G onto
Borel subsets of G%, while 7v(7E) =v(E) for any measure » on G and Borel E< G, it is trivial
to conclude that u is quasi-invariant under ¢, so that the Main Theorem holds.

Similarly Theorem 3.1 (which might be obtained by showing its derivation from the

Main Theorem involves no essential use of compactness) follows once we note that a Borel

() Sketch of proof. Let H =gp(R), a compaet abelian group, and let B be the {T,}-analytic meas-
ures of norm <1, with B,, B. defined as before in terms of B. For f €C(@) constant on (left) cosets mod H,
Tfu=1T,u, so j h(t) T, fdu(t) =f f R(t) T, du(t), and fu is {T,}-analytic if y is. Using such f one can now
argue as in 7.5 that 4 € B, has carrier contained in a coset of H; and as in 7.6 the same applies to yu € Be .
But {7,}-analyticity for a u carried by H coincides with @-analyticity for the map @:R—H. Thus
HEB; has a left translate which is g-analytic, hence quasi-invariant, and g is quasi-invariant. The
final argument of § 7 now completes the proof.
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set E<@ null in the direction of ¢ has 7E null in the direction of 7p, whence
0=|tu|(tB)=1|u|(vE)=|x|(E). And Theorem 4.1 follows since, if E is thick in the
direction of ¢ and(?) |u#|(E +@(R)) >0, we have the same statements for 7E and g, so
that |u]|(E)=1|u|(=E)=|wu|(xE)>0.
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(1) Since 7E +T1@(R) is a Borel set in G, E+¢(R) v YeE+7 (R)) is locally Borel, hence a Borel
P @ 14

subset of @ since it is contained in & T-compaet set.



